1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 /* ANDROID_CHANGE_BEGIN */
18 #ifndef __APPLE__
19 /* Suppress kernel-name space pollution in <linux/types.h> below */
20 #include <features.h>
21 #include <linux/types.h>
22 #include <linux/ioctl.h>
23 #include <asm/byteorder.h>
24 #else
25 #include "../types.h"
26 #endif
27 /* ANDROID_CHANGE_END */
28
29 /*
30 * User-space ABI bits:
31 */
32
33 /*
34 * attr.type
35 */
36 enum perf_type_id {
37 PERF_TYPE_HARDWARE = 0,
38 PERF_TYPE_SOFTWARE = 1,
39 PERF_TYPE_TRACEPOINT = 2,
40 PERF_TYPE_HW_CACHE = 3,
41 PERF_TYPE_RAW = 4,
42 PERF_TYPE_BREAKPOINT = 5,
43
44 PERF_TYPE_MAX, /* non-ABI */
45 };
46
47 /*
48 * Generalized performance event event_id types, used by the
49 * attr.event_id parameter of the sys_perf_event_open()
50 * syscall:
51 */
52 enum perf_hw_id {
53 /*
54 * Common hardware events, generalized by the kernel:
55 */
56 PERF_COUNT_HW_CPU_CYCLES = 0,
57 PERF_COUNT_HW_INSTRUCTIONS = 1,
58 PERF_COUNT_HW_CACHE_REFERENCES = 2,
59 PERF_COUNT_HW_CACHE_MISSES = 3,
60 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
61 PERF_COUNT_HW_BRANCH_MISSES = 5,
62 PERF_COUNT_HW_BUS_CYCLES = 6,
63 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
64 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
65
66 PERF_COUNT_HW_MAX, /* non-ABI */
67 };
68
69 /*
70 * Generalized hardware cache events:
71 *
72 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
73 * { read, write, prefetch } x
74 * { accesses, misses }
75 */
76 enum perf_hw_cache_id {
77 PERF_COUNT_HW_CACHE_L1D = 0,
78 PERF_COUNT_HW_CACHE_L1I = 1,
79 PERF_COUNT_HW_CACHE_LL = 2,
80 PERF_COUNT_HW_CACHE_DTLB = 3,
81 PERF_COUNT_HW_CACHE_ITLB = 4,
82 PERF_COUNT_HW_CACHE_BPU = 5,
83
84 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
85 };
86
87 enum perf_hw_cache_op_id {
88 PERF_COUNT_HW_CACHE_OP_READ = 0,
89 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
90 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
91
92 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
93 };
94
95 enum perf_hw_cache_op_result_id {
96 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
97 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
98
99 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
100 };
101
102 /*
103 * Special "software" events provided by the kernel, even if the hardware
104 * does not support performance events. These events measure various
105 * physical and sw events of the kernel (and allow the profiling of them as
106 * well):
107 */
108 enum perf_sw_ids {
109 PERF_COUNT_SW_CPU_CLOCK = 0,
110 PERF_COUNT_SW_TASK_CLOCK = 1,
111 PERF_COUNT_SW_PAGE_FAULTS = 2,
112 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
113 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
114 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
115 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
116 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
117 PERF_COUNT_SW_EMULATION_FAULTS = 8,
118
119 PERF_COUNT_SW_MAX, /* non-ABI */
120 };
121
122 /*
123 * Bits that can be set in attr.sample_type to request information
124 * in the overflow packets.
125 */
126 enum perf_event_sample_format {
127 PERF_SAMPLE_IP = 1U << 0,
128 PERF_SAMPLE_TID = 1U << 1,
129 PERF_SAMPLE_TIME = 1U << 2,
130 PERF_SAMPLE_ADDR = 1U << 3,
131 PERF_SAMPLE_READ = 1U << 4,
132 PERF_SAMPLE_CALLCHAIN = 1U << 5,
133 PERF_SAMPLE_ID = 1U << 6,
134 PERF_SAMPLE_CPU = 1U << 7,
135 PERF_SAMPLE_PERIOD = 1U << 8,
136 PERF_SAMPLE_STREAM_ID = 1U << 9,
137 PERF_SAMPLE_RAW = 1U << 10,
138
139 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
140 };
141
142 /*
143 * The format of the data returned by read() on a perf event fd,
144 * as specified by attr.read_format:
145 *
146 * struct read_format {
147 * { u64 value;
148 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
149 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
150 * { u64 id; } && PERF_FORMAT_ID
151 * } && !PERF_FORMAT_GROUP
152 *
153 * { u64 nr;
154 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
155 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
156 * { u64 value;
157 * { u64 id; } && PERF_FORMAT_ID
158 * } cntr[nr];
159 * } && PERF_FORMAT_GROUP
160 * };
161 */
162 enum perf_event_read_format {
163 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
164 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
165 PERF_FORMAT_ID = 1U << 2,
166 PERF_FORMAT_GROUP = 1U << 3,
167
168 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
169 };
170
171 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
172
173 /*
174 * Hardware event_id to monitor via a performance monitoring event:
175 */
176 struct perf_event_attr {
177
178 /*
179 * Major type: hardware/software/tracepoint/etc.
180 */
181 __u32 type;
182
183 /*
184 * Size of the attr structure, for fwd/bwd compat.
185 */
186 __u32 size;
187
188 /*
189 * Type specific configuration information.
190 */
191 __u64 config;
192
193 union {
194 __u64 sample_period;
195 __u64 sample_freq;
196 };
197
198 __u64 sample_type;
199 __u64 read_format;
200
201 __u64 disabled : 1, /* off by default */
202 inherit : 1, /* children inherit it */
203 pinned : 1, /* must always be on PMU */
204 exclusive : 1, /* only group on PMU */
205 exclude_user : 1, /* don't count user */
206 exclude_kernel : 1, /* ditto kernel */
207 exclude_hv : 1, /* ditto hypervisor */
208 exclude_idle : 1, /* don't count when idle */
209 mmap : 1, /* include mmap data */
210 comm : 1, /* include comm data */
211 freq : 1, /* use freq, not period */
212 inherit_stat : 1, /* per task counts */
213 enable_on_exec : 1, /* next exec enables */
214 task : 1, /* trace fork/exit */
215 watermark : 1, /* wakeup_watermark */
216 /*
217 * precise_ip:
218 *
219 * 0 - SAMPLE_IP can have arbitrary skid
220 * 1 - SAMPLE_IP must have constant skid
221 * 2 - SAMPLE_IP requested to have 0 skid
222 * 3 - SAMPLE_IP must have 0 skid
223 *
224 * See also PERF_RECORD_MISC_EXACT_IP
225 */
226 precise_ip : 2, /* skid constraint */
227 mmap_data : 1, /* non-exec mmap data */
228 sample_id_all : 1, /* sample_type all events */
229
230 __reserved_1 : 45;
231
232 union {
233 __u32 wakeup_events; /* wakeup every n events */
234 __u32 wakeup_watermark; /* bytes before wakeup */
235 };
236
237 __u32 bp_type;
238 union {
239 __u64 bp_addr;
240 __u64 config1; /* extension of config */
241 };
242 union {
243 __u64 bp_len;
244 __u64 config2; /* extension of config1 */
245 };
246 };
247
248 /*
249 * Ioctls that can be done on a perf event fd:
250 */
251 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
252 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
253 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
254 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
255 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
256 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
257 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
258
259 enum perf_event_ioc_flags {
260 PERF_IOC_FLAG_GROUP = 1U << 0,
261 };
262
263 /*
264 * Structure of the page that can be mapped via mmap
265 */
266 struct perf_event_mmap_page {
267 __u32 version; /* version number of this structure */
268 __u32 compat_version; /* lowest version this is compat with */
269
270 /*
271 * Bits needed to read the hw events in user-space.
272 *
273 * u32 seq;
274 * s64 count;
275 *
276 * do {
277 * seq = pc->lock;
278 *
279 * barrier()
280 * if (pc->index) {
281 * count = pmc_read(pc->index - 1);
282 * count += pc->offset;
283 * } else
284 * goto regular_read;
285 *
286 * barrier();
287 * } while (pc->lock != seq);
288 *
289 * NOTE: for obvious reason this only works on self-monitoring
290 * processes.
291 */
292 __u32 lock; /* seqlock for synchronization */
293 __u32 index; /* hardware event identifier */
294 __s64 offset; /* add to hardware event value */
295 __u64 time_enabled; /* time event active */
296 __u64 time_running; /* time event on cpu */
297
298 /*
299 * Hole for extension of the self monitor capabilities
300 */
301
302 __u64 __reserved[123]; /* align to 1k */
303
304 /*
305 * Control data for the mmap() data buffer.
306 *
307 * User-space reading the @data_head value should issue an rmb(), on
308 * SMP capable platforms, after reading this value -- see
309 * perf_event_wakeup().
310 *
311 * When the mapping is PROT_WRITE the @data_tail value should be
312 * written by userspace to reflect the last read data. In this case
313 * the kernel will not over-write unread data.
314 */
315 __u64 data_head; /* head in the data section */
316 __u64 data_tail; /* user-space written tail */
317 };
318
319 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
320 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
321 #define PERF_RECORD_MISC_KERNEL (1 << 0)
322 #define PERF_RECORD_MISC_USER (2 << 0)
323 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
324 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
325 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
326
327 /*
328 * Indicates that the content of PERF_SAMPLE_IP points to
329 * the actual instruction that triggered the event. See also
330 * perf_event_attr::precise_ip.
331 */
332 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
333 /*
334 * Reserve the last bit to indicate some extended misc field
335 */
336 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
337
338 struct perf_event_header {
339 __u32 type;
340 __u16 misc;
341 __u16 size;
342 };
343
344 enum perf_event_type {
345
346 /*
347 * If perf_event_attr.sample_id_all is set then all event types will
348 * have the sample_type selected fields related to where/when
349 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
350 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
351 * the perf_event_header and the fields already present for the existing
352 * fields, i.e. at the end of the payload. That way a newer perf.data
353 * file will be supported by older perf tools, with these new optional
354 * fields being ignored.
355 *
356 * The MMAP events record the PROT_EXEC mappings so that we can
357 * correlate userspace IPs to code. They have the following structure:
358 *
359 * struct {
360 * struct perf_event_header header;
361 *
362 * u32 pid, tid;
363 * u64 addr;
364 * u64 len;
365 * u64 pgoff;
366 * char filename[];
367 * };
368 */
369 PERF_RECORD_MMAP = 1,
370
371 /*
372 * struct {
373 * struct perf_event_header header;
374 * u64 id;
375 * u64 lost;
376 * };
377 */
378 PERF_RECORD_LOST = 2,
379
380 /*
381 * struct {
382 * struct perf_event_header header;
383 *
384 * u32 pid, tid;
385 * char comm[];
386 * };
387 */
388 PERF_RECORD_COMM = 3,
389
390 /*
391 * struct {
392 * struct perf_event_header header;
393 * u32 pid, ppid;
394 * u32 tid, ptid;
395 * u64 time;
396 * };
397 */
398 PERF_RECORD_EXIT = 4,
399
400 /*
401 * struct {
402 * struct perf_event_header header;
403 * u64 time;
404 * u64 id;
405 * u64 stream_id;
406 * };
407 */
408 PERF_RECORD_THROTTLE = 5,
409 PERF_RECORD_UNTHROTTLE = 6,
410
411 /*
412 * struct {
413 * struct perf_event_header header;
414 * u32 pid, ppid;
415 * u32 tid, ptid;
416 * u64 time;
417 * };
418 */
419 PERF_RECORD_FORK = 7,
420
421 /*
422 * struct {
423 * struct perf_event_header header;
424 * u32 pid, tid;
425 *
426 * struct read_format values;
427 * };
428 */
429 PERF_RECORD_READ = 8,
430
431 /*
432 * struct {
433 * struct perf_event_header header;
434 *
435 * { u64 ip; } && PERF_SAMPLE_IP
436 * { u32 pid, tid; } && PERF_SAMPLE_TID
437 * { u64 time; } && PERF_SAMPLE_TIME
438 * { u64 addr; } && PERF_SAMPLE_ADDR
439 * { u64 id; } && PERF_SAMPLE_ID
440 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
441 * { u32 cpu, res; } && PERF_SAMPLE_CPU
442 * { u64 period; } && PERF_SAMPLE_PERIOD
443 *
444 * { struct read_format values; } && PERF_SAMPLE_READ
445 *
446 * { u64 nr,
447 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
448 *
449 * #
450 * # The RAW record below is opaque data wrt the ABI
451 * #
452 * # That is, the ABI doesn't make any promises wrt to
453 * # the stability of its content, it may vary depending
454 * # on event, hardware, kernel version and phase of
455 * # the moon.
456 * #
457 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
458 * #
459 *
460 * { u32 size;
461 * char data[size];}&& PERF_SAMPLE_RAW
462 * };
463 */
464 PERF_RECORD_SAMPLE = 9,
465
466 PERF_RECORD_MAX, /* non-ABI */
467 };
468
469 enum perf_callchain_context {
470 PERF_CONTEXT_HV = (__u64)-32,
471 PERF_CONTEXT_KERNEL = (__u64)-128,
472 PERF_CONTEXT_USER = (__u64)-512,
473
474 PERF_CONTEXT_GUEST = (__u64)-2048,
475 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
476 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
477
478 PERF_CONTEXT_MAX = (__u64)-4095,
479 };
480
481 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
482 #define PERF_FLAG_FD_OUTPUT (1U << 1)
483 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
484
485 #ifdef __KERNEL__
486 /*
487 * Kernel-internal data types and definitions:
488 */
489
490 #ifdef CONFIG_PERF_EVENTS
491 # include <linux/cgroup.h>
492 # include <asm/perf_event.h>
493 # include <asm/local64.h>
494 #endif
495
496 struct perf_guest_info_callbacks {
497 int (*is_in_guest)(void);
498 int (*is_user_mode)(void);
499 unsigned long (*get_guest_ip)(void);
500 };
501
502 #ifdef CONFIG_HAVE_HW_BREAKPOINT
503 #include <asm/hw_breakpoint.h>
504 #endif
505
506 #include <linux/list.h>
507 #include <linux/mutex.h>
508 #include <linux/rculist.h>
509 #include <linux/rcupdate.h>
510 #include <linux/spinlock.h>
511 #include <linux/hrtimer.h>
512 #include <linux/fs.h>
513 #include <linux/pid_namespace.h>
514 #include <linux/workqueue.h>
515 #include <linux/ftrace.h>
516 #include <linux/cpu.h>
517 #include <linux/irq_work.h>
518 #include <linux/jump_label.h>
519 #include <asm/atomic.h>
520 #include <asm/local.h>
521
522 #define PERF_MAX_STACK_DEPTH 255
523
524 struct perf_callchain_entry {
525 __u64 nr;
526 __u64 ip[PERF_MAX_STACK_DEPTH];
527 };
528
529 struct perf_raw_record {
530 u32 size;
531 void *data;
532 };
533
534 struct perf_branch_entry {
535 __u64 from;
536 __u64 to;
537 __u64 flags;
538 };
539
540 struct perf_branch_stack {
541 __u64 nr;
542 struct perf_branch_entry entries[0];
543 };
544
545 struct task_struct;
546
547 /**
548 * struct hw_perf_event - performance event hardware details:
549 */
550 struct hw_perf_event {
551 #ifdef CONFIG_PERF_EVENTS
552 union {
553 struct { /* hardware */
554 u64 config;
555 u64 last_tag;
556 unsigned long config_base;
557 unsigned long event_base;
558 int idx;
559 int last_cpu;
560 unsigned int extra_reg;
561 u64 extra_config;
562 int extra_alloc;
563 };
564 struct { /* software */
565 struct hrtimer hrtimer;
566 };
567 #ifdef CONFIG_HAVE_HW_BREAKPOINT
568 struct { /* breakpoint */
569 struct arch_hw_breakpoint info;
570 struct list_head bp_list;
571 /*
572 * Crufty hack to avoid the chicken and egg
573 * problem hw_breakpoint has with context
574 * creation and event initalization.
575 */
576 struct task_struct *bp_target;
577 };
578 #endif
579 };
580 int state;
581 local64_t prev_count;
582 u64 sample_period;
583 u64 last_period;
584 local64_t period_left;
585 u64 interrupts;
586
587 u64 freq_time_stamp;
588 u64 freq_count_stamp;
589 #endif
590 };
591
592 /*
593 * hw_perf_event::state flags
594 */
595 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
596 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
597 #define PERF_HES_ARCH 0x04
598
599 struct perf_event;
600
601 /*
602 * Common implementation detail of pmu::{start,commit,cancel}_txn
603 */
604 #define PERF_EVENT_TXN 0x1
605
606 /**
607 * struct pmu - generic performance monitoring unit
608 */
609 struct pmu {
610 struct list_head entry;
611
612 struct device *dev;
613 char *name;
614 int type;
615
616 int * __percpu pmu_disable_count;
617 struct perf_cpu_context * __percpu pmu_cpu_context;
618 int task_ctx_nr;
619
620 /*
621 * Fully disable/enable this PMU, can be used to protect from the PMI
622 * as well as for lazy/batch writing of the MSRs.
623 */
624 void (*pmu_enable) (struct pmu *pmu); /* optional */
625 void (*pmu_disable) (struct pmu *pmu); /* optional */
626
627 /*
628 * Try and initialize the event for this PMU.
629 * Should return -ENOENT when the @event doesn't match this PMU.
630 */
631 int (*event_init) (struct perf_event *event);
632
633 #define PERF_EF_START 0x01 /* start the counter when adding */
634 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
635 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
636
637 /*
638 * Adds/Removes a counter to/from the PMU, can be done inside
639 * a transaction, see the ->*_txn() methods.
640 */
641 int (*add) (struct perf_event *event, int flags);
642 void (*del) (struct perf_event *event, int flags);
643
644 /*
645 * Starts/Stops a counter present on the PMU. The PMI handler
646 * should stop the counter when perf_event_overflow() returns
647 * !0. ->start() will be used to continue.
648 */
649 void (*start) (struct perf_event *event, int flags);
650 void (*stop) (struct perf_event *event, int flags);
651
652 /*
653 * Updates the counter value of the event.
654 */
655 void (*read) (struct perf_event *event);
656
657 /*
658 * Group events scheduling is treated as a transaction, add
659 * group events as a whole and perform one schedulability test.
660 * If the test fails, roll back the whole group
661 *
662 * Start the transaction, after this ->add() doesn't need to
663 * do schedulability tests.
664 */
665 void (*start_txn) (struct pmu *pmu); /* optional */
666 /*
667 * If ->start_txn() disabled the ->add() schedulability test
668 * then ->commit_txn() is required to perform one. On success
669 * the transaction is closed. On error the transaction is kept
670 * open until ->cancel_txn() is called.
671 */
672 int (*commit_txn) (struct pmu *pmu); /* optional */
673 /*
674 * Will cancel the transaction, assumes ->del() is called
675 * for each successful ->add() during the transaction.
676 */
677 void (*cancel_txn) (struct pmu *pmu); /* optional */
678 };
679
680 /**
681 * enum perf_event_active_state - the states of a event
682 */
683 enum perf_event_active_state {
684 PERF_EVENT_STATE_ERROR = -2,
685 PERF_EVENT_STATE_OFF = -1,
686 PERF_EVENT_STATE_INACTIVE = 0,
687 PERF_EVENT_STATE_ACTIVE = 1,
688 };
689
690 struct file;
691
692 #define PERF_BUFFER_WRITABLE 0x01
693
694 struct perf_buffer {
695 atomic_t refcount;
696 struct rcu_head rcu_head;
697 #ifdef CONFIG_PERF_USE_VMALLOC
698 struct work_struct work;
699 int page_order; /* allocation order */
700 #endif
701 int nr_pages; /* nr of data pages */
702 int writable; /* are we writable */
703
704 atomic_t poll; /* POLL_ for wakeups */
705
706 local_t head; /* write position */
707 local_t nest; /* nested writers */
708 local_t events; /* event limit */
709 local_t wakeup; /* wakeup stamp */
710 local_t lost; /* nr records lost */
711
712 long watermark; /* wakeup watermark */
713
714 struct perf_event_mmap_page *user_page;
715 void *data_pages[0];
716 };
717
718 struct perf_sample_data;
719
720 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
721 struct perf_sample_data *,
722 struct pt_regs *regs);
723
724 enum perf_group_flag {
725 PERF_GROUP_SOFTWARE = 0x1,
726 };
727
728 #define SWEVENT_HLIST_BITS 8
729 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
730
731 struct swevent_hlist {
732 struct hlist_head heads[SWEVENT_HLIST_SIZE];
733 struct rcu_head rcu_head;
734 };
735
736 #define PERF_ATTACH_CONTEXT 0x01
737 #define PERF_ATTACH_GROUP 0x02
738 #define PERF_ATTACH_TASK 0x04
739
740 #ifdef CONFIG_CGROUP_PERF
741 /*
742 * perf_cgroup_info keeps track of time_enabled for a cgroup.
743 * This is a per-cpu dynamically allocated data structure.
744 */
745 struct perf_cgroup_info {
746 u64 time;
747 u64 timestamp;
748 };
749
750 struct perf_cgroup {
751 struct cgroup_subsys_state css;
752 struct perf_cgroup_info *info; /* timing info, one per cpu */
753 };
754 #endif
755
756 /**
757 * struct perf_event - performance event kernel representation:
758 */
759 struct perf_event {
760 #ifdef CONFIG_PERF_EVENTS
761 struct list_head group_entry;
762 struct list_head event_entry;
763 struct list_head sibling_list;
764 struct hlist_node hlist_entry;
765 int nr_siblings;
766 int group_flags;
767 struct perf_event *group_leader;
768 struct pmu *pmu;
769
770 enum perf_event_active_state state;
771 unsigned int attach_state;
772 local64_t count;
773 atomic64_t child_count;
774
775 /*
776 * These are the total time in nanoseconds that the event
777 * has been enabled (i.e. eligible to run, and the task has
778 * been scheduled in, if this is a per-task event)
779 * and running (scheduled onto the CPU), respectively.
780 *
781 * They are computed from tstamp_enabled, tstamp_running and
782 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
783 */
784 u64 total_time_enabled;
785 u64 total_time_running;
786
787 /*
788 * These are timestamps used for computing total_time_enabled
789 * and total_time_running when the event is in INACTIVE or
790 * ACTIVE state, measured in nanoseconds from an arbitrary point
791 * in time.
792 * tstamp_enabled: the notional time when the event was enabled
793 * tstamp_running: the notional time when the event was scheduled on
794 * tstamp_stopped: in INACTIVE state, the notional time when the
795 * event was scheduled off.
796 */
797 u64 tstamp_enabled;
798 u64 tstamp_running;
799 u64 tstamp_stopped;
800
801 /*
802 * timestamp shadows the actual context timing but it can
803 * be safely used in NMI interrupt context. It reflects the
804 * context time as it was when the event was last scheduled in.
805 *
806 * ctx_time already accounts for ctx->timestamp. Therefore to
807 * compute ctx_time for a sample, simply add perf_clock().
808 */
809 u64 shadow_ctx_time;
810
811 struct perf_event_attr attr;
812 u16 header_size;
813 u16 id_header_size;
814 u16 read_size;
815 struct hw_perf_event hw;
816
817 struct perf_event_context *ctx;
818 struct file *filp;
819
820 /*
821 * These accumulate total time (in nanoseconds) that children
822 * events have been enabled and running, respectively.
823 */
824 atomic64_t child_total_time_enabled;
825 atomic64_t child_total_time_running;
826
827 /*
828 * Protect attach/detach and child_list:
829 */
830 struct mutex child_mutex;
831 struct list_head child_list;
832 struct perf_event *parent;
833
834 int oncpu;
835 int cpu;
836
837 struct list_head owner_entry;
838 struct task_struct *owner;
839
840 /* mmap bits */
841 struct mutex mmap_mutex;
842 atomic_t mmap_count;
843 int mmap_locked;
844 struct user_struct *mmap_user;
845 struct perf_buffer *buffer;
846
847 /* poll related */
848 wait_queue_head_t waitq;
849 struct fasync_struct *fasync;
850
851 /* delayed work for NMIs and such */
852 int pending_wakeup;
853 int pending_kill;
854 int pending_disable;
855 struct irq_work pending;
856
857 atomic_t event_limit;
858
859 void (*destroy)(struct perf_event *);
860 struct rcu_head rcu_head;
861
862 struct pid_namespace *ns;
863 u64 id;
864
865 perf_overflow_handler_t overflow_handler;
866
867 #ifdef CONFIG_EVENT_TRACING
868 struct ftrace_event_call *tp_event;
869 struct event_filter *filter;
870 #endif
871
872 #ifdef CONFIG_CGROUP_PERF
873 struct perf_cgroup *cgrp; /* cgroup event is attach to */
874 int cgrp_defer_enabled;
875 #endif
876
877 #endif /* CONFIG_PERF_EVENTS */
878 };
879
880 enum perf_event_context_type {
881 task_context,
882 cpu_context,
883 };
884
885 /**
886 * struct perf_event_context - event context structure
887 *
888 * Used as a container for task events and CPU events as well:
889 */
890 struct perf_event_context {
891 struct pmu *pmu;
892 enum perf_event_context_type type;
893 /*
894 * Protect the states of the events in the list,
895 * nr_active, and the list:
896 */
897 raw_spinlock_t lock;
898 /*
899 * Protect the list of events. Locking either mutex or lock
900 * is sufficient to ensure the list doesn't change; to change
901 * the list you need to lock both the mutex and the spinlock.
902 */
903 struct mutex mutex;
904
905 struct list_head pinned_groups;
906 struct list_head flexible_groups;
907 struct list_head event_list;
908 int nr_events;
909 int nr_active;
910 int is_active;
911 int nr_stat;
912 int rotate_disable;
913 atomic_t refcount;
914 struct task_struct *task;
915
916 /*
917 * Context clock, runs when context enabled.
918 */
919 u64 time;
920 u64 timestamp;
921
922 /*
923 * These fields let us detect when two contexts have both
924 * been cloned (inherited) from a common ancestor.
925 */
926 struct perf_event_context *parent_ctx;
927 u64 parent_gen;
928 u64 generation;
929 int pin_count;
930 struct rcu_head rcu_head;
931 int nr_cgroups; /* cgroup events present */
932 };
933
934 /*
935 * Number of contexts where an event can trigger:
936 * task, softirq, hardirq, nmi.
937 */
938 #define PERF_NR_CONTEXTS 4
939
940 /**
941 * struct perf_event_cpu_context - per cpu event context structure
942 */
943 struct perf_cpu_context {
944 struct perf_event_context ctx;
945 struct perf_event_context *task_ctx;
946 int active_oncpu;
947 int exclusive;
948 struct list_head rotation_list;
949 int jiffies_interval;
950 struct pmu *active_pmu;
951 struct perf_cgroup *cgrp;
952 };
953
954 struct perf_output_handle {
955 struct perf_event *event;
956 struct perf_buffer *buffer;
957 unsigned long wakeup;
958 unsigned long size;
959 void *addr;
960 int page;
961 int nmi;
962 int sample;
963 };
964
965 #ifdef CONFIG_PERF_EVENTS
966
967 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
968 extern void perf_pmu_unregister(struct pmu *pmu);
969
970 extern int perf_num_counters(void);
971 extern const char *perf_pmu_name(void);
972 extern void __perf_event_task_sched_in(struct task_struct *task);
973 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
974 extern int perf_event_init_task(struct task_struct *child);
975 extern void perf_event_exit_task(struct task_struct *child);
976 extern void perf_event_free_task(struct task_struct *task);
977 extern void perf_event_delayed_put(struct task_struct *task);
978 extern void perf_event_print_debug(void);
979 extern void perf_pmu_disable(struct pmu *pmu);
980 extern void perf_pmu_enable(struct pmu *pmu);
981 extern int perf_event_task_disable(void);
982 extern int perf_event_task_enable(void);
983 extern void perf_event_update_userpage(struct perf_event *event);
984 extern int perf_event_release_kernel(struct perf_event *event);
985 extern struct perf_event *
986 perf_event_create_kernel_counter(struct perf_event_attr *attr,
987 int cpu,
988 struct task_struct *task,
989 perf_overflow_handler_t callback);
990 extern u64 perf_event_read_value(struct perf_event *event,
991 u64 *enabled, u64 *running);
992
993 struct perf_sample_data {
994 u64 type;
995
996 u64 ip;
997 struct {
998 u32 pid;
999 u32 tid;
1000 } tid_entry;
1001 u64 time;
1002 u64 addr;
1003 u64 id;
1004 u64 stream_id;
1005 struct {
1006 u32 cpu;
1007 u32 reserved;
1008 } cpu_entry;
1009 u64 period;
1010 struct perf_callchain_entry *callchain;
1011 struct perf_raw_record *raw;
1012 };
1013
perf_sample_data_init(struct perf_sample_data * data,u64 addr)1014 static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
1015 {
1016 data->addr = addr;
1017 data->raw = NULL;
1018 }
1019
1020 extern void perf_output_sample(struct perf_output_handle *handle,
1021 struct perf_event_header *header,
1022 struct perf_sample_data *data,
1023 struct perf_event *event);
1024 extern void perf_prepare_sample(struct perf_event_header *header,
1025 struct perf_sample_data *data,
1026 struct perf_event *event,
1027 struct pt_regs *regs);
1028
1029 extern int perf_event_overflow(struct perf_event *event, int nmi,
1030 struct perf_sample_data *data,
1031 struct pt_regs *regs);
1032
is_sampling_event(struct perf_event * event)1033 static inline bool is_sampling_event(struct perf_event *event)
1034 {
1035 return event->attr.sample_period != 0;
1036 }
1037
1038 /*
1039 * Return 1 for a software event, 0 for a hardware event
1040 */
is_software_event(struct perf_event * event)1041 static inline int is_software_event(struct perf_event *event)
1042 {
1043 return event->pmu->task_ctx_nr == perf_sw_context;
1044 }
1045
1046 extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1047
1048 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
1049
1050 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1051 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1052 #endif
1053
1054 /*
1055 * Take a snapshot of the regs. Skip ip and frame pointer to
1056 * the nth caller. We only need a few of the regs:
1057 * - ip for PERF_SAMPLE_IP
1058 * - cs for user_mode() tests
1059 * - bp for callchains
1060 * - eflags, for future purposes, just in case
1061 */
perf_fetch_caller_regs(struct pt_regs * regs)1062 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1063 {
1064 memset(regs, 0, sizeof(*regs));
1065
1066 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1067 }
1068
1069 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,int nmi,struct pt_regs * regs,u64 addr)1070 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
1071 {
1072 struct pt_regs hot_regs;
1073
1074 if (static_branch(&perf_swevent_enabled[event_id])) {
1075 if (!regs) {
1076 perf_fetch_caller_regs(&hot_regs);
1077 regs = &hot_regs;
1078 }
1079 __perf_sw_event(event_id, nr, nmi, regs, addr);
1080 }
1081 }
1082
1083 extern struct jump_label_key perf_sched_events;
1084
perf_event_task_sched_in(struct task_struct * task)1085 static inline void perf_event_task_sched_in(struct task_struct *task)
1086 {
1087 if (static_branch(&perf_sched_events))
1088 __perf_event_task_sched_in(task);
1089 }
1090
perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)1091 static inline void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
1092 {
1093 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1094
1095 __perf_event_task_sched_out(task, next);
1096 }
1097
1098 extern void perf_event_mmap(struct vm_area_struct *vma);
1099 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1100 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1101 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1102
1103 extern void perf_event_comm(struct task_struct *tsk);
1104 extern void perf_event_fork(struct task_struct *tsk);
1105
1106 /* Callchains */
1107 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1108
1109 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1110 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1111
perf_callchain_store(struct perf_callchain_entry * entry,u64 ip)1112 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1113 {
1114 if (entry->nr < PERF_MAX_STACK_DEPTH)
1115 entry->ip[entry->nr++] = ip;
1116 }
1117
1118 extern int sysctl_perf_event_paranoid;
1119 extern int sysctl_perf_event_mlock;
1120 extern int sysctl_perf_event_sample_rate;
1121
1122 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1123 void __user *buffer, size_t *lenp,
1124 loff_t *ppos);
1125
perf_paranoid_tracepoint_raw(void)1126 static inline bool perf_paranoid_tracepoint_raw(void)
1127 {
1128 return sysctl_perf_event_paranoid > -1;
1129 }
1130
perf_paranoid_cpu(void)1131 static inline bool perf_paranoid_cpu(void)
1132 {
1133 return sysctl_perf_event_paranoid > 0;
1134 }
1135
perf_paranoid_kernel(void)1136 static inline bool perf_paranoid_kernel(void)
1137 {
1138 return sysctl_perf_event_paranoid > 1;
1139 }
1140
1141 extern void perf_event_init(void);
1142 extern void perf_tp_event(u64 addr, u64 count, void *record,
1143 int entry_size, struct pt_regs *regs,
1144 struct hlist_head *head, int rctx);
1145 extern void perf_bp_event(struct perf_event *event, void *data);
1146
1147 #ifndef perf_misc_flags
1148 # define perf_misc_flags(regs) \
1149 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1150 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1151 #endif
1152
1153 extern int perf_output_begin(struct perf_output_handle *handle,
1154 struct perf_event *event, unsigned int size,
1155 int nmi, int sample);
1156 extern void perf_output_end(struct perf_output_handle *handle);
1157 extern void perf_output_copy(struct perf_output_handle *handle,
1158 const void *buf, unsigned int len);
1159 extern int perf_swevent_get_recursion_context(void);
1160 extern void perf_swevent_put_recursion_context(int rctx);
1161 extern void perf_event_enable(struct perf_event *event);
1162 extern void perf_event_disable(struct perf_event *event);
1163 extern void perf_event_task_tick(void);
1164 #else
1165 static inline void
perf_event_task_sched_in(struct task_struct * task)1166 perf_event_task_sched_in(struct task_struct *task) { }
1167 static inline void
perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)1168 perf_event_task_sched_out(struct task_struct *task,
1169 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)1170 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)1171 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1172 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1173 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_print_debug(void)1174 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1175 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1176 static inline int perf_event_task_enable(void) { return -EINVAL; }
1177
1178 static inline void
perf_sw_event(u32 event_id,u64 nr,int nmi,struct pt_regs * regs,u64 addr)1179 perf_sw_event(u32 event_id, u64 nr, int nmi,
1180 struct pt_regs *regs, u64 addr) { }
1181 static inline void
perf_bp_event(struct perf_event * event,void * data)1182 perf_bp_event(struct perf_event *event, void *data) { }
1183
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1184 static inline int perf_register_guest_info_callbacks
1185 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1186 static inline int perf_unregister_guest_info_callbacks
1187 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1188
perf_event_mmap(struct vm_area_struct * vma)1189 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
perf_event_comm(struct task_struct * tsk)1190 static inline void perf_event_comm(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1191 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_init(void)1192 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1193 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1194 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_event_enable(struct perf_event * event)1195 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1196 static inline void perf_event_disable(struct perf_event *event) { }
perf_event_task_tick(void)1197 static inline void perf_event_task_tick(void) { }
1198 #endif
1199
1200 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1201
1202 /*
1203 * This has to have a higher priority than migration_notifier in sched.c.
1204 */
1205 #define perf_cpu_notifier(fn) \
1206 do { \
1207 static struct notifier_block fn##_nb __cpuinitdata = \
1208 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1209 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1210 (void *)(unsigned long)smp_processor_id()); \
1211 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1212 (void *)(unsigned long)smp_processor_id()); \
1213 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1214 (void *)(unsigned long)smp_processor_id()); \
1215 register_cpu_notifier(&fn##_nb); \
1216 } while (0)
1217
1218 #endif /* __KERNEL__ */
1219 #endif /* _LINUX_PERF_EVENT_H */
1220