• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ******************************************************************************
3 *   Copyright (C) 1997-2011, International Business Machines
4 *   Corporation and others.  All Rights Reserved.
5 ******************************************************************************
6 *   file name:  nfrule.cpp
7 *   encoding:   US-ASCII
8 *   tab size:   8 (not used)
9 *   indentation:4
10 *
11 * Modification history
12 * Date        Name      Comments
13 * 10/11/2001  Doug      Ported from ICU4J
14 */
15 
16 #include "nfrule.h"
17 
18 #if U_HAVE_RBNF
19 
20 #include "unicode/rbnf.h"
21 #include "unicode/tblcoll.h"
22 #include "unicode/coleitr.h"
23 #include "unicode/uchar.h"
24 #include "nfrs.h"
25 #include "nfrlist.h"
26 #include "nfsubs.h"
27 #include "patternprops.h"
28 
29 U_NAMESPACE_BEGIN
30 
NFRule(const RuleBasedNumberFormat * _rbnf)31 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
32   : baseValue((int32_t)0)
33   , radix(0)
34   , exponent(0)
35   , ruleText()
36   , sub1(NULL)
37   , sub2(NULL)
38   , formatter(_rbnf)
39 {
40 }
41 
~NFRule()42 NFRule::~NFRule()
43 {
44   delete sub1;
45   delete sub2;
46 }
47 
48 static const UChar gLeftBracket = 0x005b;
49 static const UChar gRightBracket = 0x005d;
50 static const UChar gColon = 0x003a;
51 static const UChar gZero = 0x0030;
52 static const UChar gNine = 0x0039;
53 static const UChar gSpace = 0x0020;
54 static const UChar gSlash = 0x002f;
55 static const UChar gGreaterThan = 0x003e;
56 static const UChar gLessThan = 0x003c;
57 static const UChar gComma = 0x002c;
58 static const UChar gDot = 0x002e;
59 static const UChar gTick = 0x0027;
60 //static const UChar gMinus = 0x002d;
61 static const UChar gSemicolon = 0x003b;
62 
63 static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
64 static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */
65 static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */
66 static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */
67 
68 static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
69 static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
70 static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
71 static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
72 static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
73 static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
74 static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
75 static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
76 static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
77 static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
78 static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
79 static const UChar gEmptyString[] =             {0};                /* "" */
80 static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
81 
82 static const UChar * const tokenStrings[] = {
83     gLessLess, gLessPercent, gLessHash, gLessZero,
84     gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
85     gEqualPercent, gEqualHash, gEqualZero, NULL
86 };
87 
88 void
makeRules(UnicodeString & description,const NFRuleSet * ruleSet,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,NFRuleList & rules,UErrorCode & status)89 NFRule::makeRules(UnicodeString& description,
90                   const NFRuleSet *ruleSet,
91                   const NFRule *predecessor,
92                   const RuleBasedNumberFormat *rbnf,
93                   NFRuleList& rules,
94                   UErrorCode& status)
95 {
96     // we know we're making at least one rule, so go ahead and
97     // new it up and initialize its basevalue and divisor
98     // (this also strips the rule descriptor, if any, off the
99     // descripton string)
100     NFRule* rule1 = new NFRule(rbnf);
101     /* test for NULL */
102     if (rule1 == 0) {
103         status = U_MEMORY_ALLOCATION_ERROR;
104         return;
105     }
106     rule1->parseRuleDescriptor(description, status);
107 
108     // check the description to see whether there's text enclosed
109     // in brackets
110     int32_t brack1 = description.indexOf(gLeftBracket);
111     int32_t brack2 = description.indexOf(gRightBracket);
112 
113     // if the description doesn't contain a matched pair of brackets,
114     // or if it's of a type that doesn't recognize bracketed text,
115     // then leave the description alone, initialize the rule's
116     // rule text and substitutions, and return that rule
117     if (brack1 == -1 || brack2 == -1 || brack1 > brack2
118         || rule1->getType() == kProperFractionRule
119         || rule1->getType() == kNegativeNumberRule) {
120         rule1->ruleText = description;
121         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
122         rules.add(rule1);
123     } else {
124         // if the description does contain a matched pair of brackets,
125         // then it's really shorthand for two rules (with one exception)
126         NFRule* rule2 = NULL;
127         UnicodeString sbuf;
128 
129         // we'll actually only split the rule into two rules if its
130         // base value is an even multiple of its divisor (or it's one
131         // of the special rules)
132         if ((rule1->baseValue > 0
133             && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
134             || rule1->getType() == kImproperFractionRule
135             || rule1->getType() == kMasterRule) {
136 
137             // if it passes that test, new up the second rule.  If the
138             // rule set both rules will belong to is a fraction rule
139             // set, they both have the same base value; otherwise,
140             // increment the original rule's base value ("rule1" actually
141             // goes SECOND in the rule set's rule list)
142             rule2 = new NFRule(rbnf);
143             /* test for NULL */
144             if (rule2 == 0) {
145                 status = U_MEMORY_ALLOCATION_ERROR;
146                 return;
147             }
148             if (rule1->baseValue >= 0) {
149                 rule2->baseValue = rule1->baseValue;
150                 if (!ruleSet->isFractionRuleSet()) {
151                     ++rule1->baseValue;
152                 }
153             }
154 
155             // if the description began with "x.x" and contains bracketed
156             // text, it describes both the improper fraction rule and
157             // the proper fraction rule
158             else if (rule1->getType() == kImproperFractionRule) {
159                 rule2->setType(kProperFractionRule);
160             }
161 
162             // if the description began with "x.0" and contains bracketed
163             // text, it describes both the master rule and the
164             // improper fraction rule
165             else if (rule1->getType() == kMasterRule) {
166                 rule2->baseValue = rule1->baseValue;
167                 rule1->setType(kImproperFractionRule);
168             }
169 
170             // both rules have the same radix and exponent (i.e., the
171             // same divisor)
172             rule2->radix = rule1->radix;
173             rule2->exponent = rule1->exponent;
174 
175             // rule2's rule text omits the stuff in brackets: initalize
176             // its rule text and substitutions accordingly
177             sbuf.append(description, 0, brack1);
178             if (brack2 + 1 < description.length()) {
179                 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
180             }
181             rule2->ruleText.setTo(sbuf);
182             rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
183         }
184 
185         // rule1's text includes the text in the brackets but omits
186         // the brackets themselves: initialize _its_ rule text and
187         // substitutions accordingly
188         sbuf.setTo(description, 0, brack1);
189         sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
190         if (brack2 + 1 < description.length()) {
191             sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
192         }
193         rule1->ruleText.setTo(sbuf);
194         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
195 
196         // if we only have one rule, return it; if we have two, return
197         // a two-element array containing them (notice that rule2 goes
198         // BEFORE rule1 in the list: in all cases, rule2 OMITS the
199         // material in the brackets and rule1 INCLUDES the material
200         // in the brackets)
201         if (rule2 != NULL) {
202             rules.add(rule2);
203         }
204         rules.add(rule1);
205     }
206 }
207 
208 /**
209  * This function parses the rule's rule descriptor (i.e., the base
210  * value and/or other tokens that precede the rule's rule text
211  * in the description) and sets the rule's base value, radix, and
212  * exponent according to the descriptor.  (If the description doesn't
213  * include a rule descriptor, then this function sets everything to
214  * default values and the rule set sets the rule's real base value).
215  * @param description The rule's description
216  * @return If "description" included a rule descriptor, this is
217  * "description" with the descriptor and any trailing whitespace
218  * stripped off.  Otherwise; it's "descriptor" unchangd.
219  */
220 void
parseRuleDescriptor(UnicodeString & description,UErrorCode & status)221 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
222 {
223     // the description consists of a rule descriptor and a rule body,
224     // separated by a colon.  The rule descriptor is optional.  If
225     // it's omitted, just set the base value to 0.
226     int32_t p = description.indexOf(gColon);
227     if (p == -1) {
228         setBaseValue((int32_t)0, status);
229     } else {
230         // copy the descriptor out into its own string and strip it,
231         // along with any trailing whitespace, out of the original
232         // description
233         UnicodeString descriptor;
234         descriptor.setTo(description, 0, p);
235 
236         ++p;
237         while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
238             ++p;
239         }
240         description.removeBetween(0, p);
241 
242         // check first to see if the rule descriptor matches the token
243         // for one of the special rules.  If it does, set the base
244         // value to the correct identfier value
245         if (descriptor == gMinusX) {
246             setType(kNegativeNumberRule);
247         }
248         else if (descriptor == gXDotX) {
249             setType(kImproperFractionRule);
250         }
251         else if (descriptor == gZeroDotX) {
252             setType(kProperFractionRule);
253         }
254         else if (descriptor == gXDotZero) {
255             setType(kMasterRule);
256         }
257 
258         // if the rule descriptor begins with a digit, it's a descriptor
259         // for a normal rule
260         // since we don't have Long.parseLong, and this isn't much work anyway,
261         // just build up the value as we encounter the digits.
262         else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
263             int64_t val = 0;
264             p = 0;
265             UChar c = gSpace;
266 
267             // begin parsing the descriptor: copy digits
268             // into "tempValue", skip periods, commas, and spaces,
269             // stop on a slash or > sign (or at the end of the string),
270             // and throw an exception on any other character
271             int64_t ll_10 = 10;
272             while (p < descriptor.length()) {
273                 c = descriptor.charAt(p);
274                 if (c >= gZero && c <= gNine) {
275                     val = val * ll_10 + (int32_t)(c - gZero);
276                 }
277                 else if (c == gSlash || c == gGreaterThan) {
278                     break;
279                 }
280                 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
281                 }
282                 else {
283                     // throw new IllegalArgumentException("Illegal character in rule descriptor");
284                     status = U_PARSE_ERROR;
285                     return;
286                 }
287                 ++p;
288             }
289 
290             // we have the base value, so set it
291             setBaseValue(val, status);
292 
293             // if we stopped the previous loop on a slash, we're
294             // now parsing the rule's radix.  Again, accumulate digits
295             // in tempValue, skip punctuation, stop on a > mark, and
296             // throw an exception on anything else
297             if (c == gSlash) {
298                 val = 0;
299                 ++p;
300                 int64_t ll_10 = 10;
301                 while (p < descriptor.length()) {
302                     c = descriptor.charAt(p);
303                     if (c >= gZero && c <= gNine) {
304                         val = val * ll_10 + (int32_t)(c - gZero);
305                     }
306                     else if (c == gGreaterThan) {
307                         break;
308                     }
309                     else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
310                     }
311                     else {
312                         // throw new IllegalArgumentException("Illegal character is rule descriptor");
313                         status = U_PARSE_ERROR;
314                         return;
315                     }
316                     ++p;
317                 }
318 
319                 // tempValue now contain's the rule's radix.  Set it
320                 // accordingly, and recalculate the rule's exponent
321                 radix = (int32_t)val;
322                 if (radix == 0) {
323                     // throw new IllegalArgumentException("Rule can't have radix of 0");
324                     status = U_PARSE_ERROR;
325                 }
326 
327                 exponent = expectedExponent();
328             }
329 
330             // if we stopped the previous loop on a > sign, then continue
331             // for as long as we still see > signs.  For each one,
332             // decrement the exponent (unless the exponent is already 0).
333             // If we see another character before reaching the end of
334             // the descriptor, that's also a syntax error.
335             if (c == gGreaterThan) {
336                 while (p < descriptor.length()) {
337                     c = descriptor.charAt(p);
338                     if (c == gGreaterThan && exponent > 0) {
339                         --exponent;
340                     } else {
341                         // throw new IllegalArgumentException("Illegal character in rule descriptor");
342                         status = U_PARSE_ERROR;
343                         return;
344                     }
345                     ++p;
346                 }
347             }
348         }
349     }
350 
351     // finally, if the rule body begins with an apostrophe, strip it off
352     // (this is generally used to put whitespace at the beginning of
353     // a rule's rule text)
354     if (description.length() > 0 && description.charAt(0) == gTick) {
355         description.removeBetween(0, 1);
356     }
357 
358     // return the description with all the stuff we've just waded through
359     // stripped off the front.  It now contains just the rule body.
360     // return description;
361 }
362 
363 /**
364 * Searches the rule's rule text for the substitution tokens,
365 * creates the substitutions, and removes the substitution tokens
366 * from the rule's rule text.
367 * @param owner The rule set containing this rule
368 * @param predecessor The rule preseding this one in "owners" rule list
369 * @param ownersOwner The RuleBasedFormat that owns this rule
370 */
371 void
extractSubstitutions(const NFRuleSet * ruleSet,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,UErrorCode & status)372 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
373                              const NFRule* predecessor,
374                              const RuleBasedNumberFormat* rbnf,
375                              UErrorCode& status)
376 {
377     if (U_SUCCESS(status)) {
378         sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
379         sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
380     }
381 }
382 
383 /**
384 * Searches the rule's rule text for the first substitution token,
385 * creates a substitution based on it, and removes the token from
386 * the rule's rule text.
387 * @param owner The rule set containing this rule
388 * @param predecessor The rule preceding this one in the rule set's
389 * rule list
390 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
391 * @return The newly-created substitution.  This is never null; if
392 * the rule text doesn't contain any substitution tokens, this will
393 * be a NullSubstitution.
394 */
395 NFSubstitution *
extractSubstitution(const NFRuleSet * ruleSet,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,UErrorCode & status)396 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
397                             const NFRule* predecessor,
398                             const RuleBasedNumberFormat* rbnf,
399                             UErrorCode& status)
400 {
401     NFSubstitution* result = NULL;
402 
403     // search the rule's rule text for the first two characters of
404     // a substitution token
405     int32_t subStart = indexOfAny(tokenStrings);
406     int32_t subEnd = subStart;
407 
408     // if we didn't find one, create a null substitution positioned
409     // at the end of the rule text
410     if (subStart == -1) {
411         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
412             ruleSet, rbnf, gEmptyString, status);
413     }
414 
415     // special-case the ">>>" token, since searching for the > at the
416     // end will actually find the > in the middle
417     if (ruleText.indexOf(gGreaterGreaterGreater) == subStart) {
418         subEnd = subStart + 2;
419 
420         // otherwise the substitution token ends with the same character
421         // it began with
422     } else {
423         UChar c = ruleText.charAt(subStart);
424         subEnd = ruleText.indexOf(c, subStart + 1);
425         // special case for '<%foo<<'
426         if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
427             // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
428             // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
429             // to get around this.  Having the duplicate at the front would cause problems with
430             // rules like "<<%" to format, say, percents...
431             ++subEnd;
432         }
433    }
434 
435     // if we don't find the end of the token (i.e., if we're on a single,
436     // unmatched token character), create a null substitution positioned
437     // at the end of the rule
438     if (subEnd == -1) {
439         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
440             ruleSet, rbnf, gEmptyString, status);
441     }
442 
443     // if we get here, we have a real substitution token (or at least
444     // some text bounded by substitution token characters).  Use
445     // makeSubstitution() to create the right kind of substitution
446     UnicodeString subToken;
447     subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
448     result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
449         rbnf, subToken, status);
450 
451     // remove the substitution from the rule text
452     ruleText.removeBetween(subStart, subEnd+1);
453 
454     return result;
455 }
456 
457 /**
458  * Sets the rule's base value, and causes the radix and exponent
459  * to be recalculated.  This is used during construction when we
460  * don't know the rule's base value until after it's been
461  * constructed.  It should be used at any other time.
462  * @param The new base value for the rule.
463  */
464 void
setBaseValue(int64_t newBaseValue,UErrorCode & status)465 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
466 {
467     // set the base value
468     baseValue = newBaseValue;
469 
470     // if this isn't a special rule, recalculate the radix and exponent
471     // (the radix always defaults to 10; if it's supposed to be something
472     // else, it's cleaned up by the caller and the exponent is
473     // recalculated again-- the only function that does this is
474     // NFRule.parseRuleDescriptor() )
475     if (baseValue >= 1) {
476         radix = 10;
477         exponent = expectedExponent();
478 
479         // this function gets called on a fully-constructed rule whose
480         // description didn't specify a base value.  This means it
481         // has substitutions, and some substitutions hold on to copies
482         // of the rule's divisor.  Fix their copies of the divisor.
483         if (sub1 != NULL) {
484             sub1->setDivisor(radix, exponent, status);
485         }
486         if (sub2 != NULL) {
487             sub2->setDivisor(radix, exponent, status);
488         }
489 
490         // if this is a special rule, its radix and exponent are basically
491         // ignored.  Set them to "safe" default values
492     } else {
493         radix = 10;
494         exponent = 0;
495     }
496 }
497 
498 /**
499 * This calculates the rule's exponent based on its radix and base
500 * value.  This will be the highest power the radix can be raised to
501 * and still produce a result less than or equal to the base value.
502 */
503 int16_t
expectedExponent() const504 NFRule::expectedExponent() const
505 {
506     // since the log of 0, or the log base 0 of something, causes an
507     // error, declare the exponent in these cases to be 0 (we also
508     // deal with the special-rule identifiers here)
509     if (radix == 0 || baseValue < 1) {
510         return 0;
511     }
512 
513     // we get rounding error in some cases-- for example, log 1000 / log 10
514     // gives us 1.9999999996 instead of 2.  The extra logic here is to take
515     // that into account
516     int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
517     int64_t temp = util64_pow(radix, tempResult + 1);
518     if (temp <= baseValue) {
519         tempResult += 1;
520     }
521     return tempResult;
522 }
523 
524 /**
525  * Searches the rule's rule text for any of the specified strings.
526  * @param strings An array of strings to search the rule's rule
527  * text for
528  * @return The index of the first match in the rule's rule text
529  * (i.e., the first substring in the rule's rule text that matches
530  * _any_ of the strings in "strings").  If none of the strings in
531  * "strings" is found in the rule's rule text, returns -1.
532  */
533 int32_t
indexOfAny(const UChar * const strings[]) const534 NFRule::indexOfAny(const UChar* const strings[]) const
535 {
536     int result = -1;
537     for (int i = 0; strings[i]; i++) {
538         int32_t pos = ruleText.indexOf(*strings[i]);
539         if (pos != -1 && (result == -1 || pos < result)) {
540             result = pos;
541         }
542     }
543     return result;
544 }
545 
546 //-----------------------------------------------------------------------
547 // boilerplate
548 //-----------------------------------------------------------------------
549 
550 /**
551 * Tests two rules for equality.
552 * @param that The rule to compare this one against
553 * @return True is the two rules are functionally equivalent
554 */
555 UBool
operator ==(const NFRule & rhs) const556 NFRule::operator==(const NFRule& rhs) const
557 {
558     return baseValue == rhs.baseValue
559         && radix == rhs.radix
560         && exponent == rhs.exponent
561         && ruleText == rhs.ruleText
562         && *sub1 == *rhs.sub1
563         && *sub2 == *rhs.sub2;
564 }
565 
566 /**
567 * Returns a textual representation of the rule.  This won't
568 * necessarily be the same as the description that this rule
569 * was created with, but it will produce the same result.
570 * @return A textual description of the rule
571 */
util_append64(UnicodeString & result,int64_t n)572 static void util_append64(UnicodeString& result, int64_t n)
573 {
574     UChar buffer[256];
575     int32_t len = util64_tou(n, buffer, sizeof(buffer));
576     UnicodeString temp(buffer, len);
577     result.append(temp);
578 }
579 
580 void
_appendRuleText(UnicodeString & result) const581 NFRule::_appendRuleText(UnicodeString& result) const
582 {
583     switch (getType()) {
584     case kNegativeNumberRule: result.append(gMinusX); break;
585     case kImproperFractionRule: result.append(gXDotX); break;
586     case kProperFractionRule: result.append(gZeroDotX); break;
587     case kMasterRule: result.append(gXDotZero); break;
588     default:
589         // for a normal rule, write out its base value, and if the radix is
590         // something other than 10, write out the radix (with the preceding
591         // slash, of course).  Then calculate the expected exponent and if
592         // if isn't the same as the actual exponent, write an appropriate
593         // number of > signs.  Finally, terminate the whole thing with
594         // a colon.
595         util_append64(result, baseValue);
596         if (radix != 10) {
597             result.append(gSlash);
598             util_append64(result, radix);
599         }
600         int numCarets = expectedExponent() - exponent;
601         for (int i = 0; i < numCarets; i++) {
602             result.append(gGreaterThan);
603         }
604         break;
605     }
606     result.append(gColon);
607     result.append(gSpace);
608 
609     // if the rule text begins with a space, write an apostrophe
610     // (whitespace after the rule descriptor is ignored; the
611     // apostrophe is used to make the whitespace significant)
612     if (ruleText.startsWith(gSpace) && sub1->getPos() != 0) {
613         result.append(gTick);
614     }
615 
616     // now, write the rule's rule text, inserting appropriate
617     // substitution tokens in the appropriate places
618     UnicodeString ruleTextCopy;
619     ruleTextCopy.setTo(ruleText);
620 
621     UnicodeString temp;
622     sub2->toString(temp);
623     ruleTextCopy.insert(sub2->getPos(), temp);
624     sub1->toString(temp);
625     ruleTextCopy.insert(sub1->getPos(), temp);
626 
627     result.append(ruleTextCopy);
628 
629     // and finally, top the whole thing off with a semicolon and
630     // return the result
631     result.append(gSemicolon);
632 }
633 
634 //-----------------------------------------------------------------------
635 // formatting
636 //-----------------------------------------------------------------------
637 
638 /**
639 * Formats the number, and inserts the resulting text into
640 * toInsertInto.
641 * @param number The number being formatted
642 * @param toInsertInto The string where the resultant text should
643 * be inserted
644 * @param pos The position in toInsertInto where the resultant text
645 * should be inserted
646 */
647 void
doFormat(int64_t number,UnicodeString & toInsertInto,int32_t pos) const648 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
649 {
650     // first, insert the rule's rule text into toInsertInto at the
651     // specified position, then insert the results of the substitutions
652     // into the right places in toInsertInto (notice we do the
653     // substitutions in reverse order so that the offsets don't get
654     // messed up)
655     toInsertInto.insert(pos, ruleText);
656     sub2->doSubstitution(number, toInsertInto, pos);
657     sub1->doSubstitution(number, toInsertInto, pos);
658 }
659 
660 /**
661 * Formats the number, and inserts the resulting text into
662 * toInsertInto.
663 * @param number The number being formatted
664 * @param toInsertInto The string where the resultant text should
665 * be inserted
666 * @param pos The position in toInsertInto where the resultant text
667 * should be inserted
668 */
669 void
doFormat(double number,UnicodeString & toInsertInto,int32_t pos) const670 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
671 {
672     // first, insert the rule's rule text into toInsertInto at the
673     // specified position, then insert the results of the substitutions
674     // into the right places in toInsertInto
675     // [again, we have two copies of this routine that do the same thing
676     // so that we don't sacrifice precision in a long by casting it
677     // to a double]
678     toInsertInto.insert(pos, ruleText);
679     sub2->doSubstitution(number, toInsertInto, pos);
680     sub1->doSubstitution(number, toInsertInto, pos);
681 }
682 
683 /**
684 * Used by the owning rule set to determine whether to invoke the
685 * rollback rule (i.e., whether this rule or the one that precedes
686 * it in the rule set's list should be used to format the number)
687 * @param The number being formatted
688 * @return True if the rule set should use the rule that precedes
689 * this one in its list; false if it should use this rule
690 */
691 UBool
shouldRollBack(double number) const692 NFRule::shouldRollBack(double number) const
693 {
694     // we roll back if the rule contains a modulus substitution,
695     // the number being formatted is an even multiple of the rule's
696     // divisor, and the rule's base value is NOT an even multiple
697     // of its divisor
698     // In other words, if the original description had
699     //    100: << hundred[ >>];
700     // that expands into
701     //    100: << hundred;
702     //    101: << hundred >>;
703     // internally.  But when we're formatting 200, if we use the rule
704     // at 101, which would normally apply, we get "two hundred zero".
705     // To prevent this, we roll back and use the rule at 100 instead.
706     // This is the logic that makes this happen: the rule at 101 has
707     // a modulus substitution, its base value isn't an even multiple
708     // of 100, and the value we're trying to format _is_ an even
709     // multiple of 100.  This is called the "rollback rule."
710     if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
711         int64_t re = util64_pow(radix, exponent);
712         return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
713     }
714     return FALSE;
715 }
716 
717 //-----------------------------------------------------------------------
718 // parsing
719 //-----------------------------------------------------------------------
720 
721 /**
722 * Attempts to parse the string with this rule.
723 * @param text The string being parsed
724 * @param parsePosition On entry, the value is ignored and assumed to
725 * be 0. On exit, this has been updated with the position of the first
726 * character not consumed by matching the text against this rule
727 * (if this rule doesn't match the text at all, the parse position
728 * if left unchanged (presumably at 0) and the function returns
729 * new Long(0)).
730 * @param isFractionRule True if this rule is contained within a
731 * fraction rule set.  This is only used if the rule has no
732 * substitutions.
733 * @return If this rule matched the text, this is the rule's base value
734 * combined appropriately with the results of parsing the substitutions.
735 * If nothing matched, this is new Long(0) and the parse position is
736 * left unchanged.  The result will be an instance of Long if the
737 * result is an integer and Double otherwise.  The result is never null.
738 */
739 #ifdef RBNF_DEBUG
740 #include <stdio.h>
741 
dumpUS(FILE * f,const UnicodeString & us)742 static void dumpUS(FILE* f, const UnicodeString& us) {
743   int len = us.length();
744   char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
745   if (buf != NULL) {
746 	  us.extract(0, len, buf);
747 	  buf[len] = 0;
748 	  fprintf(f, "%s", buf);
749 	  uprv_free(buf); //delete[] buf;
750   }
751 }
752 #endif
753 
754 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,UBool isFractionRule,double upperBound,Formattable & resVal) const755 NFRule::doParse(const UnicodeString& text,
756                 ParsePosition& parsePosition,
757                 UBool isFractionRule,
758                 double upperBound,
759                 Formattable& resVal) const
760 {
761     // internally we operate on a copy of the string being parsed
762     // (because we're going to change it) and use our own ParsePosition
763     ParsePosition pp;
764     UnicodeString workText(text);
765 
766     // check to see whether the text before the first substitution
767     // matches the text at the beginning of the string being
768     // parsed.  If it does, strip that off the front of workText;
769     // otherwise, dump out with a mismatch
770     UnicodeString prefix;
771     prefix.setTo(ruleText, 0, sub1->getPos());
772 
773 #ifdef RBNF_DEBUG
774     fprintf(stderr, "doParse %x ", this);
775     {
776         UnicodeString rt;
777         _appendRuleText(rt);
778         dumpUS(stderr, rt);
779     }
780 
781     fprintf(stderr, " text: '", this);
782     dumpUS(stderr, text);
783     fprintf(stderr, "' prefix: '");
784     dumpUS(stderr, prefix);
785 #endif
786     stripPrefix(workText, prefix, pp);
787     int32_t prefixLength = text.length() - workText.length();
788 
789 #ifdef RBNF_DEBUG
790     fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
791 #endif
792 
793     if (pp.getIndex() == 0 && sub1->getPos() != 0) {
794         // commented out because ParsePosition doesn't have error index in 1.1.x
795         // restored for ICU4C port
796         parsePosition.setErrorIndex(pp.getErrorIndex());
797         resVal.setLong(0);
798         return TRUE;
799     }
800 
801     // this is the fun part.  The basic guts of the rule-matching
802     // logic is matchToDelimiter(), which is called twice.  The first
803     // time it searches the input string for the rule text BETWEEN
804     // the substitutions and tries to match the intervening text
805     // in the input string with the first substitution.  If that
806     // succeeds, it then calls it again, this time to look for the
807     // rule text after the second substitution and to match the
808     // intervening input text against the second substitution.
809     //
810     // For example, say we have a rule that looks like this:
811     //    first << middle >> last;
812     // and input text that looks like this:
813     //    first one middle two last
814     // First we use stripPrefix() to match "first " in both places and
815     // strip it off the front, leaving
816     //    one middle two last
817     // Then we use matchToDelimiter() to match " middle " and try to
818     // match "one" against a substitution.  If it's successful, we now
819     // have
820     //    two last
821     // We use matchToDelimiter() a second time to match " last" and
822     // try to match "two" against a substitution.  If "two" matches
823     // the substitution, we have a successful parse.
824     //
825     // Since it's possible in many cases to find multiple instances
826     // of each of these pieces of rule text in the input string,
827     // we need to try all the possible combinations of these
828     // locations.  This prevents us from prematurely declaring a mismatch,
829     // and makes sure we match as much input text as we can.
830     int highWaterMark = 0;
831     double result = 0;
832     int start = 0;
833     double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
834 
835     UnicodeString temp;
836     do {
837         // our partial parse result starts out as this rule's base
838         // value.  If it finds a successful match, matchToDelimiter()
839         // will compose this in some way with what it gets back from
840         // the substitution, giving us a new partial parse result
841         pp.setIndex(0);
842 
843         temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
844         double partialResult = matchToDelimiter(workText, start, tempBaseValue,
845             temp, pp, sub1,
846             upperBound);
847 
848         // if we got a successful match (or were trying to match a
849         // null substitution), pp is now pointing at the first unmatched
850         // character.  Take note of that, and try matchToDelimiter()
851         // on the input text again
852         if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
853             start = pp.getIndex();
854 
855             UnicodeString workText2;
856             workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
857             ParsePosition pp2;
858 
859             // the second matchToDelimiter() will compose our previous
860             // partial result with whatever it gets back from its
861             // substitution if there's a successful match, giving us
862             // a real result
863             temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
864             partialResult = matchToDelimiter(workText2, 0, partialResult,
865                 temp, pp2, sub2,
866                 upperBound);
867 
868             // if we got a successful match on this second
869             // matchToDelimiter() call, update the high-water mark
870             // and result (if necessary)
871             if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
872                 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
873                     highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
874                     result = partialResult;
875                 }
876             }
877             // commented out because ParsePosition doesn't have error index in 1.1.x
878             // restored for ICU4C port
879             else {
880                 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
881                 if (temp> parsePosition.getErrorIndex()) {
882                     parsePosition.setErrorIndex(temp);
883                 }
884             }
885         }
886         // commented out because ParsePosition doesn't have error index in 1.1.x
887         // restored for ICU4C port
888         else {
889             int32_t temp = sub1->getPos() + pp.getErrorIndex();
890             if (temp > parsePosition.getErrorIndex()) {
891                 parsePosition.setErrorIndex(temp);
892             }
893         }
894         // keep trying to match things until the outer matchToDelimiter()
895         // call fails to make a match (each time, it picks up where it
896         // left off the previous time)
897     } while (sub1->getPos() != sub2->getPos()
898         && pp.getIndex() > 0
899         && pp.getIndex() < workText.length()
900         && pp.getIndex() != start);
901 
902     // update the caller's ParsePosition with our high-water mark
903     // (i.e., it now points at the first character this function
904     // didn't match-- the ParsePosition is therefore unchanged if
905     // we didn't match anything)
906     parsePosition.setIndex(highWaterMark);
907     // commented out because ParsePosition doesn't have error index in 1.1.x
908     // restored for ICU4C port
909     if (highWaterMark > 0) {
910         parsePosition.setErrorIndex(0);
911     }
912 
913     // this is a hack for one unusual condition: Normally, whether this
914     // rule belong to a fraction rule set or not is handled by its
915     // substitutions.  But if that rule HAS NO substitutions, then
916     // we have to account for it here.  By definition, if the matching
917     // rule in a fraction rule set has no substitutions, its numerator
918     // is 1, and so the result is the reciprocal of its base value.
919     if (isFractionRule &&
920         highWaterMark > 0 &&
921         sub1->isNullSubstitution()) {
922         result = 1 / result;
923     }
924 
925     resVal.setDouble(result);
926     return TRUE; // ??? do we need to worry if it is a long or a double?
927 }
928 
929 /**
930 * This function is used by parse() to match the text being parsed
931 * against a possible prefix string.  This function
932 * matches characters from the beginning of the string being parsed
933 * to characters from the prospective prefix.  If they match, pp is
934 * updated to the first character not matched, and the result is
935 * the unparsed part of the string.  If they don't match, the whole
936 * string is returned, and pp is left unchanged.
937 * @param text The string being parsed
938 * @param prefix The text to match against
939 * @param pp On entry, ignored and assumed to be 0.  On exit, points
940 * to the first unmatched character (assuming the whole prefix matched),
941 * or is unchanged (if the whole prefix didn't match).
942 * @return If things match, this is the unparsed part of "text";
943 * if they didn't match, this is "text".
944 */
945 void
stripPrefix(UnicodeString & text,const UnicodeString & prefix,ParsePosition & pp) const946 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
947 {
948     // if the prefix text is empty, dump out without doing anything
949     if (prefix.length() != 0) {
950     	UErrorCode status = U_ZERO_ERROR;
951         // use prefixLength() to match the beginning of
952         // "text" against "prefix".  This function returns the
953         // number of characters from "text" that matched (or 0 if
954         // we didn't match the whole prefix)
955         int32_t pfl = prefixLength(text, prefix, status);
956         if (U_FAILURE(status)) { // Memory allocation error.
957         	return;
958         }
959         if (pfl != 0) {
960             // if we got a successful match, update the parse position
961             // and strip the prefix off of "text"
962             pp.setIndex(pp.getIndex() + pfl);
963             text.remove(0, pfl);
964         }
965     }
966 }
967 
968 /**
969 * Used by parse() to match a substitution and any following text.
970 * "text" is searched for instances of "delimiter".  For each instance
971 * of delimiter, the intervening text is tested to see whether it
972 * matches the substitution.  The longest match wins.
973 * @param text The string being parsed
974 * @param startPos The position in "text" where we should start looking
975 * for "delimiter".
976 * @param baseValue A partial parse result (often the rule's base value),
977 * which is combined with the result from matching the substitution
978 * @param delimiter The string to search "text" for.
979 * @param pp Ignored and presumed to be 0 on entry.  If there's a match,
980 * on exit this will point to the first unmatched character.
981 * @param sub If we find "delimiter" in "text", this substitution is used
982 * to match the text between the beginning of the string and the
983 * position of "delimiter."  (If "delimiter" is the empty string, then
984 * this function just matches against this substitution and updates
985 * everything accordingly.)
986 * @param upperBound When matching the substitution, it will only
987 * consider rules with base values lower than this value.
988 * @return If there's a match, this is the result of composing
989 * baseValue with the result of matching the substitution.  Otherwise,
990 * this is new Long(0).  It's never null.  If the result is an integer,
991 * this will be an instance of Long; otherwise, it's an instance of
992 * Double.
993 *
994 * !!! note {dlf} in point of fact, in the java code the caller always converts
995 * the result to a double, so we might as well return one.
996 */
997 double
matchToDelimiter(const UnicodeString & text,int32_t startPos,double _baseValue,const UnicodeString & delimiter,ParsePosition & pp,const NFSubstitution * sub,double upperBound) const998 NFRule::matchToDelimiter(const UnicodeString& text,
999                          int32_t startPos,
1000                          double _baseValue,
1001                          const UnicodeString& delimiter,
1002                          ParsePosition& pp,
1003                          const NFSubstitution* sub,
1004                          double upperBound) const
1005 {
1006 	UErrorCode status = U_ZERO_ERROR;
1007     // if "delimiter" contains real (i.e., non-ignorable) text, search
1008     // it for "delimiter" beginning at "start".  If that succeeds, then
1009     // use "sub"'s doParse() method to match the text before the
1010     // instance of "delimiter" we just found.
1011     if (!allIgnorable(delimiter, status)) {
1012     	if (U_FAILURE(status)) { //Memory allocation error.
1013     		return 0;
1014     	}
1015         ParsePosition tempPP;
1016         Formattable result;
1017 
1018         // use findText() to search for "delimiter".  It returns a two-
1019         // element array: element 0 is the position of the match, and
1020         // element 1 is the number of characters that matched
1021         // "delimiter".
1022         int32_t dLen;
1023         int32_t dPos = findText(text, delimiter, startPos, &dLen);
1024 
1025         // if findText() succeeded, isolate the text preceding the
1026         // match, and use "sub" to match that text
1027         while (dPos >= 0) {
1028             UnicodeString subText;
1029             subText.setTo(text, 0, dPos);
1030             if (subText.length() > 0) {
1031                 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1032 #if UCONFIG_NO_COLLATION
1033                     FALSE,
1034 #else
1035                     formatter->isLenient(),
1036 #endif
1037                     result);
1038 
1039                 // if the substitution could match all the text up to
1040                 // where we found "delimiter", then this function has
1041                 // a successful match.  Bump the caller's parse position
1042                 // to point to the first character after the text
1043                 // that matches "delimiter", and return the result
1044                 // we got from parsing the substitution.
1045                 if (success && tempPP.getIndex() == dPos) {
1046                     pp.setIndex(dPos + dLen);
1047                     return result.getDouble();
1048                 }
1049                 // commented out because ParsePosition doesn't have error index in 1.1.x
1050                 // restored for ICU4C port
1051                 else {
1052                     if (tempPP.getErrorIndex() > 0) {
1053                         pp.setErrorIndex(tempPP.getErrorIndex());
1054                     } else {
1055                         pp.setErrorIndex(tempPP.getIndex());
1056                     }
1057                 }
1058             }
1059 
1060             // if we didn't match the substitution, search for another
1061             // copy of "delimiter" in "text" and repeat the loop if
1062             // we find it
1063             tempPP.setIndex(0);
1064             dPos = findText(text, delimiter, dPos + dLen, &dLen);
1065         }
1066         // if we make it here, this was an unsuccessful match, and we
1067         // leave pp unchanged and return 0
1068         pp.setIndex(0);
1069         return 0;
1070 
1071         // if "delimiter" is empty, or consists only of ignorable characters
1072         // (i.e., is semantically empty), thwe we obviously can't search
1073         // for "delimiter".  Instead, just use "sub" to parse as much of
1074         // "text" as possible.
1075     } else {
1076         ParsePosition tempPP;
1077         Formattable result;
1078 
1079         // try to match the whole string against the substitution
1080         UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1081 #if UCONFIG_NO_COLLATION
1082             FALSE,
1083 #else
1084             formatter->isLenient(),
1085 #endif
1086             result);
1087         if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
1088             // if there's a successful match (or it's a null
1089             // substitution), update pp to point to the first
1090             // character we didn't match, and pass the result from
1091             // sub.doParse() on through to the caller
1092             pp.setIndex(tempPP.getIndex());
1093             return result.getDouble();
1094         }
1095         // commented out because ParsePosition doesn't have error index in 1.1.x
1096         // restored for ICU4C port
1097         else {
1098             pp.setErrorIndex(tempPP.getErrorIndex());
1099         }
1100 
1101         // and if we get to here, then nothing matched, so we return
1102         // 0 and leave pp alone
1103         return 0;
1104     }
1105 }
1106 
1107 /**
1108 * Used by stripPrefix() to match characters.  If lenient parse mode
1109 * is off, this just calls startsWith().  If lenient parse mode is on,
1110 * this function uses CollationElementIterators to match characters in
1111 * the strings (only primary-order differences are significant in
1112 * determining whether there's a match).
1113 * @param str The string being tested
1114 * @param prefix The text we're hoping to see at the beginning
1115 * of "str"
1116 * @return If "prefix" is found at the beginning of "str", this
1117 * is the number of characters in "str" that were matched (this
1118 * isn't necessarily the same as the length of "prefix" when matching
1119 * text with a collator).  If there's no match, this is 0.
1120 */
1121 int32_t
prefixLength(const UnicodeString & str,const UnicodeString & prefix,UErrorCode & status) const1122 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1123 {
1124     // if we're looking for an empty prefix, it obviously matches
1125     // zero characters.  Just go ahead and return 0.
1126     if (prefix.length() == 0) {
1127         return 0;
1128     }
1129 
1130 #if !UCONFIG_NO_COLLATION
1131     // go through all this grief if we're in lenient-parse mode
1132     if (formatter->isLenient()) {
1133         // get the formatter's collator and use it to create two
1134         // collation element iterators, one over the target string
1135         // and another over the prefix (right now, we'll throw an
1136         // exception if the collator we get back from the formatter
1137         // isn't a RuleBasedCollator, because RuleBasedCollator defines
1138         // the CollationElementIterator protocol.  Hopefully, this
1139         // will change someday.)
1140         RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
1141         CollationElementIterator* strIter = collator->createCollationElementIterator(str);
1142         CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
1143         // Check for memory allocation error.
1144         if (collator == NULL || strIter == NULL || prefixIter == NULL) {
1145         	delete collator;
1146         	delete strIter;
1147         	delete prefixIter;
1148         	status = U_MEMORY_ALLOCATION_ERROR;
1149         	return 0;
1150         }
1151 
1152         UErrorCode err = U_ZERO_ERROR;
1153 
1154         // The original code was problematic.  Consider this match:
1155         // prefix = "fifty-"
1156         // string = " fifty-7"
1157         // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1158         // in the string.  Unfortunately, we were getting a match, and then computing where
1159         // the match terminated by rematching the string.  The rematch code was using as an
1160         // initial guess the substring of string between 0 and prefix.length.  Because of
1161         // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1162         // the position before the hyphen in the string.  Recursing down, we then parsed the
1163         // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
1164         // This was not pretty, especially since the string "fifty-7" parsed just fine.
1165         //
1166         // We have newer APIs now, so we can use calls on the iterator to determine what we
1167         // matched up to.  If we terminate because we hit the last element in the string,
1168         // our match terminates at this length.  If we terminate because we hit the last element
1169         // in the target, our match terminates at one before the element iterator position.
1170 
1171         // match collation elements between the strings
1172         int32_t oStr = strIter->next(err);
1173         int32_t oPrefix = prefixIter->next(err);
1174 
1175         while (oPrefix != CollationElementIterator::NULLORDER) {
1176             // skip over ignorable characters in the target string
1177             while (CollationElementIterator::primaryOrder(oStr) == 0
1178                 && oStr != CollationElementIterator::NULLORDER) {
1179                 oStr = strIter->next(err);
1180             }
1181 
1182             // skip over ignorable characters in the prefix
1183             while (CollationElementIterator::primaryOrder(oPrefix) == 0
1184                 && oPrefix != CollationElementIterator::NULLORDER) {
1185                 oPrefix = prefixIter->next(err);
1186             }
1187 
1188             // dlf: move this above following test, if we consume the
1189             // entire target, aren't we ok even if the source was also
1190             // entirely consumed?
1191 
1192             // if skipping over ignorables brought to the end of
1193             // the prefix, we DID match: drop out of the loop
1194             if (oPrefix == CollationElementIterator::NULLORDER) {
1195                 break;
1196             }
1197 
1198             // if skipping over ignorables brought us to the end
1199             // of the target string, we didn't match and return 0
1200             if (oStr == CollationElementIterator::NULLORDER) {
1201                 delete prefixIter;
1202                 delete strIter;
1203                 return 0;
1204             }
1205 
1206             // match collation elements from the two strings
1207             // (considering only primary differences).  If we
1208             // get a mismatch, dump out and return 0
1209             if (CollationElementIterator::primaryOrder(oStr)
1210                 != CollationElementIterator::primaryOrder(oPrefix)) {
1211                 delete prefixIter;
1212                 delete strIter;
1213                 return 0;
1214 
1215                 // otherwise, advance to the next character in each string
1216                 // and loop (we drop out of the loop when we exhaust
1217                 // collation elements in the prefix)
1218             } else {
1219                 oStr = strIter->next(err);
1220                 oPrefix = prefixIter->next(err);
1221             }
1222         }
1223 
1224         int32_t result = strIter->getOffset();
1225         if (oStr != CollationElementIterator::NULLORDER) {
1226             --result; // back over character that we don't want to consume;
1227         }
1228 
1229 #ifdef RBNF_DEBUG
1230         fprintf(stderr, "prefix length: %d\n", result);
1231 #endif
1232         delete prefixIter;
1233         delete strIter;
1234 
1235         return result;
1236 #if 0
1237         //----------------------------------------------------------------
1238         // JDK 1.2-specific API call
1239         // return strIter.getOffset();
1240         //----------------------------------------------------------------
1241         // JDK 1.1 HACK (take out for 1.2-specific code)
1242 
1243         // if we make it to here, we have a successful match.  Now we
1244         // have to find out HOW MANY characters from the target string
1245         // matched the prefix (there isn't necessarily a one-to-one
1246         // mapping between collation elements and characters).
1247         // In JDK 1.2, there's a simple getOffset() call we can use.
1248         // In JDK 1.1, on the other hand, we have to go through some
1249         // ugly contortions.  First, use the collator to compare the
1250         // same number of characters from the prefix and target string.
1251         // If they're equal, we're done.
1252         collator->setStrength(Collator::PRIMARY);
1253         if (str.length() >= prefix.length()) {
1254             UnicodeString temp;
1255             temp.setTo(str, 0, prefix.length());
1256             if (collator->equals(temp, prefix)) {
1257 #ifdef RBNF_DEBUG
1258                 fprintf(stderr, "returning: %d\n", prefix.length());
1259 #endif
1260                 return prefix.length();
1261             }
1262         }
1263 
1264         // if they're not equal, then we have to compare successively
1265         // larger and larger substrings of the target string until we
1266         // get to one that matches the prefix.  At that point, we know
1267         // how many characters matched the prefix, and we can return.
1268         int32_t p = 1;
1269         while (p <= str.length()) {
1270             UnicodeString temp;
1271             temp.setTo(str, 0, p);
1272             if (collator->equals(temp, prefix)) {
1273                 return p;
1274             } else {
1275                 ++p;
1276             }
1277         }
1278 
1279         // SHOULD NEVER GET HERE!!!
1280         return 0;
1281         //----------------------------------------------------------------
1282 #endif
1283 
1284         // If lenient parsing is turned off, forget all that crap above.
1285         // Just use String.startsWith() and be done with it.
1286   } else
1287 #endif
1288   {
1289       if (str.startsWith(prefix)) {
1290           return prefix.length();
1291       } else {
1292           return 0;
1293       }
1294   }
1295 }
1296 
1297 /**
1298 * Searches a string for another string.  If lenient parsing is off,
1299 * this just calls indexOf().  If lenient parsing is on, this function
1300 * uses CollationElementIterator to match characters, and only
1301 * primary-order differences are significant in determining whether
1302 * there's a match.
1303 * @param str The string to search
1304 * @param key The string to search "str" for
1305 * @param startingAt The index into "str" where the search is to
1306 * begin
1307 * @return A two-element array of ints.  Element 0 is the position
1308 * of the match, or -1 if there was no match.  Element 1 is the
1309 * number of characters in "str" that matched (which isn't necessarily
1310 * the same as the length of "key")
1311 */
1312 int32_t
findText(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1313 NFRule::findText(const UnicodeString& str,
1314                  const UnicodeString& key,
1315                  int32_t startingAt,
1316                  int32_t* length) const
1317 {
1318 #if !UCONFIG_NO_COLLATION
1319     // if lenient parsing is turned off, this is easy: just call
1320     // String.indexOf() and we're done
1321     if (!formatter->isLenient()) {
1322         *length = key.length();
1323         return str.indexOf(key, startingAt);
1324 
1325         // but if lenient parsing is turned ON, we've got some work
1326         // ahead of us
1327     } else
1328 #endif
1329     {
1330         //----------------------------------------------------------------
1331         // JDK 1.1 HACK (take out of 1.2-specific code)
1332 
1333         // in JDK 1.2, CollationElementIterator provides us with an
1334         // API to map between character offsets and collation elements
1335         // and we can do this by marching through the string comparing
1336         // collation elements.  We can't do that in JDK 1.1.  Insted,
1337         // we have to go through this horrible slow mess:
1338         int32_t p = startingAt;
1339         int32_t keyLen = 0;
1340 
1341         // basically just isolate smaller and smaller substrings of
1342         // the target string (each running to the end of the string,
1343         // and with the first one running from startingAt to the end)
1344         // and then use prefixLength() to see if the search key is at
1345         // the beginning of each substring.  This is excruciatingly
1346         // slow, but it will locate the key and tell use how long the
1347         // matching text was.
1348         UnicodeString temp;
1349         UErrorCode status = U_ZERO_ERROR;
1350         while (p < str.length() && keyLen == 0) {
1351             temp.setTo(str, p, str.length() - p);
1352             keyLen = prefixLength(temp, key, status);
1353             if (U_FAILURE(status)) {
1354             	break;
1355             }
1356             if (keyLen != 0) {
1357                 *length = keyLen;
1358                 return p;
1359             }
1360             ++p;
1361         }
1362         // if we make it to here, we didn't find it.  Return -1 for the
1363         // location.  The length should be ignored, but set it to 0,
1364         // which should be "safe"
1365         *length = 0;
1366         return -1;
1367 
1368         //----------------------------------------------------------------
1369         // JDK 1.2 version of this routine
1370         //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
1371         //
1372         //CollationElementIterator strIter = collator.getCollationElementIterator(str);
1373         //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
1374         //
1375         //int keyStart = -1;
1376         //
1377         //str.setOffset(startingAt);
1378         //
1379         //int oStr = strIter.next();
1380         //int oKey = keyIter.next();
1381         //while (oKey != CollationElementIterator.NULLORDER) {
1382         //    while (oStr != CollationElementIterator.NULLORDER &&
1383         //                CollationElementIterator.primaryOrder(oStr) == 0)
1384         //        oStr = strIter.next();
1385         //
1386         //    while (oKey != CollationElementIterator.NULLORDER &&
1387         //                CollationElementIterator.primaryOrder(oKey) == 0)
1388         //        oKey = keyIter.next();
1389         //
1390         //    if (oStr == CollationElementIterator.NULLORDER) {
1391         //        return new int[] { -1, 0 };
1392         //    }
1393         //
1394         //    if (oKey == CollationElementIterator.NULLORDER) {
1395         //        break;
1396         //    }
1397         //
1398         //    if (CollationElementIterator.primaryOrder(oStr) ==
1399         //            CollationElementIterator.primaryOrder(oKey)) {
1400         //        keyStart = strIter.getOffset();
1401         //        oStr = strIter.next();
1402         //        oKey = keyIter.next();
1403         //    } else {
1404         //        if (keyStart != -1) {
1405         //            keyStart = -1;
1406         //            keyIter.reset();
1407         //        } else {
1408         //            oStr = strIter.next();
1409         //        }
1410         //    }
1411         //}
1412         //
1413         //if (oKey == CollationElementIterator.NULLORDER) {
1414         //    return new int[] { keyStart, strIter.getOffset() - keyStart };
1415         //} else {
1416         //    return new int[] { -1, 0 };
1417         //}
1418     }
1419 }
1420 
1421 /**
1422 * Checks to see whether a string consists entirely of ignorable
1423 * characters.
1424 * @param str The string to test.
1425 * @return true if the string is empty of consists entirely of
1426 * characters that the number formatter's collator says are
1427 * ignorable at the primary-order level.  false otherwise.
1428 */
1429 UBool
allIgnorable(const UnicodeString & str,UErrorCode & status) const1430 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1431 {
1432     // if the string is empty, we can just return true
1433     if (str.length() == 0) {
1434         return TRUE;
1435     }
1436 
1437 #if !UCONFIG_NO_COLLATION
1438     // if lenient parsing is turned on, walk through the string with
1439     // a collation element iterator and make sure each collation
1440     // element is 0 (ignorable) at the primary level
1441     if (formatter->isLenient()) {
1442         RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
1443         CollationElementIterator* iter = collator->createCollationElementIterator(str);
1444 
1445         // Memory allocation error check.
1446         if (collator == NULL || iter == NULL) {
1447         	delete collator;
1448         	delete iter;
1449         	status = U_MEMORY_ALLOCATION_ERROR;
1450         	return FALSE;
1451         }
1452 
1453         UErrorCode err = U_ZERO_ERROR;
1454         int32_t o = iter->next(err);
1455         while (o != CollationElementIterator::NULLORDER
1456             && CollationElementIterator::primaryOrder(o) == 0) {
1457             o = iter->next(err);
1458         }
1459 
1460         delete iter;
1461         return o == CollationElementIterator::NULLORDER;
1462     }
1463 #endif
1464 
1465     // if lenient parsing is turned off, there is no such thing as
1466     // an ignorable character: return true only if the string is empty
1467     return FALSE;
1468 }
1469 
1470 U_NAMESPACE_END
1471 
1472 /* U_HAVE_RBNF */
1473 #endif
1474 
1475 
1476