• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2007 Julien Pommier
5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 /* The sin, cos, exp, and log functions of this file come from
12  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
13  */
14 
15 #ifndef EIGEN_MATH_FUNCTIONS_SSE_H
16 #define EIGEN_MATH_FUNCTIONS_SSE_H
17 
18 namespace Eigen {
19 
20 namespace internal {
21 
22 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
23 Packet4f plog<Packet4f>(const Packet4f& _x)
24 {
25   Packet4f x = _x;
26   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
27   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
28   _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
29 
30   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
31 
32   /* the smallest non denormalized float number */
33   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos,  0x00800000);
34 
35   /* natural logarithm computed for 4 simultaneous float
36     return NaN for x <= 0
37   */
38   _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
39   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
40   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
41   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
42   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
43   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
44   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
45   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
46   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
47   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
48   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
49   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
50 
51 
52   Packet4i emm0;
53 
54   Packet4f invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
55 
56   x = pmax(x, p4f_min_norm_pos);  /* cut off denormalized stuff */
57   emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
58 
59   /* keep only the fractional part */
60   x = _mm_and_ps(x, p4f_inv_mant_mask);
61   x = _mm_or_ps(x, p4f_half);
62 
63   emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
64   Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);
65 
66   /* part2:
67      if( x < SQRTHF ) {
68        e -= 1;
69        x = x + x - 1.0;
70      } else { x = x - 1.0; }
71   */
72   Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
73   Packet4f tmp = _mm_and_ps(x, mask);
74   x = psub(x, p4f_1);
75   e = psub(e, _mm_and_ps(p4f_1, mask));
76   x = padd(x, tmp);
77 
78   Packet4f x2 = pmul(x,x);
79   Packet4f x3 = pmul(x2,x);
80 
81   Packet4f y, y1, y2;
82   y  = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
83   y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
84   y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
85   y  = pmadd(y , x, p4f_cephes_log_p2);
86   y1 = pmadd(y1, x, p4f_cephes_log_p5);
87   y2 = pmadd(y2, x, p4f_cephes_log_p8);
88   y = pmadd(y, x3, y1);
89   y = pmadd(y, x3, y2);
90   y = pmul(y, x3);
91 
92   y1 = pmul(e, p4f_cephes_log_q1);
93   tmp = pmul(x2, p4f_half);
94   y = padd(y, y1);
95   x = psub(x, tmp);
96   y2 = pmul(e, p4f_cephes_log_q2);
97   x = padd(x, y);
98   x = padd(x, y2);
99   return _mm_or_ps(x, invalid_mask); // negative arg will be NAN
100 }
101 
102 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
103 Packet4f pexp<Packet4f>(const Packet4f& _x)
104 {
105   Packet4f x = _x;
106   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
107   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
108   _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
109 
110 
111   _EIGEN_DECLARE_CONST_Packet4f(exp_hi,  88.3762626647950f);
112   _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
113 
114   _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
115   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
116   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
117 
118   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
119   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
120   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
121   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
122   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
123   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
124 
125   Packet4f tmp = _mm_setzero_ps(), fx;
126   Packet4i emm0;
127 
128   // clamp x
129   x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
130 
131   /* express exp(x) as exp(g + n*log(2)) */
132   fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
133 
134   /* how to perform a floorf with SSE: just below */
135   emm0 = _mm_cvttps_epi32(fx);
136   tmp  = _mm_cvtepi32_ps(emm0);
137   /* if greater, substract 1 */
138   Packet4f mask = _mm_cmpgt_ps(tmp, fx);
139   mask = _mm_and_ps(mask, p4f_1);
140   fx = psub(tmp, mask);
141 
142   tmp = pmul(fx, p4f_cephes_exp_C1);
143   Packet4f z = pmul(fx, p4f_cephes_exp_C2);
144   x = psub(x, tmp);
145   x = psub(x, z);
146 
147   z = pmul(x,x);
148 
149   Packet4f y = p4f_cephes_exp_p0;
150   y = pmadd(y, x, p4f_cephes_exp_p1);
151   y = pmadd(y, x, p4f_cephes_exp_p2);
152   y = pmadd(y, x, p4f_cephes_exp_p3);
153   y = pmadd(y, x, p4f_cephes_exp_p4);
154   y = pmadd(y, x, p4f_cephes_exp_p5);
155   y = pmadd(y, z, x);
156   y = padd(y, p4f_1);
157 
158   // build 2^n
159   emm0 = _mm_cvttps_epi32(fx);
160   emm0 = _mm_add_epi32(emm0, p4i_0x7f);
161   emm0 = _mm_slli_epi32(emm0, 23);
162   return pmul(y, _mm_castsi128_ps(emm0));
163 }
164 
165 /* evaluation of 4 sines at onces, using SSE2 intrinsics.
166 
167    The code is the exact rewriting of the cephes sinf function.
168    Precision is excellent as long as x < 8192 (I did not bother to
169    take into account the special handling they have for greater values
170    -- it does not return garbage for arguments over 8192, though, but
171    the extra precision is missing).
172 
173    Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
174    surprising but correct result.
175 */
176 
177 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
178 Packet4f psin<Packet4f>(const Packet4f& _x)
179 {
180   Packet4f x = _x;
181   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
182   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
183 
184   _EIGEN_DECLARE_CONST_Packet4i(1, 1);
185   _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
186   _EIGEN_DECLARE_CONST_Packet4i(2, 2);
187   _EIGEN_DECLARE_CONST_Packet4i(4, 4);
188 
189   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
190 
191   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
192   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
193   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
194   _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
195   _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
196   _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
197   _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
198   _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
199   _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
200   _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
201 
202   Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
203 
204   Packet4i emm0, emm2;
205   sign_bit = x;
206   /* take the absolute value */
207   x = pabs(x);
208 
209   /* take the modulo */
210 
211   /* extract the sign bit (upper one) */
212   sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);
213 
214   /* scale by 4/Pi */
215   y = pmul(x, p4f_cephes_FOPI);
216 
217   /* store the integer part of y in mm0 */
218   emm2 = _mm_cvttps_epi32(y);
219   /* j=(j+1) & (~1) (see the cephes sources) */
220   emm2 = _mm_add_epi32(emm2, p4i_1);
221   emm2 = _mm_and_si128(emm2, p4i_not1);
222   y = _mm_cvtepi32_ps(emm2);
223   /* get the swap sign flag */
224   emm0 = _mm_and_si128(emm2, p4i_4);
225   emm0 = _mm_slli_epi32(emm0, 29);
226   /* get the polynom selection mask
227      there is one polynom for 0 <= x <= Pi/4
228      and another one for Pi/4<x<=Pi/2
229 
230      Both branches will be computed.
231   */
232   emm2 = _mm_and_si128(emm2, p4i_2);
233   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
234 
235   Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
236   Packet4f poly_mask = _mm_castsi128_ps(emm2);
237   sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
238 
239   /* The magic pass: "Extended precision modular arithmetic"
240      x = ((x - y * DP1) - y * DP2) - y * DP3; */
241   xmm1 = pmul(y, p4f_minus_cephes_DP1);
242   xmm2 = pmul(y, p4f_minus_cephes_DP2);
243   xmm3 = pmul(y, p4f_minus_cephes_DP3);
244   x = padd(x, xmm1);
245   x = padd(x, xmm2);
246   x = padd(x, xmm3);
247 
248   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
249   y = p4f_coscof_p0;
250   Packet4f z = _mm_mul_ps(x,x);
251 
252   y = pmadd(y, z, p4f_coscof_p1);
253   y = pmadd(y, z, p4f_coscof_p2);
254   y = pmul(y, z);
255   y = pmul(y, z);
256   Packet4f tmp = pmul(z, p4f_half);
257   y = psub(y, tmp);
258   y = padd(y, p4f_1);
259 
260   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
261 
262   Packet4f y2 = p4f_sincof_p0;
263   y2 = pmadd(y2, z, p4f_sincof_p1);
264   y2 = pmadd(y2, z, p4f_sincof_p2);
265   y2 = pmul(y2, z);
266   y2 = pmul(y2, x);
267   y2 = padd(y2, x);
268 
269   /* select the correct result from the two polynoms */
270   y2 = _mm_and_ps(poly_mask, y2);
271   y = _mm_andnot_ps(poly_mask, y);
272   y = _mm_or_ps(y,y2);
273   /* update the sign */
274   return _mm_xor_ps(y, sign_bit);
275 }
276 
277 /* almost the same as psin */
278 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
279 Packet4f pcos<Packet4f>(const Packet4f& _x)
280 {
281   Packet4f x = _x;
282   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
283   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
284 
285   _EIGEN_DECLARE_CONST_Packet4i(1, 1);
286   _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
287   _EIGEN_DECLARE_CONST_Packet4i(2, 2);
288   _EIGEN_DECLARE_CONST_Packet4i(4, 4);
289 
290   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
291   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
292   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
293   _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
294   _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
295   _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
296   _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
297   _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
298   _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
299   _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
300 
301   Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
302   Packet4i emm0, emm2;
303 
304   x = pabs(x);
305 
306   /* scale by 4/Pi */
307   y = pmul(x, p4f_cephes_FOPI);
308 
309   /* get the integer part of y */
310   emm2 = _mm_cvttps_epi32(y);
311   /* j=(j+1) & (~1) (see the cephes sources) */
312   emm2 = _mm_add_epi32(emm2, p4i_1);
313   emm2 = _mm_and_si128(emm2, p4i_not1);
314   y = _mm_cvtepi32_ps(emm2);
315 
316   emm2 = _mm_sub_epi32(emm2, p4i_2);
317 
318   /* get the swap sign flag */
319   emm0 = _mm_andnot_si128(emm2, p4i_4);
320   emm0 = _mm_slli_epi32(emm0, 29);
321   /* get the polynom selection mask */
322   emm2 = _mm_and_si128(emm2, p4i_2);
323   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
324 
325   Packet4f sign_bit = _mm_castsi128_ps(emm0);
326   Packet4f poly_mask = _mm_castsi128_ps(emm2);
327 
328   /* The magic pass: "Extended precision modular arithmetic"
329      x = ((x - y * DP1) - y * DP2) - y * DP3; */
330   xmm1 = pmul(y, p4f_minus_cephes_DP1);
331   xmm2 = pmul(y, p4f_minus_cephes_DP2);
332   xmm3 = pmul(y, p4f_minus_cephes_DP3);
333   x = padd(x, xmm1);
334   x = padd(x, xmm2);
335   x = padd(x, xmm3);
336 
337   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
338   y = p4f_coscof_p0;
339   Packet4f z = pmul(x,x);
340 
341   y = pmadd(y,z,p4f_coscof_p1);
342   y = pmadd(y,z,p4f_coscof_p2);
343   y = pmul(y, z);
344   y = pmul(y, z);
345   Packet4f tmp = _mm_mul_ps(z, p4f_half);
346   y = psub(y, tmp);
347   y = padd(y, p4f_1);
348 
349   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
350   Packet4f y2 = p4f_sincof_p0;
351   y2 = pmadd(y2, z, p4f_sincof_p1);
352   y2 = pmadd(y2, z, p4f_sincof_p2);
353   y2 = pmul(y2, z);
354   y2 = pmadd(y2, x, x);
355 
356   /* select the correct result from the two polynoms */
357   y2 = _mm_and_ps(poly_mask, y2);
358   y  = _mm_andnot_ps(poly_mask, y);
359   y  = _mm_or_ps(y,y2);
360 
361   /* update the sign */
362   return _mm_xor_ps(y, sign_bit);
363 }
364 
365 // This is based on Quake3's fast inverse square root.
366 // For detail see here: http://www.beyond3d.com/content/articles/8/
367 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
368 Packet4f psqrt<Packet4f>(const Packet4f& _x)
369 {
370   Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
371 
372   /* select only the inverse sqrt of non-zero inputs */
373   Packet4f non_zero_mask = _mm_cmpgt_ps(_x, pset1<Packet4f>(std::numeric_limits<float>::epsilon()));
374   Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
375 
376   x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
377   return pmul(_x,x);
378 }
379 
380 } // end namespace internal
381 
382 } // end namespace Eigen
383 
384 #endif // EIGEN_MATH_FUNCTIONS_SSE_H
385