1 //===-- llvm/CodeGen/JITCodeEmitter.h - Code emission ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines an abstract interface that is used by the machine code 11 // emission framework to output the code. This allows machine code emission to 12 // be separated from concerns such as resolution of call targets, and where the 13 // machine code will be written (memory or disk, f.e.). 14 // 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_CODEGEN_JITCODEEMITTER_H 18 #define LLVM_CODEGEN_JITCODEEMITTER_H 19 20 #include <string> 21 #include "llvm/Support/DataTypes.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/CodeGen/MachineCodeEmitter.h" 24 #include "llvm/ADT/DenseMap.h" 25 26 namespace llvm { 27 28 class MachineBasicBlock; 29 class MachineConstantPool; 30 class MachineJumpTableInfo; 31 class MachineFunction; 32 class MachineModuleInfo; 33 class MachineRelocation; 34 class Value; 35 class GlobalValue; 36 class Function; 37 38 /// JITCodeEmitter - This class defines two sorts of methods: those for 39 /// emitting the actual bytes of machine code, and those for emitting auxiliary 40 /// structures, such as jump tables, relocations, etc. 41 /// 42 /// Emission of machine code is complicated by the fact that we don't (in 43 /// general) know the size of the machine code that we're about to emit before 44 /// we emit it. As such, we preallocate a certain amount of memory, and set the 45 /// BufferBegin/BufferEnd pointers to the start and end of the buffer. As we 46 /// emit machine instructions, we advance the CurBufferPtr to indicate the 47 /// location of the next byte to emit. In the case of a buffer overflow (we 48 /// need to emit more machine code than we have allocated space for), the 49 /// CurBufferPtr will saturate to BufferEnd and ignore stores. Once the entire 50 /// function has been emitted, the overflow condition is checked, and if it has 51 /// occurred, more memory is allocated, and we reemit the code into it. 52 /// 53 class JITCodeEmitter : public MachineCodeEmitter { 54 virtual void anchor(); 55 public: ~JITCodeEmitter()56 virtual ~JITCodeEmitter() {} 57 58 /// startFunction - This callback is invoked when the specified function is 59 /// about to be code generated. This initializes the BufferBegin/End/Ptr 60 /// fields. 61 /// 62 virtual void startFunction(MachineFunction &F) = 0; 63 64 /// finishFunction - This callback is invoked when the specified function has 65 /// finished code generation. If a buffer overflow has occurred, this method 66 /// returns true (the callee is required to try again), otherwise it returns 67 /// false. 68 /// 69 virtual bool finishFunction(MachineFunction &F) = 0; 70 71 /// allocIndirectGV - Allocates and fills storage for an indirect 72 /// GlobalValue, and returns the address. 73 virtual void *allocIndirectGV(const GlobalValue *GV, 74 const uint8_t *Buffer, size_t Size, 75 unsigned Alignment) = 0; 76 77 /// emitByte - This callback is invoked when a byte needs to be written to the 78 /// output stream. 79 /// emitByte(uint8_t B)80 void emitByte(uint8_t B) { 81 if (CurBufferPtr != BufferEnd) 82 *CurBufferPtr++ = B; 83 } 84 85 /// emitWordLE - This callback is invoked when a 32-bit word needs to be 86 /// written to the output stream in little-endian format. 87 /// emitWordLE(uint32_t W)88 void emitWordLE(uint32_t W) { 89 if (4 <= BufferEnd-CurBufferPtr) { 90 *CurBufferPtr++ = (uint8_t)(W >> 0); 91 *CurBufferPtr++ = (uint8_t)(W >> 8); 92 *CurBufferPtr++ = (uint8_t)(W >> 16); 93 *CurBufferPtr++ = (uint8_t)(W >> 24); 94 } else { 95 CurBufferPtr = BufferEnd; 96 } 97 } 98 99 /// emitWordBE - This callback is invoked when a 32-bit word needs to be 100 /// written to the output stream in big-endian format. 101 /// emitWordBE(uint32_t W)102 void emitWordBE(uint32_t W) { 103 if (4 <= BufferEnd-CurBufferPtr) { 104 *CurBufferPtr++ = (uint8_t)(W >> 24); 105 *CurBufferPtr++ = (uint8_t)(W >> 16); 106 *CurBufferPtr++ = (uint8_t)(W >> 8); 107 *CurBufferPtr++ = (uint8_t)(W >> 0); 108 } else { 109 CurBufferPtr = BufferEnd; 110 } 111 } 112 113 /// emitDWordLE - This callback is invoked when a 64-bit word needs to be 114 /// written to the output stream in little-endian format. 115 /// emitDWordLE(uint64_t W)116 void emitDWordLE(uint64_t W) { 117 if (8 <= BufferEnd-CurBufferPtr) { 118 *CurBufferPtr++ = (uint8_t)(W >> 0); 119 *CurBufferPtr++ = (uint8_t)(W >> 8); 120 *CurBufferPtr++ = (uint8_t)(W >> 16); 121 *CurBufferPtr++ = (uint8_t)(W >> 24); 122 *CurBufferPtr++ = (uint8_t)(W >> 32); 123 *CurBufferPtr++ = (uint8_t)(W >> 40); 124 *CurBufferPtr++ = (uint8_t)(W >> 48); 125 *CurBufferPtr++ = (uint8_t)(W >> 56); 126 } else { 127 CurBufferPtr = BufferEnd; 128 } 129 } 130 131 /// emitDWordBE - This callback is invoked when a 64-bit word needs to be 132 /// written to the output stream in big-endian format. 133 /// emitDWordBE(uint64_t W)134 void emitDWordBE(uint64_t W) { 135 if (8 <= BufferEnd-CurBufferPtr) { 136 *CurBufferPtr++ = (uint8_t)(W >> 56); 137 *CurBufferPtr++ = (uint8_t)(W >> 48); 138 *CurBufferPtr++ = (uint8_t)(W >> 40); 139 *CurBufferPtr++ = (uint8_t)(W >> 32); 140 *CurBufferPtr++ = (uint8_t)(W >> 24); 141 *CurBufferPtr++ = (uint8_t)(W >> 16); 142 *CurBufferPtr++ = (uint8_t)(W >> 8); 143 *CurBufferPtr++ = (uint8_t)(W >> 0); 144 } else { 145 CurBufferPtr = BufferEnd; 146 } 147 } 148 149 /// emitAlignment - Move the CurBufferPtr pointer up to the specified 150 /// alignment (saturated to BufferEnd of course). emitAlignment(unsigned Alignment)151 void emitAlignment(unsigned Alignment) { 152 if (Alignment == 0) Alignment = 1; 153 uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr, 154 Alignment); 155 CurBufferPtr = std::min(NewPtr, BufferEnd); 156 } 157 158 /// emitAlignmentWithFill - Similar to emitAlignment, except that the 159 /// extra bytes are filled with the provided byte. emitAlignmentWithFill(unsigned Alignment,uint8_t Fill)160 void emitAlignmentWithFill(unsigned Alignment, uint8_t Fill) { 161 if (Alignment == 0) Alignment = 1; 162 uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr, 163 Alignment); 164 // Fail if we don't have room. 165 if (NewPtr > BufferEnd) { 166 CurBufferPtr = BufferEnd; 167 return; 168 } 169 while (CurBufferPtr < NewPtr) { 170 *CurBufferPtr++ = Fill; 171 } 172 } 173 174 /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be 175 /// written to the output stream. 176 void emitULEB128Bytes(uint64_t Value, unsigned PadTo = 0) { 177 do { 178 uint8_t Byte = Value & 0x7f; 179 Value >>= 7; 180 if (Value || PadTo != 0) Byte |= 0x80; 181 emitByte(Byte); 182 } while (Value); 183 184 if (PadTo) { 185 do { 186 uint8_t Byte = (PadTo > 1) ? 0x80 : 0x0; 187 emitByte(Byte); 188 } while (--PadTo); 189 } 190 } 191 192 /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be 193 /// written to the output stream. emitSLEB128Bytes(int64_t Value)194 void emitSLEB128Bytes(int64_t Value) { 195 int32_t Sign = Value >> (8 * sizeof(Value) - 1); 196 bool IsMore; 197 198 do { 199 uint8_t Byte = Value & 0x7f; 200 Value >>= 7; 201 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 202 if (IsMore) Byte |= 0x80; 203 emitByte(Byte); 204 } while (IsMore); 205 } 206 207 /// emitString - This callback is invoked when a String needs to be 208 /// written to the output stream. emitString(const std::string & String)209 void emitString(const std::string &String) { 210 for (unsigned i = 0, N = static_cast<unsigned>(String.size()); 211 i < N; ++i) { 212 uint8_t C = String[i]; 213 emitByte(C); 214 } 215 emitByte(0); 216 } 217 218 /// emitInt32 - Emit a int32 directive. emitInt32(uint32_t Value)219 void emitInt32(uint32_t Value) { 220 if (4 <= BufferEnd-CurBufferPtr) { 221 *((uint32_t*)CurBufferPtr) = Value; 222 CurBufferPtr += 4; 223 } else { 224 CurBufferPtr = BufferEnd; 225 } 226 } 227 228 /// emitInt64 - Emit a int64 directive. emitInt64(uint64_t Value)229 void emitInt64(uint64_t Value) { 230 if (8 <= BufferEnd-CurBufferPtr) { 231 *((uint64_t*)CurBufferPtr) = Value; 232 CurBufferPtr += 8; 233 } else { 234 CurBufferPtr = BufferEnd; 235 } 236 } 237 238 /// emitInt32At - Emit the Int32 Value in Addr. emitInt32At(uintptr_t * Addr,uintptr_t Value)239 void emitInt32At(uintptr_t *Addr, uintptr_t Value) { 240 if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd) 241 (*(uint32_t*)Addr) = (uint32_t)Value; 242 } 243 244 /// emitInt64At - Emit the Int64 Value in Addr. emitInt64At(uintptr_t * Addr,uintptr_t Value)245 void emitInt64At(uintptr_t *Addr, uintptr_t Value) { 246 if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd) 247 (*(uint64_t*)Addr) = (uint64_t)Value; 248 } 249 250 251 /// emitLabel - Emits a label 252 virtual void emitLabel(MCSymbol *Label) = 0; 253 254 /// allocateSpace - Allocate a block of space in the current output buffer, 255 /// returning null (and setting conditions to indicate buffer overflow) on 256 /// failure. Alignment is the alignment in bytes of the buffer desired. allocateSpace(uintptr_t Size,unsigned Alignment)257 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) { 258 emitAlignment(Alignment); 259 void *Result; 260 261 // Check for buffer overflow. 262 if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) { 263 CurBufferPtr = BufferEnd; 264 Result = 0; 265 } else { 266 // Allocate the space. 267 Result = CurBufferPtr; 268 CurBufferPtr += Size; 269 } 270 271 return Result; 272 } 273 274 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, 275 /// this method does not allocate memory in the current output buffer, 276 /// because a global may live longer than the current function. 277 virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment) = 0; 278 279 /// StartMachineBasicBlock - This should be called by the target when a new 280 /// basic block is about to be emitted. This way the MCE knows where the 281 /// start of the block is, and can implement getMachineBasicBlockAddress. 282 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0; 283 284 /// getCurrentPCValue - This returns the address that the next emitted byte 285 /// will be output to. 286 /// getCurrentPCValue()287 virtual uintptr_t getCurrentPCValue() const { 288 return (uintptr_t)CurBufferPtr; 289 } 290 291 /// getCurrentPCOffset - Return the offset from the start of the emitted 292 /// buffer that we are currently writing to. getCurrentPCOffset()293 uintptr_t getCurrentPCOffset() const { 294 return CurBufferPtr-BufferBegin; 295 } 296 297 /// earlyResolveAddresses - True if the code emitter can use symbol addresses 298 /// during code emission time. The JIT is capable of doing this because it 299 /// creates jump tables or constant pools in memory on the fly while the 300 /// object code emitters rely on a linker to have real addresses and should 301 /// use relocations instead. earlyResolveAddresses()302 bool earlyResolveAddresses() const { return true; } 303 304 /// addRelocation - Whenever a relocatable address is needed, it should be 305 /// noted with this interface. 306 virtual void addRelocation(const MachineRelocation &MR) = 0; 307 308 /// FIXME: These should all be handled with relocations! 309 310 /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in 311 /// the constant pool that was last emitted with the emitConstantPool method. 312 /// 313 virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0; 314 315 /// getJumpTableEntryAddress - Return the address of the jump table with index 316 /// 'Index' in the function that last called initJumpTableInfo. 317 /// 318 virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0; 319 320 /// getMachineBasicBlockAddress - Return the address of the specified 321 /// MachineBasicBlock, only usable after the label for the MBB has been 322 /// emitted. 323 /// 324 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0; 325 326 /// getLabelAddress - Return the address of the specified Label, only usable 327 /// after the Label has been emitted. 328 /// 329 virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0; 330 331 /// Specifies the MachineModuleInfo object. This is used for exception handling 332 /// purposes. 333 virtual void setModuleInfo(MachineModuleInfo* Info) = 0; 334 335 /// getLabelLocations - Return the label locations map of the label IDs to 336 /// their address. getLabelLocations()337 virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { return 0; } 338 }; 339 340 } // End llvm namespace 341 342 #endif 343