1 //===-- asan_test.cc ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 //
12 //===----------------------------------------------------------------------===//
13 #include <stdio.h>
14 #include <signal.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <strings.h>
18 #include <pthread.h>
19 #include <stdint.h>
20 #include <setjmp.h>
21 #include <assert.h>
22
23 #if defined(__i386__) || defined(__x86_64__)
24 #include <emmintrin.h>
25 #endif
26
27 #include "asan_test_config.h"
28 #include "asan_test_utils.h"
29
30 #ifndef __APPLE__
31 #include <malloc.h>
32 #else
33 #include <AvailabilityMacros.h> // For MAC_OS_X_VERSION_*
34 #include <CoreFoundation/CFString.h>
35 #endif // __APPLE__
36
37 #if ASAN_HAS_EXCEPTIONS
38 # define ASAN_THROW(x) throw (x)
39 #else
40 # define ASAN_THROW(x)
41 #endif
42
43 #include <sys/mman.h>
44
45 typedef uint8_t U1;
46 typedef uint16_t U2;
47 typedef uint32_t U4;
48 typedef uint64_t U8;
49
50 static const char *progname;
51 static const int kPageSize = 4096;
52
53 // Simple stand-alone pseudorandom number generator.
54 // Current algorithm is ANSI C linear congruential PRNG.
my_rand(uint32_t * state)55 static inline uint32_t my_rand(uint32_t* state) {
56 return (*state = *state * 1103515245 + 12345) >> 16;
57 }
58
59 static uint32_t global_seed = 0;
60
61 const size_t kLargeMalloc = 1 << 24;
62
63 template<typename T>
asan_write(T * a)64 NOINLINE void asan_write(T *a) {
65 *a = 0;
66 }
67
asan_write_sized_aligned(uint8_t * p,size_t size)68 NOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
69 EXPECT_EQ(0, ((uintptr_t)p % size));
70 if (size == 1) asan_write((uint8_t*)p);
71 else if (size == 2) asan_write((uint16_t*)p);
72 else if (size == 4) asan_write((uint32_t*)p);
73 else if (size == 8) asan_write((uint64_t*)p);
74 }
75
malloc_fff(size_t size)76 NOINLINE void *malloc_fff(size_t size) {
77 void *res = malloc/**/(size); break_optimization(0); return res;}
malloc_eee(size_t size)78 NOINLINE void *malloc_eee(size_t size) {
79 void *res = malloc_fff(size); break_optimization(0); return res;}
malloc_ddd(size_t size)80 NOINLINE void *malloc_ddd(size_t size) {
81 void *res = malloc_eee(size); break_optimization(0); return res;}
malloc_ccc(size_t size)82 NOINLINE void *malloc_ccc(size_t size) {
83 void *res = malloc_ddd(size); break_optimization(0); return res;}
malloc_bbb(size_t size)84 NOINLINE void *malloc_bbb(size_t size) {
85 void *res = malloc_ccc(size); break_optimization(0); return res;}
malloc_aaa(size_t size)86 NOINLINE void *malloc_aaa(size_t size) {
87 void *res = malloc_bbb(size); break_optimization(0); return res;}
88
89 #ifndef __APPLE__
memalign_fff(size_t alignment,size_t size)90 NOINLINE void *memalign_fff(size_t alignment, size_t size) {
91 void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
memalign_eee(size_t alignment,size_t size)92 NOINLINE void *memalign_eee(size_t alignment, size_t size) {
93 void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
memalign_ddd(size_t alignment,size_t size)94 NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
95 void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
memalign_ccc(size_t alignment,size_t size)96 NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
97 void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
memalign_bbb(size_t alignment,size_t size)98 NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
99 void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
memalign_aaa(size_t alignment,size_t size)100 NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
101 void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
102 #endif // __APPLE__
103
104
free_ccc(void * p)105 NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
free_bbb(void * p)106 NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
free_aaa(void * p)107 NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
108
109 template<typename T>
oob_test(int size,int off)110 NOINLINE void oob_test(int size, int off) {
111 char *p = (char*)malloc_aaa(size);
112 // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
113 // sizeof(T), p, p + size, off);
114 asan_write((T*)(p + off));
115 free_aaa(p);
116 }
117
118
119 template<typename T>
uaf_test(int size,int off)120 NOINLINE void uaf_test(int size, int off) {
121 char *p = (char *)malloc_aaa(size);
122 free_aaa(p);
123 for (int i = 1; i < 100; i++)
124 free_aaa(malloc_aaa(i));
125 fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
126 (long)sizeof(T), p, off);
127 asan_write((T*)(p + off));
128 }
129
TEST(AddressSanitizer,HasFeatureAddressSanitizerTest)130 TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
131 #if defined(__has_feature) && __has_feature(address_sanitizer)
132 bool asan = 1;
133 #else
134 bool asan = 0;
135 #endif
136 EXPECT_EQ(true, asan);
137 }
138
TEST(AddressSanitizer,SimpleDeathTest)139 TEST(AddressSanitizer, SimpleDeathTest) {
140 EXPECT_DEATH(exit(1), "");
141 }
142
TEST(AddressSanitizer,VariousMallocsTest)143 TEST(AddressSanitizer, VariousMallocsTest) {
144 // fprintf(stderr, "malloc:\n");
145 int *a = (int*)malloc(100 * sizeof(int));
146 a[50] = 0;
147 free(a);
148
149 // fprintf(stderr, "realloc:\n");
150 int *r = (int*)malloc(10);
151 r = (int*)realloc(r, 2000 * sizeof(int));
152 r[1000] = 0;
153 free(r);
154
155 // fprintf(stderr, "operator new []\n");
156 int *b = new int[100];
157 b[50] = 0;
158 delete [] b;
159
160 // fprintf(stderr, "operator new\n");
161 int *c = new int;
162 *c = 0;
163 delete c;
164
165 #if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
166 // fprintf(stderr, "posix_memalign\n");
167 int *pm;
168 int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
169 EXPECT_EQ(0, pm_res);
170 free(pm);
171 #endif
172
173 #if !defined(__APPLE__)
174 int *ma = (int*)memalign(kPageSize, kPageSize);
175 EXPECT_EQ(0, (uintptr_t)ma % kPageSize);
176 ma[123] = 0;
177 free(ma);
178 #endif // __APPLE__
179 }
180
TEST(AddressSanitizer,CallocTest)181 TEST(AddressSanitizer, CallocTest) {
182 int *a = (int*)calloc(100, sizeof(int));
183 EXPECT_EQ(0, a[10]);
184 free(a);
185 }
186
TEST(AddressSanitizer,VallocTest)187 TEST(AddressSanitizer, VallocTest) {
188 void *a = valloc(100);
189 EXPECT_EQ(0, (uintptr_t)a % kPageSize);
190 free(a);
191 }
192
193 #ifndef __APPLE__
TEST(AddressSanitizer,PvallocTest)194 TEST(AddressSanitizer, PvallocTest) {
195 char *a = (char*)pvalloc(kPageSize + 100);
196 EXPECT_EQ(0, (uintptr_t)a % kPageSize);
197 a[kPageSize + 101] = 1; // we should not report an error here.
198 free(a);
199
200 a = (char*)pvalloc(0); // pvalloc(0) should allocate at least one page.
201 EXPECT_EQ(0, (uintptr_t)a % kPageSize);
202 a[101] = 1; // we should not report an error here.
203 free(a);
204 }
205 #endif // __APPLE__
206
TSDWorker(void * test_key)207 void *TSDWorker(void *test_key) {
208 if (test_key) {
209 pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
210 }
211 return NULL;
212 }
213
TSDDestructor(void * tsd)214 void TSDDestructor(void *tsd) {
215 // Spawning a thread will check that the current thread id is not -1.
216 pthread_t th;
217 pthread_create(&th, NULL, TSDWorker, NULL);
218 pthread_join(th, NULL);
219 }
220
221 // This tests triggers the thread-specific data destruction fiasco which occurs
222 // if we don't manage the TSD destructors ourselves. We create a new pthread
223 // key with a non-NULL destructor which is likely to be put after the destructor
224 // of AsanThread in the list of destructors.
225 // In this case the TSD for AsanThread will be destroyed before TSDDestructor
226 // is called for the child thread, and a CHECK will fail when we call
227 // pthread_create() to spawn the grandchild.
TEST(AddressSanitizer,DISABLED_TSDTest)228 TEST(AddressSanitizer, DISABLED_TSDTest) {
229 pthread_t th;
230 pthread_key_t test_key;
231 pthread_key_create(&test_key, TSDDestructor);
232 pthread_create(&th, NULL, TSDWorker, &test_key);
233 pthread_join(th, NULL);
234 pthread_key_delete(test_key);
235 }
236
237 template<typename T>
OOBTest()238 void OOBTest() {
239 char expected_str[100];
240 for (int size = sizeof(T); size < 20; size += 5) {
241 for (int i = -5; i < 0; i++) {
242 const char *str =
243 "is located.*%d byte.*to the left";
244 sprintf(expected_str, str, abs(i));
245 EXPECT_DEATH(oob_test<T>(size, i), expected_str);
246 }
247
248 for (int i = 0; i < size - sizeof(T) + 1; i++)
249 oob_test<T>(size, i);
250
251 for (int i = size - sizeof(T) + 1; i <= size + 3 * sizeof(T); i++) {
252 const char *str =
253 "is located.*%d byte.*to the right";
254 int off = i >= size ? (i - size) : 0;
255 // we don't catch unaligned partially OOB accesses.
256 if (i % sizeof(T)) continue;
257 sprintf(expected_str, str, off);
258 EXPECT_DEATH(oob_test<T>(size, i), expected_str);
259 }
260 }
261
262 EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
263 "is located.*1 byte.*to the left");
264 EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
265 "is located.*0 byte.*to the right");
266 }
267
268 // TODO(glider): the following tests are EXTREMELY slow on Darwin:
269 // AddressSanitizer.OOB_char (125503 ms)
270 // AddressSanitizer.OOB_int (126890 ms)
271 // AddressSanitizer.OOBRightTest (315605 ms)
272 // AddressSanitizer.SimpleStackTest (366559 ms)
273
TEST(AddressSanitizer,OOB_char)274 TEST(AddressSanitizer, OOB_char) {
275 OOBTest<U1>();
276 }
277
TEST(AddressSanitizer,OOB_int)278 TEST(AddressSanitizer, OOB_int) {
279 OOBTest<U4>();
280 }
281
TEST(AddressSanitizer,OOBRightTest)282 TEST(AddressSanitizer, OOBRightTest) {
283 for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
284 for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
285 for (size_t offset = 0; offset <= 8; offset += access_size) {
286 void *p = malloc(alloc_size);
287 // allocated: [p, p + alloc_size)
288 // accessed: [p + offset, p + offset + access_size)
289 uint8_t *addr = (uint8_t*)p + offset;
290 if (offset + access_size <= alloc_size) {
291 asan_write_sized_aligned(addr, access_size);
292 } else {
293 int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
294 const char *str =
295 "is located.%d *byte.*to the right";
296 char expected_str[100];
297 sprintf(expected_str, str, outside_bytes);
298 EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
299 expected_str);
300 }
301 free(p);
302 }
303 }
304 }
305 }
306
TEST(AddressSanitizer,UAF_char)307 TEST(AddressSanitizer, UAF_char) {
308 const char *uaf_string = "AddressSanitizer.*heap-use-after-free";
309 EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
310 EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
311 EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
312 EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
313 EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
314 }
315
316 #if ASAN_HAS_BLACKLIST
TEST(AddressSanitizer,IgnoreTest)317 TEST(AddressSanitizer, IgnoreTest) {
318 int *x = Ident(new int);
319 delete Ident(x);
320 *x = 0;
321 }
322 #endif // ASAN_HAS_BLACKLIST
323
324 struct StructWithBitField {
325 int bf1:1;
326 int bf2:1;
327 int bf3:1;
328 int bf4:29;
329 };
330
TEST(AddressSanitizer,BitFieldPositiveTest)331 TEST(AddressSanitizer, BitFieldPositiveTest) {
332 StructWithBitField *x = new StructWithBitField;
333 delete Ident(x);
334 EXPECT_DEATH(x->bf1 = 0, "use-after-free");
335 EXPECT_DEATH(x->bf2 = 0, "use-after-free");
336 EXPECT_DEATH(x->bf3 = 0, "use-after-free");
337 EXPECT_DEATH(x->bf4 = 0, "use-after-free");
338 };
339
340 struct StructWithBitFields_8_24 {
341 int a:8;
342 int b:24;
343 };
344
TEST(AddressSanitizer,BitFieldNegativeTest)345 TEST(AddressSanitizer, BitFieldNegativeTest) {
346 StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
347 x->a = 0;
348 x->b = 0;
349 delete Ident(x);
350 }
351
TEST(AddressSanitizer,OutOfMemoryTest)352 TEST(AddressSanitizer, OutOfMemoryTest) {
353 size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
354 EXPECT_EQ(0, realloc(0, size));
355 EXPECT_EQ(0, realloc(0, ~Ident(0)));
356 EXPECT_EQ(0, malloc(size));
357 EXPECT_EQ(0, malloc(~Ident(0)));
358 EXPECT_EQ(0, calloc(1, size));
359 EXPECT_EQ(0, calloc(1, ~Ident(0)));
360 }
361
362 #if ASAN_NEEDS_SEGV
TEST(AddressSanitizer,WildAddressTest)363 TEST(AddressSanitizer, WildAddressTest) {
364 char *c = (char*)0x123;
365 EXPECT_DEATH(*c = 0, "AddressSanitizer crashed on unknown address");
366 }
367 #endif
368
MallocStress(size_t n)369 static void MallocStress(size_t n) {
370 uint32_t seed = my_rand(&global_seed);
371 for (size_t iter = 0; iter < 10; iter++) {
372 vector<void *> vec;
373 for (size_t i = 0; i < n; i++) {
374 if ((i % 3) == 0) {
375 if (vec.empty()) continue;
376 size_t idx = my_rand(&seed) % vec.size();
377 void *ptr = vec[idx];
378 vec[idx] = vec.back();
379 vec.pop_back();
380 free_aaa(ptr);
381 } else {
382 size_t size = my_rand(&seed) % 1000 + 1;
383 #ifndef __APPLE__
384 size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
385 char *ptr = (char*)memalign_aaa(alignment, size);
386 #else
387 char *ptr = (char*) malloc_aaa(size);
388 #endif
389 vec.push_back(ptr);
390 ptr[0] = 0;
391 ptr[size-1] = 0;
392 ptr[size/2] = 0;
393 }
394 }
395 for (size_t i = 0; i < vec.size(); i++)
396 free_aaa(vec[i]);
397 }
398 }
399
TEST(AddressSanitizer,MallocStressTest)400 TEST(AddressSanitizer, MallocStressTest) {
401 MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
402 }
403
TestLargeMalloc(size_t size)404 static void TestLargeMalloc(size_t size) {
405 char buff[1024];
406 sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
407 EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
408 }
409
TEST(AddressSanitizer,LargeMallocTest)410 TEST(AddressSanitizer, LargeMallocTest) {
411 for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
412 TestLargeMalloc(i);
413 }
414 }
415
416 #if ASAN_LOW_MEMORY != 1
TEST(AddressSanitizer,HugeMallocTest)417 TEST(AddressSanitizer, HugeMallocTest) {
418 #ifdef __APPLE__
419 // It was empirically found out that 1215 megabytes is the maximum amount of
420 // memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
421 // 32-bit Mac 10.7 gives even less (< 1G).
422 // (the libSystem malloc() allows allocating up to 2300 megabytes without
423 // ASan).
424 size_t n_megs = __WORDSIZE == 32 ? 500 : 4100;
425 #else
426 size_t n_megs = __WORDSIZE == 32 ? 2600 : 4100;
427 #endif
428 TestLargeMalloc(n_megs << 20);
429 }
430 #endif
431
TEST(AddressSanitizer,ThreadedMallocStressTest)432 TEST(AddressSanitizer, ThreadedMallocStressTest) {
433 const int kNumThreads = 4;
434 const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
435 pthread_t t[kNumThreads];
436 for (int i = 0; i < kNumThreads; i++) {
437 pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress,
438 (void*)kNumIterations);
439 }
440 for (int i = 0; i < kNumThreads; i++) {
441 pthread_join(t[i], 0);
442 }
443 }
444
ManyThreadsWorker(void * a)445 void *ManyThreadsWorker(void *a) {
446 for (int iter = 0; iter < 100; iter++) {
447 for (size_t size = 100; size < 2000; size *= 2) {
448 free(Ident(malloc(size)));
449 }
450 }
451 return 0;
452 }
453
TEST(AddressSanitizer,ManyThreadsTest)454 TEST(AddressSanitizer, ManyThreadsTest) {
455 const size_t kNumThreads = __WORDSIZE == 32 ? 30 : 1000;
456 pthread_t t[kNumThreads];
457 for (size_t i = 0; i < kNumThreads; i++) {
458 pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
459 }
460 for (size_t i = 0; i < kNumThreads; i++) {
461 pthread_join(t[i], 0);
462 }
463 }
464
TEST(AddressSanitizer,ReallocTest)465 TEST(AddressSanitizer, ReallocTest) {
466 const int kMinElem = 5;
467 int *ptr = (int*)malloc(sizeof(int) * kMinElem);
468 ptr[3] = 3;
469 for (int i = 0; i < 10000; i++) {
470 ptr = (int*)realloc(ptr,
471 (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
472 EXPECT_EQ(3, ptr[3]);
473 }
474 }
475
476 #ifndef __APPLE__
477 static const char *kMallocUsableSizeErrorMsg =
478 "AddressSanitizer attempting to call malloc_usable_size()";
479
TEST(AddressSanitizer,MallocUsableSizeTest)480 TEST(AddressSanitizer, MallocUsableSizeTest) {
481 const size_t kArraySize = 100;
482 char *array = Ident((char*)malloc(kArraySize));
483 int *int_ptr = Ident(new int);
484 EXPECT_EQ(0, malloc_usable_size(NULL));
485 EXPECT_EQ(kArraySize, malloc_usable_size(array));
486 EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
487 EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
488 EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
489 kMallocUsableSizeErrorMsg);
490 free(array);
491 EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
492 }
493 #endif
494
WrongFree()495 void WrongFree() {
496 int *x = (int*)malloc(100 * sizeof(int));
497 // Use the allocated memory, otherwise Clang will optimize it out.
498 Ident(x);
499 free(x + 1);
500 }
501
TEST(AddressSanitizer,WrongFreeTest)502 TEST(AddressSanitizer, WrongFreeTest) {
503 EXPECT_DEATH(WrongFree(),
504 "ERROR: AddressSanitizer attempting free.*not malloc");
505 }
506
DoubleFree()507 void DoubleFree() {
508 int *x = (int*)malloc(100 * sizeof(int));
509 fprintf(stderr, "DoubleFree: x=%p\n", x);
510 free(x);
511 free(x);
512 fprintf(stderr, "should have failed in the second free(%p)\n", x);
513 abort();
514 }
515
TEST(AddressSanitizer,DoubleFreeTest)516 TEST(AddressSanitizer, DoubleFreeTest) {
517 EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
518 "ERROR: AddressSanitizer attempting double-free"
519 ".*is located 0 bytes inside of 400-byte region"
520 ".*freed by thread T0 here"
521 ".*previously allocated by thread T0 here");
522 }
523
524 template<int kSize>
SizedStackTest()525 NOINLINE void SizedStackTest() {
526 char a[kSize];
527 char *A = Ident((char*)&a);
528 for (size_t i = 0; i < kSize; i++)
529 A[i] = i;
530 EXPECT_DEATH(A[-1] = 0, "");
531 EXPECT_DEATH(A[-20] = 0, "");
532 EXPECT_DEATH(A[-31] = 0, "");
533 EXPECT_DEATH(A[kSize] = 0, "");
534 EXPECT_DEATH(A[kSize + 1] = 0, "");
535 EXPECT_DEATH(A[kSize + 10] = 0, "");
536 EXPECT_DEATH(A[kSize + 31] = 0, "");
537 }
538
TEST(AddressSanitizer,SimpleStackTest)539 TEST(AddressSanitizer, SimpleStackTest) {
540 SizedStackTest<1>();
541 SizedStackTest<2>();
542 SizedStackTest<3>();
543 SizedStackTest<4>();
544 SizedStackTest<5>();
545 SizedStackTest<6>();
546 SizedStackTest<7>();
547 SizedStackTest<16>();
548 SizedStackTest<25>();
549 SizedStackTest<34>();
550 SizedStackTest<43>();
551 SizedStackTest<51>();
552 SizedStackTest<62>();
553 SizedStackTest<64>();
554 SizedStackTest<128>();
555 }
556
TEST(AddressSanitizer,ManyStackObjectsTest)557 TEST(AddressSanitizer, ManyStackObjectsTest) {
558 char XXX[10];
559 char YYY[20];
560 char ZZZ[30];
561 Ident(XXX);
562 Ident(YYY);
563 EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
564 }
565
Frame0(int frame,char * a,char * b,char * c)566 NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
567 char d[4] = {0};
568 char *D = Ident(d);
569 switch (frame) {
570 case 3: a[5]++; break;
571 case 2: b[5]++; break;
572 case 1: c[5]++; break;
573 case 0: D[5]++; break;
574 }
575 }
Frame1(int frame,char * a,char * b)576 NOINLINE static void Frame1(int frame, char *a, char *b) {
577 char c[4] = {0}; Frame0(frame, a, b, c);
578 break_optimization(0);
579 }
Frame2(int frame,char * a)580 NOINLINE static void Frame2(int frame, char *a) {
581 char b[4] = {0}; Frame1(frame, a, b);
582 break_optimization(0);
583 }
Frame3(int frame)584 NOINLINE static void Frame3(int frame) {
585 char a[4] = {0}; Frame2(frame, a);
586 break_optimization(0);
587 }
588
TEST(AddressSanitizer,GuiltyStackFrame0Test)589 TEST(AddressSanitizer, GuiltyStackFrame0Test) {
590 EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
591 }
TEST(AddressSanitizer,GuiltyStackFrame1Test)592 TEST(AddressSanitizer, GuiltyStackFrame1Test) {
593 EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
594 }
TEST(AddressSanitizer,GuiltyStackFrame2Test)595 TEST(AddressSanitizer, GuiltyStackFrame2Test) {
596 EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
597 }
TEST(AddressSanitizer,GuiltyStackFrame3Test)598 TEST(AddressSanitizer, GuiltyStackFrame3Test) {
599 EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
600 }
601
LongJmpFunc1(jmp_buf buf)602 NOINLINE void LongJmpFunc1(jmp_buf buf) {
603 // create three red zones for these two stack objects.
604 int a;
605 int b;
606
607 int *A = Ident(&a);
608 int *B = Ident(&b);
609 *A = *B;
610 longjmp(buf, 1);
611 }
612
UnderscopeLongJmpFunc1(jmp_buf buf)613 NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
614 // create three red zones for these two stack objects.
615 int a;
616 int b;
617
618 int *A = Ident(&a);
619 int *B = Ident(&b);
620 *A = *B;
621 _longjmp(buf, 1);
622 }
623
SigLongJmpFunc1(sigjmp_buf buf)624 NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
625 // create three red zones for these two stack objects.
626 int a;
627 int b;
628
629 int *A = Ident(&a);
630 int *B = Ident(&b);
631 *A = *B;
632 siglongjmp(buf, 1);
633 }
634
635
TouchStackFunc()636 NOINLINE void TouchStackFunc() {
637 int a[100]; // long array will intersect with redzones from LongJmpFunc1.
638 int *A = Ident(a);
639 for (int i = 0; i < 100; i++)
640 A[i] = i*i;
641 }
642
643 // Test that we handle longjmp and do not report fals positives on stack.
TEST(AddressSanitizer,LongJmpTest)644 TEST(AddressSanitizer, LongJmpTest) {
645 static jmp_buf buf;
646 if (!setjmp(buf)) {
647 LongJmpFunc1(buf);
648 } else {
649 TouchStackFunc();
650 }
651 }
652
TEST(AddressSanitizer,UnderscopeLongJmpTest)653 TEST(AddressSanitizer, UnderscopeLongJmpTest) {
654 static jmp_buf buf;
655 if (!_setjmp(buf)) {
656 UnderscopeLongJmpFunc1(buf);
657 } else {
658 TouchStackFunc();
659 }
660 }
661
TEST(AddressSanitizer,SigLongJmpTest)662 TEST(AddressSanitizer, SigLongJmpTest) {
663 static sigjmp_buf buf;
664 if (!sigsetjmp(buf, 1)) {
665 SigLongJmpFunc1(buf);
666 } else {
667 TouchStackFunc();
668 }
669 }
670
671 #ifdef __EXCEPTIONS
ThrowFunc()672 NOINLINE void ThrowFunc() {
673 // create three red zones for these two stack objects.
674 int a;
675 int b;
676
677 int *A = Ident(&a);
678 int *B = Ident(&b);
679 *A = *B;
680 ASAN_THROW(1);
681 }
682
TEST(AddressSanitizer,CxxExceptionTest)683 TEST(AddressSanitizer, CxxExceptionTest) {
684 if (ASAN_UAR) return;
685 // TODO(kcc): this test crashes on 32-bit for some reason...
686 if (__WORDSIZE == 32) return;
687 try {
688 ThrowFunc();
689 } catch(...) {}
690 TouchStackFunc();
691 }
692 #endif
693
ThreadStackReuseFunc1(void * unused)694 void *ThreadStackReuseFunc1(void *unused) {
695 // create three red zones for these two stack objects.
696 int a;
697 int b;
698
699 int *A = Ident(&a);
700 int *B = Ident(&b);
701 *A = *B;
702 pthread_exit(0);
703 return 0;
704 }
705
ThreadStackReuseFunc2(void * unused)706 void *ThreadStackReuseFunc2(void *unused) {
707 TouchStackFunc();
708 return 0;
709 }
710
TEST(AddressSanitizer,ThreadStackReuseTest)711 TEST(AddressSanitizer, ThreadStackReuseTest) {
712 pthread_t t;
713 pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
714 pthread_join(t, 0);
715 pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
716 pthread_join(t, 0);
717 }
718
719 #if defined(__i386__) || defined(__x86_64__)
TEST(AddressSanitizer,Store128Test)720 TEST(AddressSanitizer, Store128Test) {
721 char *a = Ident((char*)malloc(Ident(12)));
722 char *p = a;
723 if (((uintptr_t)a % 16) != 0)
724 p = a + 8;
725 assert(((uintptr_t)p % 16) == 0);
726 __m128i value_wide = _mm_set1_epi16(0x1234);
727 EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
728 "AddressSanitizer heap-buffer-overflow");
729 EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
730 "WRITE of size 16");
731 EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
732 "located 0 bytes to the right of 12-byte");
733 free(a);
734 }
735 #endif
736
RightOOBErrorMessage(int oob_distance)737 static string RightOOBErrorMessage(int oob_distance) {
738 assert(oob_distance >= 0);
739 char expected_str[100];
740 sprintf(expected_str, "located %d bytes to the right", oob_distance);
741 return string(expected_str);
742 }
743
LeftOOBErrorMessage(int oob_distance)744 static string LeftOOBErrorMessage(int oob_distance) {
745 assert(oob_distance > 0);
746 char expected_str[100];
747 sprintf(expected_str, "located %d bytes to the left", oob_distance);
748 return string(expected_str);
749 }
750
751 template<typename T>
MemSetOOBTestTemplate(size_t length)752 void MemSetOOBTestTemplate(size_t length) {
753 if (length == 0) return;
754 size_t size = Ident(sizeof(T) * length);
755 T *array = Ident((T*)malloc(size));
756 int element = Ident(42);
757 int zero = Ident(0);
758 // memset interval inside array
759 memset(array, element, size);
760 memset(array, element, size - 1);
761 memset(array + length - 1, element, sizeof(T));
762 memset(array, element, 1);
763
764 // memset 0 bytes
765 memset(array - 10, element, zero);
766 memset(array - 1, element, zero);
767 memset(array, element, zero);
768 memset(array + length, 0, zero);
769 memset(array + length + 1, 0, zero);
770
771 // try to memset bytes to the right of array
772 EXPECT_DEATH(memset(array, 0, size + 1),
773 RightOOBErrorMessage(0));
774 EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
775 RightOOBErrorMessage(4));
776 EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
777 RightOOBErrorMessage(2 * sizeof(T) - 1));
778 // whole interval is to the right
779 EXPECT_DEATH(memset(array + length + 1, 0, 10),
780 RightOOBErrorMessage(sizeof(T)));
781
782 // try to memset bytes to the left of array
783 EXPECT_DEATH(memset((char*)array - 1, element, size),
784 LeftOOBErrorMessage(1));
785 EXPECT_DEATH(memset((char*)array - 5, 0, 6),
786 LeftOOBErrorMessage(5));
787 EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
788 LeftOOBErrorMessage(5 * sizeof(T)));
789 // whole interval is to the left
790 EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
791 LeftOOBErrorMessage(2 * sizeof(T)));
792
793 // try to memset bytes both to the left & to the right
794 EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
795 LeftOOBErrorMessage(2));
796
797 free(array);
798 }
799
TEST(AddressSanitizer,MemSetOOBTest)800 TEST(AddressSanitizer, MemSetOOBTest) {
801 MemSetOOBTestTemplate<char>(100);
802 MemSetOOBTestTemplate<int>(5);
803 MemSetOOBTestTemplate<double>(256);
804 // We can test arrays of structres/classes here, but what for?
805 }
806
807 // Same test for memcpy and memmove functions
808 template <typename T, class M>
MemTransferOOBTestTemplate(size_t length)809 void MemTransferOOBTestTemplate(size_t length) {
810 if (length == 0) return;
811 size_t size = Ident(sizeof(T) * length);
812 T *src = Ident((T*)malloc(size));
813 T *dest = Ident((T*)malloc(size));
814 int zero = Ident(0);
815
816 // valid transfer of bytes between arrays
817 M::transfer(dest, src, size);
818 M::transfer(dest + 1, src, size - sizeof(T));
819 M::transfer(dest, src + length - 1, sizeof(T));
820 M::transfer(dest, src, 1);
821
822 // transfer zero bytes
823 M::transfer(dest - 1, src, 0);
824 M::transfer(dest + length, src, zero);
825 M::transfer(dest, src - 1, zero);
826 M::transfer(dest, src, zero);
827
828 // try to change mem to the right of dest
829 EXPECT_DEATH(M::transfer(dest + 1, src, size),
830 RightOOBErrorMessage(sizeof(T) - 1));
831 EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
832 RightOOBErrorMessage(3));
833
834 // try to change mem to the left of dest
835 EXPECT_DEATH(M::transfer(dest - 2, src, size),
836 LeftOOBErrorMessage(2 * sizeof(T)));
837 EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
838 LeftOOBErrorMessage(3));
839
840 // try to access mem to the right of src
841 EXPECT_DEATH(M::transfer(dest, src + 2, size),
842 RightOOBErrorMessage(2 * sizeof(T) - 1));
843 EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
844 RightOOBErrorMessage(2));
845
846 // try to access mem to the left of src
847 EXPECT_DEATH(M::transfer(dest, src - 1, size),
848 LeftOOBErrorMessage(sizeof(T)));
849 EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
850 LeftOOBErrorMessage(6));
851
852 // Generally we don't need to test cases where both accessing src and writing
853 // to dest address to poisoned memory.
854
855 T *big_src = Ident((T*)malloc(size * 2));
856 T *big_dest = Ident((T*)malloc(size * 2));
857 // try to change mem to both sides of dest
858 EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
859 LeftOOBErrorMessage(sizeof(T)));
860 // try to access mem to both sides of src
861 EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
862 LeftOOBErrorMessage(2 * sizeof(T)));
863
864 free(src);
865 free(dest);
866 free(big_src);
867 free(big_dest);
868 }
869
870 class MemCpyWrapper {
871 public:
transfer(void * to,const void * from,size_t size)872 static void* transfer(void *to, const void *from, size_t size) {
873 return memcpy(to, from, size);
874 }
875 };
TEST(AddressSanitizer,MemCpyOOBTest)876 TEST(AddressSanitizer, MemCpyOOBTest) {
877 MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
878 MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
879 }
880
881 class MemMoveWrapper {
882 public:
transfer(void * to,const void * from,size_t size)883 static void* transfer(void *to, const void *from, size_t size) {
884 return memmove(to, from, size);
885 }
886 };
TEST(AddressSanitizer,MemMoveOOBTest)887 TEST(AddressSanitizer, MemMoveOOBTest) {
888 MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
889 MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
890 }
891
892 // Tests for string functions
893
894 // Used for string functions tests
895 static char global_string[] = "global";
896 static size_t global_string_length = 6;
897
898 // Input to a test is a zero-terminated string str with given length
899 // Accesses to the bytes to the left and to the right of str
900 // are presumed to produce OOB errors
StrLenOOBTestTemplate(char * str,size_t length,bool is_global)901 void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
902 // Normal strlen calls
903 EXPECT_EQ(strlen(str), length);
904 if (length > 0) {
905 EXPECT_EQ(strlen(str + 1), length - 1);
906 EXPECT_EQ(strlen(str + length), 0);
907 }
908 // Arg of strlen is not malloced, OOB access
909 if (!is_global) {
910 // We don't insert RedZones to the left of global variables
911 EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
912 EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
913 }
914 EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
915 // Overwrite terminator
916 str[length] = 'a';
917 // String is not zero-terminated, strlen will lead to OOB access
918 EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
919 EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
920 // Restore terminator
921 str[length] = 0;
922 }
TEST(AddressSanitizer,StrLenOOBTest)923 TEST(AddressSanitizer, StrLenOOBTest) {
924 // Check heap-allocated string
925 size_t length = Ident(10);
926 char *heap_string = Ident((char*)malloc(length + 1));
927 char stack_string[10 + 1];
928 for (int i = 0; i < length; i++) {
929 heap_string[i] = 'a';
930 stack_string[i] = 'b';
931 }
932 heap_string[length] = 0;
933 stack_string[length] = 0;
934 StrLenOOBTestTemplate(heap_string, length, false);
935 // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
936 // make test for stack_string work. Or move it to output tests.
937 // StrLenOOBTestTemplate(stack_string, length, false);
938 StrLenOOBTestTemplate(global_string, global_string_length, true);
939 free(heap_string);
940 }
941
MallocAndMemsetString(size_t size,char ch)942 static inline char* MallocAndMemsetString(size_t size, char ch) {
943 char *s = Ident((char*)malloc(size));
944 memset(s, ch, size);
945 return s;
946 }
MallocAndMemsetString(size_t size)947 static inline char* MallocAndMemsetString(size_t size) {
948 return MallocAndMemsetString(size, 'z');
949 }
950
951 #ifndef __APPLE__
TEST(AddressSanitizer,StrNLenOOBTest)952 TEST(AddressSanitizer, StrNLenOOBTest) {
953 size_t size = Ident(123);
954 char *str = MallocAndMemsetString(size);
955 // Normal strnlen calls.
956 Ident(strnlen(str - 1, 0));
957 Ident(strnlen(str, size));
958 Ident(strnlen(str + size - 1, 1));
959 str[size - 1] = '\0';
960 Ident(strnlen(str, 2 * size));
961 // Argument points to not allocated memory.
962 EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
963 EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
964 // Overwrite the terminating '\0' and hit unallocated memory.
965 str[size - 1] = 'z';
966 EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
967 free(str);
968 }
969 #endif
970
TEST(AddressSanitizer,StrDupOOBTest)971 TEST(AddressSanitizer, StrDupOOBTest) {
972 size_t size = Ident(42);
973 char *str = MallocAndMemsetString(size);
974 char *new_str;
975 // Normal strdup calls.
976 str[size - 1] = '\0';
977 new_str = strdup(str);
978 free(new_str);
979 new_str = strdup(str + size - 1);
980 free(new_str);
981 // Argument points to not allocated memory.
982 EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
983 EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
984 // Overwrite the terminating '\0' and hit unallocated memory.
985 str[size - 1] = 'z';
986 EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
987 free(str);
988 }
989
TEST(AddressSanitizer,StrCpyOOBTest)990 TEST(AddressSanitizer, StrCpyOOBTest) {
991 size_t to_size = Ident(30);
992 size_t from_size = Ident(6); // less than to_size
993 char *to = Ident((char*)malloc(to_size));
994 char *from = Ident((char*)malloc(from_size));
995 // Normal strcpy calls.
996 strcpy(from, "hello");
997 strcpy(to, from);
998 strcpy(to + to_size - from_size, from);
999 // Length of "from" is too small.
1000 EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1001 // "to" or "from" points to not allocated memory.
1002 EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1003 EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1004 EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1005 EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1006 // Overwrite the terminating '\0' character and hit unallocated memory.
1007 from[from_size - 1] = '!';
1008 EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1009 free(to);
1010 free(from);
1011 }
1012
TEST(AddressSanitizer,StrNCpyOOBTest)1013 TEST(AddressSanitizer, StrNCpyOOBTest) {
1014 size_t to_size = Ident(20);
1015 size_t from_size = Ident(6); // less than to_size
1016 char *to = Ident((char*)malloc(to_size));
1017 // From is a zero-terminated string "hello\0" of length 6
1018 char *from = Ident((char*)malloc(from_size));
1019 strcpy(from, "hello");
1020 // copy 0 bytes
1021 strncpy(to, from, 0);
1022 strncpy(to - 1, from - 1, 0);
1023 // normal strncpy calls
1024 strncpy(to, from, from_size);
1025 strncpy(to, from, to_size);
1026 strncpy(to, from + from_size - 1, to_size);
1027 strncpy(to + to_size - 1, from, 1);
1028 // One of {to, from} points to not allocated memory
1029 EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1030 LeftOOBErrorMessage(1));
1031 EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1032 LeftOOBErrorMessage(1));
1033 EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1034 RightOOBErrorMessage(0));
1035 EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1036 RightOOBErrorMessage(0));
1037 // Length of "to" is too small
1038 EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1039 RightOOBErrorMessage(0));
1040 EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1041 RightOOBErrorMessage(0));
1042 // Overwrite terminator in from
1043 from[from_size - 1] = '!';
1044 // normal strncpy call
1045 strncpy(to, from, from_size);
1046 // Length of "from" is too small
1047 EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1048 RightOOBErrorMessage(0));
1049 free(to);
1050 free(from);
1051 }
1052
1053 typedef char*(*PointerToStrChr)(const char*, int);
RunStrChrTest(PointerToStrChr StrChr)1054 void RunStrChrTest(PointerToStrChr StrChr) {
1055 size_t size = Ident(100);
1056 char *str = MallocAndMemsetString(size);
1057 str[10] = 'q';
1058 str[11] = '\0';
1059 EXPECT_EQ(str, StrChr(str, 'z'));
1060 EXPECT_EQ(str + 10, StrChr(str, 'q'));
1061 EXPECT_EQ(NULL, StrChr(str, 'a'));
1062 // StrChr argument points to not allocated memory.
1063 EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1064 EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1065 // Overwrite the terminator and hit not allocated memory.
1066 str[11] = 'z';
1067 EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1068 free(str);
1069 }
TEST(AddressSanitizer,StrChrAndIndexOOBTest)1070 TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1071 RunStrChrTest(&strchr);
1072 RunStrChrTest(&index);
1073 }
1074
TEST(AddressSanitizer,StrCmpAndFriendsLogicTest)1075 TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1076 // strcmp
1077 EXPECT_EQ(0, strcmp("", ""));
1078 EXPECT_EQ(0, strcmp("abcd", "abcd"));
1079 EXPECT_GT(0, strcmp("ab", "ac"));
1080 EXPECT_GT(0, strcmp("abc", "abcd"));
1081 EXPECT_LT(0, strcmp("acc", "abc"));
1082 EXPECT_LT(0, strcmp("abcd", "abc"));
1083
1084 // strncmp
1085 EXPECT_EQ(0, strncmp("a", "b", 0));
1086 EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1087 EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1088 EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1089 EXPECT_GT(0, strncmp("a", "b", 5));
1090 EXPECT_GT(0, strncmp("bc", "bcde", 4));
1091 EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1092 EXPECT_LT(0, strncmp("baa", "aaa", 1));
1093 EXPECT_LT(0, strncmp("zyx", "", 2));
1094
1095 // strcasecmp
1096 EXPECT_EQ(0, strcasecmp("", ""));
1097 EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1098 EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1099 EXPECT_GT(0, strcasecmp("aB", "Ac"));
1100 EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1101 EXPECT_LT(0, strcasecmp("acc", "abc"));
1102 EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1103
1104 // strncasecmp
1105 EXPECT_EQ(0, strncasecmp("a", "b", 0));
1106 EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1107 EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1108 EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1109 EXPECT_GT(0, strncasecmp("a", "B", 5));
1110 EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1111 EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1112 EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1113 EXPECT_LT(0, strncasecmp("zyx", "", 2));
1114
1115 // memcmp
1116 EXPECT_EQ(0, memcmp("a", "b", 0));
1117 EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1118 EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1119 EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1120 EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1121 EXPECT_LT(0, memcmp("zza", "zyx", 3));
1122 }
1123
1124 typedef int(*PointerToStrCmp)(const char*, const char*);
RunStrCmpTest(PointerToStrCmp StrCmp)1125 void RunStrCmpTest(PointerToStrCmp StrCmp) {
1126 size_t size = Ident(100);
1127 char *s1 = MallocAndMemsetString(size);
1128 char *s2 = MallocAndMemsetString(size);
1129 s1[size - 1] = '\0';
1130 s2[size - 1] = '\0';
1131 // Normal StrCmp calls
1132 Ident(StrCmp(s1, s2));
1133 Ident(StrCmp(s1, s2 + size - 1));
1134 Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1135 s1[size - 1] = 'z';
1136 s2[size - 1] = 'x';
1137 Ident(StrCmp(s1, s2));
1138 // One of arguments points to not allocated memory.
1139 EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1140 EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1141 EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1142 EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1143 // Hit unallocated memory and die.
1144 s2[size - 1] = 'z';
1145 EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1146 EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1147 free(s1);
1148 free(s2);
1149 }
1150
TEST(AddressSanitizer,StrCmpOOBTest)1151 TEST(AddressSanitizer, StrCmpOOBTest) {
1152 RunStrCmpTest(&strcmp);
1153 }
1154
TEST(AddressSanitizer,StrCaseCmpOOBTest)1155 TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1156 RunStrCmpTest(&strcasecmp);
1157 }
1158
1159 typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
RunStrNCmpTest(PointerToStrNCmp StrNCmp)1160 void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1161 size_t size = Ident(100);
1162 char *s1 = MallocAndMemsetString(size);
1163 char *s2 = MallocAndMemsetString(size);
1164 s1[size - 1] = '\0';
1165 s2[size - 1] = '\0';
1166 // Normal StrNCmp calls
1167 Ident(StrNCmp(s1, s2, size + 2));
1168 s1[size - 1] = 'z';
1169 s2[size - 1] = 'x';
1170 Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1171 s2[size - 1] = 'z';
1172 Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1173 Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1174 // One of arguments points to not allocated memory.
1175 EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1176 EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1177 EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1178 EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1179 // Hit unallocated memory and die.
1180 EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1181 EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1182 free(s1);
1183 free(s2);
1184 }
1185
TEST(AddressSanitizer,StrNCmpOOBTest)1186 TEST(AddressSanitizer, StrNCmpOOBTest) {
1187 RunStrNCmpTest(&strncmp);
1188 }
1189
TEST(AddressSanitizer,StrNCaseCmpOOBTest)1190 TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1191 RunStrNCmpTest(&strncasecmp);
1192 }
1193
TEST(AddressSanitizer,MemCmpOOBTest)1194 TEST(AddressSanitizer, MemCmpOOBTest) {
1195 size_t size = Ident(100);
1196 char *s1 = MallocAndMemsetString(size);
1197 char *s2 = MallocAndMemsetString(size);
1198 // Normal memcmp calls.
1199 Ident(memcmp(s1, s2, size));
1200 Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1201 Ident(memcmp(s1 - 1, s2 - 1, 0));
1202 // One of arguments points to not allocated memory.
1203 EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1204 EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1205 EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1206 EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1207 // Hit unallocated memory and die.
1208 EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1209 EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1210 // Zero bytes are not terminators and don't prevent from OOB.
1211 s1[size - 1] = '\0';
1212 s2[size - 1] = '\0';
1213 EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1214 free(s1);
1215 free(s2);
1216 }
1217
TEST(AddressSanitizer,StrCatOOBTest)1218 TEST(AddressSanitizer, StrCatOOBTest) {
1219 size_t to_size = Ident(100);
1220 char *to = MallocAndMemsetString(to_size);
1221 to[0] = '\0';
1222 size_t from_size = Ident(20);
1223 char *from = MallocAndMemsetString(from_size);
1224 from[from_size - 1] = '\0';
1225 // Normal strcat calls.
1226 strcat(to, from);
1227 strcat(to, from);
1228 strcat(to + from_size, from + from_size - 2);
1229 // Passing an invalid pointer is an error even when concatenating an empty
1230 // string.
1231 EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBErrorMessage(1));
1232 // One of arguments points to not allocated memory.
1233 EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1234 EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1235 EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1236 EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1237
1238 // "from" is not zero-terminated.
1239 from[from_size - 1] = 'z';
1240 EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1241 from[from_size - 1] = '\0';
1242 // "to" is not zero-terminated.
1243 memset(to, 'z', to_size);
1244 EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1245 // "to" is too short to fit "from".
1246 to[to_size - from_size + 1] = '\0';
1247 EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1248 // length of "to" is just enough.
1249 strcat(to, from + 1);
1250
1251 free(to);
1252 free(from);
1253 }
1254
TEST(AddressSanitizer,StrNCatOOBTest)1255 TEST(AddressSanitizer, StrNCatOOBTest) {
1256 size_t to_size = Ident(100);
1257 char *to = MallocAndMemsetString(to_size);
1258 to[0] = '\0';
1259 size_t from_size = Ident(20);
1260 char *from = MallocAndMemsetString(from_size);
1261 // Normal strncat calls.
1262 strncat(to, from, 0);
1263 strncat(to, from, from_size);
1264 from[from_size - 1] = '\0';
1265 strncat(to, from, 2 * from_size);
1266 // Catenating empty string with an invalid string is still an error.
1267 EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBErrorMessage(1));
1268 strncat(to, from + from_size - 1, 10);
1269 // One of arguments points to not allocated memory.
1270 EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBErrorMessage(1));
1271 EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBErrorMessage(1));
1272 EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBErrorMessage(0));
1273 EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBErrorMessage(0));
1274
1275 memset(from, 'z', from_size);
1276 memset(to, 'z', to_size);
1277 to[0] = '\0';
1278 // "from" is too short.
1279 EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBErrorMessage(0));
1280 // "to" is not zero-terminated.
1281 EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBErrorMessage(0));
1282 // "to" is too short to fit "from".
1283 to[0] = 'z';
1284 to[to_size - from_size + 1] = '\0';
1285 EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBErrorMessage(0));
1286 // "to" is just enough.
1287 strncat(to, from, from_size - 2);
1288
1289 free(to);
1290 free(from);
1291 }
1292
OverlapErrorMessage(const string & func)1293 static string OverlapErrorMessage(const string &func) {
1294 return func + "-param-overlap";
1295 }
1296
TEST(AddressSanitizer,StrArgsOverlapTest)1297 TEST(AddressSanitizer, StrArgsOverlapTest) {
1298 size_t size = Ident(100);
1299 char *str = Ident((char*)malloc(size));
1300
1301 // Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1302 // memmove().
1303 #if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1304 (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1305 // Check "memcpy". Use Ident() to avoid inlining.
1306 memset(str, 'z', size);
1307 Ident(memcpy)(str + 1, str + 11, 10);
1308 Ident(memcpy)(str, str, 0);
1309 EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1310 EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1311 #endif
1312
1313 // We do not treat memcpy with to==from as a bug.
1314 // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1315 // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1316 // OverlapErrorMessage("memcpy"));
1317
1318 // Check "strcpy".
1319 memset(str, 'z', size);
1320 str[9] = '\0';
1321 strcpy(str + 10, str);
1322 EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1323 EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1324 strcpy(str, str + 5);
1325
1326 // Check "strncpy".
1327 memset(str, 'z', size);
1328 strncpy(str, str + 10, 10);
1329 EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1330 EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1331 str[10] = '\0';
1332 strncpy(str + 11, str, 20);
1333 EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1334
1335 // Check "strcat".
1336 memset(str, 'z', size);
1337 str[10] = '\0';
1338 str[20] = '\0';
1339 strcat(str, str + 10);
1340 EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
1341 str[10] = '\0';
1342 strcat(str + 11, str);
1343 EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1344 EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1345 EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1346
1347 // Check "strncat".
1348 memset(str, 'z', size);
1349 str[10] = '\0';
1350 strncat(str, str + 10, 10); // from is empty
1351 EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
1352 str[10] = '\0';
1353 str[20] = '\0';
1354 strncat(str + 5, str, 5);
1355 str[10] = '\0';
1356 EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
1357 EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
1358
1359 free(str);
1360 }
1361
CallAtoi(const char * nptr)1362 void CallAtoi(const char *nptr) {
1363 Ident(atoi(nptr));
1364 }
CallAtol(const char * nptr)1365 void CallAtol(const char *nptr) {
1366 Ident(atol(nptr));
1367 }
CallAtoll(const char * nptr)1368 void CallAtoll(const char *nptr) {
1369 Ident(atoll(nptr));
1370 }
1371 typedef void(*PointerToCallAtoi)(const char*);
1372
RunAtoiOOBTest(PointerToCallAtoi Atoi)1373 void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
1374 char *array = MallocAndMemsetString(10, '1');
1375 // Invalid pointer to the string.
1376 EXPECT_DEATH(Atoi(array + 11), RightOOBErrorMessage(1));
1377 EXPECT_DEATH(Atoi(array - 1), LeftOOBErrorMessage(1));
1378 // Die if a buffer doesn't have terminating NULL.
1379 EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1380 // Make last symbol a terminating NULL or other non-digit.
1381 array[9] = '\0';
1382 Atoi(array);
1383 array[9] = 'a';
1384 Atoi(array);
1385 Atoi(array + 9);
1386 // Sometimes we need to detect overflow if no digits are found.
1387 memset(array, ' ', 10);
1388 EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1389 array[9] = '-';
1390 EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1391 EXPECT_DEATH(Atoi(array + 9), RightOOBErrorMessage(0));
1392 array[8] = '-';
1393 Atoi(array);
1394 delete array;
1395 }
1396
TEST(AddressSanitizer,AtoiAndFriendsOOBTest)1397 TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
1398 RunAtoiOOBTest(&CallAtoi);
1399 RunAtoiOOBTest(&CallAtol);
1400 RunAtoiOOBTest(&CallAtoll);
1401 }
1402
CallStrtol(const char * nptr,char ** endptr,int base)1403 void CallStrtol(const char *nptr, char **endptr, int base) {
1404 Ident(strtol(nptr, endptr, base));
1405 }
CallStrtoll(const char * nptr,char ** endptr,int base)1406 void CallStrtoll(const char *nptr, char **endptr, int base) {
1407 Ident(strtoll(nptr, endptr, base));
1408 }
1409 typedef void(*PointerToCallStrtol)(const char*, char**, int);
1410
RunStrtolOOBTest(PointerToCallStrtol Strtol)1411 void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
1412 char *array = MallocAndMemsetString(3);
1413 char *endptr = NULL;
1414 array[0] = '1';
1415 array[1] = '2';
1416 array[2] = '3';
1417 // Invalid pointer to the string.
1418 EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBErrorMessage(0));
1419 EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBErrorMessage(1));
1420 // Buffer overflow if there is no terminating null (depends on base).
1421 Strtol(array, &endptr, 3);
1422 EXPECT_EQ(array + 2, endptr);
1423 EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1424 array[2] = 'z';
1425 Strtol(array, &endptr, 35);
1426 EXPECT_EQ(array + 2, endptr);
1427 EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBErrorMessage(0));
1428 // Add terminating zero to get rid of overflow.
1429 array[2] = '\0';
1430 Strtol(array, NULL, 36);
1431 // Don't check for overflow if base is invalid.
1432 Strtol(array - 1, NULL, -1);
1433 Strtol(array + 3, NULL, 1);
1434 // Sometimes we need to detect overflow if no digits are found.
1435 array[0] = array[1] = array[2] = ' ';
1436 EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1437 array[2] = '+';
1438 EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1439 array[2] = '-';
1440 EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1441 array[1] = '+';
1442 Strtol(array, NULL, 0);
1443 array[1] = array[2] = 'z';
1444 Strtol(array, &endptr, 0);
1445 EXPECT_EQ(array, endptr);
1446 Strtol(array + 2, NULL, 0);
1447 EXPECT_EQ(array, endptr);
1448 delete array;
1449 }
1450
TEST(AddressSanitizer,StrtollOOBTest)1451 TEST(AddressSanitizer, StrtollOOBTest) {
1452 RunStrtolOOBTest(&CallStrtoll);
1453 }
TEST(AddressSanitizer,StrtolOOBTest)1454 TEST(AddressSanitizer, StrtolOOBTest) {
1455 RunStrtolOOBTest(&CallStrtol);
1456 }
1457
1458 // At the moment we instrument memcpy/memove/memset calls at compile time so we
1459 // can't handle OOB error if these functions are called by pointer, see disabled
1460 // MemIntrinsicCallByPointerTest below
1461 typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1462 typedef void*(*PointerToMemSet)(void*, int, size_t);
1463
CallMemSetByPointer(PointerToMemSet MemSet)1464 void CallMemSetByPointer(PointerToMemSet MemSet) {
1465 size_t size = Ident(100);
1466 char *array = Ident((char*)malloc(size));
1467 EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1468 free(array);
1469 }
1470
CallMemTransferByPointer(PointerToMemTransfer MemTransfer)1471 void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1472 size_t size = Ident(100);
1473 char *src = Ident((char*)malloc(size));
1474 char *dst = Ident((char*)malloc(size));
1475 EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1476 free(src);
1477 free(dst);
1478 }
1479
TEST(AddressSanitizer,DISABLED_MemIntrinsicCallByPointerTest)1480 TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1481 CallMemSetByPointer(&memset);
1482 CallMemTransferByPointer(&memcpy);
1483 CallMemTransferByPointer(&memmove);
1484 }
1485
1486 // This test case fails
1487 // Clang optimizes memcpy/memset calls which lead to unaligned access
TEST(AddressSanitizer,DISABLED_MemIntrinsicUnalignedAccessTest)1488 TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1489 int size = Ident(4096);
1490 char *s = Ident((char*)malloc(size));
1491 EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1492 free(s);
1493 }
1494
1495 // TODO(samsonov): Add a test with malloc(0)
1496 // TODO(samsonov): Add tests for str* and mem* functions.
1497
LargeFunction(bool do_bad_access)1498 NOINLINE static int LargeFunction(bool do_bad_access) {
1499 int *x = new int[100];
1500 x[0]++;
1501 x[1]++;
1502 x[2]++;
1503 x[3]++;
1504 x[4]++;
1505 x[5]++;
1506 x[6]++;
1507 x[7]++;
1508 x[8]++;
1509 x[9]++;
1510
1511 x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1512
1513 x[10]++;
1514 x[11]++;
1515 x[12]++;
1516 x[13]++;
1517 x[14]++;
1518 x[15]++;
1519 x[16]++;
1520 x[17]++;
1521 x[18]++;
1522 x[19]++;
1523
1524 delete x;
1525 return res;
1526 }
1527
1528 // Test the we have correct debug info for the failing instruction.
1529 // This test requires the in-process symbolizer to be enabled by default.
TEST(AddressSanitizer,DISABLED_LargeFunctionSymbolizeTest)1530 TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1531 int failing_line = LargeFunction(false);
1532 char expected_warning[128];
1533 sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1534 EXPECT_DEATH(LargeFunction(true), expected_warning);
1535 }
1536
1537 // Check that we unwind and symbolize correctly.
TEST(AddressSanitizer,DISABLED_MallocFreeUnwindAndSymbolizeTest)1538 TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1539 int *a = (int*)malloc_aaa(sizeof(int));
1540 *a = 1;
1541 free_aaa(a);
1542 EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1543 "malloc_fff.*malloc_eee.*malloc_ddd");
1544 }
1545
ThreadedTestAlloc(void * a)1546 void *ThreadedTestAlloc(void *a) {
1547 int **p = (int**)a;
1548 *p = new int;
1549 return 0;
1550 }
1551
ThreadedTestFree(void * a)1552 void *ThreadedTestFree(void *a) {
1553 int **p = (int**)a;
1554 delete *p;
1555 return 0;
1556 }
1557
ThreadedTestUse(void * a)1558 void *ThreadedTestUse(void *a) {
1559 int **p = (int**)a;
1560 **p = 1;
1561 return 0;
1562 }
1563
ThreadedTestSpawn()1564 void ThreadedTestSpawn() {
1565 pthread_t t;
1566 int *x;
1567 pthread_create(&t, 0, ThreadedTestAlloc, &x);
1568 pthread_join(t, 0);
1569 pthread_create(&t, 0, ThreadedTestFree, &x);
1570 pthread_join(t, 0);
1571 pthread_create(&t, 0, ThreadedTestUse, &x);
1572 pthread_join(t, 0);
1573 }
1574
TEST(AddressSanitizer,ThreadedTest)1575 TEST(AddressSanitizer, ThreadedTest) {
1576 EXPECT_DEATH(ThreadedTestSpawn(),
1577 ASAN_PCRE_DOTALL
1578 "Thread T.*created"
1579 ".*Thread T.*created"
1580 ".*Thread T.*created");
1581 }
1582
1583 #if ASAN_NEEDS_SEGV
TEST(AddressSanitizer,ShadowGapTest)1584 TEST(AddressSanitizer, ShadowGapTest) {
1585 #if __WORDSIZE == 32
1586 char *addr = (char*)0x22000000;
1587 #else
1588 char *addr = (char*)0x0000100000080000;
1589 #endif
1590 EXPECT_DEATH(*addr = 1, "AddressSanitizer crashed on unknown");
1591 }
1592 #endif // ASAN_NEEDS_SEGV
1593
1594 extern "C" {
UseThenFreeThenUse()1595 NOINLINE static void UseThenFreeThenUse() {
1596 char *x = Ident((char*)malloc(8));
1597 *x = 1;
1598 free_aaa(x);
1599 *x = 2;
1600 }
1601 }
1602
TEST(AddressSanitizer,UseThenFreeThenUseTest)1603 TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1604 EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1605 }
1606
TEST(AddressSanitizer,StrDupTest)1607 TEST(AddressSanitizer, StrDupTest) {
1608 free(strdup(Ident("123")));
1609 }
1610
1611 // Currently we create and poison redzone at right of global variables.
1612 char glob5[5];
1613 static char static110[110];
1614 const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1615 static const char StaticConstGlob[3] = {9, 8, 7};
1616 extern int GlobalsTest(int x);
1617
TEST(AddressSanitizer,GlobalTest)1618 TEST(AddressSanitizer, GlobalTest) {
1619 static char func_static15[15];
1620
1621 static char fs1[10];
1622 static char fs2[10];
1623 static char fs3[10];
1624
1625 glob5[Ident(0)] = 0;
1626 glob5[Ident(1)] = 0;
1627 glob5[Ident(2)] = 0;
1628 glob5[Ident(3)] = 0;
1629 glob5[Ident(4)] = 0;
1630
1631 EXPECT_DEATH(glob5[Ident(5)] = 0,
1632 "0 bytes to the right of global variable.*glob5.* size 5");
1633 EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1634 "6 bytes to the right of global variable.*glob5.* size 5");
1635 Ident(static110); // avoid optimizations
1636 static110[Ident(0)] = 0;
1637 static110[Ident(109)] = 0;
1638 EXPECT_DEATH(static110[Ident(110)] = 0,
1639 "0 bytes to the right of global variable");
1640 EXPECT_DEATH(static110[Ident(110+7)] = 0,
1641 "7 bytes to the right of global variable");
1642
1643 Ident(func_static15); // avoid optimizations
1644 func_static15[Ident(0)] = 0;
1645 EXPECT_DEATH(func_static15[Ident(15)] = 0,
1646 "0 bytes to the right of global variable");
1647 EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1648 "9 bytes to the right of global variable");
1649
1650 Ident(fs1);
1651 Ident(fs2);
1652 Ident(fs3);
1653
1654 // We don't create left redzones, so this is not 100% guaranteed to fail.
1655 // But most likely will.
1656 EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1657
1658 EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1659 "is located 1 bytes to the right of .*ConstGlob");
1660 EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1661 "is located 2 bytes to the right of .*StaticConstGlob");
1662
1663 // call stuff from another file.
1664 GlobalsTest(0);
1665 }
1666
TEST(AddressSanitizer,GlobalStringConstTest)1667 TEST(AddressSanitizer, GlobalStringConstTest) {
1668 static const char *zoo = "FOOBAR123";
1669 const char *p = Ident(zoo);
1670 EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1671 }
1672
TEST(AddressSanitizer,FileNameInGlobalReportTest)1673 TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1674 static char zoo[10];
1675 const char *p = Ident(zoo);
1676 // The file name should be present in the report.
1677 EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1678 }
1679
ReturnsPointerToALocalObject()1680 int *ReturnsPointerToALocalObject() {
1681 int a = 0;
1682 return Ident(&a);
1683 }
1684
1685 #if ASAN_UAR == 1
TEST(AddressSanitizer,LocalReferenceReturnTest)1686 TEST(AddressSanitizer, LocalReferenceReturnTest) {
1687 int *(*f)() = Ident(ReturnsPointerToALocalObject);
1688 int *p = f();
1689 // Call 'f' a few more times, 'p' should still be poisoned.
1690 for (int i = 0; i < 32; i++)
1691 f();
1692 EXPECT_DEATH(*p = 1, "AddressSanitizer stack-use-after-return");
1693 EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1694 }
1695 #endif
1696
1697 template <int kSize>
FuncWithStack()1698 NOINLINE static void FuncWithStack() {
1699 char x[kSize];
1700 Ident(x)[0] = 0;
1701 Ident(x)[kSize-1] = 0;
1702 }
1703
LotsOfStackReuse()1704 static void LotsOfStackReuse() {
1705 int LargeStack[10000];
1706 Ident(LargeStack)[0] = 0;
1707 for (int i = 0; i < 10000; i++) {
1708 FuncWithStack<128 * 1>();
1709 FuncWithStack<128 * 2>();
1710 FuncWithStack<128 * 4>();
1711 FuncWithStack<128 * 8>();
1712 FuncWithStack<128 * 16>();
1713 FuncWithStack<128 * 32>();
1714 FuncWithStack<128 * 64>();
1715 FuncWithStack<128 * 128>();
1716 FuncWithStack<128 * 256>();
1717 FuncWithStack<128 * 512>();
1718 Ident(LargeStack)[0] = 0;
1719 }
1720 }
1721
TEST(AddressSanitizer,StressStackReuseTest)1722 TEST(AddressSanitizer, StressStackReuseTest) {
1723 LotsOfStackReuse();
1724 }
1725
TEST(AddressSanitizer,ThreadedStressStackReuseTest)1726 TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1727 const int kNumThreads = 20;
1728 pthread_t t[kNumThreads];
1729 for (int i = 0; i < kNumThreads; i++) {
1730 pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1731 }
1732 for (int i = 0; i < kNumThreads; i++) {
1733 pthread_join(t[i], 0);
1734 }
1735 }
1736
PthreadExit(void * a)1737 static void *PthreadExit(void *a) {
1738 pthread_exit(0);
1739 return 0;
1740 }
1741
TEST(AddressSanitizer,PthreadExitTest)1742 TEST(AddressSanitizer, PthreadExitTest) {
1743 pthread_t t;
1744 for (int i = 0; i < 1000; i++) {
1745 pthread_create(&t, 0, PthreadExit, 0);
1746 pthread_join(t, 0);
1747 }
1748 }
1749
1750 #ifdef __EXCEPTIONS
StackReuseAndException()1751 NOINLINE static void StackReuseAndException() {
1752 int large_stack[1000];
1753 Ident(large_stack);
1754 ASAN_THROW(1);
1755 }
1756
1757 // TODO(kcc): support exceptions with use-after-return.
TEST(AddressSanitizer,DISABLED_StressStackReuseAndExceptionsTest)1758 TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1759 for (int i = 0; i < 10000; i++) {
1760 try {
1761 StackReuseAndException();
1762 } catch(...) {
1763 }
1764 }
1765 }
1766 #endif
1767
TEST(AddressSanitizer,MlockTest)1768 TEST(AddressSanitizer, MlockTest) {
1769 EXPECT_EQ(0, mlockall(MCL_CURRENT));
1770 EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1771 EXPECT_EQ(0, munlockall());
1772 EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1773 }
1774
1775 struct LargeStruct {
1776 int foo[100];
1777 };
1778
1779 // Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1780 // Struct copy should not cause asan warning even if lhs == rhs.
TEST(AddressSanitizer,LargeStructCopyTest)1781 TEST(AddressSanitizer, LargeStructCopyTest) {
1782 LargeStruct a;
1783 *Ident(&a) = *Ident(&a);
1784 }
1785
1786 __attribute__((no_address_safety_analysis))
NoAddressSafety()1787 static void NoAddressSafety() {
1788 char *foo = new char[10];
1789 Ident(foo)[10] = 0;
1790 delete [] foo;
1791 }
1792
TEST(AddressSanitizer,AttributeNoAddressSafetyTest)1793 TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
1794 Ident(NoAddressSafety)();
1795 }
1796
1797 // ------------------ demo tests; run each one-by-one -------------
1798 // e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
TEST(AddressSanitizer,DISABLED_DemoThreadedTest)1799 TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1800 ThreadedTestSpawn();
1801 }
1802
SimpleBugOnSTack(void * x=0)1803 void *SimpleBugOnSTack(void *x = 0) {
1804 char a[20];
1805 Ident(a)[20] = 0;
1806 return 0;
1807 }
1808
TEST(AddressSanitizer,DISABLED_DemoStackTest)1809 TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1810 SimpleBugOnSTack();
1811 }
1812
TEST(AddressSanitizer,DISABLED_DemoThreadStackTest)1813 TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1814 pthread_t t;
1815 pthread_create(&t, 0, SimpleBugOnSTack, 0);
1816 pthread_join(t, 0);
1817 }
1818
TEST(AddressSanitizer,DISABLED_DemoUAFLowIn)1819 TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1820 uaf_test<U1>(10, 0);
1821 }
TEST(AddressSanitizer,DISABLED_DemoUAFLowLeft)1822 TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1823 uaf_test<U1>(10, -2);
1824 }
TEST(AddressSanitizer,DISABLED_DemoUAFLowRight)1825 TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1826 uaf_test<U1>(10, 10);
1827 }
1828
TEST(AddressSanitizer,DISABLED_DemoUAFHigh)1829 TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1830 uaf_test<U1>(kLargeMalloc, 0);
1831 }
1832
TEST(AddressSanitizer,DISABLED_DemoOOBLeftLow)1833 TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1834 oob_test<U1>(10, -1);
1835 }
1836
TEST(AddressSanitizer,DISABLED_DemoOOBLeftHigh)1837 TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1838 oob_test<U1>(kLargeMalloc, -1);
1839 }
1840
TEST(AddressSanitizer,DISABLED_DemoOOBRightLow)1841 TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1842 oob_test<U1>(10, 10);
1843 }
1844
TEST(AddressSanitizer,DISABLED_DemoOOBRightHigh)1845 TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1846 oob_test<U1>(kLargeMalloc, kLargeMalloc);
1847 }
1848
TEST(AddressSanitizer,DISABLED_DemoOOM)1849 TEST(AddressSanitizer, DISABLED_DemoOOM) {
1850 size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1851 printf("%p\n", malloc(size));
1852 }
1853
TEST(AddressSanitizer,DISABLED_DemoDoubleFreeTest)1854 TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1855 DoubleFree();
1856 }
1857
TEST(AddressSanitizer,DISABLED_DemoNullDerefTest)1858 TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1859 int *a = 0;
1860 Ident(a)[10] = 0;
1861 }
1862
TEST(AddressSanitizer,DISABLED_DemoFunctionStaticTest)1863 TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1864 static char a[100];
1865 static char b[100];
1866 static char c[100];
1867 Ident(a);
1868 Ident(b);
1869 Ident(c);
1870 Ident(a)[5] = 0;
1871 Ident(b)[105] = 0;
1872 Ident(a)[5] = 0;
1873 }
1874
TEST(AddressSanitizer,DISABLED_DemoTooMuchMemoryTest)1875 TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1876 const size_t kAllocSize = (1 << 28) - 1024;
1877 size_t total_size = 0;
1878 while (true) {
1879 char *x = (char*)malloc(kAllocSize);
1880 memset(x, 0, kAllocSize);
1881 total_size += kAllocSize;
1882 fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
1883 }
1884 }
1885
1886 // http://code.google.com/p/address-sanitizer/issues/detail?id=66
TEST(AddressSanitizer,BufferOverflowAfterManyFrees)1887 TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
1888 for (int i = 0; i < 1000000; i++) {
1889 delete [] (Ident(new char [8644]));
1890 }
1891 char *x = new char[8192];
1892 EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer heap-buffer-overflow");
1893 delete [] Ident(x);
1894 }
1895
1896 #ifdef __APPLE__
1897 #include "asan_mac_test.h"
TEST(AddressSanitizerMac,CFAllocatorDefaultDoubleFree)1898 TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
1899 EXPECT_DEATH(
1900 CFAllocatorDefaultDoubleFree(NULL),
1901 "attempting double-free");
1902 }
1903
CFAllocator_DoubleFreeOnPthread()1904 void CFAllocator_DoubleFreeOnPthread() {
1905 pthread_t child;
1906 pthread_create(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
1907 pthread_join(child, NULL); // Shouldn't be reached.
1908 }
1909
TEST(AddressSanitizerMac,CFAllocatorDefaultDoubleFree_ChildPhread)1910 TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
1911 EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
1912 }
1913
1914 namespace {
1915
1916 void *GLOB;
1917
CFAllocatorAllocateToGlob(void * unused)1918 void *CFAllocatorAllocateToGlob(void *unused) {
1919 GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
1920 return NULL;
1921 }
1922
CFAllocatorDeallocateFromGlob(void * unused)1923 void *CFAllocatorDeallocateFromGlob(void *unused) {
1924 char *p = (char*)GLOB;
1925 p[100] = 'A'; // ASan should report an error here.
1926 CFAllocatorDeallocate(NULL, GLOB);
1927 return NULL;
1928 }
1929
CFAllocator_PassMemoryToAnotherThread()1930 void CFAllocator_PassMemoryToAnotherThread() {
1931 pthread_t th1, th2;
1932 pthread_create(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
1933 pthread_join(th1, NULL);
1934 pthread_create(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
1935 pthread_join(th2, NULL);
1936 }
1937
TEST(AddressSanitizerMac,CFAllocator_PassMemoryToAnotherThread)1938 TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
1939 EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
1940 "heap-buffer-overflow");
1941 }
1942
1943 } // namespace
1944
1945 // TODO(glider): figure out whether we still need these tests. Is it correct
1946 // to intercept the non-default CFAllocators?
TEST(AddressSanitizerMac,DISABLED_CFAllocatorSystemDefaultDoubleFree)1947 TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
1948 EXPECT_DEATH(
1949 CFAllocatorSystemDefaultDoubleFree(),
1950 "attempting double-free");
1951 }
1952
1953 // We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
TEST(AddressSanitizerMac,CFAllocatorMallocDoubleFree)1954 TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
1955 EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
1956 }
1957
TEST(AddressSanitizerMac,DISABLED_CFAllocatorMallocZoneDoubleFree)1958 TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
1959 EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
1960 }
1961
TEST(AddressSanitizerMac,GCDDispatchAsync)1962 TEST(AddressSanitizerMac, GCDDispatchAsync) {
1963 // Make sure the whole ASan report is printed, i.e. that we don't die
1964 // on a CHECK.
1965 EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
1966 }
1967
TEST(AddressSanitizerMac,GCDDispatchSync)1968 TEST(AddressSanitizerMac, GCDDispatchSync) {
1969 // Make sure the whole ASan report is printed, i.e. that we don't die
1970 // on a CHECK.
1971 EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
1972 }
1973
1974
TEST(AddressSanitizerMac,GCDReuseWqthreadsAsync)1975 TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
1976 // Make sure the whole ASan report is printed, i.e. that we don't die
1977 // on a CHECK.
1978 EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
1979 }
1980
TEST(AddressSanitizerMac,GCDReuseWqthreadsSync)1981 TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
1982 // Make sure the whole ASan report is printed, i.e. that we don't die
1983 // on a CHECK.
1984 EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
1985 }
1986
TEST(AddressSanitizerMac,GCDDispatchAfter)1987 TEST(AddressSanitizerMac, GCDDispatchAfter) {
1988 // Make sure the whole ASan report is printed, i.e. that we don't die
1989 // on a CHECK.
1990 EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
1991 }
1992
TEST(AddressSanitizerMac,GCDSourceEvent)1993 TEST(AddressSanitizerMac, GCDSourceEvent) {
1994 // Make sure the whole ASan report is printed, i.e. that we don't die
1995 // on a CHECK.
1996 EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
1997 }
1998
TEST(AddressSanitizerMac,GCDSourceCancel)1999 TEST(AddressSanitizerMac, GCDSourceCancel) {
2000 // Make sure the whole ASan report is printed, i.e. that we don't die
2001 // on a CHECK.
2002 EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
2003 }
2004
TEST(AddressSanitizerMac,GCDGroupAsync)2005 TEST(AddressSanitizerMac, GCDGroupAsync) {
2006 // Make sure the whole ASan report is printed, i.e. that we don't die
2007 // on a CHECK.
2008 EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
2009 }
2010
MallocIntrospectionLockWorker(void * _)2011 void *MallocIntrospectionLockWorker(void *_) {
2012 const int kNumPointers = 100;
2013 int i;
2014 void *pointers[kNumPointers];
2015 for (i = 0; i < kNumPointers; i++) {
2016 pointers[i] = malloc(i + 1);
2017 }
2018 for (i = 0; i < kNumPointers; i++) {
2019 free(pointers[i]);
2020 }
2021
2022 return NULL;
2023 }
2024
MallocIntrospectionLockForker(void * _)2025 void *MallocIntrospectionLockForker(void *_) {
2026 pid_t result = fork();
2027 if (result == -1) {
2028 perror("fork");
2029 }
2030 assert(result != -1);
2031 if (result == 0) {
2032 // Call malloc in the child process to make sure we won't deadlock.
2033 void *ptr = malloc(42);
2034 free(ptr);
2035 exit(0);
2036 } else {
2037 // Return in the parent process.
2038 return NULL;
2039 }
2040 }
2041
TEST(AddressSanitizerMac,MallocIntrospectionLock)2042 TEST(AddressSanitizerMac, MallocIntrospectionLock) {
2043 // Incorrect implementation of force_lock and force_unlock in our malloc zone
2044 // will cause forked processes to deadlock.
2045 // TODO(glider): need to detect that none of the child processes deadlocked.
2046 const int kNumWorkers = 5, kNumIterations = 100;
2047 int i, iter;
2048 for (iter = 0; iter < kNumIterations; iter++) {
2049 pthread_t workers[kNumWorkers], forker;
2050 for (i = 0; i < kNumWorkers; i++) {
2051 pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
2052 }
2053 pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
2054 for (i = 0; i < kNumWorkers; i++) {
2055 pthread_join(workers[i], 0);
2056 }
2057 pthread_join(forker, 0);
2058 }
2059 }
2060
TSDAllocWorker(void * test_key)2061 void *TSDAllocWorker(void *test_key) {
2062 if (test_key) {
2063 void *mem = malloc(10);
2064 pthread_setspecific(*(pthread_key_t*)test_key, mem);
2065 }
2066 return NULL;
2067 }
2068
TEST(AddressSanitizerMac,DISABLED_TSDWorkqueueTest)2069 TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
2070 pthread_t th;
2071 pthread_key_t test_key;
2072 pthread_key_create(&test_key, CallFreeOnWorkqueue);
2073 pthread_create(&th, NULL, TSDAllocWorker, &test_key);
2074 pthread_join(th, NULL);
2075 pthread_key_delete(test_key);
2076 }
2077
2078 // Test that CFStringCreateCopy does not copy constant strings.
TEST(AddressSanitizerMac,CFStringCreateCopy)2079 TEST(AddressSanitizerMac, CFStringCreateCopy) {
2080 CFStringRef str = CFSTR("Hello world!\n");
2081 CFStringRef str2 = CFStringCreateCopy(0, str);
2082 EXPECT_EQ(str, str2);
2083 }
2084
TEST(AddressSanitizerMac,NSObjectOOB)2085 TEST(AddressSanitizerMac, NSObjectOOB) {
2086 // Make sure that our allocators are used for NSObjects.
2087 EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
2088 }
2089
2090 // Make sure that correct pointer is passed to free() when deallocating a
2091 // NSURL object.
2092 // See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
TEST(AddressSanitizerMac,NSURLDeallocation)2093 TEST(AddressSanitizerMac, NSURLDeallocation) {
2094 TestNSURLDeallocation();
2095 }
2096 #endif // __APPLE__
2097
2098 // Test that instrumentation of stack allocations takes into account
2099 // AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
2100 // See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
TEST(AddressSanitizer,LongDoubleNegativeTest)2101 TEST(AddressSanitizer, LongDoubleNegativeTest) {
2102 long double a, b;
2103 static long double c;
2104 memcpy(Ident(&a), Ident(&b), sizeof(long double));
2105 memcpy(Ident(&c), Ident(&b), sizeof(long double));
2106 };
2107
main(int argc,char ** argv)2108 int main(int argc, char **argv) {
2109 progname = argv[0];
2110 testing::GTEST_FLAG(death_test_style) = "threadsafe";
2111 testing::InitGoogleTest(&argc, argv);
2112 return RUN_ALL_TESTS();
2113 }
2114