• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "sparse.h"
11 #include <Eigen/SparseCore>
12 
13 template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
check_sparse_solving(Solver & solver,const typename Solver::MatrixType & A,const Rhs & b,const DenseMat & dA,const DenseRhs & db)14 void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
15 {
16   typedef typename Solver::MatrixType Mat;
17   typedef typename Mat::Scalar Scalar;
18 
19   DenseRhs refX = dA.lu().solve(db);
20 
21   Rhs x(b.rows(), b.cols());
22   Rhs oldb = b;
23 
24   solver.compute(A);
25   if (solver.info() != Success)
26   {
27     std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
28     exit(0);
29     return;
30   }
31   x = solver.solve(b);
32   if (solver.info() != Success)
33   {
34     std::cerr << "sparse solver testing: solving failed\n";
35     return;
36   }
37   VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
38 
39   VERIFY(x.isApprox(refX,test_precision<Scalar>()));
40 
41   x.setZero();
42   // test the analyze/factorize API
43   solver.analyzePattern(A);
44   solver.factorize(A);
45   if (solver.info() != Success)
46   {
47     std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
48     exit(0);
49     return;
50   }
51   x = solver.solve(b);
52   if (solver.info() != Success)
53   {
54     std::cerr << "sparse solver testing: solving failed\n";
55     return;
56   }
57   VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
58 
59   VERIFY(x.isApprox(refX,test_precision<Scalar>()));
60 
61   // test Block as the result and rhs:
62   {
63     DenseRhs x(db.rows(), db.cols());
64     DenseRhs b(db), oldb(db);
65     x.setZero();
66     x.block(0,0,x.rows(),x.cols()) = solver.solve(b.block(0,0,b.rows(),b.cols()));
67     VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
68     VERIFY(x.isApprox(refX,test_precision<Scalar>()));
69   }
70 }
71 
72 template<typename Solver, typename Rhs>
check_sparse_solving_real_cases(Solver & solver,const typename Solver::MatrixType & A,const Rhs & b,const Rhs & refX)73 void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX)
74 {
75   typedef typename Solver::MatrixType Mat;
76   typedef typename Mat::Scalar Scalar;
77   typedef typename Mat::RealScalar RealScalar;
78 
79   Rhs x(b.rows(), b.cols());
80 
81   solver.compute(A);
82   if (solver.info() != Success)
83   {
84     std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n";
85     exit(0);
86     return;
87   }
88   x = solver.solve(b);
89   if (solver.info() != Success)
90   {
91     std::cerr << "sparse solver testing: solving failed\n";
92     return;
93   }
94 
95   RealScalar res_error;
96   // Compute the norm of the relative error
97   if(refX.size() != 0)
98     res_error = (refX - x).norm()/refX.norm();
99   else
100   {
101     // Compute the relative residual norm
102     res_error = (b - A * x).norm()/b.norm();
103   }
104   if (res_error > test_precision<Scalar>() ){
105     std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__)
106     << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl;
107     abort();
108   }
109 
110 }
111 template<typename Solver, typename DenseMat>
check_sparse_determinant(Solver & solver,const typename Solver::MatrixType & A,const DenseMat & dA)112 void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
113 {
114   typedef typename Solver::MatrixType Mat;
115   typedef typename Mat::Scalar Scalar;
116   typedef typename Mat::RealScalar RealScalar;
117 
118   solver.compute(A);
119   if (solver.info() != Success)
120   {
121     std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n";
122     return;
123   }
124 
125   Scalar refDet = dA.determinant();
126   VERIFY_IS_APPROX(refDet,solver.determinant());
127 }
128 
129 
130 template<typename Solver, typename DenseMat>
131 int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
132 {
133   typedef typename Solver::MatrixType Mat;
134   typedef typename Mat::Scalar Scalar;
135   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
136 
137   int size = internal::random<int>(1,maxSize);
138   double density = (std::max)(8./(size*size), 0.01);
139 
140   Mat M(size, size);
141   DenseMatrix dM(size, size);
142 
143   initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
144 
145   A = M * M.adjoint();
146   dA = dM * dM.adjoint();
147 
148   halfA.resize(size,size);
149   halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
150 
151   return size;
152 }
153 
154 
155 #ifdef TEST_REAL_CASES
156 template<typename Scalar>
get_matrixfolder()157 inline std::string get_matrixfolder()
158 {
159   std::string mat_folder = TEST_REAL_CASES;
160   if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
161     mat_folder  = mat_folder + static_cast<string>("/complex/");
162   else
163     mat_folder = mat_folder + static_cast<string>("/real/");
164   return mat_folder;
165 }
166 #endif
167 
check_sparse_spd_solving(Solver & solver)168 template<typename Solver> void check_sparse_spd_solving(Solver& solver)
169 {
170   typedef typename Solver::MatrixType Mat;
171   typedef typename Mat::Scalar Scalar;
172   typedef typename Mat::Index Index;
173   typedef SparseMatrix<Scalar,ColMajor> SpMat;
174   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
175   typedef Matrix<Scalar,Dynamic,1> DenseVector;
176 
177   // generate the problem
178   Mat A, halfA;
179   DenseMatrix dA;
180   int size = generate_sparse_spd_problem(solver, A, halfA, dA);
181 
182   // generate the right hand sides
183   int rhsCols = internal::random<int>(1,16);
184   double density = (std::max)(8./(size*rhsCols), 0.1);
185   SpMat B(size,rhsCols);
186   DenseVector b = DenseVector::Random(size);
187   DenseMatrix dB(size,rhsCols);
188   initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
189 
190   for (int i = 0; i < g_repeat; i++) {
191     check_sparse_solving(solver, A,     b,  dA, b);
192     check_sparse_solving(solver, halfA, b,  dA, b);
193     check_sparse_solving(solver, A,     dB, dA, dB);
194     check_sparse_solving(solver, halfA, dB, dA, dB);
195     check_sparse_solving(solver, A,     B,  dA, dB);
196     check_sparse_solving(solver, halfA, B,  dA, dB);
197   }
198 
199   // First, get the folder
200 #ifdef TEST_REAL_CASES
201   if (internal::is_same<Scalar, float>::value
202       || internal::is_same<Scalar, std::complex<float> >::value)
203     return ;
204 
205   std::string mat_folder = get_matrixfolder<Scalar>();
206   MatrixMarketIterator<Scalar> it(mat_folder);
207   for (; it; ++it)
208   {
209     if (it.sym() == SPD){
210       Mat halfA;
211       PermutationMatrix<Dynamic, Dynamic, Index> pnull;
212       halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull);
213 
214       std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
215       check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
216       check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX());
217     }
218   }
219 #endif
220 }
221 
check_sparse_spd_determinant(Solver & solver)222 template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
223 {
224   typedef typename Solver::MatrixType Mat;
225   typedef typename Mat::Scalar Scalar;
226   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
227 
228   // generate the problem
229   Mat A, halfA;
230   DenseMatrix dA;
231   generate_sparse_spd_problem(solver, A, halfA, dA, 30);
232 
233   for (int i = 0; i < g_repeat; i++) {
234     check_sparse_determinant(solver, A,     dA);
235     check_sparse_determinant(solver, halfA, dA );
236   }
237 }
238 
239 template<typename Solver, typename DenseMat>
240 int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300)
241 {
242   typedef typename Solver::MatrixType Mat;
243   typedef typename Mat::Scalar Scalar;
244   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
245 
246   int size = internal::random<int>(1,maxSize);
247   double density = (std::max)(8./(size*size), 0.01);
248 
249   A.resize(size,size);
250   dA.resize(size,size);
251 
252   initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
253 
254   return size;
255 }
256 
check_sparse_square_solving(Solver & solver)257 template<typename Solver> void check_sparse_square_solving(Solver& solver)
258 {
259   typedef typename Solver::MatrixType Mat;
260   typedef typename Mat::Scalar Scalar;
261   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
262   typedef Matrix<Scalar,Dynamic,1> DenseVector;
263 
264   int rhsCols = internal::random<int>(1,16);
265 
266   Mat A;
267   DenseMatrix dA;
268   int size = generate_sparse_square_problem(solver, A, dA);
269 
270   DenseVector b = DenseVector::Random(size);
271   DenseMatrix dB = DenseMatrix::Random(size,rhsCols);
272   A.makeCompressed();
273   for (int i = 0; i < g_repeat; i++) {
274     check_sparse_solving(solver, A, b,  dA, b);
275     check_sparse_solving(solver, A, dB, dA, dB);
276   }
277 
278   // First, get the folder
279 #ifdef TEST_REAL_CASES
280   if (internal::is_same<Scalar, float>::value
281       || internal::is_same<Scalar, std::complex<float> >::value)
282     return ;
283 
284   std::string mat_folder = get_matrixfolder<Scalar>();
285   MatrixMarketIterator<Scalar> it(mat_folder);
286   for (; it; ++it)
287   {
288     std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
289     check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
290   }
291 #endif
292 
293 }
294 
check_sparse_square_determinant(Solver & solver)295 template<typename Solver> void check_sparse_square_determinant(Solver& solver)
296 {
297   typedef typename Solver::MatrixType Mat;
298   typedef typename Mat::Scalar Scalar;
299   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
300 
301   // generate the problem
302   Mat A;
303   DenseMatrix dA;
304   generate_sparse_square_problem(solver, A, dA, 30);
305   A.makeCompressed();
306   for (int i = 0; i < g_repeat; i++) {
307     check_sparse_determinant(solver, A, dA);
308   }
309 }
310