1 /*
2 ******************************************************************************
3 * Copyright (C) 1997-2011, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ******************************************************************************
6 * file name: nfrule.cpp
7 * encoding: US-ASCII
8 * tab size: 8 (not used)
9 * indentation:4
10 *
11 * Modification history
12 * Date Name Comments
13 * 10/11/2001 Doug Ported from ICU4J
14 */
15
16 #include "nfrule.h"
17
18 #if U_HAVE_RBNF
19
20 #include "unicode/rbnf.h"
21 #include "unicode/tblcoll.h"
22 #include "unicode/coleitr.h"
23 #include "unicode/uchar.h"
24 #include "nfrs.h"
25 #include "nfrlist.h"
26 #include "nfsubs.h"
27 #include "patternprops.h"
28
29 U_NAMESPACE_BEGIN
30
NFRule(const RuleBasedNumberFormat * _rbnf)31 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
32 : baseValue((int32_t)0)
33 , radix(0)
34 , exponent(0)
35 , ruleText()
36 , sub1(NULL)
37 , sub2(NULL)
38 , formatter(_rbnf)
39 {
40 }
41
~NFRule()42 NFRule::~NFRule()
43 {
44 delete sub1;
45 delete sub2;
46 }
47
48 static const UChar gLeftBracket = 0x005b;
49 static const UChar gRightBracket = 0x005d;
50 static const UChar gColon = 0x003a;
51 static const UChar gZero = 0x0030;
52 static const UChar gNine = 0x0039;
53 static const UChar gSpace = 0x0020;
54 static const UChar gSlash = 0x002f;
55 static const UChar gGreaterThan = 0x003e;
56 static const UChar gLessThan = 0x003c;
57 static const UChar gComma = 0x002c;
58 static const UChar gDot = 0x002e;
59 static const UChar gTick = 0x0027;
60 //static const UChar gMinus = 0x002d;
61 static const UChar gSemicolon = 0x003b;
62
63 static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
64 static const UChar gXDotX[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */
65 static const UChar gXDotZero[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */
66 static const UChar gZeroDotX[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */
67
68 static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
69 static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
70 static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */
71 static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */
72 static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */
73 static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */
74 static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */
75 static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */
76 static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */
77 static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */
78 static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
79 static const UChar gEmptyString[] = {0}; /* "" */
80 static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
81
82 static const UChar * const tokenStrings[] = {
83 gLessLess, gLessPercent, gLessHash, gLessZero,
84 gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
85 gEqualPercent, gEqualHash, gEqualZero, NULL
86 };
87
88 void
makeRules(UnicodeString & description,const NFRuleSet * ruleSet,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,NFRuleList & rules,UErrorCode & status)89 NFRule::makeRules(UnicodeString& description,
90 const NFRuleSet *ruleSet,
91 const NFRule *predecessor,
92 const RuleBasedNumberFormat *rbnf,
93 NFRuleList& rules,
94 UErrorCode& status)
95 {
96 // we know we're making at least one rule, so go ahead and
97 // new it up and initialize its basevalue and divisor
98 // (this also strips the rule descriptor, if any, off the
99 // descripton string)
100 NFRule* rule1 = new NFRule(rbnf);
101 /* test for NULL */
102 if (rule1 == 0) {
103 status = U_MEMORY_ALLOCATION_ERROR;
104 return;
105 }
106 rule1->parseRuleDescriptor(description, status);
107
108 // check the description to see whether there's text enclosed
109 // in brackets
110 int32_t brack1 = description.indexOf(gLeftBracket);
111 int32_t brack2 = description.indexOf(gRightBracket);
112
113 // if the description doesn't contain a matched pair of brackets,
114 // or if it's of a type that doesn't recognize bracketed text,
115 // then leave the description alone, initialize the rule's
116 // rule text and substitutions, and return that rule
117 if (brack1 == -1 || brack2 == -1 || brack1 > brack2
118 || rule1->getType() == kProperFractionRule
119 || rule1->getType() == kNegativeNumberRule) {
120 rule1->ruleText = description;
121 rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
122 rules.add(rule1);
123 } else {
124 // if the description does contain a matched pair of brackets,
125 // then it's really shorthand for two rules (with one exception)
126 NFRule* rule2 = NULL;
127 UnicodeString sbuf;
128
129 // we'll actually only split the rule into two rules if its
130 // base value is an even multiple of its divisor (or it's one
131 // of the special rules)
132 if ((rule1->baseValue > 0
133 && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
134 || rule1->getType() == kImproperFractionRule
135 || rule1->getType() == kMasterRule) {
136
137 // if it passes that test, new up the second rule. If the
138 // rule set both rules will belong to is a fraction rule
139 // set, they both have the same base value; otherwise,
140 // increment the original rule's base value ("rule1" actually
141 // goes SECOND in the rule set's rule list)
142 rule2 = new NFRule(rbnf);
143 /* test for NULL */
144 if (rule2 == 0) {
145 status = U_MEMORY_ALLOCATION_ERROR;
146 return;
147 }
148 if (rule1->baseValue >= 0) {
149 rule2->baseValue = rule1->baseValue;
150 if (!ruleSet->isFractionRuleSet()) {
151 ++rule1->baseValue;
152 }
153 }
154
155 // if the description began with "x.x" and contains bracketed
156 // text, it describes both the improper fraction rule and
157 // the proper fraction rule
158 else if (rule1->getType() == kImproperFractionRule) {
159 rule2->setType(kProperFractionRule);
160 }
161
162 // if the description began with "x.0" and contains bracketed
163 // text, it describes both the master rule and the
164 // improper fraction rule
165 else if (rule1->getType() == kMasterRule) {
166 rule2->baseValue = rule1->baseValue;
167 rule1->setType(kImproperFractionRule);
168 }
169
170 // both rules have the same radix and exponent (i.e., the
171 // same divisor)
172 rule2->radix = rule1->radix;
173 rule2->exponent = rule1->exponent;
174
175 // rule2's rule text omits the stuff in brackets: initalize
176 // its rule text and substitutions accordingly
177 sbuf.append(description, 0, brack1);
178 if (brack2 + 1 < description.length()) {
179 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
180 }
181 rule2->ruleText.setTo(sbuf);
182 rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
183 }
184
185 // rule1's text includes the text in the brackets but omits
186 // the brackets themselves: initialize _its_ rule text and
187 // substitutions accordingly
188 sbuf.setTo(description, 0, brack1);
189 sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
190 if (brack2 + 1 < description.length()) {
191 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
192 }
193 rule1->ruleText.setTo(sbuf);
194 rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
195
196 // if we only have one rule, return it; if we have two, return
197 // a two-element array containing them (notice that rule2 goes
198 // BEFORE rule1 in the list: in all cases, rule2 OMITS the
199 // material in the brackets and rule1 INCLUDES the material
200 // in the brackets)
201 if (rule2 != NULL) {
202 rules.add(rule2);
203 }
204 rules.add(rule1);
205 }
206 }
207
208 /**
209 * This function parses the rule's rule descriptor (i.e., the base
210 * value and/or other tokens that precede the rule's rule text
211 * in the description) and sets the rule's base value, radix, and
212 * exponent according to the descriptor. (If the description doesn't
213 * include a rule descriptor, then this function sets everything to
214 * default values and the rule set sets the rule's real base value).
215 * @param description The rule's description
216 * @return If "description" included a rule descriptor, this is
217 * "description" with the descriptor and any trailing whitespace
218 * stripped off. Otherwise; it's "descriptor" unchangd.
219 */
220 void
parseRuleDescriptor(UnicodeString & description,UErrorCode & status)221 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
222 {
223 // the description consists of a rule descriptor and a rule body,
224 // separated by a colon. The rule descriptor is optional. If
225 // it's omitted, just set the base value to 0.
226 int32_t p = description.indexOf(gColon);
227 if (p == -1) {
228 setBaseValue((int32_t)0, status);
229 } else {
230 // copy the descriptor out into its own string and strip it,
231 // along with any trailing whitespace, out of the original
232 // description
233 UnicodeString descriptor;
234 descriptor.setTo(description, 0, p);
235
236 ++p;
237 while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
238 ++p;
239 }
240 description.removeBetween(0, p);
241
242 // check first to see if the rule descriptor matches the token
243 // for one of the special rules. If it does, set the base
244 // value to the correct identfier value
245 if (descriptor == gMinusX) {
246 setType(kNegativeNumberRule);
247 }
248 else if (descriptor == gXDotX) {
249 setType(kImproperFractionRule);
250 }
251 else if (descriptor == gZeroDotX) {
252 setType(kProperFractionRule);
253 }
254 else if (descriptor == gXDotZero) {
255 setType(kMasterRule);
256 }
257
258 // if the rule descriptor begins with a digit, it's a descriptor
259 // for a normal rule
260 // since we don't have Long.parseLong, and this isn't much work anyway,
261 // just build up the value as we encounter the digits.
262 else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
263 int64_t val = 0;
264 p = 0;
265 UChar c = gSpace;
266
267 // begin parsing the descriptor: copy digits
268 // into "tempValue", skip periods, commas, and spaces,
269 // stop on a slash or > sign (or at the end of the string),
270 // and throw an exception on any other character
271 int64_t ll_10 = 10;
272 while (p < descriptor.length()) {
273 c = descriptor.charAt(p);
274 if (c >= gZero && c <= gNine) {
275 val = val * ll_10 + (int32_t)(c - gZero);
276 }
277 else if (c == gSlash || c == gGreaterThan) {
278 break;
279 }
280 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
281 }
282 else {
283 // throw new IllegalArgumentException("Illegal character in rule descriptor");
284 status = U_PARSE_ERROR;
285 return;
286 }
287 ++p;
288 }
289
290 // we have the base value, so set it
291 setBaseValue(val, status);
292
293 // if we stopped the previous loop on a slash, we're
294 // now parsing the rule's radix. Again, accumulate digits
295 // in tempValue, skip punctuation, stop on a > mark, and
296 // throw an exception on anything else
297 if (c == gSlash) {
298 val = 0;
299 ++p;
300 int64_t ll_10 = 10;
301 while (p < descriptor.length()) {
302 c = descriptor.charAt(p);
303 if (c >= gZero && c <= gNine) {
304 val = val * ll_10 + (int32_t)(c - gZero);
305 }
306 else if (c == gGreaterThan) {
307 break;
308 }
309 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
310 }
311 else {
312 // throw new IllegalArgumentException("Illegal character is rule descriptor");
313 status = U_PARSE_ERROR;
314 return;
315 }
316 ++p;
317 }
318
319 // tempValue now contain's the rule's radix. Set it
320 // accordingly, and recalculate the rule's exponent
321 radix = (int32_t)val;
322 if (radix == 0) {
323 // throw new IllegalArgumentException("Rule can't have radix of 0");
324 status = U_PARSE_ERROR;
325 }
326
327 exponent = expectedExponent();
328 }
329
330 // if we stopped the previous loop on a > sign, then continue
331 // for as long as we still see > signs. For each one,
332 // decrement the exponent (unless the exponent is already 0).
333 // If we see another character before reaching the end of
334 // the descriptor, that's also a syntax error.
335 if (c == gGreaterThan) {
336 while (p < descriptor.length()) {
337 c = descriptor.charAt(p);
338 if (c == gGreaterThan && exponent > 0) {
339 --exponent;
340 } else {
341 // throw new IllegalArgumentException("Illegal character in rule descriptor");
342 status = U_PARSE_ERROR;
343 return;
344 }
345 ++p;
346 }
347 }
348 }
349 }
350
351 // finally, if the rule body begins with an apostrophe, strip it off
352 // (this is generally used to put whitespace at the beginning of
353 // a rule's rule text)
354 if (description.length() > 0 && description.charAt(0) == gTick) {
355 description.removeBetween(0, 1);
356 }
357
358 // return the description with all the stuff we've just waded through
359 // stripped off the front. It now contains just the rule body.
360 // return description;
361 }
362
363 /**
364 * Searches the rule's rule text for the substitution tokens,
365 * creates the substitutions, and removes the substitution tokens
366 * from the rule's rule text.
367 * @param owner The rule set containing this rule
368 * @param predecessor The rule preseding this one in "owners" rule list
369 * @param ownersOwner The RuleBasedFormat that owns this rule
370 */
371 void
extractSubstitutions(const NFRuleSet * ruleSet,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,UErrorCode & status)372 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
373 const NFRule* predecessor,
374 const RuleBasedNumberFormat* rbnf,
375 UErrorCode& status)
376 {
377 if (U_SUCCESS(status)) {
378 sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
379 sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
380 }
381 }
382
383 /**
384 * Searches the rule's rule text for the first substitution token,
385 * creates a substitution based on it, and removes the token from
386 * the rule's rule text.
387 * @param owner The rule set containing this rule
388 * @param predecessor The rule preceding this one in the rule set's
389 * rule list
390 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
391 * @return The newly-created substitution. This is never null; if
392 * the rule text doesn't contain any substitution tokens, this will
393 * be a NullSubstitution.
394 */
395 NFSubstitution *
extractSubstitution(const NFRuleSet * ruleSet,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,UErrorCode & status)396 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
397 const NFRule* predecessor,
398 const RuleBasedNumberFormat* rbnf,
399 UErrorCode& status)
400 {
401 NFSubstitution* result = NULL;
402
403 // search the rule's rule text for the first two characters of
404 // a substitution token
405 int32_t subStart = indexOfAny(tokenStrings);
406 int32_t subEnd = subStart;
407
408 // if we didn't find one, create a null substitution positioned
409 // at the end of the rule text
410 if (subStart == -1) {
411 return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
412 ruleSet, rbnf, gEmptyString, status);
413 }
414
415 // special-case the ">>>" token, since searching for the > at the
416 // end will actually find the > in the middle
417 if (ruleText.indexOf(gGreaterGreaterGreater) == subStart) {
418 subEnd = subStart + 2;
419
420 // otherwise the substitution token ends with the same character
421 // it began with
422 } else {
423 UChar c = ruleText.charAt(subStart);
424 subEnd = ruleText.indexOf(c, subStart + 1);
425 // special case for '<%foo<<'
426 if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
427 // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
428 // occurs because of the juxtaposition of two different rules. The check for '<' is a hack
429 // to get around this. Having the duplicate at the front would cause problems with
430 // rules like "<<%" to format, say, percents...
431 ++subEnd;
432 }
433 }
434
435 // if we don't find the end of the token (i.e., if we're on a single,
436 // unmatched token character), create a null substitution positioned
437 // at the end of the rule
438 if (subEnd == -1) {
439 return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
440 ruleSet, rbnf, gEmptyString, status);
441 }
442
443 // if we get here, we have a real substitution token (or at least
444 // some text bounded by substitution token characters). Use
445 // makeSubstitution() to create the right kind of substitution
446 UnicodeString subToken;
447 subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
448 result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
449 rbnf, subToken, status);
450
451 // remove the substitution from the rule text
452 ruleText.removeBetween(subStart, subEnd+1);
453
454 return result;
455 }
456
457 /**
458 * Sets the rule's base value, and causes the radix and exponent
459 * to be recalculated. This is used during construction when we
460 * don't know the rule's base value until after it's been
461 * constructed. It should be used at any other time.
462 * @param The new base value for the rule.
463 */
464 void
setBaseValue(int64_t newBaseValue,UErrorCode & status)465 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
466 {
467 // set the base value
468 baseValue = newBaseValue;
469
470 // if this isn't a special rule, recalculate the radix and exponent
471 // (the radix always defaults to 10; if it's supposed to be something
472 // else, it's cleaned up by the caller and the exponent is
473 // recalculated again-- the only function that does this is
474 // NFRule.parseRuleDescriptor() )
475 if (baseValue >= 1) {
476 radix = 10;
477 exponent = expectedExponent();
478
479 // this function gets called on a fully-constructed rule whose
480 // description didn't specify a base value. This means it
481 // has substitutions, and some substitutions hold on to copies
482 // of the rule's divisor. Fix their copies of the divisor.
483 if (sub1 != NULL) {
484 sub1->setDivisor(radix, exponent, status);
485 }
486 if (sub2 != NULL) {
487 sub2->setDivisor(radix, exponent, status);
488 }
489
490 // if this is a special rule, its radix and exponent are basically
491 // ignored. Set them to "safe" default values
492 } else {
493 radix = 10;
494 exponent = 0;
495 }
496 }
497
498 /**
499 * This calculates the rule's exponent based on its radix and base
500 * value. This will be the highest power the radix can be raised to
501 * and still produce a result less than or equal to the base value.
502 */
503 int16_t
expectedExponent() const504 NFRule::expectedExponent() const
505 {
506 // since the log of 0, or the log base 0 of something, causes an
507 // error, declare the exponent in these cases to be 0 (we also
508 // deal with the special-rule identifiers here)
509 if (radix == 0 || baseValue < 1) {
510 return 0;
511 }
512
513 // we get rounding error in some cases-- for example, log 1000 / log 10
514 // gives us 1.9999999996 instead of 2. The extra logic here is to take
515 // that into account
516 int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
517 int64_t temp = util64_pow(radix, tempResult + 1);
518 if (temp <= baseValue) {
519 tempResult += 1;
520 }
521 return tempResult;
522 }
523
524 /**
525 * Searches the rule's rule text for any of the specified strings.
526 * @param strings An array of strings to search the rule's rule
527 * text for
528 * @return The index of the first match in the rule's rule text
529 * (i.e., the first substring in the rule's rule text that matches
530 * _any_ of the strings in "strings"). If none of the strings in
531 * "strings" is found in the rule's rule text, returns -1.
532 */
533 int32_t
indexOfAny(const UChar * const strings[]) const534 NFRule::indexOfAny(const UChar* const strings[]) const
535 {
536 int result = -1;
537 for (int i = 0; strings[i]; i++) {
538 int32_t pos = ruleText.indexOf(*strings[i]);
539 if (pos != -1 && (result == -1 || pos < result)) {
540 result = pos;
541 }
542 }
543 return result;
544 }
545
546 //-----------------------------------------------------------------------
547 // boilerplate
548 //-----------------------------------------------------------------------
549
550 /**
551 * Tests two rules for equality.
552 * @param that The rule to compare this one against
553 * @return True is the two rules are functionally equivalent
554 */
555 UBool
operator ==(const NFRule & rhs) const556 NFRule::operator==(const NFRule& rhs) const
557 {
558 return baseValue == rhs.baseValue
559 && radix == rhs.radix
560 && exponent == rhs.exponent
561 && ruleText == rhs.ruleText
562 && *sub1 == *rhs.sub1
563 && *sub2 == *rhs.sub2;
564 }
565
566 /**
567 * Returns a textual representation of the rule. This won't
568 * necessarily be the same as the description that this rule
569 * was created with, but it will produce the same result.
570 * @return A textual description of the rule
571 */
util_append64(UnicodeString & result,int64_t n)572 static void util_append64(UnicodeString& result, int64_t n)
573 {
574 UChar buffer[256];
575 int32_t len = util64_tou(n, buffer, sizeof(buffer));
576 UnicodeString temp(buffer, len);
577 result.append(temp);
578 }
579
580 void
_appendRuleText(UnicodeString & result) const581 NFRule::_appendRuleText(UnicodeString& result) const
582 {
583 switch (getType()) {
584 case kNegativeNumberRule: result.append(gMinusX); break;
585 case kImproperFractionRule: result.append(gXDotX); break;
586 case kProperFractionRule: result.append(gZeroDotX); break;
587 case kMasterRule: result.append(gXDotZero); break;
588 default:
589 // for a normal rule, write out its base value, and if the radix is
590 // something other than 10, write out the radix (with the preceding
591 // slash, of course). Then calculate the expected exponent and if
592 // if isn't the same as the actual exponent, write an appropriate
593 // number of > signs. Finally, terminate the whole thing with
594 // a colon.
595 util_append64(result, baseValue);
596 if (radix != 10) {
597 result.append(gSlash);
598 util_append64(result, radix);
599 }
600 int numCarets = expectedExponent() - exponent;
601 for (int i = 0; i < numCarets; i++) {
602 result.append(gGreaterThan);
603 }
604 break;
605 }
606 result.append(gColon);
607 result.append(gSpace);
608
609 // if the rule text begins with a space, write an apostrophe
610 // (whitespace after the rule descriptor is ignored; the
611 // apostrophe is used to make the whitespace significant)
612 if (ruleText.startsWith(gSpace) && sub1->getPos() != 0) {
613 result.append(gTick);
614 }
615
616 // now, write the rule's rule text, inserting appropriate
617 // substitution tokens in the appropriate places
618 UnicodeString ruleTextCopy;
619 ruleTextCopy.setTo(ruleText);
620
621 UnicodeString temp;
622 sub2->toString(temp);
623 ruleTextCopy.insert(sub2->getPos(), temp);
624 sub1->toString(temp);
625 ruleTextCopy.insert(sub1->getPos(), temp);
626
627 result.append(ruleTextCopy);
628
629 // and finally, top the whole thing off with a semicolon and
630 // return the result
631 result.append(gSemicolon);
632 }
633
634 //-----------------------------------------------------------------------
635 // formatting
636 //-----------------------------------------------------------------------
637
638 /**
639 * Formats the number, and inserts the resulting text into
640 * toInsertInto.
641 * @param number The number being formatted
642 * @param toInsertInto The string where the resultant text should
643 * be inserted
644 * @param pos The position in toInsertInto where the resultant text
645 * should be inserted
646 */
647 void
doFormat(int64_t number,UnicodeString & toInsertInto,int32_t pos) const648 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
649 {
650 // first, insert the rule's rule text into toInsertInto at the
651 // specified position, then insert the results of the substitutions
652 // into the right places in toInsertInto (notice we do the
653 // substitutions in reverse order so that the offsets don't get
654 // messed up)
655 toInsertInto.insert(pos, ruleText);
656 sub2->doSubstitution(number, toInsertInto, pos);
657 sub1->doSubstitution(number, toInsertInto, pos);
658 }
659
660 /**
661 * Formats the number, and inserts the resulting text into
662 * toInsertInto.
663 * @param number The number being formatted
664 * @param toInsertInto The string where the resultant text should
665 * be inserted
666 * @param pos The position in toInsertInto where the resultant text
667 * should be inserted
668 */
669 void
doFormat(double number,UnicodeString & toInsertInto,int32_t pos) const670 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
671 {
672 // first, insert the rule's rule text into toInsertInto at the
673 // specified position, then insert the results of the substitutions
674 // into the right places in toInsertInto
675 // [again, we have two copies of this routine that do the same thing
676 // so that we don't sacrifice precision in a long by casting it
677 // to a double]
678 toInsertInto.insert(pos, ruleText);
679 sub2->doSubstitution(number, toInsertInto, pos);
680 sub1->doSubstitution(number, toInsertInto, pos);
681 }
682
683 /**
684 * Used by the owning rule set to determine whether to invoke the
685 * rollback rule (i.e., whether this rule or the one that precedes
686 * it in the rule set's list should be used to format the number)
687 * @param The number being formatted
688 * @return True if the rule set should use the rule that precedes
689 * this one in its list; false if it should use this rule
690 */
691 UBool
shouldRollBack(double number) const692 NFRule::shouldRollBack(double number) const
693 {
694 // we roll back if the rule contains a modulus substitution,
695 // the number being formatted is an even multiple of the rule's
696 // divisor, and the rule's base value is NOT an even multiple
697 // of its divisor
698 // In other words, if the original description had
699 // 100: << hundred[ >>];
700 // that expands into
701 // 100: << hundred;
702 // 101: << hundred >>;
703 // internally. But when we're formatting 200, if we use the rule
704 // at 101, which would normally apply, we get "two hundred zero".
705 // To prevent this, we roll back and use the rule at 100 instead.
706 // This is the logic that makes this happen: the rule at 101 has
707 // a modulus substitution, its base value isn't an even multiple
708 // of 100, and the value we're trying to format _is_ an even
709 // multiple of 100. This is called the "rollback rule."
710 if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
711 int64_t re = util64_pow(radix, exponent);
712 return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
713 }
714 return FALSE;
715 }
716
717 //-----------------------------------------------------------------------
718 // parsing
719 //-----------------------------------------------------------------------
720
721 /**
722 * Attempts to parse the string with this rule.
723 * @param text The string being parsed
724 * @param parsePosition On entry, the value is ignored and assumed to
725 * be 0. On exit, this has been updated with the position of the first
726 * character not consumed by matching the text against this rule
727 * (if this rule doesn't match the text at all, the parse position
728 * if left unchanged (presumably at 0) and the function returns
729 * new Long(0)).
730 * @param isFractionRule True if this rule is contained within a
731 * fraction rule set. This is only used if the rule has no
732 * substitutions.
733 * @return If this rule matched the text, this is the rule's base value
734 * combined appropriately with the results of parsing the substitutions.
735 * If nothing matched, this is new Long(0) and the parse position is
736 * left unchanged. The result will be an instance of Long if the
737 * result is an integer and Double otherwise. The result is never null.
738 */
739 #ifdef RBNF_DEBUG
740 #include <stdio.h>
741
dumpUS(FILE * f,const UnicodeString & us)742 static void dumpUS(FILE* f, const UnicodeString& us) {
743 int len = us.length();
744 char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
745 if (buf != NULL) {
746 us.extract(0, len, buf);
747 buf[len] = 0;
748 fprintf(f, "%s", buf);
749 uprv_free(buf); //delete[] buf;
750 }
751 }
752 #endif
753
754 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,UBool isFractionRule,double upperBound,Formattable & resVal) const755 NFRule::doParse(const UnicodeString& text,
756 ParsePosition& parsePosition,
757 UBool isFractionRule,
758 double upperBound,
759 Formattable& resVal) const
760 {
761 // internally we operate on a copy of the string being parsed
762 // (because we're going to change it) and use our own ParsePosition
763 ParsePosition pp;
764 UnicodeString workText(text);
765
766 // check to see whether the text before the first substitution
767 // matches the text at the beginning of the string being
768 // parsed. If it does, strip that off the front of workText;
769 // otherwise, dump out with a mismatch
770 UnicodeString prefix;
771 prefix.setTo(ruleText, 0, sub1->getPos());
772
773 #ifdef RBNF_DEBUG
774 fprintf(stderr, "doParse %x ", this);
775 {
776 UnicodeString rt;
777 _appendRuleText(rt);
778 dumpUS(stderr, rt);
779 }
780
781 fprintf(stderr, " text: '", this);
782 dumpUS(stderr, text);
783 fprintf(stderr, "' prefix: '");
784 dumpUS(stderr, prefix);
785 #endif
786 stripPrefix(workText, prefix, pp);
787 int32_t prefixLength = text.length() - workText.length();
788
789 #ifdef RBNF_DEBUG
790 fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
791 #endif
792
793 if (pp.getIndex() == 0 && sub1->getPos() != 0) {
794 // commented out because ParsePosition doesn't have error index in 1.1.x
795 // restored for ICU4C port
796 parsePosition.setErrorIndex(pp.getErrorIndex());
797 resVal.setLong(0);
798 return TRUE;
799 }
800
801 // this is the fun part. The basic guts of the rule-matching
802 // logic is matchToDelimiter(), which is called twice. The first
803 // time it searches the input string for the rule text BETWEEN
804 // the substitutions and tries to match the intervening text
805 // in the input string with the first substitution. If that
806 // succeeds, it then calls it again, this time to look for the
807 // rule text after the second substitution and to match the
808 // intervening input text against the second substitution.
809 //
810 // For example, say we have a rule that looks like this:
811 // first << middle >> last;
812 // and input text that looks like this:
813 // first one middle two last
814 // First we use stripPrefix() to match "first " in both places and
815 // strip it off the front, leaving
816 // one middle two last
817 // Then we use matchToDelimiter() to match " middle " and try to
818 // match "one" against a substitution. If it's successful, we now
819 // have
820 // two last
821 // We use matchToDelimiter() a second time to match " last" and
822 // try to match "two" against a substitution. If "two" matches
823 // the substitution, we have a successful parse.
824 //
825 // Since it's possible in many cases to find multiple instances
826 // of each of these pieces of rule text in the input string,
827 // we need to try all the possible combinations of these
828 // locations. This prevents us from prematurely declaring a mismatch,
829 // and makes sure we match as much input text as we can.
830 int highWaterMark = 0;
831 double result = 0;
832 int start = 0;
833 double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
834
835 UnicodeString temp;
836 do {
837 // our partial parse result starts out as this rule's base
838 // value. If it finds a successful match, matchToDelimiter()
839 // will compose this in some way with what it gets back from
840 // the substitution, giving us a new partial parse result
841 pp.setIndex(0);
842
843 temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
844 double partialResult = matchToDelimiter(workText, start, tempBaseValue,
845 temp, pp, sub1,
846 upperBound);
847
848 // if we got a successful match (or were trying to match a
849 // null substitution), pp is now pointing at the first unmatched
850 // character. Take note of that, and try matchToDelimiter()
851 // on the input text again
852 if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
853 start = pp.getIndex();
854
855 UnicodeString workText2;
856 workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
857 ParsePosition pp2;
858
859 // the second matchToDelimiter() will compose our previous
860 // partial result with whatever it gets back from its
861 // substitution if there's a successful match, giving us
862 // a real result
863 temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
864 partialResult = matchToDelimiter(workText2, 0, partialResult,
865 temp, pp2, sub2,
866 upperBound);
867
868 // if we got a successful match on this second
869 // matchToDelimiter() call, update the high-water mark
870 // and result (if necessary)
871 if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
872 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
873 highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
874 result = partialResult;
875 }
876 }
877 // commented out because ParsePosition doesn't have error index in 1.1.x
878 // restored for ICU4C port
879 else {
880 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
881 if (temp> parsePosition.getErrorIndex()) {
882 parsePosition.setErrorIndex(temp);
883 }
884 }
885 }
886 // commented out because ParsePosition doesn't have error index in 1.1.x
887 // restored for ICU4C port
888 else {
889 int32_t temp = sub1->getPos() + pp.getErrorIndex();
890 if (temp > parsePosition.getErrorIndex()) {
891 parsePosition.setErrorIndex(temp);
892 }
893 }
894 // keep trying to match things until the outer matchToDelimiter()
895 // call fails to make a match (each time, it picks up where it
896 // left off the previous time)
897 } while (sub1->getPos() != sub2->getPos()
898 && pp.getIndex() > 0
899 && pp.getIndex() < workText.length()
900 && pp.getIndex() != start);
901
902 // update the caller's ParsePosition with our high-water mark
903 // (i.e., it now points at the first character this function
904 // didn't match-- the ParsePosition is therefore unchanged if
905 // we didn't match anything)
906 parsePosition.setIndex(highWaterMark);
907 // commented out because ParsePosition doesn't have error index in 1.1.x
908 // restored for ICU4C port
909 if (highWaterMark > 0) {
910 parsePosition.setErrorIndex(0);
911 }
912
913 // this is a hack for one unusual condition: Normally, whether this
914 // rule belong to a fraction rule set or not is handled by its
915 // substitutions. But if that rule HAS NO substitutions, then
916 // we have to account for it here. By definition, if the matching
917 // rule in a fraction rule set has no substitutions, its numerator
918 // is 1, and so the result is the reciprocal of its base value.
919 if (isFractionRule &&
920 highWaterMark > 0 &&
921 sub1->isNullSubstitution()) {
922 result = 1 / result;
923 }
924
925 resVal.setDouble(result);
926 return TRUE; // ??? do we need to worry if it is a long or a double?
927 }
928
929 /**
930 * This function is used by parse() to match the text being parsed
931 * against a possible prefix string. This function
932 * matches characters from the beginning of the string being parsed
933 * to characters from the prospective prefix. If they match, pp is
934 * updated to the first character not matched, and the result is
935 * the unparsed part of the string. If they don't match, the whole
936 * string is returned, and pp is left unchanged.
937 * @param text The string being parsed
938 * @param prefix The text to match against
939 * @param pp On entry, ignored and assumed to be 0. On exit, points
940 * to the first unmatched character (assuming the whole prefix matched),
941 * or is unchanged (if the whole prefix didn't match).
942 * @return If things match, this is the unparsed part of "text";
943 * if they didn't match, this is "text".
944 */
945 void
stripPrefix(UnicodeString & text,const UnicodeString & prefix,ParsePosition & pp) const946 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
947 {
948 // if the prefix text is empty, dump out without doing anything
949 if (prefix.length() != 0) {
950 UErrorCode status = U_ZERO_ERROR;
951 // use prefixLength() to match the beginning of
952 // "text" against "prefix". This function returns the
953 // number of characters from "text" that matched (or 0 if
954 // we didn't match the whole prefix)
955 int32_t pfl = prefixLength(text, prefix, status);
956 if (U_FAILURE(status)) { // Memory allocation error.
957 return;
958 }
959 if (pfl != 0) {
960 // if we got a successful match, update the parse position
961 // and strip the prefix off of "text"
962 pp.setIndex(pp.getIndex() + pfl);
963 text.remove(0, pfl);
964 }
965 }
966 }
967
968 /**
969 * Used by parse() to match a substitution and any following text.
970 * "text" is searched for instances of "delimiter". For each instance
971 * of delimiter, the intervening text is tested to see whether it
972 * matches the substitution. The longest match wins.
973 * @param text The string being parsed
974 * @param startPos The position in "text" where we should start looking
975 * for "delimiter".
976 * @param baseValue A partial parse result (often the rule's base value),
977 * which is combined with the result from matching the substitution
978 * @param delimiter The string to search "text" for.
979 * @param pp Ignored and presumed to be 0 on entry. If there's a match,
980 * on exit this will point to the first unmatched character.
981 * @param sub If we find "delimiter" in "text", this substitution is used
982 * to match the text between the beginning of the string and the
983 * position of "delimiter." (If "delimiter" is the empty string, then
984 * this function just matches against this substitution and updates
985 * everything accordingly.)
986 * @param upperBound When matching the substitution, it will only
987 * consider rules with base values lower than this value.
988 * @return If there's a match, this is the result of composing
989 * baseValue with the result of matching the substitution. Otherwise,
990 * this is new Long(0). It's never null. If the result is an integer,
991 * this will be an instance of Long; otherwise, it's an instance of
992 * Double.
993 *
994 * !!! note {dlf} in point of fact, in the java code the caller always converts
995 * the result to a double, so we might as well return one.
996 */
997 double
matchToDelimiter(const UnicodeString & text,int32_t startPos,double _baseValue,const UnicodeString & delimiter,ParsePosition & pp,const NFSubstitution * sub,double upperBound) const998 NFRule::matchToDelimiter(const UnicodeString& text,
999 int32_t startPos,
1000 double _baseValue,
1001 const UnicodeString& delimiter,
1002 ParsePosition& pp,
1003 const NFSubstitution* sub,
1004 double upperBound) const
1005 {
1006 UErrorCode status = U_ZERO_ERROR;
1007 // if "delimiter" contains real (i.e., non-ignorable) text, search
1008 // it for "delimiter" beginning at "start". If that succeeds, then
1009 // use "sub"'s doParse() method to match the text before the
1010 // instance of "delimiter" we just found.
1011 if (!allIgnorable(delimiter, status)) {
1012 if (U_FAILURE(status)) { //Memory allocation error.
1013 return 0;
1014 }
1015 ParsePosition tempPP;
1016 Formattable result;
1017
1018 // use findText() to search for "delimiter". It returns a two-
1019 // element array: element 0 is the position of the match, and
1020 // element 1 is the number of characters that matched
1021 // "delimiter".
1022 int32_t dLen;
1023 int32_t dPos = findText(text, delimiter, startPos, &dLen);
1024
1025 // if findText() succeeded, isolate the text preceding the
1026 // match, and use "sub" to match that text
1027 while (dPos >= 0) {
1028 UnicodeString subText;
1029 subText.setTo(text, 0, dPos);
1030 if (subText.length() > 0) {
1031 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1032 #if UCONFIG_NO_COLLATION
1033 FALSE,
1034 #else
1035 formatter->isLenient(),
1036 #endif
1037 result);
1038
1039 // if the substitution could match all the text up to
1040 // where we found "delimiter", then this function has
1041 // a successful match. Bump the caller's parse position
1042 // to point to the first character after the text
1043 // that matches "delimiter", and return the result
1044 // we got from parsing the substitution.
1045 if (success && tempPP.getIndex() == dPos) {
1046 pp.setIndex(dPos + dLen);
1047 return result.getDouble();
1048 }
1049 // commented out because ParsePosition doesn't have error index in 1.1.x
1050 // restored for ICU4C port
1051 else {
1052 if (tempPP.getErrorIndex() > 0) {
1053 pp.setErrorIndex(tempPP.getErrorIndex());
1054 } else {
1055 pp.setErrorIndex(tempPP.getIndex());
1056 }
1057 }
1058 }
1059
1060 // if we didn't match the substitution, search for another
1061 // copy of "delimiter" in "text" and repeat the loop if
1062 // we find it
1063 tempPP.setIndex(0);
1064 dPos = findText(text, delimiter, dPos + dLen, &dLen);
1065 }
1066 // if we make it here, this was an unsuccessful match, and we
1067 // leave pp unchanged and return 0
1068 pp.setIndex(0);
1069 return 0;
1070
1071 // if "delimiter" is empty, or consists only of ignorable characters
1072 // (i.e., is semantically empty), thwe we obviously can't search
1073 // for "delimiter". Instead, just use "sub" to parse as much of
1074 // "text" as possible.
1075 } else {
1076 ParsePosition tempPP;
1077 Formattable result;
1078
1079 // try to match the whole string against the substitution
1080 UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1081 #if UCONFIG_NO_COLLATION
1082 FALSE,
1083 #else
1084 formatter->isLenient(),
1085 #endif
1086 result);
1087 if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
1088 // if there's a successful match (or it's a null
1089 // substitution), update pp to point to the first
1090 // character we didn't match, and pass the result from
1091 // sub.doParse() on through to the caller
1092 pp.setIndex(tempPP.getIndex());
1093 return result.getDouble();
1094 }
1095 // commented out because ParsePosition doesn't have error index in 1.1.x
1096 // restored for ICU4C port
1097 else {
1098 pp.setErrorIndex(tempPP.getErrorIndex());
1099 }
1100
1101 // and if we get to here, then nothing matched, so we return
1102 // 0 and leave pp alone
1103 return 0;
1104 }
1105 }
1106
1107 /**
1108 * Used by stripPrefix() to match characters. If lenient parse mode
1109 * is off, this just calls startsWith(). If lenient parse mode is on,
1110 * this function uses CollationElementIterators to match characters in
1111 * the strings (only primary-order differences are significant in
1112 * determining whether there's a match).
1113 * @param str The string being tested
1114 * @param prefix The text we're hoping to see at the beginning
1115 * of "str"
1116 * @return If "prefix" is found at the beginning of "str", this
1117 * is the number of characters in "str" that were matched (this
1118 * isn't necessarily the same as the length of "prefix" when matching
1119 * text with a collator). If there's no match, this is 0.
1120 */
1121 int32_t
prefixLength(const UnicodeString & str,const UnicodeString & prefix,UErrorCode & status) const1122 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1123 {
1124 // if we're looking for an empty prefix, it obviously matches
1125 // zero characters. Just go ahead and return 0.
1126 if (prefix.length() == 0) {
1127 return 0;
1128 }
1129
1130 #if !UCONFIG_NO_COLLATION
1131 // go through all this grief if we're in lenient-parse mode
1132 if (formatter->isLenient()) {
1133 // get the formatter's collator and use it to create two
1134 // collation element iterators, one over the target string
1135 // and another over the prefix (right now, we'll throw an
1136 // exception if the collator we get back from the formatter
1137 // isn't a RuleBasedCollator, because RuleBasedCollator defines
1138 // the CollationElementIterator protocol. Hopefully, this
1139 // will change someday.)
1140 RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
1141 CollationElementIterator* strIter = collator->createCollationElementIterator(str);
1142 CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
1143 // Check for memory allocation error.
1144 if (collator == NULL || strIter == NULL || prefixIter == NULL) {
1145 delete collator;
1146 delete strIter;
1147 delete prefixIter;
1148 status = U_MEMORY_ALLOCATION_ERROR;
1149 return 0;
1150 }
1151
1152 UErrorCode err = U_ZERO_ERROR;
1153
1154 // The original code was problematic. Consider this match:
1155 // prefix = "fifty-"
1156 // string = " fifty-7"
1157 // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1158 // in the string. Unfortunately, we were getting a match, and then computing where
1159 // the match terminated by rematching the string. The rematch code was using as an
1160 // initial guess the substring of string between 0 and prefix.length. Because of
1161 // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1162 // the position before the hyphen in the string. Recursing down, we then parsed the
1163 // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
1164 // This was not pretty, especially since the string "fifty-7" parsed just fine.
1165 //
1166 // We have newer APIs now, so we can use calls on the iterator to determine what we
1167 // matched up to. If we terminate because we hit the last element in the string,
1168 // our match terminates at this length. If we terminate because we hit the last element
1169 // in the target, our match terminates at one before the element iterator position.
1170
1171 // match collation elements between the strings
1172 int32_t oStr = strIter->next(err);
1173 int32_t oPrefix = prefixIter->next(err);
1174
1175 while (oPrefix != CollationElementIterator::NULLORDER) {
1176 // skip over ignorable characters in the target string
1177 while (CollationElementIterator::primaryOrder(oStr) == 0
1178 && oStr != CollationElementIterator::NULLORDER) {
1179 oStr = strIter->next(err);
1180 }
1181
1182 // skip over ignorable characters in the prefix
1183 while (CollationElementIterator::primaryOrder(oPrefix) == 0
1184 && oPrefix != CollationElementIterator::NULLORDER) {
1185 oPrefix = prefixIter->next(err);
1186 }
1187
1188 // dlf: move this above following test, if we consume the
1189 // entire target, aren't we ok even if the source was also
1190 // entirely consumed?
1191
1192 // if skipping over ignorables brought to the end of
1193 // the prefix, we DID match: drop out of the loop
1194 if (oPrefix == CollationElementIterator::NULLORDER) {
1195 break;
1196 }
1197
1198 // if skipping over ignorables brought us to the end
1199 // of the target string, we didn't match and return 0
1200 if (oStr == CollationElementIterator::NULLORDER) {
1201 delete prefixIter;
1202 delete strIter;
1203 return 0;
1204 }
1205
1206 // match collation elements from the two strings
1207 // (considering only primary differences). If we
1208 // get a mismatch, dump out and return 0
1209 if (CollationElementIterator::primaryOrder(oStr)
1210 != CollationElementIterator::primaryOrder(oPrefix)) {
1211 delete prefixIter;
1212 delete strIter;
1213 return 0;
1214
1215 // otherwise, advance to the next character in each string
1216 // and loop (we drop out of the loop when we exhaust
1217 // collation elements in the prefix)
1218 } else {
1219 oStr = strIter->next(err);
1220 oPrefix = prefixIter->next(err);
1221 }
1222 }
1223
1224 int32_t result = strIter->getOffset();
1225 if (oStr != CollationElementIterator::NULLORDER) {
1226 --result; // back over character that we don't want to consume;
1227 }
1228
1229 #ifdef RBNF_DEBUG
1230 fprintf(stderr, "prefix length: %d\n", result);
1231 #endif
1232 delete prefixIter;
1233 delete strIter;
1234
1235 return result;
1236 #if 0
1237 //----------------------------------------------------------------
1238 // JDK 1.2-specific API call
1239 // return strIter.getOffset();
1240 //----------------------------------------------------------------
1241 // JDK 1.1 HACK (take out for 1.2-specific code)
1242
1243 // if we make it to here, we have a successful match. Now we
1244 // have to find out HOW MANY characters from the target string
1245 // matched the prefix (there isn't necessarily a one-to-one
1246 // mapping between collation elements and characters).
1247 // In JDK 1.2, there's a simple getOffset() call we can use.
1248 // In JDK 1.1, on the other hand, we have to go through some
1249 // ugly contortions. First, use the collator to compare the
1250 // same number of characters from the prefix and target string.
1251 // If they're equal, we're done.
1252 collator->setStrength(Collator::PRIMARY);
1253 if (str.length() >= prefix.length()) {
1254 UnicodeString temp;
1255 temp.setTo(str, 0, prefix.length());
1256 if (collator->equals(temp, prefix)) {
1257 #ifdef RBNF_DEBUG
1258 fprintf(stderr, "returning: %d\n", prefix.length());
1259 #endif
1260 return prefix.length();
1261 }
1262 }
1263
1264 // if they're not equal, then we have to compare successively
1265 // larger and larger substrings of the target string until we
1266 // get to one that matches the prefix. At that point, we know
1267 // how many characters matched the prefix, and we can return.
1268 int32_t p = 1;
1269 while (p <= str.length()) {
1270 UnicodeString temp;
1271 temp.setTo(str, 0, p);
1272 if (collator->equals(temp, prefix)) {
1273 return p;
1274 } else {
1275 ++p;
1276 }
1277 }
1278
1279 // SHOULD NEVER GET HERE!!!
1280 return 0;
1281 //----------------------------------------------------------------
1282 #endif
1283
1284 // If lenient parsing is turned off, forget all that crap above.
1285 // Just use String.startsWith() and be done with it.
1286 } else
1287 #endif
1288 {
1289 if (str.startsWith(prefix)) {
1290 return prefix.length();
1291 } else {
1292 return 0;
1293 }
1294 }
1295 }
1296
1297 /**
1298 * Searches a string for another string. If lenient parsing is off,
1299 * this just calls indexOf(). If lenient parsing is on, this function
1300 * uses CollationElementIterator to match characters, and only
1301 * primary-order differences are significant in determining whether
1302 * there's a match.
1303 * @param str The string to search
1304 * @param key The string to search "str" for
1305 * @param startingAt The index into "str" where the search is to
1306 * begin
1307 * @return A two-element array of ints. Element 0 is the position
1308 * of the match, or -1 if there was no match. Element 1 is the
1309 * number of characters in "str" that matched (which isn't necessarily
1310 * the same as the length of "key")
1311 */
1312 int32_t
findText(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1313 NFRule::findText(const UnicodeString& str,
1314 const UnicodeString& key,
1315 int32_t startingAt,
1316 int32_t* length) const
1317 {
1318 #if !UCONFIG_NO_COLLATION
1319 // if lenient parsing is turned off, this is easy: just call
1320 // String.indexOf() and we're done
1321 if (!formatter->isLenient()) {
1322 *length = key.length();
1323 return str.indexOf(key, startingAt);
1324
1325 // but if lenient parsing is turned ON, we've got some work
1326 // ahead of us
1327 } else
1328 #endif
1329 {
1330 //----------------------------------------------------------------
1331 // JDK 1.1 HACK (take out of 1.2-specific code)
1332
1333 // in JDK 1.2, CollationElementIterator provides us with an
1334 // API to map between character offsets and collation elements
1335 // and we can do this by marching through the string comparing
1336 // collation elements. We can't do that in JDK 1.1. Insted,
1337 // we have to go through this horrible slow mess:
1338 int32_t p = startingAt;
1339 int32_t keyLen = 0;
1340
1341 // basically just isolate smaller and smaller substrings of
1342 // the target string (each running to the end of the string,
1343 // and with the first one running from startingAt to the end)
1344 // and then use prefixLength() to see if the search key is at
1345 // the beginning of each substring. This is excruciatingly
1346 // slow, but it will locate the key and tell use how long the
1347 // matching text was.
1348 UnicodeString temp;
1349 UErrorCode status = U_ZERO_ERROR;
1350 while (p < str.length() && keyLen == 0) {
1351 temp.setTo(str, p, str.length() - p);
1352 keyLen = prefixLength(temp, key, status);
1353 if (U_FAILURE(status)) {
1354 break;
1355 }
1356 if (keyLen != 0) {
1357 *length = keyLen;
1358 return p;
1359 }
1360 ++p;
1361 }
1362 // if we make it to here, we didn't find it. Return -1 for the
1363 // location. The length should be ignored, but set it to 0,
1364 // which should be "safe"
1365 *length = 0;
1366 return -1;
1367
1368 //----------------------------------------------------------------
1369 // JDK 1.2 version of this routine
1370 //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
1371 //
1372 //CollationElementIterator strIter = collator.getCollationElementIterator(str);
1373 //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
1374 //
1375 //int keyStart = -1;
1376 //
1377 //str.setOffset(startingAt);
1378 //
1379 //int oStr = strIter.next();
1380 //int oKey = keyIter.next();
1381 //while (oKey != CollationElementIterator.NULLORDER) {
1382 // while (oStr != CollationElementIterator.NULLORDER &&
1383 // CollationElementIterator.primaryOrder(oStr) == 0)
1384 // oStr = strIter.next();
1385 //
1386 // while (oKey != CollationElementIterator.NULLORDER &&
1387 // CollationElementIterator.primaryOrder(oKey) == 0)
1388 // oKey = keyIter.next();
1389 //
1390 // if (oStr == CollationElementIterator.NULLORDER) {
1391 // return new int[] { -1, 0 };
1392 // }
1393 //
1394 // if (oKey == CollationElementIterator.NULLORDER) {
1395 // break;
1396 // }
1397 //
1398 // if (CollationElementIterator.primaryOrder(oStr) ==
1399 // CollationElementIterator.primaryOrder(oKey)) {
1400 // keyStart = strIter.getOffset();
1401 // oStr = strIter.next();
1402 // oKey = keyIter.next();
1403 // } else {
1404 // if (keyStart != -1) {
1405 // keyStart = -1;
1406 // keyIter.reset();
1407 // } else {
1408 // oStr = strIter.next();
1409 // }
1410 // }
1411 //}
1412 //
1413 //if (oKey == CollationElementIterator.NULLORDER) {
1414 // return new int[] { keyStart, strIter.getOffset() - keyStart };
1415 //} else {
1416 // return new int[] { -1, 0 };
1417 //}
1418 }
1419 }
1420
1421 /**
1422 * Checks to see whether a string consists entirely of ignorable
1423 * characters.
1424 * @param str The string to test.
1425 * @return true if the string is empty of consists entirely of
1426 * characters that the number formatter's collator says are
1427 * ignorable at the primary-order level. false otherwise.
1428 */
1429 UBool
allIgnorable(const UnicodeString & str,UErrorCode & status) const1430 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1431 {
1432 // if the string is empty, we can just return true
1433 if (str.length() == 0) {
1434 return TRUE;
1435 }
1436
1437 #if !UCONFIG_NO_COLLATION
1438 // if lenient parsing is turned on, walk through the string with
1439 // a collation element iterator and make sure each collation
1440 // element is 0 (ignorable) at the primary level
1441 if (formatter->isLenient()) {
1442 RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
1443 CollationElementIterator* iter = collator->createCollationElementIterator(str);
1444
1445 // Memory allocation error check.
1446 if (collator == NULL || iter == NULL) {
1447 delete collator;
1448 delete iter;
1449 status = U_MEMORY_ALLOCATION_ERROR;
1450 return FALSE;
1451 }
1452
1453 UErrorCode err = U_ZERO_ERROR;
1454 int32_t o = iter->next(err);
1455 while (o != CollationElementIterator::NULLORDER
1456 && CollationElementIterator::primaryOrder(o) == 0) {
1457 o = iter->next(err);
1458 }
1459
1460 delete iter;
1461 return o == CollationElementIterator::NULLORDER;
1462 }
1463 #endif
1464
1465 // if lenient parsing is turned off, there is no such thing as
1466 // an ignorable character: return true only if the string is empty
1467 return FALSE;
1468 }
1469
1470 U_NAMESPACE_END
1471
1472 /* U_HAVE_RBNF */
1473 #endif
1474
1475
1476