• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/JITCodeEmitter.h - Code emission ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an abstract interface that is used by the machine code
11 // emission framework to output the code.  This allows machine code emission to
12 // be separated from concerns such as resolution of call targets, and where the
13 // machine code will be written (memory or disk, f.e.).
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_CODEGEN_JITCODEEMITTER_H
18 #define LLVM_CODEGEN_JITCODEEMITTER_H
19 
20 #include <string>
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/CodeGen/MachineCodeEmitter.h"
24 #include "llvm/ADT/DenseMap.h"
25 
26 namespace llvm {
27 
28 class MachineBasicBlock;
29 class MachineConstantPool;
30 class MachineJumpTableInfo;
31 class MachineFunction;
32 class MachineModuleInfo;
33 class MachineRelocation;
34 class Value;
35 class GlobalValue;
36 class Function;
37 
38 /// JITCodeEmitter - This class defines two sorts of methods: those for
39 /// emitting the actual bytes of machine code, and those for emitting auxiliary
40 /// structures, such as jump tables, relocations, etc.
41 ///
42 /// Emission of machine code is complicated by the fact that we don't (in
43 /// general) know the size of the machine code that we're about to emit before
44 /// we emit it.  As such, we preallocate a certain amount of memory, and set the
45 /// BufferBegin/BufferEnd pointers to the start and end of the buffer.  As we
46 /// emit machine instructions, we advance the CurBufferPtr to indicate the
47 /// location of the next byte to emit.  In the case of a buffer overflow (we
48 /// need to emit more machine code than we have allocated space for), the
49 /// CurBufferPtr will saturate to BufferEnd and ignore stores.  Once the entire
50 /// function has been emitted, the overflow condition is checked, and if it has
51 /// occurred, more memory is allocated, and we reemit the code into it.
52 ///
53 class JITCodeEmitter : public MachineCodeEmitter {
54   virtual void anchor();
55 public:
~JITCodeEmitter()56   virtual ~JITCodeEmitter() {}
57 
58   /// startFunction - This callback is invoked when the specified function is
59   /// about to be code generated.  This initializes the BufferBegin/End/Ptr
60   /// fields.
61   ///
62   virtual void startFunction(MachineFunction &F) = 0;
63 
64   /// finishFunction - This callback is invoked when the specified function has
65   /// finished code generation.  If a buffer overflow has occurred, this method
66   /// returns true (the callee is required to try again), otherwise it returns
67   /// false.
68   ///
69   virtual bool finishFunction(MachineFunction &F) = 0;
70 
71   /// allocIndirectGV - Allocates and fills storage for an indirect
72   /// GlobalValue, and returns the address.
73   virtual void *allocIndirectGV(const GlobalValue *GV,
74                                 const uint8_t *Buffer, size_t Size,
75                                 unsigned Alignment) = 0;
76 
77   /// emitByte - This callback is invoked when a byte needs to be written to the
78   /// output stream.
79   ///
emitByte(uint8_t B)80   void emitByte(uint8_t B) {
81     if (CurBufferPtr != BufferEnd)
82       *CurBufferPtr++ = B;
83   }
84 
85   /// emitWordLE - This callback is invoked when a 32-bit word needs to be
86   /// written to the output stream in little-endian format.
87   ///
emitWordLE(uint32_t W)88   void emitWordLE(uint32_t W) {
89     if (4 <= BufferEnd-CurBufferPtr) {
90       *CurBufferPtr++ = (uint8_t)(W >>  0);
91       *CurBufferPtr++ = (uint8_t)(W >>  8);
92       *CurBufferPtr++ = (uint8_t)(W >> 16);
93       *CurBufferPtr++ = (uint8_t)(W >> 24);
94     } else {
95       CurBufferPtr = BufferEnd;
96     }
97   }
98 
99   /// emitWordBE - This callback is invoked when a 32-bit word needs to be
100   /// written to the output stream in big-endian format.
101   ///
emitWordBE(uint32_t W)102   void emitWordBE(uint32_t W) {
103     if (4 <= BufferEnd-CurBufferPtr) {
104       *CurBufferPtr++ = (uint8_t)(W >> 24);
105       *CurBufferPtr++ = (uint8_t)(W >> 16);
106       *CurBufferPtr++ = (uint8_t)(W >>  8);
107       *CurBufferPtr++ = (uint8_t)(W >>  0);
108     } else {
109       CurBufferPtr = BufferEnd;
110     }
111   }
112 
113   /// emitDWordLE - This callback is invoked when a 64-bit word needs to be
114   /// written to the output stream in little-endian format.
115   ///
emitDWordLE(uint64_t W)116   void emitDWordLE(uint64_t W) {
117     if (8 <= BufferEnd-CurBufferPtr) {
118       *CurBufferPtr++ = (uint8_t)(W >>  0);
119       *CurBufferPtr++ = (uint8_t)(W >>  8);
120       *CurBufferPtr++ = (uint8_t)(W >> 16);
121       *CurBufferPtr++ = (uint8_t)(W >> 24);
122       *CurBufferPtr++ = (uint8_t)(W >> 32);
123       *CurBufferPtr++ = (uint8_t)(W >> 40);
124       *CurBufferPtr++ = (uint8_t)(W >> 48);
125       *CurBufferPtr++ = (uint8_t)(W >> 56);
126     } else {
127       CurBufferPtr = BufferEnd;
128     }
129   }
130 
131   /// emitDWordBE - This callback is invoked when a 64-bit word needs to be
132   /// written to the output stream in big-endian format.
133   ///
emitDWordBE(uint64_t W)134   void emitDWordBE(uint64_t W) {
135     if (8 <= BufferEnd-CurBufferPtr) {
136       *CurBufferPtr++ = (uint8_t)(W >> 56);
137       *CurBufferPtr++ = (uint8_t)(W >> 48);
138       *CurBufferPtr++ = (uint8_t)(W >> 40);
139       *CurBufferPtr++ = (uint8_t)(W >> 32);
140       *CurBufferPtr++ = (uint8_t)(W >> 24);
141       *CurBufferPtr++ = (uint8_t)(W >> 16);
142       *CurBufferPtr++ = (uint8_t)(W >>  8);
143       *CurBufferPtr++ = (uint8_t)(W >>  0);
144     } else {
145       CurBufferPtr = BufferEnd;
146     }
147   }
148 
149   /// emitAlignment - Move the CurBufferPtr pointer up to the specified
150   /// alignment (saturated to BufferEnd of course).
emitAlignment(unsigned Alignment)151   void emitAlignment(unsigned Alignment) {
152     if (Alignment == 0) Alignment = 1;
153     uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr,
154                                                    Alignment);
155     CurBufferPtr = std::min(NewPtr, BufferEnd);
156   }
157 
158   /// emitAlignmentWithFill - Similar to emitAlignment, except that the
159   /// extra bytes are filled with the provided byte.
emitAlignmentWithFill(unsigned Alignment,uint8_t Fill)160   void emitAlignmentWithFill(unsigned Alignment, uint8_t Fill) {
161     if (Alignment == 0) Alignment = 1;
162     uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr,
163                                                    Alignment);
164     // Fail if we don't have room.
165     if (NewPtr > BufferEnd) {
166       CurBufferPtr = BufferEnd;
167       return;
168     }
169     while (CurBufferPtr < NewPtr) {
170       *CurBufferPtr++ = Fill;
171     }
172   }
173 
174   /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
175   /// written to the output stream.
176   void emitULEB128Bytes(uint64_t Value, unsigned PadTo = 0) {
177     do {
178       uint8_t Byte = Value & 0x7f;
179       Value >>= 7;
180       if (Value || PadTo != 0) Byte |= 0x80;
181       emitByte(Byte);
182     } while (Value);
183 
184     if (PadTo) {
185       do {
186         uint8_t Byte = (PadTo > 1) ? 0x80 : 0x0;
187         emitByte(Byte);
188       } while (--PadTo);
189     }
190   }
191 
192   /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
193   /// written to the output stream.
emitSLEB128Bytes(int64_t Value)194   void emitSLEB128Bytes(int64_t Value) {
195     int32_t Sign = Value >> (8 * sizeof(Value) - 1);
196     bool IsMore;
197 
198     do {
199       uint8_t Byte = Value & 0x7f;
200       Value >>= 7;
201       IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
202       if (IsMore) Byte |= 0x80;
203       emitByte(Byte);
204     } while (IsMore);
205   }
206 
207   /// emitString - This callback is invoked when a String needs to be
208   /// written to the output stream.
emitString(const std::string & String)209   void emitString(const std::string &String) {
210     for (unsigned i = 0, N = static_cast<unsigned>(String.size());
211          i < N; ++i) {
212       uint8_t C = String[i];
213       emitByte(C);
214     }
215     emitByte(0);
216   }
217 
218   /// emitInt32 - Emit a int32 directive.
emitInt32(uint32_t Value)219   void emitInt32(uint32_t Value) {
220     if (4 <= BufferEnd-CurBufferPtr) {
221       *((uint32_t*)CurBufferPtr) = Value;
222       CurBufferPtr += 4;
223     } else {
224       CurBufferPtr = BufferEnd;
225     }
226   }
227 
228   /// emitInt64 - Emit a int64 directive.
emitInt64(uint64_t Value)229   void emitInt64(uint64_t Value) {
230     if (8 <= BufferEnd-CurBufferPtr) {
231       *((uint64_t*)CurBufferPtr) = Value;
232       CurBufferPtr += 8;
233     } else {
234       CurBufferPtr = BufferEnd;
235     }
236   }
237 
238   /// emitInt32At - Emit the Int32 Value in Addr.
emitInt32At(uintptr_t * Addr,uintptr_t Value)239   void emitInt32At(uintptr_t *Addr, uintptr_t Value) {
240     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
241       (*(uint32_t*)Addr) = (uint32_t)Value;
242   }
243 
244   /// emitInt64At - Emit the Int64 Value in Addr.
emitInt64At(uintptr_t * Addr,uintptr_t Value)245   void emitInt64At(uintptr_t *Addr, uintptr_t Value) {
246     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
247       (*(uint64_t*)Addr) = (uint64_t)Value;
248   }
249 
250 
251   /// emitLabel - Emits a label
252   virtual void emitLabel(MCSymbol *Label) = 0;
253 
254   /// allocateSpace - Allocate a block of space in the current output buffer,
255   /// returning null (and setting conditions to indicate buffer overflow) on
256   /// failure.  Alignment is the alignment in bytes of the buffer desired.
allocateSpace(uintptr_t Size,unsigned Alignment)257   virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) {
258     emitAlignment(Alignment);
259     void *Result;
260 
261     // Check for buffer overflow.
262     if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) {
263       CurBufferPtr = BufferEnd;
264       Result = 0;
265     } else {
266       // Allocate the space.
267       Result = CurBufferPtr;
268       CurBufferPtr += Size;
269     }
270 
271     return Result;
272   }
273 
274   /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
275   /// this method does not allocate memory in the current output buffer,
276   /// because a global may live longer than the current function.
277   virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment) = 0;
278 
279   /// StartMachineBasicBlock - This should be called by the target when a new
280   /// basic block is about to be emitted.  This way the MCE knows where the
281   /// start of the block is, and can implement getMachineBasicBlockAddress.
282   virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0;
283 
284   /// getCurrentPCValue - This returns the address that the next emitted byte
285   /// will be output to.
286   ///
getCurrentPCValue()287   virtual uintptr_t getCurrentPCValue() const {
288     return (uintptr_t)CurBufferPtr;
289   }
290 
291   /// getCurrentPCOffset - Return the offset from the start of the emitted
292   /// buffer that we are currently writing to.
getCurrentPCOffset()293   uintptr_t getCurrentPCOffset() const {
294     return CurBufferPtr-BufferBegin;
295   }
296 
297   /// earlyResolveAddresses - True if the code emitter can use symbol addresses
298   /// during code emission time. The JIT is capable of doing this because it
299   /// creates jump tables or constant pools in memory on the fly while the
300   /// object code emitters rely on a linker to have real addresses and should
301   /// use relocations instead.
earlyResolveAddresses()302   bool earlyResolveAddresses() const { return true; }
303 
304   /// addRelocation - Whenever a relocatable address is needed, it should be
305   /// noted with this interface.
306   virtual void addRelocation(const MachineRelocation &MR) = 0;
307 
308   /// FIXME: These should all be handled with relocations!
309 
310   /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
311   /// the constant pool that was last emitted with the emitConstantPool method.
312   ///
313   virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0;
314 
315   /// getJumpTableEntryAddress - Return the address of the jump table with index
316   /// 'Index' in the function that last called initJumpTableInfo.
317   ///
318   virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0;
319 
320   /// getMachineBasicBlockAddress - Return the address of the specified
321   /// MachineBasicBlock, only usable after the label for the MBB has been
322   /// emitted.
323   ///
324   virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
325 
326   /// getLabelAddress - Return the address of the specified Label, only usable
327   /// after the Label has been emitted.
328   ///
329   virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0;
330 
331   /// Specifies the MachineModuleInfo object. This is used for exception handling
332   /// purposes.
333   virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
334 
335   /// getLabelLocations - Return the label locations map of the label IDs to
336   /// their address.
getLabelLocations()337   virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { return 0; }
338 };
339 
340 } // End llvm namespace
341 
342 #endif
343