1 //===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SmallBitVector class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ADT_SMALLBITVECTOR_H 15 #define LLVM_ADT_SMALLBITVECTOR_H 16 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/Support/Compiler.h" 19 #include "llvm/Support/MathExtras.h" 20 #include <cassert> 21 22 namespace llvm { 23 24 /// SmallBitVector - This is a 'bitvector' (really, a variable-sized bit array), 25 /// optimized for the case when the array is small. It contains one 26 /// pointer-sized field, which is directly used as a plain collection of bits 27 /// when possible, or as a pointer to a larger heap-allocated array when 28 /// necessary. This allows normal "small" cases to be fast without losing 29 /// generality for large inputs. 30 /// 31 class SmallBitVector { 32 // TODO: In "large" mode, a pointer to a BitVector is used, leading to an 33 // unnecessary level of indirection. It would be more efficient to use a 34 // pointer to memory containing size, allocation size, and the array of bits. 35 uintptr_t X; 36 37 enum { 38 // The number of bits in this class. 39 NumBaseBits = sizeof(uintptr_t) * CHAR_BIT, 40 41 // One bit is used to discriminate between small and large mode. The 42 // remaining bits are used for the small-mode representation. 43 SmallNumRawBits = NumBaseBits - 1, 44 45 // A few more bits are used to store the size of the bit set in small mode. 46 // Theoretically this is a ceil-log2. These bits are encoded in the most 47 // significant bits of the raw bits. 48 SmallNumSizeBits = (NumBaseBits == 32 ? 5 : 49 NumBaseBits == 64 ? 6 : 50 SmallNumRawBits), 51 52 // The remaining bits are used to store the actual set in small mode. 53 SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits 54 }; 55 56 public: 57 // Encapsulation of a single bit. 58 class reference { 59 SmallBitVector &TheVector; 60 unsigned BitPos; 61 62 public: reference(SmallBitVector & b,unsigned Idx)63 reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {} 64 65 reference& operator=(reference t) { 66 *this = bool(t); 67 return *this; 68 } 69 70 reference& operator=(bool t) { 71 if (t) 72 TheVector.set(BitPos); 73 else 74 TheVector.reset(BitPos); 75 return *this; 76 } 77 78 operator bool() const { 79 return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos); 80 } 81 }; 82 83 private: isSmall()84 bool isSmall() const { 85 return X & uintptr_t(1); 86 } 87 getPointer()88 BitVector *getPointer() const { 89 assert(!isSmall()); 90 return reinterpret_cast<BitVector *>(X); 91 } 92 switchToSmall(uintptr_t NewSmallBits,size_t NewSize)93 void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) { 94 X = 1; 95 setSmallSize(NewSize); 96 setSmallBits(NewSmallBits); 97 } 98 switchToLarge(BitVector * BV)99 void switchToLarge(BitVector *BV) { 100 X = reinterpret_cast<uintptr_t>(BV); 101 assert(!isSmall() && "Tried to use an unaligned pointer"); 102 } 103 104 // Return all the bits used for the "small" representation; this includes 105 // bits for the size as well as the element bits. getSmallRawBits()106 uintptr_t getSmallRawBits() const { 107 assert(isSmall()); 108 return X >> 1; 109 } 110 setSmallRawBits(uintptr_t NewRawBits)111 void setSmallRawBits(uintptr_t NewRawBits) { 112 assert(isSmall()); 113 X = (NewRawBits << 1) | uintptr_t(1); 114 } 115 116 // Return the size. getSmallSize()117 size_t getSmallSize() const { 118 return getSmallRawBits() >> SmallNumDataBits; 119 } 120 setSmallSize(size_t Size)121 void setSmallSize(size_t Size) { 122 setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits)); 123 } 124 125 // Return the element bits. getSmallBits()126 uintptr_t getSmallBits() const { 127 return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize()); 128 } 129 setSmallBits(uintptr_t NewBits)130 void setSmallBits(uintptr_t NewBits) { 131 setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) | 132 (getSmallSize() << SmallNumDataBits)); 133 } 134 135 public: 136 /// SmallBitVector default ctor - Creates an empty bitvector. SmallBitVector()137 SmallBitVector() : X(1) {} 138 139 /// SmallBitVector ctor - Creates a bitvector of specified number of bits. All 140 /// bits are initialized to the specified value. 141 explicit SmallBitVector(unsigned s, bool t = false) { 142 if (s <= SmallNumDataBits) 143 switchToSmall(t ? ~uintptr_t(0) : 0, s); 144 else 145 switchToLarge(new BitVector(s, t)); 146 } 147 148 /// SmallBitVector copy ctor. SmallBitVector(const SmallBitVector & RHS)149 SmallBitVector(const SmallBitVector &RHS) { 150 if (RHS.isSmall()) 151 X = RHS.X; 152 else 153 switchToLarge(new BitVector(*RHS.getPointer())); 154 } 155 156 #if LLVM_USE_RVALUE_REFERENCES SmallBitVector(SmallBitVector && RHS)157 SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) { 158 RHS.X = 1; 159 } 160 #endif 161 ~SmallBitVector()162 ~SmallBitVector() { 163 if (!isSmall()) 164 delete getPointer(); 165 } 166 167 /// empty - Tests whether there are no bits in this bitvector. empty()168 bool empty() const { 169 return isSmall() ? getSmallSize() == 0 : getPointer()->empty(); 170 } 171 172 /// size - Returns the number of bits in this bitvector. size()173 size_t size() const { 174 return isSmall() ? getSmallSize() : getPointer()->size(); 175 } 176 177 /// count - Returns the number of bits which are set. count()178 unsigned count() const { 179 if (isSmall()) { 180 uintptr_t Bits = getSmallBits(); 181 if (sizeof(uintptr_t) * CHAR_BIT == 32) 182 return CountPopulation_32(Bits); 183 if (sizeof(uintptr_t) * CHAR_BIT == 64) 184 return CountPopulation_64(Bits); 185 llvm_unreachable("Unsupported!"); 186 } 187 return getPointer()->count(); 188 } 189 190 /// any - Returns true if any bit is set. any()191 bool any() const { 192 if (isSmall()) 193 return getSmallBits() != 0; 194 return getPointer()->any(); 195 } 196 197 /// all - Returns true if all bits are set. all()198 bool all() const { 199 if (isSmall()) 200 return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1; 201 return getPointer()->all(); 202 } 203 204 /// none - Returns true if none of the bits are set. none()205 bool none() const { 206 if (isSmall()) 207 return getSmallBits() == 0; 208 return getPointer()->none(); 209 } 210 211 /// find_first - Returns the index of the first set bit, -1 if none 212 /// of the bits are set. find_first()213 int find_first() const { 214 if (isSmall()) { 215 uintptr_t Bits = getSmallBits(); 216 if (Bits == 0) 217 return -1; 218 if (sizeof(uintptr_t) * CHAR_BIT == 32) 219 return CountTrailingZeros_32(Bits); 220 if (sizeof(uintptr_t) * CHAR_BIT == 64) 221 return CountTrailingZeros_64(Bits); 222 llvm_unreachable("Unsupported!"); 223 } 224 return getPointer()->find_first(); 225 } 226 227 /// find_next - Returns the index of the next set bit following the 228 /// "Prev" bit. Returns -1 if the next set bit is not found. find_next(unsigned Prev)229 int find_next(unsigned Prev) const { 230 if (isSmall()) { 231 uintptr_t Bits = getSmallBits(); 232 // Mask off previous bits. 233 Bits &= ~uintptr_t(0) << (Prev + 1); 234 if (Bits == 0 || Prev + 1 >= getSmallSize()) 235 return -1; 236 if (sizeof(uintptr_t) * CHAR_BIT == 32) 237 return CountTrailingZeros_32(Bits); 238 if (sizeof(uintptr_t) * CHAR_BIT == 64) 239 return CountTrailingZeros_64(Bits); 240 llvm_unreachable("Unsupported!"); 241 } 242 return getPointer()->find_next(Prev); 243 } 244 245 /// clear - Clear all bits. clear()246 void clear() { 247 if (!isSmall()) 248 delete getPointer(); 249 switchToSmall(0, 0); 250 } 251 252 /// resize - Grow or shrink the bitvector. 253 void resize(unsigned N, bool t = false) { 254 if (!isSmall()) { 255 getPointer()->resize(N, t); 256 } else if (SmallNumDataBits >= N) { 257 uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0; 258 setSmallSize(N); 259 setSmallBits(NewBits | getSmallBits()); 260 } else { 261 BitVector *BV = new BitVector(N, t); 262 uintptr_t OldBits = getSmallBits(); 263 for (size_t i = 0, e = getSmallSize(); i != e; ++i) 264 (*BV)[i] = (OldBits >> i) & 1; 265 switchToLarge(BV); 266 } 267 } 268 reserve(unsigned N)269 void reserve(unsigned N) { 270 if (isSmall()) { 271 if (N > SmallNumDataBits) { 272 uintptr_t OldBits = getSmallRawBits(); 273 size_t SmallSize = getSmallSize(); 274 BitVector *BV = new BitVector(SmallSize); 275 for (size_t i = 0; i < SmallSize; ++i) 276 if ((OldBits >> i) & 1) 277 BV->set(i); 278 BV->reserve(N); 279 switchToLarge(BV); 280 } 281 } else { 282 getPointer()->reserve(N); 283 } 284 } 285 286 // Set, reset, flip set()287 SmallBitVector &set() { 288 if (isSmall()) 289 setSmallBits(~uintptr_t(0)); 290 else 291 getPointer()->set(); 292 return *this; 293 } 294 set(unsigned Idx)295 SmallBitVector &set(unsigned Idx) { 296 if (isSmall()) 297 setSmallBits(getSmallBits() | (uintptr_t(1) << Idx)); 298 else 299 getPointer()->set(Idx); 300 return *this; 301 } 302 reset()303 SmallBitVector &reset() { 304 if (isSmall()) 305 setSmallBits(0); 306 else 307 getPointer()->reset(); 308 return *this; 309 } 310 reset(unsigned Idx)311 SmallBitVector &reset(unsigned Idx) { 312 if (isSmall()) 313 setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx)); 314 else 315 getPointer()->reset(Idx); 316 return *this; 317 } 318 flip()319 SmallBitVector &flip() { 320 if (isSmall()) 321 setSmallBits(~getSmallBits()); 322 else 323 getPointer()->flip(); 324 return *this; 325 } 326 flip(unsigned Idx)327 SmallBitVector &flip(unsigned Idx) { 328 if (isSmall()) 329 setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx)); 330 else 331 getPointer()->flip(Idx); 332 return *this; 333 } 334 335 // No argument flip. 336 SmallBitVector operator~() const { 337 return SmallBitVector(*this).flip(); 338 } 339 340 // Indexing. 341 reference operator[](unsigned Idx) { 342 assert(Idx < size() && "Out-of-bounds Bit access."); 343 return reference(*this, Idx); 344 } 345 346 bool operator[](unsigned Idx) const { 347 assert(Idx < size() && "Out-of-bounds Bit access."); 348 if (isSmall()) 349 return ((getSmallBits() >> Idx) & 1) != 0; 350 return getPointer()->operator[](Idx); 351 } 352 test(unsigned Idx)353 bool test(unsigned Idx) const { 354 return (*this)[Idx]; 355 } 356 357 /// Test if any common bits are set. anyCommon(const SmallBitVector & RHS)358 bool anyCommon(const SmallBitVector &RHS) const { 359 if (isSmall() && RHS.isSmall()) 360 return (getSmallBits() & RHS.getSmallBits()) != 0; 361 if (!isSmall() && !RHS.isSmall()) 362 return getPointer()->anyCommon(*RHS.getPointer()); 363 364 for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i) 365 if (test(i) && RHS.test(i)) 366 return true; 367 return false; 368 } 369 370 // Comparison operators. 371 bool operator==(const SmallBitVector &RHS) const { 372 if (size() != RHS.size()) 373 return false; 374 if (isSmall()) 375 return getSmallBits() == RHS.getSmallBits(); 376 else 377 return *getPointer() == *RHS.getPointer(); 378 } 379 380 bool operator!=(const SmallBitVector &RHS) const { 381 return !(*this == RHS); 382 } 383 384 // Intersection, union, disjoint union. 385 SmallBitVector &operator&=(const SmallBitVector &RHS) { 386 resize(std::max(size(), RHS.size())); 387 if (isSmall()) 388 setSmallBits(getSmallBits() & RHS.getSmallBits()); 389 else if (!RHS.isSmall()) 390 getPointer()->operator&=(*RHS.getPointer()); 391 else { 392 SmallBitVector Copy = RHS; 393 Copy.resize(size()); 394 getPointer()->operator&=(*Copy.getPointer()); 395 } 396 return *this; 397 } 398 399 SmallBitVector &operator|=(const SmallBitVector &RHS) { 400 resize(std::max(size(), RHS.size())); 401 if (isSmall()) 402 setSmallBits(getSmallBits() | RHS.getSmallBits()); 403 else if (!RHS.isSmall()) 404 getPointer()->operator|=(*RHS.getPointer()); 405 else { 406 SmallBitVector Copy = RHS; 407 Copy.resize(size()); 408 getPointer()->operator|=(*Copy.getPointer()); 409 } 410 return *this; 411 } 412 413 SmallBitVector &operator^=(const SmallBitVector &RHS) { 414 resize(std::max(size(), RHS.size())); 415 if (isSmall()) 416 setSmallBits(getSmallBits() ^ RHS.getSmallBits()); 417 else if (!RHS.isSmall()) 418 getPointer()->operator^=(*RHS.getPointer()); 419 else { 420 SmallBitVector Copy = RHS; 421 Copy.resize(size()); 422 getPointer()->operator^=(*Copy.getPointer()); 423 } 424 return *this; 425 } 426 427 // Assignment operator. 428 const SmallBitVector &operator=(const SmallBitVector &RHS) { 429 if (isSmall()) { 430 if (RHS.isSmall()) 431 X = RHS.X; 432 else 433 switchToLarge(new BitVector(*RHS.getPointer())); 434 } else { 435 if (!RHS.isSmall()) 436 *getPointer() = *RHS.getPointer(); 437 else { 438 delete getPointer(); 439 X = RHS.X; 440 } 441 } 442 return *this; 443 } 444 445 #if LLVM_USE_RVALUE_REFERENCES 446 const SmallBitVector &operator=(SmallBitVector &&RHS) { 447 if (this != &RHS) { 448 clear(); 449 swap(RHS); 450 } 451 return *this; 452 } 453 #endif 454 swap(SmallBitVector & RHS)455 void swap(SmallBitVector &RHS) { 456 std::swap(X, RHS.X); 457 } 458 459 /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. 460 /// This computes "*this |= Mask". 461 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 462 if (isSmall()) 463 applyMask<true, false>(Mask, MaskWords); 464 else 465 getPointer()->setBitsInMask(Mask, MaskWords); 466 } 467 468 /// clearBitsInMask - Clear any bits in this vector that are set in Mask. 469 /// Don't resize. This computes "*this &= ~Mask". 470 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 471 if (isSmall()) 472 applyMask<false, false>(Mask, MaskWords); 473 else 474 getPointer()->clearBitsInMask(Mask, MaskWords); 475 } 476 477 /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. 478 /// Don't resize. This computes "*this |= ~Mask". 479 void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 480 if (isSmall()) 481 applyMask<true, true>(Mask, MaskWords); 482 else 483 getPointer()->setBitsNotInMask(Mask, MaskWords); 484 } 485 486 /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. 487 /// Don't resize. This computes "*this &= Mask". 488 void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 489 if (isSmall()) 490 applyMask<false, true>(Mask, MaskWords); 491 else 492 getPointer()->clearBitsNotInMask(Mask, MaskWords); 493 } 494 495 private: 496 template<bool AddBits, bool InvertMask> applyMask(const uint32_t * Mask,unsigned MaskWords)497 void applyMask(const uint32_t *Mask, unsigned MaskWords) { 498 assert((NumBaseBits == 64 || NumBaseBits == 32) && "Unsupported word size"); 499 if (NumBaseBits == 64 && MaskWords >= 2) { 500 uint64_t M = Mask[0] | (uint64_t(Mask[1]) << 32); 501 if (InvertMask) M = ~M; 502 if (AddBits) setSmallBits(getSmallBits() | M); 503 else setSmallBits(getSmallBits() & ~M); 504 } else { 505 uint32_t M = Mask[0]; 506 if (InvertMask) M = ~M; 507 if (AddBits) setSmallBits(getSmallBits() | M); 508 else setSmallBits(getSmallBits() & ~M); 509 } 510 } 511 }; 512 513 inline SmallBitVector 514 operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) { 515 SmallBitVector Result(LHS); 516 Result &= RHS; 517 return Result; 518 } 519 520 inline SmallBitVector 521 operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) { 522 SmallBitVector Result(LHS); 523 Result |= RHS; 524 return Result; 525 } 526 527 inline SmallBitVector 528 operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) { 529 SmallBitVector Result(LHS); 530 Result ^= RHS; 531 return Result; 532 } 533 534 } // End llvm namespace 535 536 namespace std { 537 /// Implement std::swap in terms of BitVector swap. 538 inline void swap(llvm::SmallBitVector & LHS,llvm::SmallBitVector & RHS)539 swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) { 540 LHS.swap(RHS); 541 } 542 } 543 544 #endif 545