• Home
Name
Date
Size
#Lines
LOC

..--

AsmPrinter/03-May-2024-10,4376,708

SelectionDAG/03-May-2024-53,38438,487

AggressiveAntiDepBreaker.cppD03-May-202434.5 KiB961667

AggressiveAntiDepBreaker.hD03-May-20247 KiB18580

AllocationOrder.cppD03-May-20242.8 KiB8044

AllocationOrder.hD03-May-20242.1 KiB7335

Analysis.cppD03-May-202414.2 KiB367233

Android.mkD03-May-20243.2 KiB134120

AntiDepBreaker.hD03-May-20242.6 KiB7232

BranchFolding.cppD03-May-202463.6 KiB1,7291,159

BranchFolding.hD03-May-20244.1 KiB12499

CMakeLists.txtD03-May-20242.5 KiB114111

CalcSpillWeights.cppD03-May-20246.5 KiB203143

CallingConvLower.cppD03-May-20246.4 KiB181133

CodeGen.cppD03-May-20243 KiB7758

CodePlacementOpt.cppD03-May-202415.5 KiB423246

CriticalAntiDepBreaker.cppD03-May-202425.4 KiB659389

CriticalAntiDepBreaker.hD03-May-20244.1 KiB11054

DFAPacketizer.cppD03-May-20248.1 KiB226131

DeadMachineInstructionElim.cppD03-May-20247.4 KiB204135

DwarfEHPrepare.cppD03-May-20246 KiB184123

EarlyIfConversion.cppD03-May-202428.3 KiB802511

EdgeBundles.cppD03-May-20243.1 KiB9866

ExecutionDepsFix.cppD03-May-202423.2 KiB723473

ExpandISelPseudos.cppD03-May-20242.5 KiB7547

ExpandPostRAPseudos.cppD03-May-20247.7 KiB235164

GCMetadata.cppD03-May-20245.6 KiB214146

GCMetadataPrinter.cppD03-May-2024824 288

GCStrategy.cppD03-May-202413.9 KiB423279

IfConversion.cppD03-May-202456.2 KiB1,5841,138

InlineSpiller.cppD03-May-202445.9 KiB1,296868

InterferenceCache.cppD03-May-20247.5 KiB232180

InterferenceCache.hD03-May-20246.7 KiB229113

IntrinsicLowering.cppD03-May-202420.9 KiB566477

JITCodeEmitter.cppD03-May-2024440 153

LLVMBuild.txtD03-May-2024795 2623

LLVMTargetMachine.cppD03-May-202411.3 KiB292192

LatencyPriorityQueue.cppD03-May-20245.5 KiB15390

LexicalScopes.cppD03-May-202410.8 KiB338244

LiveDebugVariables.cppD03-May-202435 KiB1,029728

LiveDebugVariables.hD03-May-20242.3 KiB7124

LiveInterval.cppD03-May-202429.6 KiB912599

LiveIntervalAnalysis.cppD03-May-202452.2 KiB1,4401,019

LiveIntervalUnion.cppD03-May-20247.2 KiB234150

LiveIntervalUnion.hD03-May-20247 KiB211115

LiveRangeCalc.cppD03-May-202412.1 KiB355221

LiveRangeCalc.hD03-May-20249.9 KiB24062

LiveRangeEdit.cppD03-May-202413.1 KiB381282

LiveRegMatrix.cppD03-May-20245.3 KiB155111

LiveRegMatrix.hD03-May-20245.6 KiB14947

LiveStackAnalysis.cppD03-May-20242.7 KiB8455

LiveVariables.cppD03-May-202431.1 KiB852576

LocalStackSlotAllocation.cppD03-May-202414 KiB357219

MachineBasicBlock.cppD03-May-202433.2 KiB979674

MachineBlockFrequencyInfo.cppD03-May-20242.3 KiB6234

MachineBlockPlacement.cppD03-May-202446.7 KiB1,166746

MachineBranchProbabilityInfo.cppD03-May-20244.2 KiB12785

MachineCSE.cppD03-May-202421.8 KiB642485

MachineCodeEmitter.cppD03-May-2024449 153

MachineCopyPropagation.cppD03-May-202410.7 KiB321214

MachineDominators.cppD03-May-20241.7 KiB6033

MachineFunction.cppD03-May-202426.6 KiB774551

MachineFunctionAnalysis.cppD03-May-20241.8 KiB5836

MachineFunctionPass.cppD03-May-20242 KiB5730

MachineFunctionPrinterPass.cppD03-May-20242.1 KiB6837

MachineInstr.cppD03-May-202467.6 KiB1,9541,438

MachineInstrBundle.cppD03-May-20249 KiB279207

MachineLICM.cppD03-May-202453.3 KiB1,490960

MachineLoopInfo.cppD03-May-20242.8 KiB8256

MachineLoopRanges.cppD03-May-20244 KiB11778

MachineModuleInfo.cppD03-May-202420.5 KiB577359

MachineModuleInfoImpls.cppD03-May-20241.6 KiB4619

MachinePassRegistry.cppD03-May-20241.7 KiB5630

MachineRegisterInfo.cppD03-May-202411.3 KiB328220

MachineSSAUpdater.cppD03-May-202413.2 KiB367236

MachineScheduler.cppD03-May-202448.2 KiB1,421921

MachineSink.cppD03-May-202425.2 KiB715435

MachineTraceMetrics.cppD03-May-202442.5 KiB1,154823

MachineTraceMetrics.hD03-May-202413 KiB342141

MachineVerifier.cppD03-May-202455.9 KiB1,5911,254

MakefileD03-May-2024719 238

OcamlGC.cppD03-May-2024999 3816

OptimizePHIs.cppD03-May-20246.2 KiB194131

PHIElimination.cppD03-May-202419.7 KiB495289

PHIEliminationUtils.cppD03-May-20242.3 KiB6234

PHIEliminationUtils.hD03-May-2024936 269

Passes.cppD03-May-202428.6 KiB748418

PeepholeOptimizer.cppD03-May-202419 KiB562357

PostRASchedulerList.cppD03-May-202427.3 KiB794510

ProcessImplicitDefs.cppD03-May-20245.5 KiB171121

PrologEpilogInserter.cppD03-May-202431.9 KiB864525

PrologEpilogInserter.hD03-May-20246.1 KiB17484

PseudoSourceValue.cppD03-May-20244 KiB13393

README.txtD03-May-20246.2 KiB200149

RegAllocBase.cppD03-May-20245.3 KiB14697

RegAllocBase.hD03-May-20243.9 KiB10937

RegAllocBasic.cppD03-May-202410.1 KiB296186

RegAllocFast.cppD03-May-202442.3 KiB1,157835

RegAllocGreedy.cppD03-May-202463.4 KiB1,7771,126

RegAllocPBQP.cppD03-May-202421.3 KiB640441

RegisterClassInfo.cppD03-May-20244.2 KiB12571

RegisterCoalescer.cppD03-May-202458.2 KiB1,6071,029

RegisterCoalescer.hD03-May-20244.4 KiB12140

RegisterPressure.cppD03-May-202430.4 KiB844609

RegisterScavenging.cppD03-May-202412.6 KiB393268

ScheduleDAG.cppD03-May-202418.3 KiB598448

ScheduleDAGInstrs.cppD03-May-202441 KiB1,037662

ScheduleDAGPrinter.cppD03-May-20243.1 KiB9764

ScoreboardHazardRecognizer.cppD03-May-20247.9 KiB249166

ShadowStackGC.cppD03-May-202417.1 KiB453265

ShrinkWrapping.cppD03-May-202439.3 KiB1,154801

SjLjEHPrepare.cppD03-May-202419.6 KiB494328

SlotIndexes.cppD03-May-20245.5 KiB181111

SpillPlacement.cppD03-May-202413.1 KiB381226

SpillPlacement.hD03-May-20246.1 KiB15756

Spiller.cppD03-May-20246.1 KiB195137

Spiller.hD03-May-20241.3 KiB4821

SplitKit.cppD03-May-202449.9 KiB1,433974

SplitKit.hD03-May-202419.1 KiB470149

StackColoring.cppD03-May-202424 KiB697454

StackProtector.cppD03-May-20249.7 KiB284150

StackSlotColoring.cppD03-May-202414.4 KiB440308

StrongPHIElimination.cppD03-May-202431.9 KiB826494

TailDuplication.cppD03-May-202434.7 KiB971697

TargetFrameLoweringImpl.cppD03-May-20241.7 KiB4621

TargetInstrInfoImpl.cppD03-May-202425 KiB680458

TargetLoweringObjectFileImpl.cppD03-May-202426.8 KiB751526

TargetOptionsImpl.cppD03-May-20242.1 KiB5320

TwoAddressInstructionPass.cppD03-May-202465 KiB1,7881,238

UnreachableBlockElim.cppD03-May-20247.3 KiB216149

VirtRegMap.cppD03-May-202412.2 KiB352245

VirtRegMap.hD03-May-20246.6 KiB191105

README.txt

1//===---------------------------------------------------------------------===//
2
3Common register allocation / spilling problem:
4
5        mul lr, r4, lr
6        str lr, [sp, #+52]
7        ldr lr, [r1, #+32]
8        sxth r3, r3
9        ldr r4, [sp, #+52]
10        mla r4, r3, lr, r4
11
12can be:
13
14        mul lr, r4, lr
15        mov r4, lr
16        str lr, [sp, #+52]
17        ldr lr, [r1, #+32]
18        sxth r3, r3
19        mla r4, r3, lr, r4
20
21and then "merge" mul and mov:
22
23        mul r4, r4, lr
24        str lr, [sp, #+52]
25        ldr lr, [r1, #+32]
26        sxth r3, r3
27        mla r4, r3, lr, r4
28
29It also increase the likelihood the store may become dead.
30
31//===---------------------------------------------------------------------===//
32
33bb27 ...
34        ...
35        %reg1037 = ADDri %reg1039, 1
36        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
37    Successors according to CFG: 0x8b03bf0 (#5)
38
39bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
40    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
41        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>
42
43Note ADDri is not a two-address instruction. However, its result %reg1037 is an
44operand of the PHI node in bb76 and its operand %reg1039 is the result of the
45PHI node. We should treat it as a two-address code and make sure the ADDri is
46scheduled after any node that reads %reg1039.
47
48//===---------------------------------------------------------------------===//
49
50Use local info (i.e. register scavenger) to assign it a free register to allow
51reuse:
52        ldr r3, [sp, #+4]
53        add r3, r3, #3
54        ldr r2, [sp, #+8]
55        add r2, r2, #2
56        ldr r1, [sp, #+4]  <==
57        add r1, r1, #1
58        ldr r0, [sp, #+4]
59        add r0, r0, #2
60
61//===---------------------------------------------------------------------===//
62
63LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
64effects:
65
66R1 = X + 4
67R2 = X + 7
68R3 = X + 15
69
70loop:
71load [i + R1]
72...
73load [i + R2]
74...
75load [i + R3]
76
77Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
78to implement proper re-materialization to handle this:
79
80R1 = X + 4
81R2 = X + 7
82R3 = X + 15
83
84loop:
85R1 = X + 4  @ re-materialized
86load [i + R1]
87...
88R2 = X + 7 @ re-materialized
89load [i + R2]
90...
91R3 = X + 15 @ re-materialized
92load [i + R3]
93
94Furthermore, with re-association, we can enable sharing:
95
96R1 = X + 4
97R2 = X + 7
98R3 = X + 15
99
100loop:
101T = i + X
102load [T + 4]
103...
104load [T + 7]
105...
106load [T + 15]
107//===---------------------------------------------------------------------===//
108
109It's not always a good idea to choose rematerialization over spilling. If all
110the load / store instructions would be folded then spilling is cheaper because
111it won't require new live intervals / registers. See 2003-05-31-LongShifts for
112an example.
113
114//===---------------------------------------------------------------------===//
115
116With a copying garbage collector, derived pointers must not be retained across
117collector safe points; the collector could move the objects and invalidate the
118derived pointer. This is bad enough in the first place, but safe points can
119crop up unpredictably. Consider:
120
121        %array = load { i32, [0 x %obj] }** %array_addr
122        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
123        %old = load %obj** %nth_el
124        %z = div i64 %x, %y
125        store %obj* %new, %obj** %nth_el
126
127If the i64 division is lowered to a libcall, then a safe point will (must)
128appear for the call site. If a collection occurs, %array and %nth_el no longer
129point into the correct object.
130
131The fix for this is to copy address calculations so that dependent pointers
132are never live across safe point boundaries. But the loads cannot be copied
133like this if there was an intervening store, so may be hard to get right.
134
135Only a concurrent mutator can trigger a collection at the libcall safe point.
136So single-threaded programs do not have this requirement, even with a copying
137collector. Still, LLVM optimizations would probably undo a front-end's careful
138work.
139
140//===---------------------------------------------------------------------===//
141
142The ocaml frametable structure supports liveness information. It would be good
143to support it.
144
145//===---------------------------------------------------------------------===//
146
147The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
148revisited. The check is there to work around a misuse of directives in inline
149assembly.
150
151//===---------------------------------------------------------------------===//
152
153It would be good to detect collector/target compatibility instead of silently
154doing the wrong thing.
155
156//===---------------------------------------------------------------------===//
157
158It would be really nice to be able to write patterns in .td files for copies,
159which would eliminate a bunch of explicit predicates on them (e.g. no side
160effects).  Once this is in place, it would be even better to have tblgen
161synthesize the various copy insertion/inspection methods in TargetInstrInfo.
162
163//===---------------------------------------------------------------------===//
164
165Stack coloring improvements:
166
1671. Do proper LiveStackAnalysis on all stack objects including those which are
168   not spill slots.
1692. Reorder objects to fill in gaps between objects.
170   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4
171
172//===---------------------------------------------------------------------===//
173
174The scheduler should be able to sort nearby instructions by their address. For
175example, in an expanded memset sequence it's not uncommon to see code like this:
176
177  movl $0, 4(%rdi)
178  movl $0, 8(%rdi)
179  movl $0, 12(%rdi)
180  movl $0, 0(%rdi)
181
182Each of the stores is independent, and the scheduler is currently making an
183arbitrary decision about the order.
184
185//===---------------------------------------------------------------------===//
186
187Another opportunitiy in this code is that the $0 could be moved to a register:
188
189  movl $0, 4(%rdi)
190  movl $0, 8(%rdi)
191  movl $0, 12(%rdi)
192  movl $0, 0(%rdi)
193
194This would save substantial code size, especially for longer sequences like
195this. It would be easy to have a rule telling isel to avoid matching MOV32mi
196if the immediate has more than some fixed number of uses. It's more involved
197to teach the register allocator how to do late folding to recover from
198excessive register pressure.
199
200