1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #if defined(V8_TARGET_ARCH_MIPS)
31
32 #include "bootstrapper.h"
33 #include "code-stubs.h"
34 #include "codegen.h"
35 #include "regexp-macro-assembler.h"
36
37 namespace v8 {
38 namespace internal {
39
40
41 #define __ ACCESS_MASM(masm)
42
43 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
44 Label* slow,
45 Condition cc,
46 bool never_nan_nan);
47 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
48 Register lhs,
49 Register rhs,
50 Label* rhs_not_nan,
51 Label* slow,
52 bool strict);
53 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
54 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
55 Register lhs,
56 Register rhs);
57
58
59 // Check if the operand is a heap number.
EmitCheckForHeapNumber(MacroAssembler * masm,Register operand,Register scratch1,Register scratch2,Label * not_a_heap_number)60 static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
61 Register scratch1, Register scratch2,
62 Label* not_a_heap_number) {
63 __ lw(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
64 __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
65 __ Branch(not_a_heap_number, ne, scratch1, Operand(scratch2));
66 }
67
68
Generate(MacroAssembler * masm)69 void ToNumberStub::Generate(MacroAssembler* masm) {
70 // The ToNumber stub takes one argument in a0.
71 Label check_heap_number, call_builtin;
72 __ JumpIfNotSmi(a0, &check_heap_number);
73 __ Ret(USE_DELAY_SLOT);
74 __ mov(v0, a0);
75
76 __ bind(&check_heap_number);
77 EmitCheckForHeapNumber(masm, a0, a1, t0, &call_builtin);
78 __ Ret(USE_DELAY_SLOT);
79 __ mov(v0, a0);
80
81 __ bind(&call_builtin);
82 __ push(a0);
83 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
84 }
85
86
Generate(MacroAssembler * masm)87 void FastNewClosureStub::Generate(MacroAssembler* masm) {
88 // Create a new closure from the given function info in new
89 // space. Set the context to the current context in cp.
90 Label gc;
91
92 // Pop the function info from the stack.
93 __ pop(a3);
94
95 // Attempt to allocate new JSFunction in new space.
96 __ AllocateInNewSpace(JSFunction::kSize,
97 v0,
98 a1,
99 a2,
100 &gc,
101 TAG_OBJECT);
102
103 int map_index = (language_mode_ == CLASSIC_MODE)
104 ? Context::FUNCTION_MAP_INDEX
105 : Context::STRICT_MODE_FUNCTION_MAP_INDEX;
106
107 // Compute the function map in the current global context and set that
108 // as the map of the allocated object.
109 __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
110 __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
111 __ lw(a2, MemOperand(a2, Context::SlotOffset(map_index)));
112 __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
113
114 // Initialize the rest of the function. We don't have to update the
115 // write barrier because the allocated object is in new space.
116 __ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex);
117 __ LoadRoot(a2, Heap::kTheHoleValueRootIndex);
118 __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
119 __ sw(a1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
120 __ sw(a1, FieldMemOperand(v0, JSObject::kElementsOffset));
121 __ sw(a2, FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset));
122 __ sw(a3, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
123 __ sw(cp, FieldMemOperand(v0, JSFunction::kContextOffset));
124 __ sw(a1, FieldMemOperand(v0, JSFunction::kLiteralsOffset));
125 __ sw(t0, FieldMemOperand(v0, JSFunction::kNextFunctionLinkOffset));
126
127 // Initialize the code pointer in the function to be the one
128 // found in the shared function info object.
129 __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kCodeOffset));
130 __ Addu(a3, a3, Operand(Code::kHeaderSize - kHeapObjectTag));
131
132 // Return result. The argument function info has been popped already.
133 __ sw(a3, FieldMemOperand(v0, JSFunction::kCodeEntryOffset));
134 __ Ret();
135
136 // Create a new closure through the slower runtime call.
137 __ bind(&gc);
138 __ LoadRoot(t0, Heap::kFalseValueRootIndex);
139 __ Push(cp, a3, t0);
140 __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
141 }
142
143
Generate(MacroAssembler * masm)144 void FastNewContextStub::Generate(MacroAssembler* masm) {
145 // Try to allocate the context in new space.
146 Label gc;
147 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
148
149 // Attempt to allocate the context in new space.
150 __ AllocateInNewSpace(FixedArray::SizeFor(length),
151 v0,
152 a1,
153 a2,
154 &gc,
155 TAG_OBJECT);
156
157 // Load the function from the stack.
158 __ lw(a3, MemOperand(sp, 0));
159
160 // Set up the object header.
161 __ LoadRoot(a1, Heap::kFunctionContextMapRootIndex);
162 __ li(a2, Operand(Smi::FromInt(length)));
163 __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset));
164 __ sw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
165
166 // Set up the fixed slots, copy the global object from the previous context.
167 __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
168 __ li(a1, Operand(Smi::FromInt(0)));
169 __ sw(a3, MemOperand(v0, Context::SlotOffset(Context::CLOSURE_INDEX)));
170 __ sw(cp, MemOperand(v0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
171 __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::EXTENSION_INDEX)));
172 __ sw(a2, MemOperand(v0, Context::SlotOffset(Context::GLOBAL_INDEX)));
173
174 // Initialize the rest of the slots to undefined.
175 __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
176 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
177 __ sw(a1, MemOperand(v0, Context::SlotOffset(i)));
178 }
179
180 // Remove the on-stack argument and return.
181 __ mov(cp, v0);
182 __ DropAndRet(1);
183
184 // Need to collect. Call into runtime system.
185 __ bind(&gc);
186 __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
187 }
188
189
Generate(MacroAssembler * masm)190 void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
191 // Stack layout on entry:
192 //
193 // [sp]: function.
194 // [sp + kPointerSize]: serialized scope info
195
196 // Try to allocate the context in new space.
197 Label gc;
198 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
199 __ AllocateInNewSpace(FixedArray::SizeFor(length),
200 v0, a1, a2, &gc, TAG_OBJECT);
201
202 // Load the function from the stack.
203 __ lw(a3, MemOperand(sp, 0));
204
205 // Load the serialized scope info from the stack.
206 __ lw(a1, MemOperand(sp, 1 * kPointerSize));
207
208 // Set up the object header.
209 __ LoadRoot(a2, Heap::kBlockContextMapRootIndex);
210 __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
211 __ li(a2, Operand(Smi::FromInt(length)));
212 __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset));
213
214 // If this block context is nested in the global context we get a smi
215 // sentinel instead of a function. The block context should get the
216 // canonical empty function of the global context as its closure which
217 // we still have to look up.
218 Label after_sentinel;
219 __ JumpIfNotSmi(a3, &after_sentinel);
220 if (FLAG_debug_code) {
221 const char* message = "Expected 0 as a Smi sentinel";
222 __ Assert(eq, message, a3, Operand(zero_reg));
223 }
224 __ lw(a3, GlobalObjectOperand());
225 __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset));
226 __ lw(a3, ContextOperand(a3, Context::CLOSURE_INDEX));
227 __ bind(&after_sentinel);
228
229 // Set up the fixed slots, copy the global object from the previous context.
230 __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX));
231 __ sw(a3, ContextOperand(v0, Context::CLOSURE_INDEX));
232 __ sw(cp, ContextOperand(v0, Context::PREVIOUS_INDEX));
233 __ sw(a1, ContextOperand(v0, Context::EXTENSION_INDEX));
234 __ sw(a2, ContextOperand(v0, Context::GLOBAL_INDEX));
235
236 // Initialize the rest of the slots to the hole value.
237 __ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
238 for (int i = 0; i < slots_; i++) {
239 __ sw(a1, ContextOperand(v0, i + Context::MIN_CONTEXT_SLOTS));
240 }
241
242 // Remove the on-stack argument and return.
243 __ mov(cp, v0);
244 __ DropAndRet(2);
245
246 // Need to collect. Call into runtime system.
247 __ bind(&gc);
248 __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
249 }
250
251
GenerateFastCloneShallowArrayCommon(MacroAssembler * masm,int length,FastCloneShallowArrayStub::Mode mode,Label * fail)252 static void GenerateFastCloneShallowArrayCommon(
253 MacroAssembler* masm,
254 int length,
255 FastCloneShallowArrayStub::Mode mode,
256 Label* fail) {
257 // Registers on entry:
258 // a3: boilerplate literal array.
259 ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
260
261 // All sizes here are multiples of kPointerSize.
262 int elements_size = 0;
263 if (length > 0) {
264 elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
265 ? FixedDoubleArray::SizeFor(length)
266 : FixedArray::SizeFor(length);
267 }
268 int size = JSArray::kSize + elements_size;
269
270 // Allocate both the JS array and the elements array in one big
271 // allocation. This avoids multiple limit checks.
272 __ AllocateInNewSpace(size,
273 v0,
274 a1,
275 a2,
276 fail,
277 TAG_OBJECT);
278
279 // Copy the JS array part.
280 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
281 if ((i != JSArray::kElementsOffset) || (length == 0)) {
282 __ lw(a1, FieldMemOperand(a3, i));
283 __ sw(a1, FieldMemOperand(v0, i));
284 }
285 }
286
287 if (length > 0) {
288 // Get hold of the elements array of the boilerplate and setup the
289 // elements pointer in the resulting object.
290 __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
291 __ Addu(a2, v0, Operand(JSArray::kSize));
292 __ sw(a2, FieldMemOperand(v0, JSArray::kElementsOffset));
293
294 // Copy the elements array.
295 ASSERT((elements_size % kPointerSize) == 0);
296 __ CopyFields(a2, a3, a1.bit(), elements_size / kPointerSize);
297 }
298 }
299
Generate(MacroAssembler * masm)300 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
301 // Stack layout on entry:
302 //
303 // [sp]: constant elements.
304 // [sp + kPointerSize]: literal index.
305 // [sp + (2 * kPointerSize)]: literals array.
306
307 // Load boilerplate object into r3 and check if we need to create a
308 // boilerplate.
309 Label slow_case;
310 __ lw(a3, MemOperand(sp, 2 * kPointerSize));
311 __ lw(a0, MemOperand(sp, 1 * kPointerSize));
312 __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
313 __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
314 __ Addu(t0, a3, t0);
315 __ lw(a3, MemOperand(t0));
316 __ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
317 __ Branch(&slow_case, eq, a3, Operand(t1));
318
319 FastCloneShallowArrayStub::Mode mode = mode_;
320 if (mode == CLONE_ANY_ELEMENTS) {
321 Label double_elements, check_fast_elements;
322 __ lw(v0, FieldMemOperand(a3, JSArray::kElementsOffset));
323 __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
324 __ LoadRoot(t1, Heap::kFixedCOWArrayMapRootIndex);
325 __ Branch(&check_fast_elements, ne, v0, Operand(t1));
326 GenerateFastCloneShallowArrayCommon(masm, 0,
327 COPY_ON_WRITE_ELEMENTS, &slow_case);
328 // Return and remove the on-stack parameters.
329 __ DropAndRet(3);
330
331 __ bind(&check_fast_elements);
332 __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
333 __ Branch(&double_elements, ne, v0, Operand(t1));
334 GenerateFastCloneShallowArrayCommon(masm, length_,
335 CLONE_ELEMENTS, &slow_case);
336 // Return and remove the on-stack parameters.
337 __ DropAndRet(3);
338
339 __ bind(&double_elements);
340 mode = CLONE_DOUBLE_ELEMENTS;
341 // Fall through to generate the code to handle double elements.
342 }
343
344 if (FLAG_debug_code) {
345 const char* message;
346 Heap::RootListIndex expected_map_index;
347 if (mode == CLONE_ELEMENTS) {
348 message = "Expected (writable) fixed array";
349 expected_map_index = Heap::kFixedArrayMapRootIndex;
350 } else if (mode == CLONE_DOUBLE_ELEMENTS) {
351 message = "Expected (writable) fixed double array";
352 expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
353 } else {
354 ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
355 message = "Expected copy-on-write fixed array";
356 expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
357 }
358 __ push(a3);
359 __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
360 __ lw(a3, FieldMemOperand(a3, HeapObject::kMapOffset));
361 __ LoadRoot(at, expected_map_index);
362 __ Assert(eq, message, a3, Operand(at));
363 __ pop(a3);
364 }
365
366 GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);
367
368 // Return and remove the on-stack parameters.
369 __ DropAndRet(3);
370
371 __ bind(&slow_case);
372 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
373 }
374
375
Generate(MacroAssembler * masm)376 void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
377 // Stack layout on entry:
378 //
379 // [sp]: object literal flags.
380 // [sp + kPointerSize]: constant properties.
381 // [sp + (2 * kPointerSize)]: literal index.
382 // [sp + (3 * kPointerSize)]: literals array.
383
384 // Load boilerplate object into a3 and check if we need to create a
385 // boilerplate.
386 Label slow_case;
387 __ lw(a3, MemOperand(sp, 3 * kPointerSize));
388 __ lw(a0, MemOperand(sp, 2 * kPointerSize));
389 __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
390 __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
391 __ Addu(a3, t0, a3);
392 __ lw(a3, MemOperand(a3));
393 __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
394 __ Branch(&slow_case, eq, a3, Operand(t0));
395
396 // Check that the boilerplate contains only fast properties and we can
397 // statically determine the instance size.
398 int size = JSObject::kHeaderSize + length_ * kPointerSize;
399 __ lw(a0, FieldMemOperand(a3, HeapObject::kMapOffset));
400 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceSizeOffset));
401 __ Branch(&slow_case, ne, a0, Operand(size >> kPointerSizeLog2));
402
403 // Allocate the JS object and copy header together with all in-object
404 // properties from the boilerplate.
405 __ AllocateInNewSpace(size, v0, a1, a2, &slow_case, TAG_OBJECT);
406 for (int i = 0; i < size; i += kPointerSize) {
407 __ lw(a1, FieldMemOperand(a3, i));
408 __ sw(a1, FieldMemOperand(v0, i));
409 }
410
411 // Return and remove the on-stack parameters.
412 __ DropAndRet(4);
413
414 __ bind(&slow_case);
415 __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
416 }
417
418
419 // Takes a Smi and converts to an IEEE 64 bit floating point value in two
420 // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
421 // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
422 // scratch register. Destroys the source register. No GC occurs during this
423 // stub so you don't have to set up the frame.
424 class ConvertToDoubleStub : public CodeStub {
425 public:
ConvertToDoubleStub(Register result_reg_1,Register result_reg_2,Register source_reg,Register scratch_reg)426 ConvertToDoubleStub(Register result_reg_1,
427 Register result_reg_2,
428 Register source_reg,
429 Register scratch_reg)
430 : result1_(result_reg_1),
431 result2_(result_reg_2),
432 source_(source_reg),
433 zeros_(scratch_reg) { }
434
435 private:
436 Register result1_;
437 Register result2_;
438 Register source_;
439 Register zeros_;
440
441 // Minor key encoding in 16 bits.
442 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
443 class OpBits: public BitField<Token::Value, 2, 14> {};
444
MajorKey()445 Major MajorKey() { return ConvertToDouble; }
MinorKey()446 int MinorKey() {
447 // Encode the parameters in a unique 16 bit value.
448 return result1_.code() +
449 (result2_.code() << 4) +
450 (source_.code() << 8) +
451 (zeros_.code() << 12);
452 }
453
454 void Generate(MacroAssembler* masm);
455 };
456
457
Generate(MacroAssembler * masm)458 void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
459 #ifndef BIG_ENDIAN_FLOATING_POINT
460 Register exponent = result1_;
461 Register mantissa = result2_;
462 #else
463 Register exponent = result2_;
464 Register mantissa = result1_;
465 #endif
466 Label not_special;
467 // Convert from Smi to integer.
468 __ sra(source_, source_, kSmiTagSize);
469 // Move sign bit from source to destination. This works because the sign bit
470 // in the exponent word of the double has the same position and polarity as
471 // the 2's complement sign bit in a Smi.
472 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
473 __ And(exponent, source_, Operand(HeapNumber::kSignMask));
474 // Subtract from 0 if source was negative.
475 __ subu(at, zero_reg, source_);
476 __ Movn(source_, at, exponent);
477
478 // We have -1, 0 or 1, which we treat specially. Register source_ contains
479 // absolute value: it is either equal to 1 (special case of -1 and 1),
480 // greater than 1 (not a special case) or less than 1 (special case of 0).
481 __ Branch(¬_special, gt, source_, Operand(1));
482
483 // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
484 const uint32_t exponent_word_for_1 =
485 HeapNumber::kExponentBias << HeapNumber::kExponentShift;
486 // Safe to use 'at' as dest reg here.
487 __ Or(at, exponent, Operand(exponent_word_for_1));
488 __ Movn(exponent, at, source_); // Write exp when source not 0.
489 // 1, 0 and -1 all have 0 for the second word.
490 __ Ret(USE_DELAY_SLOT);
491 __ mov(mantissa, zero_reg);
492
493 __ bind(¬_special);
494 // Count leading zeros.
495 // Gets the wrong answer for 0, but we already checked for that case above.
496 __ Clz(zeros_, source_);
497 // Compute exponent and or it into the exponent register.
498 // We use mantissa as a scratch register here.
499 __ li(mantissa, Operand(31 + HeapNumber::kExponentBias));
500 __ subu(mantissa, mantissa, zeros_);
501 __ sll(mantissa, mantissa, HeapNumber::kExponentShift);
502 __ Or(exponent, exponent, mantissa);
503
504 // Shift up the source chopping the top bit off.
505 __ Addu(zeros_, zeros_, Operand(1));
506 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
507 __ sllv(source_, source_, zeros_);
508 // Compute lower part of fraction (last 12 bits).
509 __ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord);
510 // And the top (top 20 bits).
511 __ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord);
512
513 __ Ret(USE_DELAY_SLOT);
514 __ or_(exponent, exponent, source_);
515 }
516
517
LoadSmis(MacroAssembler * masm,FloatingPointHelper::Destination destination,Register scratch1,Register scratch2)518 void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
519 FloatingPointHelper::Destination destination,
520 Register scratch1,
521 Register scratch2) {
522 if (CpuFeatures::IsSupported(FPU)) {
523 CpuFeatures::Scope scope(FPU);
524 __ sra(scratch1, a0, kSmiTagSize);
525 __ mtc1(scratch1, f14);
526 __ cvt_d_w(f14, f14);
527 __ sra(scratch1, a1, kSmiTagSize);
528 __ mtc1(scratch1, f12);
529 __ cvt_d_w(f12, f12);
530 if (destination == kCoreRegisters) {
531 __ Move(a2, a3, f14);
532 __ Move(a0, a1, f12);
533 }
534 } else {
535 ASSERT(destination == kCoreRegisters);
536 // Write Smi from a0 to a3 and a2 in double format.
537 __ mov(scratch1, a0);
538 ConvertToDoubleStub stub1(a3, a2, scratch1, scratch2);
539 __ push(ra);
540 __ Call(stub1.GetCode());
541 // Write Smi from a1 to a1 and a0 in double format.
542 __ mov(scratch1, a1);
543 ConvertToDoubleStub stub2(a1, a0, scratch1, scratch2);
544 __ Call(stub2.GetCode());
545 __ pop(ra);
546 }
547 }
548
549
LoadOperands(MacroAssembler * masm,FloatingPointHelper::Destination destination,Register heap_number_map,Register scratch1,Register scratch2,Label * slow)550 void FloatingPointHelper::LoadOperands(
551 MacroAssembler* masm,
552 FloatingPointHelper::Destination destination,
553 Register heap_number_map,
554 Register scratch1,
555 Register scratch2,
556 Label* slow) {
557
558 // Load right operand (a0) to f12 or a2/a3.
559 LoadNumber(masm, destination,
560 a0, f14, a2, a3, heap_number_map, scratch1, scratch2, slow);
561
562 // Load left operand (a1) to f14 or a0/a1.
563 LoadNumber(masm, destination,
564 a1, f12, a0, a1, heap_number_map, scratch1, scratch2, slow);
565 }
566
567
LoadNumber(MacroAssembler * masm,Destination destination,Register object,FPURegister dst,Register dst1,Register dst2,Register heap_number_map,Register scratch1,Register scratch2,Label * not_number)568 void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
569 Destination destination,
570 Register object,
571 FPURegister dst,
572 Register dst1,
573 Register dst2,
574 Register heap_number_map,
575 Register scratch1,
576 Register scratch2,
577 Label* not_number) {
578 if (FLAG_debug_code) {
579 __ AbortIfNotRootValue(heap_number_map,
580 Heap::kHeapNumberMapRootIndex,
581 "HeapNumberMap register clobbered.");
582 }
583
584 Label is_smi, done;
585
586 // Smi-check
587 __ UntagAndJumpIfSmi(scratch1, object, &is_smi);
588 // Heap number check
589 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
590
591 // Handle loading a double from a heap number.
592 if (CpuFeatures::IsSupported(FPU) &&
593 destination == kFPURegisters) {
594 CpuFeatures::Scope scope(FPU);
595 // Load the double from tagged HeapNumber to double register.
596
597 // ARM uses a workaround here because of the unaligned HeapNumber
598 // kValueOffset. On MIPS this workaround is built into ldc1 so there's no
599 // point in generating even more instructions.
600 __ ldc1(dst, FieldMemOperand(object, HeapNumber::kValueOffset));
601 } else {
602 ASSERT(destination == kCoreRegisters);
603 // Load the double from heap number to dst1 and dst2 in double format.
604 __ lw(dst1, FieldMemOperand(object, HeapNumber::kValueOffset));
605 __ lw(dst2, FieldMemOperand(object,
606 HeapNumber::kValueOffset + kPointerSize));
607 }
608 __ Branch(&done);
609
610 // Handle loading a double from a smi.
611 __ bind(&is_smi);
612 if (CpuFeatures::IsSupported(FPU)) {
613 CpuFeatures::Scope scope(FPU);
614 // Convert smi to double using FPU instructions.
615 __ mtc1(scratch1, dst);
616 __ cvt_d_w(dst, dst);
617 if (destination == kCoreRegisters) {
618 // Load the converted smi to dst1 and dst2 in double format.
619 __ Move(dst1, dst2, dst);
620 }
621 } else {
622 ASSERT(destination == kCoreRegisters);
623 // Write smi to dst1 and dst2 double format.
624 __ mov(scratch1, object);
625 ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
626 __ push(ra);
627 __ Call(stub.GetCode());
628 __ pop(ra);
629 }
630
631 __ bind(&done);
632 }
633
634
ConvertNumberToInt32(MacroAssembler * masm,Register object,Register dst,Register heap_number_map,Register scratch1,Register scratch2,Register scratch3,FPURegister double_scratch,Label * not_number)635 void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
636 Register object,
637 Register dst,
638 Register heap_number_map,
639 Register scratch1,
640 Register scratch2,
641 Register scratch3,
642 FPURegister double_scratch,
643 Label* not_number) {
644 if (FLAG_debug_code) {
645 __ AbortIfNotRootValue(heap_number_map,
646 Heap::kHeapNumberMapRootIndex,
647 "HeapNumberMap register clobbered.");
648 }
649 Label done;
650 Label not_in_int32_range;
651
652 __ UntagAndJumpIfSmi(dst, object, &done);
653 __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
654 __ Branch(not_number, ne, scratch1, Operand(heap_number_map));
655 __ ConvertToInt32(object,
656 dst,
657 scratch1,
658 scratch2,
659 double_scratch,
660 ¬_in_int32_range);
661 __ jmp(&done);
662
663 __ bind(¬_in_int32_range);
664 __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
665 __ lw(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
666
667 __ EmitOutOfInt32RangeTruncate(dst,
668 scratch1,
669 scratch2,
670 scratch3);
671
672 __ bind(&done);
673 }
674
675
ConvertIntToDouble(MacroAssembler * masm,Register int_scratch,Destination destination,FPURegister double_dst,Register dst1,Register dst2,Register scratch2,FPURegister single_scratch)676 void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
677 Register int_scratch,
678 Destination destination,
679 FPURegister double_dst,
680 Register dst1,
681 Register dst2,
682 Register scratch2,
683 FPURegister single_scratch) {
684 ASSERT(!int_scratch.is(scratch2));
685 ASSERT(!int_scratch.is(dst1));
686 ASSERT(!int_scratch.is(dst2));
687
688 Label done;
689
690 if (CpuFeatures::IsSupported(FPU)) {
691 CpuFeatures::Scope scope(FPU);
692 __ mtc1(int_scratch, single_scratch);
693 __ cvt_d_w(double_dst, single_scratch);
694 if (destination == kCoreRegisters) {
695 __ Move(dst1, dst2, double_dst);
696 }
697 } else {
698 Label fewer_than_20_useful_bits;
699 // Expected output:
700 // | dst2 | dst1 |
701 // | s | exp | mantissa |
702
703 // Check for zero.
704 __ mov(dst2, int_scratch);
705 __ mov(dst1, int_scratch);
706 __ Branch(&done, eq, int_scratch, Operand(zero_reg));
707
708 // Preload the sign of the value.
709 __ And(dst2, int_scratch, Operand(HeapNumber::kSignMask));
710 // Get the absolute value of the object (as an unsigned integer).
711 Label skip_sub;
712 __ Branch(&skip_sub, ge, dst2, Operand(zero_reg));
713 __ Subu(int_scratch, zero_reg, int_scratch);
714 __ bind(&skip_sub);
715
716 // Get mantissa[51:20].
717
718 // Get the position of the first set bit.
719 __ Clz(dst1, int_scratch);
720 __ li(scratch2, 31);
721 __ Subu(dst1, scratch2, dst1);
722
723 // Set the exponent.
724 __ Addu(scratch2, dst1, Operand(HeapNumber::kExponentBias));
725 __ Ins(dst2, scratch2,
726 HeapNumber::kExponentShift, HeapNumber::kExponentBits);
727
728 // Clear the first non null bit.
729 __ li(scratch2, Operand(1));
730 __ sllv(scratch2, scratch2, dst1);
731 __ li(at, -1);
732 __ Xor(scratch2, scratch2, at);
733 __ And(int_scratch, int_scratch, scratch2);
734
735 // Get the number of bits to set in the lower part of the mantissa.
736 __ Subu(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
737 __ Branch(&fewer_than_20_useful_bits, lt, scratch2, Operand(zero_reg));
738 // Set the higher 20 bits of the mantissa.
739 __ srlv(at, int_scratch, scratch2);
740 __ or_(dst2, dst2, at);
741 __ li(at, 32);
742 __ subu(scratch2, at, scratch2);
743 __ sllv(dst1, int_scratch, scratch2);
744 __ Branch(&done);
745
746 __ bind(&fewer_than_20_useful_bits);
747 __ li(at, HeapNumber::kMantissaBitsInTopWord);
748 __ subu(scratch2, at, dst1);
749 __ sllv(scratch2, int_scratch, scratch2);
750 __ Or(dst2, dst2, scratch2);
751 // Set dst1 to 0.
752 __ mov(dst1, zero_reg);
753 }
754 __ bind(&done);
755 }
756
757
LoadNumberAsInt32Double(MacroAssembler * masm,Register object,Destination destination,DoubleRegister double_dst,Register dst1,Register dst2,Register heap_number_map,Register scratch1,Register scratch2,FPURegister single_scratch,Label * not_int32)758 void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
759 Register object,
760 Destination destination,
761 DoubleRegister double_dst,
762 Register dst1,
763 Register dst2,
764 Register heap_number_map,
765 Register scratch1,
766 Register scratch2,
767 FPURegister single_scratch,
768 Label* not_int32) {
769 ASSERT(!scratch1.is(object) && !scratch2.is(object));
770 ASSERT(!scratch1.is(scratch2));
771 ASSERT(!heap_number_map.is(object) &&
772 !heap_number_map.is(scratch1) &&
773 !heap_number_map.is(scratch2));
774
775 Label done, obj_is_not_smi;
776
777 __ JumpIfNotSmi(object, &obj_is_not_smi);
778 __ SmiUntag(scratch1, object);
779 ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
780 scratch2, single_scratch);
781 __ Branch(&done);
782
783 __ bind(&obj_is_not_smi);
784 if (FLAG_debug_code) {
785 __ AbortIfNotRootValue(heap_number_map,
786 Heap::kHeapNumberMapRootIndex,
787 "HeapNumberMap register clobbered.");
788 }
789 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
790
791 // Load the number.
792 if (CpuFeatures::IsSupported(FPU)) {
793 CpuFeatures::Scope scope(FPU);
794 // Load the double value.
795 __ ldc1(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset));
796
797 Register except_flag = scratch2;
798 __ EmitFPUTruncate(kRoundToZero,
799 single_scratch,
800 double_dst,
801 scratch1,
802 except_flag,
803 kCheckForInexactConversion);
804
805 // Jump to not_int32 if the operation did not succeed.
806 __ Branch(not_int32, ne, except_flag, Operand(zero_reg));
807
808 if (destination == kCoreRegisters) {
809 __ Move(dst1, dst2, double_dst);
810 }
811
812 } else {
813 ASSERT(!scratch1.is(object) && !scratch2.is(object));
814 // Load the double value in the destination registers.
815 __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
816 __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
817
818 // Check for 0 and -0.
819 __ And(scratch1, dst1, Operand(~HeapNumber::kSignMask));
820 __ Or(scratch1, scratch1, Operand(dst2));
821 __ Branch(&done, eq, scratch1, Operand(zero_reg));
822
823 // Check that the value can be exactly represented by a 32-bit integer.
824 // Jump to not_int32 if that's not the case.
825 DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
826
827 // dst1 and dst2 were trashed. Reload the double value.
828 __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
829 __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
830 }
831
832 __ bind(&done);
833 }
834
835
LoadNumberAsInt32(MacroAssembler * masm,Register object,Register dst,Register heap_number_map,Register scratch1,Register scratch2,Register scratch3,DoubleRegister double_scratch,Label * not_int32)836 void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
837 Register object,
838 Register dst,
839 Register heap_number_map,
840 Register scratch1,
841 Register scratch2,
842 Register scratch3,
843 DoubleRegister double_scratch,
844 Label* not_int32) {
845 ASSERT(!dst.is(object));
846 ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
847 ASSERT(!scratch1.is(scratch2) &&
848 !scratch1.is(scratch3) &&
849 !scratch2.is(scratch3));
850
851 Label done;
852
853 __ UntagAndJumpIfSmi(dst, object, &done);
854
855 if (FLAG_debug_code) {
856 __ AbortIfNotRootValue(heap_number_map,
857 Heap::kHeapNumberMapRootIndex,
858 "HeapNumberMap register clobbered.");
859 }
860 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
861
862 // Object is a heap number.
863 // Convert the floating point value to a 32-bit integer.
864 if (CpuFeatures::IsSupported(FPU)) {
865 CpuFeatures::Scope scope(FPU);
866 // Load the double value.
867 __ ldc1(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
868
869 FPURegister single_scratch = double_scratch.low();
870 Register except_flag = scratch2;
871 __ EmitFPUTruncate(kRoundToZero,
872 single_scratch,
873 double_scratch,
874 scratch1,
875 except_flag,
876 kCheckForInexactConversion);
877
878 // Jump to not_int32 if the operation did not succeed.
879 __ Branch(not_int32, ne, except_flag, Operand(zero_reg));
880 // Get the result in the destination register.
881 __ mfc1(dst, single_scratch);
882
883 } else {
884 // Load the double value in the destination registers.
885 __ lw(scratch2, FieldMemOperand(object, HeapNumber::kExponentOffset));
886 __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
887
888 // Check for 0 and -0.
889 __ And(dst, scratch1, Operand(~HeapNumber::kSignMask));
890 __ Or(dst, scratch2, Operand(dst));
891 __ Branch(&done, eq, dst, Operand(zero_reg));
892
893 DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
894
895 // Registers state after DoubleIs32BitInteger.
896 // dst: mantissa[51:20].
897 // scratch2: 1
898
899 // Shift back the higher bits of the mantissa.
900 __ srlv(dst, dst, scratch3);
901 // Set the implicit first bit.
902 __ li(at, 32);
903 __ subu(scratch3, at, scratch3);
904 __ sllv(scratch2, scratch2, scratch3);
905 __ Or(dst, dst, scratch2);
906 // Set the sign.
907 __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
908 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
909 Label skip_sub;
910 __ Branch(&skip_sub, ge, scratch1, Operand(zero_reg));
911 __ Subu(dst, zero_reg, dst);
912 __ bind(&skip_sub);
913 }
914
915 __ bind(&done);
916 }
917
918
DoubleIs32BitInteger(MacroAssembler * masm,Register src1,Register src2,Register dst,Register scratch,Label * not_int32)919 void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
920 Register src1,
921 Register src2,
922 Register dst,
923 Register scratch,
924 Label* not_int32) {
925 // Get exponent alone in scratch.
926 __ Ext(scratch,
927 src1,
928 HeapNumber::kExponentShift,
929 HeapNumber::kExponentBits);
930
931 // Substract the bias from the exponent.
932 __ Subu(scratch, scratch, Operand(HeapNumber::kExponentBias));
933
934 // src1: higher (exponent) part of the double value.
935 // src2: lower (mantissa) part of the double value.
936 // scratch: unbiased exponent.
937
938 // Fast cases. Check for obvious non 32-bit integer values.
939 // Negative exponent cannot yield 32-bit integers.
940 __ Branch(not_int32, lt, scratch, Operand(zero_reg));
941 // Exponent greater than 31 cannot yield 32-bit integers.
942 // Also, a positive value with an exponent equal to 31 is outside of the
943 // signed 32-bit integer range.
944 // Another way to put it is that if (exponent - signbit) > 30 then the
945 // number cannot be represented as an int32.
946 Register tmp = dst;
947 __ srl(at, src1, 31);
948 __ subu(tmp, scratch, at);
949 __ Branch(not_int32, gt, tmp, Operand(30));
950 // - Bits [21:0] in the mantissa are not null.
951 __ And(tmp, src2, 0x3fffff);
952 __ Branch(not_int32, ne, tmp, Operand(zero_reg));
953
954 // Otherwise the exponent needs to be big enough to shift left all the
955 // non zero bits left. So we need the (30 - exponent) last bits of the
956 // 31 higher bits of the mantissa to be null.
957 // Because bits [21:0] are null, we can check instead that the
958 // (32 - exponent) last bits of the 32 higher bits of the mantissa are null.
959
960 // Get the 32 higher bits of the mantissa in dst.
961 __ Ext(dst,
962 src2,
963 HeapNumber::kMantissaBitsInTopWord,
964 32 - HeapNumber::kMantissaBitsInTopWord);
965 __ sll(at, src1, HeapNumber::kNonMantissaBitsInTopWord);
966 __ or_(dst, dst, at);
967
968 // Create the mask and test the lower bits (of the higher bits).
969 __ li(at, 32);
970 __ subu(scratch, at, scratch);
971 __ li(src2, 1);
972 __ sllv(src1, src2, scratch);
973 __ Subu(src1, src1, Operand(1));
974 __ And(src1, dst, src1);
975 __ Branch(not_int32, ne, src1, Operand(zero_reg));
976 }
977
978
CallCCodeForDoubleOperation(MacroAssembler * masm,Token::Value op,Register heap_number_result,Register scratch)979 void FloatingPointHelper::CallCCodeForDoubleOperation(
980 MacroAssembler* masm,
981 Token::Value op,
982 Register heap_number_result,
983 Register scratch) {
984 // Using core registers:
985 // a0: Left value (least significant part of mantissa).
986 // a1: Left value (sign, exponent, top of mantissa).
987 // a2: Right value (least significant part of mantissa).
988 // a3: Right value (sign, exponent, top of mantissa).
989
990 // Assert that heap_number_result is saved.
991 // We currently always use s0 to pass it.
992 ASSERT(heap_number_result.is(s0));
993
994 // Push the current return address before the C call.
995 __ push(ra);
996 __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments.
997 if (!IsMipsSoftFloatABI) {
998 CpuFeatures::Scope scope(FPU);
999 // We are not using MIPS FPU instructions, and parameters for the runtime
1000 // function call are prepaired in a0-a3 registers, but function we are
1001 // calling is compiled with hard-float flag and expecting hard float ABI
1002 // (parameters in f12/f14 registers). We need to copy parameters from
1003 // a0-a3 registers to f12/f14 register pairs.
1004 __ Move(f12, a0, a1);
1005 __ Move(f14, a2, a3);
1006 }
1007 {
1008 AllowExternalCallThatCantCauseGC scope(masm);
1009 __ CallCFunction(
1010 ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
1011 }
1012 // Store answer in the overwritable heap number.
1013 if (!IsMipsSoftFloatABI) {
1014 CpuFeatures::Scope scope(FPU);
1015 // Double returned in register f0.
1016 __ sdc1(f0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
1017 } else {
1018 // Double returned in registers v0 and v1.
1019 __ sw(v1, FieldMemOperand(heap_number_result, HeapNumber::kExponentOffset));
1020 __ sw(v0, FieldMemOperand(heap_number_result, HeapNumber::kMantissaOffset));
1021 }
1022 // Place heap_number_result in v0 and return to the pushed return address.
1023 __ pop(ra);
1024 __ Ret(USE_DELAY_SLOT);
1025 __ mov(v0, heap_number_result);
1026 }
1027
1028
IsPregenerated()1029 bool WriteInt32ToHeapNumberStub::IsPregenerated() {
1030 // These variants are compiled ahead of time. See next method.
1031 if (the_int_.is(a1) &&
1032 the_heap_number_.is(v0) &&
1033 scratch_.is(a2) &&
1034 sign_.is(a3)) {
1035 return true;
1036 }
1037 if (the_int_.is(a2) &&
1038 the_heap_number_.is(v0) &&
1039 scratch_.is(a3) &&
1040 sign_.is(a0)) {
1041 return true;
1042 }
1043 // Other register combinations are generated as and when they are needed,
1044 // so it is unsafe to call them from stubs (we can't generate a stub while
1045 // we are generating a stub).
1046 return false;
1047 }
1048
1049
GenerateFixedRegStubsAheadOfTime()1050 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() {
1051 WriteInt32ToHeapNumberStub stub1(a1, v0, a2, a3);
1052 WriteInt32ToHeapNumberStub stub2(a2, v0, a3, a0);
1053 stub1.GetCode()->set_is_pregenerated(true);
1054 stub2.GetCode()->set_is_pregenerated(true);
1055 }
1056
1057
1058 // See comment for class, this does NOT work for int32's that are in Smi range.
Generate(MacroAssembler * masm)1059 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
1060 Label max_negative_int;
1061 // the_int_ has the answer which is a signed int32 but not a Smi.
1062 // We test for the special value that has a different exponent.
1063 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
1064 // Test sign, and save for later conditionals.
1065 __ And(sign_, the_int_, Operand(0x80000000u));
1066 __ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u));
1067
1068 // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
1069 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
1070 uint32_t non_smi_exponent =
1071 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
1072 __ li(scratch_, Operand(non_smi_exponent));
1073 // Set the sign bit in scratch_ if the value was negative.
1074 __ or_(scratch_, scratch_, sign_);
1075 // Subtract from 0 if the value was negative.
1076 __ subu(at, zero_reg, the_int_);
1077 __ Movn(the_int_, at, sign_);
1078 // We should be masking the implict first digit of the mantissa away here,
1079 // but it just ends up combining harmlessly with the last digit of the
1080 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
1081 // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
1082 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
1083 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
1084 __ srl(at, the_int_, shift_distance);
1085 __ or_(scratch_, scratch_, at);
1086 __ sw(scratch_, FieldMemOperand(the_heap_number_,
1087 HeapNumber::kExponentOffset));
1088 __ sll(scratch_, the_int_, 32 - shift_distance);
1089 __ sw(scratch_, FieldMemOperand(the_heap_number_,
1090 HeapNumber::kMantissaOffset));
1091 __ Ret();
1092
1093 __ bind(&max_negative_int);
1094 // The max negative int32 is stored as a positive number in the mantissa of
1095 // a double because it uses a sign bit instead of using two's complement.
1096 // The actual mantissa bits stored are all 0 because the implicit most
1097 // significant 1 bit is not stored.
1098 non_smi_exponent += 1 << HeapNumber::kExponentShift;
1099 __ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent));
1100 __ sw(scratch_,
1101 FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
1102 __ mov(scratch_, zero_reg);
1103 __ sw(scratch_,
1104 FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
1105 __ Ret();
1106 }
1107
1108
1109 // Handle the case where the lhs and rhs are the same object.
1110 // Equality is almost reflexive (everything but NaN), so this is a test
1111 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cc,bool never_nan_nan)1112 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
1113 Label* slow,
1114 Condition cc,
1115 bool never_nan_nan) {
1116 Label not_identical;
1117 Label heap_number, return_equal;
1118 Register exp_mask_reg = t5;
1119
1120 __ Branch(¬_identical, ne, a0, Operand(a1));
1121
1122 // The two objects are identical. If we know that one of them isn't NaN then
1123 // we now know they test equal.
1124 if (cc != eq || !never_nan_nan) {
1125 __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
1126
1127 // Test for NaN. Sadly, we can't just compare to factory->nan_value(),
1128 // so we do the second best thing - test it ourselves.
1129 // They are both equal and they are not both Smis so both of them are not
1130 // Smis. If it's not a heap number, then return equal.
1131 if (cc == less || cc == greater) {
1132 __ GetObjectType(a0, t4, t4);
1133 __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
1134 } else {
1135 __ GetObjectType(a0, t4, t4);
1136 __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE));
1137 // Comparing JS objects with <=, >= is complicated.
1138 if (cc != eq) {
1139 __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
1140 // Normally here we fall through to return_equal, but undefined is
1141 // special: (undefined == undefined) == true, but
1142 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
1143 if (cc == less_equal || cc == greater_equal) {
1144 __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE));
1145 __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
1146 __ Branch(&return_equal, ne, a0, Operand(t2));
1147 if (cc == le) {
1148 // undefined <= undefined should fail.
1149 __ li(v0, Operand(GREATER));
1150 } else {
1151 // undefined >= undefined should fail.
1152 __ li(v0, Operand(LESS));
1153 }
1154 __ Ret();
1155 }
1156 }
1157 }
1158 }
1159
1160 __ bind(&return_equal);
1161
1162 if (cc == less) {
1163 __ li(v0, Operand(GREATER)); // Things aren't less than themselves.
1164 } else if (cc == greater) {
1165 __ li(v0, Operand(LESS)); // Things aren't greater than themselves.
1166 } else {
1167 __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves.
1168 }
1169 __ Ret();
1170
1171 if (cc != eq || !never_nan_nan) {
1172 // For less and greater we don't have to check for NaN since the result of
1173 // x < x is false regardless. For the others here is some code to check
1174 // for NaN.
1175 if (cc != lt && cc != gt) {
1176 __ bind(&heap_number);
1177 // It is a heap number, so return non-equal if it's NaN and equal if it's
1178 // not NaN.
1179
1180 // The representation of NaN values has all exponent bits (52..62) set,
1181 // and not all mantissa bits (0..51) clear.
1182 // Read top bits of double representation (second word of value).
1183 __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
1184 // Test that exponent bits are all set.
1185 __ And(t3, t2, Operand(exp_mask_reg));
1186 // If all bits not set (ne cond), then not a NaN, objects are equal.
1187 __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg));
1188
1189 // Shift out flag and all exponent bits, retaining only mantissa.
1190 __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord);
1191 // Or with all low-bits of mantissa.
1192 __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
1193 __ Or(v0, t3, Operand(t2));
1194 // For equal we already have the right value in v0: Return zero (equal)
1195 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
1196 // not (it's a NaN). For <= and >= we need to load v0 with the failing
1197 // value if it's a NaN.
1198 if (cc != eq) {
1199 // All-zero means Infinity means equal.
1200 __ Ret(eq, v0, Operand(zero_reg));
1201 if (cc == le) {
1202 __ li(v0, Operand(GREATER)); // NaN <= NaN should fail.
1203 } else {
1204 __ li(v0, Operand(LESS)); // NaN >= NaN should fail.
1205 }
1206 }
1207 __ Ret();
1208 }
1209 // No fall through here.
1210 }
1211
1212 __ bind(¬_identical);
1213 }
1214
1215
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * slow,bool strict)1216 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
1217 Register lhs,
1218 Register rhs,
1219 Label* both_loaded_as_doubles,
1220 Label* slow,
1221 bool strict) {
1222 ASSERT((lhs.is(a0) && rhs.is(a1)) ||
1223 (lhs.is(a1) && rhs.is(a0)));
1224
1225 Label lhs_is_smi;
1226 __ JumpIfSmi(lhs, &lhs_is_smi);
1227 // Rhs is a Smi.
1228 // Check whether the non-smi is a heap number.
1229 __ GetObjectType(lhs, t4, t4);
1230 if (strict) {
1231 // If lhs was not a number and rhs was a Smi then strict equality cannot
1232 // succeed. Return non-equal (lhs is already not zero).
1233 __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
1234 __ mov(v0, lhs);
1235 } else {
1236 // Smi compared non-strictly with a non-Smi non-heap-number. Call
1237 // the runtime.
1238 __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
1239 }
1240
1241 // Rhs is a smi, lhs is a number.
1242 // Convert smi rhs to double.
1243 if (CpuFeatures::IsSupported(FPU)) {
1244 CpuFeatures::Scope scope(FPU);
1245 __ sra(at, rhs, kSmiTagSize);
1246 __ mtc1(at, f14);
1247 __ cvt_d_w(f14, f14);
1248 __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1249 } else {
1250 // Load lhs to a double in a2, a3.
1251 __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
1252 __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1253
1254 // Write Smi from rhs to a1 and a0 in double format. t5 is scratch.
1255 __ mov(t6, rhs);
1256 ConvertToDoubleStub stub1(a1, a0, t6, t5);
1257 __ push(ra);
1258 __ Call(stub1.GetCode());
1259
1260 __ pop(ra);
1261 }
1262
1263 // We now have both loaded as doubles.
1264 __ jmp(both_loaded_as_doubles);
1265
1266 __ bind(&lhs_is_smi);
1267 // Lhs is a Smi. Check whether the non-smi is a heap number.
1268 __ GetObjectType(rhs, t4, t4);
1269 if (strict) {
1270 // If lhs was not a number and rhs was a Smi then strict equality cannot
1271 // succeed. Return non-equal.
1272 __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
1273 __ li(v0, Operand(1));
1274 } else {
1275 // Smi compared non-strictly with a non-Smi non-heap-number. Call
1276 // the runtime.
1277 __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
1278 }
1279
1280 // Lhs is a smi, rhs is a number.
1281 // Convert smi lhs to double.
1282 if (CpuFeatures::IsSupported(FPU)) {
1283 CpuFeatures::Scope scope(FPU);
1284 __ sra(at, lhs, kSmiTagSize);
1285 __ mtc1(at, f12);
1286 __ cvt_d_w(f12, f12);
1287 __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1288 } else {
1289 // Convert lhs to a double format. t5 is scratch.
1290 __ mov(t6, lhs);
1291 ConvertToDoubleStub stub2(a3, a2, t6, t5);
1292 __ push(ra);
1293 __ Call(stub2.GetCode());
1294 __ pop(ra);
1295 // Load rhs to a double in a1, a0.
1296 if (rhs.is(a0)) {
1297 __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
1298 __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1299 } else {
1300 __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1301 __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
1302 }
1303 }
1304 // Fall through to both_loaded_as_doubles.
1305 }
1306
1307
EmitNanCheck(MacroAssembler * masm,Condition cc)1308 void EmitNanCheck(MacroAssembler* masm, Condition cc) {
1309 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1310 if (CpuFeatures::IsSupported(FPU)) {
1311 CpuFeatures::Scope scope(FPU);
1312 // Lhs and rhs are already loaded to f12 and f14 register pairs.
1313 __ Move(t0, t1, f14);
1314 __ Move(t2, t3, f12);
1315 } else {
1316 // Lhs and rhs are already loaded to GP registers.
1317 __ mov(t0, a0); // a0 has LS 32 bits of rhs.
1318 __ mov(t1, a1); // a1 has MS 32 bits of rhs.
1319 __ mov(t2, a2); // a2 has LS 32 bits of lhs.
1320 __ mov(t3, a3); // a3 has MS 32 bits of lhs.
1321 }
1322 Register rhs_exponent = exp_first ? t0 : t1;
1323 Register lhs_exponent = exp_first ? t2 : t3;
1324 Register rhs_mantissa = exp_first ? t1 : t0;
1325 Register lhs_mantissa = exp_first ? t3 : t2;
1326 Label one_is_nan, neither_is_nan;
1327 Label lhs_not_nan_exp_mask_is_loaded;
1328
1329 Register exp_mask_reg = t4;
1330 __ li(exp_mask_reg, HeapNumber::kExponentMask);
1331 __ and_(t5, lhs_exponent, exp_mask_reg);
1332 __ Branch(&lhs_not_nan_exp_mask_is_loaded, ne, t5, Operand(exp_mask_reg));
1333
1334 __ sll(t5, lhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
1335 __ Branch(&one_is_nan, ne, t5, Operand(zero_reg));
1336
1337 __ Branch(&one_is_nan, ne, lhs_mantissa, Operand(zero_reg));
1338
1339 __ li(exp_mask_reg, HeapNumber::kExponentMask);
1340 __ bind(&lhs_not_nan_exp_mask_is_loaded);
1341 __ and_(t5, rhs_exponent, exp_mask_reg);
1342
1343 __ Branch(&neither_is_nan, ne, t5, Operand(exp_mask_reg));
1344
1345 __ sll(t5, rhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
1346 __ Branch(&one_is_nan, ne, t5, Operand(zero_reg));
1347
1348 __ Branch(&neither_is_nan, eq, rhs_mantissa, Operand(zero_reg));
1349
1350 __ bind(&one_is_nan);
1351 // NaN comparisons always fail.
1352 // Load whatever we need in v0 to make the comparison fail.
1353
1354 if (cc == lt || cc == le) {
1355 __ li(v0, Operand(GREATER));
1356 } else {
1357 __ li(v0, Operand(LESS));
1358 }
1359 __ Ret();
1360
1361 __ bind(&neither_is_nan);
1362 }
1363
1364
EmitTwoNonNanDoubleComparison(MacroAssembler * masm,Condition cc)1365 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
1366 // f12 and f14 have the two doubles. Neither is a NaN.
1367 // Call a native function to do a comparison between two non-NaNs.
1368 // Call C routine that may not cause GC or other trouble.
1369 // We use a call_was and return manually because we need arguments slots to
1370 // be freed.
1371
1372 Label return_result_not_equal, return_result_equal;
1373 if (cc == eq) {
1374 // Doubles are not equal unless they have the same bit pattern.
1375 // Exception: 0 and -0.
1376 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1377 if (CpuFeatures::IsSupported(FPU)) {
1378 CpuFeatures::Scope scope(FPU);
1379 // Lhs and rhs are already loaded to f12 and f14 register pairs.
1380 __ Move(t0, t1, f14);
1381 __ Move(t2, t3, f12);
1382 } else {
1383 // Lhs and rhs are already loaded to GP registers.
1384 __ mov(t0, a0); // a0 has LS 32 bits of rhs.
1385 __ mov(t1, a1); // a1 has MS 32 bits of rhs.
1386 __ mov(t2, a2); // a2 has LS 32 bits of lhs.
1387 __ mov(t3, a3); // a3 has MS 32 bits of lhs.
1388 }
1389 Register rhs_exponent = exp_first ? t0 : t1;
1390 Register lhs_exponent = exp_first ? t2 : t3;
1391 Register rhs_mantissa = exp_first ? t1 : t0;
1392 Register lhs_mantissa = exp_first ? t3 : t2;
1393
1394 __ xor_(v0, rhs_mantissa, lhs_mantissa);
1395 __ Branch(&return_result_not_equal, ne, v0, Operand(zero_reg));
1396
1397 __ subu(v0, rhs_exponent, lhs_exponent);
1398 __ Branch(&return_result_equal, eq, v0, Operand(zero_reg));
1399 // 0, -0 case.
1400 __ sll(rhs_exponent, rhs_exponent, kSmiTagSize);
1401 __ sll(lhs_exponent, lhs_exponent, kSmiTagSize);
1402 __ or_(t4, rhs_exponent, lhs_exponent);
1403 __ or_(t4, t4, rhs_mantissa);
1404
1405 __ Branch(&return_result_not_equal, ne, t4, Operand(zero_reg));
1406
1407 __ bind(&return_result_equal);
1408
1409 __ li(v0, Operand(EQUAL));
1410 __ Ret();
1411 }
1412
1413 __ bind(&return_result_not_equal);
1414
1415 if (!CpuFeatures::IsSupported(FPU)) {
1416 __ push(ra);
1417 __ PrepareCallCFunction(0, 2, t4);
1418 if (!IsMipsSoftFloatABI) {
1419 // We are not using MIPS FPU instructions, and parameters for the runtime
1420 // function call are prepaired in a0-a3 registers, but function we are
1421 // calling is compiled with hard-float flag and expecting hard float ABI
1422 // (parameters in f12/f14 registers). We need to copy parameters from
1423 // a0-a3 registers to f12/f14 register pairs.
1424 __ Move(f12, a0, a1);
1425 __ Move(f14, a2, a3);
1426 }
1427
1428 AllowExternalCallThatCantCauseGC scope(masm);
1429 __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
1430 0, 2);
1431 __ pop(ra); // Because this function returns int, result is in v0.
1432 __ Ret();
1433 } else {
1434 CpuFeatures::Scope scope(FPU);
1435 Label equal, less_than;
1436 __ BranchF(&equal, NULL, eq, f12, f14);
1437 __ BranchF(&less_than, NULL, lt, f12, f14);
1438
1439 // Not equal, not less, not NaN, must be greater.
1440
1441 __ li(v0, Operand(GREATER));
1442 __ Ret();
1443
1444 __ bind(&equal);
1445 __ li(v0, Operand(EQUAL));
1446 __ Ret();
1447
1448 __ bind(&less_than);
1449 __ li(v0, Operand(LESS));
1450 __ Ret();
1451 }
1452 }
1453
1454
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)1455 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
1456 Register lhs,
1457 Register rhs) {
1458 // If either operand is a JS object or an oddball value, then they are
1459 // not equal since their pointers are different.
1460 // There is no test for undetectability in strict equality.
1461 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1462 Label first_non_object;
1463 // Get the type of the first operand into a2 and compare it with
1464 // FIRST_SPEC_OBJECT_TYPE.
1465 __ GetObjectType(lhs, a2, a2);
1466 __ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
1467
1468 // Return non-zero.
1469 Label return_not_equal;
1470 __ bind(&return_not_equal);
1471 __ Ret(USE_DELAY_SLOT);
1472 __ li(v0, Operand(1));
1473
1474 __ bind(&first_non_object);
1475 // Check for oddballs: true, false, null, undefined.
1476 __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
1477
1478 __ GetObjectType(rhs, a3, a3);
1479 __ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
1480
1481 // Check for oddballs: true, false, null, undefined.
1482 __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
1483
1484 // Now that we have the types we might as well check for symbol-symbol.
1485 // Ensure that no non-strings have the symbol bit set.
1486 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
1487 STATIC_ASSERT(kSymbolTag != 0);
1488 __ And(t2, a2, Operand(a3));
1489 __ And(t0, t2, Operand(kIsSymbolMask));
1490 __ Branch(&return_not_equal, ne, t0, Operand(zero_reg));
1491 }
1492
1493
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)1494 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
1495 Register lhs,
1496 Register rhs,
1497 Label* both_loaded_as_doubles,
1498 Label* not_heap_numbers,
1499 Label* slow) {
1500 __ GetObjectType(lhs, a3, a2);
1501 __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
1502 __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
1503 // If first was a heap number & second wasn't, go to slow case.
1504 __ Branch(slow, ne, a3, Operand(a2));
1505
1506 // Both are heap numbers. Load them up then jump to the code we have
1507 // for that.
1508 if (CpuFeatures::IsSupported(FPU)) {
1509 CpuFeatures::Scope scope(FPU);
1510 __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1511 __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1512 } else {
1513 __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1514 __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
1515 if (rhs.is(a0)) {
1516 __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
1517 __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1518 } else {
1519 __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1520 __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
1521 }
1522 }
1523 __ jmp(both_loaded_as_doubles);
1524 }
1525
1526
1527 // Fast negative check for symbol-to-symbol equality.
EmitCheckForSymbolsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * not_both_strings)1528 static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
1529 Register lhs,
1530 Register rhs,
1531 Label* possible_strings,
1532 Label* not_both_strings) {
1533 ASSERT((lhs.is(a0) && rhs.is(a1)) ||
1534 (lhs.is(a1) && rhs.is(a0)));
1535
1536 // a2 is object type of lhs.
1537 // Ensure that no non-strings have the symbol bit set.
1538 Label object_test;
1539 STATIC_ASSERT(kSymbolTag != 0);
1540 __ And(at, a2, Operand(kIsNotStringMask));
1541 __ Branch(&object_test, ne, at, Operand(zero_reg));
1542 __ And(at, a2, Operand(kIsSymbolMask));
1543 __ Branch(possible_strings, eq, at, Operand(zero_reg));
1544 __ GetObjectType(rhs, a3, a3);
1545 __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
1546 __ And(at, a3, Operand(kIsSymbolMask));
1547 __ Branch(possible_strings, eq, at, Operand(zero_reg));
1548
1549 // Both are symbols. We already checked they weren't the same pointer
1550 // so they are not equal.
1551 __ Ret(USE_DELAY_SLOT);
1552 __ li(v0, Operand(1)); // Non-zero indicates not equal.
1553
1554 __ bind(&object_test);
1555 __ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
1556 __ GetObjectType(rhs, a2, a3);
1557 __ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
1558
1559 // If both objects are undetectable, they are equal. Otherwise, they
1560 // are not equal, since they are different objects and an object is not
1561 // equal to undefined.
1562 __ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
1563 __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
1564 __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
1565 __ and_(a0, a2, a3);
1566 __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
1567 __ Ret(USE_DELAY_SLOT);
1568 __ xori(v0, a0, 1 << Map::kIsUndetectable);
1569 }
1570
1571
GenerateLookupNumberStringCache(MacroAssembler * masm,Register object,Register result,Register scratch1,Register scratch2,Register scratch3,bool object_is_smi,Label * not_found)1572 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
1573 Register object,
1574 Register result,
1575 Register scratch1,
1576 Register scratch2,
1577 Register scratch3,
1578 bool object_is_smi,
1579 Label* not_found) {
1580 // Use of registers. Register result is used as a temporary.
1581 Register number_string_cache = result;
1582 Register mask = scratch3;
1583
1584 // Load the number string cache.
1585 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
1586
1587 // Make the hash mask from the length of the number string cache. It
1588 // contains two elements (number and string) for each cache entry.
1589 __ lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
1590 // Divide length by two (length is a smi).
1591 __ sra(mask, mask, kSmiTagSize + 1);
1592 __ Addu(mask, mask, -1); // Make mask.
1593
1594 // Calculate the entry in the number string cache. The hash value in the
1595 // number string cache for smis is just the smi value, and the hash for
1596 // doubles is the xor of the upper and lower words. See
1597 // Heap::GetNumberStringCache.
1598 Isolate* isolate = masm->isolate();
1599 Label is_smi;
1600 Label load_result_from_cache;
1601 if (!object_is_smi) {
1602 __ JumpIfSmi(object, &is_smi);
1603 if (CpuFeatures::IsSupported(FPU)) {
1604 CpuFeatures::Scope scope(FPU);
1605 __ CheckMap(object,
1606 scratch1,
1607 Heap::kHeapNumberMapRootIndex,
1608 not_found,
1609 DONT_DO_SMI_CHECK);
1610
1611 STATIC_ASSERT(8 == kDoubleSize);
1612 __ Addu(scratch1,
1613 object,
1614 Operand(HeapNumber::kValueOffset - kHeapObjectTag));
1615 __ lw(scratch2, MemOperand(scratch1, kPointerSize));
1616 __ lw(scratch1, MemOperand(scratch1, 0));
1617 __ Xor(scratch1, scratch1, Operand(scratch2));
1618 __ And(scratch1, scratch1, Operand(mask));
1619
1620 // Calculate address of entry in string cache: each entry consists
1621 // of two pointer sized fields.
1622 __ sll(scratch1, scratch1, kPointerSizeLog2 + 1);
1623 __ Addu(scratch1, number_string_cache, scratch1);
1624
1625 Register probe = mask;
1626 __ lw(probe,
1627 FieldMemOperand(scratch1, FixedArray::kHeaderSize));
1628 __ JumpIfSmi(probe, not_found);
1629 __ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
1630 __ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
1631 __ BranchF(&load_result_from_cache, NULL, eq, f12, f14);
1632 __ Branch(not_found);
1633 } else {
1634 // Note that there is no cache check for non-FPU case, even though
1635 // it seems there could be. May be a tiny opimization for non-FPU
1636 // cores.
1637 __ Branch(not_found);
1638 }
1639 }
1640
1641 __ bind(&is_smi);
1642 Register scratch = scratch1;
1643 __ sra(scratch, object, 1); // Shift away the tag.
1644 __ And(scratch, mask, Operand(scratch));
1645
1646 // Calculate address of entry in string cache: each entry consists
1647 // of two pointer sized fields.
1648 __ sll(scratch, scratch, kPointerSizeLog2 + 1);
1649 __ Addu(scratch, number_string_cache, scratch);
1650
1651 // Check if the entry is the smi we are looking for.
1652 Register probe = mask;
1653 __ lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
1654 __ Branch(not_found, ne, object, Operand(probe));
1655
1656 // Get the result from the cache.
1657 __ bind(&load_result_from_cache);
1658 __ lw(result,
1659 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
1660
1661 __ IncrementCounter(isolate->counters()->number_to_string_native(),
1662 1,
1663 scratch1,
1664 scratch2);
1665 }
1666
1667
Generate(MacroAssembler * masm)1668 void NumberToStringStub::Generate(MacroAssembler* masm) {
1669 Label runtime;
1670
1671 __ lw(a1, MemOperand(sp, 0));
1672
1673 // Generate code to lookup number in the number string cache.
1674 GenerateLookupNumberStringCache(masm, a1, v0, a2, a3, t0, false, &runtime);
1675 __ DropAndRet(1);
1676
1677 __ bind(&runtime);
1678 // Handle number to string in the runtime system if not found in the cache.
1679 __ TailCallRuntime(Runtime::kNumberToString, 1, 1);
1680 }
1681
1682
1683 // On entry lhs_ (lhs) and rhs_ (rhs) are the things to be compared.
1684 // On exit, v0 is 0, positive, or negative (smi) to indicate the result
1685 // of the comparison.
Generate(MacroAssembler * masm)1686 void CompareStub::Generate(MacroAssembler* masm) {
1687 Label slow; // Call builtin.
1688 Label not_smis, both_loaded_as_doubles;
1689
1690
1691 if (include_smi_compare_) {
1692 Label not_two_smis, smi_done;
1693 __ Or(a2, a1, a0);
1694 __ JumpIfNotSmi(a2, ¬_two_smis);
1695 __ sra(a1, a1, 1);
1696 __ sra(a0, a0, 1);
1697 __ Ret(USE_DELAY_SLOT);
1698 __ subu(v0, a1, a0);
1699 __ bind(¬_two_smis);
1700 } else if (FLAG_debug_code) {
1701 __ Or(a2, a1, a0);
1702 __ And(a2, a2, kSmiTagMask);
1703 __ Assert(ne, "CompareStub: unexpected smi operands.",
1704 a2, Operand(zero_reg));
1705 }
1706
1707
1708 // NOTICE! This code is only reached after a smi-fast-case check, so
1709 // it is certain that at least one operand isn't a smi.
1710
1711 // Handle the case where the objects are identical. Either returns the answer
1712 // or goes to slow. Only falls through if the objects were not identical.
1713 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
1714
1715 // If either is a Smi (we know that not both are), then they can only
1716 // be strictly equal if the other is a HeapNumber.
1717 STATIC_ASSERT(kSmiTag == 0);
1718 ASSERT_EQ(0, Smi::FromInt(0));
1719 __ And(t2, lhs_, Operand(rhs_));
1720 __ JumpIfNotSmi(t2, ¬_smis, t0);
1721 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
1722 // 1) Return the answer.
1723 // 2) Go to slow.
1724 // 3) Fall through to both_loaded_as_doubles.
1725 // 4) Jump to rhs_not_nan.
1726 // In cases 3 and 4 we have found out we were dealing with a number-number
1727 // comparison and the numbers have been loaded into f12 and f14 as doubles,
1728 // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
1729 EmitSmiNonsmiComparison(masm, lhs_, rhs_,
1730 &both_loaded_as_doubles, &slow, strict_);
1731
1732 __ bind(&both_loaded_as_doubles);
1733 // f12, f14 are the double representations of the left hand side
1734 // and the right hand side if we have FPU. Otherwise a2, a3 represent
1735 // left hand side and a0, a1 represent right hand side.
1736
1737 Isolate* isolate = masm->isolate();
1738 if (CpuFeatures::IsSupported(FPU)) {
1739 CpuFeatures::Scope scope(FPU);
1740 Label nan;
1741 __ li(t0, Operand(LESS));
1742 __ li(t1, Operand(GREATER));
1743 __ li(t2, Operand(EQUAL));
1744
1745 // Check if either rhs or lhs is NaN.
1746 __ BranchF(NULL, &nan, eq, f12, f14);
1747
1748 // Check if LESS condition is satisfied. If true, move conditionally
1749 // result to v0.
1750 __ c(OLT, D, f12, f14);
1751 __ Movt(v0, t0);
1752 // Use previous check to store conditionally to v0 oposite condition
1753 // (GREATER). If rhs is equal to lhs, this will be corrected in next
1754 // check.
1755 __ Movf(v0, t1);
1756 // Check if EQUAL condition is satisfied. If true, move conditionally
1757 // result to v0.
1758 __ c(EQ, D, f12, f14);
1759 __ Movt(v0, t2);
1760
1761 __ Ret();
1762
1763 __ bind(&nan);
1764 // NaN comparisons always fail.
1765 // Load whatever we need in v0 to make the comparison fail.
1766 if (cc_ == lt || cc_ == le) {
1767 __ li(v0, Operand(GREATER));
1768 } else {
1769 __ li(v0, Operand(LESS));
1770 }
1771 __ Ret();
1772 } else {
1773 // Checks for NaN in the doubles we have loaded. Can return the answer or
1774 // fall through if neither is a NaN. Also binds rhs_not_nan.
1775 EmitNanCheck(masm, cc_);
1776
1777 // Compares two doubles that are not NaNs. Returns the answer.
1778 // Never falls through.
1779 EmitTwoNonNanDoubleComparison(masm, cc_);
1780 }
1781
1782 __ bind(¬_smis);
1783 // At this point we know we are dealing with two different objects,
1784 // and neither of them is a Smi. The objects are in lhs_ and rhs_.
1785 if (strict_) {
1786 // This returns non-equal for some object types, or falls through if it
1787 // was not lucky.
1788 EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
1789 }
1790
1791 Label check_for_symbols;
1792 Label flat_string_check;
1793 // Check for heap-number-heap-number comparison. Can jump to slow case,
1794 // or load both doubles and jump to the code that handles
1795 // that case. If the inputs are not doubles then jumps to check_for_symbols.
1796 // In this case a2 will contain the type of lhs_.
1797 EmitCheckForTwoHeapNumbers(masm,
1798 lhs_,
1799 rhs_,
1800 &both_loaded_as_doubles,
1801 &check_for_symbols,
1802 &flat_string_check);
1803
1804 __ bind(&check_for_symbols);
1805 if (cc_ == eq && !strict_) {
1806 // Returns an answer for two symbols or two detectable objects.
1807 // Otherwise jumps to string case or not both strings case.
1808 // Assumes that a2 is the type of lhs_ on entry.
1809 EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
1810 }
1811
1812 // Check for both being sequential ASCII strings, and inline if that is the
1813 // case.
1814 __ bind(&flat_string_check);
1815
1816 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, a2, a3, &slow);
1817
1818 __ IncrementCounter(isolate->counters()->string_compare_native(), 1, a2, a3);
1819 if (cc_ == eq) {
1820 StringCompareStub::GenerateFlatAsciiStringEquals(masm,
1821 lhs_,
1822 rhs_,
1823 a2,
1824 a3,
1825 t0);
1826 } else {
1827 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1828 lhs_,
1829 rhs_,
1830 a2,
1831 a3,
1832 t0,
1833 t1);
1834 }
1835 // Never falls through to here.
1836
1837 __ bind(&slow);
1838 // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
1839 // a1 (rhs) second.
1840 __ Push(lhs_, rhs_);
1841 // Figure out which native to call and setup the arguments.
1842 Builtins::JavaScript native;
1843 if (cc_ == eq) {
1844 native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1845 } else {
1846 native = Builtins::COMPARE;
1847 int ncr; // NaN compare result.
1848 if (cc_ == lt || cc_ == le) {
1849 ncr = GREATER;
1850 } else {
1851 ASSERT(cc_ == gt || cc_ == ge); // Remaining cases.
1852 ncr = LESS;
1853 }
1854 __ li(a0, Operand(Smi::FromInt(ncr)));
1855 __ push(a0);
1856 }
1857
1858 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1859 // tagged as a small integer.
1860 __ InvokeBuiltin(native, JUMP_FUNCTION);
1861 }
1862
1863
1864 // The stub expects its argument in the tos_ register and returns its result in
1865 // it, too: zero for false, and a non-zero value for true.
Generate(MacroAssembler * masm)1866 void ToBooleanStub::Generate(MacroAssembler* masm) {
1867 // This stub uses FPU instructions.
1868 CpuFeatures::Scope scope(FPU);
1869
1870 Label patch;
1871 const Register map = t5.is(tos_) ? t3 : t5;
1872
1873 // undefined -> false.
1874 CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
1875
1876 // Boolean -> its value.
1877 CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
1878 CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
1879
1880 // 'null' -> false.
1881 CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
1882
1883 if (types_.Contains(SMI)) {
1884 // Smis: 0 -> false, all other -> true
1885 __ And(at, tos_, kSmiTagMask);
1886 // tos_ contains the correct return value already
1887 __ Ret(eq, at, Operand(zero_reg));
1888 } else if (types_.NeedsMap()) {
1889 // If we need a map later and have a Smi -> patch.
1890 __ JumpIfSmi(tos_, &patch);
1891 }
1892
1893 if (types_.NeedsMap()) {
1894 __ lw(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
1895
1896 if (types_.CanBeUndetectable()) {
1897 __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
1898 __ And(at, at, Operand(1 << Map::kIsUndetectable));
1899 // Undetectable -> false.
1900 __ Movn(tos_, zero_reg, at);
1901 __ Ret(ne, at, Operand(zero_reg));
1902 }
1903 }
1904
1905 if (types_.Contains(SPEC_OBJECT)) {
1906 // Spec object -> true.
1907 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
1908 // tos_ contains the correct non-zero return value already.
1909 __ Ret(ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
1910 }
1911
1912 if (types_.Contains(STRING)) {
1913 // String value -> false iff empty.
1914 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
1915 Label skip;
1916 __ Branch(&skip, ge, at, Operand(FIRST_NONSTRING_TYPE));
1917 __ Ret(USE_DELAY_SLOT); // the string length is OK as the return value
1918 __ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset));
1919 __ bind(&skip);
1920 }
1921
1922 if (types_.Contains(HEAP_NUMBER)) {
1923 // Heap number -> false iff +0, -0, or NaN.
1924 Label not_heap_number;
1925 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
1926 __ Branch(¬_heap_number, ne, map, Operand(at));
1927 Label zero_or_nan, number;
1928 __ ldc1(f2, FieldMemOperand(tos_, HeapNumber::kValueOffset));
1929 __ BranchF(&number, &zero_or_nan, ne, f2, kDoubleRegZero);
1930 // "tos_" is a register, and contains a non zero value by default.
1931 // Hence we only need to overwrite "tos_" with zero to return false for
1932 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
1933 __ bind(&zero_or_nan);
1934 __ mov(tos_, zero_reg);
1935 __ bind(&number);
1936 __ Ret();
1937 __ bind(¬_heap_number);
1938 }
1939
1940 __ bind(&patch);
1941 GenerateTypeTransition(masm);
1942 }
1943
1944
CheckOddball(MacroAssembler * masm,Type type,Heap::RootListIndex value,bool result)1945 void ToBooleanStub::CheckOddball(MacroAssembler* masm,
1946 Type type,
1947 Heap::RootListIndex value,
1948 bool result) {
1949 if (types_.Contains(type)) {
1950 // If we see an expected oddball, return its ToBoolean value tos_.
1951 __ LoadRoot(at, value);
1952 __ Subu(at, at, tos_); // This is a check for equality for the movz below.
1953 // The value of a root is never NULL, so we can avoid loading a non-null
1954 // value into tos_ when we want to return 'true'.
1955 if (!result) {
1956 __ Movz(tos_, zero_reg, at);
1957 }
1958 __ Ret(eq, at, Operand(zero_reg));
1959 }
1960 }
1961
1962
GenerateTypeTransition(MacroAssembler * masm)1963 void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
1964 __ Move(a3, tos_);
1965 __ li(a2, Operand(Smi::FromInt(tos_.code())));
1966 __ li(a1, Operand(Smi::FromInt(types_.ToByte())));
1967 __ Push(a3, a2, a1);
1968 // Patch the caller to an appropriate specialized stub and return the
1969 // operation result to the caller of the stub.
1970 __ TailCallExternalReference(
1971 ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
1972 3,
1973 1);
1974 }
1975
1976
Generate(MacroAssembler * masm)1977 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
1978 // We don't allow a GC during a store buffer overflow so there is no need to
1979 // store the registers in any particular way, but we do have to store and
1980 // restore them.
1981 __ MultiPush(kJSCallerSaved | ra.bit());
1982 if (save_doubles_ == kSaveFPRegs) {
1983 CpuFeatures::Scope scope(FPU);
1984 __ MultiPushFPU(kCallerSavedFPU);
1985 }
1986 const int argument_count = 1;
1987 const int fp_argument_count = 0;
1988 const Register scratch = a1;
1989
1990 AllowExternalCallThatCantCauseGC scope(masm);
1991 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
1992 __ li(a0, Operand(ExternalReference::isolate_address()));
1993 __ CallCFunction(
1994 ExternalReference::store_buffer_overflow_function(masm->isolate()),
1995 argument_count);
1996 if (save_doubles_ == kSaveFPRegs) {
1997 CpuFeatures::Scope scope(FPU);
1998 __ MultiPopFPU(kCallerSavedFPU);
1999 }
2000
2001 __ MultiPop(kJSCallerSaved | ra.bit());
2002 __ Ret();
2003 }
2004
2005
PrintName(StringStream * stream)2006 void UnaryOpStub::PrintName(StringStream* stream) {
2007 const char* op_name = Token::Name(op_);
2008 const char* overwrite_name = NULL; // Make g++ happy.
2009 switch (mode_) {
2010 case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
2011 case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
2012 }
2013 stream->Add("UnaryOpStub_%s_%s_%s",
2014 op_name,
2015 overwrite_name,
2016 UnaryOpIC::GetName(operand_type_));
2017 }
2018
2019
2020 // TODO(svenpanne): Use virtual functions instead of switch.
Generate(MacroAssembler * masm)2021 void UnaryOpStub::Generate(MacroAssembler* masm) {
2022 switch (operand_type_) {
2023 case UnaryOpIC::UNINITIALIZED:
2024 GenerateTypeTransition(masm);
2025 break;
2026 case UnaryOpIC::SMI:
2027 GenerateSmiStub(masm);
2028 break;
2029 case UnaryOpIC::HEAP_NUMBER:
2030 GenerateHeapNumberStub(masm);
2031 break;
2032 case UnaryOpIC::GENERIC:
2033 GenerateGenericStub(masm);
2034 break;
2035 }
2036 }
2037
2038
GenerateTypeTransition(MacroAssembler * masm)2039 void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
2040 // Argument is in a0 and v0 at this point, so we can overwrite a0.
2041 __ li(a2, Operand(Smi::FromInt(op_)));
2042 __ li(a1, Operand(Smi::FromInt(mode_)));
2043 __ li(a0, Operand(Smi::FromInt(operand_type_)));
2044 __ Push(v0, a2, a1, a0);
2045
2046 __ TailCallExternalReference(
2047 ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
2048 }
2049
2050
2051 // TODO(svenpanne): Use virtual functions instead of switch.
GenerateSmiStub(MacroAssembler * masm)2052 void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
2053 switch (op_) {
2054 case Token::SUB:
2055 GenerateSmiStubSub(masm);
2056 break;
2057 case Token::BIT_NOT:
2058 GenerateSmiStubBitNot(masm);
2059 break;
2060 default:
2061 UNREACHABLE();
2062 }
2063 }
2064
2065
GenerateSmiStubSub(MacroAssembler * masm)2066 void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
2067 Label non_smi, slow;
2068 GenerateSmiCodeSub(masm, &non_smi, &slow);
2069 __ bind(&non_smi);
2070 __ bind(&slow);
2071 GenerateTypeTransition(masm);
2072 }
2073
2074
GenerateSmiStubBitNot(MacroAssembler * masm)2075 void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
2076 Label non_smi;
2077 GenerateSmiCodeBitNot(masm, &non_smi);
2078 __ bind(&non_smi);
2079 GenerateTypeTransition(masm);
2080 }
2081
2082
GenerateSmiCodeSub(MacroAssembler * masm,Label * non_smi,Label * slow)2083 void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
2084 Label* non_smi,
2085 Label* slow) {
2086 __ JumpIfNotSmi(a0, non_smi);
2087
2088 // The result of negating zero or the smallest negative smi is not a smi.
2089 __ And(t0, a0, ~0x80000000);
2090 __ Branch(slow, eq, t0, Operand(zero_reg));
2091
2092 // Return '0 - value'.
2093 __ Ret(USE_DELAY_SLOT);
2094 __ subu(v0, zero_reg, a0);
2095 }
2096
2097
GenerateSmiCodeBitNot(MacroAssembler * masm,Label * non_smi)2098 void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
2099 Label* non_smi) {
2100 __ JumpIfNotSmi(a0, non_smi);
2101
2102 // Flip bits and revert inverted smi-tag.
2103 __ Neg(v0, a0);
2104 __ And(v0, v0, ~kSmiTagMask);
2105 __ Ret();
2106 }
2107
2108
2109 // TODO(svenpanne): Use virtual functions instead of switch.
GenerateHeapNumberStub(MacroAssembler * masm)2110 void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
2111 switch (op_) {
2112 case Token::SUB:
2113 GenerateHeapNumberStubSub(masm);
2114 break;
2115 case Token::BIT_NOT:
2116 GenerateHeapNumberStubBitNot(masm);
2117 break;
2118 default:
2119 UNREACHABLE();
2120 }
2121 }
2122
2123
GenerateHeapNumberStubSub(MacroAssembler * masm)2124 void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
2125 Label non_smi, slow, call_builtin;
2126 GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
2127 __ bind(&non_smi);
2128 GenerateHeapNumberCodeSub(masm, &slow);
2129 __ bind(&slow);
2130 GenerateTypeTransition(masm);
2131 __ bind(&call_builtin);
2132 GenerateGenericCodeFallback(masm);
2133 }
2134
2135
GenerateHeapNumberStubBitNot(MacroAssembler * masm)2136 void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
2137 Label non_smi, slow;
2138 GenerateSmiCodeBitNot(masm, &non_smi);
2139 __ bind(&non_smi);
2140 GenerateHeapNumberCodeBitNot(masm, &slow);
2141 __ bind(&slow);
2142 GenerateTypeTransition(masm);
2143 }
2144
2145
GenerateHeapNumberCodeSub(MacroAssembler * masm,Label * slow)2146 void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
2147 Label* slow) {
2148 EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
2149 // a0 is a heap number. Get a new heap number in a1.
2150 if (mode_ == UNARY_OVERWRITE) {
2151 __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
2152 __ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign.
2153 __ sw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
2154 } else {
2155 Label slow_allocate_heapnumber, heapnumber_allocated;
2156 __ AllocateHeapNumber(a1, a2, a3, t2, &slow_allocate_heapnumber);
2157 __ jmp(&heapnumber_allocated);
2158
2159 __ bind(&slow_allocate_heapnumber);
2160 {
2161 FrameScope scope(masm, StackFrame::INTERNAL);
2162 __ push(a0);
2163 __ CallRuntime(Runtime::kNumberAlloc, 0);
2164 __ mov(a1, v0);
2165 __ pop(a0);
2166 }
2167
2168 __ bind(&heapnumber_allocated);
2169 __ lw(a3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
2170 __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
2171 __ sw(a3, FieldMemOperand(a1, HeapNumber::kMantissaOffset));
2172 __ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign.
2173 __ sw(a2, FieldMemOperand(a1, HeapNumber::kExponentOffset));
2174 __ mov(v0, a1);
2175 }
2176 __ Ret();
2177 }
2178
2179
GenerateHeapNumberCodeBitNot(MacroAssembler * masm,Label * slow)2180 void UnaryOpStub::GenerateHeapNumberCodeBitNot(
2181 MacroAssembler* masm,
2182 Label* slow) {
2183 Label impossible;
2184
2185 EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
2186 // Convert the heap number in a0 to an untagged integer in a1.
2187 __ ConvertToInt32(a0, a1, a2, a3, f0, slow);
2188
2189 // Do the bitwise operation and check if the result fits in a smi.
2190 Label try_float;
2191 __ Neg(a1, a1);
2192 __ Addu(a2, a1, Operand(0x40000000));
2193 __ Branch(&try_float, lt, a2, Operand(zero_reg));
2194
2195 // Tag the result as a smi and we're done.
2196 __ SmiTag(v0, a1);
2197 __ Ret();
2198
2199 // Try to store the result in a heap number.
2200 __ bind(&try_float);
2201 if (mode_ == UNARY_NO_OVERWRITE) {
2202 Label slow_allocate_heapnumber, heapnumber_allocated;
2203 // Allocate a new heap number without zapping v0, which we need if it fails.
2204 __ AllocateHeapNumber(a2, a3, t0, t2, &slow_allocate_heapnumber);
2205 __ jmp(&heapnumber_allocated);
2206
2207 __ bind(&slow_allocate_heapnumber);
2208 {
2209 FrameScope scope(masm, StackFrame::INTERNAL);
2210 __ push(v0); // Push the heap number, not the untagged int32.
2211 __ CallRuntime(Runtime::kNumberAlloc, 0);
2212 __ mov(a2, v0); // Move the new heap number into a2.
2213 // Get the heap number into v0, now that the new heap number is in a2.
2214 __ pop(v0);
2215 }
2216
2217 // Convert the heap number in v0 to an untagged integer in a1.
2218 // This can't go slow-case because it's the same number we already
2219 // converted once again.
2220 __ ConvertToInt32(v0, a1, a3, t0, f0, &impossible);
2221 // Negate the result.
2222 __ Xor(a1, a1, -1);
2223
2224 __ bind(&heapnumber_allocated);
2225 __ mov(v0, a2); // Move newly allocated heap number to v0.
2226 }
2227
2228 if (CpuFeatures::IsSupported(FPU)) {
2229 // Convert the int32 in a1 to the heap number in v0. a2 is corrupted.
2230 CpuFeatures::Scope scope(FPU);
2231 __ mtc1(a1, f0);
2232 __ cvt_d_w(f0, f0);
2233 __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
2234 __ Ret();
2235 } else {
2236 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
2237 // have to set up a frame.
2238 WriteInt32ToHeapNumberStub stub(a1, v0, a2, a3);
2239 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2240 }
2241
2242 __ bind(&impossible);
2243 if (FLAG_debug_code) {
2244 __ stop("Incorrect assumption in bit-not stub");
2245 }
2246 }
2247
2248
2249 // TODO(svenpanne): Use virtual functions instead of switch.
GenerateGenericStub(MacroAssembler * masm)2250 void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
2251 switch (op_) {
2252 case Token::SUB:
2253 GenerateGenericStubSub(masm);
2254 break;
2255 case Token::BIT_NOT:
2256 GenerateGenericStubBitNot(masm);
2257 break;
2258 default:
2259 UNREACHABLE();
2260 }
2261 }
2262
2263
GenerateGenericStubSub(MacroAssembler * masm)2264 void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
2265 Label non_smi, slow;
2266 GenerateSmiCodeSub(masm, &non_smi, &slow);
2267 __ bind(&non_smi);
2268 GenerateHeapNumberCodeSub(masm, &slow);
2269 __ bind(&slow);
2270 GenerateGenericCodeFallback(masm);
2271 }
2272
2273
GenerateGenericStubBitNot(MacroAssembler * masm)2274 void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
2275 Label non_smi, slow;
2276 GenerateSmiCodeBitNot(masm, &non_smi);
2277 __ bind(&non_smi);
2278 GenerateHeapNumberCodeBitNot(masm, &slow);
2279 __ bind(&slow);
2280 GenerateGenericCodeFallback(masm);
2281 }
2282
2283
GenerateGenericCodeFallback(MacroAssembler * masm)2284 void UnaryOpStub::GenerateGenericCodeFallback(
2285 MacroAssembler* masm) {
2286 // Handle the slow case by jumping to the JavaScript builtin.
2287 __ push(a0);
2288 switch (op_) {
2289 case Token::SUB:
2290 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
2291 break;
2292 case Token::BIT_NOT:
2293 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
2294 break;
2295 default:
2296 UNREACHABLE();
2297 }
2298 }
2299
2300
GenerateTypeTransition(MacroAssembler * masm)2301 void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
2302 Label get_result;
2303
2304 __ Push(a1, a0);
2305
2306 __ li(a2, Operand(Smi::FromInt(MinorKey())));
2307 __ li(a1, Operand(Smi::FromInt(op_)));
2308 __ li(a0, Operand(Smi::FromInt(operands_type_)));
2309 __ Push(a2, a1, a0);
2310
2311 __ TailCallExternalReference(
2312 ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
2313 masm->isolate()),
2314 5,
2315 1);
2316 }
2317
2318
GenerateTypeTransitionWithSavedArgs(MacroAssembler * masm)2319 void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
2320 MacroAssembler* masm) {
2321 UNIMPLEMENTED();
2322 }
2323
2324
Generate(MacroAssembler * masm)2325 void BinaryOpStub::Generate(MacroAssembler* masm) {
2326 // Explicitly allow generation of nested stubs. It is safe here because
2327 // generation code does not use any raw pointers.
2328 AllowStubCallsScope allow_stub_calls(masm, true);
2329 switch (operands_type_) {
2330 case BinaryOpIC::UNINITIALIZED:
2331 GenerateTypeTransition(masm);
2332 break;
2333 case BinaryOpIC::SMI:
2334 GenerateSmiStub(masm);
2335 break;
2336 case BinaryOpIC::INT32:
2337 GenerateInt32Stub(masm);
2338 break;
2339 case BinaryOpIC::HEAP_NUMBER:
2340 GenerateHeapNumberStub(masm);
2341 break;
2342 case BinaryOpIC::ODDBALL:
2343 GenerateOddballStub(masm);
2344 break;
2345 case BinaryOpIC::BOTH_STRING:
2346 GenerateBothStringStub(masm);
2347 break;
2348 case BinaryOpIC::STRING:
2349 GenerateStringStub(masm);
2350 break;
2351 case BinaryOpIC::GENERIC:
2352 GenerateGeneric(masm);
2353 break;
2354 default:
2355 UNREACHABLE();
2356 }
2357 }
2358
2359
PrintName(StringStream * stream)2360 void BinaryOpStub::PrintName(StringStream* stream) {
2361 const char* op_name = Token::Name(op_);
2362 const char* overwrite_name;
2363 switch (mode_) {
2364 case NO_OVERWRITE: overwrite_name = "Alloc"; break;
2365 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
2366 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
2367 default: overwrite_name = "UnknownOverwrite"; break;
2368 }
2369 stream->Add("BinaryOpStub_%s_%s_%s",
2370 op_name,
2371 overwrite_name,
2372 BinaryOpIC::GetName(operands_type_));
2373 }
2374
2375
2376
GenerateSmiSmiOperation(MacroAssembler * masm)2377 void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) {
2378 Register left = a1;
2379 Register right = a0;
2380
2381 Register scratch1 = t0;
2382 Register scratch2 = t1;
2383
2384 ASSERT(right.is(a0));
2385 STATIC_ASSERT(kSmiTag == 0);
2386
2387 Label not_smi_result;
2388 switch (op_) {
2389 case Token::ADD:
2390 __ AdduAndCheckForOverflow(v0, left, right, scratch1);
2391 __ RetOnNoOverflow(scratch1);
2392 // No need to revert anything - right and left are intact.
2393 break;
2394 case Token::SUB:
2395 __ SubuAndCheckForOverflow(v0, left, right, scratch1);
2396 __ RetOnNoOverflow(scratch1);
2397 // No need to revert anything - right and left are intact.
2398 break;
2399 case Token::MUL: {
2400 // Remove tag from one of the operands. This way the multiplication result
2401 // will be a smi if it fits the smi range.
2402 __ SmiUntag(scratch1, right);
2403 // Do multiplication.
2404 // lo = lower 32 bits of scratch1 * left.
2405 // hi = higher 32 bits of scratch1 * left.
2406 __ Mult(left, scratch1);
2407 // Check for overflowing the smi range - no overflow if higher 33 bits of
2408 // the result are identical.
2409 __ mflo(scratch1);
2410 __ mfhi(scratch2);
2411 __ sra(scratch1, scratch1, 31);
2412 __ Branch(¬_smi_result, ne, scratch1, Operand(scratch2));
2413 // Go slow on zero result to handle -0.
2414 __ mflo(v0);
2415 __ Ret(ne, v0, Operand(zero_reg));
2416 // We need -0 if we were multiplying a negative number with 0 to get 0.
2417 // We know one of them was zero.
2418 __ Addu(scratch2, right, left);
2419 Label skip;
2420 // ARM uses the 'pl' condition, which is 'ge'.
2421 // Negating it results in 'lt'.
2422 __ Branch(&skip, lt, scratch2, Operand(zero_reg));
2423 ASSERT(Smi::FromInt(0) == 0);
2424 __ Ret(USE_DELAY_SLOT);
2425 __ mov(v0, zero_reg); // Return smi 0 if the non-zero one was positive.
2426 __ bind(&skip);
2427 // We fall through here if we multiplied a negative number with 0, because
2428 // that would mean we should produce -0.
2429 }
2430 break;
2431 case Token::DIV: {
2432 Label done;
2433 __ SmiUntag(scratch2, right);
2434 __ SmiUntag(scratch1, left);
2435 __ Div(scratch1, scratch2);
2436 // A minor optimization: div may be calculated asynchronously, so we check
2437 // for division by zero before getting the result.
2438 __ Branch(¬_smi_result, eq, scratch2, Operand(zero_reg));
2439 // If the result is 0, we need to make sure the dividsor (right) is
2440 // positive, otherwise it is a -0 case.
2441 // Quotient is in 'lo', remainder is in 'hi'.
2442 // Check for no remainder first.
2443 __ mfhi(scratch1);
2444 __ Branch(¬_smi_result, ne, scratch1, Operand(zero_reg));
2445 __ mflo(scratch1);
2446 __ Branch(&done, ne, scratch1, Operand(zero_reg));
2447 __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg));
2448 __ bind(&done);
2449 // Check that the signed result fits in a Smi.
2450 __ Addu(scratch2, scratch1, Operand(0x40000000));
2451 __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg));
2452 __ SmiTag(v0, scratch1);
2453 __ Ret();
2454 }
2455 break;
2456 case Token::MOD: {
2457 Label done;
2458 __ SmiUntag(scratch2, right);
2459 __ SmiUntag(scratch1, left);
2460 __ Div(scratch1, scratch2);
2461 // A minor optimization: div may be calculated asynchronously, so we check
2462 // for division by 0 before calling mfhi.
2463 // Check for zero on the right hand side.
2464 __ Branch(¬_smi_result, eq, scratch2, Operand(zero_reg));
2465 // If the result is 0, we need to make sure the dividend (left) is
2466 // positive (or 0), otherwise it is a -0 case.
2467 // Remainder is in 'hi'.
2468 __ mfhi(scratch2);
2469 __ Branch(&done, ne, scratch2, Operand(zero_reg));
2470 __ Branch(¬_smi_result, lt, scratch1, Operand(zero_reg));
2471 __ bind(&done);
2472 // Check that the signed result fits in a Smi.
2473 __ Addu(scratch1, scratch2, Operand(0x40000000));
2474 __ Branch(¬_smi_result, lt, scratch1, Operand(zero_reg));
2475 __ SmiTag(v0, scratch2);
2476 __ Ret();
2477 }
2478 break;
2479 case Token::BIT_OR:
2480 __ Ret(USE_DELAY_SLOT);
2481 __ or_(v0, left, right);
2482 break;
2483 case Token::BIT_AND:
2484 __ Ret(USE_DELAY_SLOT);
2485 __ and_(v0, left, right);
2486 break;
2487 case Token::BIT_XOR:
2488 __ Ret(USE_DELAY_SLOT);
2489 __ xor_(v0, left, right);
2490 break;
2491 case Token::SAR:
2492 // Remove tags from right operand.
2493 __ GetLeastBitsFromSmi(scratch1, right, 5);
2494 __ srav(scratch1, left, scratch1);
2495 // Smi tag result.
2496 __ And(v0, scratch1, ~kSmiTagMask);
2497 __ Ret();
2498 break;
2499 case Token::SHR:
2500 // Remove tags from operands. We can't do this on a 31 bit number
2501 // because then the 0s get shifted into bit 30 instead of bit 31.
2502 __ SmiUntag(scratch1, left);
2503 __ GetLeastBitsFromSmi(scratch2, right, 5);
2504 __ srlv(v0, scratch1, scratch2);
2505 // Unsigned shift is not allowed to produce a negative number, so
2506 // check the sign bit and the sign bit after Smi tagging.
2507 __ And(scratch1, v0, Operand(0xc0000000));
2508 __ Branch(¬_smi_result, ne, scratch1, Operand(zero_reg));
2509 // Smi tag result.
2510 __ SmiTag(v0);
2511 __ Ret();
2512 break;
2513 case Token::SHL:
2514 // Remove tags from operands.
2515 __ SmiUntag(scratch1, left);
2516 __ GetLeastBitsFromSmi(scratch2, right, 5);
2517 __ sllv(scratch1, scratch1, scratch2);
2518 // Check that the signed result fits in a Smi.
2519 __ Addu(scratch2, scratch1, Operand(0x40000000));
2520 __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg));
2521 __ SmiTag(v0, scratch1);
2522 __ Ret();
2523 break;
2524 default:
2525 UNREACHABLE();
2526 }
2527 __ bind(¬_smi_result);
2528 }
2529
2530
GenerateFPOperation(MacroAssembler * masm,bool smi_operands,Label * not_numbers,Label * gc_required)2531 void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
2532 bool smi_operands,
2533 Label* not_numbers,
2534 Label* gc_required) {
2535 Register left = a1;
2536 Register right = a0;
2537 Register scratch1 = t3;
2538 Register scratch2 = t5;
2539 Register scratch3 = t0;
2540
2541 ASSERT(smi_operands || (not_numbers != NULL));
2542 if (smi_operands && FLAG_debug_code) {
2543 __ AbortIfNotSmi(left);
2544 __ AbortIfNotSmi(right);
2545 }
2546
2547 Register heap_number_map = t2;
2548 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2549
2550 switch (op_) {
2551 case Token::ADD:
2552 case Token::SUB:
2553 case Token::MUL:
2554 case Token::DIV:
2555 case Token::MOD: {
2556 // Load left and right operands into f12 and f14 or a0/a1 and a2/a3
2557 // depending on whether FPU is available or not.
2558 FloatingPointHelper::Destination destination =
2559 CpuFeatures::IsSupported(FPU) &&
2560 op_ != Token::MOD ?
2561 FloatingPointHelper::kFPURegisters :
2562 FloatingPointHelper::kCoreRegisters;
2563
2564 // Allocate new heap number for result.
2565 Register result = s0;
2566 GenerateHeapResultAllocation(
2567 masm, result, heap_number_map, scratch1, scratch2, gc_required);
2568
2569 // Load the operands.
2570 if (smi_operands) {
2571 FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
2572 } else {
2573 FloatingPointHelper::LoadOperands(masm,
2574 destination,
2575 heap_number_map,
2576 scratch1,
2577 scratch2,
2578 not_numbers);
2579 }
2580
2581 // Calculate the result.
2582 if (destination == FloatingPointHelper::kFPURegisters) {
2583 // Using FPU registers:
2584 // f12: Left value.
2585 // f14: Right value.
2586 CpuFeatures::Scope scope(FPU);
2587 switch (op_) {
2588 case Token::ADD:
2589 __ add_d(f10, f12, f14);
2590 break;
2591 case Token::SUB:
2592 __ sub_d(f10, f12, f14);
2593 break;
2594 case Token::MUL:
2595 __ mul_d(f10, f12, f14);
2596 break;
2597 case Token::DIV:
2598 __ div_d(f10, f12, f14);
2599 break;
2600 default:
2601 UNREACHABLE();
2602 }
2603
2604 // ARM uses a workaround here because of the unaligned HeapNumber
2605 // kValueOffset. On MIPS this workaround is built into sdc1 so
2606 // there's no point in generating even more instructions.
2607 __ sdc1(f10, FieldMemOperand(result, HeapNumber::kValueOffset));
2608 __ Ret(USE_DELAY_SLOT);
2609 __ mov(v0, result);
2610 } else {
2611 // Call the C function to handle the double operation.
2612 FloatingPointHelper::CallCCodeForDoubleOperation(masm,
2613 op_,
2614 result,
2615 scratch1);
2616 if (FLAG_debug_code) {
2617 __ stop("Unreachable code.");
2618 }
2619 }
2620 break;
2621 }
2622 case Token::BIT_OR:
2623 case Token::BIT_XOR:
2624 case Token::BIT_AND:
2625 case Token::SAR:
2626 case Token::SHR:
2627 case Token::SHL: {
2628 if (smi_operands) {
2629 __ SmiUntag(a3, left);
2630 __ SmiUntag(a2, right);
2631 } else {
2632 // Convert operands to 32-bit integers. Right in a2 and left in a3.
2633 FloatingPointHelper::ConvertNumberToInt32(masm,
2634 left,
2635 a3,
2636 heap_number_map,
2637 scratch1,
2638 scratch2,
2639 scratch3,
2640 f0,
2641 not_numbers);
2642 FloatingPointHelper::ConvertNumberToInt32(masm,
2643 right,
2644 a2,
2645 heap_number_map,
2646 scratch1,
2647 scratch2,
2648 scratch3,
2649 f0,
2650 not_numbers);
2651 }
2652 Label result_not_a_smi;
2653 switch (op_) {
2654 case Token::BIT_OR:
2655 __ Or(a2, a3, Operand(a2));
2656 break;
2657 case Token::BIT_XOR:
2658 __ Xor(a2, a3, Operand(a2));
2659 break;
2660 case Token::BIT_AND:
2661 __ And(a2, a3, Operand(a2));
2662 break;
2663 case Token::SAR:
2664 // Use only the 5 least significant bits of the shift count.
2665 __ GetLeastBitsFromInt32(a2, a2, 5);
2666 __ srav(a2, a3, a2);
2667 break;
2668 case Token::SHR:
2669 // Use only the 5 least significant bits of the shift count.
2670 __ GetLeastBitsFromInt32(a2, a2, 5);
2671 __ srlv(a2, a3, a2);
2672 // SHR is special because it is required to produce a positive answer.
2673 // The code below for writing into heap numbers isn't capable of
2674 // writing the register as an unsigned int so we go to slow case if we
2675 // hit this case.
2676 if (CpuFeatures::IsSupported(FPU)) {
2677 __ Branch(&result_not_a_smi, lt, a2, Operand(zero_reg));
2678 } else {
2679 __ Branch(not_numbers, lt, a2, Operand(zero_reg));
2680 }
2681 break;
2682 case Token::SHL:
2683 // Use only the 5 least significant bits of the shift count.
2684 __ GetLeastBitsFromInt32(a2, a2, 5);
2685 __ sllv(a2, a3, a2);
2686 break;
2687 default:
2688 UNREACHABLE();
2689 }
2690 // Check that the *signed* result fits in a smi.
2691 __ Addu(a3, a2, Operand(0x40000000));
2692 __ Branch(&result_not_a_smi, lt, a3, Operand(zero_reg));
2693 __ SmiTag(v0, a2);
2694 __ Ret();
2695
2696 // Allocate new heap number for result.
2697 __ bind(&result_not_a_smi);
2698 Register result = t1;
2699 if (smi_operands) {
2700 __ AllocateHeapNumber(
2701 result, scratch1, scratch2, heap_number_map, gc_required);
2702 } else {
2703 GenerateHeapResultAllocation(
2704 masm, result, heap_number_map, scratch1, scratch2, gc_required);
2705 }
2706
2707 // a2: Answer as signed int32.
2708 // t1: Heap number to write answer into.
2709
2710 // Nothing can go wrong now, so move the heap number to v0, which is the
2711 // result.
2712 __ mov(v0, t1);
2713
2714 if (CpuFeatures::IsSupported(FPU)) {
2715 // Convert the int32 in a2 to the heap number in a0. As
2716 // mentioned above SHR needs to always produce a positive result.
2717 CpuFeatures::Scope scope(FPU);
2718 __ mtc1(a2, f0);
2719 if (op_ == Token::SHR) {
2720 __ Cvt_d_uw(f0, f0, f22);
2721 } else {
2722 __ cvt_d_w(f0, f0);
2723 }
2724 // ARM uses a workaround here because of the unaligned HeapNumber
2725 // kValueOffset. On MIPS this workaround is built into sdc1 so
2726 // there's no point in generating even more instructions.
2727 __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
2728 __ Ret();
2729 } else {
2730 // Tail call that writes the int32 in a2 to the heap number in v0, using
2731 // a3 and a0 as scratch. v0 is preserved and returned.
2732 WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0);
2733 __ TailCallStub(&stub);
2734 }
2735 break;
2736 }
2737 default:
2738 UNREACHABLE();
2739 }
2740 }
2741
2742
2743 // Generate the smi code. If the operation on smis are successful this return is
2744 // generated. If the result is not a smi and heap number allocation is not
2745 // requested the code falls through. If number allocation is requested but a
2746 // heap number cannot be allocated the code jumps to the lable gc_required.
GenerateSmiCode(MacroAssembler * masm,Label * use_runtime,Label * gc_required,SmiCodeGenerateHeapNumberResults allow_heapnumber_results)2747 void BinaryOpStub::GenerateSmiCode(
2748 MacroAssembler* masm,
2749 Label* use_runtime,
2750 Label* gc_required,
2751 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
2752 Label not_smis;
2753
2754 Register left = a1;
2755 Register right = a0;
2756 Register scratch1 = t3;
2757
2758 // Perform combined smi check on both operands.
2759 __ Or(scratch1, left, Operand(right));
2760 STATIC_ASSERT(kSmiTag == 0);
2761 __ JumpIfNotSmi(scratch1, ¬_smis);
2762
2763 // If the smi-smi operation results in a smi return is generated.
2764 GenerateSmiSmiOperation(masm);
2765
2766 // If heap number results are possible generate the result in an allocated
2767 // heap number.
2768 if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
2769 GenerateFPOperation(masm, true, use_runtime, gc_required);
2770 }
2771 __ bind(¬_smis);
2772 }
2773
2774
GenerateSmiStub(MacroAssembler * masm)2775 void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
2776 Label not_smis, call_runtime;
2777
2778 if (result_type_ == BinaryOpIC::UNINITIALIZED ||
2779 result_type_ == BinaryOpIC::SMI) {
2780 // Only allow smi results.
2781 GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
2782 } else {
2783 // Allow heap number result and don't make a transition if a heap number
2784 // cannot be allocated.
2785 GenerateSmiCode(masm,
2786 &call_runtime,
2787 &call_runtime,
2788 ALLOW_HEAPNUMBER_RESULTS);
2789 }
2790
2791 // Code falls through if the result is not returned as either a smi or heap
2792 // number.
2793 GenerateTypeTransition(masm);
2794
2795 __ bind(&call_runtime);
2796 GenerateCallRuntime(masm);
2797 }
2798
2799
GenerateStringStub(MacroAssembler * masm)2800 void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
2801 ASSERT(operands_type_ == BinaryOpIC::STRING);
2802 // Try to add arguments as strings, otherwise, transition to the generic
2803 // BinaryOpIC type.
2804 GenerateAddStrings(masm);
2805 GenerateTypeTransition(masm);
2806 }
2807
2808
GenerateBothStringStub(MacroAssembler * masm)2809 void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
2810 Label call_runtime;
2811 ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
2812 ASSERT(op_ == Token::ADD);
2813 // If both arguments are strings, call the string add stub.
2814 // Otherwise, do a transition.
2815
2816 // Registers containing left and right operands respectively.
2817 Register left = a1;
2818 Register right = a0;
2819
2820 // Test if left operand is a string.
2821 __ JumpIfSmi(left, &call_runtime);
2822 __ GetObjectType(left, a2, a2);
2823 __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
2824
2825 // Test if right operand is a string.
2826 __ JumpIfSmi(right, &call_runtime);
2827 __ GetObjectType(right, a2, a2);
2828 __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
2829
2830 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
2831 GenerateRegisterArgsPush(masm);
2832 __ TailCallStub(&string_add_stub);
2833
2834 __ bind(&call_runtime);
2835 GenerateTypeTransition(masm);
2836 }
2837
2838
GenerateInt32Stub(MacroAssembler * masm)2839 void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
2840 ASSERT(operands_type_ == BinaryOpIC::INT32);
2841
2842 Register left = a1;
2843 Register right = a0;
2844 Register scratch1 = t3;
2845 Register scratch2 = t5;
2846 FPURegister double_scratch = f0;
2847 FPURegister single_scratch = f6;
2848
2849 Register heap_number_result = no_reg;
2850 Register heap_number_map = t2;
2851 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2852
2853 Label call_runtime;
2854 // Labels for type transition, used for wrong input or output types.
2855 // Both label are currently actually bound to the same position. We use two
2856 // different label to differentiate the cause leading to type transition.
2857 Label transition;
2858
2859 // Smi-smi fast case.
2860 Label skip;
2861 __ Or(scratch1, left, right);
2862 __ JumpIfNotSmi(scratch1, &skip);
2863 GenerateSmiSmiOperation(masm);
2864 // Fall through if the result is not a smi.
2865 __ bind(&skip);
2866
2867 switch (op_) {
2868 case Token::ADD:
2869 case Token::SUB:
2870 case Token::MUL:
2871 case Token::DIV:
2872 case Token::MOD: {
2873 // Load both operands and check that they are 32-bit integer.
2874 // Jump to type transition if they are not. The registers a0 and a1 (right
2875 // and left) are preserved for the runtime call.
2876 FloatingPointHelper::Destination destination =
2877 (CpuFeatures::IsSupported(FPU) && op_ != Token::MOD)
2878 ? FloatingPointHelper::kFPURegisters
2879 : FloatingPointHelper::kCoreRegisters;
2880
2881 FloatingPointHelper::LoadNumberAsInt32Double(masm,
2882 right,
2883 destination,
2884 f14,
2885 a2,
2886 a3,
2887 heap_number_map,
2888 scratch1,
2889 scratch2,
2890 f2,
2891 &transition);
2892 FloatingPointHelper::LoadNumberAsInt32Double(masm,
2893 left,
2894 destination,
2895 f12,
2896 t0,
2897 t1,
2898 heap_number_map,
2899 scratch1,
2900 scratch2,
2901 f2,
2902 &transition);
2903
2904 if (destination == FloatingPointHelper::kFPURegisters) {
2905 CpuFeatures::Scope scope(FPU);
2906 Label return_heap_number;
2907 switch (op_) {
2908 case Token::ADD:
2909 __ add_d(f10, f12, f14);
2910 break;
2911 case Token::SUB:
2912 __ sub_d(f10, f12, f14);
2913 break;
2914 case Token::MUL:
2915 __ mul_d(f10, f12, f14);
2916 break;
2917 case Token::DIV:
2918 __ div_d(f10, f12, f14);
2919 break;
2920 default:
2921 UNREACHABLE();
2922 }
2923
2924 if (op_ != Token::DIV) {
2925 // These operations produce an integer result.
2926 // Try to return a smi if we can.
2927 // Otherwise return a heap number if allowed, or jump to type
2928 // transition.
2929
2930 Register except_flag = scratch2;
2931 __ EmitFPUTruncate(kRoundToZero,
2932 single_scratch,
2933 f10,
2934 scratch1,
2935 except_flag);
2936
2937 if (result_type_ <= BinaryOpIC::INT32) {
2938 // If except_flag != 0, result does not fit in a 32-bit integer.
2939 __ Branch(&transition, ne, except_flag, Operand(zero_reg));
2940 }
2941
2942 // Check if the result fits in a smi.
2943 __ mfc1(scratch1, single_scratch);
2944 __ Addu(scratch2, scratch1, Operand(0x40000000));
2945 // If not try to return a heap number.
2946 __ Branch(&return_heap_number, lt, scratch2, Operand(zero_reg));
2947 // Check for minus zero. Return heap number for minus zero.
2948 Label not_zero;
2949 __ Branch(¬_zero, ne, scratch1, Operand(zero_reg));
2950 __ mfc1(scratch2, f11);
2951 __ And(scratch2, scratch2, HeapNumber::kSignMask);
2952 __ Branch(&return_heap_number, ne, scratch2, Operand(zero_reg));
2953 __ bind(¬_zero);
2954
2955 // Tag the result and return.
2956 __ SmiTag(v0, scratch1);
2957 __ Ret();
2958 } else {
2959 // DIV just falls through to allocating a heap number.
2960 }
2961
2962 __ bind(&return_heap_number);
2963 // Return a heap number, or fall through to type transition or runtime
2964 // call if we can't.
2965 if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
2966 : BinaryOpIC::INT32)) {
2967 // We are using FPU registers so s0 is available.
2968 heap_number_result = s0;
2969 GenerateHeapResultAllocation(masm,
2970 heap_number_result,
2971 heap_number_map,
2972 scratch1,
2973 scratch2,
2974 &call_runtime);
2975 __ mov(v0, heap_number_result);
2976 __ sdc1(f10, FieldMemOperand(v0, HeapNumber::kValueOffset));
2977 __ Ret();
2978 }
2979
2980 // A DIV operation expecting an integer result falls through
2981 // to type transition.
2982
2983 } else {
2984 // We preserved a0 and a1 to be able to call runtime.
2985 // Save the left value on the stack.
2986 __ Push(t1, t0);
2987
2988 Label pop_and_call_runtime;
2989
2990 // Allocate a heap number to store the result.
2991 heap_number_result = s0;
2992 GenerateHeapResultAllocation(masm,
2993 heap_number_result,
2994 heap_number_map,
2995 scratch1,
2996 scratch2,
2997 &pop_and_call_runtime);
2998
2999 // Load the left value from the value saved on the stack.
3000 __ Pop(a1, a0);
3001
3002 // Call the C function to handle the double operation.
3003 FloatingPointHelper::CallCCodeForDoubleOperation(
3004 masm, op_, heap_number_result, scratch1);
3005 if (FLAG_debug_code) {
3006 __ stop("Unreachable code.");
3007 }
3008
3009 __ bind(&pop_and_call_runtime);
3010 __ Drop(2);
3011 __ Branch(&call_runtime);
3012 }
3013
3014 break;
3015 }
3016
3017 case Token::BIT_OR:
3018 case Token::BIT_XOR:
3019 case Token::BIT_AND:
3020 case Token::SAR:
3021 case Token::SHR:
3022 case Token::SHL: {
3023 Label return_heap_number;
3024 Register scratch3 = t1;
3025 // Convert operands to 32-bit integers. Right in a2 and left in a3. The
3026 // registers a0 and a1 (right and left) are preserved for the runtime
3027 // call.
3028 FloatingPointHelper::LoadNumberAsInt32(masm,
3029 left,
3030 a3,
3031 heap_number_map,
3032 scratch1,
3033 scratch2,
3034 scratch3,
3035 f0,
3036 &transition);
3037 FloatingPointHelper::LoadNumberAsInt32(masm,
3038 right,
3039 a2,
3040 heap_number_map,
3041 scratch1,
3042 scratch2,
3043 scratch3,
3044 f0,
3045 &transition);
3046
3047 // The ECMA-262 standard specifies that, for shift operations, only the
3048 // 5 least significant bits of the shift value should be used.
3049 switch (op_) {
3050 case Token::BIT_OR:
3051 __ Or(a2, a3, Operand(a2));
3052 break;
3053 case Token::BIT_XOR:
3054 __ Xor(a2, a3, Operand(a2));
3055 break;
3056 case Token::BIT_AND:
3057 __ And(a2, a3, Operand(a2));
3058 break;
3059 case Token::SAR:
3060 __ And(a2, a2, Operand(0x1f));
3061 __ srav(a2, a3, a2);
3062 break;
3063 case Token::SHR:
3064 __ And(a2, a2, Operand(0x1f));
3065 __ srlv(a2, a3, a2);
3066 // SHR is special because it is required to produce a positive answer.
3067 // We only get a negative result if the shift value (a2) is 0.
3068 // This result cannot be respresented as a signed 32-bit integer, try
3069 // to return a heap number if we can.
3070 // The non FPU code does not support this special case, so jump to
3071 // runtime if we don't support it.
3072 if (CpuFeatures::IsSupported(FPU)) {
3073 __ Branch((result_type_ <= BinaryOpIC::INT32)
3074 ? &transition
3075 : &return_heap_number,
3076 lt,
3077 a2,
3078 Operand(zero_reg));
3079 } else {
3080 __ Branch((result_type_ <= BinaryOpIC::INT32)
3081 ? &transition
3082 : &call_runtime,
3083 lt,
3084 a2,
3085 Operand(zero_reg));
3086 }
3087 break;
3088 case Token::SHL:
3089 __ And(a2, a2, Operand(0x1f));
3090 __ sllv(a2, a3, a2);
3091 break;
3092 default:
3093 UNREACHABLE();
3094 }
3095
3096 // Check if the result fits in a smi.
3097 __ Addu(scratch1, a2, Operand(0x40000000));
3098 // If not try to return a heap number. (We know the result is an int32.)
3099 __ Branch(&return_heap_number, lt, scratch1, Operand(zero_reg));
3100 // Tag the result and return.
3101 __ SmiTag(v0, a2);
3102 __ Ret();
3103
3104 __ bind(&return_heap_number);
3105 heap_number_result = t1;
3106 GenerateHeapResultAllocation(masm,
3107 heap_number_result,
3108 heap_number_map,
3109 scratch1,
3110 scratch2,
3111 &call_runtime);
3112
3113 if (CpuFeatures::IsSupported(FPU)) {
3114 CpuFeatures::Scope scope(FPU);
3115
3116 if (op_ != Token::SHR) {
3117 // Convert the result to a floating point value.
3118 __ mtc1(a2, double_scratch);
3119 __ cvt_d_w(double_scratch, double_scratch);
3120 } else {
3121 // The result must be interpreted as an unsigned 32-bit integer.
3122 __ mtc1(a2, double_scratch);
3123 __ Cvt_d_uw(double_scratch, double_scratch, single_scratch);
3124 }
3125
3126 // Store the result.
3127 __ mov(v0, heap_number_result);
3128 __ sdc1(double_scratch, FieldMemOperand(v0, HeapNumber::kValueOffset));
3129 __ Ret();
3130 } else {
3131 // Tail call that writes the int32 in a2 to the heap number in v0, using
3132 // a3 and a0 as scratch. v0 is preserved and returned.
3133 __ mov(a0, t1);
3134 WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0);
3135 __ TailCallStub(&stub);
3136 }
3137
3138 break;
3139 }
3140
3141 default:
3142 UNREACHABLE();
3143 }
3144
3145 // We never expect DIV to yield an integer result, so we always generate
3146 // type transition code for DIV operations expecting an integer result: the
3147 // code will fall through to this type transition.
3148 if (transition.is_linked() ||
3149 ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
3150 __ bind(&transition);
3151 GenerateTypeTransition(masm);
3152 }
3153
3154 __ bind(&call_runtime);
3155 GenerateCallRuntime(masm);
3156 }
3157
3158
GenerateOddballStub(MacroAssembler * masm)3159 void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
3160 Label call_runtime;
3161
3162 if (op_ == Token::ADD) {
3163 // Handle string addition here, because it is the only operation
3164 // that does not do a ToNumber conversion on the operands.
3165 GenerateAddStrings(masm);
3166 }
3167
3168 // Convert oddball arguments to numbers.
3169 Label check, done;
3170 __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
3171 __ Branch(&check, ne, a1, Operand(t0));
3172 if (Token::IsBitOp(op_)) {
3173 __ li(a1, Operand(Smi::FromInt(0)));
3174 } else {
3175 __ LoadRoot(a1, Heap::kNanValueRootIndex);
3176 }
3177 __ jmp(&done);
3178 __ bind(&check);
3179 __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
3180 __ Branch(&done, ne, a0, Operand(t0));
3181 if (Token::IsBitOp(op_)) {
3182 __ li(a0, Operand(Smi::FromInt(0)));
3183 } else {
3184 __ LoadRoot(a0, Heap::kNanValueRootIndex);
3185 }
3186 __ bind(&done);
3187
3188 GenerateHeapNumberStub(masm);
3189 }
3190
3191
GenerateHeapNumberStub(MacroAssembler * masm)3192 void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
3193 Label call_runtime;
3194 GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
3195
3196 __ bind(&call_runtime);
3197 GenerateCallRuntime(masm);
3198 }
3199
3200
GenerateGeneric(MacroAssembler * masm)3201 void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
3202 Label call_runtime, call_string_add_or_runtime;
3203
3204 GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
3205
3206 GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
3207
3208 __ bind(&call_string_add_or_runtime);
3209 if (op_ == Token::ADD) {
3210 GenerateAddStrings(masm);
3211 }
3212
3213 __ bind(&call_runtime);
3214 GenerateCallRuntime(masm);
3215 }
3216
3217
GenerateAddStrings(MacroAssembler * masm)3218 void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
3219 ASSERT(op_ == Token::ADD);
3220 Label left_not_string, call_runtime;
3221
3222 Register left = a1;
3223 Register right = a0;
3224
3225 // Check if left argument is a string.
3226 __ JumpIfSmi(left, &left_not_string);
3227 __ GetObjectType(left, a2, a2);
3228 __ Branch(&left_not_string, ge, a2, Operand(FIRST_NONSTRING_TYPE));
3229
3230 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
3231 GenerateRegisterArgsPush(masm);
3232 __ TailCallStub(&string_add_left_stub);
3233
3234 // Left operand is not a string, test right.
3235 __ bind(&left_not_string);
3236 __ JumpIfSmi(right, &call_runtime);
3237 __ GetObjectType(right, a2, a2);
3238 __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
3239
3240 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
3241 GenerateRegisterArgsPush(masm);
3242 __ TailCallStub(&string_add_right_stub);
3243
3244 // At least one argument is not a string.
3245 __ bind(&call_runtime);
3246 }
3247
3248
GenerateCallRuntime(MacroAssembler * masm)3249 void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
3250 GenerateRegisterArgsPush(masm);
3251 switch (op_) {
3252 case Token::ADD:
3253 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
3254 break;
3255 case Token::SUB:
3256 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
3257 break;
3258 case Token::MUL:
3259 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
3260 break;
3261 case Token::DIV:
3262 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
3263 break;
3264 case Token::MOD:
3265 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
3266 break;
3267 case Token::BIT_OR:
3268 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
3269 break;
3270 case Token::BIT_AND:
3271 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
3272 break;
3273 case Token::BIT_XOR:
3274 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
3275 break;
3276 case Token::SAR:
3277 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
3278 break;
3279 case Token::SHR:
3280 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
3281 break;
3282 case Token::SHL:
3283 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
3284 break;
3285 default:
3286 UNREACHABLE();
3287 }
3288 }
3289
3290
GenerateHeapResultAllocation(MacroAssembler * masm,Register result,Register heap_number_map,Register scratch1,Register scratch2,Label * gc_required)3291 void BinaryOpStub::GenerateHeapResultAllocation(
3292 MacroAssembler* masm,
3293 Register result,
3294 Register heap_number_map,
3295 Register scratch1,
3296 Register scratch2,
3297 Label* gc_required) {
3298
3299 // Code below will scratch result if allocation fails. To keep both arguments
3300 // intact for the runtime call result cannot be one of these.
3301 ASSERT(!result.is(a0) && !result.is(a1));
3302
3303 if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
3304 Label skip_allocation, allocated;
3305 Register overwritable_operand = mode_ == OVERWRITE_LEFT ? a1 : a0;
3306 // If the overwritable operand is already an object, we skip the
3307 // allocation of a heap number.
3308 __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
3309 // Allocate a heap number for the result.
3310 __ AllocateHeapNumber(
3311 result, scratch1, scratch2, heap_number_map, gc_required);
3312 __ Branch(&allocated);
3313 __ bind(&skip_allocation);
3314 // Use object holding the overwritable operand for result.
3315 __ mov(result, overwritable_operand);
3316 __ bind(&allocated);
3317 } else {
3318 ASSERT(mode_ == NO_OVERWRITE);
3319 __ AllocateHeapNumber(
3320 result, scratch1, scratch2, heap_number_map, gc_required);
3321 }
3322 }
3323
3324
GenerateRegisterArgsPush(MacroAssembler * masm)3325 void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
3326 __ Push(a1, a0);
3327 }
3328
3329
3330
Generate(MacroAssembler * masm)3331 void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
3332 // Untagged case: double input in f4, double result goes
3333 // into f4.
3334 // Tagged case: tagged input on top of stack and in a0,
3335 // tagged result (heap number) goes into v0.
3336
3337 Label input_not_smi;
3338 Label loaded;
3339 Label calculate;
3340 Label invalid_cache;
3341 const Register scratch0 = t5;
3342 const Register scratch1 = t3;
3343 const Register cache_entry = a0;
3344 const bool tagged = (argument_type_ == TAGGED);
3345
3346 if (CpuFeatures::IsSupported(FPU)) {
3347 CpuFeatures::Scope scope(FPU);
3348
3349 if (tagged) {
3350 // Argument is a number and is on stack and in a0.
3351 // Load argument and check if it is a smi.
3352 __ JumpIfNotSmi(a0, &input_not_smi);
3353
3354 // Input is a smi. Convert to double and load the low and high words
3355 // of the double into a2, a3.
3356 __ sra(t0, a0, kSmiTagSize);
3357 __ mtc1(t0, f4);
3358 __ cvt_d_w(f4, f4);
3359 __ Move(a2, a3, f4);
3360 __ Branch(&loaded);
3361
3362 __ bind(&input_not_smi);
3363 // Check if input is a HeapNumber.
3364 __ CheckMap(a0,
3365 a1,
3366 Heap::kHeapNumberMapRootIndex,
3367 &calculate,
3368 DONT_DO_SMI_CHECK);
3369 // Input is a HeapNumber. Store the
3370 // low and high words into a2, a3.
3371 __ lw(a2, FieldMemOperand(a0, HeapNumber::kValueOffset));
3372 __ lw(a3, FieldMemOperand(a0, HeapNumber::kValueOffset + 4));
3373 } else {
3374 // Input is untagged double in f4. Output goes to f4.
3375 __ Move(a2, a3, f4);
3376 }
3377 __ bind(&loaded);
3378 // a2 = low 32 bits of double value.
3379 // a3 = high 32 bits of double value.
3380 // Compute hash (the shifts are arithmetic):
3381 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
3382 __ Xor(a1, a2, a3);
3383 __ sra(t0, a1, 16);
3384 __ Xor(a1, a1, t0);
3385 __ sra(t0, a1, 8);
3386 __ Xor(a1, a1, t0);
3387 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
3388 __ And(a1, a1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
3389
3390 // a2 = low 32 bits of double value.
3391 // a3 = high 32 bits of double value.
3392 // a1 = TranscendentalCache::hash(double value).
3393 __ li(cache_entry, Operand(
3394 ExternalReference::transcendental_cache_array_address(
3395 masm->isolate())));
3396 // a0 points to cache array.
3397 __ lw(cache_entry, MemOperand(cache_entry, type_ * sizeof(
3398 Isolate::Current()->transcendental_cache()->caches_[0])));
3399 // a0 points to the cache for the type type_.
3400 // If NULL, the cache hasn't been initialized yet, so go through runtime.
3401 __ Branch(&invalid_cache, eq, cache_entry, Operand(zero_reg));
3402
3403 #ifdef DEBUG
3404 // Check that the layout of cache elements match expectations.
3405 { TranscendentalCache::SubCache::Element test_elem[2];
3406 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
3407 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
3408 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
3409 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
3410 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
3411 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
3412 CHECK_EQ(0, elem_in0 - elem_start);
3413 CHECK_EQ(kIntSize, elem_in1 - elem_start);
3414 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
3415 }
3416 #endif
3417
3418 // Find the address of the a1'st entry in the cache, i.e., &a0[a1*12].
3419 __ sll(t0, a1, 1);
3420 __ Addu(a1, a1, t0);
3421 __ sll(t0, a1, 2);
3422 __ Addu(cache_entry, cache_entry, t0);
3423
3424 // Check if cache matches: Double value is stored in uint32_t[2] array.
3425 __ lw(t0, MemOperand(cache_entry, 0));
3426 __ lw(t1, MemOperand(cache_entry, 4));
3427 __ lw(t2, MemOperand(cache_entry, 8));
3428 __ Branch(&calculate, ne, a2, Operand(t0));
3429 __ Branch(&calculate, ne, a3, Operand(t1));
3430 // Cache hit. Load result, cleanup and return.
3431 Counters* counters = masm->isolate()->counters();
3432 __ IncrementCounter(
3433 counters->transcendental_cache_hit(), 1, scratch0, scratch1);
3434 if (tagged) {
3435 // Pop input value from stack and load result into v0.
3436 __ Drop(1);
3437 __ mov(v0, t2);
3438 } else {
3439 // Load result into f4.
3440 __ ldc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
3441 }
3442 __ Ret();
3443 } // if (CpuFeatures::IsSupported(FPU))
3444
3445 __ bind(&calculate);
3446 Counters* counters = masm->isolate()->counters();
3447 __ IncrementCounter(
3448 counters->transcendental_cache_miss(), 1, scratch0, scratch1);
3449 if (tagged) {
3450 __ bind(&invalid_cache);
3451 __ TailCallExternalReference(ExternalReference(RuntimeFunction(),
3452 masm->isolate()),
3453 1,
3454 1);
3455 } else {
3456 if (!CpuFeatures::IsSupported(FPU)) UNREACHABLE();
3457 CpuFeatures::Scope scope(FPU);
3458
3459 Label no_update;
3460 Label skip_cache;
3461
3462 // Call C function to calculate the result and update the cache.
3463 // Register a0 holds precalculated cache entry address; preserve
3464 // it on the stack and pop it into register cache_entry after the
3465 // call.
3466 __ Push(cache_entry, a2, a3);
3467 GenerateCallCFunction(masm, scratch0);
3468 __ GetCFunctionDoubleResult(f4);
3469
3470 // Try to update the cache. If we cannot allocate a
3471 // heap number, we return the result without updating.
3472 __ Pop(cache_entry, a2, a3);
3473 __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
3474 __ AllocateHeapNumber(t2, scratch0, scratch1, t1, &no_update);
3475 __ sdc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
3476
3477 __ sw(a2, MemOperand(cache_entry, 0 * kPointerSize));
3478 __ sw(a3, MemOperand(cache_entry, 1 * kPointerSize));
3479 __ sw(t2, MemOperand(cache_entry, 2 * kPointerSize));
3480
3481 __ Ret(USE_DELAY_SLOT);
3482 __ mov(v0, cache_entry);
3483
3484 __ bind(&invalid_cache);
3485 // The cache is invalid. Call runtime which will recreate the
3486 // cache.
3487 __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
3488 __ AllocateHeapNumber(a0, scratch0, scratch1, t1, &skip_cache);
3489 __ sdc1(f4, FieldMemOperand(a0, HeapNumber::kValueOffset));
3490 {
3491 FrameScope scope(masm, StackFrame::INTERNAL);
3492 __ push(a0);
3493 __ CallRuntime(RuntimeFunction(), 1);
3494 }
3495 __ ldc1(f4, FieldMemOperand(v0, HeapNumber::kValueOffset));
3496 __ Ret();
3497
3498 __ bind(&skip_cache);
3499 // Call C function to calculate the result and answer directly
3500 // without updating the cache.
3501 GenerateCallCFunction(masm, scratch0);
3502 __ GetCFunctionDoubleResult(f4);
3503 __ bind(&no_update);
3504
3505 // We return the value in f4 without adding it to the cache, but
3506 // we cause a scavenging GC so that future allocations will succeed.
3507 {
3508 FrameScope scope(masm, StackFrame::INTERNAL);
3509
3510 // Allocate an aligned object larger than a HeapNumber.
3511 ASSERT(4 * kPointerSize >= HeapNumber::kSize);
3512 __ li(scratch0, Operand(4 * kPointerSize));
3513 __ push(scratch0);
3514 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
3515 }
3516 __ Ret();
3517 }
3518 }
3519
3520
GenerateCallCFunction(MacroAssembler * masm,Register scratch)3521 void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
3522 Register scratch) {
3523 __ push(ra);
3524 __ PrepareCallCFunction(2, scratch);
3525 if (IsMipsSoftFloatABI) {
3526 __ Move(a0, a1, f4);
3527 } else {
3528 __ mov_d(f12, f4);
3529 }
3530 AllowExternalCallThatCantCauseGC scope(masm);
3531 Isolate* isolate = masm->isolate();
3532 switch (type_) {
3533 case TranscendentalCache::SIN:
3534 __ CallCFunction(
3535 ExternalReference::math_sin_double_function(isolate),
3536 0, 1);
3537 break;
3538 case TranscendentalCache::COS:
3539 __ CallCFunction(
3540 ExternalReference::math_cos_double_function(isolate),
3541 0, 1);
3542 break;
3543 case TranscendentalCache::TAN:
3544 __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
3545 0, 1);
3546 break;
3547 case TranscendentalCache::LOG:
3548 __ CallCFunction(
3549 ExternalReference::math_log_double_function(isolate),
3550 0, 1);
3551 break;
3552 default:
3553 UNIMPLEMENTED();
3554 break;
3555 }
3556 __ pop(ra);
3557 }
3558
3559
RuntimeFunction()3560 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
3561 switch (type_) {
3562 // Add more cases when necessary.
3563 case TranscendentalCache::SIN: return Runtime::kMath_sin;
3564 case TranscendentalCache::COS: return Runtime::kMath_cos;
3565 case TranscendentalCache::TAN: return Runtime::kMath_tan;
3566 case TranscendentalCache::LOG: return Runtime::kMath_log;
3567 default:
3568 UNIMPLEMENTED();
3569 return Runtime::kAbort;
3570 }
3571 }
3572
3573
Generate(MacroAssembler * masm)3574 void StackCheckStub::Generate(MacroAssembler* masm) {
3575 __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
3576 }
3577
3578
Generate(MacroAssembler * masm)3579 void InterruptStub::Generate(MacroAssembler* masm) {
3580 __ TailCallRuntime(Runtime::kInterrupt, 0, 1);
3581 }
3582
3583
Generate(MacroAssembler * masm)3584 void MathPowStub::Generate(MacroAssembler* masm) {
3585 CpuFeatures::Scope fpu_scope(FPU);
3586 const Register base = a1;
3587 const Register exponent = a2;
3588 const Register heapnumbermap = t1;
3589 const Register heapnumber = v0;
3590 const DoubleRegister double_base = f2;
3591 const DoubleRegister double_exponent = f4;
3592 const DoubleRegister double_result = f0;
3593 const DoubleRegister double_scratch = f6;
3594 const FPURegister single_scratch = f8;
3595 const Register scratch = t5;
3596 const Register scratch2 = t3;
3597
3598 Label call_runtime, done, int_exponent;
3599 if (exponent_type_ == ON_STACK) {
3600 Label base_is_smi, unpack_exponent;
3601 // The exponent and base are supplied as arguments on the stack.
3602 // This can only happen if the stub is called from non-optimized code.
3603 // Load input parameters from stack to double registers.
3604 __ lw(base, MemOperand(sp, 1 * kPointerSize));
3605 __ lw(exponent, MemOperand(sp, 0 * kPointerSize));
3606
3607 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
3608
3609 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
3610 __ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset));
3611 __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
3612
3613 __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
3614 __ jmp(&unpack_exponent);
3615
3616 __ bind(&base_is_smi);
3617 __ mtc1(scratch, single_scratch);
3618 __ cvt_d_w(double_base, single_scratch);
3619 __ bind(&unpack_exponent);
3620
3621 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
3622
3623 __ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
3624 __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
3625 __ ldc1(double_exponent,
3626 FieldMemOperand(exponent, HeapNumber::kValueOffset));
3627 } else if (exponent_type_ == TAGGED) {
3628 // Base is already in double_base.
3629 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
3630
3631 __ ldc1(double_exponent,
3632 FieldMemOperand(exponent, HeapNumber::kValueOffset));
3633 }
3634
3635 if (exponent_type_ != INTEGER) {
3636 Label int_exponent_convert;
3637 // Detect integer exponents stored as double.
3638 __ EmitFPUTruncate(kRoundToMinusInf,
3639 single_scratch,
3640 double_exponent,
3641 scratch,
3642 scratch2,
3643 kCheckForInexactConversion);
3644 // scratch2 == 0 means there was no conversion error.
3645 __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
3646
3647 if (exponent_type_ == ON_STACK) {
3648 // Detect square root case. Crankshaft detects constant +/-0.5 at
3649 // compile time and uses DoMathPowHalf instead. We then skip this check
3650 // for non-constant cases of +/-0.5 as these hardly occur.
3651 Label not_plus_half;
3652
3653 // Test for 0.5.
3654 __ Move(double_scratch, 0.5);
3655 __ BranchF(USE_DELAY_SLOT,
3656 ¬_plus_half,
3657 NULL,
3658 ne,
3659 double_exponent,
3660 double_scratch);
3661 // double_scratch can be overwritten in the delay slot.
3662 // Calculates square root of base. Check for the special case of
3663 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
3664 __ Move(double_scratch, -V8_INFINITY);
3665 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
3666 __ neg_d(double_result, double_scratch);
3667
3668 // Add +0 to convert -0 to +0.
3669 __ add_d(double_scratch, double_base, kDoubleRegZero);
3670 __ sqrt_d(double_result, double_scratch);
3671 __ jmp(&done);
3672
3673 __ bind(¬_plus_half);
3674 __ Move(double_scratch, -0.5);
3675 __ BranchF(USE_DELAY_SLOT,
3676 &call_runtime,
3677 NULL,
3678 ne,
3679 double_exponent,
3680 double_scratch);
3681 // double_scratch can be overwritten in the delay slot.
3682 // Calculates square root of base. Check for the special case of
3683 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
3684 __ Move(double_scratch, -V8_INFINITY);
3685 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
3686 __ Move(double_result, kDoubleRegZero);
3687
3688 // Add +0 to convert -0 to +0.
3689 __ add_d(double_scratch, double_base, kDoubleRegZero);
3690 __ Move(double_result, 1);
3691 __ sqrt_d(double_scratch, double_scratch);
3692 __ div_d(double_result, double_result, double_scratch);
3693 __ jmp(&done);
3694 }
3695
3696 __ push(ra);
3697 {
3698 AllowExternalCallThatCantCauseGC scope(masm);
3699 __ PrepareCallCFunction(0, 2, scratch);
3700 __ SetCallCDoubleArguments(double_base, double_exponent);
3701 __ CallCFunction(
3702 ExternalReference::power_double_double_function(masm->isolate()),
3703 0, 2);
3704 }
3705 __ pop(ra);
3706 __ GetCFunctionDoubleResult(double_result);
3707 __ jmp(&done);
3708
3709 __ bind(&int_exponent_convert);
3710 __ mfc1(scratch, single_scratch);
3711 }
3712
3713 // Calculate power with integer exponent.
3714 __ bind(&int_exponent);
3715
3716 // Get two copies of exponent in the registers scratch and exponent.
3717 if (exponent_type_ == INTEGER) {
3718 __ mov(scratch, exponent);
3719 } else {
3720 // Exponent has previously been stored into scratch as untagged integer.
3721 __ mov(exponent, scratch);
3722 }
3723
3724 __ mov_d(double_scratch, double_base); // Back up base.
3725 __ Move(double_result, 1.0);
3726
3727 // Get absolute value of exponent.
3728 Label positive_exponent;
3729 __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
3730 __ Subu(scratch, zero_reg, scratch);
3731 __ bind(&positive_exponent);
3732
3733 Label while_true, no_carry, loop_end;
3734 __ bind(&while_true);
3735
3736 __ And(scratch2, scratch, 1);
3737
3738 __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
3739 __ mul_d(double_result, double_result, double_scratch);
3740 __ bind(&no_carry);
3741
3742 __ sra(scratch, scratch, 1);
3743
3744 __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
3745 __ mul_d(double_scratch, double_scratch, double_scratch);
3746
3747 __ Branch(&while_true);
3748
3749 __ bind(&loop_end);
3750
3751 __ Branch(&done, ge, exponent, Operand(zero_reg));
3752 __ Move(double_scratch, 1.0);
3753 __ div_d(double_result, double_scratch, double_result);
3754 // Test whether result is zero. Bail out to check for subnormal result.
3755 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
3756 __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
3757
3758 // double_exponent may not contain the exponent value if the input was a
3759 // smi. We set it with exponent value before bailing out.
3760 __ mtc1(exponent, single_scratch);
3761 __ cvt_d_w(double_exponent, single_scratch);
3762
3763 // Returning or bailing out.
3764 Counters* counters = masm->isolate()->counters();
3765 if (exponent_type_ == ON_STACK) {
3766 // The arguments are still on the stack.
3767 __ bind(&call_runtime);
3768 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
3769
3770 // The stub is called from non-optimized code, which expects the result
3771 // as heap number in exponent.
3772 __ bind(&done);
3773 __ AllocateHeapNumber(
3774 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
3775 __ sdc1(double_result,
3776 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
3777 ASSERT(heapnumber.is(v0));
3778 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3779 __ DropAndRet(2);
3780 } else {
3781 __ push(ra);
3782 {
3783 AllowExternalCallThatCantCauseGC scope(masm);
3784 __ PrepareCallCFunction(0, 2, scratch);
3785 __ SetCallCDoubleArguments(double_base, double_exponent);
3786 __ CallCFunction(
3787 ExternalReference::power_double_double_function(masm->isolate()),
3788 0, 2);
3789 }
3790 __ pop(ra);
3791 __ GetCFunctionDoubleResult(double_result);
3792
3793 __ bind(&done);
3794 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3795 __ Ret();
3796 }
3797 }
3798
3799
NeedsImmovableCode()3800 bool CEntryStub::NeedsImmovableCode() {
3801 return true;
3802 }
3803
3804
IsPregenerated()3805 bool CEntryStub::IsPregenerated() {
3806 return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
3807 result_size_ == 1;
3808 }
3809
3810
GenerateStubsAheadOfTime()3811 void CodeStub::GenerateStubsAheadOfTime() {
3812 CEntryStub::GenerateAheadOfTime();
3813 WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime();
3814 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
3815 RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
3816 }
3817
3818
GenerateFPStubs()3819 void CodeStub::GenerateFPStubs() {
3820 CEntryStub save_doubles(1, kSaveFPRegs);
3821 Handle<Code> code = save_doubles.GetCode();
3822 code->set_is_pregenerated(true);
3823 StoreBufferOverflowStub stub(kSaveFPRegs);
3824 stub.GetCode()->set_is_pregenerated(true);
3825 code->GetIsolate()->set_fp_stubs_generated(true);
3826 }
3827
3828
GenerateAheadOfTime()3829 void CEntryStub::GenerateAheadOfTime() {
3830 CEntryStub stub(1, kDontSaveFPRegs);
3831 Handle<Code> code = stub.GetCode();
3832 code->set_is_pregenerated(true);
3833 }
3834
3835
GenerateCore(MacroAssembler * masm,Label * throw_normal_exception,Label * throw_termination_exception,Label * throw_out_of_memory_exception,bool do_gc,bool always_allocate)3836 void CEntryStub::GenerateCore(MacroAssembler* masm,
3837 Label* throw_normal_exception,
3838 Label* throw_termination_exception,
3839 Label* throw_out_of_memory_exception,
3840 bool do_gc,
3841 bool always_allocate) {
3842 // v0: result parameter for PerformGC, if any
3843 // s0: number of arguments including receiver (C callee-saved)
3844 // s1: pointer to the first argument (C callee-saved)
3845 // s2: pointer to builtin function (C callee-saved)
3846
3847 Isolate* isolate = masm->isolate();
3848
3849 if (do_gc) {
3850 // Move result passed in v0 into a0 to call PerformGC.
3851 __ mov(a0, v0);
3852 __ PrepareCallCFunction(1, 0, a1);
3853 __ CallCFunction(ExternalReference::perform_gc_function(isolate), 1, 0);
3854 }
3855
3856 ExternalReference scope_depth =
3857 ExternalReference::heap_always_allocate_scope_depth(isolate);
3858 if (always_allocate) {
3859 __ li(a0, Operand(scope_depth));
3860 __ lw(a1, MemOperand(a0));
3861 __ Addu(a1, a1, Operand(1));
3862 __ sw(a1, MemOperand(a0));
3863 }
3864
3865 // Prepare arguments for C routine.
3866 // a0 = argc
3867 __ mov(a0, s0);
3868 // a1 = argv (set in the delay slot after find_ra below).
3869
3870 // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
3871 // also need to reserve the 4 argument slots on the stack.
3872
3873 __ AssertStackIsAligned();
3874
3875 __ li(a2, Operand(ExternalReference::isolate_address()));
3876
3877 // To let the GC traverse the return address of the exit frames, we need to
3878 // know where the return address is. The CEntryStub is unmovable, so
3879 // we can store the address on the stack to be able to find it again and
3880 // we never have to restore it, because it will not change.
3881 { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
3882 // This branch-and-link sequence is needed to find the current PC on mips,
3883 // saved to the ra register.
3884 // Use masm-> here instead of the double-underscore macro since extra
3885 // coverage code can interfere with the proper calculation of ra.
3886 Label find_ra;
3887 masm->bal(&find_ra); // bal exposes branch delay slot.
3888 masm->mov(a1, s1);
3889 masm->bind(&find_ra);
3890
3891 // Adjust the value in ra to point to the correct return location, 2nd
3892 // instruction past the real call into C code (the jalr(t9)), and push it.
3893 // This is the return address of the exit frame.
3894 const int kNumInstructionsToJump = 5;
3895 masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize);
3896 masm->sw(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame.
3897 // Stack space reservation moved to the branch delay slot below.
3898 // Stack is still aligned.
3899
3900 // Call the C routine.
3901 masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
3902 masm->jalr(t9);
3903 // Set up sp in the delay slot.
3904 masm->addiu(sp, sp, -kCArgsSlotsSize);
3905 // Make sure the stored 'ra' points to this position.
3906 ASSERT_EQ(kNumInstructionsToJump,
3907 masm->InstructionsGeneratedSince(&find_ra));
3908 }
3909
3910 if (always_allocate) {
3911 // It's okay to clobber a2 and a3 here. v0 & v1 contain result.
3912 __ li(a2, Operand(scope_depth));
3913 __ lw(a3, MemOperand(a2));
3914 __ Subu(a3, a3, Operand(1));
3915 __ sw(a3, MemOperand(a2));
3916 }
3917
3918 // Check for failure result.
3919 Label failure_returned;
3920 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
3921 __ addiu(a2, v0, 1);
3922 __ andi(t0, a2, kFailureTagMask);
3923 __ Branch(USE_DELAY_SLOT, &failure_returned, eq, t0, Operand(zero_reg));
3924 // Restore stack (remove arg slots) in branch delay slot.
3925 __ addiu(sp, sp, kCArgsSlotsSize);
3926
3927
3928 // Exit C frame and return.
3929 // v0:v1: result
3930 // sp: stack pointer
3931 // fp: frame pointer
3932 __ LeaveExitFrame(save_doubles_, s0, true);
3933
3934 // Check if we should retry or throw exception.
3935 Label retry;
3936 __ bind(&failure_returned);
3937 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
3938 __ andi(t0, v0, ((1 << kFailureTypeTagSize) - 1) << kFailureTagSize);
3939 __ Branch(&retry, eq, t0, Operand(zero_reg));
3940
3941 // Special handling of out of memory exceptions.
3942 Failure* out_of_memory = Failure::OutOfMemoryException();
3943 __ Branch(USE_DELAY_SLOT,
3944 throw_out_of_memory_exception,
3945 eq,
3946 v0,
3947 Operand(reinterpret_cast<int32_t>(out_of_memory)));
3948 // If we throw the OOM exception, the value of a3 doesn't matter.
3949 // Any instruction can be in the delay slot that's not a jump.
3950
3951 // Retrieve the pending exception and clear the variable.
3952 __ LoadRoot(a3, Heap::kTheHoleValueRootIndex);
3953 __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
3954 isolate)));
3955 __ lw(v0, MemOperand(t0));
3956 __ sw(a3, MemOperand(t0));
3957
3958 // Special handling of termination exceptions which are uncatchable
3959 // by javascript code.
3960 __ LoadRoot(t0, Heap::kTerminationExceptionRootIndex);
3961 __ Branch(throw_termination_exception, eq, v0, Operand(t0));
3962
3963 // Handle normal exception.
3964 __ jmp(throw_normal_exception);
3965
3966 __ bind(&retry);
3967 // Last failure (v0) will be moved to (a0) for parameter when retrying.
3968 }
3969
3970
Generate(MacroAssembler * masm)3971 void CEntryStub::Generate(MacroAssembler* masm) {
3972 // Called from JavaScript; parameters are on stack as if calling JS function
3973 // s0: number of arguments including receiver
3974 // s1: size of arguments excluding receiver
3975 // s2: pointer to builtin function
3976 // fp: frame pointer (restored after C call)
3977 // sp: stack pointer (restored as callee's sp after C call)
3978 // cp: current context (C callee-saved)
3979
3980 // NOTE: Invocations of builtins may return failure objects
3981 // instead of a proper result. The builtin entry handles
3982 // this by performing a garbage collection and retrying the
3983 // builtin once.
3984
3985 // NOTE: s0-s2 hold the arguments of this function instead of a0-a2.
3986 // The reason for this is that these arguments would need to be saved anyway
3987 // so it's faster to set them up directly.
3988 // See MacroAssembler::PrepareCEntryArgs and PrepareCEntryFunction.
3989
3990 // Compute the argv pointer in a callee-saved register.
3991 __ Addu(s1, sp, s1);
3992
3993 // Enter the exit frame that transitions from JavaScript to C++.
3994 FrameScope scope(masm, StackFrame::MANUAL);
3995 __ EnterExitFrame(save_doubles_);
3996
3997 // s0: number of arguments (C callee-saved)
3998 // s1: pointer to first argument (C callee-saved)
3999 // s2: pointer to builtin function (C callee-saved)
4000
4001 Label throw_normal_exception;
4002 Label throw_termination_exception;
4003 Label throw_out_of_memory_exception;
4004
4005 // Call into the runtime system.
4006 GenerateCore(masm,
4007 &throw_normal_exception,
4008 &throw_termination_exception,
4009 &throw_out_of_memory_exception,
4010 false,
4011 false);
4012
4013 // Do space-specific GC and retry runtime call.
4014 GenerateCore(masm,
4015 &throw_normal_exception,
4016 &throw_termination_exception,
4017 &throw_out_of_memory_exception,
4018 true,
4019 false);
4020
4021 // Do full GC and retry runtime call one final time.
4022 Failure* failure = Failure::InternalError();
4023 __ li(v0, Operand(reinterpret_cast<int32_t>(failure)));
4024 GenerateCore(masm,
4025 &throw_normal_exception,
4026 &throw_termination_exception,
4027 &throw_out_of_memory_exception,
4028 true,
4029 true);
4030
4031 __ bind(&throw_out_of_memory_exception);
4032 // Set external caught exception to false.
4033 Isolate* isolate = masm->isolate();
4034 ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
4035 isolate);
4036 __ li(a0, Operand(false, RelocInfo::NONE));
4037 __ li(a2, Operand(external_caught));
4038 __ sw(a0, MemOperand(a2));
4039
4040 // Set pending exception and v0 to out of memory exception.
4041 Failure* out_of_memory = Failure::OutOfMemoryException();
4042 __ li(v0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
4043 __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
4044 isolate)));
4045 __ sw(v0, MemOperand(a2));
4046 // Fall through to the next label.
4047
4048 __ bind(&throw_termination_exception);
4049 __ ThrowUncatchable(v0);
4050
4051 __ bind(&throw_normal_exception);
4052 __ Throw(v0);
4053 }
4054
4055
GenerateBody(MacroAssembler * masm,bool is_construct)4056 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
4057 Label invoke, handler_entry, exit;
4058 Isolate* isolate = masm->isolate();
4059
4060 // Registers:
4061 // a0: entry address
4062 // a1: function
4063 // a2: receiver
4064 // a3: argc
4065 //
4066 // Stack:
4067 // 4 args slots
4068 // args
4069
4070 // Save callee saved registers on the stack.
4071 __ MultiPush(kCalleeSaved | ra.bit());
4072
4073 if (CpuFeatures::IsSupported(FPU)) {
4074 CpuFeatures::Scope scope(FPU);
4075 // Save callee-saved FPU registers.
4076 __ MultiPushFPU(kCalleeSavedFPU);
4077 // Set up the reserved register for 0.0.
4078 __ Move(kDoubleRegZero, 0.0);
4079 }
4080
4081
4082 // Load argv in s0 register.
4083 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
4084 if (CpuFeatures::IsSupported(FPU)) {
4085 offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
4086 }
4087
4088 __ InitializeRootRegister();
4089 __ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
4090
4091 // We build an EntryFrame.
4092 __ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used.
4093 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
4094 __ li(t2, Operand(Smi::FromInt(marker)));
4095 __ li(t1, Operand(Smi::FromInt(marker)));
4096 __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
4097 isolate)));
4098 __ lw(t0, MemOperand(t0));
4099 __ Push(t3, t2, t1, t0);
4100 // Set up frame pointer for the frame to be pushed.
4101 __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
4102
4103 // Registers:
4104 // a0: entry_address
4105 // a1: function
4106 // a2: receiver_pointer
4107 // a3: argc
4108 // s0: argv
4109 //
4110 // Stack:
4111 // caller fp |
4112 // function slot | entry frame
4113 // context slot |
4114 // bad fp (0xff...f) |
4115 // callee saved registers + ra
4116 // 4 args slots
4117 // args
4118
4119 // If this is the outermost JS call, set js_entry_sp value.
4120 Label non_outermost_js;
4121 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
4122 __ li(t1, Operand(ExternalReference(js_entry_sp)));
4123 __ lw(t2, MemOperand(t1));
4124 __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg));
4125 __ sw(fp, MemOperand(t1));
4126 __ li(t0, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4127 Label cont;
4128 __ b(&cont);
4129 __ nop(); // Branch delay slot nop.
4130 __ bind(&non_outermost_js);
4131 __ li(t0, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
4132 __ bind(&cont);
4133 __ push(t0);
4134
4135 // Jump to a faked try block that does the invoke, with a faked catch
4136 // block that sets the pending exception.
4137 __ jmp(&invoke);
4138 __ bind(&handler_entry);
4139 handler_offset_ = handler_entry.pos();
4140 // Caught exception: Store result (exception) in the pending exception
4141 // field in the JSEnv and return a failure sentinel. Coming in here the
4142 // fp will be invalid because the PushTryHandler below sets it to 0 to
4143 // signal the existence of the JSEntry frame.
4144 __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
4145 isolate)));
4146 __ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0.
4147 __ li(v0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
4148 __ b(&exit); // b exposes branch delay slot.
4149 __ nop(); // Branch delay slot nop.
4150
4151 // Invoke: Link this frame into the handler chain. There's only one
4152 // handler block in this code object, so its index is 0.
4153 __ bind(&invoke);
4154 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
4155 // If an exception not caught by another handler occurs, this handler
4156 // returns control to the code after the bal(&invoke) above, which
4157 // restores all kCalleeSaved registers (including cp and fp) to their
4158 // saved values before returning a failure to C.
4159
4160 // Clear any pending exceptions.
4161 __ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
4162 __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
4163 isolate)));
4164 __ sw(t1, MemOperand(t0));
4165
4166 // Invoke the function by calling through JS entry trampoline builtin.
4167 // Notice that we cannot store a reference to the trampoline code directly in
4168 // this stub, because runtime stubs are not traversed when doing GC.
4169
4170 // Registers:
4171 // a0: entry_address
4172 // a1: function
4173 // a2: receiver_pointer
4174 // a3: argc
4175 // s0: argv
4176 //
4177 // Stack:
4178 // handler frame
4179 // entry frame
4180 // callee saved registers + ra
4181 // 4 args slots
4182 // args
4183
4184 if (is_construct) {
4185 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
4186 isolate);
4187 __ li(t0, Operand(construct_entry));
4188 } else {
4189 ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
4190 __ li(t0, Operand(entry));
4191 }
4192 __ lw(t9, MemOperand(t0)); // Deref address.
4193
4194 // Call JSEntryTrampoline.
4195 __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
4196 __ Call(t9);
4197
4198 // Unlink this frame from the handler chain.
4199 __ PopTryHandler();
4200
4201 __ bind(&exit); // v0 holds result
4202 // Check if the current stack frame is marked as the outermost JS frame.
4203 Label non_outermost_js_2;
4204 __ pop(t1);
4205 __ Branch(&non_outermost_js_2,
4206 ne,
4207 t1,
4208 Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4209 __ li(t1, Operand(ExternalReference(js_entry_sp)));
4210 __ sw(zero_reg, MemOperand(t1));
4211 __ bind(&non_outermost_js_2);
4212
4213 // Restore the top frame descriptors from the stack.
4214 __ pop(t1);
4215 __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
4216 isolate)));
4217 __ sw(t1, MemOperand(t0));
4218
4219 // Reset the stack to the callee saved registers.
4220 __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
4221
4222 if (CpuFeatures::IsSupported(FPU)) {
4223 CpuFeatures::Scope scope(FPU);
4224 // Restore callee-saved fpu registers.
4225 __ MultiPopFPU(kCalleeSavedFPU);
4226 }
4227
4228 // Restore callee saved registers from the stack.
4229 __ MultiPop(kCalleeSaved | ra.bit());
4230 // Return.
4231 __ Jump(ra);
4232 }
4233
4234
4235 // Uses registers a0 to t0.
4236 // Expected input (depending on whether args are in registers or on the stack):
4237 // * object: a0 or at sp + 1 * kPointerSize.
4238 // * function: a1 or at sp.
4239 //
4240 // An inlined call site may have been generated before calling this stub.
4241 // In this case the offset to the inline site to patch is passed on the stack,
4242 // in the safepoint slot for register t0.
Generate(MacroAssembler * masm)4243 void InstanceofStub::Generate(MacroAssembler* masm) {
4244 // Call site inlining and patching implies arguments in registers.
4245 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
4246 // ReturnTrueFalse is only implemented for inlined call sites.
4247 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
4248
4249 // Fixed register usage throughout the stub:
4250 const Register object = a0; // Object (lhs).
4251 Register map = a3; // Map of the object.
4252 const Register function = a1; // Function (rhs).
4253 const Register prototype = t0; // Prototype of the function.
4254 const Register inline_site = t5;
4255 const Register scratch = a2;
4256
4257 const int32_t kDeltaToLoadBoolResult = 5 * kPointerSize;
4258
4259 Label slow, loop, is_instance, is_not_instance, not_js_object;
4260
4261 if (!HasArgsInRegisters()) {
4262 __ lw(object, MemOperand(sp, 1 * kPointerSize));
4263 __ lw(function, MemOperand(sp, 0));
4264 }
4265
4266 // Check that the left hand is a JS object and load map.
4267 __ JumpIfSmi(object, ¬_js_object);
4268 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
4269
4270 // If there is a call site cache don't look in the global cache, but do the
4271 // real lookup and update the call site cache.
4272 if (!HasCallSiteInlineCheck()) {
4273 Label miss;
4274 __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
4275 __ Branch(&miss, ne, function, Operand(at));
4276 __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
4277 __ Branch(&miss, ne, map, Operand(at));
4278 __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
4279 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4280
4281 __ bind(&miss);
4282 }
4283
4284 // Get the prototype of the function.
4285 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
4286
4287 // Check that the function prototype is a JS object.
4288 __ JumpIfSmi(prototype, &slow);
4289 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
4290
4291 // Update the global instanceof or call site inlined cache with the current
4292 // map and function. The cached answer will be set when it is known below.
4293 if (!HasCallSiteInlineCheck()) {
4294 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
4295 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
4296 } else {
4297 ASSERT(HasArgsInRegisters());
4298 // Patch the (relocated) inlined map check.
4299
4300 // The offset was stored in t0 safepoint slot.
4301 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
4302 __ LoadFromSafepointRegisterSlot(scratch, t0);
4303 __ Subu(inline_site, ra, scratch);
4304 // Get the map location in scratch and patch it.
4305 __ GetRelocatedValue(inline_site, scratch, v1); // v1 used as scratch.
4306 __ sw(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
4307 }
4308
4309 // Register mapping: a3 is object map and t0 is function prototype.
4310 // Get prototype of object into a2.
4311 __ lw(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
4312
4313 // We don't need map any more. Use it as a scratch register.
4314 Register scratch2 = map;
4315 map = no_reg;
4316
4317 // Loop through the prototype chain looking for the function prototype.
4318 __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
4319 __ bind(&loop);
4320 __ Branch(&is_instance, eq, scratch, Operand(prototype));
4321 __ Branch(&is_not_instance, eq, scratch, Operand(scratch2));
4322 __ lw(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
4323 __ lw(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
4324 __ Branch(&loop);
4325
4326 __ bind(&is_instance);
4327 ASSERT(Smi::FromInt(0) == 0);
4328 if (!HasCallSiteInlineCheck()) {
4329 __ mov(v0, zero_reg);
4330 __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
4331 } else {
4332 // Patch the call site to return true.
4333 __ LoadRoot(v0, Heap::kTrueValueRootIndex);
4334 __ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4335 // Get the boolean result location in scratch and patch it.
4336 __ PatchRelocatedValue(inline_site, scratch, v0);
4337
4338 if (!ReturnTrueFalseObject()) {
4339 ASSERT_EQ(Smi::FromInt(0), 0);
4340 __ mov(v0, zero_reg);
4341 }
4342 }
4343 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4344
4345 __ bind(&is_not_instance);
4346 if (!HasCallSiteInlineCheck()) {
4347 __ li(v0, Operand(Smi::FromInt(1)));
4348 __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
4349 } else {
4350 // Patch the call site to return false.
4351 __ LoadRoot(v0, Heap::kFalseValueRootIndex);
4352 __ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4353 // Get the boolean result location in scratch and patch it.
4354 __ PatchRelocatedValue(inline_site, scratch, v0);
4355
4356 if (!ReturnTrueFalseObject()) {
4357 __ li(v0, Operand(Smi::FromInt(1)));
4358 }
4359 }
4360
4361 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4362
4363 Label object_not_null, object_not_null_or_smi;
4364 __ bind(¬_js_object);
4365 // Before null, smi and string value checks, check that the rhs is a function
4366 // as for a non-function rhs an exception needs to be thrown.
4367 __ JumpIfSmi(function, &slow);
4368 __ GetObjectType(function, scratch2, scratch);
4369 __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));
4370
4371 // Null is not instance of anything.
4372 __ Branch(&object_not_null,
4373 ne,
4374 scratch,
4375 Operand(masm->isolate()->factory()->null_value()));
4376 __ li(v0, Operand(Smi::FromInt(1)));
4377 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4378
4379 __ bind(&object_not_null);
4380 // Smi values are not instances of anything.
4381 __ JumpIfNotSmi(object, &object_not_null_or_smi);
4382 __ li(v0, Operand(Smi::FromInt(1)));
4383 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4384
4385 __ bind(&object_not_null_or_smi);
4386 // String values are not instances of anything.
4387 __ IsObjectJSStringType(object, scratch, &slow);
4388 __ li(v0, Operand(Smi::FromInt(1)));
4389 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4390
4391 // Slow-case. Tail call builtin.
4392 __ bind(&slow);
4393 if (!ReturnTrueFalseObject()) {
4394 if (HasArgsInRegisters()) {
4395 __ Push(a0, a1);
4396 }
4397 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
4398 } else {
4399 {
4400 FrameScope scope(masm, StackFrame::INTERNAL);
4401 __ Push(a0, a1);
4402 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
4403 }
4404 __ mov(a0, v0);
4405 __ LoadRoot(v0, Heap::kTrueValueRootIndex);
4406 __ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg));
4407 __ LoadRoot(v0, Heap::kFalseValueRootIndex);
4408 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4409 }
4410 }
4411
4412
left()4413 Register InstanceofStub::left() { return a0; }
4414
4415
right()4416 Register InstanceofStub::right() { return a1; }
4417
4418
GenerateReadElement(MacroAssembler * masm)4419 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
4420 // The displacement is the offset of the last parameter (if any)
4421 // relative to the frame pointer.
4422 const int kDisplacement =
4423 StandardFrameConstants::kCallerSPOffset - kPointerSize;
4424
4425 // Check that the key is a smiGenerateReadElement.
4426 Label slow;
4427 __ JumpIfNotSmi(a1, &slow);
4428
4429 // Check if the calling frame is an arguments adaptor frame.
4430 Label adaptor;
4431 __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4432 __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
4433 __ Branch(&adaptor,
4434 eq,
4435 a3,
4436 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4437
4438 // Check index (a1) against formal parameters count limit passed in
4439 // through register a0. Use unsigned comparison to get negative
4440 // check for free.
4441 __ Branch(&slow, hs, a1, Operand(a0));
4442
4443 // Read the argument from the stack and return it.
4444 __ subu(a3, a0, a1);
4445 __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
4446 __ Addu(a3, fp, Operand(t3));
4447 __ lw(v0, MemOperand(a3, kDisplacement));
4448 __ Ret();
4449
4450 // Arguments adaptor case: Check index (a1) against actual arguments
4451 // limit found in the arguments adaptor frame. Use unsigned
4452 // comparison to get negative check for free.
4453 __ bind(&adaptor);
4454 __ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4455 __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
4456
4457 // Read the argument from the adaptor frame and return it.
4458 __ subu(a3, a0, a1);
4459 __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
4460 __ Addu(a3, a2, Operand(t3));
4461 __ lw(v0, MemOperand(a3, kDisplacement));
4462 __ Ret();
4463
4464 // Slow-case: Handle non-smi or out-of-bounds access to arguments
4465 // by calling the runtime system.
4466 __ bind(&slow);
4467 __ push(a1);
4468 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
4469 }
4470
4471
GenerateNewNonStrictSlow(MacroAssembler * masm)4472 void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
4473 // sp[0] : number of parameters
4474 // sp[4] : receiver displacement
4475 // sp[8] : function
4476 // Check if the calling frame is an arguments adaptor frame.
4477 Label runtime;
4478 __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4479 __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
4480 __ Branch(&runtime,
4481 ne,
4482 a2,
4483 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4484
4485 // Patch the arguments.length and the parameters pointer in the current frame.
4486 __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4487 __ sw(a2, MemOperand(sp, 0 * kPointerSize));
4488 __ sll(t3, a2, 1);
4489 __ Addu(a3, a3, Operand(t3));
4490 __ addiu(a3, a3, StandardFrameConstants::kCallerSPOffset);
4491 __ sw(a3, MemOperand(sp, 1 * kPointerSize));
4492
4493 __ bind(&runtime);
4494 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4495 }
4496
4497
GenerateNewNonStrictFast(MacroAssembler * masm)4498 void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
4499 // Stack layout:
4500 // sp[0] : number of parameters (tagged)
4501 // sp[4] : address of receiver argument
4502 // sp[8] : function
4503 // Registers used over whole function:
4504 // t2 : allocated object (tagged)
4505 // t5 : mapped parameter count (tagged)
4506
4507 __ lw(a1, MemOperand(sp, 0 * kPointerSize));
4508 // a1 = parameter count (tagged)
4509
4510 // Check if the calling frame is an arguments adaptor frame.
4511 Label runtime;
4512 Label adaptor_frame, try_allocate;
4513 __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4514 __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
4515 __ Branch(&adaptor_frame,
4516 eq,
4517 a2,
4518 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4519
4520 // No adaptor, parameter count = argument count.
4521 __ mov(a2, a1);
4522 __ b(&try_allocate);
4523 __ nop(); // Branch delay slot nop.
4524
4525 // We have an adaptor frame. Patch the parameters pointer.
4526 __ bind(&adaptor_frame);
4527 __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4528 __ sll(t6, a2, 1);
4529 __ Addu(a3, a3, Operand(t6));
4530 __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
4531 __ sw(a3, MemOperand(sp, 1 * kPointerSize));
4532
4533 // a1 = parameter count (tagged)
4534 // a2 = argument count (tagged)
4535 // Compute the mapped parameter count = min(a1, a2) in a1.
4536 Label skip_min;
4537 __ Branch(&skip_min, lt, a1, Operand(a2));
4538 __ mov(a1, a2);
4539 __ bind(&skip_min);
4540
4541 __ bind(&try_allocate);
4542
4543 // Compute the sizes of backing store, parameter map, and arguments object.
4544 // 1. Parameter map, has 2 extra words containing context and backing store.
4545 const int kParameterMapHeaderSize =
4546 FixedArray::kHeaderSize + 2 * kPointerSize;
4547 // If there are no mapped parameters, we do not need the parameter_map.
4548 Label param_map_size;
4549 ASSERT_EQ(0, Smi::FromInt(0));
4550 __ Branch(USE_DELAY_SLOT, ¶m_map_size, eq, a1, Operand(zero_reg));
4551 __ mov(t5, zero_reg); // In delay slot: param map size = 0 when a1 == 0.
4552 __ sll(t5, a1, 1);
4553 __ addiu(t5, t5, kParameterMapHeaderSize);
4554 __ bind(¶m_map_size);
4555
4556 // 2. Backing store.
4557 __ sll(t6, a2, 1);
4558 __ Addu(t5, t5, Operand(t6));
4559 __ Addu(t5, t5, Operand(FixedArray::kHeaderSize));
4560
4561 // 3. Arguments object.
4562 __ Addu(t5, t5, Operand(Heap::kArgumentsObjectSize));
4563
4564 // Do the allocation of all three objects in one go.
4565 __ AllocateInNewSpace(t5, v0, a3, t0, &runtime, TAG_OBJECT);
4566
4567 // v0 = address of new object(s) (tagged)
4568 // a2 = argument count (tagged)
4569 // Get the arguments boilerplate from the current (global) context into t0.
4570 const int kNormalOffset =
4571 Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
4572 const int kAliasedOffset =
4573 Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
4574
4575 __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4576 __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
4577 Label skip2_ne, skip2_eq;
4578 __ Branch(&skip2_ne, ne, a1, Operand(zero_reg));
4579 __ lw(t0, MemOperand(t0, kNormalOffset));
4580 __ bind(&skip2_ne);
4581
4582 __ Branch(&skip2_eq, eq, a1, Operand(zero_reg));
4583 __ lw(t0, MemOperand(t0, kAliasedOffset));
4584 __ bind(&skip2_eq);
4585
4586 // v0 = address of new object (tagged)
4587 // a1 = mapped parameter count (tagged)
4588 // a2 = argument count (tagged)
4589 // t0 = address of boilerplate object (tagged)
4590 // Copy the JS object part.
4591 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
4592 __ lw(a3, FieldMemOperand(t0, i));
4593 __ sw(a3, FieldMemOperand(v0, i));
4594 }
4595
4596 // Set up the callee in-object property.
4597 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
4598 __ lw(a3, MemOperand(sp, 2 * kPointerSize));
4599 const int kCalleeOffset = JSObject::kHeaderSize +
4600 Heap::kArgumentsCalleeIndex * kPointerSize;
4601 __ sw(a3, FieldMemOperand(v0, kCalleeOffset));
4602
4603 // Use the length (smi tagged) and set that as an in-object property too.
4604 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
4605 const int kLengthOffset = JSObject::kHeaderSize +
4606 Heap::kArgumentsLengthIndex * kPointerSize;
4607 __ sw(a2, FieldMemOperand(v0, kLengthOffset));
4608
4609 // Set up the elements pointer in the allocated arguments object.
4610 // If we allocated a parameter map, t0 will point there, otherwise
4611 // it will point to the backing store.
4612 __ Addu(t0, v0, Operand(Heap::kArgumentsObjectSize));
4613 __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
4614
4615 // v0 = address of new object (tagged)
4616 // a1 = mapped parameter count (tagged)
4617 // a2 = argument count (tagged)
4618 // t0 = address of parameter map or backing store (tagged)
4619 // Initialize parameter map. If there are no mapped arguments, we're done.
4620 Label skip_parameter_map;
4621 Label skip3;
4622 __ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0)));
4623 // Move backing store address to a3, because it is
4624 // expected there when filling in the unmapped arguments.
4625 __ mov(a3, t0);
4626 __ bind(&skip3);
4627
4628 __ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0)));
4629
4630 __ LoadRoot(t2, Heap::kNonStrictArgumentsElementsMapRootIndex);
4631 __ sw(t2, FieldMemOperand(t0, FixedArray::kMapOffset));
4632 __ Addu(t2, a1, Operand(Smi::FromInt(2)));
4633 __ sw(t2, FieldMemOperand(t0, FixedArray::kLengthOffset));
4634 __ sw(cp, FieldMemOperand(t0, FixedArray::kHeaderSize + 0 * kPointerSize));
4635 __ sll(t6, a1, 1);
4636 __ Addu(t2, t0, Operand(t6));
4637 __ Addu(t2, t2, Operand(kParameterMapHeaderSize));
4638 __ sw(t2, FieldMemOperand(t0, FixedArray::kHeaderSize + 1 * kPointerSize));
4639
4640 // Copy the parameter slots and the holes in the arguments.
4641 // We need to fill in mapped_parameter_count slots. They index the context,
4642 // where parameters are stored in reverse order, at
4643 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4644 // The mapped parameter thus need to get indices
4645 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
4646 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4647 // We loop from right to left.
4648 Label parameters_loop, parameters_test;
4649 __ mov(t2, a1);
4650 __ lw(t5, MemOperand(sp, 0 * kPointerSize));
4651 __ Addu(t5, t5, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
4652 __ Subu(t5, t5, Operand(a1));
4653 __ LoadRoot(t3, Heap::kTheHoleValueRootIndex);
4654 __ sll(t6, t2, 1);
4655 __ Addu(a3, t0, Operand(t6));
4656 __ Addu(a3, a3, Operand(kParameterMapHeaderSize));
4657
4658 // t2 = loop variable (tagged)
4659 // a1 = mapping index (tagged)
4660 // a3 = address of backing store (tagged)
4661 // t0 = address of parameter map (tagged)
4662 // t1 = temporary scratch (a.o., for address calculation)
4663 // t3 = the hole value
4664 __ jmp(¶meters_test);
4665
4666 __ bind(¶meters_loop);
4667 __ Subu(t2, t2, Operand(Smi::FromInt(1)));
4668 __ sll(t1, t2, 1);
4669 __ Addu(t1, t1, Operand(kParameterMapHeaderSize - kHeapObjectTag));
4670 __ Addu(t6, t0, t1);
4671 __ sw(t5, MemOperand(t6));
4672 __ Subu(t1, t1, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
4673 __ Addu(t6, a3, t1);
4674 __ sw(t3, MemOperand(t6));
4675 __ Addu(t5, t5, Operand(Smi::FromInt(1)));
4676 __ bind(¶meters_test);
4677 __ Branch(¶meters_loop, ne, t2, Operand(Smi::FromInt(0)));
4678
4679 __ bind(&skip_parameter_map);
4680 // a2 = argument count (tagged)
4681 // a3 = address of backing store (tagged)
4682 // t1 = scratch
4683 // Copy arguments header and remaining slots (if there are any).
4684 __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
4685 __ sw(t1, FieldMemOperand(a3, FixedArray::kMapOffset));
4686 __ sw(a2, FieldMemOperand(a3, FixedArray::kLengthOffset));
4687
4688 Label arguments_loop, arguments_test;
4689 __ mov(t5, a1);
4690 __ lw(t0, MemOperand(sp, 1 * kPointerSize));
4691 __ sll(t6, t5, 1);
4692 __ Subu(t0, t0, Operand(t6));
4693 __ jmp(&arguments_test);
4694
4695 __ bind(&arguments_loop);
4696 __ Subu(t0, t0, Operand(kPointerSize));
4697 __ lw(t2, MemOperand(t0, 0));
4698 __ sll(t6, t5, 1);
4699 __ Addu(t1, a3, Operand(t6));
4700 __ sw(t2, FieldMemOperand(t1, FixedArray::kHeaderSize));
4701 __ Addu(t5, t5, Operand(Smi::FromInt(1)));
4702
4703 __ bind(&arguments_test);
4704 __ Branch(&arguments_loop, lt, t5, Operand(a2));
4705
4706 // Return and remove the on-stack parameters.
4707 __ DropAndRet(3);
4708
4709 // Do the runtime call to allocate the arguments object.
4710 // a2 = argument count (tagged)
4711 __ bind(&runtime);
4712 __ sw(a2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
4713 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4714 }
4715
4716
GenerateNewStrict(MacroAssembler * masm)4717 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
4718 // sp[0] : number of parameters
4719 // sp[4] : receiver displacement
4720 // sp[8] : function
4721 // Check if the calling frame is an arguments adaptor frame.
4722 Label adaptor_frame, try_allocate, runtime;
4723 __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4724 __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
4725 __ Branch(&adaptor_frame,
4726 eq,
4727 a3,
4728 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4729
4730 // Get the length from the frame.
4731 __ lw(a1, MemOperand(sp, 0));
4732 __ Branch(&try_allocate);
4733
4734 // Patch the arguments.length and the parameters pointer.
4735 __ bind(&adaptor_frame);
4736 __ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4737 __ sw(a1, MemOperand(sp, 0));
4738 __ sll(at, a1, kPointerSizeLog2 - kSmiTagSize);
4739 __ Addu(a3, a2, Operand(at));
4740
4741 __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
4742 __ sw(a3, MemOperand(sp, 1 * kPointerSize));
4743
4744 // Try the new space allocation. Start out with computing the size
4745 // of the arguments object and the elements array in words.
4746 Label add_arguments_object;
4747 __ bind(&try_allocate);
4748 __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
4749 __ srl(a1, a1, kSmiTagSize);
4750
4751 __ Addu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
4752 __ bind(&add_arguments_object);
4753 __ Addu(a1, a1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
4754
4755 // Do the allocation of both objects in one go.
4756 __ AllocateInNewSpace(a1,
4757 v0,
4758 a2,
4759 a3,
4760 &runtime,
4761 static_cast<AllocationFlags>(TAG_OBJECT |
4762 SIZE_IN_WORDS));
4763
4764 // Get the arguments boilerplate from the current (global) context.
4765 __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4766 __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
4767 __ lw(t0, MemOperand(t0, Context::SlotOffset(
4768 Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
4769
4770 // Copy the JS object part.
4771 __ CopyFields(v0, t0, a3.bit(), JSObject::kHeaderSize / kPointerSize);
4772
4773 // Get the length (smi tagged) and set that as an in-object property too.
4774 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
4775 __ lw(a1, MemOperand(sp, 0 * kPointerSize));
4776 __ sw(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
4777 Heap::kArgumentsLengthIndex * kPointerSize));
4778
4779 Label done;
4780 __ Branch(&done, eq, a1, Operand(zero_reg));
4781
4782 // Get the parameters pointer from the stack.
4783 __ lw(a2, MemOperand(sp, 1 * kPointerSize));
4784
4785 // Set up the elements pointer in the allocated arguments object and
4786 // initialize the header in the elements fixed array.
4787 __ Addu(t0, v0, Operand(Heap::kArgumentsObjectSizeStrict));
4788 __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
4789 __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
4790 __ sw(a3, FieldMemOperand(t0, FixedArray::kMapOffset));
4791 __ sw(a1, FieldMemOperand(t0, FixedArray::kLengthOffset));
4792 // Untag the length for the loop.
4793 __ srl(a1, a1, kSmiTagSize);
4794
4795 // Copy the fixed array slots.
4796 Label loop;
4797 // Set up t0 to point to the first array slot.
4798 __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4799 __ bind(&loop);
4800 // Pre-decrement a2 with kPointerSize on each iteration.
4801 // Pre-decrement in order to skip receiver.
4802 __ Addu(a2, a2, Operand(-kPointerSize));
4803 __ lw(a3, MemOperand(a2));
4804 // Post-increment t0 with kPointerSize on each iteration.
4805 __ sw(a3, MemOperand(t0));
4806 __ Addu(t0, t0, Operand(kPointerSize));
4807 __ Subu(a1, a1, Operand(1));
4808 __ Branch(&loop, ne, a1, Operand(zero_reg));
4809
4810 // Return and remove the on-stack parameters.
4811 __ bind(&done);
4812 __ DropAndRet(3);
4813
4814 // Do the runtime call to allocate the arguments object.
4815 __ bind(&runtime);
4816 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
4817 }
4818
4819
Generate(MacroAssembler * masm)4820 void RegExpExecStub::Generate(MacroAssembler* masm) {
4821 // Just jump directly to runtime if native RegExp is not selected at compile
4822 // time or if regexp entry in generated code is turned off runtime switch or
4823 // at compilation.
4824 #ifdef V8_INTERPRETED_REGEXP
4825 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4826 #else // V8_INTERPRETED_REGEXP
4827
4828 // Stack frame on entry.
4829 // sp[0]: last_match_info (expected JSArray)
4830 // sp[4]: previous index
4831 // sp[8]: subject string
4832 // sp[12]: JSRegExp object
4833
4834 const int kLastMatchInfoOffset = 0 * kPointerSize;
4835 const int kPreviousIndexOffset = 1 * kPointerSize;
4836 const int kSubjectOffset = 2 * kPointerSize;
4837 const int kJSRegExpOffset = 3 * kPointerSize;
4838
4839 Isolate* isolate = masm->isolate();
4840
4841 Label runtime, invoke_regexp;
4842
4843 // Allocation of registers for this function. These are in callee save
4844 // registers and will be preserved by the call to the native RegExp code, as
4845 // this code is called using the normal C calling convention. When calling
4846 // directly from generated code the native RegExp code will not do a GC and
4847 // therefore the content of these registers are safe to use after the call.
4848 // MIPS - using s0..s2, since we are not using CEntry Stub.
4849 Register subject = s0;
4850 Register regexp_data = s1;
4851 Register last_match_info_elements = s2;
4852
4853 // Ensure that a RegExp stack is allocated.
4854 ExternalReference address_of_regexp_stack_memory_address =
4855 ExternalReference::address_of_regexp_stack_memory_address(
4856 isolate);
4857 ExternalReference address_of_regexp_stack_memory_size =
4858 ExternalReference::address_of_regexp_stack_memory_size(isolate);
4859 __ li(a0, Operand(address_of_regexp_stack_memory_size));
4860 __ lw(a0, MemOperand(a0, 0));
4861 __ Branch(&runtime, eq, a0, Operand(zero_reg));
4862
4863 // Check that the first argument is a JSRegExp object.
4864 __ lw(a0, MemOperand(sp, kJSRegExpOffset));
4865 STATIC_ASSERT(kSmiTag == 0);
4866 __ JumpIfSmi(a0, &runtime);
4867 __ GetObjectType(a0, a1, a1);
4868 __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
4869
4870 // Check that the RegExp has been compiled (data contains a fixed array).
4871 __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
4872 if (FLAG_debug_code) {
4873 __ And(t0, regexp_data, Operand(kSmiTagMask));
4874 __ Check(nz,
4875 "Unexpected type for RegExp data, FixedArray expected",
4876 t0,
4877 Operand(zero_reg));
4878 __ GetObjectType(regexp_data, a0, a0);
4879 __ Check(eq,
4880 "Unexpected type for RegExp data, FixedArray expected",
4881 a0,
4882 Operand(FIXED_ARRAY_TYPE));
4883 }
4884
4885 // regexp_data: RegExp data (FixedArray)
4886 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
4887 __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
4888 __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
4889
4890 // regexp_data: RegExp data (FixedArray)
4891 // Check that the number of captures fit in the static offsets vector buffer.
4892 __ lw(a2,
4893 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4894 // Calculate number of capture registers (number_of_captures + 1) * 2. This
4895 // uses the asumption that smis are 2 * their untagged value.
4896 STATIC_ASSERT(kSmiTag == 0);
4897 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4898 __ Addu(a2, a2, Operand(2)); // a2 was a smi.
4899 // Check that the static offsets vector buffer is large enough.
4900 __ Branch(&runtime, hi, a2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
4901
4902 // a2: Number of capture registers
4903 // regexp_data: RegExp data (FixedArray)
4904 // Check that the second argument is a string.
4905 __ lw(subject, MemOperand(sp, kSubjectOffset));
4906 __ JumpIfSmi(subject, &runtime);
4907 __ GetObjectType(subject, a0, a0);
4908 __ And(a0, a0, Operand(kIsNotStringMask));
4909 STATIC_ASSERT(kStringTag == 0);
4910 __ Branch(&runtime, ne, a0, Operand(zero_reg));
4911
4912 // Get the length of the string to r3.
4913 __ lw(a3, FieldMemOperand(subject, String::kLengthOffset));
4914
4915 // a2: Number of capture registers
4916 // a3: Length of subject string as a smi
4917 // subject: Subject string
4918 // regexp_data: RegExp data (FixedArray)
4919 // Check that the third argument is a positive smi less than the subject
4920 // string length. A negative value will be greater (unsigned comparison).
4921 __ lw(a0, MemOperand(sp, kPreviousIndexOffset));
4922 __ JumpIfNotSmi(a0, &runtime);
4923 __ Branch(&runtime, ls, a3, Operand(a0));
4924
4925 // a2: Number of capture registers
4926 // subject: Subject string
4927 // regexp_data: RegExp data (FixedArray)
4928 // Check that the fourth object is a JSArray object.
4929 __ lw(a0, MemOperand(sp, kLastMatchInfoOffset));
4930 __ JumpIfSmi(a0, &runtime);
4931 __ GetObjectType(a0, a1, a1);
4932 __ Branch(&runtime, ne, a1, Operand(JS_ARRAY_TYPE));
4933 // Check that the JSArray is in fast case.
4934 __ lw(last_match_info_elements,
4935 FieldMemOperand(a0, JSArray::kElementsOffset));
4936 __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
4937 __ Branch(&runtime, ne, a0, Operand(
4938 isolate->factory()->fixed_array_map()));
4939 // Check that the last match info has space for the capture registers and the
4940 // additional information.
4941 __ lw(a0,
4942 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
4943 __ Addu(a2, a2, Operand(RegExpImpl::kLastMatchOverhead));
4944 __ sra(at, a0, kSmiTagSize); // Untag length for comparison.
4945 __ Branch(&runtime, gt, a2, Operand(at));
4946
4947 // Reset offset for possibly sliced string.
4948 __ mov(t0, zero_reg);
4949 // subject: Subject string
4950 // regexp_data: RegExp data (FixedArray)
4951 // Check the representation and encoding of the subject string.
4952 Label seq_string;
4953 __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
4954 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
4955 // First check for flat string. None of the following string type tests will
4956 // succeed if subject is not a string or a short external string.
4957 __ And(a1,
4958 a0,
4959 Operand(kIsNotStringMask |
4960 kStringRepresentationMask |
4961 kShortExternalStringMask));
4962 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
4963 __ Branch(&seq_string, eq, a1, Operand(zero_reg));
4964
4965 // subject: Subject string
4966 // a0: instance type if Subject string
4967 // regexp_data: RegExp data (FixedArray)
4968 // a1: whether subject is a string and if yes, its string representation
4969 // Check for flat cons string or sliced string.
4970 // A flat cons string is a cons string where the second part is the empty
4971 // string. In that case the subject string is just the first part of the cons
4972 // string. Also in this case the first part of the cons string is known to be
4973 // a sequential string or an external string.
4974 // In the case of a sliced string its offset has to be taken into account.
4975 Label cons_string, external_string, check_encoding;
4976 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
4977 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
4978 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
4979 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
4980 __ Branch(&cons_string, lt, a1, Operand(kExternalStringTag));
4981 __ Branch(&external_string, eq, a1, Operand(kExternalStringTag));
4982
4983 // Catch non-string subject or short external string.
4984 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
4985 __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
4986 __ Branch(&runtime, ne, at, Operand(zero_reg));
4987
4988 // String is sliced.
4989 __ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
4990 __ sra(t0, t0, kSmiTagSize);
4991 __ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
4992 // t5: offset of sliced string, smi-tagged.
4993 __ jmp(&check_encoding);
4994 // String is a cons string, check whether it is flat.
4995 __ bind(&cons_string);
4996 __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
4997 __ LoadRoot(a1, Heap::kEmptyStringRootIndex);
4998 __ Branch(&runtime, ne, a0, Operand(a1));
4999 __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
5000 // Is first part of cons or parent of slice a flat string?
5001 __ bind(&check_encoding);
5002 __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
5003 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
5004 STATIC_ASSERT(kSeqStringTag == 0);
5005 __ And(at, a0, Operand(kStringRepresentationMask));
5006 __ Branch(&external_string, ne, at, Operand(zero_reg));
5007
5008 __ bind(&seq_string);
5009 // subject: Subject string
5010 // regexp_data: RegExp data (FixedArray)
5011 // a0: Instance type of subject string
5012 STATIC_ASSERT(kStringEncodingMask == 4);
5013 STATIC_ASSERT(kAsciiStringTag == 4);
5014 STATIC_ASSERT(kTwoByteStringTag == 0);
5015 // Find the code object based on the assumptions above.
5016 __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for ASCII.
5017 __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset));
5018 __ sra(a3, a0, 2); // a3 is 1 for ASCII, 0 for UC16 (used below).
5019 __ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
5020 __ Movz(t9, t1, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
5021
5022 // Check that the irregexp code has been generated for the actual string
5023 // encoding. If it has, the field contains a code object otherwise it contains
5024 // a smi (code flushing support).
5025 __ JumpIfSmi(t9, &runtime);
5026
5027 // a3: encoding of subject string (1 if ASCII, 0 if two_byte);
5028 // t9: code
5029 // subject: Subject string
5030 // regexp_data: RegExp data (FixedArray)
5031 // Load used arguments before starting to push arguments for call to native
5032 // RegExp code to avoid handling changing stack height.
5033 __ lw(a1, MemOperand(sp, kPreviousIndexOffset));
5034 __ sra(a1, a1, kSmiTagSize); // Untag the Smi.
5035
5036 // a1: previous index
5037 // a3: encoding of subject string (1 if ASCII, 0 if two_byte);
5038 // t9: code
5039 // subject: Subject string
5040 // regexp_data: RegExp data (FixedArray)
5041 // All checks done. Now push arguments for native regexp code.
5042 __ IncrementCounter(isolate->counters()->regexp_entry_native(),
5043 1, a0, a2);
5044
5045 // Isolates: note we add an additional parameter here (isolate pointer).
5046 const int kRegExpExecuteArguments = 8;
5047 const int kParameterRegisters = 4;
5048 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
5049
5050 // Stack pointer now points to cell where return address is to be written.
5051 // Arguments are before that on the stack or in registers, meaning we
5052 // treat the return address as argument 5. Thus every argument after that
5053 // needs to be shifted back by 1. Since DirectCEntryStub will handle
5054 // allocating space for the c argument slots, we don't need to calculate
5055 // that into the argument positions on the stack. This is how the stack will
5056 // look (sp meaning the value of sp at this moment):
5057 // [sp + 4] - Argument 8
5058 // [sp + 3] - Argument 7
5059 // [sp + 2] - Argument 6
5060 // [sp + 1] - Argument 5
5061 // [sp + 0] - saved ra
5062
5063 // Argument 8: Pass current isolate address.
5064 // CFunctionArgumentOperand handles MIPS stack argument slots.
5065 __ li(a0, Operand(ExternalReference::isolate_address()));
5066 __ sw(a0, MemOperand(sp, 4 * kPointerSize));
5067
5068 // Argument 7: Indicate that this is a direct call from JavaScript.
5069 __ li(a0, Operand(1));
5070 __ sw(a0, MemOperand(sp, 3 * kPointerSize));
5071
5072 // Argument 6: Start (high end) of backtracking stack memory area.
5073 __ li(a0, Operand(address_of_regexp_stack_memory_address));
5074 __ lw(a0, MemOperand(a0, 0));
5075 __ li(a2, Operand(address_of_regexp_stack_memory_size));
5076 __ lw(a2, MemOperand(a2, 0));
5077 __ addu(a0, a0, a2);
5078 __ sw(a0, MemOperand(sp, 2 * kPointerSize));
5079
5080 // Argument 5: static offsets vector buffer.
5081 __ li(a0, Operand(
5082 ExternalReference::address_of_static_offsets_vector(isolate)));
5083 __ sw(a0, MemOperand(sp, 1 * kPointerSize));
5084
5085 // For arguments 4 and 3 get string length, calculate start of string data
5086 // and calculate the shift of the index (0 for ASCII and 1 for two byte).
5087 __ Addu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
5088 __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
5089 // Load the length from the original subject string from the previous stack
5090 // frame. Therefore we have to use fp, which points exactly to two pointer
5091 // sizes below the previous sp. (Because creating a new stack frame pushes
5092 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
5093 __ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
5094 // If slice offset is not 0, load the length from the original sliced string.
5095 // Argument 4, a3: End of string data
5096 // Argument 3, a2: Start of string data
5097 // Prepare start and end index of the input.
5098 __ sllv(t1, t0, a3);
5099 __ addu(t0, t2, t1);
5100 __ sllv(t1, a1, a3);
5101 __ addu(a2, t0, t1);
5102
5103 __ lw(t2, FieldMemOperand(subject, String::kLengthOffset));
5104 __ sra(t2, t2, kSmiTagSize);
5105 __ sllv(t1, t2, a3);
5106 __ addu(a3, t0, t1);
5107 // Argument 2 (a1): Previous index.
5108 // Already there
5109
5110 // Argument 1 (a0): Subject string.
5111 __ mov(a0, subject);
5112
5113 // Locate the code entry and call it.
5114 __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
5115 DirectCEntryStub stub;
5116 stub.GenerateCall(masm, t9);
5117
5118 __ LeaveExitFrame(false, no_reg);
5119
5120 // v0: result
5121 // subject: subject string (callee saved)
5122 // regexp_data: RegExp data (callee saved)
5123 // last_match_info_elements: Last match info elements (callee saved)
5124
5125 // Check the result.
5126
5127 Label success;
5128 __ Branch(&success, eq, v0, Operand(NativeRegExpMacroAssembler::SUCCESS));
5129 Label failure;
5130 __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
5131 // If not exception it can only be retry. Handle that in the runtime system.
5132 __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
5133 // Result must now be exception. If there is no pending exception already a
5134 // stack overflow (on the backtrack stack) was detected in RegExp code but
5135 // haven't created the exception yet. Handle that in the runtime system.
5136 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
5137 __ li(a1, Operand(isolate->factory()->the_hole_value()));
5138 __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
5139 isolate)));
5140 __ lw(v0, MemOperand(a2, 0));
5141 __ Branch(&runtime, eq, v0, Operand(a1));
5142
5143 __ sw(a1, MemOperand(a2, 0)); // Clear pending exception.
5144
5145 // Check if the exception is a termination. If so, throw as uncatchable.
5146 __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
5147 Label termination_exception;
5148 __ Branch(&termination_exception, eq, v0, Operand(a0));
5149
5150 __ Throw(v0);
5151
5152 __ bind(&termination_exception);
5153 __ ThrowUncatchable(v0);
5154
5155 __ bind(&failure);
5156 // For failure and exception return null.
5157 __ li(v0, Operand(isolate->factory()->null_value()));
5158 __ DropAndRet(4);
5159
5160 // Process the result from the native regexp code.
5161 __ bind(&success);
5162 __ lw(a1,
5163 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
5164 // Calculate number of capture registers (number_of_captures + 1) * 2.
5165 STATIC_ASSERT(kSmiTag == 0);
5166 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5167 __ Addu(a1, a1, Operand(2)); // a1 was a smi.
5168
5169 // a1: number of capture registers
5170 // subject: subject string
5171 // Store the capture count.
5172 __ sll(a2, a1, kSmiTagSize + kSmiShiftSize); // To smi.
5173 __ sw(a2, FieldMemOperand(last_match_info_elements,
5174 RegExpImpl::kLastCaptureCountOffset));
5175 // Store last subject and last input.
5176 __ sw(subject,
5177 FieldMemOperand(last_match_info_elements,
5178 RegExpImpl::kLastSubjectOffset));
5179 __ mov(a2, subject);
5180 __ RecordWriteField(last_match_info_elements,
5181 RegExpImpl::kLastSubjectOffset,
5182 a2,
5183 t3,
5184 kRAHasNotBeenSaved,
5185 kDontSaveFPRegs);
5186 __ sw(subject,
5187 FieldMemOperand(last_match_info_elements,
5188 RegExpImpl::kLastInputOffset));
5189 __ RecordWriteField(last_match_info_elements,
5190 RegExpImpl::kLastInputOffset,
5191 subject,
5192 t3,
5193 kRAHasNotBeenSaved,
5194 kDontSaveFPRegs);
5195
5196 // Get the static offsets vector filled by the native regexp code.
5197 ExternalReference address_of_static_offsets_vector =
5198 ExternalReference::address_of_static_offsets_vector(isolate);
5199 __ li(a2, Operand(address_of_static_offsets_vector));
5200
5201 // a1: number of capture registers
5202 // a2: offsets vector
5203 Label next_capture, done;
5204 // Capture register counter starts from number of capture registers and
5205 // counts down until wrapping after zero.
5206 __ Addu(a0,
5207 last_match_info_elements,
5208 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
5209 __ bind(&next_capture);
5210 __ Subu(a1, a1, Operand(1));
5211 __ Branch(&done, lt, a1, Operand(zero_reg));
5212 // Read the value from the static offsets vector buffer.
5213 __ lw(a3, MemOperand(a2, 0));
5214 __ addiu(a2, a2, kPointerSize);
5215 // Store the smi value in the last match info.
5216 __ sll(a3, a3, kSmiTagSize); // Convert to Smi.
5217 __ sw(a3, MemOperand(a0, 0));
5218 __ Branch(&next_capture, USE_DELAY_SLOT);
5219 __ addiu(a0, a0, kPointerSize); // In branch delay slot.
5220
5221 __ bind(&done);
5222
5223 // Return last match info.
5224 __ lw(v0, MemOperand(sp, kLastMatchInfoOffset));
5225 __ DropAndRet(4);
5226
5227 // External string. Short external strings have already been ruled out.
5228 // a0: scratch
5229 __ bind(&external_string);
5230 __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
5231 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
5232 if (FLAG_debug_code) {
5233 // Assert that we do not have a cons or slice (indirect strings) here.
5234 // Sequential strings have already been ruled out.
5235 __ And(at, a0, Operand(kIsIndirectStringMask));
5236 __ Assert(eq,
5237 "external string expected, but not found",
5238 at,
5239 Operand(zero_reg));
5240 }
5241 __ lw(subject,
5242 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
5243 // Move the pointer so that offset-wise, it looks like a sequential string.
5244 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
5245 __ Subu(subject,
5246 subject,
5247 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
5248 __ jmp(&seq_string);
5249
5250 // Do the runtime call to execute the regexp.
5251 __ bind(&runtime);
5252 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
5253 #endif // V8_INTERPRETED_REGEXP
5254 }
5255
5256
Generate(MacroAssembler * masm)5257 void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
5258 const int kMaxInlineLength = 100;
5259 Label slowcase;
5260 Label done;
5261 __ lw(a1, MemOperand(sp, kPointerSize * 2));
5262 STATIC_ASSERT(kSmiTag == 0);
5263 STATIC_ASSERT(kSmiTagSize == 1);
5264 __ JumpIfNotSmi(a1, &slowcase);
5265 __ Branch(&slowcase, hi, a1, Operand(Smi::FromInt(kMaxInlineLength)));
5266 // Smi-tagging is equivalent to multiplying by 2.
5267 // Allocate RegExpResult followed by FixedArray with size in ebx.
5268 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
5269 // Elements: [Map][Length][..elements..]
5270 // Size of JSArray with two in-object properties and the header of a
5271 // FixedArray.
5272 int objects_size =
5273 (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
5274 __ srl(t1, a1, kSmiTagSize + kSmiShiftSize);
5275 __ Addu(a2, t1, Operand(objects_size));
5276 __ AllocateInNewSpace(
5277 a2, // In: Size, in words.
5278 v0, // Out: Start of allocation (tagged).
5279 a3, // Scratch register.
5280 t0, // Scratch register.
5281 &slowcase,
5282 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
5283 // v0: Start of allocated area, object-tagged.
5284 // a1: Number of elements in array, as smi.
5285 // t1: Number of elements, untagged.
5286
5287 // Set JSArray map to global.regexp_result_map().
5288 // Set empty properties FixedArray.
5289 // Set elements to point to FixedArray allocated right after the JSArray.
5290 // Interleave operations for better latency.
5291 __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX));
5292 __ Addu(a3, v0, Operand(JSRegExpResult::kSize));
5293 __ li(t0, Operand(masm->isolate()->factory()->empty_fixed_array()));
5294 __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
5295 __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
5296 __ lw(a2, ContextOperand(a2, Context::REGEXP_RESULT_MAP_INDEX));
5297 __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset));
5298 __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
5299
5300 // Set input, index and length fields from arguments.
5301 __ lw(a1, MemOperand(sp, kPointerSize * 0));
5302 __ lw(a2, MemOperand(sp, kPointerSize * 1));
5303 __ lw(t2, MemOperand(sp, kPointerSize * 2));
5304 __ sw(a1, FieldMemOperand(v0, JSRegExpResult::kInputOffset));
5305 __ sw(a2, FieldMemOperand(v0, JSRegExpResult::kIndexOffset));
5306 __ sw(t2, FieldMemOperand(v0, JSArray::kLengthOffset));
5307
5308 // Fill out the elements FixedArray.
5309 // v0: JSArray, tagged.
5310 // a3: FixedArray, tagged.
5311 // t1: Number of elements in array, untagged.
5312
5313 // Set map.
5314 __ li(a2, Operand(masm->isolate()->factory()->fixed_array_map()));
5315 __ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset));
5316 // Set FixedArray length.
5317 __ sll(t2, t1, kSmiTagSize);
5318 __ sw(t2, FieldMemOperand(a3, FixedArray::kLengthOffset));
5319 // Fill contents of fixed-array with the-hole.
5320 __ li(a2, Operand(masm->isolate()->factory()->the_hole_value()));
5321 __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5322 // Fill fixed array elements with hole.
5323 // v0: JSArray, tagged.
5324 // a2: the hole.
5325 // a3: Start of elements in FixedArray.
5326 // t1: Number of elements to fill.
5327 Label loop;
5328 __ sll(t1, t1, kPointerSizeLog2); // Convert num elements to num bytes.
5329 __ addu(t1, t1, a3); // Point past last element to store.
5330 __ bind(&loop);
5331 __ Branch(&done, ge, a3, Operand(t1)); // Break when a3 past end of elem.
5332 __ sw(a2, MemOperand(a3));
5333 __ Branch(&loop, USE_DELAY_SLOT);
5334 __ addiu(a3, a3, kPointerSize); // In branch delay slot.
5335
5336 __ bind(&done);
5337 __ DropAndRet(3);
5338
5339 __ bind(&slowcase);
5340 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
5341 }
5342
5343
GenerateRecordCallTarget(MacroAssembler * masm)5344 static void GenerateRecordCallTarget(MacroAssembler* masm) {
5345 // Cache the called function in a global property cell. Cache states
5346 // are uninitialized, monomorphic (indicated by a JSFunction), and
5347 // megamorphic.
5348 // a1 : the function to call
5349 // a2 : cache cell for call target
5350 Label done;
5351
5352 ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
5353 masm->isolate()->heap()->undefined_value());
5354 ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
5355 masm->isolate()->heap()->the_hole_value());
5356
5357 // Load the cache state into a3.
5358 __ lw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
5359
5360 // A monomorphic cache hit or an already megamorphic state: invoke the
5361 // function without changing the state.
5362 __ Branch(&done, eq, a3, Operand(a1));
5363 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5364 __ Branch(&done, eq, a3, Operand(at));
5365
5366 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
5367 // megamorphic.
5368 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5369
5370 __ Branch(USE_DELAY_SLOT, &done, eq, a3, Operand(at));
5371 // An uninitialized cache is patched with the function.
5372 // Store a1 in the delay slot. This may or may not get overwritten depending
5373 // on the result of the comparison.
5374 __ sw(a1, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
5375 // No need for a write barrier here - cells are rescanned.
5376
5377 // MegamorphicSentinel is an immortal immovable object (undefined) so no
5378 // write-barrier is needed.
5379 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5380 __ sw(at, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
5381
5382 __ bind(&done);
5383 }
5384
5385
Generate(MacroAssembler * masm)5386 void CallFunctionStub::Generate(MacroAssembler* masm) {
5387 // a1 : the function to call
5388 // a2 : cache cell for call target
5389 Label slow, non_function;
5390
5391 // The receiver might implicitly be the global object. This is
5392 // indicated by passing the hole as the receiver to the call
5393 // function stub.
5394 if (ReceiverMightBeImplicit()) {
5395 Label call;
5396 // Get the receiver from the stack.
5397 // function, receiver [, arguments]
5398 __ lw(t0, MemOperand(sp, argc_ * kPointerSize));
5399 // Call as function is indicated with the hole.
5400 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5401 __ Branch(&call, ne, t0, Operand(at));
5402 // Patch the receiver on the stack with the global receiver object.
5403 __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
5404 __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset));
5405 __ sw(a2, MemOperand(sp, argc_ * kPointerSize));
5406 __ bind(&call);
5407 }
5408
5409 // Check that the function is really a JavaScript function.
5410 // a1: pushed function (to be verified)
5411 __ JumpIfSmi(a1, &non_function);
5412 // Get the map of the function object.
5413 __ GetObjectType(a1, a2, a2);
5414 __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
5415
5416 // Fast-case: Invoke the function now.
5417 // a1: pushed function
5418 ParameterCount actual(argc_);
5419
5420 if (ReceiverMightBeImplicit()) {
5421 Label call_as_function;
5422 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5423 __ Branch(&call_as_function, eq, t0, Operand(at));
5424 __ InvokeFunction(a1,
5425 actual,
5426 JUMP_FUNCTION,
5427 NullCallWrapper(),
5428 CALL_AS_METHOD);
5429 __ bind(&call_as_function);
5430 }
5431 __ InvokeFunction(a1,
5432 actual,
5433 JUMP_FUNCTION,
5434 NullCallWrapper(),
5435 CALL_AS_FUNCTION);
5436
5437 // Slow-case: Non-function called.
5438 __ bind(&slow);
5439 // Check for function proxy.
5440 __ Branch(&non_function, ne, a2, Operand(JS_FUNCTION_PROXY_TYPE));
5441 __ push(a1); // Put proxy as additional argument.
5442 __ li(a0, Operand(argc_ + 1, RelocInfo::NONE));
5443 __ li(a2, Operand(0, RelocInfo::NONE));
5444 __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY);
5445 __ SetCallKind(t1, CALL_AS_METHOD);
5446 {
5447 Handle<Code> adaptor =
5448 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
5449 __ Jump(adaptor, RelocInfo::CODE_TARGET);
5450 }
5451
5452 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
5453 // of the original receiver from the call site).
5454 __ bind(&non_function);
5455 __ sw(a1, MemOperand(sp, argc_ * kPointerSize));
5456 __ li(a0, Operand(argc_)); // Set up the number of arguments.
5457 __ mov(a2, zero_reg);
5458 __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION);
5459 __ SetCallKind(t1, CALL_AS_METHOD);
5460 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
5461 RelocInfo::CODE_TARGET);
5462 }
5463
5464
Generate(MacroAssembler * masm)5465 void CallConstructStub::Generate(MacroAssembler* masm) {
5466 // a0 : number of arguments
5467 // a1 : the function to call
5468 // a2 : cache cell for call target
5469 Label slow, non_function_call;
5470
5471 // Check that the function is not a smi.
5472 __ JumpIfSmi(a1, &non_function_call);
5473 // Check that the function is a JSFunction.
5474 __ GetObjectType(a1, a3, a3);
5475 __ Branch(&slow, ne, a3, Operand(JS_FUNCTION_TYPE));
5476
5477 if (RecordCallTarget()) {
5478 GenerateRecordCallTarget(masm);
5479 }
5480
5481 // Jump to the function-specific construct stub.
5482 __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
5483 __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kConstructStubOffset));
5484 __ Addu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
5485 __ Jump(at);
5486
5487 // a0: number of arguments
5488 // a1: called object
5489 // a3: object type
5490 Label do_call;
5491 __ bind(&slow);
5492 __ Branch(&non_function_call, ne, a3, Operand(JS_FUNCTION_PROXY_TYPE));
5493 __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
5494 __ jmp(&do_call);
5495
5496 __ bind(&non_function_call);
5497 __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
5498 __ bind(&do_call);
5499 // Set expected number of arguments to zero (not changing r0).
5500 __ li(a2, Operand(0, RelocInfo::NONE));
5501 __ SetCallKind(t1, CALL_AS_METHOD);
5502 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
5503 RelocInfo::CODE_TARGET);
5504 }
5505
5506
5507 // Unfortunately you have to run without snapshots to see most of these
5508 // names in the profile since most compare stubs end up in the snapshot.
PrintName(StringStream * stream)5509 void CompareStub::PrintName(StringStream* stream) {
5510 ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
5511 (lhs_.is(a1) && rhs_.is(a0)));
5512 const char* cc_name;
5513 switch (cc_) {
5514 case lt: cc_name = "LT"; break;
5515 case gt: cc_name = "GT"; break;
5516 case le: cc_name = "LE"; break;
5517 case ge: cc_name = "GE"; break;
5518 case eq: cc_name = "EQ"; break;
5519 case ne: cc_name = "NE"; break;
5520 default: cc_name = "UnknownCondition"; break;
5521 }
5522 bool is_equality = cc_ == eq || cc_ == ne;
5523 stream->Add("CompareStub_%s", cc_name);
5524 stream->Add(lhs_.is(a0) ? "_a0" : "_a1");
5525 stream->Add(rhs_.is(a0) ? "_a0" : "_a1");
5526 if (strict_ && is_equality) stream->Add("_STRICT");
5527 if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
5528 if (!include_number_compare_) stream->Add("_NO_NUMBER");
5529 if (!include_smi_compare_) stream->Add("_NO_SMI");
5530 }
5531
5532
MinorKey()5533 int CompareStub::MinorKey() {
5534 // Encode the two parameters in a unique 16 bit value.
5535 ASSERT(static_cast<unsigned>(cc_) < (1 << 14));
5536 ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
5537 (lhs_.is(a1) && rhs_.is(a0)));
5538 return ConditionField::encode(static_cast<unsigned>(cc_))
5539 | RegisterField::encode(lhs_.is(a0))
5540 | StrictField::encode(strict_)
5541 | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
5542 | IncludeSmiCompareField::encode(include_smi_compare_);
5543 }
5544
5545
5546 // StringCharCodeAtGenerator.
GenerateFast(MacroAssembler * masm)5547 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
5548 Label flat_string;
5549 Label ascii_string;
5550 Label got_char_code;
5551 Label sliced_string;
5552
5553 ASSERT(!t0.is(index_));
5554 ASSERT(!t0.is(result_));
5555 ASSERT(!t0.is(object_));
5556
5557 // If the receiver is a smi trigger the non-string case.
5558 __ JumpIfSmi(object_, receiver_not_string_);
5559
5560 // Fetch the instance type of the receiver into result register.
5561 __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5562 __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5563 // If the receiver is not a string trigger the non-string case.
5564 __ And(t0, result_, Operand(kIsNotStringMask));
5565 __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg));
5566
5567 // If the index is non-smi trigger the non-smi case.
5568 __ JumpIfNotSmi(index_, &index_not_smi_);
5569
5570 __ bind(&got_smi_index_);
5571
5572 // Check for index out of range.
5573 __ lw(t0, FieldMemOperand(object_, String::kLengthOffset));
5574 __ Branch(index_out_of_range_, ls, t0, Operand(index_));
5575
5576 __ sra(index_, index_, kSmiTagSize);
5577
5578 StringCharLoadGenerator::Generate(masm,
5579 object_,
5580 index_,
5581 result_,
5582 &call_runtime_);
5583
5584 __ sll(result_, result_, kSmiTagSize);
5585 __ bind(&exit_);
5586 }
5587
5588
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)5589 void StringCharCodeAtGenerator::GenerateSlow(
5590 MacroAssembler* masm,
5591 const RuntimeCallHelper& call_helper) {
5592 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
5593
5594 // Index is not a smi.
5595 __ bind(&index_not_smi_);
5596 // If index is a heap number, try converting it to an integer.
5597 __ CheckMap(index_,
5598 result_,
5599 Heap::kHeapNumberMapRootIndex,
5600 index_not_number_,
5601 DONT_DO_SMI_CHECK);
5602 call_helper.BeforeCall(masm);
5603 // Consumed by runtime conversion function:
5604 __ Push(object_, index_);
5605 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
5606 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
5607 } else {
5608 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
5609 // NumberToSmi discards numbers that are not exact integers.
5610 __ CallRuntime(Runtime::kNumberToSmi, 1);
5611 }
5612
5613 // Save the conversion result before the pop instructions below
5614 // have a chance to overwrite it.
5615
5616 __ Move(index_, v0);
5617 __ pop(object_);
5618 // Reload the instance type.
5619 __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5620 __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5621 call_helper.AfterCall(masm);
5622 // If index is still not a smi, it must be out of range.
5623 __ JumpIfNotSmi(index_, index_out_of_range_);
5624 // Otherwise, return to the fast path.
5625 __ Branch(&got_smi_index_);
5626
5627 // Call runtime. We get here when the receiver is a string and the
5628 // index is a number, but the code of getting the actual character
5629 // is too complex (e.g., when the string needs to be flattened).
5630 __ bind(&call_runtime_);
5631 call_helper.BeforeCall(masm);
5632 __ sll(index_, index_, kSmiTagSize);
5633 __ Push(object_, index_);
5634 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
5635
5636 __ Move(result_, v0);
5637
5638 call_helper.AfterCall(masm);
5639 __ jmp(&exit_);
5640
5641 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
5642 }
5643
5644
5645 // -------------------------------------------------------------------------
5646 // StringCharFromCodeGenerator
5647
GenerateFast(MacroAssembler * masm)5648 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
5649 // Fast case of Heap::LookupSingleCharacterStringFromCode.
5650
5651 ASSERT(!t0.is(result_));
5652 ASSERT(!t0.is(code_));
5653
5654 STATIC_ASSERT(kSmiTag == 0);
5655 STATIC_ASSERT(kSmiShiftSize == 0);
5656 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
5657 __ And(t0,
5658 code_,
5659 Operand(kSmiTagMask |
5660 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
5661 __ Branch(&slow_case_, ne, t0, Operand(zero_reg));
5662
5663 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
5664 // At this point code register contains smi tagged ASCII char code.
5665 STATIC_ASSERT(kSmiTag == 0);
5666 __ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize);
5667 __ Addu(result_, result_, t0);
5668 __ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
5669 __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
5670 __ Branch(&slow_case_, eq, result_, Operand(t0));
5671 __ bind(&exit_);
5672 }
5673
5674
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)5675 void StringCharFromCodeGenerator::GenerateSlow(
5676 MacroAssembler* masm,
5677 const RuntimeCallHelper& call_helper) {
5678 __ Abort("Unexpected fallthrough to CharFromCode slow case");
5679
5680 __ bind(&slow_case_);
5681 call_helper.BeforeCall(masm);
5682 __ push(code_);
5683 __ CallRuntime(Runtime::kCharFromCode, 1);
5684 __ Move(result_, v0);
5685
5686 call_helper.AfterCall(masm);
5687 __ Branch(&exit_);
5688
5689 __ Abort("Unexpected fallthrough from CharFromCode slow case");
5690 }
5691
5692
5693 // -------------------------------------------------------------------------
5694 // StringCharAtGenerator
5695
GenerateFast(MacroAssembler * masm)5696 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
5697 char_code_at_generator_.GenerateFast(masm);
5698 char_from_code_generator_.GenerateFast(masm);
5699 }
5700
5701
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)5702 void StringCharAtGenerator::GenerateSlow(
5703 MacroAssembler* masm,
5704 const RuntimeCallHelper& call_helper) {
5705 char_code_at_generator_.GenerateSlow(masm, call_helper);
5706 char_from_code_generator_.GenerateSlow(masm, call_helper);
5707 }
5708
5709
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,bool ascii)5710 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
5711 Register dest,
5712 Register src,
5713 Register count,
5714 Register scratch,
5715 bool ascii) {
5716 Label loop;
5717 Label done;
5718 // This loop just copies one character at a time, as it is only used for
5719 // very short strings.
5720 if (!ascii) {
5721 __ addu(count, count, count);
5722 }
5723 __ Branch(&done, eq, count, Operand(zero_reg));
5724 __ addu(count, dest, count); // Count now points to the last dest byte.
5725
5726 __ bind(&loop);
5727 __ lbu(scratch, MemOperand(src));
5728 __ addiu(src, src, 1);
5729 __ sb(scratch, MemOperand(dest));
5730 __ addiu(dest, dest, 1);
5731 __ Branch(&loop, lt, dest, Operand(count));
5732
5733 __ bind(&done);
5734 }
5735
5736
5737 enum CopyCharactersFlags {
5738 COPY_ASCII = 1,
5739 DEST_ALWAYS_ALIGNED = 2
5740 };
5741
5742
GenerateCopyCharactersLong(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5,int flags)5743 void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
5744 Register dest,
5745 Register src,
5746 Register count,
5747 Register scratch1,
5748 Register scratch2,
5749 Register scratch3,
5750 Register scratch4,
5751 Register scratch5,
5752 int flags) {
5753 bool ascii = (flags & COPY_ASCII) != 0;
5754 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
5755
5756 if (dest_always_aligned && FLAG_debug_code) {
5757 // Check that destination is actually word aligned if the flag says
5758 // that it is.
5759 __ And(scratch4, dest, Operand(kPointerAlignmentMask));
5760 __ Check(eq,
5761 "Destination of copy not aligned.",
5762 scratch4,
5763 Operand(zero_reg));
5764 }
5765
5766 const int kReadAlignment = 4;
5767 const int kReadAlignmentMask = kReadAlignment - 1;
5768 // Ensure that reading an entire aligned word containing the last character
5769 // of a string will not read outside the allocated area (because we pad up
5770 // to kObjectAlignment).
5771 STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
5772 // Assumes word reads and writes are little endian.
5773 // Nothing to do for zero characters.
5774 Label done;
5775
5776 if (!ascii) {
5777 __ addu(count, count, count);
5778 }
5779 __ Branch(&done, eq, count, Operand(zero_reg));
5780
5781 Label byte_loop;
5782 // Must copy at least eight bytes, otherwise just do it one byte at a time.
5783 __ Subu(scratch1, count, Operand(8));
5784 __ Addu(count, dest, Operand(count));
5785 Register limit = count; // Read until src equals this.
5786 __ Branch(&byte_loop, lt, scratch1, Operand(zero_reg));
5787
5788 if (!dest_always_aligned) {
5789 // Align dest by byte copying. Copies between zero and three bytes.
5790 __ And(scratch4, dest, Operand(kReadAlignmentMask));
5791 Label dest_aligned;
5792 __ Branch(&dest_aligned, eq, scratch4, Operand(zero_reg));
5793 Label aligned_loop;
5794 __ bind(&aligned_loop);
5795 __ lbu(scratch1, MemOperand(src));
5796 __ addiu(src, src, 1);
5797 __ sb(scratch1, MemOperand(dest));
5798 __ addiu(dest, dest, 1);
5799 __ addiu(scratch4, scratch4, 1);
5800 __ Branch(&aligned_loop, le, scratch4, Operand(kReadAlignmentMask));
5801 __ bind(&dest_aligned);
5802 }
5803
5804 Label simple_loop;
5805
5806 __ And(scratch4, src, Operand(kReadAlignmentMask));
5807 __ Branch(&simple_loop, eq, scratch4, Operand(zero_reg));
5808
5809 // Loop for src/dst that are not aligned the same way.
5810 // This loop uses lwl and lwr instructions. These instructions
5811 // depend on the endianness, and the implementation assumes little-endian.
5812 {
5813 Label loop;
5814 __ bind(&loop);
5815 __ lwr(scratch1, MemOperand(src));
5816 __ Addu(src, src, Operand(kReadAlignment));
5817 __ lwl(scratch1, MemOperand(src, -1));
5818 __ sw(scratch1, MemOperand(dest));
5819 __ Addu(dest, dest, Operand(kReadAlignment));
5820 __ Subu(scratch2, limit, dest);
5821 __ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
5822 }
5823
5824 __ Branch(&byte_loop);
5825
5826 // Simple loop.
5827 // Copy words from src to dest, until less than four bytes left.
5828 // Both src and dest are word aligned.
5829 __ bind(&simple_loop);
5830 {
5831 Label loop;
5832 __ bind(&loop);
5833 __ lw(scratch1, MemOperand(src));
5834 __ Addu(src, src, Operand(kReadAlignment));
5835 __ sw(scratch1, MemOperand(dest));
5836 __ Addu(dest, dest, Operand(kReadAlignment));
5837 __ Subu(scratch2, limit, dest);
5838 __ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
5839 }
5840
5841 // Copy bytes from src to dest until dest hits limit.
5842 __ bind(&byte_loop);
5843 // Test if dest has already reached the limit.
5844 __ Branch(&done, ge, dest, Operand(limit));
5845 __ lbu(scratch1, MemOperand(src));
5846 __ addiu(src, src, 1);
5847 __ sb(scratch1, MemOperand(dest));
5848 __ addiu(dest, dest, 1);
5849 __ Branch(&byte_loop);
5850
5851 __ bind(&done);
5852 }
5853
5854
GenerateTwoCharacterSymbolTableProbe(MacroAssembler * masm,Register c1,Register c2,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5,Label * not_found)5855 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5856 Register c1,
5857 Register c2,
5858 Register scratch1,
5859 Register scratch2,
5860 Register scratch3,
5861 Register scratch4,
5862 Register scratch5,
5863 Label* not_found) {
5864 // Register scratch3 is the general scratch register in this function.
5865 Register scratch = scratch3;
5866
5867 // Make sure that both characters are not digits as such strings has a
5868 // different hash algorithm. Don't try to look for these in the symbol table.
5869 Label not_array_index;
5870 __ Subu(scratch, c1, Operand(static_cast<int>('0')));
5871 __ Branch(¬_array_index,
5872 Ugreater,
5873 scratch,
5874 Operand(static_cast<int>('9' - '0')));
5875 __ Subu(scratch, c2, Operand(static_cast<int>('0')));
5876
5877 // If check failed combine both characters into single halfword.
5878 // This is required by the contract of the method: code at the
5879 // not_found branch expects this combination in c1 register.
5880 Label tmp;
5881 __ sll(scratch1, c2, kBitsPerByte);
5882 __ Branch(&tmp, Ugreater, scratch, Operand(static_cast<int>('9' - '0')));
5883 __ Or(c1, c1, scratch1);
5884 __ bind(&tmp);
5885 __ Branch(
5886 not_found, Uless_equal, scratch, Operand(static_cast<int>('9' - '0')));
5887
5888 __ bind(¬_array_index);
5889 // Calculate the two character string hash.
5890 Register hash = scratch1;
5891 StringHelper::GenerateHashInit(masm, hash, c1);
5892 StringHelper::GenerateHashAddCharacter(masm, hash, c2);
5893 StringHelper::GenerateHashGetHash(masm, hash);
5894
5895 // Collect the two characters in a register.
5896 Register chars = c1;
5897 __ sll(scratch, c2, kBitsPerByte);
5898 __ Or(chars, chars, scratch);
5899
5900 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5901 // hash: hash of two character string.
5902
5903 // Load symbol table.
5904 // Load address of first element of the symbol table.
5905 Register symbol_table = c2;
5906 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
5907
5908 Register undefined = scratch4;
5909 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
5910
5911 // Calculate capacity mask from the symbol table capacity.
5912 Register mask = scratch2;
5913 __ lw(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
5914 __ sra(mask, mask, 1);
5915 __ Addu(mask, mask, -1);
5916
5917 // Calculate untagged address of the first element of the symbol table.
5918 Register first_symbol_table_element = symbol_table;
5919 __ Addu(first_symbol_table_element, symbol_table,
5920 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
5921
5922 // Registers.
5923 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5924 // hash: hash of two character string
5925 // mask: capacity mask
5926 // first_symbol_table_element: address of the first element of
5927 // the symbol table
5928 // undefined: the undefined object
5929 // scratch: -
5930
5931 // Perform a number of probes in the symbol table.
5932 const int kProbes = 4;
5933 Label found_in_symbol_table;
5934 Label next_probe[kProbes];
5935 Register candidate = scratch5; // Scratch register contains candidate.
5936 for (int i = 0; i < kProbes; i++) {
5937 // Calculate entry in symbol table.
5938 if (i > 0) {
5939 __ Addu(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
5940 } else {
5941 __ mov(candidate, hash);
5942 }
5943
5944 __ And(candidate, candidate, Operand(mask));
5945
5946 // Load the entry from the symble table.
5947 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
5948 __ sll(scratch, candidate, kPointerSizeLog2);
5949 __ Addu(scratch, scratch, first_symbol_table_element);
5950 __ lw(candidate, MemOperand(scratch));
5951
5952 // If entry is undefined no string with this hash can be found.
5953 Label is_string;
5954 __ GetObjectType(candidate, scratch, scratch);
5955 __ Branch(&is_string, ne, scratch, Operand(ODDBALL_TYPE));
5956
5957 __ Branch(not_found, eq, undefined, Operand(candidate));
5958 // Must be the hole (deleted entry).
5959 if (FLAG_debug_code) {
5960 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
5961 __ Assert(eq, "oddball in symbol table is not undefined or the hole",
5962 scratch, Operand(candidate));
5963 }
5964 __ jmp(&next_probe[i]);
5965
5966 __ bind(&is_string);
5967
5968 // Check that the candidate is a non-external ASCII string. The instance
5969 // type is still in the scratch register from the CompareObjectType
5970 // operation.
5971 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
5972
5973 // If length is not 2 the string is not a candidate.
5974 __ lw(scratch, FieldMemOperand(candidate, String::kLengthOffset));
5975 __ Branch(&next_probe[i], ne, scratch, Operand(Smi::FromInt(2)));
5976
5977 // Check if the two characters match.
5978 // Assumes that word load is little endian.
5979 __ lhu(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
5980 __ Branch(&found_in_symbol_table, eq, chars, Operand(scratch));
5981 __ bind(&next_probe[i]);
5982 }
5983
5984 // No matching 2 character string found by probing.
5985 __ jmp(not_found);
5986
5987 // Scratch register contains result when we fall through to here.
5988 Register result = candidate;
5989 __ bind(&found_in_symbol_table);
5990 __ mov(v0, result);
5991 }
5992
5993
GenerateHashInit(MacroAssembler * masm,Register hash,Register character)5994 void StringHelper::GenerateHashInit(MacroAssembler* masm,
5995 Register hash,
5996 Register character) {
5997 // hash = seed + character + ((seed + character) << 10);
5998 __ LoadRoot(hash, Heap::kHashSeedRootIndex);
5999 // Untag smi seed and add the character.
6000 __ SmiUntag(hash);
6001 __ addu(hash, hash, character);
6002 __ sll(at, hash, 10);
6003 __ addu(hash, hash, at);
6004 // hash ^= hash >> 6;
6005 __ srl(at, hash, 6);
6006 __ xor_(hash, hash, at);
6007 }
6008
6009
GenerateHashAddCharacter(MacroAssembler * masm,Register hash,Register character)6010 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
6011 Register hash,
6012 Register character) {
6013 // hash += character;
6014 __ addu(hash, hash, character);
6015 // hash += hash << 10;
6016 __ sll(at, hash, 10);
6017 __ addu(hash, hash, at);
6018 // hash ^= hash >> 6;
6019 __ srl(at, hash, 6);
6020 __ xor_(hash, hash, at);
6021 }
6022
6023
GenerateHashGetHash(MacroAssembler * masm,Register hash)6024 void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
6025 Register hash) {
6026 // hash += hash << 3;
6027 __ sll(at, hash, 3);
6028 __ addu(hash, hash, at);
6029 // hash ^= hash >> 11;
6030 __ srl(at, hash, 11);
6031 __ xor_(hash, hash, at);
6032 // hash += hash << 15;
6033 __ sll(at, hash, 15);
6034 __ addu(hash, hash, at);
6035
6036 __ li(at, Operand(String::kHashBitMask));
6037 __ and_(hash, hash, at);
6038
6039 // if (hash == 0) hash = 27;
6040 __ ori(at, zero_reg, StringHasher::kZeroHash);
6041 __ Movz(hash, at, hash);
6042 }
6043
6044
Generate(MacroAssembler * masm)6045 void SubStringStub::Generate(MacroAssembler* masm) {
6046 Label runtime;
6047 // Stack frame on entry.
6048 // ra: return address
6049 // sp[0]: to
6050 // sp[4]: from
6051 // sp[8]: string
6052
6053 // This stub is called from the native-call %_SubString(...), so
6054 // nothing can be assumed about the arguments. It is tested that:
6055 // "string" is a sequential string,
6056 // both "from" and "to" are smis, and
6057 // 0 <= from <= to <= string.length.
6058 // If any of these assumptions fail, we call the runtime system.
6059
6060 const int kToOffset = 0 * kPointerSize;
6061 const int kFromOffset = 1 * kPointerSize;
6062 const int kStringOffset = 2 * kPointerSize;
6063
6064 __ lw(a2, MemOperand(sp, kToOffset));
6065 __ lw(a3, MemOperand(sp, kFromOffset));
6066 STATIC_ASSERT(kFromOffset == kToOffset + 4);
6067 STATIC_ASSERT(kSmiTag == 0);
6068 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
6069
6070 // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
6071 // safe in this case.
6072 __ UntagAndJumpIfNotSmi(a2, a2, &runtime);
6073 __ UntagAndJumpIfNotSmi(a3, a3, &runtime);
6074 // Both a2 and a3 are untagged integers.
6075
6076 __ Branch(&runtime, lt, a3, Operand(zero_reg)); // From < 0.
6077
6078 __ Branch(&runtime, gt, a3, Operand(a2)); // Fail if from > to.
6079 __ Subu(a2, a2, a3);
6080
6081 // Make sure first argument is a string.
6082 __ lw(v0, MemOperand(sp, kStringOffset));
6083 __ JumpIfSmi(v0, &runtime);
6084 __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
6085 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
6086 __ And(t0, a1, Operand(kIsNotStringMask));
6087
6088 __ Branch(&runtime, ne, t0, Operand(zero_reg));
6089
6090 // Short-cut for the case of trivial substring.
6091 Label return_v0;
6092 // v0: original string
6093 // a2: result string length
6094 __ lw(t0, FieldMemOperand(v0, String::kLengthOffset));
6095 __ sra(t0, t0, 1);
6096 __ Branch(&return_v0, eq, a2, Operand(t0));
6097
6098
6099 Label result_longer_than_two;
6100 // Check for special case of two character ASCII string, in which case
6101 // we do a lookup in the symbol table first.
6102 __ li(t0, 2);
6103 __ Branch(&result_longer_than_two, gt, a2, Operand(t0));
6104 __ Branch(&runtime, lt, a2, Operand(t0));
6105
6106 __ JumpIfInstanceTypeIsNotSequentialAscii(a1, a1, &runtime);
6107
6108 // Get the two characters forming the sub string.
6109 __ Addu(v0, v0, Operand(a3));
6110 __ lbu(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
6111 __ lbu(t0, FieldMemOperand(v0, SeqAsciiString::kHeaderSize + 1));
6112
6113 // Try to lookup two character string in symbol table.
6114 Label make_two_character_string;
6115 StringHelper::GenerateTwoCharacterSymbolTableProbe(
6116 masm, a3, t0, a1, t1, t2, t3, t4, &make_two_character_string);
6117 __ jmp(&return_v0);
6118
6119 // a2: result string length.
6120 // a3: two characters combined into halfword in little endian byte order.
6121 __ bind(&make_two_character_string);
6122 __ AllocateAsciiString(v0, a2, t0, t1, t4, &runtime);
6123 __ sh(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
6124 __ jmp(&return_v0);
6125
6126 __ bind(&result_longer_than_two);
6127
6128 // Deal with different string types: update the index if necessary
6129 // and put the underlying string into t1.
6130 // v0: original string
6131 // a1: instance type
6132 // a2: length
6133 // a3: from index (untagged)
6134 Label underlying_unpacked, sliced_string, seq_or_external_string;
6135 // If the string is not indirect, it can only be sequential or external.
6136 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
6137 STATIC_ASSERT(kIsIndirectStringMask != 0);
6138 __ And(t0, a1, Operand(kIsIndirectStringMask));
6139 __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, t0, Operand(zero_reg));
6140 // t0 is used as a scratch register and can be overwritten in either case.
6141 __ And(t0, a1, Operand(kSlicedNotConsMask));
6142 __ Branch(&sliced_string, ne, t0, Operand(zero_reg));
6143 // Cons string. Check whether it is flat, then fetch first part.
6144 __ lw(t1, FieldMemOperand(v0, ConsString::kSecondOffset));
6145 __ LoadRoot(t0, Heap::kEmptyStringRootIndex);
6146 __ Branch(&runtime, ne, t1, Operand(t0));
6147 __ lw(t1, FieldMemOperand(v0, ConsString::kFirstOffset));
6148 // Update instance type.
6149 __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
6150 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
6151 __ jmp(&underlying_unpacked);
6152
6153 __ bind(&sliced_string);
6154 // Sliced string. Fetch parent and correct start index by offset.
6155 __ lw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
6156 __ lw(t0, FieldMemOperand(v0, SlicedString::kOffsetOffset));
6157 __ sra(t0, t0, 1); // Add offset to index.
6158 __ Addu(a3, a3, t0);
6159 // Update instance type.
6160 __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
6161 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
6162 __ jmp(&underlying_unpacked);
6163
6164 __ bind(&seq_or_external_string);
6165 // Sequential or external string. Just move string to the expected register.
6166 __ mov(t1, v0);
6167
6168 __ bind(&underlying_unpacked);
6169
6170 if (FLAG_string_slices) {
6171 Label copy_routine;
6172 // t1: underlying subject string
6173 // a1: instance type of underlying subject string
6174 // a2: length
6175 // a3: adjusted start index (untagged)
6176 // Short slice. Copy instead of slicing.
6177 __ Branch(©_routine, lt, a2, Operand(SlicedString::kMinLength));
6178 // Allocate new sliced string. At this point we do not reload the instance
6179 // type including the string encoding because we simply rely on the info
6180 // provided by the original string. It does not matter if the original
6181 // string's encoding is wrong because we always have to recheck encoding of
6182 // the newly created string's parent anyways due to externalized strings.
6183 Label two_byte_slice, set_slice_header;
6184 STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
6185 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
6186 __ And(t0, a1, Operand(kStringEncodingMask));
6187 __ Branch(&two_byte_slice, eq, t0, Operand(zero_reg));
6188 __ AllocateAsciiSlicedString(v0, a2, t2, t3, &runtime);
6189 __ jmp(&set_slice_header);
6190 __ bind(&two_byte_slice);
6191 __ AllocateTwoByteSlicedString(v0, a2, t2, t3, &runtime);
6192 __ bind(&set_slice_header);
6193 __ sll(a3, a3, 1);
6194 __ sw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
6195 __ sw(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
6196 __ jmp(&return_v0);
6197
6198 __ bind(©_routine);
6199 }
6200
6201 // t1: underlying subject string
6202 // a1: instance type of underlying subject string
6203 // a2: length
6204 // a3: adjusted start index (untagged)
6205 Label two_byte_sequential, sequential_string, allocate_result;
6206 STATIC_ASSERT(kExternalStringTag != 0);
6207 STATIC_ASSERT(kSeqStringTag == 0);
6208 __ And(t0, a1, Operand(kExternalStringTag));
6209 __ Branch(&sequential_string, eq, t0, Operand(zero_reg));
6210
6211 // Handle external string.
6212 // Rule out short external strings.
6213 STATIC_CHECK(kShortExternalStringTag != 0);
6214 __ And(t0, a1, Operand(kShortExternalStringTag));
6215 __ Branch(&runtime, ne, t0, Operand(zero_reg));
6216 __ lw(t1, FieldMemOperand(t1, ExternalString::kResourceDataOffset));
6217 // t1 already points to the first character of underlying string.
6218 __ jmp(&allocate_result);
6219
6220 __ bind(&sequential_string);
6221 // Locate first character of underlying subject string.
6222 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
6223 __ Addu(t1, t1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6224
6225 __ bind(&allocate_result);
6226 // Sequential acii string. Allocate the result.
6227 STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
6228 __ And(t0, a1, Operand(kStringEncodingMask));
6229 __ Branch(&two_byte_sequential, eq, t0, Operand(zero_reg));
6230
6231 // Allocate and copy the resulting ASCII string.
6232 __ AllocateAsciiString(v0, a2, t0, t2, t3, &runtime);
6233
6234 // Locate first character of substring to copy.
6235 __ Addu(t1, t1, a3);
6236
6237 // Locate first character of result.
6238 __ Addu(a1, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6239
6240 // v0: result string
6241 // a1: first character of result string
6242 // a2: result string length
6243 // t1: first character of substring to copy
6244 STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
6245 StringHelper::GenerateCopyCharactersLong(
6246 masm, a1, t1, a2, a3, t0, t2, t3, t4, COPY_ASCII | DEST_ALWAYS_ALIGNED);
6247 __ jmp(&return_v0);
6248
6249 // Allocate and copy the resulting two-byte string.
6250 __ bind(&two_byte_sequential);
6251 __ AllocateTwoByteString(v0, a2, t0, t2, t3, &runtime);
6252
6253 // Locate first character of substring to copy.
6254 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
6255 __ sll(t0, a3, 1);
6256 __ Addu(t1, t1, t0);
6257 // Locate first character of result.
6258 __ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6259
6260 // v0: result string.
6261 // a1: first character of result.
6262 // a2: result length.
6263 // t1: first character of substring to copy.
6264 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
6265 StringHelper::GenerateCopyCharactersLong(
6266 masm, a1, t1, a2, a3, t0, t2, t3, t4, DEST_ALWAYS_ALIGNED);
6267
6268 __ bind(&return_v0);
6269 Counters* counters = masm->isolate()->counters();
6270 __ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
6271 __ DropAndRet(3);
6272
6273 // Just jump to runtime to create the sub string.
6274 __ bind(&runtime);
6275 __ TailCallRuntime(Runtime::kSubString, 3, 1);
6276 }
6277
6278
GenerateFlatAsciiStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)6279 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
6280 Register left,
6281 Register right,
6282 Register scratch1,
6283 Register scratch2,
6284 Register scratch3) {
6285 Register length = scratch1;
6286
6287 // Compare lengths.
6288 Label strings_not_equal, check_zero_length;
6289 __ lw(length, FieldMemOperand(left, String::kLengthOffset));
6290 __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
6291 __ Branch(&check_zero_length, eq, length, Operand(scratch2));
6292 __ bind(&strings_not_equal);
6293 __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
6294 __ Ret();
6295
6296 // Check if the length is zero.
6297 Label compare_chars;
6298 __ bind(&check_zero_length);
6299 STATIC_ASSERT(kSmiTag == 0);
6300 __ Branch(&compare_chars, ne, length, Operand(zero_reg));
6301 __ li(v0, Operand(Smi::FromInt(EQUAL)));
6302 __ Ret();
6303
6304 // Compare characters.
6305 __ bind(&compare_chars);
6306
6307 GenerateAsciiCharsCompareLoop(masm,
6308 left, right, length, scratch2, scratch3, v0,
6309 &strings_not_equal);
6310
6311 // Characters are equal.
6312 __ li(v0, Operand(Smi::FromInt(EQUAL)));
6313 __ Ret();
6314 }
6315
6316
GenerateCompareFlatAsciiStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)6317 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
6318 Register left,
6319 Register right,
6320 Register scratch1,
6321 Register scratch2,
6322 Register scratch3,
6323 Register scratch4) {
6324 Label result_not_equal, compare_lengths;
6325 // Find minimum length and length difference.
6326 __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset));
6327 __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
6328 __ Subu(scratch3, scratch1, Operand(scratch2));
6329 Register length_delta = scratch3;
6330 __ slt(scratch4, scratch2, scratch1);
6331 __ Movn(scratch1, scratch2, scratch4);
6332 Register min_length = scratch1;
6333 STATIC_ASSERT(kSmiTag == 0);
6334 __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
6335
6336 // Compare loop.
6337 GenerateAsciiCharsCompareLoop(masm,
6338 left, right, min_length, scratch2, scratch4, v0,
6339 &result_not_equal);
6340
6341 // Compare lengths - strings up to min-length are equal.
6342 __ bind(&compare_lengths);
6343 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
6344 // Use length_delta as result if it's zero.
6345 __ mov(scratch2, length_delta);
6346 __ mov(scratch4, zero_reg);
6347 __ mov(v0, zero_reg);
6348
6349 __ bind(&result_not_equal);
6350 // Conditionally update the result based either on length_delta or
6351 // the last comparion performed in the loop above.
6352 Label ret;
6353 __ Branch(&ret, eq, scratch2, Operand(scratch4));
6354 __ li(v0, Operand(Smi::FromInt(GREATER)));
6355 __ Branch(&ret, gt, scratch2, Operand(scratch4));
6356 __ li(v0, Operand(Smi::FromInt(LESS)));
6357 __ bind(&ret);
6358 __ Ret();
6359 }
6360
6361
GenerateAsciiCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Register scratch3,Label * chars_not_equal)6362 void StringCompareStub::GenerateAsciiCharsCompareLoop(
6363 MacroAssembler* masm,
6364 Register left,
6365 Register right,
6366 Register length,
6367 Register scratch1,
6368 Register scratch2,
6369 Register scratch3,
6370 Label* chars_not_equal) {
6371 // Change index to run from -length to -1 by adding length to string
6372 // start. This means that loop ends when index reaches zero, which
6373 // doesn't need an additional compare.
6374 __ SmiUntag(length);
6375 __ Addu(scratch1, length,
6376 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6377 __ Addu(left, left, Operand(scratch1));
6378 __ Addu(right, right, Operand(scratch1));
6379 __ Subu(length, zero_reg, length);
6380 Register index = length; // index = -length;
6381
6382
6383 // Compare loop.
6384 Label loop;
6385 __ bind(&loop);
6386 __ Addu(scratch3, left, index);
6387 __ lbu(scratch1, MemOperand(scratch3));
6388 __ Addu(scratch3, right, index);
6389 __ lbu(scratch2, MemOperand(scratch3));
6390 __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
6391 __ Addu(index, index, 1);
6392 __ Branch(&loop, ne, index, Operand(zero_reg));
6393 }
6394
6395
Generate(MacroAssembler * masm)6396 void StringCompareStub::Generate(MacroAssembler* masm) {
6397 Label runtime;
6398
6399 Counters* counters = masm->isolate()->counters();
6400
6401 // Stack frame on entry.
6402 // sp[0]: right string
6403 // sp[4]: left string
6404 __ lw(a1, MemOperand(sp, 1 * kPointerSize)); // Left.
6405 __ lw(a0, MemOperand(sp, 0 * kPointerSize)); // Right.
6406
6407 Label not_same;
6408 __ Branch(¬_same, ne, a0, Operand(a1));
6409 STATIC_ASSERT(EQUAL == 0);
6410 STATIC_ASSERT(kSmiTag == 0);
6411 __ li(v0, Operand(Smi::FromInt(EQUAL)));
6412 __ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
6413 __ DropAndRet(2);
6414
6415 __ bind(¬_same);
6416
6417 // Check that both objects are sequential ASCII strings.
6418 __ JumpIfNotBothSequentialAsciiStrings(a1, a0, a2, a3, &runtime);
6419
6420 // Compare flat ASCII strings natively. Remove arguments from stack first.
6421 __ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
6422 __ Addu(sp, sp, Operand(2 * kPointerSize));
6423 GenerateCompareFlatAsciiStrings(masm, a1, a0, a2, a3, t0, t1);
6424
6425 __ bind(&runtime);
6426 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6427 }
6428
6429
Generate(MacroAssembler * masm)6430 void StringAddStub::Generate(MacroAssembler* masm) {
6431 Label call_runtime, call_builtin;
6432 Builtins::JavaScript builtin_id = Builtins::ADD;
6433
6434 Counters* counters = masm->isolate()->counters();
6435
6436 // Stack on entry:
6437 // sp[0]: second argument (right).
6438 // sp[4]: first argument (left).
6439
6440 // Load the two arguments.
6441 __ lw(a0, MemOperand(sp, 1 * kPointerSize)); // First argument.
6442 __ lw(a1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
6443
6444 // Make sure that both arguments are strings if not known in advance.
6445 if (flags_ == NO_STRING_ADD_FLAGS) {
6446 __ JumpIfEitherSmi(a0, a1, &call_runtime);
6447 // Load instance types.
6448 __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
6449 __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
6450 __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
6451 __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
6452 STATIC_ASSERT(kStringTag == 0);
6453 // If either is not a string, go to runtime.
6454 __ Or(t4, t0, Operand(t1));
6455 __ And(t4, t4, Operand(kIsNotStringMask));
6456 __ Branch(&call_runtime, ne, t4, Operand(zero_reg));
6457 } else {
6458 // Here at least one of the arguments is definitely a string.
6459 // We convert the one that is not known to be a string.
6460 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
6461 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
6462 GenerateConvertArgument(
6463 masm, 1 * kPointerSize, a0, a2, a3, t0, t1, &call_builtin);
6464 builtin_id = Builtins::STRING_ADD_RIGHT;
6465 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
6466 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
6467 GenerateConvertArgument(
6468 masm, 0 * kPointerSize, a1, a2, a3, t0, t1, &call_builtin);
6469 builtin_id = Builtins::STRING_ADD_LEFT;
6470 }
6471 }
6472
6473 // Both arguments are strings.
6474 // a0: first string
6475 // a1: second string
6476 // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6477 // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6478 {
6479 Label strings_not_empty;
6480 // Check if either of the strings are empty. In that case return the other.
6481 // These tests use zero-length check on string-length whch is an Smi.
6482 // Assert that Smi::FromInt(0) is really 0.
6483 STATIC_ASSERT(kSmiTag == 0);
6484 ASSERT(Smi::FromInt(0) == 0);
6485 __ lw(a2, FieldMemOperand(a0, String::kLengthOffset));
6486 __ lw(a3, FieldMemOperand(a1, String::kLengthOffset));
6487 __ mov(v0, a0); // Assume we'll return first string (from a0).
6488 __ Movz(v0, a1, a2); // If first is empty, return second (from a1).
6489 __ slt(t4, zero_reg, a2); // if (a2 > 0) t4 = 1.
6490 __ slt(t5, zero_reg, a3); // if (a3 > 0) t5 = 1.
6491 __ and_(t4, t4, t5); // Branch if both strings were non-empty.
6492 __ Branch(&strings_not_empty, ne, t4, Operand(zero_reg));
6493
6494 __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6495 __ DropAndRet(2);
6496
6497 __ bind(&strings_not_empty);
6498 }
6499
6500 // Untag both string-lengths.
6501 __ sra(a2, a2, kSmiTagSize);
6502 __ sra(a3, a3, kSmiTagSize);
6503
6504 // Both strings are non-empty.
6505 // a0: first string
6506 // a1: second string
6507 // a2: length of first string
6508 // a3: length of second string
6509 // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6510 // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6511 // Look at the length of the result of adding the two strings.
6512 Label string_add_flat_result, longer_than_two;
6513 // Adding two lengths can't overflow.
6514 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
6515 __ Addu(t2, a2, Operand(a3));
6516 // Use the symbol table when adding two one character strings, as it
6517 // helps later optimizations to return a symbol here.
6518 __ Branch(&longer_than_two, ne, t2, Operand(2));
6519
6520 // Check that both strings are non-external ASCII strings.
6521 if (flags_ != NO_STRING_ADD_FLAGS) {
6522 __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
6523 __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
6524 __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
6525 __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
6526 }
6527 __ JumpIfBothInstanceTypesAreNotSequentialAscii(t0, t1, t2, t3,
6528 &call_runtime);
6529
6530 // Get the two characters forming the sub string.
6531 __ lbu(a2, FieldMemOperand(a0, SeqAsciiString::kHeaderSize));
6532 __ lbu(a3, FieldMemOperand(a1, SeqAsciiString::kHeaderSize));
6533
6534 // Try to lookup two character string in symbol table. If it is not found
6535 // just allocate a new one.
6536 Label make_two_character_string;
6537 StringHelper::GenerateTwoCharacterSymbolTableProbe(
6538 masm, a2, a3, t2, t3, t0, t1, t5, &make_two_character_string);
6539 __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6540 __ DropAndRet(2);
6541
6542 __ bind(&make_two_character_string);
6543 // Resulting string has length 2 and first chars of two strings
6544 // are combined into single halfword in a2 register.
6545 // So we can fill resulting string without two loops by a single
6546 // halfword store instruction (which assumes that processor is
6547 // in a little endian mode).
6548 __ li(t2, Operand(2));
6549 __ AllocateAsciiString(v0, t2, t0, t1, t5, &call_runtime);
6550 __ sh(a2, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
6551 __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6552 __ DropAndRet(2);
6553
6554 __ bind(&longer_than_two);
6555 // Check if resulting string will be flat.
6556 __ Branch(&string_add_flat_result, lt, t2, Operand(ConsString::kMinLength));
6557 // Handle exceptionally long strings in the runtime system.
6558 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
6559 ASSERT(IsPowerOf2(String::kMaxLength + 1));
6560 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
6561 __ Branch(&call_runtime, hs, t2, Operand(String::kMaxLength + 1));
6562
6563 // If result is not supposed to be flat, allocate a cons string object.
6564 // If both strings are ASCII the result is an ASCII cons string.
6565 if (flags_ != NO_STRING_ADD_FLAGS) {
6566 __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
6567 __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
6568 __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
6569 __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
6570 }
6571 Label non_ascii, allocated, ascii_data;
6572 STATIC_ASSERT(kTwoByteStringTag == 0);
6573 // Branch to non_ascii if either string-encoding field is zero (non-ASCII).
6574 __ And(t4, t0, Operand(t1));
6575 __ And(t4, t4, Operand(kStringEncodingMask));
6576 __ Branch(&non_ascii, eq, t4, Operand(zero_reg));
6577
6578 // Allocate an ASCII cons string.
6579 __ bind(&ascii_data);
6580 __ AllocateAsciiConsString(v0, t2, t0, t1, &call_runtime);
6581 __ bind(&allocated);
6582 // Fill the fields of the cons string.
6583 __ sw(a0, FieldMemOperand(v0, ConsString::kFirstOffset));
6584 __ sw(a1, FieldMemOperand(v0, ConsString::kSecondOffset));
6585 __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6586 __ DropAndRet(2);
6587
6588 __ bind(&non_ascii);
6589 // At least one of the strings is two-byte. Check whether it happens
6590 // to contain only ASCII characters.
6591 // t0: first instance type.
6592 // t1: second instance type.
6593 // Branch to if _both_ instances have kAsciiDataHintMask set.
6594 __ And(at, t0, Operand(kAsciiDataHintMask));
6595 __ and_(at, at, t1);
6596 __ Branch(&ascii_data, ne, at, Operand(zero_reg));
6597
6598 __ xor_(t0, t0, t1);
6599 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
6600 __ And(t0, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
6601 __ Branch(&ascii_data, eq, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
6602
6603 // Allocate a two byte cons string.
6604 __ AllocateTwoByteConsString(v0, t2, t0, t1, &call_runtime);
6605 __ Branch(&allocated);
6606
6607 // We cannot encounter sliced strings or cons strings here since:
6608 STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
6609 // Handle creating a flat result from either external or sequential strings.
6610 // Locate the first characters' locations.
6611 // a0: first string
6612 // a1: second string
6613 // a2: length of first string
6614 // a3: length of second string
6615 // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6616 // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6617 // t2: sum of lengths.
6618 Label first_prepared, second_prepared;
6619 __ bind(&string_add_flat_result);
6620 if (flags_ != NO_STRING_ADD_FLAGS) {
6621 __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
6622 __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
6623 __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
6624 __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
6625 }
6626 // Check whether both strings have same encoding
6627 __ Xor(t3, t0, Operand(t1));
6628 __ And(t3, t3, Operand(kStringEncodingMask));
6629 __ Branch(&call_runtime, ne, t3, Operand(zero_reg));
6630
6631 STATIC_ASSERT(kSeqStringTag == 0);
6632 __ And(t4, t0, Operand(kStringRepresentationMask));
6633
6634 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
6635 Label skip_first_add;
6636 __ Branch(&skip_first_add, ne, t4, Operand(zero_reg));
6637 __ Branch(USE_DELAY_SLOT, &first_prepared);
6638 __ addiu(t3, a0, SeqAsciiString::kHeaderSize - kHeapObjectTag);
6639 __ bind(&skip_first_add);
6640 // External string: rule out short external string and load string resource.
6641 STATIC_ASSERT(kShortExternalStringTag != 0);
6642 __ And(t4, t0, Operand(kShortExternalStringMask));
6643 __ Branch(&call_runtime, ne, t4, Operand(zero_reg));
6644 __ lw(t3, FieldMemOperand(a0, ExternalString::kResourceDataOffset));
6645 __ bind(&first_prepared);
6646
6647 STATIC_ASSERT(kSeqStringTag == 0);
6648 __ And(t4, t1, Operand(kStringRepresentationMask));
6649 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
6650 Label skip_second_add;
6651 __ Branch(&skip_second_add, ne, t4, Operand(zero_reg));
6652 __ Branch(USE_DELAY_SLOT, &second_prepared);
6653 __ addiu(a1, a1, SeqAsciiString::kHeaderSize - kHeapObjectTag);
6654 __ bind(&skip_second_add);
6655 // External string: rule out short external string and load string resource.
6656 STATIC_ASSERT(kShortExternalStringTag != 0);
6657 __ And(t4, t1, Operand(kShortExternalStringMask));
6658 __ Branch(&call_runtime, ne, t4, Operand(zero_reg));
6659 __ lw(a1, FieldMemOperand(a1, ExternalString::kResourceDataOffset));
6660 __ bind(&second_prepared);
6661
6662 Label non_ascii_string_add_flat_result;
6663 // t3: first character of first string
6664 // a1: first character of second string
6665 // a2: length of first string
6666 // a3: length of second string
6667 // t2: sum of lengths.
6668 // Both strings have the same encoding.
6669 STATIC_ASSERT(kTwoByteStringTag == 0);
6670 __ And(t4, t1, Operand(kStringEncodingMask));
6671 __ Branch(&non_ascii_string_add_flat_result, eq, t4, Operand(zero_reg));
6672
6673 __ AllocateAsciiString(v0, t2, t0, t1, t5, &call_runtime);
6674 __ Addu(t2, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6675 // v0: result string.
6676 // t3: first character of first string.
6677 // a1: first character of second string
6678 // a2: length of first string.
6679 // a3: length of second string.
6680 // t2: first character of result.
6681
6682 StringHelper::GenerateCopyCharacters(masm, t2, t3, a2, t0, true);
6683 // t2: next character of result.
6684 StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, true);
6685 __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6686 __ DropAndRet(2);
6687
6688 __ bind(&non_ascii_string_add_flat_result);
6689 __ AllocateTwoByteString(v0, t2, t0, t1, t5, &call_runtime);
6690 __ Addu(t2, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6691 // v0: result string.
6692 // t3: first character of first string.
6693 // a1: first character of second string.
6694 // a2: length of first string.
6695 // a3: length of second string.
6696 // t2: first character of result.
6697 StringHelper::GenerateCopyCharacters(masm, t2, t3, a2, t0, false);
6698 // t2: next character of result.
6699 StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, false);
6700
6701 __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6702 __ DropAndRet(2);
6703
6704 // Just jump to runtime to add the two strings.
6705 __ bind(&call_runtime);
6706 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
6707
6708 if (call_builtin.is_linked()) {
6709 __ bind(&call_builtin);
6710 __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
6711 }
6712 }
6713
6714
GenerateConvertArgument(MacroAssembler * masm,int stack_offset,Register arg,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Label * slow)6715 void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
6716 int stack_offset,
6717 Register arg,
6718 Register scratch1,
6719 Register scratch2,
6720 Register scratch3,
6721 Register scratch4,
6722 Label* slow) {
6723 // First check if the argument is already a string.
6724 Label not_string, done;
6725 __ JumpIfSmi(arg, ¬_string);
6726 __ GetObjectType(arg, scratch1, scratch1);
6727 __ Branch(&done, lt, scratch1, Operand(FIRST_NONSTRING_TYPE));
6728
6729 // Check the number to string cache.
6730 Label not_cached;
6731 __ bind(¬_string);
6732 // Puts the cached result into scratch1.
6733 NumberToStringStub::GenerateLookupNumberStringCache(masm,
6734 arg,
6735 scratch1,
6736 scratch2,
6737 scratch3,
6738 scratch4,
6739 false,
6740 ¬_cached);
6741 __ mov(arg, scratch1);
6742 __ sw(arg, MemOperand(sp, stack_offset));
6743 __ jmp(&done);
6744
6745 // Check if the argument is a safe string wrapper.
6746 __ bind(¬_cached);
6747 __ JumpIfSmi(arg, slow);
6748 __ GetObjectType(arg, scratch1, scratch2); // map -> scratch1.
6749 __ Branch(slow, ne, scratch2, Operand(JS_VALUE_TYPE));
6750 __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
6751 __ li(scratch4, 1 << Map::kStringWrapperSafeForDefaultValueOf);
6752 __ And(scratch2, scratch2, scratch4);
6753 __ Branch(slow, ne, scratch2, Operand(scratch4));
6754 __ lw(arg, FieldMemOperand(arg, JSValue::kValueOffset));
6755 __ sw(arg, MemOperand(sp, stack_offset));
6756
6757 __ bind(&done);
6758 }
6759
6760
GenerateSmis(MacroAssembler * masm)6761 void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
6762 ASSERT(state_ == CompareIC::SMIS);
6763 Label miss;
6764 __ Or(a2, a1, a0);
6765 __ JumpIfNotSmi(a2, &miss);
6766
6767 if (GetCondition() == eq) {
6768 // For equality we do not care about the sign of the result.
6769 __ Subu(v0, a0, a1);
6770 } else {
6771 // Untag before subtracting to avoid handling overflow.
6772 __ SmiUntag(a1);
6773 __ SmiUntag(a0);
6774 __ Subu(v0, a1, a0);
6775 }
6776 __ Ret();
6777
6778 __ bind(&miss);
6779 GenerateMiss(masm);
6780 }
6781
6782
GenerateHeapNumbers(MacroAssembler * masm)6783 void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
6784 ASSERT(state_ == CompareIC::HEAP_NUMBERS);
6785
6786 Label generic_stub;
6787 Label unordered, maybe_undefined1, maybe_undefined2;
6788 Label miss;
6789 __ And(a2, a1, Operand(a0));
6790 __ JumpIfSmi(a2, &generic_stub);
6791
6792 __ GetObjectType(a0, a2, a2);
6793 __ Branch(&maybe_undefined1, ne, a2, Operand(HEAP_NUMBER_TYPE));
6794 __ GetObjectType(a1, a2, a2);
6795 __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
6796
6797 // Inlining the double comparison and falling back to the general compare
6798 // stub if NaN is involved or FPU is unsupported.
6799 if (CpuFeatures::IsSupported(FPU)) {
6800 CpuFeatures::Scope scope(FPU);
6801
6802 // Load left and right operand.
6803 __ Subu(a2, a1, Operand(kHeapObjectTag));
6804 __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
6805 __ Subu(a2, a0, Operand(kHeapObjectTag));
6806 __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
6807
6808 // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
6809 Label fpu_eq, fpu_lt;
6810 // Test if equal, and also handle the unordered/NaN case.
6811 __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
6812
6813 // Test if less (unordered case is already handled).
6814 __ BranchF(&fpu_lt, NULL, lt, f0, f2);
6815
6816 // Otherwise it's greater, so just fall thru, and return.
6817 __ li(v0, Operand(GREATER));
6818 __ Ret();
6819
6820 __ bind(&fpu_eq);
6821 __ li(v0, Operand(EQUAL));
6822 __ Ret();
6823
6824 __ bind(&fpu_lt);
6825 __ li(v0, Operand(LESS));
6826 __ Ret();
6827 }
6828
6829 __ bind(&unordered);
6830
6831 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, a1, a0);
6832 __ bind(&generic_stub);
6833 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
6834
6835 __ bind(&maybe_undefined1);
6836 if (Token::IsOrderedRelationalCompareOp(op_)) {
6837 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
6838 __ Branch(&miss, ne, a0, Operand(at));
6839 __ GetObjectType(a1, a2, a2);
6840 __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
6841 __ jmp(&unordered);
6842 }
6843
6844 __ bind(&maybe_undefined2);
6845 if (Token::IsOrderedRelationalCompareOp(op_)) {
6846 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
6847 __ Branch(&unordered, eq, a1, Operand(at));
6848 }
6849
6850 __ bind(&miss);
6851 GenerateMiss(masm);
6852 }
6853
6854
GenerateSymbols(MacroAssembler * masm)6855 void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
6856 ASSERT(state_ == CompareIC::SYMBOLS);
6857 Label miss;
6858
6859 // Registers containing left and right operands respectively.
6860 Register left = a1;
6861 Register right = a0;
6862 Register tmp1 = a2;
6863 Register tmp2 = a3;
6864
6865 // Check that both operands are heap objects.
6866 __ JumpIfEitherSmi(left, right, &miss);
6867
6868 // Check that both operands are symbols.
6869 __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6870 __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6871 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6872 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6873 STATIC_ASSERT(kSymbolTag != 0);
6874 __ And(tmp1, tmp1, Operand(tmp2));
6875 __ And(tmp1, tmp1, kIsSymbolMask);
6876 __ Branch(&miss, eq, tmp1, Operand(zero_reg));
6877 // Make sure a0 is non-zero. At this point input operands are
6878 // guaranteed to be non-zero.
6879 ASSERT(right.is(a0));
6880 STATIC_ASSERT(EQUAL == 0);
6881 STATIC_ASSERT(kSmiTag == 0);
6882 __ mov(v0, right);
6883 // Symbols are compared by identity.
6884 __ Ret(ne, left, Operand(right));
6885 __ li(v0, Operand(Smi::FromInt(EQUAL)));
6886 __ Ret();
6887
6888 __ bind(&miss);
6889 GenerateMiss(masm);
6890 }
6891
6892
GenerateStrings(MacroAssembler * masm)6893 void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
6894 ASSERT(state_ == CompareIC::STRINGS);
6895 Label miss;
6896
6897 bool equality = Token::IsEqualityOp(op_);
6898
6899 // Registers containing left and right operands respectively.
6900 Register left = a1;
6901 Register right = a0;
6902 Register tmp1 = a2;
6903 Register tmp2 = a3;
6904 Register tmp3 = t0;
6905 Register tmp4 = t1;
6906 Register tmp5 = t2;
6907
6908 // Check that both operands are heap objects.
6909 __ JumpIfEitherSmi(left, right, &miss);
6910
6911 // Check that both operands are strings. This leaves the instance
6912 // types loaded in tmp1 and tmp2.
6913 __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6914 __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6915 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6916 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6917 STATIC_ASSERT(kNotStringTag != 0);
6918 __ Or(tmp3, tmp1, tmp2);
6919 __ And(tmp5, tmp3, Operand(kIsNotStringMask));
6920 __ Branch(&miss, ne, tmp5, Operand(zero_reg));
6921
6922 // Fast check for identical strings.
6923 Label left_ne_right;
6924 STATIC_ASSERT(EQUAL == 0);
6925 STATIC_ASSERT(kSmiTag == 0);
6926 __ Branch(&left_ne_right, ne, left, Operand(right));
6927 __ Ret(USE_DELAY_SLOT);
6928 __ mov(v0, zero_reg); // In the delay slot.
6929 __ bind(&left_ne_right);
6930
6931 // Handle not identical strings.
6932
6933 // Check that both strings are symbols. If they are, we're done
6934 // because we already know they are not identical.
6935 if (equality) {
6936 ASSERT(GetCondition() == eq);
6937 STATIC_ASSERT(kSymbolTag != 0);
6938 __ And(tmp3, tmp1, Operand(tmp2));
6939 __ And(tmp5, tmp3, Operand(kIsSymbolMask));
6940 Label is_symbol;
6941 __ Branch(&is_symbol, eq, tmp5, Operand(zero_reg));
6942 // Make sure a0 is non-zero. At this point input operands are
6943 // guaranteed to be non-zero.
6944 ASSERT(right.is(a0));
6945 __ Ret(USE_DELAY_SLOT);
6946 __ mov(v0, a0); // In the delay slot.
6947 __ bind(&is_symbol);
6948 }
6949
6950 // Check that both strings are sequential ASCII.
6951 Label runtime;
6952 __ JumpIfBothInstanceTypesAreNotSequentialAscii(
6953 tmp1, tmp2, tmp3, tmp4, &runtime);
6954
6955 // Compare flat ASCII strings. Returns when done.
6956 if (equality) {
6957 StringCompareStub::GenerateFlatAsciiStringEquals(
6958 masm, left, right, tmp1, tmp2, tmp3);
6959 } else {
6960 StringCompareStub::GenerateCompareFlatAsciiStrings(
6961 masm, left, right, tmp1, tmp2, tmp3, tmp4);
6962 }
6963
6964 // Handle more complex cases in runtime.
6965 __ bind(&runtime);
6966 __ Push(left, right);
6967 if (equality) {
6968 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
6969 } else {
6970 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6971 }
6972
6973 __ bind(&miss);
6974 GenerateMiss(masm);
6975 }
6976
6977
GenerateObjects(MacroAssembler * masm)6978 void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
6979 ASSERT(state_ == CompareIC::OBJECTS);
6980 Label miss;
6981 __ And(a2, a1, Operand(a0));
6982 __ JumpIfSmi(a2, &miss);
6983
6984 __ GetObjectType(a0, a2, a2);
6985 __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
6986 __ GetObjectType(a1, a2, a2);
6987 __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
6988
6989 ASSERT(GetCondition() == eq);
6990 __ Ret(USE_DELAY_SLOT);
6991 __ subu(v0, a0, a1);
6992
6993 __ bind(&miss);
6994 GenerateMiss(masm);
6995 }
6996
6997
GenerateKnownObjects(MacroAssembler * masm)6998 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
6999 Label miss;
7000 __ And(a2, a1, a0);
7001 __ JumpIfSmi(a2, &miss);
7002 __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
7003 __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
7004 __ Branch(&miss, ne, a2, Operand(known_map_));
7005 __ Branch(&miss, ne, a3, Operand(known_map_));
7006
7007 __ Ret(USE_DELAY_SLOT);
7008 __ subu(v0, a0, a1);
7009
7010 __ bind(&miss);
7011 GenerateMiss(masm);
7012 }
7013
GenerateMiss(MacroAssembler * masm)7014 void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
7015 {
7016 // Call the runtime system in a fresh internal frame.
7017 ExternalReference miss =
7018 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
7019 FrameScope scope(masm, StackFrame::INTERNAL);
7020 __ Push(a1, a0);
7021 __ push(ra);
7022 __ Push(a1, a0);
7023 __ li(t0, Operand(Smi::FromInt(op_)));
7024 __ addiu(sp, sp, -kPointerSize);
7025 __ CallExternalReference(miss, 3, USE_DELAY_SLOT);
7026 __ sw(t0, MemOperand(sp)); // In the delay slot.
7027 // Compute the entry point of the rewritten stub.
7028 __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
7029 // Restore registers.
7030 __ Pop(a1, a0, ra);
7031 }
7032 __ Jump(a2);
7033 }
7034
7035
Generate(MacroAssembler * masm)7036 void DirectCEntryStub::Generate(MacroAssembler* masm) {
7037 // No need to pop or drop anything, LeaveExitFrame will restore the old
7038 // stack, thus dropping the allocated space for the return value.
7039 // The saved ra is after the reserved stack space for the 4 args.
7040 __ lw(t9, MemOperand(sp, kCArgsSlotsSize));
7041
7042 if (FLAG_debug_code && FLAG_enable_slow_asserts) {
7043 // In case of an error the return address may point to a memory area
7044 // filled with kZapValue by the GC.
7045 // Dereference the address and check for this.
7046 __ lw(t0, MemOperand(t9));
7047 __ Assert(ne, "Received invalid return address.", t0,
7048 Operand(reinterpret_cast<uint32_t>(kZapValue)));
7049 }
7050 __ Jump(t9);
7051 }
7052
7053
GenerateCall(MacroAssembler * masm,ExternalReference function)7054 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
7055 ExternalReference function) {
7056 __ li(t9, Operand(function));
7057 this->GenerateCall(masm, t9);
7058 }
7059
7060
GenerateCall(MacroAssembler * masm,Register target)7061 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
7062 Register target) {
7063 __ Move(t9, target);
7064 __ AssertStackIsAligned();
7065 // Allocate space for arg slots.
7066 __ Subu(sp, sp, kCArgsSlotsSize);
7067
7068 // Block the trampoline pool through the whole function to make sure the
7069 // number of generated instructions is constant.
7070 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
7071
7072 // We need to get the current 'pc' value, which is not available on MIPS.
7073 Label find_ra;
7074 masm->bal(&find_ra); // ra = pc + 8.
7075 masm->nop(); // Branch delay slot nop.
7076 masm->bind(&find_ra);
7077
7078 const int kNumInstructionsToJump = 6;
7079 masm->addiu(ra, ra, kNumInstructionsToJump * kPointerSize);
7080 // Push return address (accessible to GC through exit frame pc).
7081 // This spot for ra was reserved in EnterExitFrame.
7082 masm->sw(ra, MemOperand(sp, kCArgsSlotsSize));
7083 masm->li(ra,
7084 Operand(reinterpret_cast<intptr_t>(GetCode().location()),
7085 RelocInfo::CODE_TARGET),
7086 CONSTANT_SIZE);
7087 // Call the function.
7088 masm->Jump(t9);
7089 // Make sure the stored 'ra' points to this position.
7090 ASSERT_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra));
7091 }
7092
7093
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<String> name,Register scratch0)7094 void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
7095 Label* miss,
7096 Label* done,
7097 Register receiver,
7098 Register properties,
7099 Handle<String> name,
7100 Register scratch0) {
7101 // If names of slots in range from 1 to kProbes - 1 for the hash value are
7102 // not equal to the name and kProbes-th slot is not used (its name is the
7103 // undefined value), it guarantees the hash table doesn't contain the
7104 // property. It's true even if some slots represent deleted properties
7105 // (their names are the hole value).
7106 for (int i = 0; i < kInlinedProbes; i++) {
7107 // scratch0 points to properties hash.
7108 // Compute the masked index: (hash + i + i * i) & mask.
7109 Register index = scratch0;
7110 // Capacity is smi 2^n.
7111 __ lw(index, FieldMemOperand(properties, kCapacityOffset));
7112 __ Subu(index, index, Operand(1));
7113 __ And(index, index, Operand(
7114 Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
7115
7116 // Scale the index by multiplying by the entry size.
7117 ASSERT(StringDictionary::kEntrySize == 3);
7118 __ sll(at, index, 1);
7119 __ Addu(index, index, at);
7120
7121 Register entity_name = scratch0;
7122 // Having undefined at this place means the name is not contained.
7123 ASSERT_EQ(kSmiTagSize, 1);
7124 Register tmp = properties;
7125 __ sll(scratch0, index, 1);
7126 __ Addu(tmp, properties, scratch0);
7127 __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
7128
7129 ASSERT(!tmp.is(entity_name));
7130 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
7131 __ Branch(done, eq, entity_name, Operand(tmp));
7132
7133 if (i != kInlinedProbes - 1) {
7134 // Load the hole ready for use below:
7135 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
7136
7137 // Stop if found the property.
7138 __ Branch(miss, eq, entity_name, Operand(Handle<String>(name)));
7139
7140 Label the_hole;
7141 __ Branch(&the_hole, eq, entity_name, Operand(tmp));
7142
7143 // Check if the entry name is not a symbol.
7144 __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
7145 __ lbu(entity_name,
7146 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
7147 __ And(scratch0, entity_name, Operand(kIsSymbolMask));
7148 __ Branch(miss, eq, scratch0, Operand(zero_reg));
7149
7150 __ bind(&the_hole);
7151
7152 // Restore the properties.
7153 __ lw(properties,
7154 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
7155 }
7156 }
7157
7158 const int spill_mask =
7159 (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() |
7160 a2.bit() | a1.bit() | a0.bit() | v0.bit());
7161
7162 __ MultiPush(spill_mask);
7163 __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
7164 __ li(a1, Operand(Handle<String>(name)));
7165 StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
7166 __ CallStub(&stub);
7167 __ mov(at, v0);
7168 __ MultiPop(spill_mask);
7169
7170 __ Branch(done, eq, at, Operand(zero_reg));
7171 __ Branch(miss, ne, at, Operand(zero_reg));
7172 }
7173
7174
7175 // Probe the string dictionary in the |elements| register. Jump to the
7176 // |done| label if a property with the given name is found. Jump to
7177 // the |miss| label otherwise.
7178 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register scratch1,Register scratch2)7179 void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
7180 Label* miss,
7181 Label* done,
7182 Register elements,
7183 Register name,
7184 Register scratch1,
7185 Register scratch2) {
7186 ASSERT(!elements.is(scratch1));
7187 ASSERT(!elements.is(scratch2));
7188 ASSERT(!name.is(scratch1));
7189 ASSERT(!name.is(scratch2));
7190
7191 // Assert that name contains a string.
7192 if (FLAG_debug_code) __ AbortIfNotString(name);
7193
7194 // Compute the capacity mask.
7195 __ lw(scratch1, FieldMemOperand(elements, kCapacityOffset));
7196 __ sra(scratch1, scratch1, kSmiTagSize); // convert smi to int
7197 __ Subu(scratch1, scratch1, Operand(1));
7198
7199 // Generate an unrolled loop that performs a few probes before
7200 // giving up. Measurements done on Gmail indicate that 2 probes
7201 // cover ~93% of loads from dictionaries.
7202 for (int i = 0; i < kInlinedProbes; i++) {
7203 // Compute the masked index: (hash + i + i * i) & mask.
7204 __ lw(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
7205 if (i > 0) {
7206 // Add the probe offset (i + i * i) left shifted to avoid right shifting
7207 // the hash in a separate instruction. The value hash + i + i * i is right
7208 // shifted in the following and instruction.
7209 ASSERT(StringDictionary::GetProbeOffset(i) <
7210 1 << (32 - String::kHashFieldOffset));
7211 __ Addu(scratch2, scratch2, Operand(
7212 StringDictionary::GetProbeOffset(i) << String::kHashShift));
7213 }
7214 __ srl(scratch2, scratch2, String::kHashShift);
7215 __ And(scratch2, scratch1, scratch2);
7216
7217 // Scale the index by multiplying by the element size.
7218 ASSERT(StringDictionary::kEntrySize == 3);
7219 // scratch2 = scratch2 * 3.
7220
7221 __ sll(at, scratch2, 1);
7222 __ Addu(scratch2, scratch2, at);
7223
7224 // Check if the key is identical to the name.
7225 __ sll(at, scratch2, 2);
7226 __ Addu(scratch2, elements, at);
7227 __ lw(at, FieldMemOperand(scratch2, kElementsStartOffset));
7228 __ Branch(done, eq, name, Operand(at));
7229 }
7230
7231 const int spill_mask =
7232 (ra.bit() | t2.bit() | t1.bit() | t0.bit() |
7233 a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
7234 ~(scratch1.bit() | scratch2.bit());
7235
7236 __ MultiPush(spill_mask);
7237 if (name.is(a0)) {
7238 ASSERT(!elements.is(a1));
7239 __ Move(a1, name);
7240 __ Move(a0, elements);
7241 } else {
7242 __ Move(a0, elements);
7243 __ Move(a1, name);
7244 }
7245 StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
7246 __ CallStub(&stub);
7247 __ mov(scratch2, a2);
7248 __ mov(at, v0);
7249 __ MultiPop(spill_mask);
7250
7251 __ Branch(done, ne, at, Operand(zero_reg));
7252 __ Branch(miss, eq, at, Operand(zero_reg));
7253 }
7254
7255
Generate(MacroAssembler * masm)7256 void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
7257 // This stub overrides SometimesSetsUpAFrame() to return false. That means
7258 // we cannot call anything that could cause a GC from this stub.
7259 // Registers:
7260 // result: StringDictionary to probe
7261 // a1: key
7262 // : StringDictionary to probe.
7263 // index_: will hold an index of entry if lookup is successful.
7264 // might alias with result_.
7265 // Returns:
7266 // result_ is zero if lookup failed, non zero otherwise.
7267
7268 Register result = v0;
7269 Register dictionary = a0;
7270 Register key = a1;
7271 Register index = a2;
7272 Register mask = a3;
7273 Register hash = t0;
7274 Register undefined = t1;
7275 Register entry_key = t2;
7276
7277 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
7278
7279 __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset));
7280 __ sra(mask, mask, kSmiTagSize);
7281 __ Subu(mask, mask, Operand(1));
7282
7283 __ lw(hash, FieldMemOperand(key, String::kHashFieldOffset));
7284
7285 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
7286
7287 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
7288 // Compute the masked index: (hash + i + i * i) & mask.
7289 // Capacity is smi 2^n.
7290 if (i > 0) {
7291 // Add the probe offset (i + i * i) left shifted to avoid right shifting
7292 // the hash in a separate instruction. The value hash + i + i * i is right
7293 // shifted in the following and instruction.
7294 ASSERT(StringDictionary::GetProbeOffset(i) <
7295 1 << (32 - String::kHashFieldOffset));
7296 __ Addu(index, hash, Operand(
7297 StringDictionary::GetProbeOffset(i) << String::kHashShift));
7298 } else {
7299 __ mov(index, hash);
7300 }
7301 __ srl(index, index, String::kHashShift);
7302 __ And(index, mask, index);
7303
7304 // Scale the index by multiplying by the entry size.
7305 ASSERT(StringDictionary::kEntrySize == 3);
7306 // index *= 3.
7307 __ mov(at, index);
7308 __ sll(index, index, 1);
7309 __ Addu(index, index, at);
7310
7311
7312 ASSERT_EQ(kSmiTagSize, 1);
7313 __ sll(index, index, 2);
7314 __ Addu(index, index, dictionary);
7315 __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset));
7316
7317 // Having undefined at this place means the name is not contained.
7318 __ Branch(¬_in_dictionary, eq, entry_key, Operand(undefined));
7319
7320 // Stop if found the property.
7321 __ Branch(&in_dictionary, eq, entry_key, Operand(key));
7322
7323 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
7324 // Check if the entry name is not a symbol.
7325 __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
7326 __ lbu(entry_key,
7327 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
7328 __ And(result, entry_key, Operand(kIsSymbolMask));
7329 __ Branch(&maybe_in_dictionary, eq, result, Operand(zero_reg));
7330 }
7331 }
7332
7333 __ bind(&maybe_in_dictionary);
7334 // If we are doing negative lookup then probing failure should be
7335 // treated as a lookup success. For positive lookup probing failure
7336 // should be treated as lookup failure.
7337 if (mode_ == POSITIVE_LOOKUP) {
7338 __ Ret(USE_DELAY_SLOT);
7339 __ mov(result, zero_reg);
7340 }
7341
7342 __ bind(&in_dictionary);
7343 __ Ret(USE_DELAY_SLOT);
7344 __ li(result, 1);
7345
7346 __ bind(¬_in_dictionary);
7347 __ Ret(USE_DELAY_SLOT);
7348 __ mov(result, zero_reg);
7349 }
7350
7351
7352 struct AheadOfTimeWriteBarrierStubList {
7353 Register object, value, address;
7354 RememberedSetAction action;
7355 };
7356
7357 #define REG(Name) { kRegister_ ## Name ## _Code }
7358
7359 static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
7360 // Used in RegExpExecStub.
7361 { REG(s2), REG(s0), REG(t3), EMIT_REMEMBERED_SET },
7362 { REG(s2), REG(a2), REG(t3), EMIT_REMEMBERED_SET },
7363 // Used in CompileArrayPushCall.
7364 // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
7365 // Also used in KeyedStoreIC::GenerateGeneric.
7366 { REG(a3), REG(t0), REG(t1), EMIT_REMEMBERED_SET },
7367 // Used in CompileStoreGlobal.
7368 { REG(t0), REG(a1), REG(a2), OMIT_REMEMBERED_SET },
7369 // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField.
7370 { REG(a1), REG(a2), REG(a3), EMIT_REMEMBERED_SET },
7371 { REG(a3), REG(a2), REG(a1), EMIT_REMEMBERED_SET },
7372 // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
7373 { REG(a2), REG(a1), REG(a3), EMIT_REMEMBERED_SET },
7374 { REG(a3), REG(a1), REG(a2), EMIT_REMEMBERED_SET },
7375 // KeyedStoreStubCompiler::GenerateStoreFastElement.
7376 { REG(a3), REG(a2), REG(t0), EMIT_REMEMBERED_SET },
7377 { REG(a2), REG(a3), REG(t0), EMIT_REMEMBERED_SET },
7378 // ElementsTransitionGenerator::GenerateSmiOnlyToObject
7379 // and ElementsTransitionGenerator::GenerateSmiOnlyToDouble
7380 // and ElementsTransitionGenerator::GenerateDoubleToObject
7381 { REG(a2), REG(a3), REG(t5), EMIT_REMEMBERED_SET },
7382 { REG(a2), REG(a3), REG(t5), OMIT_REMEMBERED_SET },
7383 // ElementsTransitionGenerator::GenerateDoubleToObject
7384 { REG(t2), REG(a2), REG(a0), EMIT_REMEMBERED_SET },
7385 { REG(a2), REG(t2), REG(t5), EMIT_REMEMBERED_SET },
7386 // StoreArrayLiteralElementStub::Generate
7387 { REG(t1), REG(a0), REG(t2), EMIT_REMEMBERED_SET },
7388 // Null termination.
7389 { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
7390 };
7391
7392 #undef REG
7393
7394
IsPregenerated()7395 bool RecordWriteStub::IsPregenerated() {
7396 for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
7397 !entry->object.is(no_reg);
7398 entry++) {
7399 if (object_.is(entry->object) &&
7400 value_.is(entry->value) &&
7401 address_.is(entry->address) &&
7402 remembered_set_action_ == entry->action &&
7403 save_fp_regs_mode_ == kDontSaveFPRegs) {
7404 return true;
7405 }
7406 }
7407 return false;
7408 }
7409
7410
IsPregenerated()7411 bool StoreBufferOverflowStub::IsPregenerated() {
7412 return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated();
7413 }
7414
7415
GenerateFixedRegStubsAheadOfTime()7416 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
7417 StoreBufferOverflowStub stub1(kDontSaveFPRegs);
7418 stub1.GetCode()->set_is_pregenerated(true);
7419 }
7420
7421
GenerateFixedRegStubsAheadOfTime()7422 void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
7423 for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
7424 !entry->object.is(no_reg);
7425 entry++) {
7426 RecordWriteStub stub(entry->object,
7427 entry->value,
7428 entry->address,
7429 entry->action,
7430 kDontSaveFPRegs);
7431 stub.GetCode()->set_is_pregenerated(true);
7432 }
7433 }
7434
7435
7436 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
7437 // the value has just been written into the object, now this stub makes sure
7438 // we keep the GC informed. The word in the object where the value has been
7439 // written is in the address register.
Generate(MacroAssembler * masm)7440 void RecordWriteStub::Generate(MacroAssembler* masm) {
7441 Label skip_to_incremental_noncompacting;
7442 Label skip_to_incremental_compacting;
7443
7444 // The first two branch+nop instructions are generated with labels so as to
7445 // get the offset fixed up correctly by the bind(Label*) call. We patch it
7446 // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
7447 // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
7448 // incremental heap marking.
7449 // See RecordWriteStub::Patch for details.
7450 __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
7451 __ nop();
7452 __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
7453 __ nop();
7454
7455 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7456 __ RememberedSetHelper(object_,
7457 address_,
7458 value_,
7459 save_fp_regs_mode_,
7460 MacroAssembler::kReturnAtEnd);
7461 }
7462 __ Ret();
7463
7464 __ bind(&skip_to_incremental_noncompacting);
7465 GenerateIncremental(masm, INCREMENTAL);
7466
7467 __ bind(&skip_to_incremental_compacting);
7468 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
7469
7470 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
7471 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
7472
7473 PatchBranchIntoNop(masm, 0);
7474 PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
7475 }
7476
7477
GenerateIncremental(MacroAssembler * masm,Mode mode)7478 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
7479 regs_.Save(masm);
7480
7481 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7482 Label dont_need_remembered_set;
7483
7484 __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
7485 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
7486 regs_.scratch0(),
7487 &dont_need_remembered_set);
7488
7489 __ CheckPageFlag(regs_.object(),
7490 regs_.scratch0(),
7491 1 << MemoryChunk::SCAN_ON_SCAVENGE,
7492 ne,
7493 &dont_need_remembered_set);
7494
7495 // First notify the incremental marker if necessary, then update the
7496 // remembered set.
7497 CheckNeedsToInformIncrementalMarker(
7498 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
7499 InformIncrementalMarker(masm, mode);
7500 regs_.Restore(masm);
7501 __ RememberedSetHelper(object_,
7502 address_,
7503 value_,
7504 save_fp_regs_mode_,
7505 MacroAssembler::kReturnAtEnd);
7506
7507 __ bind(&dont_need_remembered_set);
7508 }
7509
7510 CheckNeedsToInformIncrementalMarker(
7511 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
7512 InformIncrementalMarker(masm, mode);
7513 regs_.Restore(masm);
7514 __ Ret();
7515 }
7516
7517
InformIncrementalMarker(MacroAssembler * masm,Mode mode)7518 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
7519 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
7520 int argument_count = 3;
7521 __ PrepareCallCFunction(argument_count, regs_.scratch0());
7522 Register address =
7523 a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
7524 ASSERT(!address.is(regs_.object()));
7525 ASSERT(!address.is(a0));
7526 __ Move(address, regs_.address());
7527 __ Move(a0, regs_.object());
7528 if (mode == INCREMENTAL_COMPACTION) {
7529 __ Move(a1, address);
7530 } else {
7531 ASSERT(mode == INCREMENTAL);
7532 __ lw(a1, MemOperand(address, 0));
7533 }
7534 __ li(a2, Operand(ExternalReference::isolate_address()));
7535
7536 AllowExternalCallThatCantCauseGC scope(masm);
7537 if (mode == INCREMENTAL_COMPACTION) {
7538 __ CallCFunction(
7539 ExternalReference::incremental_evacuation_record_write_function(
7540 masm->isolate()),
7541 argument_count);
7542 } else {
7543 ASSERT(mode == INCREMENTAL);
7544 __ CallCFunction(
7545 ExternalReference::incremental_marking_record_write_function(
7546 masm->isolate()),
7547 argument_count);
7548 }
7549 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
7550 }
7551
7552
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)7553 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
7554 MacroAssembler* masm,
7555 OnNoNeedToInformIncrementalMarker on_no_need,
7556 Mode mode) {
7557 Label on_black;
7558 Label need_incremental;
7559 Label need_incremental_pop_scratch;
7560
7561 // Let's look at the color of the object: If it is not black we don't have
7562 // to inform the incremental marker.
7563 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
7564
7565 regs_.Restore(masm);
7566 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7567 __ RememberedSetHelper(object_,
7568 address_,
7569 value_,
7570 save_fp_regs_mode_,
7571 MacroAssembler::kReturnAtEnd);
7572 } else {
7573 __ Ret();
7574 }
7575
7576 __ bind(&on_black);
7577
7578 // Get the value from the slot.
7579 __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
7580
7581 if (mode == INCREMENTAL_COMPACTION) {
7582 Label ensure_not_white;
7583
7584 __ CheckPageFlag(regs_.scratch0(), // Contains value.
7585 regs_.scratch1(), // Scratch.
7586 MemoryChunk::kEvacuationCandidateMask,
7587 eq,
7588 &ensure_not_white);
7589
7590 __ CheckPageFlag(regs_.object(),
7591 regs_.scratch1(), // Scratch.
7592 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
7593 eq,
7594 &need_incremental);
7595
7596 __ bind(&ensure_not_white);
7597 }
7598
7599 // We need extra registers for this, so we push the object and the address
7600 // register temporarily.
7601 __ Push(regs_.object(), regs_.address());
7602 __ EnsureNotWhite(regs_.scratch0(), // The value.
7603 regs_.scratch1(), // Scratch.
7604 regs_.object(), // Scratch.
7605 regs_.address(), // Scratch.
7606 &need_incremental_pop_scratch);
7607 __ Pop(regs_.object(), regs_.address());
7608
7609 regs_.Restore(masm);
7610 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7611 __ RememberedSetHelper(object_,
7612 address_,
7613 value_,
7614 save_fp_regs_mode_,
7615 MacroAssembler::kReturnAtEnd);
7616 } else {
7617 __ Ret();
7618 }
7619
7620 __ bind(&need_incremental_pop_scratch);
7621 __ Pop(regs_.object(), regs_.address());
7622
7623 __ bind(&need_incremental);
7624
7625 // Fall through when we need to inform the incremental marker.
7626 }
7627
7628
Generate(MacroAssembler * masm)7629 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
7630 // ----------- S t a t e -------------
7631 // -- a0 : element value to store
7632 // -- a1 : array literal
7633 // -- a2 : map of array literal
7634 // -- a3 : element index as smi
7635 // -- t0 : array literal index in function as smi
7636 // -----------------------------------
7637
7638 Label element_done;
7639 Label double_elements;
7640 Label smi_element;
7641 Label slow_elements;
7642 Label fast_elements;
7643
7644 __ CheckFastElements(a2, t1, &double_elements);
7645 // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
7646 __ JumpIfSmi(a0, &smi_element);
7647 __ CheckFastSmiOnlyElements(a2, t1, &fast_elements);
7648
7649 // Store into the array literal requires a elements transition. Call into
7650 // the runtime.
7651 __ bind(&slow_elements);
7652 // call.
7653 __ Push(a1, a3, a0);
7654 __ lw(t1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
7655 __ lw(t1, FieldMemOperand(t1, JSFunction::kLiteralsOffset));
7656 __ Push(t1, t0);
7657 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
7658
7659 // Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
7660 __ bind(&fast_elements);
7661 __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
7662 __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
7663 __ Addu(t2, t1, t2);
7664 __ Addu(t2, t2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
7665 __ sw(a0, MemOperand(t2, 0));
7666 // Update the write barrier for the array store.
7667 __ RecordWrite(t1, t2, a0, kRAHasNotBeenSaved, kDontSaveFPRegs,
7668 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
7669 __ Ret(USE_DELAY_SLOT);
7670 __ mov(v0, a0);
7671
7672 // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
7673 // FAST_ELEMENTS, and value is Smi.
7674 __ bind(&smi_element);
7675 __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
7676 __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
7677 __ Addu(t2, t1, t2);
7678 __ sw(a0, FieldMemOperand(t2, FixedArray::kHeaderSize));
7679 __ Ret(USE_DELAY_SLOT);
7680 __ mov(v0, a0);
7681
7682 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
7683 __ bind(&double_elements);
7684 __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
7685 __ StoreNumberToDoubleElements(a0, a3, a1, t1, t2, t3, t5, a2,
7686 &slow_elements);
7687 __ Ret(USE_DELAY_SLOT);
7688 __ mov(v0, a0);
7689 }
7690
7691
7692 #undef __
7693
7694 } } // namespace v8::internal
7695
7696 #endif // V8_TARGET_ARCH_MIPS
7697