• Home
Name
Date
Size
#Lines
LOC

..--

ARM/03-May-2024-92,78575,023

CellSPU/03-May-2024-14,71610,948

CppBackend/03-May-2024-2,2881,977

Hexagon/03-May-2024-33,22825,597

MBlaze/03-May-2024-10,4057,496

MSP430/03-May-2024-6,0664,356

Mips/03-May-2024-18,81013,341

NVPTX/03-May-2024-15,88312,702

PowerPC/03-May-2024-31,49825,200

Sparc/03-May-2024-5,2803,834

X86/03-May-2024-74,64957,209

XCore/03-May-2024-6,1744,477

Android.mkD03-May-2024862 4226

CMakeLists.txtD03-May-2024427 2119

LLVMBuild.txtD03-May-20241.7 KiB5750

MakefileD03-May-2024662 216

Mangler.cppD03-May-20248.5 KiB238148

README.txtD03-May-202471.9 KiB2,3701,785

Target.cppD03-May-20243.5 KiB10974

TargetData.cppD03-May-202422.3 KiB664467

TargetELFWriterInfo.cppD03-May-2024840 269

TargetInstrInfo.cppD03-May-20243.1 KiB8944

TargetIntrinsicInfo.cppD03-May-2024923 3114

TargetJITInfo.cppD03-May-2024438 153

TargetLibraryInfo.cppD03-May-20249.5 KiB353299

TargetLoweringObjectFile.cppD03-May-202412.1 KiB320183

TargetMachine.cppD03-May-20244.8 KiB165112

TargetMachineC.cppD03-May-20244.8 KiB198155

TargetRegisterInfo.cppD03-May-20248.7 KiB247165

TargetSubtargetInfo.cppD03-May-20241 KiB3413

README.txt

1Target Independent Opportunities:
2
3//===---------------------------------------------------------------------===//
4
5We should recognized various "overflow detection" idioms and translate them into
6llvm.uadd.with.overflow and similar intrinsics.  Here is a multiply idiom:
7
8unsigned int mul(unsigned int a,unsigned int b) {
9 if ((unsigned long long)a*b>0xffffffff)
10   exit(0);
11  return a*b;
12}
13
14The legalization code for mul-with-overflow needs to be made more robust before
15this can be implemented though.
16
17//===---------------------------------------------------------------------===//
18
19Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
20precision don't matter (ffastmath).  Misc/mandel will like this. :)  This isn't
21safe in general, even on darwin.  See the libm implementation of hypot for
22examples (which special case when x/y are exactly zero to get signed zeros etc
23right).
24
25//===---------------------------------------------------------------------===//
26
27On targets with expensive 64-bit multiply, we could LSR this:
28
29for (i = ...; ++i) {
30   x = 1ULL << i;
31
32into:
33 long long tmp = 1;
34 for (i = ...; ++i, tmp+=tmp)
35   x = tmp;
36
37This would be a win on ppc32, but not x86 or ppc64.
38
39//===---------------------------------------------------------------------===//
40
41Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
42
43//===---------------------------------------------------------------------===//
44
45Reassociate should turn things like:
46
47int factorial(int X) {
48 return X*X*X*X*X*X*X*X;
49}
50
51into llvm.powi calls, allowing the code generator to produce balanced
52multiplication trees.
53
54First, the intrinsic needs to be extended to support integers, and second the
55code generator needs to be enhanced to lower these to multiplication trees.
56
57//===---------------------------------------------------------------------===//
58
59Interesting? testcase for add/shift/mul reassoc:
60
61int bar(int x, int y) {
62  return x*x*x+y+x*x*x*x*x*y*y*y*y;
63}
64int foo(int z, int n) {
65  return bar(z, n) + bar(2*z, 2*n);
66}
67
68This is blocked on not handling X*X*X -> powi(X, 3) (see note above).  The issue
69is that we end up getting t = 2*X  s = t*t   and don't turn this into 4*X*X,
70which is the same number of multiplies and is canonical, because the 2*X has
71multiple uses.  Here's a simple example:
72
73define i32 @test15(i32 %X1) {
74  %B = mul i32 %X1, 47   ; X1*47
75  %C = mul i32 %B, %B
76  ret i32 %C
77}
78
79
80//===---------------------------------------------------------------------===//
81
82Reassociate should handle the example in GCC PR16157:
83
84extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4;
85void f () {  /* this can be optimized to four additions... */
86        b4 = a4 + a3 + a2 + a1 + a0;
87        b3 = a3 + a2 + a1 + a0;
88        b2 = a2 + a1 + a0;
89        b1 = a1 + a0;
90}
91
92This requires reassociating to forms of expressions that are already available,
93something that reassoc doesn't think about yet.
94
95
96//===---------------------------------------------------------------------===//
97
98This function: (derived from GCC PR19988)
99double foo(double x, double y) {
100  return ((x + 0.1234 * y) * (x + -0.1234 * y));
101}
102
103compiles to:
104_foo:
105	movapd	%xmm1, %xmm2
106	mulsd	LCPI1_1(%rip), %xmm1
107	mulsd	LCPI1_0(%rip), %xmm2
108	addsd	%xmm0, %xmm1
109	addsd	%xmm0, %xmm2
110	movapd	%xmm1, %xmm0
111	mulsd	%xmm2, %xmm0
112	ret
113
114Reassociate should be able to turn it into:
115
116double foo(double x, double y) {
117  return ((x + 0.1234 * y) * (x - 0.1234 * y));
118}
119
120Which allows the multiply by constant to be CSE'd, producing:
121
122_foo:
123	mulsd	LCPI1_0(%rip), %xmm1
124	movapd	%xmm1, %xmm2
125	addsd	%xmm0, %xmm2
126	subsd	%xmm1, %xmm0
127	mulsd	%xmm2, %xmm0
128	ret
129
130This doesn't need -ffast-math support at all.  This is particularly bad because
131the llvm-gcc frontend is canonicalizing the later into the former, but clang
132doesn't have this problem.
133
134//===---------------------------------------------------------------------===//
135
136These two functions should generate the same code on big-endian systems:
137
138int g(int *j,int *l)  {  return memcmp(j,l,4);  }
139int h(int *j, int *l) {  return *j - *l; }
140
141this could be done in SelectionDAGISel.cpp, along with other special cases,
142for 1,2,4,8 bytes.
143
144//===---------------------------------------------------------------------===//
145
146It would be nice to revert this patch:
147http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
148
149And teach the dag combiner enough to simplify the code expanded before
150legalize.  It seems plausible that this knowledge would let it simplify other
151stuff too.
152
153//===---------------------------------------------------------------------===//
154
155For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal
156to the type size. It works but can be overly conservative as the alignment of
157specific vector types are target dependent.
158
159//===---------------------------------------------------------------------===//
160
161We should produce an unaligned load from code like this:
162
163v4sf example(float *P) {
164  return (v4sf){P[0], P[1], P[2], P[3] };
165}
166
167//===---------------------------------------------------------------------===//
168
169Add support for conditional increments, and other related patterns.  Instead
170of:
171
172	movl 136(%esp), %eax
173	cmpl $0, %eax
174	je LBB16_2	#cond_next
175LBB16_1:	#cond_true
176	incl _foo
177LBB16_2:	#cond_next
178
179emit:
180	movl	_foo, %eax
181	cmpl	$1, %edi
182	sbbl	$-1, %eax
183	movl	%eax, _foo
184
185//===---------------------------------------------------------------------===//
186
187Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
188
189Expand these to calls of sin/cos and stores:
190      double sincos(double x, double *sin, double *cos);
191      float sincosf(float x, float *sin, float *cos);
192      long double sincosl(long double x, long double *sin, long double *cos);
193
194Doing so could allow SROA of the destination pointers.  See also:
195http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
196
197This is now easily doable with MRVs.  We could even make an intrinsic for this
198if anyone cared enough about sincos.
199
200//===---------------------------------------------------------------------===//
201
202quantum_sigma_x in 462.libquantum contains the following loop:
203
204      for(i=0; i<reg->size; i++)
205	{
206	  /* Flip the target bit of each basis state */
207	  reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
208	}
209
210Where MAX_UNSIGNED/state is a 64-bit int.  On a 32-bit platform it would be just
211so cool to turn it into something like:
212
213   long long Res = ((MAX_UNSIGNED) 1 << target);
214   if (target < 32) {
215     for(i=0; i<reg->size; i++)
216       reg->node[i].state ^= Res & 0xFFFFFFFFULL;
217   } else {
218     for(i=0; i<reg->size; i++)
219       reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
220   }
221
222... which would only do one 32-bit XOR per loop iteration instead of two.
223
224It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
225this requires TBAA.
226
227//===---------------------------------------------------------------------===//
228
229This isn't recognized as bswap by instcombine (yes, it really is bswap):
230
231unsigned long reverse(unsigned v) {
232    unsigned t;
233    t = v ^ ((v << 16) | (v >> 16));
234    t &= ~0xff0000;
235    v = (v << 24) | (v >> 8);
236    return v ^ (t >> 8);
237}
238
239//===---------------------------------------------------------------------===//
240
241[LOOP DELETION]
242
243We don't delete this output free loop, because trip count analysis doesn't
244realize that it is finite (if it were infinite, it would be undefined).  Not
245having this blocks Loop Idiom from matching strlen and friends.
246
247void foo(char *C) {
248  int x = 0;
249  while (*C)
250    ++x,++C;
251}
252
253//===---------------------------------------------------------------------===//
254
255[LOOP RECOGNITION]
256
257These idioms should be recognized as popcount (see PR1488):
258
259unsigned countbits_slow(unsigned v) {
260  unsigned c;
261  for (c = 0; v; v >>= 1)
262    c += v & 1;
263  return c;
264}
265unsigned countbits_fast(unsigned v){
266  unsigned c;
267  for (c = 0; v; c++)
268    v &= v - 1; // clear the least significant bit set
269  return c;
270}
271
272BITBOARD = unsigned long long
273int PopCnt(register BITBOARD a) {
274  register int c=0;
275  while(a) {
276    c++;
277    a &= a - 1;
278  }
279  return c;
280}
281unsigned int popcount(unsigned int input) {
282  unsigned int count = 0;
283  for (unsigned int i =  0; i < 4 * 8; i++)
284    count += (input >> i) & i;
285  return count;
286}
287
288This should be recognized as CLZ:  rdar://8459039
289
290unsigned clz_a(unsigned a) {
291  int i;
292  for (i=0;i<32;i++)
293    if (a & (1<<(31-i)))
294      return i;
295  return 32;
296}
297
298This sort of thing should be added to the loop idiom pass.
299
300//===---------------------------------------------------------------------===//
301
302These should turn into single 16-bit (unaligned?) loads on little/big endian
303processors.
304
305unsigned short read_16_le(const unsigned char *adr) {
306  return adr[0] | (adr[1] << 8);
307}
308unsigned short read_16_be(const unsigned char *adr) {
309  return (adr[0] << 8) | adr[1];
310}
311
312//===---------------------------------------------------------------------===//
313
314-instcombine should handle this transform:
315   icmp pred (sdiv X / C1 ), C2
316when X, C1, and C2 are unsigned.  Similarly for udiv and signed operands.
317
318Currently InstCombine avoids this transform but will do it when the signs of
319the operands and the sign of the divide match. See the FIXME in
320InstructionCombining.cpp in the visitSetCondInst method after the switch case
321for Instruction::UDiv (around line 4447) for more details.
322
323The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
324this construct.
325
326//===---------------------------------------------------------------------===//
327
328[LOOP OPTIMIZATION]
329
330SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
331opportunities in its double_array_divs_variable function: it needs loop
332interchange, memory promotion (which LICM already does), vectorization and
333variable trip count loop unrolling (since it has a constant trip count). ICC
334apparently produces this very nice code with -ffast-math:
335
336..B1.70:                        # Preds ..B1.70 ..B1.69
337       mulpd     %xmm0, %xmm1                                  #108.2
338       mulpd     %xmm0, %xmm1                                  #108.2
339       mulpd     %xmm0, %xmm1                                  #108.2
340       mulpd     %xmm0, %xmm1                                  #108.2
341       addl      $8, %edx                                      #
342       cmpl      $131072, %edx                                 #108.2
343       jb        ..B1.70       # Prob 99%                      #108.2
344
345It would be better to count down to zero, but this is a lot better than what we
346do.
347
348//===---------------------------------------------------------------------===//
349
350Consider:
351
352typedef unsigned U32;
353typedef unsigned long long U64;
354int test (U32 *inst, U64 *regs) {
355    U64 effective_addr2;
356    U32 temp = *inst;
357    int r1 = (temp >> 20) & 0xf;
358    int b2 = (temp >> 16) & 0xf;
359    effective_addr2 = temp & 0xfff;
360    if (b2) effective_addr2 += regs[b2];
361    b2 = (temp >> 12) & 0xf;
362    if (b2) effective_addr2 += regs[b2];
363    effective_addr2 &= regs[4];
364     if ((effective_addr2 & 3) == 0)
365        return 1;
366    return 0;
367}
368
369Note that only the low 2 bits of effective_addr2 are used.  On 32-bit systems,
370we don't eliminate the computation of the top half of effective_addr2 because
371we don't have whole-function selection dags.  On x86, this means we use one
372extra register for the function when effective_addr2 is declared as U64 than
373when it is declared U32.
374
375PHI Slicing could be extended to do this.
376
377//===---------------------------------------------------------------------===//
378
379Tail call elim should be more aggressive, checking to see if the call is
380followed by an uncond branch to an exit block.
381
382; This testcase is due to tail-duplication not wanting to copy the return
383; instruction into the terminating blocks because there was other code
384; optimized out of the function after the taildup happened.
385; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
386
387define i32 @t4(i32 %a) {
388entry:
389	%tmp.1 = and i32 %a, 1		; <i32> [#uses=1]
390	%tmp.2 = icmp ne i32 %tmp.1, 0		; <i1> [#uses=1]
391	br i1 %tmp.2, label %then.0, label %else.0
392
393then.0:		; preds = %entry
394	%tmp.5 = add i32 %a, -1		; <i32> [#uses=1]
395	%tmp.3 = call i32 @t4( i32 %tmp.5 )		; <i32> [#uses=1]
396	br label %return
397
398else.0:		; preds = %entry
399	%tmp.7 = icmp ne i32 %a, 0		; <i1> [#uses=1]
400	br i1 %tmp.7, label %then.1, label %return
401
402then.1:		; preds = %else.0
403	%tmp.11 = add i32 %a, -2		; <i32> [#uses=1]
404	%tmp.9 = call i32 @t4( i32 %tmp.11 )		; <i32> [#uses=1]
405	br label %return
406
407return:		; preds = %then.1, %else.0, %then.0
408	%result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
409                            [ %tmp.9, %then.1 ]
410	ret i32 %result.0
411}
412
413//===---------------------------------------------------------------------===//
414
415Tail recursion elimination should handle:
416
417int pow2m1(int n) {
418 if (n == 0)
419   return 0;
420 return 2 * pow2m1 (n - 1) + 1;
421}
422
423Also, multiplies can be turned into SHL's, so they should be handled as if
424they were associative.  "return foo() << 1" can be tail recursion eliminated.
425
426//===---------------------------------------------------------------------===//
427
428Argument promotion should promote arguments for recursive functions, like
429this:
430
431; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
432
433define internal i32 @foo(i32* %x) {
434entry:
435	%tmp = load i32* %x		; <i32> [#uses=0]
436	%tmp.foo = call i32 @foo( i32* %x )		; <i32> [#uses=1]
437	ret i32 %tmp.foo
438}
439
440define i32 @bar(i32* %x) {
441entry:
442	%tmp3 = call i32 @foo( i32* %x )		; <i32> [#uses=1]
443	ret i32 %tmp3
444}
445
446//===---------------------------------------------------------------------===//
447
448We should investigate an instruction sinking pass.  Consider this silly
449example in pic mode:
450
451#include <assert.h>
452void foo(int x) {
453  assert(x);
454  //...
455}
456
457we compile this to:
458_foo:
459	subl	$28, %esp
460	call	"L1$pb"
461"L1$pb":
462	popl	%eax
463	cmpl	$0, 32(%esp)
464	je	LBB1_2	# cond_true
465LBB1_1:	# return
466	# ...
467	addl	$28, %esp
468	ret
469LBB1_2:	# cond_true
470...
471
472The PIC base computation (call+popl) is only used on one path through the
473code, but is currently always computed in the entry block.  It would be
474better to sink the picbase computation down into the block for the
475assertion, as it is the only one that uses it.  This happens for a lot of
476code with early outs.
477
478Another example is loads of arguments, which are usually emitted into the
479entry block on targets like x86.  If not used in all paths through a
480function, they should be sunk into the ones that do.
481
482In this case, whole-function-isel would also handle this.
483
484//===---------------------------------------------------------------------===//
485
486Investigate lowering of sparse switch statements into perfect hash tables:
487http://burtleburtle.net/bob/hash/perfect.html
488
489//===---------------------------------------------------------------------===//
490
491We should turn things like "load+fabs+store" and "load+fneg+store" into the
492corresponding integer operations.  On a yonah, this loop:
493
494double a[256];
495void foo() {
496  int i, b;
497  for (b = 0; b < 10000000; b++)
498  for (i = 0; i < 256; i++)
499    a[i] = -a[i];
500}
501
502is twice as slow as this loop:
503
504long long a[256];
505void foo() {
506  int i, b;
507  for (b = 0; b < 10000000; b++)
508  for (i = 0; i < 256; i++)
509    a[i] ^= (1ULL << 63);
510}
511
512and I suspect other processors are similar.  On X86 in particular this is a
513big win because doing this with integers allows the use of read/modify/write
514instructions.
515
516//===---------------------------------------------------------------------===//
517
518DAG Combiner should try to combine small loads into larger loads when
519profitable.  For example, we compile this C++ example:
520
521struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
522extern THotKey m_HotKey;
523THotKey GetHotKey () { return m_HotKey; }
524
525into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
526
527__Z9GetHotKeyv:                         ## @_Z9GetHotKeyv
528	movq	_m_HotKey@GOTPCREL(%rip), %rax
529	movzwl	(%rax), %ecx
530	movzbl	2(%rax), %edx
531	shlq	$16, %rdx
532	orq	%rcx, %rdx
533	movzbl	3(%rax), %ecx
534	shlq	$24, %rcx
535	orq	%rdx, %rcx
536	movzbl	4(%rax), %eax
537	shlq	$32, %rax
538	orq	%rcx, %rax
539	ret
540
541//===---------------------------------------------------------------------===//
542
543We should add an FRINT node to the DAG to model targets that have legal
544implementations of ceil/floor/rint.
545
546//===---------------------------------------------------------------------===//
547
548Consider:
549
550int test() {
551  long long input[8] = {1,0,1,0,1,0,1,0};
552  foo(input);
553}
554
555Clang compiles this into:
556
557  call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
558  %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
559  store i64 1, i64* %0, align 16
560  %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
561  store i64 1, i64* %1, align 16
562  %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
563  store i64 1, i64* %2, align 16
564  %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
565  store i64 1, i64* %3, align 16
566
567Which gets codegen'd into:
568
569	pxor	%xmm0, %xmm0
570	movaps	%xmm0, -16(%rbp)
571	movaps	%xmm0, -32(%rbp)
572	movaps	%xmm0, -48(%rbp)
573	movaps	%xmm0, -64(%rbp)
574	movq	$1, -64(%rbp)
575	movq	$1, -48(%rbp)
576	movq	$1, -32(%rbp)
577	movq	$1, -16(%rbp)
578
579It would be better to have 4 movq's of 0 instead of the movaps's.
580
581//===---------------------------------------------------------------------===//
582
583http://llvm.org/PR717:
584
585The following code should compile into "ret int undef". Instead, LLVM
586produces "ret int 0":
587
588int f() {
589  int x = 4;
590  int y;
591  if (x == 3) y = 0;
592  return y;
593}
594
595//===---------------------------------------------------------------------===//
596
597The loop unroller should partially unroll loops (instead of peeling them)
598when code growth isn't too bad and when an unroll count allows simplification
599of some code within the loop.  One trivial example is:
600
601#include <stdio.h>
602int main() {
603    int nRet = 17;
604    int nLoop;
605    for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
606        if ( nLoop & 1 )
607            nRet += 2;
608        else
609            nRet -= 1;
610    }
611    return nRet;
612}
613
614Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
615reduction in code size.  The resultant code would then also be suitable for
616exit value computation.
617
618//===---------------------------------------------------------------------===//
619
620We miss a bunch of rotate opportunities on various targets, including ppc, x86,
621etc.  On X86, we miss a bunch of 'rotate by variable' cases because the rotate
622matching code in dag combine doesn't look through truncates aggressively
623enough.  Here are some testcases reduces from GCC PR17886:
624
625unsigned long long f5(unsigned long long x, unsigned long long y) {
626  return (x << 8) | ((y >> 48) & 0xffull);
627}
628unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
629  switch(z) {
630  case 1:
631    return (x << 8) | ((y >> 48) & 0xffull);
632  case 2:
633    return (x << 16) | ((y >> 40) & 0xffffull);
634  case 3:
635    return (x << 24) | ((y >> 32) & 0xffffffull);
636  case 4:
637    return (x << 32) | ((y >> 24) & 0xffffffffull);
638  default:
639    return (x << 40) | ((y >> 16) & 0xffffffffffull);
640  }
641}
642
643//===---------------------------------------------------------------------===//
644
645This (and similar related idioms):
646
647unsigned int foo(unsigned char i) {
648  return i | (i<<8) | (i<<16) | (i<<24);
649}
650
651compiles into:
652
653define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
654entry:
655  %conv = zext i8 %i to i32
656  %shl = shl i32 %conv, 8
657  %shl5 = shl i32 %conv, 16
658  %shl9 = shl i32 %conv, 24
659  %or = or i32 %shl9, %conv
660  %or6 = or i32 %or, %shl5
661  %or10 = or i32 %or6, %shl
662  ret i32 %or10
663}
664
665it would be better as:
666
667unsigned int bar(unsigned char i) {
668  unsigned int j=i | (i << 8);
669  return j | (j<<16);
670}
671
672aka:
673
674define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
675entry:
676  %conv = zext i8 %i to i32
677  %shl = shl i32 %conv, 8
678  %or = or i32 %shl, %conv
679  %shl5 = shl i32 %or, 16
680  %or6 = or i32 %shl5, %or
681  ret i32 %or6
682}
683
684or even i*0x01010101, depending on the speed of the multiplier.  The best way to
685handle this is to canonicalize it to a multiply in IR and have codegen handle
686lowering multiplies to shifts on cpus where shifts are faster.
687
688//===---------------------------------------------------------------------===//
689
690We do a number of simplifications in simplify libcalls to strength reduce
691standard library functions, but we don't currently merge them together.  For
692example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy.  This can only
693be done safely if "b" isn't modified between the strlen and memcpy of course.
694
695//===---------------------------------------------------------------------===//
696
697We compile this program: (from GCC PR11680)
698http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
699
700Into code that runs the same speed in fast/slow modes, but both modes run 2x
701slower than when compile with GCC (either 4.0 or 4.2):
702
703$ llvm-g++ perf.cpp -O3 -fno-exceptions
704$ time ./a.out fast
7051.821u 0.003s 0:01.82 100.0%	0+0k 0+0io 0pf+0w
706
707$ g++ perf.cpp -O3 -fno-exceptions
708$ time ./a.out fast
7090.821u 0.001s 0:00.82 100.0%	0+0k 0+0io 0pf+0w
710
711It looks like we are making the same inlining decisions, so this may be raw
712codegen badness or something else (haven't investigated).
713
714//===---------------------------------------------------------------------===//
715
716Divisibility by constant can be simplified (according to GCC PR12849) from
717being a mulhi to being a mul lo (cheaper).  Testcase:
718
719void bar(unsigned n) {
720  if (n % 3 == 0)
721    true();
722}
723
724This is equivalent to the following, where 2863311531 is the multiplicative
725inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
726void bar(unsigned n) {
727  if (n * 2863311531U < 1431655766U)
728    true();
729}
730
731The same transformation can work with an even modulo with the addition of a
732rotate: rotate the result of the multiply to the right by the number of bits
733which need to be zero for the condition to be true, and shrink the compare RHS
734by the same amount.  Unless the target supports rotates, though, that
735transformation probably isn't worthwhile.
736
737The transformation can also easily be made to work with non-zero equality
738comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
739
740//===---------------------------------------------------------------------===//
741
742Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
743bunch of other stuff from this example (see PR1604):
744
745#include <cstdio>
746struct test {
747    int val;
748    virtual ~test() {}
749};
750
751int main() {
752    test t;
753    std::scanf("%d", &t.val);
754    std::printf("%d\n", t.val);
755}
756
757//===---------------------------------------------------------------------===//
758
759These functions perform the same computation, but produce different assembly.
760
761define i8 @select(i8 %x) readnone nounwind {
762  %A = icmp ult i8 %x, 250
763  %B = select i1 %A, i8 0, i8 1
764  ret i8 %B
765}
766
767define i8 @addshr(i8 %x) readnone nounwind {
768  %A = zext i8 %x to i9
769  %B = add i9 %A, 6       ;; 256 - 250 == 6
770  %C = lshr i9 %B, 8
771  %D = trunc i9 %C to i8
772  ret i8 %D
773}
774
775//===---------------------------------------------------------------------===//
776
777From gcc bug 24696:
778int
779f (unsigned long a, unsigned long b, unsigned long c)
780{
781  return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
782}
783int
784f (unsigned long a, unsigned long b, unsigned long c)
785{
786  return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
787}
788Both should combine to ((a|b) & (c-1)) != 0.  Currently not optimized with
789"clang -emit-llvm-bc | opt -std-compile-opts".
790
791//===---------------------------------------------------------------------===//
792
793From GCC Bug 20192:
794#define PMD_MASK    (~((1UL << 23) - 1))
795void clear_pmd_range(unsigned long start, unsigned long end)
796{
797   if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
798       f();
799}
800The expression should optimize to something like
801"!((start|end)&~PMD_MASK). Currently not optimized with "clang
802-emit-llvm-bc | opt -std-compile-opts".
803
804//===---------------------------------------------------------------------===//
805
806unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
807i;}
808unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
809These should combine to the same thing.  Currently, the first function
810produces better code on X86.
811
812//===---------------------------------------------------------------------===//
813
814From GCC Bug 15784:
815#define abs(x) x>0?x:-x
816int f(int x, int y)
817{
818 return (abs(x)) >= 0;
819}
820This should optimize to x == INT_MIN. (With -fwrapv.)  Currently not
821optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
822
823//===---------------------------------------------------------------------===//
824
825From GCC Bug 14753:
826void
827rotate_cst (unsigned int a)
828{
829 a = (a << 10) | (a >> 22);
830 if (a == 123)
831   bar ();
832}
833void
834minus_cst (unsigned int a)
835{
836 unsigned int tem;
837
838 tem = 20 - a;
839 if (tem == 5)
840   bar ();
841}
842void
843mask_gt (unsigned int a)
844{
845 /* This is equivalent to a > 15.  */
846 if ((a & ~7) > 8)
847   bar ();
848}
849void
850rshift_gt (unsigned int a)
851{
852 /* This is equivalent to a > 23.  */
853 if ((a >> 2) > 5)
854   bar ();
855}
856
857All should simplify to a single comparison.  All of these are
858currently not optimized with "clang -emit-llvm-bc | opt
859-std-compile-opts".
860
861//===---------------------------------------------------------------------===//
862
863From GCC Bug 32605:
864int c(int* x) {return (char*)x+2 == (char*)x;}
865Should combine to 0.  Currently not optimized with "clang
866-emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it).
867
868//===---------------------------------------------------------------------===//
869
870int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
871Should be combined to  "((b >> 1) | b) & 1".  Currently not optimized
872with "clang -emit-llvm-bc | opt -std-compile-opts".
873
874//===---------------------------------------------------------------------===//
875
876unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
877Should combine to "x | (y & 3)".  Currently not optimized with "clang
878-emit-llvm-bc | opt -std-compile-opts".
879
880//===---------------------------------------------------------------------===//
881
882int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
883Should fold to "(~a & c) | (a & b)".  Currently not optimized with
884"clang -emit-llvm-bc | opt -std-compile-opts".
885
886//===---------------------------------------------------------------------===//
887
888int a(int a,int b) {return (~(a|b))|a;}
889Should fold to "a|~b".  Currently not optimized with "clang
890-emit-llvm-bc | opt -std-compile-opts".
891
892//===---------------------------------------------------------------------===//
893
894int a(int a, int b) {return (a&&b) || (a&&!b);}
895Should fold to "a".  Currently not optimized with "clang -emit-llvm-bc
896| opt -std-compile-opts".
897
898//===---------------------------------------------------------------------===//
899
900int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
901Should fold to "a ? b : c", or at least something sane.  Currently not
902optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
903
904//===---------------------------------------------------------------------===//
905
906int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
907Should fold to a && (b || c).  Currently not optimized with "clang
908-emit-llvm-bc | opt -std-compile-opts".
909
910//===---------------------------------------------------------------------===//
911
912int a(int x) {return x | ((x & 8) ^ 8);}
913Should combine to x | 8.  Currently not optimized with "clang
914-emit-llvm-bc | opt -std-compile-opts".
915
916//===---------------------------------------------------------------------===//
917
918int a(int x) {return x ^ ((x & 8) ^ 8);}
919Should also combine to x | 8.  Currently not optimized with "clang
920-emit-llvm-bc | opt -std-compile-opts".
921
922//===---------------------------------------------------------------------===//
923
924int a(int x) {return ((x | -9) ^ 8) & x;}
925Should combine to x & -9.  Currently not optimized with "clang
926-emit-llvm-bc | opt -std-compile-opts".
927
928//===---------------------------------------------------------------------===//
929
930unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
931Should combine to "a * 0x88888888 >> 31".  Currently not optimized
932with "clang -emit-llvm-bc | opt -std-compile-opts".
933
934//===---------------------------------------------------------------------===//
935
936unsigned a(char* x) {if ((*x & 32) == 0) return b();}
937There's an unnecessary zext in the generated code with "clang
938-emit-llvm-bc | opt -std-compile-opts".
939
940//===---------------------------------------------------------------------===//
941
942unsigned a(unsigned long long x) {return 40 * (x >> 1);}
943Should combine to "20 * (((unsigned)x) & -2)".  Currently not
944optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
945
946//===---------------------------------------------------------------------===//
947
948int g(int x) { return (x - 10) < 0; }
949Should combine to "x <= 9" (the sub has nsw).  Currently not
950optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
951
952//===---------------------------------------------------------------------===//
953
954int g(int x) { return (x + 10) < 0; }
955Should combine to "x < -10" (the add has nsw).  Currently not
956optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
957
958//===---------------------------------------------------------------------===//
959
960int f(int i, int j) { return i < j + 1; }
961int g(int i, int j) { return j > i - 1; }
962Should combine to "i <= j" (the add/sub has nsw).  Currently not
963optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
964
965//===---------------------------------------------------------------------===//
966
967unsigned f(unsigned x) { return ((x & 7) + 1) & 15; }
968The & 15 part should be optimized away, it doesn't change the result. Currently
969not optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
970
971//===---------------------------------------------------------------------===//
972
973This was noticed in the entryblock for grokdeclarator in 403.gcc:
974
975        %tmp = icmp eq i32 %decl_context, 4
976        %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context
977        %tmp1 = icmp eq i32 %decl_context_addr.0, 1
978        %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
979
980tmp1 should be simplified to something like:
981  (!tmp || decl_context == 1)
982
983This allows recursive simplifications, tmp1 is used all over the place in
984the function, e.g. by:
985
986        %tmp23 = icmp eq i32 %decl_context_addr.1, 0            ; <i1> [#uses=1]
987        %tmp24 = xor i1 %tmp1, true             ; <i1> [#uses=1]
988        %or.cond8 = and i1 %tmp23, %tmp24               ; <i1> [#uses=1]
989
990later.
991
992//===---------------------------------------------------------------------===//
993
994[STORE SINKING]
995
996Store sinking: This code:
997
998void f (int n, int *cond, int *res) {
999    int i;
1000    *res = 0;
1001    for (i = 0; i < n; i++)
1002        if (*cond)
1003            *res ^= 234; /* (*) */
1004}
1005
1006On this function GVN hoists the fully redundant value of *res, but nothing
1007moves the store out.  This gives us this code:
1008
1009bb:		; preds = %bb2, %entry
1010	%.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]
1011	%i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
1012	%1 = load i32* %cond, align 4
1013	%2 = icmp eq i32 %1, 0
1014	br i1 %2, label %bb2, label %bb1
1015
1016bb1:		; preds = %bb
1017	%3 = xor i32 %.rle, 234
1018	store i32 %3, i32* %res, align 4
1019	br label %bb2
1020
1021bb2:		; preds = %bb, %bb1
1022	%.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]
1023	%indvar.next = add i32 %i.05, 1
1024	%exitcond = icmp eq i32 %indvar.next, %n
1025	br i1 %exitcond, label %return, label %bb
1026
1027DSE should sink partially dead stores to get the store out of the loop.
1028
1029Here's another partial dead case:
1030http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
1031
1032//===---------------------------------------------------------------------===//
1033
1034Scalar PRE hoists the mul in the common block up to the else:
1035
1036int test (int a, int b, int c, int g) {
1037  int d, e;
1038  if (a)
1039    d = b * c;
1040  else
1041    d = b - c;
1042  e = b * c + g;
1043  return d + e;
1044}
1045
1046It would be better to do the mul once to reduce codesize above the if.
1047This is GCC PR38204.
1048
1049
1050//===---------------------------------------------------------------------===//
1051This simple function from 179.art:
1052
1053int winner, numf2s;
1054struct { double y; int   reset; } *Y;
1055
1056void find_match() {
1057   int i;
1058   winner = 0;
1059   for (i=0;i<numf2s;i++)
1060       if (Y[i].y > Y[winner].y)
1061              winner =i;
1062}
1063
1064Compiles into (with clang TBAA):
1065
1066for.body:                                         ; preds = %for.inc, %bb.nph
1067  %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
1068  %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
1069  %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
1070  %tmp5 = load double* %tmp4, align 8, !tbaa !4
1071  %idxprom7 = sext i32 %i.01718 to i64
1072  %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
1073  %tmp11 = load double* %tmp10, align 8, !tbaa !4
1074  %cmp12 = fcmp ogt double %tmp5, %tmp11
1075  br i1 %cmp12, label %if.then, label %for.inc
1076
1077if.then:                                          ; preds = %for.body
1078  %i.017 = trunc i64 %indvar to i32
1079  br label %for.inc
1080
1081for.inc:                                          ; preds = %for.body, %if.then
1082  %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
1083  %indvar.next = add i64 %indvar, 1
1084  %exitcond = icmp eq i64 %indvar.next, %tmp22
1085  br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
1086
1087
1088It is good that we hoisted the reloads of numf2's, and Y out of the loop and
1089sunk the store to winner out.
1090
1091However, this is awful on several levels: the conditional truncate in the loop
1092(-indvars at fault? why can't we completely promote the IV to i64?).
1093
1094Beyond that, we have a partially redundant load in the loop: if "winner" (aka
1095%i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
1096Similarly, the addressing that feeds it (including the sext) is redundant. In
1097the end we get this generated assembly:
1098
1099LBB0_2:                                 ## %for.body
1100                                        ## =>This Inner Loop Header: Depth=1
1101	movsd	(%rdi), %xmm0
1102	movslq	%edx, %r8
1103	shlq	$4, %r8
1104	ucomisd	(%rcx,%r8), %xmm0
1105	jbe	LBB0_4
1106	movl	%esi, %edx
1107LBB0_4:                                 ## %for.inc
1108	addq	$16, %rdi
1109	incq	%rsi
1110	cmpq	%rsi, %rax
1111	jne	LBB0_2
1112
1113All things considered this isn't too bad, but we shouldn't need the movslq or
1114the shlq instruction, or the load folded into ucomisd every time through the
1115loop.
1116
1117On an x86-specific topic, if the loop can't be restructure, the movl should be a
1118cmov.
1119
1120//===---------------------------------------------------------------------===//
1121
1122[STORE SINKING]
1123
1124GCC PR37810 is an interesting case where we should sink load/store reload
1125into the if block and outside the loop, so we don't reload/store it on the
1126non-call path.
1127
1128for () {
1129  *P += 1;
1130  if ()
1131    call();
1132  else
1133    ...
1134->
1135tmp = *P
1136for () {
1137  tmp += 1;
1138  if () {
1139    *P = tmp;
1140    call();
1141    tmp = *P;
1142  } else ...
1143}
1144*P = tmp;
1145
1146We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
1147we don't sink the store.  We need partially dead store sinking.
1148
1149//===---------------------------------------------------------------------===//
1150
1151[LOAD PRE CRIT EDGE SPLITTING]
1152
1153GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
1154leading to excess stack traffic. This could be handled by GVN with some crazy
1155symbolic phi translation.  The code we get looks like (g is on the stack):
1156
1157bb2:		; preds = %bb1
1158..
1159	%9 = getelementptr %struct.f* %g, i32 0, i32 0
1160	store i32 %8, i32* %9, align  bel %bb3
1161
1162bb3:		; preds = %bb1, %bb2, %bb
1163	%c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
1164	%b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
1165	%10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
1166	%11 = load i32* %10, align 4
1167
1168%11 is partially redundant, an in BB2 it should have the value %8.
1169
1170GCC PR33344 and PR35287 are similar cases.
1171
1172
1173//===---------------------------------------------------------------------===//
1174
1175[LOAD PRE]
1176
1177There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
1178GCC testsuite, ones we don't get yet are (checked through loadpre25):
1179
1180[CRIT EDGE BREAKING]
1181loadpre3.c predcom-4.c
1182
1183[PRE OF READONLY CALL]
1184loadpre5.c
1185
1186[TURN SELECT INTO BRANCH]
1187loadpre14.c loadpre15.c
1188
1189actually a conditional increment: loadpre18.c loadpre19.c
1190
1191//===---------------------------------------------------------------------===//
1192
1193[LOAD PRE / STORE SINKING / SPEC HACK]
1194
1195This is a chunk of code from 456.hmmer:
1196
1197int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
1198     int *tpdm, int xmb, int *bp, int *ms) {
1199 int k, sc;
1200 for (k = 1; k <= M; k++) {
1201     mc[k] = mpp[k-1]   + tpmm[k-1];
1202     if ((sc = ip[k-1]  + tpim[k-1]) > mc[k])  mc[k] = sc;
1203     if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k])  mc[k] = sc;
1204     if ((sc = xmb  + bp[k])         > mc[k])  mc[k] = sc;
1205     mc[k] += ms[k];
1206   }
1207}
1208
1209It is very profitable for this benchmark to turn the conditional stores to mc[k]
1210into a conditional move (select instr in IR) and allow the final store to do the
1211store.  See GCC PR27313 for more details.  Note that this is valid to xform even
1212with the new C++ memory model, since mc[k] is previously loaded and later
1213stored.
1214
1215//===---------------------------------------------------------------------===//
1216
1217[SCALAR PRE]
1218There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
1219GCC testsuite.
1220
1221//===---------------------------------------------------------------------===//
1222
1223There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
1224GCC testsuite.  For example, we get the first example in predcom-1.c, but
1225miss the second one:
1226
1227unsigned fib[1000];
1228unsigned avg[1000];
1229
1230__attribute__ ((noinline))
1231void count_averages(int n) {
1232  int i;
1233  for (i = 1; i < n; i++)
1234    avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
1235}
1236
1237which compiles into two loads instead of one in the loop.
1238
1239predcom-2.c is the same as predcom-1.c
1240
1241predcom-3.c is very similar but needs loads feeding each other instead of
1242store->load.
1243
1244
1245//===---------------------------------------------------------------------===//
1246
1247[ALIAS ANALYSIS]
1248
1249Type based alias analysis:
1250http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
1251
1252We should do better analysis of posix_memalign.  At the least it should
1253no-capture its pointer argument, at best, we should know that the out-value
1254result doesn't point to anything (like malloc).  One example of this is in
1255SingleSource/Benchmarks/Misc/dt.c
1256
1257//===---------------------------------------------------------------------===//
1258
1259Interesting missed case because of control flow flattening (should be 2 loads):
1260http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
1261With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as |
1262             opt -mem2reg -gvn -instcombine | llvm-dis
1263we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
1264VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
1265
1266//===---------------------------------------------------------------------===//
1267
1268http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
1269We could eliminate the branch condition here, loading from null is undefined:
1270
1271struct S { int w, x, y, z; };
1272struct T { int r; struct S s; };
1273void bar (struct S, int);
1274void foo (int a, struct T b)
1275{
1276  struct S *c = 0;
1277  if (a)
1278    c = &b.s;
1279  bar (*c, a);
1280}
1281
1282//===---------------------------------------------------------------------===//
1283
1284simplifylibcalls should do several optimizations for strspn/strcspn:
1285
1286strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
1287
1288size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
1289                     int __reject3) {
1290  register size_t __result = 0;
1291  while (__s[__result] != '\0' && __s[__result] != __reject1 &&
1292         __s[__result] != __reject2 && __s[__result] != __reject3)
1293    ++__result;
1294  return __result;
1295}
1296
1297This should turn into a switch on the character.  See PR3253 for some notes on
1298codegen.
1299
1300456.hmmer apparently uses strcspn and strspn a lot.  471.omnetpp uses strspn.
1301
1302//===---------------------------------------------------------------------===//
1303
1304simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
1305
1306char buf1[6], buf2[6], buf3[4], buf4[4];
1307int i;
1308
1309int foo (void) {
1310  int ret = snprintf (buf1, sizeof buf1, "abcde");
1311  ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
1312  ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
1313  ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
1314  return ret;
1315}
1316
1317//===---------------------------------------------------------------------===//
1318
1319"gas" uses this idiom:
1320  else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
1321..
1322  else if (strchr ("<>", *intel_parser.op_string)
1323
1324Those should be turned into a switch.
1325
1326//===---------------------------------------------------------------------===//
1327
1328252.eon contains this interesting code:
1329
1330        %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
1331        %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
1332        %strlen = call i32 @strlen(i8* %3072)    ; uses = 1
1333        %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
1334        call void @llvm.memcpy.i32(i8* %endptr,
1335          i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
1336        %3074 = call i32 @strlen(i8* %endptr) nounwind readonly
1337
1338This is interesting for a couple reasons.  First, in this:
1339
1340The memcpy+strlen strlen can be replaced with:
1341
1342        %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly
1343
1344Because the destination was just copied into the specified memory buffer.  This,
1345in turn, can be constant folded to "4".
1346
1347In other code, it contains:
1348
1349        %endptr6978 = bitcast i8* %endptr69 to i32*
1350        store i32 7107374, i32* %endptr6978, align 1
1351        %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly
1352
1353Which could also be constant folded.  Whatever is producing this should probably
1354be fixed to leave this as a memcpy from a string.
1355
1356Further, eon also has an interesting partially redundant strlen call:
1357
1358bb8:            ; preds = %_ZN18eonImageCalculatorC1Ev.exit
1359        %682 = getelementptr i8** %argv, i32 6          ; <i8**> [#uses=2]
1360        %683 = load i8** %682, align 4          ; <i8*> [#uses=4]
1361        %684 = load i8* %683, align 1           ; <i8> [#uses=1]
1362        %685 = icmp eq i8 %684, 0               ; <i1> [#uses=1]
1363        br i1 %685, label %bb10, label %bb9
1364
1365bb9:            ; preds = %bb8
1366        %686 = call i32 @strlen(i8* %683) nounwind readonly
1367        %687 = icmp ugt i32 %686, 254           ; <i1> [#uses=1]
1368        br i1 %687, label %bb10, label %bb11
1369
1370bb10:           ; preds = %bb9, %bb8
1371        %688 = call i32 @strlen(i8* %683) nounwind readonly
1372
1373This could be eliminated by doing the strlen once in bb8, saving code size and
1374improving perf on the bb8->9->10 path.
1375
1376//===---------------------------------------------------------------------===//
1377
1378I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
1379which looks like:
1380       %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0
1381
1382
1383bb62:           ; preds = %bb55, %bb53
1384        %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]
1385        %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1386        %172 = add i32 %171, -1         ; <i32> [#uses=1]
1387        %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172
1388
1389...  no stores ...
1390       br i1 %or.cond, label %bb65, label %bb72
1391
1392bb65:           ; preds = %bb62
1393        store i8 0, i8* %173, align 1
1394        br label %bb72
1395
1396bb72:           ; preds = %bb65, %bb62
1397        %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]
1398        %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1399
1400Note that on the bb62->bb72 path, that the %177 strlen call is partially
1401redundant with the %171 call.  At worst, we could shove the %177 strlen call
1402up into the bb65 block moving it out of the bb62->bb72 path.   However, note
1403that bb65 stores to the string, zeroing out the last byte.  This means that on
1404that path the value of %177 is actually just %171-1.  A sub is cheaper than a
1405strlen!
1406
1407This pattern repeats several times, basically doing:
1408
1409  A = strlen(P);
1410  P[A-1] = 0;
1411  B = strlen(P);
1412  where it is "obvious" that B = A-1.
1413
1414//===---------------------------------------------------------------------===//
1415
1416186.crafty has this interesting pattern with the "out.4543" variable:
1417
1418call void @llvm.memcpy.i32(
1419        i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
1420       i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1)
1421%101 = call@printf(i8* ...   @out.4543, i32 0, i32 0)) nounwind
1422
1423It is basically doing:
1424
1425  memcpy(globalarray, "string");
1426  printf(...,  globalarray);
1427
1428Anyway, by knowing that printf just reads the memory and forward substituting
1429the string directly into the printf, this eliminates reads from globalarray.
1430Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
1431other similar functions) there are many stores to "out".  Once all the printfs
1432stop using "out", all that is left is the memcpy's into it.  This should allow
1433globalopt to remove the "stored only" global.
1434
1435//===---------------------------------------------------------------------===//
1436
1437This code:
1438
1439define inreg i32 @foo(i8* inreg %p) nounwind {
1440  %tmp0 = load i8* %p
1441  %tmp1 = ashr i8 %tmp0, 5
1442  %tmp2 = sext i8 %tmp1 to i32
1443  ret i32 %tmp2
1444}
1445
1446could be dagcombine'd to a sign-extending load with a shift.
1447For example, on x86 this currently gets this:
1448
1449	movb	(%eax), %al
1450	sarb	$5, %al
1451	movsbl	%al, %eax
1452
1453while it could get this:
1454
1455	movsbl	(%eax), %eax
1456	sarl	$5, %eax
1457
1458//===---------------------------------------------------------------------===//
1459
1460GCC PR31029:
1461
1462int test(int x) { return 1-x == x; }     // --> return false
1463int test2(int x) { return 2-x == x; }    // --> return x == 1 ?
1464
1465Always foldable for odd constants, what is the rule for even?
1466
1467//===---------------------------------------------------------------------===//
1468
1469PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
1470for next field in struct (which is at same address).
1471
1472For example: store of float into { {{}}, float } could be turned into a store to
1473the float directly.
1474
1475//===---------------------------------------------------------------------===//
1476
1477The arg promotion pass should make use of nocapture to make its alias analysis
1478stuff much more precise.
1479
1480//===---------------------------------------------------------------------===//
1481
1482The following functions should be optimized to use a select instead of a
1483branch (from gcc PR40072):
1484
1485char char_int(int m) {if(m>7) return 0; return m;}
1486int int_char(char m) {if(m>7) return 0; return m;}
1487
1488//===---------------------------------------------------------------------===//
1489
1490int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
1491
1492Generates this:
1493
1494define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1495entry:
1496  %0 = and i32 %a, 128                            ; <i32> [#uses=1]
1497  %1 = icmp eq i32 %0, 0                          ; <i1> [#uses=1]
1498  %2 = or i32 %b, 128                             ; <i32> [#uses=1]
1499  %3 = and i32 %b, -129                           ; <i32> [#uses=1]
1500  %b_addr.0 = select i1 %1, i32 %3, i32 %2        ; <i32> [#uses=1]
1501  ret i32 %b_addr.0
1502}
1503
1504However, it's functionally equivalent to:
1505
1506         b = (b & ~0x80) | (a & 0x80);
1507
1508Which generates this:
1509
1510define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1511entry:
1512  %0 = and i32 %b, -129                           ; <i32> [#uses=1]
1513  %1 = and i32 %a, 128                            ; <i32> [#uses=1]
1514  %2 = or i32 %0, %1                              ; <i32> [#uses=1]
1515  ret i32 %2
1516}
1517
1518This can be generalized for other forms:
1519
1520     b = (b & ~0x80) | (a & 0x40) << 1;
1521
1522//===---------------------------------------------------------------------===//
1523
1524These two functions produce different code. They shouldn't:
1525
1526#include <stdint.h>
1527
1528uint8_t p1(uint8_t b, uint8_t a) {
1529  b = (b & ~0xc0) | (a & 0xc0);
1530  return (b);
1531}
1532
1533uint8_t p2(uint8_t b, uint8_t a) {
1534  b = (b & ~0x40) | (a & 0x40);
1535  b = (b & ~0x80) | (a & 0x80);
1536  return (b);
1537}
1538
1539define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1540entry:
1541  %0 = and i8 %b, 63                              ; <i8> [#uses=1]
1542  %1 = and i8 %a, -64                             ; <i8> [#uses=1]
1543  %2 = or i8 %1, %0                               ; <i8> [#uses=1]
1544  ret i8 %2
1545}
1546
1547define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1548entry:
1549  %0 = and i8 %b, 63                              ; <i8> [#uses=1]
1550  %.masked = and i8 %a, 64                        ; <i8> [#uses=1]
1551  %1 = and i8 %a, -128                            ; <i8> [#uses=1]
1552  %2 = or i8 %1, %0                               ; <i8> [#uses=1]
1553  %3 = or i8 %2, %.masked                         ; <i8> [#uses=1]
1554  ret i8 %3
1555}
1556
1557//===---------------------------------------------------------------------===//
1558
1559IPSCCP does not currently propagate argument dependent constants through
1560functions where it does not not all of the callers.  This includes functions
1561with normal external linkage as well as templates, C99 inline functions etc.
1562Specifically, it does nothing to:
1563
1564define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
1565entry:
1566  %0 = add nsw i32 %y, %z
1567  %1 = mul i32 %0, %x
1568  %2 = mul i32 %y, %z
1569  %3 = add nsw i32 %1, %2
1570  ret i32 %3
1571}
1572
1573define i32 @test2() nounwind {
1574entry:
1575  %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
1576  ret i32 %0
1577}
1578
1579It would be interesting extend IPSCCP to be able to handle simple cases like
1580this, where all of the arguments to a call are constant.  Because IPSCCP runs
1581before inlining, trivial templates and inline functions are not yet inlined.
1582The results for a function + set of constant arguments should be memoized in a
1583map.
1584
1585//===---------------------------------------------------------------------===//
1586
1587The libcall constant folding stuff should be moved out of SimplifyLibcalls into
1588libanalysis' constantfolding logic.  This would allow IPSCCP to be able to
1589handle simple things like this:
1590
1591static int foo(const char *X) { return strlen(X); }
1592int bar() { return foo("abcd"); }
1593
1594//===---------------------------------------------------------------------===//
1595
1596functionattrs doesn't know much about memcpy/memset.  This function should be
1597marked readnone rather than readonly, since it only twiddles local memory, but
1598functionattrs doesn't handle memset/memcpy/memmove aggressively:
1599
1600struct X { int *p; int *q; };
1601int foo() {
1602 int i = 0, j = 1;
1603 struct X x, y;
1604 int **p;
1605 y.p = &i;
1606 x.q = &j;
1607 p = __builtin_memcpy (&x, &y, sizeof (int *));
1608 return **p;
1609}
1610
1611This can be seen at:
1612$ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S
1613
1614
1615//===---------------------------------------------------------------------===//
1616
1617Missed instcombine transformation:
1618define i1 @a(i32 %x) nounwind readnone {
1619entry:
1620  %cmp = icmp eq i32 %x, 30
1621  %sub = add i32 %x, -30
1622  %cmp2 = icmp ugt i32 %sub, 9
1623  %or = or i1 %cmp, %cmp2
1624  ret i1 %or
1625}
1626This should be optimized to a single compare.  Testcase derived from gcc.
1627
1628//===---------------------------------------------------------------------===//
1629
1630Missed instcombine or reassociate transformation:
1631int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
1632
1633The sgt and slt should be combined into a single comparison. Testcase derived
1634from gcc.
1635
1636//===---------------------------------------------------------------------===//
1637
1638Missed instcombine transformation:
1639
1640  %382 = srem i32 %tmp14.i, 64                    ; [#uses=1]
1641  %383 = zext i32 %382 to i64                     ; [#uses=1]
1642  %384 = shl i64 %381, %383                       ; [#uses=1]
1643  %385 = icmp slt i32 %tmp14.i, 64                ; [#uses=1]
1644
1645The srem can be transformed to an and because if %tmp14.i is negative, the
1646shift is undefined.  Testcase derived from 403.gcc.
1647
1648//===---------------------------------------------------------------------===//
1649
1650This is a range comparison on a divided result (from 403.gcc):
1651
1652  %1337 = sdiv i32 %1336, 8                       ; [#uses=1]
1653  %.off.i208 = add i32 %1336, 7                   ; [#uses=1]
1654  %1338 = icmp ult i32 %.off.i208, 15             ; [#uses=1]
1655
1656We already catch this (removing the sdiv) if there isn't an add, we should
1657handle the 'add' as well.  This is a common idiom with it's builtin_alloca code.
1658C testcase:
1659
1660int a(int x) { return (unsigned)(x/16+7) < 15; }
1661
1662Another similar case involves truncations on 64-bit targets:
1663
1664  %361 = sdiv i64 %.046, 8                        ; [#uses=1]
1665  %362 = trunc i64 %361 to i32                    ; [#uses=2]
1666...
1667  %367 = icmp eq i32 %362, 0                      ; [#uses=1]
1668
1669//===---------------------------------------------------------------------===//
1670
1671Missed instcombine/dagcombine transformation:
1672define void @lshift_lt(i8 zeroext %a) nounwind {
1673entry:
1674  %conv = zext i8 %a to i32
1675  %shl = shl i32 %conv, 3
1676  %cmp = icmp ult i32 %shl, 33
1677  br i1 %cmp, label %if.then, label %if.end
1678
1679if.then:
1680  tail call void @bar() nounwind
1681  ret void
1682
1683if.end:
1684  ret void
1685}
1686declare void @bar() nounwind
1687
1688The shift should be eliminated.  Testcase derived from gcc.
1689
1690//===---------------------------------------------------------------------===//
1691
1692These compile into different code, one gets recognized as a switch and the
1693other doesn't due to phase ordering issues (PR6212):
1694
1695int test1(int mainType, int subType) {
1696  if (mainType == 7)
1697    subType = 4;
1698  else if (mainType == 9)
1699    subType = 6;
1700  else if (mainType == 11)
1701    subType = 9;
1702  return subType;
1703}
1704
1705int test2(int mainType, int subType) {
1706  if (mainType == 7)
1707    subType = 4;
1708  if (mainType == 9)
1709    subType = 6;
1710  if (mainType == 11)
1711    subType = 9;
1712  return subType;
1713}
1714
1715//===---------------------------------------------------------------------===//
1716
1717The following test case (from PR6576):
1718
1719define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1720entry:
1721 %cond1 = icmp eq i32 %b, 0                      ; <i1> [#uses=1]
1722 br i1 %cond1, label %exit, label %bb.nph
1723bb.nph:                                           ; preds = %entry
1724 %tmp = mul i32 %b, %a                           ; <i32> [#uses=1]
1725 ret i32 %tmp
1726exit:                                             ; preds = %entry
1727 ret i32 0
1728}
1729
1730could be reduced to:
1731
1732define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1733entry:
1734 %tmp = mul i32 %b, %a
1735 ret i32 %tmp
1736}
1737
1738//===---------------------------------------------------------------------===//
1739
1740We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
1741See GCC PR34949
1742
1743Another interesting case is that something related could be used for variables
1744that go const after their ctor has finished.  In these cases, globalopt (which
1745can statically run the constructor) could mark the global const (so it gets put
1746in the readonly section).  A testcase would be:
1747
1748#include <complex>
1749using namespace std;
1750const complex<char> should_be_in_rodata (42,-42);
1751complex<char> should_be_in_data (42,-42);
1752complex<char> should_be_in_bss;
1753
1754Where we currently evaluate the ctors but the globals don't become const because
1755the optimizer doesn't know they "become const" after the ctor is done.  See
1756GCC PR4131 for more examples.
1757
1758//===---------------------------------------------------------------------===//
1759
1760In this code:
1761
1762long foo(long x) {
1763  return x > 1 ? x : 1;
1764}
1765
1766LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
1767and cheaper on most targets.
1768
1769LLVM prefers comparisons with zero over non-zero in general, but in this
1770case it choses instead to keep the max operation obvious.
1771
1772//===---------------------------------------------------------------------===//
1773
1774define void @a(i32 %x) nounwind {
1775entry:
1776  switch i32 %x, label %if.end [
1777    i32 0, label %if.then
1778    i32 1, label %if.then
1779    i32 2, label %if.then
1780    i32 3, label %if.then
1781    i32 5, label %if.then
1782  ]
1783if.then:
1784  tail call void @foo() nounwind
1785  ret void
1786if.end:
1787  ret void
1788}
1789declare void @foo()
1790
1791Generated code on x86-64 (other platforms give similar results):
1792a:
1793	cmpl	$5, %edi
1794	ja	LBB2_2
1795	cmpl	$4, %edi
1796	jne	LBB2_3
1797.LBB0_2:
1798	ret
1799.LBB0_3:
1800	jmp	foo  # TAILCALL
1801
1802If we wanted to be really clever, we could simplify the whole thing to
1803something like the following, which eliminates a branch:
1804	xorl    $1, %edi
1805	cmpl	$4, %edi
1806	ja	.LBB0_2
1807	ret
1808.LBB0_2:
1809	jmp	foo  # TAILCALL
1810
1811//===---------------------------------------------------------------------===//
1812
1813We compile this:
1814
1815int foo(int a) { return (a & (~15)) / 16; }
1816
1817Into:
1818
1819define i32 @foo(i32 %a) nounwind readnone ssp {
1820entry:
1821  %and = and i32 %a, -16
1822  %div = sdiv i32 %and, 16
1823  ret i32 %div
1824}
1825
1826but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
1827should be instcombined into just "a >> 4".
1828
1829We do get this at the codegen level, so something knows about it, but
1830instcombine should catch it earlier:
1831
1832_foo:                                   ## @foo
1833## BB#0:                                ## %entry
1834	movl	%edi, %eax
1835	sarl	$4, %eax
1836	ret
1837
1838//===---------------------------------------------------------------------===//
1839
1840This code (from GCC PR28685):
1841
1842int test(int a, int b) {
1843  int lt = a < b;
1844  int eq = a == b;
1845  if (lt)
1846    return 1;
1847  return eq;
1848}
1849
1850Is compiled to:
1851
1852define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
1853entry:
1854  %cmp = icmp slt i32 %a, %b
1855  br i1 %cmp, label %return, label %if.end
1856
1857if.end:                                           ; preds = %entry
1858  %cmp5 = icmp eq i32 %a, %b
1859  %conv6 = zext i1 %cmp5 to i32
1860  ret i32 %conv6
1861
1862return:                                           ; preds = %entry
1863  ret i32 1
1864}
1865
1866it could be:
1867
1868define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
1869entry:
1870  %0 = icmp sle i32 %a, %b
1871  %retval = zext i1 %0 to i32
1872  ret i32 %retval
1873}
1874
1875//===---------------------------------------------------------------------===//
1876
1877This code can be seen in viterbi:
1878
1879  %64 = call noalias i8* @malloc(i64 %62) nounwind
1880...
1881  %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
1882  %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
1883
1884llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
1885fold to %62.  This is a security win (overflows of malloc will get caught)
1886and also a performance win by exposing more memsets to the optimizer.
1887
1888This occurs several times in viterbi.
1889
1890Note that this would change the semantics of @llvm.objectsize which by its
1891current definition always folds to a constant. We also should make sure that
1892we remove checking in code like
1893
1894  char *p = malloc(strlen(s)+1);
1895  __strcpy_chk(p, s, __builtin_objectsize(p, 0));
1896
1897//===---------------------------------------------------------------------===//
1898
1899This code (from Benchmarks/Dhrystone/dry.c):
1900
1901define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1902entry:
1903  %sext = shl i32 %0, 24
1904  %conv = ashr i32 %sext, 24
1905  %sext6 = shl i32 %1, 24
1906  %conv4 = ashr i32 %sext6, 24
1907  %cmp = icmp eq i32 %conv, %conv4
1908  %. = select i1 %cmp, i32 10000, i32 0
1909  ret i32 %.
1910}
1911
1912Should be simplified into something like:
1913
1914define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1915entry:
1916  %sext = shl i32 %0, 24
1917  %conv = and i32 %sext, 0xFF000000
1918  %sext6 = shl i32 %1, 24
1919  %conv4 = and i32 %sext6, 0xFF000000
1920  %cmp = icmp eq i32 %conv, %conv4
1921  %. = select i1 %cmp, i32 10000, i32 0
1922  ret i32 %.
1923}
1924
1925and then to:
1926
1927define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1928entry:
1929  %conv = and i32 %0, 0xFF
1930  %conv4 = and i32 %1, 0xFF
1931  %cmp = icmp eq i32 %conv, %conv4
1932  %. = select i1 %cmp, i32 10000, i32 0
1933  ret i32 %.
1934}
1935//===---------------------------------------------------------------------===//
1936
1937clang -O3 currently compiles this code
1938
1939int g(unsigned int a) {
1940  unsigned int c[100];
1941  c[10] = a;
1942  c[11] = a;
1943  unsigned int b = c[10] + c[11];
1944  if(b > a*2) a = 4;
1945  else a = 8;
1946  return a + 7;
1947}
1948
1949into
1950
1951define i32 @g(i32 a) nounwind readnone {
1952  %add = shl i32 %a, 1
1953  %mul = shl i32 %a, 1
1954  %cmp = icmp ugt i32 %add, %mul
1955  %a.addr.0 = select i1 %cmp, i32 11, i32 15
1956  ret i32 %a.addr.0
1957}
1958
1959The icmp should fold to false. This CSE opportunity is only available
1960after GVN and InstCombine have run.
1961
1962//===---------------------------------------------------------------------===//
1963
1964memcpyopt should turn this:
1965
1966define i8* @test10(i32 %x) {
1967  %alloc = call noalias i8* @malloc(i32 %x) nounwind
1968  call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
1969  ret i8* %alloc
1970}
1971
1972into a call to calloc.  We should make sure that we analyze calloc as
1973aggressively as malloc though.
1974
1975//===---------------------------------------------------------------------===//
1976
1977clang -O3 doesn't optimize this:
1978
1979void f1(int* begin, int* end) {
1980  std::fill(begin, end, 0);
1981}
1982
1983into a memset.  This is PR8942.
1984
1985//===---------------------------------------------------------------------===//
1986
1987clang -O3 -fno-exceptions currently compiles this code:
1988
1989void f(int N) {
1990  std::vector<int> v(N);
1991
1992  extern void sink(void*); sink(&v);
1993}
1994
1995into
1996
1997define void @_Z1fi(i32 %N) nounwind {
1998entry:
1999  %v2 = alloca [3 x i32*], align 8
2000  %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
2001  %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
2002  %conv = sext i32 %N to i64
2003  store i32* null, i32** %v2.sub, align 8, !tbaa !0
2004  %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
2005  store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
2006  %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
2007  store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
2008  %cmp.i.i.i.i = icmp eq i32 %N, 0
2009  br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
2010
2011_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
2012  store i32* null, i32** %v2.sub, align 8, !tbaa !0
2013  store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
2014  %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
2015  store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
2016  br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
2017
2018cond.true.i.i.i.i:                                ; preds = %entry
2019  %cmp.i.i.i.i.i = icmp slt i32 %N, 0
2020  br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
2021
2022if.then.i.i.i.i.i:                                ; preds = %cond.true.i.i.i.i
2023  call void @_ZSt17__throw_bad_allocv() noreturn nounwind
2024  unreachable
2025
2026_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i:    ; preds = %cond.true.i.i.i.i
2027  %mul.i.i.i.i.i = shl i64 %conv, 2
2028  %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
2029  %0 = bitcast i8* %call3.i.i.i.i.i to i32*
2030  store i32* %0, i32** %v2.sub, align 8, !tbaa !0
2031  store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
2032  %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
2033  store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
2034  call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
2035  br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
2036
2037This is just the handling the construction of the vector. Most surprising here
2038is the fact that all three null stores in %entry are dead (because we do no
2039cross-block DSE).
2040
2041Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
2042This is a because the client of LazyValueInfo doesn't simplify all instruction
2043operands, just selected ones.
2044
2045//===---------------------------------------------------------------------===//
2046
2047clang -O3 -fno-exceptions currently compiles this code:
2048
2049void f(char* a, int n) {
2050  __builtin_memset(a, 0, n);
2051  for (int i = 0; i < n; ++i)
2052    a[i] = 0;
2053}
2054
2055into:
2056
2057define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
2058entry:
2059  %conv = sext i32 %n to i64
2060  tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
2061  %cmp8 = icmp sgt i32 %n, 0
2062  br i1 %cmp8, label %for.body.lr.ph, label %for.end
2063
2064for.body.lr.ph:                                   ; preds = %entry
2065  %tmp10 = add i32 %n, -1
2066  %tmp11 = zext i32 %tmp10 to i64
2067  %tmp12 = add i64 %tmp11, 1
2068  call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
2069  ret void
2070
2071for.end:                                          ; preds = %entry
2072  ret void
2073}
2074
2075This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
2076the two memset's together.
2077
2078The issue with the addition only occurs in 64-bit mode, and appears to be at
2079least partially caused by Scalar Evolution not keeping its cache updated: it
2080returns the "wrong" result immediately after indvars runs, but figures out the
2081expected result if it is run from scratch on IR resulting from running indvars.
2082
2083//===---------------------------------------------------------------------===//
2084
2085clang -O3 -fno-exceptions currently compiles this code:
2086
2087struct S {
2088  unsigned short m1, m2;
2089  unsigned char m3, m4;
2090};
2091
2092void f(int N) {
2093  std::vector<S> v(N);
2094  extern void sink(void*); sink(&v);
2095}
2096
2097into poor code for zero-initializing 'v' when N is >0. The problem is that
2098S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
20994 stores on each iteration. If the struct were 8 bytes, this gets turned into
2100a memset.
2101
2102In order to handle this we have to:
2103  A) Teach clang to generate metadata for memsets of structs that have holes in
2104     them.
2105  B) Teach clang to use such a memset for zero init of this struct (since it has
2106     a hole), instead of doing elementwise zeroing.
2107
2108//===---------------------------------------------------------------------===//
2109
2110clang -O3 currently compiles this code:
2111
2112extern const int magic;
2113double f() { return 0.0 * magic; }
2114
2115into
2116
2117@magic = external constant i32
2118
2119define double @_Z1fv() nounwind readnone {
2120entry:
2121  %tmp = load i32* @magic, align 4, !tbaa !0
2122  %conv = sitofp i32 %tmp to double
2123  %mul = fmul double %conv, 0.000000e+00
2124  ret double %mul
2125}
2126
2127We should be able to fold away this fmul to 0.0.  More generally, fmul(x,0.0)
2128can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
2129not an INF.  The CannotBeNegativeZero predicate in value tracking should be
2130extended to support general "fpclassify" operations that can return
2131yes/no/unknown for each of these predicates.
2132
2133In this predicate, we know that uitofp is trivially never NaN or -0.0, and
2134we know that it isn't +/-Inf if the floating point type has enough exponent bits
2135to represent the largest integer value as < inf.
2136
2137//===---------------------------------------------------------------------===//
2138
2139When optimizing a transformation that can change the sign of 0.0 (such as the
21400.0*val -> 0.0 transformation above), it might be provable that the sign of the
2141expression doesn't matter.  For example, by the above rules, we can't transform
2142fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
2143expression is defined to be -0.0.
2144
2145If we look at the uses of the fmul for example, we might be able to prove that
2146all uses don't care about the sign of zero.  For example, if we have:
2147
2148  fadd(fmul(sitofp(x), 0.0), 2.0)
2149
2150Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
2151transform the fmul to 0.0, and then the fadd to 2.0.
2152
2153//===---------------------------------------------------------------------===//
2154
2155We should enhance memcpy/memcpy/memset to allow a metadata node on them
2156indicating that some bytes of the transfer are undefined.  This is useful for
2157frontends like clang when lowering struct copies, when some elements of the
2158struct are undefined.  Consider something like this:
2159
2160struct x {
2161  char a;
2162  int b[4];
2163};
2164void foo(struct x*P);
2165struct x testfunc() {
2166  struct x V1, V2;
2167  foo(&V1);
2168  V2 = V1;
2169
2170  return V2;
2171}
2172
2173We currently compile this to:
2174$ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S
2175
2176
2177%struct.x = type { i8, [4 x i32] }
2178
2179define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
2180entry:
2181  %V1 = alloca %struct.x, align 4
2182  call void @foo(%struct.x* %V1)
2183  %tmp1 = bitcast %struct.x* %V1 to i8*
2184  %0 = bitcast %struct.x* %V1 to i160*
2185  %srcval1 = load i160* %0, align 4
2186  %tmp2 = bitcast %struct.x* %agg.result to i8*
2187  %1 = bitcast %struct.x* %agg.result to i160*
2188  store i160 %srcval1, i160* %1, align 4
2189  ret void
2190}
2191
2192This happens because SRoA sees that the temp alloca has is being memcpy'd into
2193and out of and it has holes and it has to be conservative.  If we knew about the
2194holes, then this could be much much better.
2195
2196Having information about these holes would also improve memcpy (etc) lowering at
2197llc time when it gets inlined, because we can use smaller transfers.  This also
2198avoids partial register stalls in some important cases.
2199
2200//===---------------------------------------------------------------------===//
2201
2202We don't fold (icmp (add) (add)) unless the two adds only have a single use.
2203There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
2204example:
2205
2206 %indvar.next90 = add i64 %indvar89, 1     ;; Has 2 uses
2207 %tmp96 = add i64 %tmp95, 1                ;; Has 1 use
2208 %exitcond97 = icmp eq i64 %indvar.next90, %tmp96
2209
2210We don't fold this because we don't want to introduce an overlapped live range
2211of the ivar.  However if we can make this more aggressive without causing
2212performance issues in two ways:
2213
22141. If *either* the LHS or RHS has a single use, we can definitely do the
2215   transformation.  In the overlapping liverange case we're trading one register
2216   use for one fewer operation, which is a reasonable trade.  Before doing this
2217   we should verify that the llc output actually shrinks for some benchmarks.
22182. If both ops have multiple uses, we can still fold it if the operations are
2219   both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
2220   increase register pressure.
2221
2222There are a ton of icmp's we aren't simplifying because of the reg pressure
2223concern.  Care is warranted here though because many of these are induction
2224variables and other cases that matter a lot to performance, like the above.
2225Here's a blob of code that you can drop into the bottom of visitICmp to see some
2226missed cases:
2227
2228  { Value *A, *B, *C, *D;
2229    if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2230        match(Op1, m_Add(m_Value(C), m_Value(D))) &&
2231        (A == C || A == D || B == C || B == D)) {
2232      errs() << "OP0 = " << *Op0 << "  U=" << Op0->getNumUses() << "\n";
2233      errs() << "OP1 = " << *Op1 << "  U=" << Op1->getNumUses() << "\n";
2234      errs() << "CMP = " << I << "\n\n";
2235    }
2236  }
2237
2238//===---------------------------------------------------------------------===//
2239
2240define i1 @test1(i32 %x) nounwind {
2241  %and = and i32 %x, 3
2242  %cmp = icmp ult i32 %and, 2
2243  ret i1 %cmp
2244}
2245
2246Can be folded to (x & 2) == 0.
2247
2248define i1 @test2(i32 %x) nounwind {
2249  %and = and i32 %x, 3
2250  %cmp = icmp ugt i32 %and, 1
2251  ret i1 %cmp
2252}
2253
2254Can be folded to (x & 2) != 0.
2255
2256SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
2257icmp transform.
2258
2259//===---------------------------------------------------------------------===//
2260
2261This code:
2262
2263typedef struct {
2264int f1:1;
2265int f2:1;
2266int f3:1;
2267int f4:29;
2268} t1;
2269
2270typedef struct {
2271int f1:1;
2272int f2:1;
2273int f3:30;
2274} t2;
2275
2276t1 s1;
2277t2 s2;
2278
2279void func1(void)
2280{
2281s1.f1 = s2.f1;
2282s1.f2 = s2.f2;
2283}
2284
2285Compiles into this IR (on x86-64 at least):
2286
2287%struct.t1 = type { i8, [3 x i8] }
2288@s2 = global %struct.t1 zeroinitializer, align 4
2289@s1 = global %struct.t1 zeroinitializer, align 4
2290define void @func1() nounwind ssp noredzone {
2291entry:
2292  %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
2293  %bf.val.sext5 = and i32 %0, 1
2294  %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
2295  %2 = and i32 %1, -4
2296  %3 = or i32 %2, %bf.val.sext5
2297  %bf.val.sext26 = and i32 %0, 2
2298  %4 = or i32 %3, %bf.val.sext26
2299  store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
2300  ret void
2301}
2302
2303The two or/and's should be merged into one each.
2304
2305//===---------------------------------------------------------------------===//
2306
2307Machine level code hoisting can be useful in some cases.  For example, PR9408
2308is about:
2309
2310typedef union {
2311 void (*f1)(int);
2312 void (*f2)(long);
2313} funcs;
2314
2315void foo(funcs f, int which) {
2316 int a = 5;
2317 if (which) {
2318   f.f1(a);
2319 } else {
2320   f.f2(a);
2321 }
2322}
2323
2324which we compile to:
2325
2326foo:                                    # @foo
2327# BB#0:                                 # %entry
2328       pushq   %rbp
2329       movq    %rsp, %rbp
2330       testl   %esi, %esi
2331       movq    %rdi, %rax
2332       je      .LBB0_2
2333# BB#1:                                 # %if.then
2334       movl    $5, %edi
2335       callq   *%rax
2336       popq    %rbp
2337       ret
2338.LBB0_2:                                # %if.else
2339       movl    $5, %edi
2340       callq   *%rax
2341       popq    %rbp
2342       ret
2343
2344Note that bb1 and bb2 are the same.  This doesn't happen at the IR level
2345because one call is passing an i32 and the other is passing an i64.
2346
2347//===---------------------------------------------------------------------===//
2348
2349I see this sort of pattern in 176.gcc in a few places (e.g. the start of
2350store_bit_field).  The rem should be replaced with a multiply and subtract:
2351
2352  %3 = sdiv i32 %A, %B
2353  %4 = srem i32 %A, %B
2354
2355Similarly for udiv/urem.  Note that this shouldn't be done on X86 or ARM,
2356which can do this in a single operation (instruction or libcall).  It is
2357probably best to do this in the code generator.
2358
2359//===---------------------------------------------------------------------===//
2360
2361unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
2362should fold to (x & y) == 0.
2363
2364//===---------------------------------------------------------------------===//
2365
2366unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
2367should fold to x > y.
2368
2369//===---------------------------------------------------------------------===//
2370