1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 // Platform specific code for Linux goes here. For the POSIX comaptible parts
29 // the implementation is in platform-posix.cc.
30
31 #include <pthread.h>
32 #include <semaphore.h>
33 #include <signal.h>
34 #include <sys/prctl.h>
35 #include <sys/time.h>
36 #include <sys/resource.h>
37 #include <sys/syscall.h>
38 #include <sys/types.h>
39 #include <stdlib.h>
40
41 // Ubuntu Dapper requires memory pages to be marked as
42 // executable. Otherwise, OS raises an exception when executing code
43 // in that page.
44 #include <sys/types.h> // mmap & munmap
45 #include <sys/mman.h> // mmap & munmap
46 #include <sys/stat.h> // open
47 #include <fcntl.h> // open
48 #include <unistd.h> // sysconf
49 #ifdef __GLIBC__
50 #include <execinfo.h> // backtrace, backtrace_symbols
51 #endif // def __GLIBC__
52 #include <strings.h> // index
53 #include <errno.h>
54 #include <stdarg.h>
55
56 #undef MAP_TYPE
57
58 #include "v8.h"
59
60 #include "platform-posix.h"
61 #include "platform.h"
62 #include "v8threads.h"
63 #include "vm-state-inl.h"
64
65
66 namespace v8 {
67 namespace internal {
68
69 // 0 is never a valid thread id on Linux since tids and pids share a
70 // name space and pid 0 is reserved (see man 2 kill).
71 static const pthread_t kNoThread = (pthread_t) 0;
72
73
ceiling(double x)74 double ceiling(double x) {
75 return ceil(x);
76 }
77
78
79 static Mutex* limit_mutex = NULL;
80
81
SetUp()82 void OS::SetUp() {
83 // Seed the random number generator. We preserve microsecond resolution.
84 uint64_t seed = Ticks() ^ (getpid() << 16);
85 srandom(static_cast<unsigned int>(seed));
86 limit_mutex = CreateMutex();
87
88 #ifdef __arm__
89 // When running on ARM hardware check that the EABI used by V8 and
90 // by the C code is the same.
91 bool hard_float = OS::ArmUsingHardFloat();
92 if (hard_float) {
93 #if !USE_EABI_HARDFLOAT
94 PrintF("ERROR: Binary compiled with -mfloat-abi=hard but without "
95 "-DUSE_EABI_HARDFLOAT\n");
96 exit(1);
97 #endif
98 } else {
99 #if USE_EABI_HARDFLOAT
100 PrintF("ERROR: Binary not compiled with -mfloat-abi=hard but with "
101 "-DUSE_EABI_HARDFLOAT\n");
102 exit(1);
103 #endif
104 }
105 #endif
106 }
107
108
PostSetUp()109 void OS::PostSetUp() {
110 // Math functions depend on CPU features therefore they are initialized after
111 // CPU.
112 MathSetup();
113 }
114
115
CpuFeaturesImpliedByPlatform()116 uint64_t OS::CpuFeaturesImpliedByPlatform() {
117 return 0; // Linux runs on anything.
118 }
119
120
121 #ifdef __arm__
CPUInfoContainsString(const char * search_string)122 static bool CPUInfoContainsString(const char * search_string) {
123 const char* file_name = "/proc/cpuinfo";
124 // This is written as a straight shot one pass parser
125 // and not using STL string and ifstream because,
126 // on Linux, it's reading from a (non-mmap-able)
127 // character special device.
128 FILE* f = NULL;
129 const char* what = search_string;
130
131 if (NULL == (f = fopen(file_name, "r")))
132 return false;
133
134 int k;
135 while (EOF != (k = fgetc(f))) {
136 if (k == *what) {
137 ++what;
138 while ((*what != '\0') && (*what == fgetc(f))) {
139 ++what;
140 }
141 if (*what == '\0') {
142 fclose(f);
143 return true;
144 } else {
145 what = search_string;
146 }
147 }
148 }
149 fclose(f);
150
151 // Did not find string in the proc file.
152 return false;
153 }
154
155
ArmCpuHasFeature(CpuFeature feature)156 bool OS::ArmCpuHasFeature(CpuFeature feature) {
157 const char* search_string = NULL;
158 // Simple detection of VFP at runtime for Linux.
159 // It is based on /proc/cpuinfo, which reveals hardware configuration
160 // to user-space applications. According to ARM (mid 2009), no similar
161 // facility is universally available on the ARM architectures,
162 // so it's up to individual OSes to provide such.
163 switch (feature) {
164 case VFP3:
165 search_string = "vfpv3";
166 break;
167 case ARMv7:
168 search_string = "ARMv7";
169 break;
170 default:
171 UNREACHABLE();
172 }
173
174 if (CPUInfoContainsString(search_string)) {
175 return true;
176 }
177
178 if (feature == VFP3) {
179 // Some old kernels will report vfp not vfpv3. Here we make a last attempt
180 // to detect vfpv3 by checking for vfp *and* neon, since neon is only
181 // available on architectures with vfpv3.
182 // Checking neon on its own is not enough as it is possible to have neon
183 // without vfp.
184 if (CPUInfoContainsString("vfp") && CPUInfoContainsString("neon")) {
185 return true;
186 }
187 }
188
189 return false;
190 }
191
192
193 // Simple helper function to detect whether the C code is compiled with
194 // option -mfloat-abi=hard. The register d0 is loaded with 1.0 and the register
195 // pair r0, r1 is loaded with 0.0. If -mfloat-abi=hard is pased to GCC then
196 // calling this will return 1.0 and otherwise 0.0.
ArmUsingHardFloatHelper()197 static void ArmUsingHardFloatHelper() {
198 asm("mov r0, #0":::"r0");
199 #if defined(__VFP_FP__) && !defined(__SOFTFP__)
200 // Load 0x3ff00000 into r1 using instructions available in both ARM
201 // and Thumb mode.
202 asm("mov r1, #3":::"r1");
203 asm("mov r2, #255":::"r2");
204 asm("lsl r1, r1, #8":::"r1");
205 asm("orr r1, r1, r2":::"r1");
206 asm("lsl r1, r1, #20":::"r1");
207 // For vmov d0, r0, r1 use ARM mode.
208 #ifdef __thumb__
209 asm volatile(
210 "@ Enter ARM Mode \n\t"
211 " adr r3, 1f \n\t"
212 " bx r3 \n\t"
213 " .ALIGN 4 \n\t"
214 " .ARM \n"
215 "1: vmov d0, r0, r1 \n\t"
216 "@ Enter THUMB Mode\n\t"
217 " adr r3, 2f+1 \n\t"
218 " bx r3 \n\t"
219 " .THUMB \n"
220 "2: \n\t":::"r3");
221 #else
222 asm("vmov d0, r0, r1");
223 #endif // __thumb__
224 #endif // defined(__VFP_FP__) && !defined(__SOFTFP__)
225 asm("mov r1, #0":::"r1");
226 }
227
228
ArmUsingHardFloat()229 bool OS::ArmUsingHardFloat() {
230 // Cast helper function from returning void to returning double.
231 typedef double (*F)();
232 F f = FUNCTION_CAST<F>(FUNCTION_ADDR(ArmUsingHardFloatHelper));
233 return f() == 1.0;
234 }
235 #endif // def __arm__
236
237
238 #ifdef __mips__
MipsCpuHasFeature(CpuFeature feature)239 bool OS::MipsCpuHasFeature(CpuFeature feature) {
240 const char* search_string = NULL;
241 const char* file_name = "/proc/cpuinfo";
242 // Simple detection of FPU at runtime for Linux.
243 // It is based on /proc/cpuinfo, which reveals hardware configuration
244 // to user-space applications. According to MIPS (early 2010), no similar
245 // facility is universally available on the MIPS architectures,
246 // so it's up to individual OSes to provide such.
247 //
248 // This is written as a straight shot one pass parser
249 // and not using STL string and ifstream because,
250 // on Linux, it's reading from a (non-mmap-able)
251 // character special device.
252
253 switch (feature) {
254 case FPU:
255 search_string = "FPU";
256 break;
257 default:
258 UNREACHABLE();
259 }
260
261 FILE* f = NULL;
262 const char* what = search_string;
263
264 if (NULL == (f = fopen(file_name, "r")))
265 return false;
266
267 int k;
268 while (EOF != (k = fgetc(f))) {
269 if (k == *what) {
270 ++what;
271 while ((*what != '\0') && (*what == fgetc(f))) {
272 ++what;
273 }
274 if (*what == '\0') {
275 fclose(f);
276 return true;
277 } else {
278 what = search_string;
279 }
280 }
281 }
282 fclose(f);
283
284 // Did not find string in the proc file.
285 return false;
286 }
287 #endif // def __mips__
288
289
ActivationFrameAlignment()290 int OS::ActivationFrameAlignment() {
291 #ifdef V8_TARGET_ARCH_ARM
292 // On EABI ARM targets this is required for fp correctness in the
293 // runtime system.
294 return 8;
295 #elif V8_TARGET_ARCH_MIPS
296 return 8;
297 #endif
298 // With gcc 4.4 the tree vectorization optimizer can generate code
299 // that requires 16 byte alignment such as movdqa on x86.
300 return 16;
301 }
302
303
ReleaseStore(volatile AtomicWord * ptr,AtomicWord value)304 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
305 #if (defined(V8_TARGET_ARCH_ARM) && defined(__arm__)) || \
306 (defined(V8_TARGET_ARCH_MIPS) && defined(__mips__))
307 // Only use on ARM or MIPS hardware.
308 MemoryBarrier();
309 #else
310 __asm__ __volatile__("" : : : "memory");
311 // An x86 store acts as a release barrier.
312 #endif
313 *ptr = value;
314 }
315
316
LocalTimezone(double time)317 const char* OS::LocalTimezone(double time) {
318 if (isnan(time)) return "";
319 time_t tv = static_cast<time_t>(floor(time/msPerSecond));
320 struct tm* t = localtime(&tv);
321 if (NULL == t) return "";
322 return t->tm_zone;
323 }
324
325
LocalTimeOffset()326 double OS::LocalTimeOffset() {
327 time_t tv = time(NULL);
328 struct tm* t = localtime(&tv);
329 // tm_gmtoff includes any daylight savings offset, so subtract it.
330 return static_cast<double>(t->tm_gmtoff * msPerSecond -
331 (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
332 }
333
334
335 // We keep the lowest and highest addresses mapped as a quick way of
336 // determining that pointers are outside the heap (used mostly in assertions
337 // and verification). The estimate is conservative, i.e., not all addresses in
338 // 'allocated' space are actually allocated to our heap. The range is
339 // [lowest, highest), inclusive on the low and and exclusive on the high end.
340 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
341 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
342
343
UpdateAllocatedSpaceLimits(void * address,int size)344 static void UpdateAllocatedSpaceLimits(void* address, int size) {
345 ASSERT(limit_mutex != NULL);
346 ScopedLock lock(limit_mutex);
347
348 lowest_ever_allocated = Min(lowest_ever_allocated, address);
349 highest_ever_allocated =
350 Max(highest_ever_allocated,
351 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
352 }
353
354
IsOutsideAllocatedSpace(void * address)355 bool OS::IsOutsideAllocatedSpace(void* address) {
356 return address < lowest_ever_allocated || address >= highest_ever_allocated;
357 }
358
359
AllocateAlignment()360 size_t OS::AllocateAlignment() {
361 return sysconf(_SC_PAGESIZE);
362 }
363
364
Allocate(const size_t requested,size_t * allocated,bool is_executable)365 void* OS::Allocate(const size_t requested,
366 size_t* allocated,
367 bool is_executable) {
368 const size_t msize = RoundUp(requested, AllocateAlignment());
369 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
370 void* addr = OS::GetRandomMmapAddr();
371 void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
372 if (mbase == MAP_FAILED) {
373 LOG(i::Isolate::Current(),
374 StringEvent("OS::Allocate", "mmap failed"));
375 return NULL;
376 }
377 *allocated = msize;
378 UpdateAllocatedSpaceLimits(mbase, msize);
379 return mbase;
380 }
381
382
Free(void * address,const size_t size)383 void OS::Free(void* address, const size_t size) {
384 // TODO(1240712): munmap has a return value which is ignored here.
385 int result = munmap(address, size);
386 USE(result);
387 ASSERT(result == 0);
388 }
389
390
Sleep(int milliseconds)391 void OS::Sleep(int milliseconds) {
392 unsigned int ms = static_cast<unsigned int>(milliseconds);
393 usleep(1000 * ms);
394 }
395
396
Abort()397 void OS::Abort() {
398 // Redirect to std abort to signal abnormal program termination.
399 if (FLAG_break_on_abort) {
400 DebugBreak();
401 }
402 abort();
403 }
404
405
DebugBreak()406 void OS::DebugBreak() {
407 // TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
408 // which is the architecture of generated code).
409 #if (defined(__arm__) || defined(__thumb__))
410 # if defined(CAN_USE_ARMV5_INSTRUCTIONS)
411 asm("bkpt 0");
412 # endif
413 #elif defined(__mips__)
414 asm("break");
415 #else
416 asm("int $3");
417 #endif
418 }
419
420
421 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
422 public:
PosixMemoryMappedFile(FILE * file,void * memory,int size)423 PosixMemoryMappedFile(FILE* file, void* memory, int size)
424 : file_(file), memory_(memory), size_(size) { }
425 virtual ~PosixMemoryMappedFile();
memory()426 virtual void* memory() { return memory_; }
size()427 virtual int size() { return size_; }
428 private:
429 FILE* file_;
430 void* memory_;
431 int size_;
432 };
433
434
open(const char * name)435 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
436 FILE* file = fopen(name, "r+");
437 if (file == NULL) return NULL;
438
439 fseek(file, 0, SEEK_END);
440 int size = ftell(file);
441
442 void* memory =
443 mmap(OS::GetRandomMmapAddr(),
444 size,
445 PROT_READ | PROT_WRITE,
446 MAP_SHARED,
447 fileno(file),
448 0);
449 return new PosixMemoryMappedFile(file, memory, size);
450 }
451
452
create(const char * name,int size,void * initial)453 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
454 void* initial) {
455 FILE* file = fopen(name, "w+");
456 if (file == NULL) return NULL;
457 int result = fwrite(initial, size, 1, file);
458 if (result < 1) {
459 fclose(file);
460 return NULL;
461 }
462 void* memory =
463 mmap(OS::GetRandomMmapAddr(),
464 size,
465 PROT_READ | PROT_WRITE,
466 MAP_SHARED,
467 fileno(file),
468 0);
469 return new PosixMemoryMappedFile(file, memory, size);
470 }
471
472
~PosixMemoryMappedFile()473 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
474 if (memory_) OS::Free(memory_, size_);
475 fclose(file_);
476 }
477
478
LogSharedLibraryAddresses()479 void OS::LogSharedLibraryAddresses() {
480 // This function assumes that the layout of the file is as follows:
481 // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
482 // If we encounter an unexpected situation we abort scanning further entries.
483 FILE* fp = fopen("/proc/self/maps", "r");
484 if (fp == NULL) return;
485
486 // Allocate enough room to be able to store a full file name.
487 const int kLibNameLen = FILENAME_MAX + 1;
488 char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
489
490 i::Isolate* isolate = ISOLATE;
491 // This loop will terminate once the scanning hits an EOF.
492 while (true) {
493 uintptr_t start, end;
494 char attr_r, attr_w, attr_x, attr_p;
495 // Parse the addresses and permission bits at the beginning of the line.
496 if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
497 if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
498
499 int c;
500 if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
501 // Found a read-only executable entry. Skip characters until we reach
502 // the beginning of the filename or the end of the line.
503 do {
504 c = getc(fp);
505 } while ((c != EOF) && (c != '\n') && (c != '/'));
506 if (c == EOF) break; // EOF: Was unexpected, just exit.
507
508 // Process the filename if found.
509 if (c == '/') {
510 ungetc(c, fp); // Push the '/' back into the stream to be read below.
511
512 // Read to the end of the line. Exit if the read fails.
513 if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
514
515 // Drop the newline character read by fgets. We do not need to check
516 // for a zero-length string because we know that we at least read the
517 // '/' character.
518 lib_name[strlen(lib_name) - 1] = '\0';
519 } else {
520 // No library name found, just record the raw address range.
521 snprintf(lib_name, kLibNameLen,
522 "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
523 }
524 LOG(isolate, SharedLibraryEvent(lib_name, start, end));
525 } else {
526 // Entry not describing executable data. Skip to end of line to set up
527 // reading the next entry.
528 do {
529 c = getc(fp);
530 } while ((c != EOF) && (c != '\n'));
531 if (c == EOF) break;
532 }
533 }
534 free(lib_name);
535 fclose(fp);
536 }
537
538
539 static const char kGCFakeMmap[] = "/tmp/__v8_gc__";
540
541
SignalCodeMovingGC()542 void OS::SignalCodeMovingGC() {
543 // Support for ll_prof.py.
544 //
545 // The Linux profiler built into the kernel logs all mmap's with
546 // PROT_EXEC so that analysis tools can properly attribute ticks. We
547 // do a mmap with a name known by ll_prof.py and immediately munmap
548 // it. This injects a GC marker into the stream of events generated
549 // by the kernel and allows us to synchronize V8 code log and the
550 // kernel log.
551 int size = sysconf(_SC_PAGESIZE);
552 FILE* f = fopen(kGCFakeMmap, "w+");
553 void* addr = mmap(OS::GetRandomMmapAddr(),
554 size,
555 PROT_READ | PROT_EXEC,
556 MAP_PRIVATE,
557 fileno(f),
558 0);
559 ASSERT(addr != MAP_FAILED);
560 OS::Free(addr, size);
561 fclose(f);
562 }
563
564
StackWalk(Vector<OS::StackFrame> frames)565 int OS::StackWalk(Vector<OS::StackFrame> frames) {
566 // backtrace is a glibc extension.
567 #ifdef __GLIBC__
568 int frames_size = frames.length();
569 ScopedVector<void*> addresses(frames_size);
570
571 int frames_count = backtrace(addresses.start(), frames_size);
572
573 char** symbols = backtrace_symbols(addresses.start(), frames_count);
574 if (symbols == NULL) {
575 return kStackWalkError;
576 }
577
578 for (int i = 0; i < frames_count; i++) {
579 frames[i].address = addresses[i];
580 // Format a text representation of the frame based on the information
581 // available.
582 SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
583 "%s",
584 symbols[i]);
585 // Make sure line termination is in place.
586 frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
587 }
588
589 free(symbols);
590
591 return frames_count;
592 #else // ndef __GLIBC__
593 return 0;
594 #endif // ndef __GLIBC__
595 }
596
597
598 // Constants used for mmap.
599 static const int kMmapFd = -1;
600 static const int kMmapFdOffset = 0;
601
VirtualMemory()602 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
603
VirtualMemory(size_t size)604 VirtualMemory::VirtualMemory(size_t size) {
605 address_ = ReserveRegion(size);
606 size_ = size;
607 }
608
609
VirtualMemory(size_t size,size_t alignment)610 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
611 : address_(NULL), size_(0) {
612 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
613 size_t request_size = RoundUp(size + alignment,
614 static_cast<intptr_t>(OS::AllocateAlignment()));
615 void* reservation = mmap(OS::GetRandomMmapAddr(),
616 request_size,
617 PROT_NONE,
618 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
619 kMmapFd,
620 kMmapFdOffset);
621 if (reservation == MAP_FAILED) return;
622
623 Address base = static_cast<Address>(reservation);
624 Address aligned_base = RoundUp(base, alignment);
625 ASSERT_LE(base, aligned_base);
626
627 // Unmap extra memory reserved before and after the desired block.
628 if (aligned_base != base) {
629 size_t prefix_size = static_cast<size_t>(aligned_base - base);
630 OS::Free(base, prefix_size);
631 request_size -= prefix_size;
632 }
633
634 size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
635 ASSERT_LE(aligned_size, request_size);
636
637 if (aligned_size != request_size) {
638 size_t suffix_size = request_size - aligned_size;
639 OS::Free(aligned_base + aligned_size, suffix_size);
640 request_size -= suffix_size;
641 }
642
643 ASSERT(aligned_size == request_size);
644
645 address_ = static_cast<void*>(aligned_base);
646 size_ = aligned_size;
647 }
648
649
~VirtualMemory()650 VirtualMemory::~VirtualMemory() {
651 if (IsReserved()) {
652 bool result = ReleaseRegion(address(), size());
653 ASSERT(result);
654 USE(result);
655 }
656 }
657
658
IsReserved()659 bool VirtualMemory::IsReserved() {
660 return address_ != NULL;
661 }
662
663
Reset()664 void VirtualMemory::Reset() {
665 address_ = NULL;
666 size_ = 0;
667 }
668
669
Commit(void * address,size_t size,bool is_executable)670 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
671 return CommitRegion(address, size, is_executable);
672 }
673
674
Uncommit(void * address,size_t size)675 bool VirtualMemory::Uncommit(void* address, size_t size) {
676 return UncommitRegion(address, size);
677 }
678
679
Guard(void * address)680 bool VirtualMemory::Guard(void* address) {
681 OS::Guard(address, OS::CommitPageSize());
682 return true;
683 }
684
685
ReserveRegion(size_t size)686 void* VirtualMemory::ReserveRegion(size_t size) {
687 void* result = mmap(OS::GetRandomMmapAddr(),
688 size,
689 PROT_NONE,
690 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
691 kMmapFd,
692 kMmapFdOffset);
693
694 if (result == MAP_FAILED) return NULL;
695
696 return result;
697 }
698
699
CommitRegion(void * base,size_t size,bool is_executable)700 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
701 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
702 if (MAP_FAILED == mmap(base,
703 size,
704 prot,
705 MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
706 kMmapFd,
707 kMmapFdOffset)) {
708 return false;
709 }
710
711 UpdateAllocatedSpaceLimits(base, size);
712 return true;
713 }
714
715
UncommitRegion(void * base,size_t size)716 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
717 return mmap(base,
718 size,
719 PROT_NONE,
720 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
721 kMmapFd,
722 kMmapFdOffset) != MAP_FAILED;
723 }
724
725
ReleaseRegion(void * base,size_t size)726 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
727 return munmap(base, size) == 0;
728 }
729
730
731 class Thread::PlatformData : public Malloced {
732 public:
PlatformData()733 PlatformData() : thread_(kNoThread) {}
734
735 pthread_t thread_; // Thread handle for pthread.
736 };
737
Thread(const Options & options)738 Thread::Thread(const Options& options)
739 : data_(new PlatformData()),
740 stack_size_(options.stack_size()) {
741 set_name(options.name());
742 }
743
744
~Thread()745 Thread::~Thread() {
746 delete data_;
747 }
748
749
ThreadEntry(void * arg)750 static void* ThreadEntry(void* arg) {
751 Thread* thread = reinterpret_cast<Thread*>(arg);
752 // This is also initialized by the first argument to pthread_create() but we
753 // don't know which thread will run first (the original thread or the new
754 // one) so we initialize it here too.
755 #ifdef PR_SET_NAME
756 prctl(PR_SET_NAME,
757 reinterpret_cast<unsigned long>(thread->name()), // NOLINT
758 0, 0, 0);
759 #endif
760 thread->data()->thread_ = pthread_self();
761 ASSERT(thread->data()->thread_ != kNoThread);
762 thread->Run();
763 return NULL;
764 }
765
766
set_name(const char * name)767 void Thread::set_name(const char* name) {
768 strncpy(name_, name, sizeof(name_));
769 name_[sizeof(name_) - 1] = '\0';
770 }
771
772
Start()773 void Thread::Start() {
774 pthread_attr_t* attr_ptr = NULL;
775 pthread_attr_t attr;
776 if (stack_size_ > 0) {
777 pthread_attr_init(&attr);
778 pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
779 attr_ptr = &attr;
780 }
781 int result = pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
782 CHECK_EQ(0, result);
783 ASSERT(data_->thread_ != kNoThread);
784 }
785
786
Join()787 void Thread::Join() {
788 pthread_join(data_->thread_, NULL);
789 }
790
791
CreateThreadLocalKey()792 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
793 pthread_key_t key;
794 int result = pthread_key_create(&key, NULL);
795 USE(result);
796 ASSERT(result == 0);
797 return static_cast<LocalStorageKey>(key);
798 }
799
800
DeleteThreadLocalKey(LocalStorageKey key)801 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
802 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
803 int result = pthread_key_delete(pthread_key);
804 USE(result);
805 ASSERT(result == 0);
806 }
807
808
GetThreadLocal(LocalStorageKey key)809 void* Thread::GetThreadLocal(LocalStorageKey key) {
810 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
811 return pthread_getspecific(pthread_key);
812 }
813
814
SetThreadLocal(LocalStorageKey key,void * value)815 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
816 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
817 pthread_setspecific(pthread_key, value);
818 }
819
820
YieldCPU()821 void Thread::YieldCPU() {
822 sched_yield();
823 }
824
825
826 class LinuxMutex : public Mutex {
827 public:
LinuxMutex()828 LinuxMutex() {
829 pthread_mutexattr_t attrs;
830 int result = pthread_mutexattr_init(&attrs);
831 ASSERT(result == 0);
832 result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
833 ASSERT(result == 0);
834 result = pthread_mutex_init(&mutex_, &attrs);
835 ASSERT(result == 0);
836 USE(result);
837 }
838
~LinuxMutex()839 virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }
840
Lock()841 virtual int Lock() {
842 int result = pthread_mutex_lock(&mutex_);
843 return result;
844 }
845
Unlock()846 virtual int Unlock() {
847 int result = pthread_mutex_unlock(&mutex_);
848 return result;
849 }
850
TryLock()851 virtual bool TryLock() {
852 int result = pthread_mutex_trylock(&mutex_);
853 // Return false if the lock is busy and locking failed.
854 if (result == EBUSY) {
855 return false;
856 }
857 ASSERT(result == 0); // Verify no other errors.
858 return true;
859 }
860
861 private:
862 pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
863 };
864
865
CreateMutex()866 Mutex* OS::CreateMutex() {
867 return new LinuxMutex();
868 }
869
870
871 class LinuxSemaphore : public Semaphore {
872 public:
LinuxSemaphore(int count)873 explicit LinuxSemaphore(int count) { sem_init(&sem_, 0, count); }
~LinuxSemaphore()874 virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
875
876 virtual void Wait();
877 virtual bool Wait(int timeout);
Signal()878 virtual void Signal() { sem_post(&sem_); }
879 private:
880 sem_t sem_;
881 };
882
883
Wait()884 void LinuxSemaphore::Wait() {
885 while (true) {
886 int result = sem_wait(&sem_);
887 if (result == 0) return; // Successfully got semaphore.
888 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
889 }
890 }
891
892
893 #ifndef TIMEVAL_TO_TIMESPEC
894 #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
895 (ts)->tv_sec = (tv)->tv_sec; \
896 (ts)->tv_nsec = (tv)->tv_usec * 1000; \
897 } while (false)
898 #endif
899
900
Wait(int timeout)901 bool LinuxSemaphore::Wait(int timeout) {
902 const long kOneSecondMicros = 1000000; // NOLINT
903
904 // Split timeout into second and nanosecond parts.
905 struct timeval delta;
906 delta.tv_usec = timeout % kOneSecondMicros;
907 delta.tv_sec = timeout / kOneSecondMicros;
908
909 struct timeval current_time;
910 // Get the current time.
911 if (gettimeofday(¤t_time, NULL) == -1) {
912 return false;
913 }
914
915 // Calculate time for end of timeout.
916 struct timeval end_time;
917 timeradd(¤t_time, &delta, &end_time);
918
919 struct timespec ts;
920 TIMEVAL_TO_TIMESPEC(&end_time, &ts);
921 // Wait for semaphore signalled or timeout.
922 while (true) {
923 int result = sem_timedwait(&sem_, &ts);
924 if (result == 0) return true; // Successfully got semaphore.
925 if (result > 0) {
926 // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
927 errno = result;
928 result = -1;
929 }
930 if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
931 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
932 }
933 }
934
935
CreateSemaphore(int count)936 Semaphore* OS::CreateSemaphore(int count) {
937 return new LinuxSemaphore(count);
938 }
939
940
941 #if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__))
942 // Android runs a fairly new Linux kernel, so signal info is there,
943 // but the C library doesn't have the structs defined.
944
945 struct sigcontext {
946 uint32_t trap_no;
947 uint32_t error_code;
948 uint32_t oldmask;
949 uint32_t gregs[16];
950 uint32_t arm_cpsr;
951 uint32_t fault_address;
952 };
953 typedef uint32_t __sigset_t;
954 typedef struct sigcontext mcontext_t;
955 typedef struct ucontext {
956 uint32_t uc_flags;
957 struct ucontext* uc_link;
958 stack_t uc_stack;
959 mcontext_t uc_mcontext;
960 __sigset_t uc_sigmask;
961 } ucontext_t;
962 enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11};
963
964 #elif !defined(__GLIBC__) && defined(__mips__)
965 // MIPS version of sigcontext, for Android bionic.
966 struct sigcontext {
967 uint32_t regmask;
968 uint32_t status;
969 uint64_t pc;
970 uint64_t gregs[32];
971 uint64_t fpregs[32];
972 uint32_t acx;
973 uint32_t fpc_csr;
974 uint32_t fpc_eir;
975 uint32_t used_math;
976 uint32_t dsp;
977 uint64_t mdhi;
978 uint64_t mdlo;
979 uint32_t hi1;
980 uint32_t lo1;
981 uint32_t hi2;
982 uint32_t lo2;
983 uint32_t hi3;
984 uint32_t lo3;
985 };
986 typedef uint32_t __sigset_t;
987 typedef struct sigcontext mcontext_t;
988 typedef struct ucontext {
989 uint32_t uc_flags;
990 struct ucontext* uc_link;
991 stack_t uc_stack;
992 mcontext_t uc_mcontext;
993 __sigset_t uc_sigmask;
994 } ucontext_t;
995
996 #elif !defined(__GLIBC__) && defined(__i386__)
997 // x86 version for Android.
998 struct sigcontext {
999 uint32_t gregs[19];
1000 void* fpregs;
1001 uint32_t oldmask;
1002 uint32_t cr2;
1003 };
1004
1005 typedef uint32_t __sigset_t;
1006 typedef struct sigcontext mcontext_t;
1007 typedef struct ucontext {
1008 uint32_t uc_flags;
1009 struct ucontext* uc_link;
1010 stack_t uc_stack;
1011 mcontext_t uc_mcontext;
1012 __sigset_t uc_sigmask;
1013 } ucontext_t;
1014 enum { REG_EBP = 6, REG_ESP = 7, REG_EIP = 14 };
1015 #endif
1016
1017
GetThreadID()1018 static int GetThreadID() {
1019 // Glibc doesn't provide a wrapper for gettid(2).
1020 #if defined(ANDROID)
1021 return syscall(__NR_gettid);
1022 #else
1023 return syscall(SYS_gettid);
1024 #endif
1025 }
1026
1027
ProfilerSignalHandler(int signal,siginfo_t * info,void * context)1028 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
1029 USE(info);
1030 if (signal != SIGPROF) return;
1031 Isolate* isolate = Isolate::UncheckedCurrent();
1032 if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
1033 // We require a fully initialized and entered isolate.
1034 return;
1035 }
1036 if (v8::Locker::IsActive() &&
1037 !isolate->thread_manager()->IsLockedByCurrentThread()) {
1038 return;
1039 }
1040
1041 Sampler* sampler = isolate->logger()->sampler();
1042 if (sampler == NULL || !sampler->IsActive()) return;
1043
1044 TickSample sample_obj;
1045 TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
1046 if (sample == NULL) sample = &sample_obj;
1047
1048 // Extracting the sample from the context is extremely machine dependent.
1049 ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
1050 mcontext_t& mcontext = ucontext->uc_mcontext;
1051 sample->state = isolate->current_vm_state();
1052 #if V8_HOST_ARCH_IA32
1053 sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
1054 sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
1055 sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
1056 #elif V8_HOST_ARCH_X64
1057 sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
1058 sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
1059 sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
1060 #elif V8_HOST_ARCH_ARM
1061 // An undefined macro evaluates to 0, so this applies to Android's Bionic also.
1062 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1063 sample->pc = reinterpret_cast<Address>(mcontext.gregs[R15]);
1064 sample->sp = reinterpret_cast<Address>(mcontext.gregs[R13]);
1065 sample->fp = reinterpret_cast<Address>(mcontext.gregs[R11]);
1066 #else
1067 sample->pc = reinterpret_cast<Address>(mcontext.arm_pc);
1068 sample->sp = reinterpret_cast<Address>(mcontext.arm_sp);
1069 sample->fp = reinterpret_cast<Address>(mcontext.arm_fp);
1070 #endif // (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1071 #elif V8_HOST_ARCH_MIPS
1072 sample->pc = reinterpret_cast<Address>(mcontext.pc);
1073 sample->sp = reinterpret_cast<Address>(mcontext.gregs[29]);
1074 sample->fp = reinterpret_cast<Address>(mcontext.gregs[30]);
1075 #endif // V8_HOST_ARCH_*
1076 sampler->SampleStack(sample);
1077 sampler->Tick(sample);
1078 }
1079
1080
1081 class Sampler::PlatformData : public Malloced {
1082 public:
PlatformData()1083 PlatformData() : vm_tid_(GetThreadID()) {}
1084
vm_tid() const1085 int vm_tid() const { return vm_tid_; }
1086
1087 private:
1088 const int vm_tid_;
1089 };
1090
1091
1092 class SignalSender : public Thread {
1093 public:
1094 enum SleepInterval {
1095 HALF_INTERVAL,
1096 FULL_INTERVAL
1097 };
1098
1099 static const int kSignalSenderStackSize = 64 * KB;
1100
SignalSender(int interval)1101 explicit SignalSender(int interval)
1102 : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
1103 vm_tgid_(getpid()),
1104 interval_(interval) {}
1105
InstallSignalHandler()1106 static void InstallSignalHandler() {
1107 struct sigaction sa;
1108 sa.sa_sigaction = ProfilerSignalHandler;
1109 sigemptyset(&sa.sa_mask);
1110 sa.sa_flags = SA_RESTART | SA_SIGINFO;
1111 signal_handler_installed_ =
1112 (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
1113 }
1114
RestoreSignalHandler()1115 static void RestoreSignalHandler() {
1116 if (signal_handler_installed_) {
1117 sigaction(SIGPROF, &old_signal_handler_, 0);
1118 signal_handler_installed_ = false;
1119 }
1120 }
1121
AddActiveSampler(Sampler * sampler)1122 static void AddActiveSampler(Sampler* sampler) {
1123 ScopedLock lock(mutex_.Pointer());
1124 SamplerRegistry::AddActiveSampler(sampler);
1125 if (instance_ == NULL) {
1126 // Start a thread that will send SIGPROF signal to VM threads,
1127 // when CPU profiling will be enabled.
1128 instance_ = new SignalSender(sampler->interval());
1129 instance_->Start();
1130 } else {
1131 ASSERT(instance_->interval_ == sampler->interval());
1132 }
1133 }
1134
RemoveActiveSampler(Sampler * sampler)1135 static void RemoveActiveSampler(Sampler* sampler) {
1136 ScopedLock lock(mutex_.Pointer());
1137 SamplerRegistry::RemoveActiveSampler(sampler);
1138 if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
1139 RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
1140 delete instance_;
1141 instance_ = NULL;
1142 RestoreSignalHandler();
1143 }
1144 }
1145
1146 // Implement Thread::Run().
Run()1147 virtual void Run() {
1148 SamplerRegistry::State state;
1149 while ((state = SamplerRegistry::GetState()) !=
1150 SamplerRegistry::HAS_NO_SAMPLERS) {
1151 bool cpu_profiling_enabled =
1152 (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
1153 bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
1154 if (cpu_profiling_enabled && !signal_handler_installed_) {
1155 InstallSignalHandler();
1156 } else if (!cpu_profiling_enabled && signal_handler_installed_) {
1157 RestoreSignalHandler();
1158 }
1159 // When CPU profiling is enabled both JavaScript and C++ code is
1160 // profiled. We must not suspend.
1161 if (!cpu_profiling_enabled) {
1162 if (rate_limiter_.SuspendIfNecessary()) continue;
1163 }
1164 if (cpu_profiling_enabled && runtime_profiler_enabled) {
1165 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
1166 return;
1167 }
1168 Sleep(HALF_INTERVAL);
1169 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
1170 return;
1171 }
1172 Sleep(HALF_INTERVAL);
1173 } else {
1174 if (cpu_profiling_enabled) {
1175 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
1176 this)) {
1177 return;
1178 }
1179 }
1180 if (runtime_profiler_enabled) {
1181 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
1182 NULL)) {
1183 return;
1184 }
1185 }
1186 Sleep(FULL_INTERVAL);
1187 }
1188 }
1189 }
1190
DoCpuProfile(Sampler * sampler,void * raw_sender)1191 static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
1192 if (!sampler->IsProfiling()) return;
1193 SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
1194 sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
1195 }
1196
DoRuntimeProfile(Sampler * sampler,void * ignored)1197 static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
1198 if (!sampler->isolate()->IsInitialized()) return;
1199 sampler->isolate()->runtime_profiler()->NotifyTick();
1200 }
1201
SendProfilingSignal(int tid)1202 void SendProfilingSignal(int tid) {
1203 if (!signal_handler_installed_) return;
1204 // Glibc doesn't provide a wrapper for tgkill(2).
1205 #if defined(ANDROID)
1206 syscall(__NR_tgkill, vm_tgid_, tid, SIGPROF);
1207 #else
1208 syscall(SYS_tgkill, vm_tgid_, tid, SIGPROF);
1209 #endif
1210 }
1211
Sleep(SleepInterval full_or_half)1212 void Sleep(SleepInterval full_or_half) {
1213 // Convert ms to us and subtract 100 us to compensate delays
1214 // occuring during signal delivery.
1215 useconds_t interval = interval_ * 1000 - 100;
1216 if (full_or_half == HALF_INTERVAL) interval /= 2;
1217 #if defined(ANDROID)
1218 usleep(interval);
1219 #else
1220 int result = usleep(interval);
1221 #ifdef DEBUG
1222 if (result != 0 && errno != EINTR) {
1223 fprintf(stderr,
1224 "SignalSender usleep error; interval = %u, errno = %d\n",
1225 interval,
1226 errno);
1227 ASSERT(result == 0 || errno == EINTR);
1228 }
1229 #endif // DEBUG
1230 USE(result);
1231 #endif // ANDROID
1232 }
1233
1234 const int vm_tgid_;
1235 const int interval_;
1236 RuntimeProfilerRateLimiter rate_limiter_;
1237
1238 // Protects the process wide state below.
1239 static LazyMutex mutex_;
1240 static SignalSender* instance_;
1241 static bool signal_handler_installed_;
1242 static struct sigaction old_signal_handler_;
1243
1244 private:
1245 DISALLOW_COPY_AND_ASSIGN(SignalSender);
1246 };
1247
1248
1249 LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER;
1250 SignalSender* SignalSender::instance_ = NULL;
1251 struct sigaction SignalSender::old_signal_handler_;
1252 bool SignalSender::signal_handler_installed_ = false;
1253
1254
Sampler(Isolate * isolate,int interval)1255 Sampler::Sampler(Isolate* isolate, int interval)
1256 : isolate_(isolate),
1257 interval_(interval),
1258 profiling_(false),
1259 active_(false),
1260 samples_taken_(0) {
1261 data_ = new PlatformData;
1262 }
1263
1264
~Sampler()1265 Sampler::~Sampler() {
1266 ASSERT(!IsActive());
1267 delete data_;
1268 }
1269
1270
Start()1271 void Sampler::Start() {
1272 ASSERT(!IsActive());
1273 SetActive(true);
1274 SignalSender::AddActiveSampler(this);
1275 }
1276
1277
Stop()1278 void Sampler::Stop() {
1279 ASSERT(IsActive());
1280 SignalSender::RemoveActiveSampler(this);
1281 SetActive(false);
1282 }
1283
1284
1285 } } // namespace v8::internal
1286