• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector -*- C++ -*- ===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the SparseBitVector class.  See the doxygen comment for
11 // SparseBitVector for more details on the algorithm used.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_SPARSEBITVECTOR_H
16 #define LLVM_ADT_SPARSEBITVECTOR_H
17 
18 #include "llvm/ADT/ilist.h"
19 #include "llvm/ADT/ilist_node.h"
20 #include "llvm/Support/DataTypes.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <cassert>
25 #include <climits>
26 
27 namespace llvm {
28 
29 /// SparseBitVector is an implementation of a bitvector that is sparse by only
30 /// storing the elements that have non-zero bits set.  In order to make this
31 /// fast for the most common cases, SparseBitVector is implemented as a linked
32 /// list of SparseBitVectorElements.  We maintain a pointer to the last
33 /// SparseBitVectorElement accessed (in the form of a list iterator), in order
34 /// to make multiple in-order test/set constant time after the first one is
35 /// executed.  Note that using vectors to store SparseBitVectorElement's does
36 /// not work out very well because it causes insertion in the middle to take
37 /// enormous amounts of time with a large amount of bits.  Other structures that
38 /// have better worst cases for insertion in the middle (various balanced trees,
39 /// etc) do not perform as well in practice as a linked list with this iterator
40 /// kept up to date.  They are also significantly more memory intensive.
41 
42 
43 template <unsigned ElementSize = 128>
44 struct SparseBitVectorElement
45   : public ilist_node<SparseBitVectorElement<ElementSize> > {
46 public:
47   typedef unsigned long BitWord;
48   enum {
49     BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT,
50     BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE,
51     BITS_PER_ELEMENT = ElementSize
52   };
53 
54 private:
55   // Index of Element in terms of where first bit starts.
56   unsigned ElementIndex;
57   BitWord Bits[BITWORDS_PER_ELEMENT];
58   // Needed for sentinels
59   friend struct ilist_sentinel_traits<SparseBitVectorElement>;
60   SparseBitVectorElement() {
61     ElementIndex = ~0U;
62     memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
63   }
64 
65 public:
66   explicit SparseBitVectorElement(unsigned Idx) {
67     ElementIndex = Idx;
68     memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
69   }
70 
71   // Comparison.
72   bool operator==(const SparseBitVectorElement &RHS) const {
73     if (ElementIndex != RHS.ElementIndex)
74       return false;
75     for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
76       if (Bits[i] != RHS.Bits[i])
77         return false;
78     return true;
79   }
80 
81   bool operator!=(const SparseBitVectorElement &RHS) const {
82     return !(*this == RHS);
83   }
84 
85   // Return the bits that make up word Idx in our element.
86   BitWord word(unsigned Idx) const {
87     assert (Idx < BITWORDS_PER_ELEMENT);
88     return Bits[Idx];
89   }
90 
91   unsigned index() const {
92     return ElementIndex;
93   }
94 
95   bool empty() const {
96     for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
97       if (Bits[i])
98         return false;
99     return true;
100   }
101 
102   void set(unsigned Idx) {
103     Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
104   }
105 
106   bool test_and_set (unsigned Idx) {
107     bool old = test(Idx);
108     if (!old) {
109       set(Idx);
110       return true;
111     }
112     return false;
113   }
114 
115   void reset(unsigned Idx) {
116     Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
117   }
118 
119   bool test(unsigned Idx) const {
120     return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE));
121   }
122 
123   unsigned count() const {
124     unsigned NumBits = 0;
125     for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
126       if (sizeof(BitWord) == 4)
127         NumBits += CountPopulation_32(Bits[i]);
128       else if (sizeof(BitWord) == 8)
129         NumBits += CountPopulation_64(Bits[i]);
130       else
131         llvm_unreachable("Unsupported!");
132     return NumBits;
133   }
134 
135   /// find_first - Returns the index of the first set bit.
136   int find_first() const {
137     for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
138       if (Bits[i] != 0) {
139         if (sizeof(BitWord) == 4)
140           return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
141         if (sizeof(BitWord) == 8)
142           return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
143         llvm_unreachable("Unsupported!");
144       }
145     llvm_unreachable("Illegal empty element");
146   }
147 
148   /// find_next - Returns the index of the next set bit starting from the
149   /// "Curr" bit. Returns -1 if the next set bit is not found.
150   int find_next(unsigned Curr) const {
151     if (Curr >= BITS_PER_ELEMENT)
152       return -1;
153 
154     unsigned WordPos = Curr / BITWORD_SIZE;
155     unsigned BitPos = Curr % BITWORD_SIZE;
156     BitWord Copy = Bits[WordPos];
157     assert (WordPos <= BITWORDS_PER_ELEMENT
158             && "Word Position outside of element");
159 
160     // Mask off previous bits.
161     Copy &= ~0UL << BitPos;
162 
163     if (Copy != 0) {
164       if (sizeof(BitWord) == 4)
165         return WordPos * BITWORD_SIZE + CountTrailingZeros_32(Copy);
166       if (sizeof(BitWord) == 8)
167         return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
168       llvm_unreachable("Unsupported!");
169     }
170 
171     // Check subsequent words.
172     for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i)
173       if (Bits[i] != 0) {
174         if (sizeof(BitWord) == 4)
175           return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
176         if (sizeof(BitWord) == 8)
177           return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
178         llvm_unreachable("Unsupported!");
179       }
180     return -1;
181   }
182 
183   // Union this element with RHS and return true if this one changed.
184   bool unionWith(const SparseBitVectorElement &RHS) {
185     bool changed = false;
186     for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
187       BitWord old = changed ? 0 : Bits[i];
188 
189       Bits[i] |= RHS.Bits[i];
190       if (!changed && old != Bits[i])
191         changed = true;
192     }
193     return changed;
194   }
195 
196   // Return true if we have any bits in common with RHS
197   bool intersects(const SparseBitVectorElement &RHS) const {
198     for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
199       if (RHS.Bits[i] & Bits[i])
200         return true;
201     }
202     return false;
203   }
204 
205   // Intersect this Element with RHS and return true if this one changed.
206   // BecameZero is set to true if this element became all-zero bits.
207   bool intersectWith(const SparseBitVectorElement &RHS,
208                      bool &BecameZero) {
209     bool changed = false;
210     bool allzero = true;
211 
212     BecameZero = false;
213     for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
214       BitWord old = changed ? 0 : Bits[i];
215 
216       Bits[i] &= RHS.Bits[i];
217       if (Bits[i] != 0)
218         allzero = false;
219 
220       if (!changed && old != Bits[i])
221         changed = true;
222     }
223     BecameZero = allzero;
224     return changed;
225   }
226   // Intersect this Element with the complement of RHS and return true if this
227   // one changed.  BecameZero is set to true if this element became all-zero
228   // bits.
229   bool intersectWithComplement(const SparseBitVectorElement &RHS,
230                                bool &BecameZero) {
231     bool changed = false;
232     bool allzero = true;
233 
234     BecameZero = false;
235     for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
236       BitWord old = changed ? 0 : Bits[i];
237 
238       Bits[i] &= ~RHS.Bits[i];
239       if (Bits[i] != 0)
240         allzero = false;
241 
242       if (!changed && old != Bits[i])
243         changed = true;
244     }
245     BecameZero = allzero;
246     return changed;
247   }
248   // Three argument version of intersectWithComplement that intersects
249   // RHS1 & ~RHS2 into this element
250   void intersectWithComplement(const SparseBitVectorElement &RHS1,
251                                const SparseBitVectorElement &RHS2,
252                                bool &BecameZero) {
253     bool allzero = true;
254 
255     BecameZero = false;
256     for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
257       Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i];
258       if (Bits[i] != 0)
259         allzero = false;
260     }
261     BecameZero = allzero;
262   }
263 };
264 
265 template <unsigned ElementSize = 128>
266 class SparseBitVector {
267   typedef ilist<SparseBitVectorElement<ElementSize> > ElementList;
268   typedef typename ElementList::iterator ElementListIter;
269   typedef typename ElementList::const_iterator ElementListConstIter;
270   enum {
271     BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE
272   };
273 
274   // Pointer to our current Element.
275   ElementListIter CurrElementIter;
276   ElementList Elements;
277 
278   // This is like std::lower_bound, except we do linear searching from the
279   // current position.
280   ElementListIter FindLowerBound(unsigned ElementIndex) {
281 
282     if (Elements.empty()) {
283       CurrElementIter = Elements.begin();
284       return Elements.begin();
285     }
286 
287     // Make sure our current iterator is valid.
288     if (CurrElementIter == Elements.end())
289       --CurrElementIter;
290 
291     // Search from our current iterator, either backwards or forwards,
292     // depending on what element we are looking for.
293     ElementListIter ElementIter = CurrElementIter;
294     if (CurrElementIter->index() == ElementIndex) {
295       return ElementIter;
296     } else if (CurrElementIter->index() > ElementIndex) {
297       while (ElementIter != Elements.begin()
298              && ElementIter->index() > ElementIndex)
299         --ElementIter;
300     } else {
301       while (ElementIter != Elements.end() &&
302              ElementIter->index() < ElementIndex)
303         ++ElementIter;
304     }
305     CurrElementIter = ElementIter;
306     return ElementIter;
307   }
308 
309   // Iterator to walk set bits in the bitmap.  This iterator is a lot uglier
310   // than it would be, in order to be efficient.
311   class SparseBitVectorIterator {
312   private:
313     bool AtEnd;
314 
315     const SparseBitVector<ElementSize> *BitVector;
316 
317     // Current element inside of bitmap.
318     ElementListConstIter Iter;
319 
320     // Current bit number inside of our bitmap.
321     unsigned BitNumber;
322 
323     // Current word number inside of our element.
324     unsigned WordNumber;
325 
326     // Current bits from the element.
327     typename SparseBitVectorElement<ElementSize>::BitWord Bits;
328 
329     // Move our iterator to the first non-zero bit in the bitmap.
330     void AdvanceToFirstNonZero() {
331       if (AtEnd)
332         return;
333       if (BitVector->Elements.empty()) {
334         AtEnd = true;
335         return;
336       }
337       Iter = BitVector->Elements.begin();
338       BitNumber = Iter->index() * ElementSize;
339       unsigned BitPos = Iter->find_first();
340       BitNumber += BitPos;
341       WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
342       Bits = Iter->word(WordNumber);
343       Bits >>= BitPos % BITWORD_SIZE;
344     }
345 
346     // Move our iterator to the next non-zero bit.
347     void AdvanceToNextNonZero() {
348       if (AtEnd)
349         return;
350 
351       while (Bits && !(Bits & 1)) {
352         Bits >>= 1;
353         BitNumber += 1;
354       }
355 
356       // See if we ran out of Bits in this word.
357       if (!Bits) {
358         int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ;
359         // If we ran out of set bits in this element, move to next element.
360         if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) {
361           ++Iter;
362           WordNumber = 0;
363 
364           // We may run out of elements in the bitmap.
365           if (Iter == BitVector->Elements.end()) {
366             AtEnd = true;
367             return;
368           }
369           // Set up for next non zero word in bitmap.
370           BitNumber = Iter->index() * ElementSize;
371           NextSetBitNumber = Iter->find_first();
372           BitNumber += NextSetBitNumber;
373           WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
374           Bits = Iter->word(WordNumber);
375           Bits >>= NextSetBitNumber % BITWORD_SIZE;
376         } else {
377           WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE;
378           Bits = Iter->word(WordNumber);
379           Bits >>= NextSetBitNumber % BITWORD_SIZE;
380           BitNumber = Iter->index() * ElementSize;
381           BitNumber += NextSetBitNumber;
382         }
383       }
384     }
385   public:
386     // Preincrement.
387     inline SparseBitVectorIterator& operator++() {
388       ++BitNumber;
389       Bits >>= 1;
390       AdvanceToNextNonZero();
391       return *this;
392     }
393 
394     // Postincrement.
395     inline SparseBitVectorIterator operator++(int) {
396       SparseBitVectorIterator tmp = *this;
397       ++*this;
398       return tmp;
399     }
400 
401     // Return the current set bit number.
402     unsigned operator*() const {
403       return BitNumber;
404     }
405 
406     bool operator==(const SparseBitVectorIterator &RHS) const {
407       // If they are both at the end, ignore the rest of the fields.
408       if (AtEnd && RHS.AtEnd)
409         return true;
410       // Otherwise they are the same if they have the same bit number and
411       // bitmap.
412       return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber;
413     }
414     bool operator!=(const SparseBitVectorIterator &RHS) const {
415       return !(*this == RHS);
416     }
417     SparseBitVectorIterator(): BitVector(NULL) {
418     }
419 
420 
421     SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS,
422                             bool end = false):BitVector(RHS) {
423       Iter = BitVector->Elements.begin();
424       BitNumber = 0;
425       Bits = 0;
426       WordNumber = ~0;
427       AtEnd = end;
428       AdvanceToFirstNonZero();
429     }
430   };
431 public:
432   typedef SparseBitVectorIterator iterator;
433 
434   SparseBitVector () {
435     CurrElementIter = Elements.begin ();
436   }
437 
438   ~SparseBitVector() {
439   }
440 
441   // SparseBitVector copy ctor.
442   SparseBitVector(const SparseBitVector &RHS) {
443     ElementListConstIter ElementIter = RHS.Elements.begin();
444     while (ElementIter != RHS.Elements.end()) {
445       Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
446       ++ElementIter;
447     }
448 
449     CurrElementIter = Elements.begin ();
450   }
451 
452   // Clear.
453   void clear() {
454     Elements.clear();
455   }
456 
457   // Assignment
458   SparseBitVector& operator=(const SparseBitVector& RHS) {
459     Elements.clear();
460 
461     ElementListConstIter ElementIter = RHS.Elements.begin();
462     while (ElementIter != RHS.Elements.end()) {
463       Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
464       ++ElementIter;
465     }
466 
467     CurrElementIter = Elements.begin ();
468 
469     return *this;
470   }
471 
472   // Test, Reset, and Set a bit in the bitmap.
473   bool test(unsigned Idx) {
474     if (Elements.empty())
475       return false;
476 
477     unsigned ElementIndex = Idx / ElementSize;
478     ElementListIter ElementIter = FindLowerBound(ElementIndex);
479 
480     // If we can't find an element that is supposed to contain this bit, there
481     // is nothing more to do.
482     if (ElementIter == Elements.end() ||
483         ElementIter->index() != ElementIndex)
484       return false;
485     return ElementIter->test(Idx % ElementSize);
486   }
487 
488   void reset(unsigned Idx) {
489     if (Elements.empty())
490       return;
491 
492     unsigned ElementIndex = Idx / ElementSize;
493     ElementListIter ElementIter = FindLowerBound(ElementIndex);
494 
495     // If we can't find an element that is supposed to contain this bit, there
496     // is nothing more to do.
497     if (ElementIter == Elements.end() ||
498         ElementIter->index() != ElementIndex)
499       return;
500     ElementIter->reset(Idx % ElementSize);
501 
502     // When the element is zeroed out, delete it.
503     if (ElementIter->empty()) {
504       ++CurrElementIter;
505       Elements.erase(ElementIter);
506     }
507   }
508 
509   void set(unsigned Idx) {
510     unsigned ElementIndex = Idx / ElementSize;
511     SparseBitVectorElement<ElementSize> *Element;
512     ElementListIter ElementIter;
513     if (Elements.empty()) {
514       Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
515       ElementIter = Elements.insert(Elements.end(), Element);
516 
517     } else {
518       ElementIter = FindLowerBound(ElementIndex);
519 
520       if (ElementIter == Elements.end() ||
521           ElementIter->index() != ElementIndex) {
522         Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
523         // We may have hit the beginning of our SparseBitVector, in which case,
524         // we may need to insert right after this element, which requires moving
525         // the current iterator forward one, because insert does insert before.
526         if (ElementIter != Elements.end() &&
527             ElementIter->index() < ElementIndex)
528           ElementIter = Elements.insert(++ElementIter, Element);
529         else
530           ElementIter = Elements.insert(ElementIter, Element);
531       }
532     }
533     CurrElementIter = ElementIter;
534 
535     ElementIter->set(Idx % ElementSize);
536   }
537 
538   bool test_and_set (unsigned Idx) {
539     bool old = test(Idx);
540     if (!old) {
541       set(Idx);
542       return true;
543     }
544     return false;
545   }
546 
547   bool operator!=(const SparseBitVector &RHS) const {
548     return !(*this == RHS);
549   }
550 
551   bool operator==(const SparseBitVector &RHS) const {
552     ElementListConstIter Iter1 = Elements.begin();
553     ElementListConstIter Iter2 = RHS.Elements.begin();
554 
555     for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end();
556          ++Iter1, ++Iter2) {
557       if (*Iter1 != *Iter2)
558         return false;
559     }
560     return Iter1 == Elements.end() && Iter2 == RHS.Elements.end();
561   }
562 
563   // Union our bitmap with the RHS and return true if we changed.
564   bool operator|=(const SparseBitVector &RHS) {
565     bool changed = false;
566     ElementListIter Iter1 = Elements.begin();
567     ElementListConstIter Iter2 = RHS.Elements.begin();
568 
569     // If RHS is empty, we are done
570     if (RHS.Elements.empty())
571       return false;
572 
573     while (Iter2 != RHS.Elements.end()) {
574       if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) {
575         Elements.insert(Iter1,
576                         new SparseBitVectorElement<ElementSize>(*Iter2));
577         ++Iter2;
578         changed = true;
579       } else if (Iter1->index() == Iter2->index()) {
580         changed |= Iter1->unionWith(*Iter2);
581         ++Iter1;
582         ++Iter2;
583       } else {
584         ++Iter1;
585       }
586     }
587     CurrElementIter = Elements.begin();
588     return changed;
589   }
590 
591   // Intersect our bitmap with the RHS and return true if ours changed.
592   bool operator&=(const SparseBitVector &RHS) {
593     bool changed = false;
594     ElementListIter Iter1 = Elements.begin();
595     ElementListConstIter Iter2 = RHS.Elements.begin();
596 
597     // Check if both bitmaps are empty.
598     if (Elements.empty() && RHS.Elements.empty())
599       return false;
600 
601     // Loop through, intersecting as we go, erasing elements when necessary.
602     while (Iter2 != RHS.Elements.end()) {
603       if (Iter1 == Elements.end()) {
604         CurrElementIter = Elements.begin();
605         return changed;
606       }
607 
608       if (Iter1->index() > Iter2->index()) {
609         ++Iter2;
610       } else if (Iter1->index() == Iter2->index()) {
611         bool BecameZero;
612         changed |= Iter1->intersectWith(*Iter2, BecameZero);
613         if (BecameZero) {
614           ElementListIter IterTmp = Iter1;
615           ++Iter1;
616           Elements.erase(IterTmp);
617         } else {
618           ++Iter1;
619         }
620         ++Iter2;
621       } else {
622         ElementListIter IterTmp = Iter1;
623         ++Iter1;
624         Elements.erase(IterTmp);
625       }
626     }
627     Elements.erase(Iter1, Elements.end());
628     CurrElementIter = Elements.begin();
629     return changed;
630   }
631 
632   // Intersect our bitmap with the complement of the RHS and return true
633   // if ours changed.
634   bool intersectWithComplement(const SparseBitVector &RHS) {
635     bool changed = false;
636     ElementListIter Iter1 = Elements.begin();
637     ElementListConstIter Iter2 = RHS.Elements.begin();
638 
639     // If either our bitmap or RHS is empty, we are done
640     if (Elements.empty() || RHS.Elements.empty())
641       return false;
642 
643     // Loop through, intersecting as we go, erasing elements when necessary.
644     while (Iter2 != RHS.Elements.end()) {
645       if (Iter1 == Elements.end()) {
646         CurrElementIter = Elements.begin();
647         return changed;
648       }
649 
650       if (Iter1->index() > Iter2->index()) {
651         ++Iter2;
652       } else if (Iter1->index() == Iter2->index()) {
653         bool BecameZero;
654         changed |= Iter1->intersectWithComplement(*Iter2, BecameZero);
655         if (BecameZero) {
656           ElementListIter IterTmp = Iter1;
657           ++Iter1;
658           Elements.erase(IterTmp);
659         } else {
660           ++Iter1;
661         }
662         ++Iter2;
663       } else {
664         ++Iter1;
665       }
666     }
667     CurrElementIter = Elements.begin();
668     return changed;
669   }
670 
671   bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const {
672     return intersectWithComplement(*RHS);
673   }
674 
675 
676   //  Three argument version of intersectWithComplement.
677   //  Result of RHS1 & ~RHS2 is stored into this bitmap.
678   void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1,
679                                const SparseBitVector<ElementSize> &RHS2)
680   {
681     Elements.clear();
682     CurrElementIter = Elements.begin();
683     ElementListConstIter Iter1 = RHS1.Elements.begin();
684     ElementListConstIter Iter2 = RHS2.Elements.begin();
685 
686     // If RHS1 is empty, we are done
687     // If RHS2 is empty, we still have to copy RHS1
688     if (RHS1.Elements.empty())
689       return;
690 
691     // Loop through, intersecting as we go, erasing elements when necessary.
692     while (Iter2 != RHS2.Elements.end()) {
693       if (Iter1 == RHS1.Elements.end())
694         return;
695 
696       if (Iter1->index() > Iter2->index()) {
697         ++Iter2;
698       } else if (Iter1->index() == Iter2->index()) {
699         bool BecameZero = false;
700         SparseBitVectorElement<ElementSize> *NewElement =
701           new SparseBitVectorElement<ElementSize>(Iter1->index());
702         NewElement->intersectWithComplement(*Iter1, *Iter2, BecameZero);
703         if (!BecameZero) {
704           Elements.push_back(NewElement);
705         }
706         else
707           delete NewElement;
708         ++Iter1;
709         ++Iter2;
710       } else {
711         SparseBitVectorElement<ElementSize> *NewElement =
712           new SparseBitVectorElement<ElementSize>(*Iter1);
713         Elements.push_back(NewElement);
714         ++Iter1;
715       }
716     }
717 
718     // copy the remaining elements
719     while (Iter1 != RHS1.Elements.end()) {
720         SparseBitVectorElement<ElementSize> *NewElement =
721           new SparseBitVectorElement<ElementSize>(*Iter1);
722         Elements.push_back(NewElement);
723         ++Iter1;
724       }
725 
726     return;
727   }
728 
729   void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1,
730                                const SparseBitVector<ElementSize> *RHS2) {
731     intersectWithComplement(*RHS1, *RHS2);
732   }
733 
734   bool intersects(const SparseBitVector<ElementSize> *RHS) const {
735     return intersects(*RHS);
736   }
737 
738   // Return true if we share any bits in common with RHS
739   bool intersects(const SparseBitVector<ElementSize> &RHS) const {
740     ElementListConstIter Iter1 = Elements.begin();
741     ElementListConstIter Iter2 = RHS.Elements.begin();
742 
743     // Check if both bitmaps are empty.
744     if (Elements.empty() && RHS.Elements.empty())
745       return false;
746 
747     // Loop through, intersecting stopping when we hit bits in common.
748     while (Iter2 != RHS.Elements.end()) {
749       if (Iter1 == Elements.end())
750         return false;
751 
752       if (Iter1->index() > Iter2->index()) {
753         ++Iter2;
754       } else if (Iter1->index() == Iter2->index()) {
755         if (Iter1->intersects(*Iter2))
756           return true;
757         ++Iter1;
758         ++Iter2;
759       } else {
760         ++Iter1;
761       }
762     }
763     return false;
764   }
765 
766   // Return true iff all bits set in this SparseBitVector are
767   // also set in RHS.
768   bool contains(const SparseBitVector<ElementSize> &RHS) const {
769     SparseBitVector<ElementSize> Result(*this);
770     Result &= RHS;
771     return (Result == RHS);
772   }
773 
774   // Return the first set bit in the bitmap.  Return -1 if no bits are set.
775   int find_first() const {
776     if (Elements.empty())
777       return -1;
778     const SparseBitVectorElement<ElementSize> &First = *(Elements.begin());
779     return (First.index() * ElementSize) + First.find_first();
780   }
781 
782   // Return true if the SparseBitVector is empty
783   bool empty() const {
784     return Elements.empty();
785   }
786 
787   unsigned count() const {
788     unsigned BitCount = 0;
789     for (ElementListConstIter Iter = Elements.begin();
790          Iter != Elements.end();
791          ++Iter)
792       BitCount += Iter->count();
793 
794     return BitCount;
795   }
796   iterator begin() const {
797     return iterator(this);
798   }
799 
800   iterator end() const {
801     return iterator(this, true);
802   }
803 };
804 
805 // Convenience functions to allow Or and And without dereferencing in the user
806 // code.
807 
808 template <unsigned ElementSize>
809 inline bool operator |=(SparseBitVector<ElementSize> &LHS,
810                         const SparseBitVector<ElementSize> *RHS) {
811   return LHS |= *RHS;
812 }
813 
814 template <unsigned ElementSize>
815 inline bool operator |=(SparseBitVector<ElementSize> *LHS,
816                         const SparseBitVector<ElementSize> &RHS) {
817   return LHS->operator|=(RHS);
818 }
819 
820 template <unsigned ElementSize>
821 inline bool operator &=(SparseBitVector<ElementSize> *LHS,
822                         const SparseBitVector<ElementSize> &RHS) {
823   return LHS->operator&=(RHS);
824 }
825 
826 template <unsigned ElementSize>
827 inline bool operator &=(SparseBitVector<ElementSize> &LHS,
828                         const SparseBitVector<ElementSize> *RHS) {
829   return LHS &= *RHS;
830 }
831 
832 // Convenience functions for infix union, intersection, difference operators.
833 
834 template <unsigned ElementSize>
835 inline SparseBitVector<ElementSize>
836 operator|(const SparseBitVector<ElementSize> &LHS,
837           const SparseBitVector<ElementSize> &RHS) {
838   SparseBitVector<ElementSize> Result(LHS);
839   Result |= RHS;
840   return Result;
841 }
842 
843 template <unsigned ElementSize>
844 inline SparseBitVector<ElementSize>
845 operator&(const SparseBitVector<ElementSize> &LHS,
846           const SparseBitVector<ElementSize> &RHS) {
847   SparseBitVector<ElementSize> Result(LHS);
848   Result &= RHS;
849   return Result;
850 }
851 
852 template <unsigned ElementSize>
853 inline SparseBitVector<ElementSize>
854 operator-(const SparseBitVector<ElementSize> &LHS,
855           const SparseBitVector<ElementSize> &RHS) {
856   SparseBitVector<ElementSize> Result;
857   Result.intersectWithComplement(LHS, RHS);
858   return Result;
859 }
860 
861 
862 
863 
864 // Dump a SparseBitVector to a stream
865 template <unsigned ElementSize>
866 void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) {
867   out << "[";
868 
869   typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(),
870     be = LHS.end();
871   if (bi != be) {
872     out << *bi;
873     for (++bi; bi != be; ++bi) {
874       out << " " << *bi;
875     }
876   }
877   out << "]\n";
878 }
879 } // end namespace llvm
880 
881 #endif
882