• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "common.h"
11 
EIGEN_BLAS_FUNC(gemv)12 int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc)
13 {
14   typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar);
15   static functype func[4];
16 
17   static bool init = false;
18   if(!init)
19   {
20     for(int k=0; k<4; ++k)
21       func[k] = 0;
22 
23     func[NOTR] = (internal::general_matrix_vector_product<int,Scalar,ColMajor,false,Scalar,false>::run);
24     func[TR  ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,false,Scalar,false>::run);
25     func[ADJ ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,Conj, Scalar,false>::run);
26 
27     init = true;
28   }
29 
30   Scalar* a = reinterpret_cast<Scalar*>(pa);
31   Scalar* b = reinterpret_cast<Scalar*>(pb);
32   Scalar* c = reinterpret_cast<Scalar*>(pc);
33   Scalar alpha  = *reinterpret_cast<Scalar*>(palpha);
34   Scalar beta   = *reinterpret_cast<Scalar*>(pbeta);
35 
36   // check arguments
37   int info = 0;
38   if(OP(*opa)==INVALID)           info = 1;
39   else if(*m<0)                   info = 2;
40   else if(*n<0)                   info = 3;
41   else if(*lda<std::max(1,*m))    info = 6;
42   else if(*incb==0)               info = 8;
43   else if(*incc==0)               info = 11;
44   if(info)
45     return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6);
46 
47   if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
48     return 0;
49 
50   int actual_m = *m;
51   int actual_n = *n;
52   if(OP(*opa)!=NOTR)
53     std::swap(actual_m,actual_n);
54 
55   Scalar* actual_b = get_compact_vector(b,actual_n,*incb);
56   Scalar* actual_c = get_compact_vector(c,actual_m,*incc);
57 
58   if(beta!=Scalar(1))
59   {
60     if(beta==Scalar(0)) vector(actual_c, actual_m).setZero();
61     else                vector(actual_c, actual_m) *= beta;
62   }
63 
64   int code = OP(*opa);
65   func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha);
66 
67   if(actual_b!=b) delete[] actual_b;
68   if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc);
69 
70   return 1;
71 }
72 
EIGEN_BLAS_FUNC(trsv)73 int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb)
74 {
75   typedef void (*functype)(int, const Scalar *, int, Scalar *);
76   static functype func[16];
77 
78   static bool init = false;
79   if(!init)
80   {
81     for(int k=0; k<16; ++k)
82       func[k] = 0;
83 
84     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,ColMajor>::run);
85     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,RowMajor>::run);
86     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       Conj, RowMajor>::run);
87 
88     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,ColMajor>::run);
89     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,RowMajor>::run);
90     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       Conj, RowMajor>::run);
91 
92     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run);
93     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run);
94     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run);
95 
96     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run);
97     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run);
98     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run);
99 
100     init = true;
101   }
102 
103   Scalar* a = reinterpret_cast<Scalar*>(pa);
104   Scalar* b = reinterpret_cast<Scalar*>(pb);
105 
106   int info = 0;
107   if(UPLO(*uplo)==INVALID)                                            info = 1;
108   else if(OP(*opa)==INVALID)                                          info = 2;
109   else if(DIAG(*diag)==INVALID)                                       info = 3;
110   else if(*n<0)                                                       info = 4;
111   else if(*lda<std::max(1,*n))                                        info = 6;
112   else if(*incb==0)                                                   info = 8;
113   if(info)
114     return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6);
115 
116   Scalar* actual_b = get_compact_vector(b,*n,*incb);
117 
118   int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
119   func[code](*n, a, *lda, actual_b);
120 
121   if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb);
122 
123   return 0;
124 }
125 
126 
127 
EIGEN_BLAS_FUNC(trmv)128 int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb)
129 {
130   typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
131   static functype func[16];
132 
133   static bool init = false;
134   if(!init)
135   {
136     for(int k=0; k<16; ++k)
137       func[k] = 0;
138 
139     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,ColMajor>::run);
140     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,RowMajor>::run);
141     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,Conj, Scalar,false,RowMajor>::run);
142 
143     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,ColMajor>::run);
144     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,RowMajor>::run);
145     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,Conj, Scalar,false,RowMajor>::run);
146 
147     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run);
148     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run);
149     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
150 
151     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run);
152     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run);
153     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
154 
155     init = true;
156   }
157 
158   Scalar* a = reinterpret_cast<Scalar*>(pa);
159   Scalar* b = reinterpret_cast<Scalar*>(pb);
160 
161   int info = 0;
162   if(UPLO(*uplo)==INVALID)                                            info = 1;
163   else if(OP(*opa)==INVALID)                                          info = 2;
164   else if(DIAG(*diag)==INVALID)                                       info = 3;
165   else if(*n<0)                                                       info = 4;
166   else if(*lda<std::max(1,*n))                                        info = 6;
167   else if(*incb==0)                                                   info = 8;
168   if(info)
169     return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6);
170 
171   if(*n==0)
172     return 1;
173 
174   Scalar* actual_b = get_compact_vector(b,*n,*incb);
175   Matrix<Scalar,Dynamic,1> res(*n);
176   res.setZero();
177 
178   int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
179   if(code>=16 || func[code]==0)
180     return 0;
181 
182   func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1));
183 
184   copy_back(res.data(),b,*n,*incb);
185   if(actual_b!=b) delete[] actual_b;
186 
187   return 0;
188 }
189 
190 /**  GBMV  performs one of the matrix-vector operations
191   *
192   *     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
193   *
194   *  where alpha and beta are scalars, x and y are vectors and A is an
195   *  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
196   */
EIGEN_BLAS_FUNC(gbmv)197 int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda,
198                           RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
199 {
200   Scalar* a = reinterpret_cast<Scalar*>(pa);
201   Scalar* x = reinterpret_cast<Scalar*>(px);
202   Scalar* y = reinterpret_cast<Scalar*>(py);
203   Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
204   Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
205   int coeff_rows = *kl+*ku+1;
206 
207   int info = 0;
208        if(OP(*trans)==INVALID)                                        info = 1;
209   else if(*m<0)                                                       info = 2;
210   else if(*n<0)                                                       info = 3;
211   else if(*kl<0)                                                      info = 4;
212   else if(*ku<0)                                                      info = 5;
213   else if(*lda<coeff_rows)                                            info = 8;
214   else if(*incx==0)                                                   info = 10;
215   else if(*incy==0)                                                   info = 13;
216   if(info)
217     return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6);
218 
219   if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
220     return 0;
221 
222   int actual_m = *m;
223   int actual_n = *n;
224   if(OP(*trans)!=NOTR)
225     std::swap(actual_m,actual_n);
226 
227   Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
228   Scalar* actual_y = get_compact_vector(y,actual_m,*incy);
229 
230   if(beta!=Scalar(1))
231   {
232     if(beta==Scalar(0)) vector(actual_y, actual_m).setZero();
233     else                vector(actual_y, actual_m) *= beta;
234   }
235 
236   MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
237 
238   int nb = std::min(*n,(*m)+(*ku));
239   for(int j=0; j<nb; ++j)
240   {
241     int start = std::max(0,j - *ku);
242     int end = std::min((*m)-1,j + *kl);
243     int len = end - start + 1;
244     int offset = (*ku) - j + start;
245     if(OP(*trans)==NOTR)
246       vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
247     else if(OP(*trans)==TR)
248       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
249     else
250       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint()   * vector(actual_x+start,len) ).value();
251   }
252 
253   if(actual_x!=x) delete[] actual_x;
254   if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
255 
256   return 0;
257 }
258 
259 #if 0
260 /**  TBMV  performs one of the matrix-vector operations
261   *
262   *     x := A*x,   or   x := A'*x,
263   *
264   *  where x is an n element vector and  A is an n by n unit, or non-unit,
265   *  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
266   */
267 int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
268 {
269   Scalar* a = reinterpret_cast<Scalar*>(pa);
270   Scalar* x = reinterpret_cast<Scalar*>(px);
271   int coeff_rows = *k + 1;
272 
273   int info = 0;
274        if(UPLO(*uplo)==INVALID)                                       info = 1;
275   else if(OP(*opa)==INVALID)                                          info = 2;
276   else if(DIAG(*diag)==INVALID)                                       info = 3;
277   else if(*n<0)                                                       info = 4;
278   else if(*k<0)                                                       info = 5;
279   else if(*lda<coeff_rows)                                            info = 7;
280   else if(*incx==0)                                                   info = 9;
281   if(info)
282     return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6);
283 
284   if(*n==0)
285     return 0;
286 
287   int actual_n = *n;
288 
289   Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
290 
291   MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
292 
293   int ku = UPLO(*uplo)==UPPER ? *k : 0;
294   int kl = UPLO(*uplo)==LOWER ? *k : 0;
295 
296   for(int j=0; j<*n; ++j)
297   {
298     int start = std::max(0,j - ku);
299     int end = std::min((*m)-1,j + kl);
300     int len = end - start + 1;
301     int offset = (ku) - j + start;
302 
303     if(OP(*trans)==NOTR)
304       vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
305     else if(OP(*trans)==TR)
306       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
307     else
308       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint()   * vector(actual_x+start,len) ).value();
309   }
310 
311   if(actual_x!=x) delete[] actual_x;
312   if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
313 
314   return 0;
315 }
316 #endif
317 
318 /**  DTBSV  solves one of the systems of equations
319   *
320   *     A*x = b,   or   A'*x = b,
321   *
322   *  where b and x are n element vectors and A is an n by n unit, or
323   *  non-unit, upper or lower triangular band matrix, with ( k + 1 )
324   *  diagonals.
325   *
326   *  No test for singularity or near-singularity is included in this
327   *  routine. Such tests must be performed before calling this routine.
328   */
EIGEN_BLAS_FUNC(tbsv)329 int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
330 {
331   typedef void (*functype)(int, int, const Scalar *, int, Scalar *);
332   static functype func[16];
333 
334   static bool init = false;
335   if(!init)
336   {
337     for(int k=0; k<16; ++k)
338       func[k] = 0;
339 
340     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,false,Scalar,ColMajor>::run);
341     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,false,Scalar,RowMajor>::run);
342     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,Conj, Scalar,RowMajor>::run);
343 
344     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,false,Scalar,ColMajor>::run);
345     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,false,Scalar,RowMajor>::run);
346     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,Conj, Scalar,RowMajor>::run);
347 
348     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run);
349     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run);
350     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run);
351 
352     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run);
353     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run);
354     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run);
355 
356     init = true;
357   }
358 
359   Scalar* a = reinterpret_cast<Scalar*>(pa);
360   Scalar* x = reinterpret_cast<Scalar*>(px);
361   int coeff_rows = *k+1;
362 
363   int info = 0;
364        if(UPLO(*uplo)==INVALID)                                       info = 1;
365   else if(OP(*op)==INVALID)                                           info = 2;
366   else if(DIAG(*diag)==INVALID)                                       info = 3;
367   else if(*n<0)                                                       info = 4;
368   else if(*k<0)                                                       info = 5;
369   else if(*lda<coeff_rows)                                            info = 7;
370   else if(*incx==0)                                                   info = 9;
371   if(info)
372     return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6);
373 
374   if(*n==0 || (*k==0 && DIAG(*diag)==UNIT))
375     return 0;
376 
377   int actual_n = *n;
378 
379   Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
380 
381   int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
382   if(code>=16 || func[code]==0)
383     return 0;
384 
385   func[code](*n, *k, a, *lda, actual_x);
386 
387   if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx);
388 
389   return 0;
390 }
391 
392 /**  DTPMV  performs one of the matrix-vector operations
393   *
394   *     x := A*x,   or   x := A'*x,
395   *
396   *  where x is an n element vector and  A is an n by n unit, or non-unit,
397   *  upper or lower triangular matrix, supplied in packed form.
398   */
399 // int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
400 // {
401 //   return 1;
402 // }
403 
404 /**  DTPSV  solves one of the systems of equations
405   *
406   *     A*x = b,   or   A'*x = b,
407   *
408   *  where b and x are n element vectors and A is an n by n unit, or
409   *  non-unit, upper or lower triangular matrix, supplied in packed form.
410   *
411   *  No test for singularity or near-singularity is included in this
412   *  routine. Such tests must be performed before calling this routine.
413   */
414 // int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
415 // {
416 //   return 1;
417 // }
418 
419 /**  DGER   performs the rank 1 operation
420   *
421   *     A := alpha*x*y' + A,
422   *
423   *  where alpha is a scalar, x is an m element vector, y is an n element
424   *  vector and A is an m by n matrix.
425   */
EIGEN_BLAS_FUNC(ger)426 int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda)
427 {
428   Scalar* x = reinterpret_cast<Scalar*>(px);
429   Scalar* y = reinterpret_cast<Scalar*>(py);
430   Scalar* a = reinterpret_cast<Scalar*>(pa);
431   Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
432 
433   int info = 0;
434        if(*m<0)                                                       info = 1;
435   else if(*n<0)                                                       info = 2;
436   else if(*incx==0)                                                   info = 5;
437   else if(*incy==0)                                                   info = 7;
438   else if(*lda<std::max(1,*m))                                        info = 9;
439   if(info)
440     return xerbla_(SCALAR_SUFFIX_UP"GER  ",&info,6);
441 
442   if(alpha==Scalar(0))
443     return 1;
444 
445   Scalar* x_cpy = get_compact_vector(x,*m,*incx);
446   Scalar* y_cpy = get_compact_vector(y,*n,*incy);
447 
448   // TODO perform direct calls to underlying implementation
449   matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
450 
451   if(x_cpy!=x)  delete[] x_cpy;
452   if(y_cpy!=y)  delete[] y_cpy;
453 
454   return 1;
455 }
456 
457 
458