• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * QEMU MC146818 RTC emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "isa.h"
29 //#include "hpet_emul.h"
30 
31 //#define DEBUG_CMOS
32 
33 #define RTC_SECONDS             0
34 #define RTC_SECONDS_ALARM       1
35 #define RTC_MINUTES             2
36 #define RTC_MINUTES_ALARM       3
37 #define RTC_HOURS               4
38 #define RTC_HOURS_ALARM         5
39 #define RTC_ALARM_DONT_CARE    0xC0
40 
41 #define RTC_DAY_OF_WEEK         6
42 #define RTC_DAY_OF_MONTH        7
43 #define RTC_MONTH               8
44 #define RTC_YEAR                9
45 
46 #define RTC_REG_A               10
47 #define RTC_REG_B               11
48 #define RTC_REG_C               12
49 #define RTC_REG_D               13
50 
51 #define REG_A_UIP 0x80
52 
53 #define REG_B_SET  0x80
54 #define REG_B_PIE  0x40
55 #define REG_B_AIE  0x20
56 #define REG_B_UIE  0x10
57 #define REG_B_SQWE 0x08
58 #define REG_B_DM   0x04
59 
60 #define REG_C_UF   0x10
61 #define REG_C_IRQF 0x80
62 #define REG_C_PF   0x40
63 #define REG_C_AF   0x20
64 
65 struct RTCState {
66     uint8_t cmos_data[128];
67     uint8_t cmos_index;
68     struct tm current_tm;
69     int base_year;
70     qemu_irq irq;
71     qemu_irq sqw_irq;
72     int it_shift;
73     /* periodic timer */
74     QEMUTimer *periodic_timer;
75     int64_t next_periodic_time;
76     /* second update */
77     int64_t next_second_time;
78 #ifdef TARGET_I386
79     uint32_t irq_coalesced;
80     uint32_t period;
81     QEMUTimer *coalesced_timer;
82 #endif
83     QEMUTimer *second_timer;
84     QEMUTimer *second_timer2;
85 };
86 
rtc_irq_raise(qemu_irq irq)87 static void rtc_irq_raise(qemu_irq irq) {
88     /* When HPET is operating in legacy mode, RTC interrupts are disabled
89      * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
90      * mode is established while interrupt is raised. We want it to
91      * be lowered in any case
92      */
93 #ifndef CONFIG_ANDROID
94 #if defined TARGET_I386 || defined TARGET_X86_64
95     if (!hpet_in_legacy_mode())
96 #endif
97 #endif
98         qemu_irq_raise(irq);
99 }
100 
101 static void rtc_set_time(RTCState *s);
102 static void rtc_copy_date(RTCState *s);
103 
104 #ifdef TARGET_I386
rtc_coalesced_timer_update(RTCState * s)105 static void rtc_coalesced_timer_update(RTCState *s)
106 {
107     if (s->irq_coalesced == 0) {
108         qemu_del_timer(s->coalesced_timer);
109     } else {
110         /* divide each RTC interval to 2 - 8 smaller intervals */
111         int c = MIN(s->irq_coalesced, 7) + 1;
112         int64_t next_clock = qemu_get_clock_ns(vm_clock) +
113 		muldiv64(s->period / c, get_ticks_per_sec(), 32768);
114         qemu_mod_timer(s->coalesced_timer, next_clock);
115     }
116 }
117 
rtc_coalesced_timer(void * opaque)118 static void rtc_coalesced_timer(void *opaque)
119 {
120     RTCState *s = opaque;
121 
122     if (s->irq_coalesced != 0) {
123         apic_reset_irq_delivered();
124         s->cmos_data[RTC_REG_C] |= 0xc0;
125         rtc_irq_raise(s->irq);
126         if (apic_get_irq_delivered()) {
127             s->irq_coalesced--;
128         }
129     }
130 
131     rtc_coalesced_timer_update(s);
132 }
133 #endif
134 
rtc_timer_update(RTCState * s,int64_t current_time)135 static void rtc_timer_update(RTCState *s, int64_t current_time)
136 {
137     int period_code, period;
138     int64_t cur_clock, next_irq_clock;
139     int enable_pie;
140 
141     period_code = s->cmos_data[RTC_REG_A] & 0x0f;
142 #ifndef CONFIG_ANDROID
143 #if defined TARGET_I386 || defined TARGET_X86_64
144     /* disable periodic timer if hpet is in legacy mode, since interrupts are
145      * disabled anyway.
146      */
147     enable_pie = !hpet_in_legacy_mode();
148 #else
149     enable_pie = 1;
150 #endif
151 #endif
152     enable_pie = 1;
153 
154     if (period_code != 0
155         && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
156             || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
157         if (period_code <= 2)
158             period_code += 7;
159         /* period in 32 Khz cycles */
160         period = 1 << (period_code - 1);
161 #ifdef TARGET_I386
162         if(period != s->period)
163             s->irq_coalesced = (s->irq_coalesced * s->period) / period;
164         s->period = period;
165 #endif
166         /* compute 32 khz clock */
167         cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
168         next_irq_clock = (cur_clock & ~(period - 1)) + period;
169         s->next_periodic_time = muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
170         qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
171     } else {
172 #ifdef TARGET_I386
173         s->irq_coalesced = 0;
174 #endif
175         qemu_del_timer(s->periodic_timer);
176     }
177 }
178 
rtc_periodic_timer(void * opaque)179 static void rtc_periodic_timer(void *opaque)
180 {
181     RTCState *s = opaque;
182 
183     rtc_timer_update(s, s->next_periodic_time);
184     if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
185         s->cmos_data[RTC_REG_C] |= 0xc0;
186 #ifdef TARGET_I386
187         if(rtc_td_hack) {
188             apic_reset_irq_delivered();
189             rtc_irq_raise(s->irq);
190             if (!apic_get_irq_delivered()) {
191                 s->irq_coalesced++;
192                 rtc_coalesced_timer_update(s);
193             }
194         } else
195 #endif
196         rtc_irq_raise(s->irq);
197     }
198     if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
199         /* Not square wave at all but we don't want 2048Hz interrupts!
200            Must be seen as a pulse.  */
201         qemu_irq_raise(s->sqw_irq);
202     }
203 }
204 
cmos_ioport_write(void * opaque,uint32_t addr,uint32_t data)205 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
206 {
207     RTCState *s = opaque;
208 
209     if ((addr & 1) == 0) {
210         s->cmos_index = data & 0x7f;
211     } else {
212 #ifdef DEBUG_CMOS
213         printf("cmos: write index=0x%02x val=0x%02x\n",
214                s->cmos_index, data);
215 #endif
216         switch(s->cmos_index) {
217         case RTC_SECONDS_ALARM:
218         case RTC_MINUTES_ALARM:
219         case RTC_HOURS_ALARM:
220             /* XXX: not supported */
221             s->cmos_data[s->cmos_index] = data;
222             break;
223         case RTC_SECONDS:
224         case RTC_MINUTES:
225         case RTC_HOURS:
226         case RTC_DAY_OF_WEEK:
227         case RTC_DAY_OF_MONTH:
228         case RTC_MONTH:
229         case RTC_YEAR:
230             s->cmos_data[s->cmos_index] = data;
231             /* if in set mode, do not update the time */
232             if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
233                 rtc_set_time(s);
234             }
235             break;
236         case RTC_REG_A:
237             /* UIP bit is read only */
238             s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
239                 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
240             rtc_timer_update(s, qemu_get_clock_ns(vm_clock));
241             break;
242         case RTC_REG_B:
243             if (data & REG_B_SET) {
244                 /* set mode: reset UIP mode */
245                 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
246                 data &= ~REG_B_UIE;
247             } else {
248                 /* if disabling set mode, update the time */
249                 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
250                     rtc_set_time(s);
251                 }
252             }
253             s->cmos_data[RTC_REG_B] = data;
254             rtc_timer_update(s, qemu_get_clock_ns(vm_clock));
255             break;
256         case RTC_REG_C:
257         case RTC_REG_D:
258             /* cannot write to them */
259             break;
260         default:
261             s->cmos_data[s->cmos_index] = data;
262             break;
263         }
264     }
265 }
266 
rtc_to_bcd(RTCState * s,int a)267 static inline int rtc_to_bcd(RTCState *s, int a)
268 {
269     if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
270         return a;
271     } else {
272         return ((a / 10) << 4) | (a % 10);
273     }
274 }
275 
rtc_from_bcd(RTCState * s,int a)276 static inline int rtc_from_bcd(RTCState *s, int a)
277 {
278     if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
279         return a;
280     } else {
281         return ((a >> 4) * 10) + (a & 0x0f);
282     }
283 }
284 
rtc_set_time(RTCState * s)285 static void rtc_set_time(RTCState *s)
286 {
287     struct tm *tm = &s->current_tm;
288 
289     tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
290     tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
291     tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
292     if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
293         (s->cmos_data[RTC_HOURS] & 0x80)) {
294         tm->tm_hour += 12;
295     }
296     tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
297     tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
298     tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
299     tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
300 }
301 
rtc_copy_date(RTCState * s)302 static void rtc_copy_date(RTCState *s)
303 {
304     const struct tm *tm = &s->current_tm;
305     int year;
306 
307     s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
308     s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
309     if (s->cmos_data[RTC_REG_B] & 0x02) {
310         /* 24 hour format */
311         s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
312     } else {
313         /* 12 hour format */
314         s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12);
315         if (tm->tm_hour >= 12)
316             s->cmos_data[RTC_HOURS] |= 0x80;
317     }
318     s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
319     s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
320     s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
321     year = (tm->tm_year - s->base_year) % 100;
322     if (year < 0)
323         year += 100;
324     s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
325 }
326 
327 /* month is between 0 and 11. */
get_days_in_month(int month,int year)328 static int get_days_in_month(int month, int year)
329 {
330     static const int days_tab[12] = {
331         31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
332     };
333     int d;
334     if ((unsigned )month >= 12)
335         return 31;
336     d = days_tab[month];
337     if (month == 1) {
338         if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
339             d++;
340     }
341     return d;
342 }
343 
344 /* update 'tm' to the next second */
rtc_next_second(struct tm * tm)345 static void rtc_next_second(struct tm *tm)
346 {
347     int days_in_month;
348 
349     tm->tm_sec++;
350     if ((unsigned)tm->tm_sec >= 60) {
351         tm->tm_sec = 0;
352         tm->tm_min++;
353         if ((unsigned)tm->tm_min >= 60) {
354             tm->tm_min = 0;
355             tm->tm_hour++;
356             if ((unsigned)tm->tm_hour >= 24) {
357                 tm->tm_hour = 0;
358                 /* next day */
359                 tm->tm_wday++;
360                 if ((unsigned)tm->tm_wday >= 7)
361                     tm->tm_wday = 0;
362                 days_in_month = get_days_in_month(tm->tm_mon,
363                                                   tm->tm_year + 1900);
364                 tm->tm_mday++;
365                 if (tm->tm_mday < 1) {
366                     tm->tm_mday = 1;
367                 } else if (tm->tm_mday > days_in_month) {
368                     tm->tm_mday = 1;
369                     tm->tm_mon++;
370                     if (tm->tm_mon >= 12) {
371                         tm->tm_mon = 0;
372                         tm->tm_year++;
373                     }
374                 }
375             }
376         }
377     }
378 }
379 
380 
rtc_update_second(void * opaque)381 static void rtc_update_second(void *opaque)
382 {
383     RTCState *s = opaque;
384     int64_t delay;
385 
386     /* if the oscillator is not in normal operation, we do not update */
387     if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
388         s->next_second_time += get_ticks_per_sec();
389         qemu_mod_timer(s->second_timer, s->next_second_time);
390     } else {
391         rtc_next_second(&s->current_tm);
392 
393         if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
394             /* update in progress bit */
395             s->cmos_data[RTC_REG_A] |= REG_A_UIP;
396         }
397         /* should be 244 us = 8 / 32768 seconds, but currently the
398            timers do not have the necessary resolution. */
399         delay = (get_ticks_per_sec() * 1) / 100;
400         if (delay < 1)
401             delay = 1;
402         qemu_mod_timer(s->second_timer2,
403                        s->next_second_time + delay);
404     }
405 }
406 
rtc_update_second2(void * opaque)407 static void rtc_update_second2(void *opaque)
408 {
409     RTCState *s = opaque;
410 
411     if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
412         rtc_copy_date(s);
413     }
414 
415     /* check alarm */
416     if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
417         if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
418              s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
419             ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
420              s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
421             ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
422              s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
423 
424             s->cmos_data[RTC_REG_C] |= 0xa0;
425             rtc_irq_raise(s->irq);
426         }
427     }
428 
429     /* update ended interrupt */
430     if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
431         s->cmos_data[RTC_REG_C] |= 0x90;
432         rtc_irq_raise(s->irq);
433     }
434 
435     /* clear update in progress bit */
436     s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
437 
438     s->next_second_time += get_ticks_per_sec();
439     qemu_mod_timer(s->second_timer, s->next_second_time);
440 }
441 
cmos_ioport_read(void * opaque,uint32_t addr)442 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
443 {
444     RTCState *s = opaque;
445     int ret;
446     if ((addr & 1) == 0) {
447         return 0xff;
448     } else {
449         switch(s->cmos_index) {
450         case RTC_SECONDS:
451         case RTC_MINUTES:
452         case RTC_HOURS:
453         case RTC_DAY_OF_WEEK:
454         case RTC_DAY_OF_MONTH:
455         case RTC_MONTH:
456         case RTC_YEAR:
457             ret = s->cmos_data[s->cmos_index];
458             break;
459         case RTC_REG_A:
460             ret = s->cmos_data[s->cmos_index];
461             break;
462         case RTC_REG_C:
463             ret = s->cmos_data[s->cmos_index];
464             qemu_irq_lower(s->irq);
465             s->cmos_data[RTC_REG_C] = 0x00;
466             break;
467         default:
468             ret = s->cmos_data[s->cmos_index];
469             break;
470         }
471 #ifdef DEBUG_CMOS
472         printf("cmos: read index=0x%02x val=0x%02x\n",
473                s->cmos_index, ret);
474 #endif
475         return ret;
476     }
477 }
478 
rtc_set_memory(RTCState * s,int addr,int val)479 void rtc_set_memory(RTCState *s, int addr, int val)
480 {
481     if (addr >= 0 && addr <= 127)
482         s->cmos_data[addr] = val;
483 }
484 
rtc_set_date(RTCState * s,const struct tm * tm)485 void rtc_set_date(RTCState *s, const struct tm *tm)
486 {
487     s->current_tm = *tm;
488     rtc_copy_date(s);
489 }
490 
491 /* PC cmos mappings */
492 #define REG_IBM_CENTURY_BYTE        0x32
493 #define REG_IBM_PS2_CENTURY_BYTE    0x37
494 
rtc_set_date_from_host(RTCState * s)495 static void rtc_set_date_from_host(RTCState *s)
496 {
497     struct tm tm;
498     int val;
499 
500     /* set the CMOS date */
501     qemu_get_timedate(&tm, 0);
502     rtc_set_date(s, &tm);
503 
504     val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
505     rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
506     rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
507 }
508 
rtc_save(QEMUFile * f,void * opaque)509 static void rtc_save(QEMUFile *f, void *opaque)
510 {
511     RTCState *s = opaque;
512 
513     qemu_put_buffer(f, s->cmos_data, 128);
514     qemu_put_8s(f, &s->cmos_index);
515 
516     qemu_put_be32(f, s->current_tm.tm_sec);
517     qemu_put_be32(f, s->current_tm.tm_min);
518     qemu_put_be32(f, s->current_tm.tm_hour);
519     qemu_put_be32(f, s->current_tm.tm_wday);
520     qemu_put_be32(f, s->current_tm.tm_mday);
521     qemu_put_be32(f, s->current_tm.tm_mon);
522     qemu_put_be32(f, s->current_tm.tm_year);
523 
524     qemu_put_timer(f, s->periodic_timer);
525     qemu_put_be64(f, s->next_periodic_time);
526 
527     qemu_put_be64(f, s->next_second_time);
528     qemu_put_timer(f, s->second_timer);
529     qemu_put_timer(f, s->second_timer2);
530 }
531 
rtc_load(QEMUFile * f,void * opaque,int version_id)532 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
533 {
534     RTCState *s = opaque;
535 
536     if (version_id != 1)
537         return -EINVAL;
538 
539     qemu_get_buffer(f, s->cmos_data, 128);
540     qemu_get_8s(f, &s->cmos_index);
541 
542     s->current_tm.tm_sec=qemu_get_be32(f);
543     s->current_tm.tm_min=qemu_get_be32(f);
544     s->current_tm.tm_hour=qemu_get_be32(f);
545     s->current_tm.tm_wday=qemu_get_be32(f);
546     s->current_tm.tm_mday=qemu_get_be32(f);
547     s->current_tm.tm_mon=qemu_get_be32(f);
548     s->current_tm.tm_year=qemu_get_be32(f);
549 
550     qemu_get_timer(f, s->periodic_timer);
551     s->next_periodic_time=qemu_get_be64(f);
552 
553     s->next_second_time=qemu_get_be64(f);
554     qemu_get_timer(f, s->second_timer);
555     qemu_get_timer(f, s->second_timer2);
556     return 0;
557 }
558 
559 #ifdef TARGET_I386
rtc_save_td(QEMUFile * f,void * opaque)560 static void rtc_save_td(QEMUFile *f, void *opaque)
561 {
562     RTCState *s = opaque;
563 
564     qemu_put_be32(f, s->irq_coalesced);
565     qemu_put_be32(f, s->period);
566 }
567 
rtc_load_td(QEMUFile * f,void * opaque,int version_id)568 static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
569 {
570     RTCState *s = opaque;
571 
572     if (version_id != 1)
573         return -EINVAL;
574 
575     s->irq_coalesced = qemu_get_be32(f);
576     s->period = qemu_get_be32(f);
577     rtc_coalesced_timer_update(s);
578     return 0;
579 }
580 #endif
581 
rtc_reset(void * opaque)582 static void rtc_reset(void *opaque)
583 {
584     RTCState *s = opaque;
585 
586     s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
587     s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
588 
589     qemu_irq_lower(s->irq);
590 
591 #ifdef TARGET_I386
592     if (rtc_td_hack)
593 	    s->irq_coalesced = 0;
594 #endif
595 }
596 
rtc_init_sqw(int base,qemu_irq irq,qemu_irq sqw_irq,int base_year)597 RTCState *rtc_init_sqw(int base, qemu_irq irq, qemu_irq sqw_irq, int base_year)
598 {
599     RTCState *s;
600 
601     s = qemu_mallocz(sizeof(RTCState));
602 
603     s->irq = irq;
604     s->sqw_irq = sqw_irq;
605     s->cmos_data[RTC_REG_A] = 0x26;
606     s->cmos_data[RTC_REG_B] = 0x02;
607     s->cmos_data[RTC_REG_C] = 0x00;
608     s->cmos_data[RTC_REG_D] = 0x80;
609 
610     s->base_year = base_year;
611     rtc_set_date_from_host(s);
612 
613     s->periodic_timer = qemu_new_timer_ns(vm_clock,
614                                        rtc_periodic_timer, s);
615 #ifdef TARGET_I386
616     if (rtc_td_hack)
617         s->coalesced_timer = qemu_new_timer_ns(vm_clock, rtc_coalesced_timer, s);
618 #endif
619     s->second_timer = qemu_new_timer_ns(vm_clock,
620                                      rtc_update_second, s);
621     s->second_timer2 = qemu_new_timer_ns(vm_clock,
622                                       rtc_update_second2, s);
623 
624     s->next_second_time = qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() * 99) / 100;
625     qemu_mod_timer(s->second_timer2, s->next_second_time);
626 
627     register_ioport_write(base, 2, 1, cmos_ioport_write, s);
628     register_ioport_read(base, 2, 1, cmos_ioport_read, s);
629 
630     register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
631 #ifdef TARGET_I386
632     if (rtc_td_hack)
633         register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
634 #endif
635     qemu_register_reset(rtc_reset, 0, s);
636 
637     return s;
638 }
639 
rtc_init(int base,qemu_irq irq,int base_year)640 RTCState *rtc_init(int base, qemu_irq irq, int base_year)
641 {
642     return rtc_init_sqw(base, irq, NULL, base_year);
643 }
644 
645 /* Memory mapped interface */
cmos_mm_readb(void * opaque,target_phys_addr_t addr)646 static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
647 {
648     RTCState *s = opaque;
649 
650     return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
651 }
652 
cmos_mm_writeb(void * opaque,target_phys_addr_t addr,uint32_t value)653 static void cmos_mm_writeb (void *opaque,
654                             target_phys_addr_t addr, uint32_t value)
655 {
656     RTCState *s = opaque;
657 
658     cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
659 }
660 
cmos_mm_readw(void * opaque,target_phys_addr_t addr)661 static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
662 {
663     RTCState *s = opaque;
664     uint32_t val;
665 
666     val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
667 #ifdef TARGET_WORDS_BIGENDIAN
668     val = bswap16(val);
669 #endif
670     return val;
671 }
672 
cmos_mm_writew(void * opaque,target_phys_addr_t addr,uint32_t value)673 static void cmos_mm_writew (void *opaque,
674                             target_phys_addr_t addr, uint32_t value)
675 {
676     RTCState *s = opaque;
677 #ifdef TARGET_WORDS_BIGENDIAN
678     value = bswap16(value);
679 #endif
680     cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
681 }
682 
cmos_mm_readl(void * opaque,target_phys_addr_t addr)683 static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
684 {
685     RTCState *s = opaque;
686     uint32_t val;
687 
688     val = cmos_ioport_read(s, addr >> s->it_shift);
689 #ifdef TARGET_WORDS_BIGENDIAN
690     val = bswap32(val);
691 #endif
692     return val;
693 }
694 
cmos_mm_writel(void * opaque,target_phys_addr_t addr,uint32_t value)695 static void cmos_mm_writel (void *opaque,
696                             target_phys_addr_t addr, uint32_t value)
697 {
698     RTCState *s = opaque;
699 #ifdef TARGET_WORDS_BIGENDIAN
700     value = bswap32(value);
701 #endif
702     cmos_ioport_write(s, addr >> s->it_shift, value);
703 }
704 
705 static CPUReadMemoryFunc *rtc_mm_read[] = {
706     &cmos_mm_readb,
707     &cmos_mm_readw,
708     &cmos_mm_readl,
709 };
710 
711 static CPUWriteMemoryFunc *rtc_mm_write[] = {
712     &cmos_mm_writeb,
713     &cmos_mm_writew,
714     &cmos_mm_writel,
715 };
716 
rtc_mm_init(target_phys_addr_t base,int it_shift,qemu_irq irq,int base_year)717 RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
718                       int base_year)
719 {
720     RTCState *s;
721     int io_memory;
722 
723     s = qemu_mallocz(sizeof(RTCState));
724 
725     s->irq = irq;
726     s->cmos_data[RTC_REG_A] = 0x26;
727     s->cmos_data[RTC_REG_B] = 0x02;
728     s->cmos_data[RTC_REG_C] = 0x00;
729     s->cmos_data[RTC_REG_D] = 0x80;
730 
731     s->base_year = base_year;
732     rtc_set_date_from_host(s);
733 
734     s->periodic_timer = qemu_new_timer_ns(vm_clock,
735                                        rtc_periodic_timer, s);
736     s->second_timer = qemu_new_timer_ns(vm_clock,
737                                      rtc_update_second, s);
738     s->second_timer2 = qemu_new_timer_ns(vm_clock,
739                                       rtc_update_second2, s);
740 
741     s->next_second_time = qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() * 99) / 100;
742     qemu_mod_timer(s->second_timer2, s->next_second_time);
743 
744     io_memory = cpu_register_io_memory(rtc_mm_read, rtc_mm_write, s);
745     cpu_register_physical_memory(base, 2 << it_shift, io_memory);
746 
747     register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
748 #ifdef TARGET_I386
749     if (rtc_td_hack)
750         register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
751 #endif
752     qemu_register_reset(rtc_reset, 0, s);
753     return s;
754 }
755