• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #if defined(V8_TARGET_ARCH_IA32)
31 
32 #include "codegen.h"
33 #include "deoptimizer.h"
34 #include "full-codegen.h"
35 
36 namespace v8 {
37 namespace internal {
38 
39 
40 #define __ ACCESS_MASM(masm)
41 
42 
Generate_Adaptor(MacroAssembler * masm,CFunctionId id,BuiltinExtraArguments extra_args)43 void Builtins::Generate_Adaptor(MacroAssembler* masm,
44                                 CFunctionId id,
45                                 BuiltinExtraArguments extra_args) {
46   // ----------- S t a t e -------------
47   //  -- eax                : number of arguments excluding receiver
48   //  -- edi                : called function (only guaranteed when
49   //                          extra_args requires it)
50   //  -- esi                : context
51   //  -- esp[0]             : return address
52   //  -- esp[4]             : last argument
53   //  -- ...
54   //  -- esp[4 * argc]      : first argument (argc == eax)
55   //  -- esp[4 * (argc +1)] : receiver
56   // -----------------------------------
57 
58   // Insert extra arguments.
59   int num_extra_args = 0;
60   if (extra_args == NEEDS_CALLED_FUNCTION) {
61     num_extra_args = 1;
62     Register scratch = ebx;
63     __ pop(scratch);  // Save return address.
64     __ push(edi);
65     __ push(scratch);  // Restore return address.
66   } else {
67     ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
68   }
69 
70   // JumpToExternalReference expects eax to contain the number of arguments
71   // including the receiver and the extra arguments.
72   __ add(eax, Immediate(num_extra_args + 1));
73   __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
74 }
75 
76 
Generate_JSConstructStubHelper(MacroAssembler * masm,bool is_api_function,bool count_constructions)77 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
78                                            bool is_api_function,
79                                            bool count_constructions) {
80   // ----------- S t a t e -------------
81   //  -- eax: number of arguments
82   //  -- edi: constructor function
83   // -----------------------------------
84 
85   // Should never count constructions for api objects.
86   ASSERT(!is_api_function || !count_constructions);
87 
88   // Enter a construct frame.
89   {
90     FrameScope scope(masm, StackFrame::CONSTRUCT);
91 
92     // Store a smi-tagged arguments count on the stack.
93     __ SmiTag(eax);
94     __ push(eax);
95 
96     // Push the function to invoke on the stack.
97     __ push(edi);
98 
99     // Try to allocate the object without transitioning into C code. If any of
100     // the preconditions is not met, the code bails out to the runtime call.
101     Label rt_call, allocated;
102     if (FLAG_inline_new) {
103       Label undo_allocation;
104 #ifdef ENABLE_DEBUGGER_SUPPORT
105       ExternalReference debug_step_in_fp =
106           ExternalReference::debug_step_in_fp_address(masm->isolate());
107       __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
108       __ j(not_equal, &rt_call);
109 #endif
110 
111       // Verified that the constructor is a JSFunction.
112       // Load the initial map and verify that it is in fact a map.
113       // edi: constructor
114       __ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
115       // Will both indicate a NULL and a Smi
116       __ JumpIfSmi(eax, &rt_call);
117       // edi: constructor
118       // eax: initial map (if proven valid below)
119       __ CmpObjectType(eax, MAP_TYPE, ebx);
120       __ j(not_equal, &rt_call);
121 
122       // Check that the constructor is not constructing a JSFunction (see
123       // comments in Runtime_NewObject in runtime.cc). In which case the
124       // initial map's instance type would be JS_FUNCTION_TYPE.
125       // edi: constructor
126       // eax: initial map
127       __ CmpInstanceType(eax, JS_FUNCTION_TYPE);
128       __ j(equal, &rt_call);
129 
130       if (count_constructions) {
131         Label allocate;
132         // Decrease generous allocation count.
133         __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
134         __ dec_b(FieldOperand(ecx,
135                               SharedFunctionInfo::kConstructionCountOffset));
136         __ j(not_zero, &allocate);
137 
138         __ push(eax);
139         __ push(edi);
140 
141         __ push(edi);  // constructor
142         // The call will replace the stub, so the countdown is only done once.
143         __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
144 
145         __ pop(edi);
146         __ pop(eax);
147 
148         __ bind(&allocate);
149       }
150 
151       // Now allocate the JSObject on the heap.
152       // edi: constructor
153       // eax: initial map
154       __ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
155       __ shl(edi, kPointerSizeLog2);
156       __ AllocateInNewSpace(
157           edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS);
158       // Allocated the JSObject, now initialize the fields.
159       // eax: initial map
160       // ebx: JSObject
161       // edi: start of next object
162       __ mov(Operand(ebx, JSObject::kMapOffset), eax);
163       Factory* factory = masm->isolate()->factory();
164       __ mov(ecx, factory->empty_fixed_array());
165       __ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
166       __ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
167       // Set extra fields in the newly allocated object.
168       // eax: initial map
169       // ebx: JSObject
170       // edi: start of next object
171       __ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
172       __ mov(edx, factory->undefined_value());
173       if (count_constructions) {
174         __ movzx_b(esi,
175                    FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
176         __ lea(esi,
177                Operand(ebx, esi, times_pointer_size, JSObject::kHeaderSize));
178         // esi: offset of first field after pre-allocated fields
179         if (FLAG_debug_code) {
180           __ cmp(esi, edi);
181           __ Assert(less_equal,
182                     "Unexpected number of pre-allocated property fields.");
183         }
184         __ InitializeFieldsWithFiller(ecx, esi, edx);
185         __ mov(edx, factory->one_pointer_filler_map());
186       }
187       __ InitializeFieldsWithFiller(ecx, edi, edx);
188 
189       // Add the object tag to make the JSObject real, so that we can continue
190       // and jump into the continuation code at any time from now on. Any
191       // failures need to undo the allocation, so that the heap is in a
192       // consistent state and verifiable.
193       // eax: initial map
194       // ebx: JSObject
195       // edi: start of next object
196       __ or_(ebx, Immediate(kHeapObjectTag));
197 
198       // Check if a non-empty properties array is needed.
199       // Allocate and initialize a FixedArray if it is.
200       // eax: initial map
201       // ebx: JSObject
202       // edi: start of next object
203       // Calculate the total number of properties described by the map.
204       __ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
205       __ movzx_b(ecx,
206                  FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
207       __ add(edx, ecx);
208       // Calculate unused properties past the end of the in-object properties.
209       __ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset));
210       __ sub(edx, ecx);
211       // Done if no extra properties are to be allocated.
212       __ j(zero, &allocated);
213       __ Assert(positive, "Property allocation count failed.");
214 
215       // Scale the number of elements by pointer size and add the header for
216       // FixedArrays to the start of the next object calculation from above.
217       // ebx: JSObject
218       // edi: start of next object (will be start of FixedArray)
219       // edx: number of elements in properties array
220       __ AllocateInNewSpace(FixedArray::kHeaderSize,
221                             times_pointer_size,
222                             edx,
223                             edi,
224                             ecx,
225                             no_reg,
226                             &undo_allocation,
227                             RESULT_CONTAINS_TOP);
228 
229       // Initialize the FixedArray.
230       // ebx: JSObject
231       // edi: FixedArray
232       // edx: number of elements
233       // ecx: start of next object
234       __ mov(eax, factory->fixed_array_map());
235       __ mov(Operand(edi, FixedArray::kMapOffset), eax);  // setup the map
236       __ SmiTag(edx);
237       __ mov(Operand(edi, FixedArray::kLengthOffset), edx);  // and length
238 
239       // Initialize the fields to undefined.
240       // ebx: JSObject
241       // edi: FixedArray
242       // ecx: start of next object
243       { Label loop, entry;
244         __ mov(edx, factory->undefined_value());
245         __ lea(eax, Operand(edi, FixedArray::kHeaderSize));
246         __ jmp(&entry);
247         __ bind(&loop);
248         __ mov(Operand(eax, 0), edx);
249         __ add(eax, Immediate(kPointerSize));
250         __ bind(&entry);
251         __ cmp(eax, ecx);
252         __ j(below, &loop);
253       }
254 
255       // Store the initialized FixedArray into the properties field of
256       // the JSObject
257       // ebx: JSObject
258       // edi: FixedArray
259       __ or_(edi, Immediate(kHeapObjectTag));  // add the heap tag
260       __ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi);
261 
262 
263       // Continue with JSObject being successfully allocated
264       // ebx: JSObject
265       __ jmp(&allocated);
266 
267       // Undo the setting of the new top so that the heap is verifiable. For
268       // example, the map's unused properties potentially do not match the
269       // allocated objects unused properties.
270       // ebx: JSObject (previous new top)
271       __ bind(&undo_allocation);
272       __ UndoAllocationInNewSpace(ebx);
273     }
274 
275     // Allocate the new receiver object using the runtime call.
276     __ bind(&rt_call);
277     // Must restore edi (constructor) before calling runtime.
278     __ mov(edi, Operand(esp, 0));
279     // edi: function (constructor)
280     __ push(edi);
281     __ CallRuntime(Runtime::kNewObject, 1);
282     __ mov(ebx, eax);  // store result in ebx
283 
284     // New object allocated.
285     // ebx: newly allocated object
286     __ bind(&allocated);
287     // Retrieve the function from the stack.
288     __ pop(edi);
289 
290     // Retrieve smi-tagged arguments count from the stack.
291     __ mov(eax, Operand(esp, 0));
292     __ SmiUntag(eax);
293 
294     // Push the allocated receiver to the stack. We need two copies
295     // because we may have to return the original one and the calling
296     // conventions dictate that the called function pops the receiver.
297     __ push(ebx);
298     __ push(ebx);
299 
300     // Set up pointer to last argument.
301     __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
302 
303     // Copy arguments and receiver to the expression stack.
304     Label loop, entry;
305     __ mov(ecx, eax);
306     __ jmp(&entry);
307     __ bind(&loop);
308     __ push(Operand(ebx, ecx, times_4, 0));
309     __ bind(&entry);
310     __ dec(ecx);
311     __ j(greater_equal, &loop);
312 
313     // Call the function.
314     if (is_api_function) {
315       __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
316       Handle<Code> code =
317           masm->isolate()->builtins()->HandleApiCallConstruct();
318       ParameterCount expected(0);
319       __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET,
320                     CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
321     } else {
322       ParameterCount actual(eax);
323       __ InvokeFunction(edi, actual, CALL_FUNCTION,
324                         NullCallWrapper(), CALL_AS_METHOD);
325     }
326 
327     // Store offset of return address for deoptimizer.
328     if (!is_api_function && !count_constructions) {
329       masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
330     }
331 
332     // Restore context from the frame.
333     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
334 
335     // If the result is an object (in the ECMA sense), we should get rid
336     // of the receiver and use the result; see ECMA-262 section 13.2.2-7
337     // on page 74.
338     Label use_receiver, exit;
339 
340     // If the result is a smi, it is *not* an object in the ECMA sense.
341     __ JumpIfSmi(eax, &use_receiver);
342 
343     // If the type of the result (stored in its map) is less than
344     // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
345     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
346     __ j(above_equal, &exit);
347 
348     // Throw away the result of the constructor invocation and use the
349     // on-stack receiver as the result.
350     __ bind(&use_receiver);
351     __ mov(eax, Operand(esp, 0));
352 
353     // Restore the arguments count and leave the construct frame.
354     __ bind(&exit);
355     __ mov(ebx, Operand(esp, kPointerSize));  // Get arguments count.
356 
357     // Leave construct frame.
358   }
359 
360   // Remove caller arguments from the stack and return.
361   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
362   __ pop(ecx);
363   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
364   __ push(ecx);
365   __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
366   __ ret(0);
367 }
368 
369 
Generate_JSConstructStubCountdown(MacroAssembler * masm)370 void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
371   Generate_JSConstructStubHelper(masm, false, true);
372 }
373 
374 
Generate_JSConstructStubGeneric(MacroAssembler * masm)375 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
376   Generate_JSConstructStubHelper(masm, false, false);
377 }
378 
379 
Generate_JSConstructStubApi(MacroAssembler * masm)380 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
381   Generate_JSConstructStubHelper(masm, true, false);
382 }
383 
384 
Generate_JSEntryTrampolineHelper(MacroAssembler * masm,bool is_construct)385 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
386                                              bool is_construct) {
387   // Clear the context before we push it when entering the internal frame.
388   __ Set(esi, Immediate(0));
389 
390   {
391     FrameScope scope(masm, StackFrame::INTERNAL);
392 
393     // Load the previous frame pointer (ebx) to access C arguments
394     __ mov(ebx, Operand(ebp, 0));
395 
396     // Get the function from the frame and setup the context.
397     __ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
398     __ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));
399 
400     // Push the function and the receiver onto the stack.
401     __ push(ecx);
402     __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
403 
404     // Load the number of arguments and setup pointer to the arguments.
405     __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
406     __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
407 
408     // Copy arguments to the stack in a loop.
409     Label loop, entry;
410     __ Set(ecx, Immediate(0));
411     __ jmp(&entry);
412     __ bind(&loop);
413     __ mov(edx, Operand(ebx, ecx, times_4, 0));  // push parameter from argv
414     __ push(Operand(edx, 0));  // dereference handle
415     __ inc(ecx);
416     __ bind(&entry);
417     __ cmp(ecx, eax);
418     __ j(not_equal, &loop);
419 
420     // Get the function from the stack and call it.
421     // kPointerSize for the receiver.
422     __ mov(edi, Operand(esp, eax, times_4, kPointerSize));
423 
424     // Invoke the code.
425     if (is_construct) {
426       CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
427       __ CallStub(&stub);
428     } else {
429       ParameterCount actual(eax);
430       __ InvokeFunction(edi, actual, CALL_FUNCTION,
431                         NullCallWrapper(), CALL_AS_METHOD);
432     }
433 
434     // Exit the internal frame. Notice that this also removes the empty.
435     // context and the function left on the stack by the code
436     // invocation.
437   }
438   __ ret(kPointerSize);  // Remove receiver.
439 }
440 
441 
Generate_JSEntryTrampoline(MacroAssembler * masm)442 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
443   Generate_JSEntryTrampolineHelper(masm, false);
444 }
445 
446 
Generate_JSConstructEntryTrampoline(MacroAssembler * masm)447 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
448   Generate_JSEntryTrampolineHelper(masm, true);
449 }
450 
451 
Generate_LazyCompile(MacroAssembler * masm)452 void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
453   {
454     FrameScope scope(masm, StackFrame::INTERNAL);
455 
456     // Push a copy of the function.
457     __ push(edi);
458     // Push call kind information.
459     __ push(ecx);
460 
461     __ push(edi);  // Function is also the parameter to the runtime call.
462     __ CallRuntime(Runtime::kLazyCompile, 1);
463 
464     // Restore call kind information.
465     __ pop(ecx);
466     // Restore receiver.
467     __ pop(edi);
468 
469     // Tear down internal frame.
470   }
471 
472   // Do a tail-call of the compiled function.
473   __ lea(eax, FieldOperand(eax, Code::kHeaderSize));
474   __ jmp(eax);
475 }
476 
477 
Generate_LazyRecompile(MacroAssembler * masm)478 void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
479   {
480     FrameScope scope(masm, StackFrame::INTERNAL);
481 
482     // Push a copy of the function onto the stack.
483     __ push(edi);
484     // Push call kind information.
485     __ push(ecx);
486 
487     __ push(edi);  // Function is also the parameter to the runtime call.
488     __ CallRuntime(Runtime::kLazyRecompile, 1);
489 
490     // Restore call kind information.
491     __ pop(ecx);
492     // Restore receiver.
493     __ pop(edi);
494 
495     // Tear down internal frame.
496   }
497 
498   // Do a tail-call of the compiled function.
499   __ lea(eax, FieldOperand(eax, Code::kHeaderSize));
500   __ jmp(eax);
501 }
502 
503 
Generate_NotifyDeoptimizedHelper(MacroAssembler * masm,Deoptimizer::BailoutType type)504 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
505                                              Deoptimizer::BailoutType type) {
506   {
507     FrameScope scope(masm, StackFrame::INTERNAL);
508 
509     // Pass deoptimization type to the runtime system.
510     __ push(Immediate(Smi::FromInt(static_cast<int>(type))));
511     __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
512 
513     // Tear down internal frame.
514   }
515 
516   // Get the full codegen state from the stack and untag it.
517   __ mov(ecx, Operand(esp, 1 * kPointerSize));
518   __ SmiUntag(ecx);
519 
520   // Switch on the state.
521   Label not_no_registers, not_tos_eax;
522   __ cmp(ecx, FullCodeGenerator::NO_REGISTERS);
523   __ j(not_equal, &not_no_registers, Label::kNear);
524   __ ret(1 * kPointerSize);  // Remove state.
525 
526   __ bind(&not_no_registers);
527   __ mov(eax, Operand(esp, 2 * kPointerSize));
528   __ cmp(ecx, FullCodeGenerator::TOS_REG);
529   __ j(not_equal, &not_tos_eax, Label::kNear);
530   __ ret(2 * kPointerSize);  // Remove state, eax.
531 
532   __ bind(&not_tos_eax);
533   __ Abort("no cases left");
534 }
535 
536 
Generate_NotifyDeoptimized(MacroAssembler * masm)537 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
538   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
539 }
540 
541 
Generate_NotifyLazyDeoptimized(MacroAssembler * masm)542 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
543   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
544 }
545 
546 
Generate_NotifyOSR(MacroAssembler * masm)547 void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
548   // TODO(kasperl): Do we need to save/restore the XMM registers too?
549 
550   // For now, we are relying on the fact that Runtime::NotifyOSR
551   // doesn't do any garbage collection which allows us to save/restore
552   // the registers without worrying about which of them contain
553   // pointers. This seems a bit fragile.
554   __ pushad();
555   {
556     FrameScope scope(masm, StackFrame::INTERNAL);
557     __ CallRuntime(Runtime::kNotifyOSR, 0);
558   }
559   __ popad();
560   __ ret(0);
561 }
562 
563 
Generate_FunctionCall(MacroAssembler * masm)564 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
565   Factory* factory = masm->isolate()->factory();
566 
567   // 1. Make sure we have at least one argument.
568   { Label done;
569     __ test(eax, eax);
570     __ j(not_zero, &done);
571     __ pop(ebx);
572     __ push(Immediate(factory->undefined_value()));
573     __ push(ebx);
574     __ inc(eax);
575     __ bind(&done);
576   }
577 
578   // 2. Get the function to call (passed as receiver) from the stack, check
579   //    if it is a function.
580   Label slow, non_function;
581   // 1 ~ return address.
582   __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
583   __ JumpIfSmi(edi, &non_function);
584   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
585   __ j(not_equal, &slow);
586 
587 
588   // 3a. Patch the first argument if necessary when calling a function.
589   Label shift_arguments;
590   __ Set(edx, Immediate(0));  // indicate regular JS_FUNCTION
591   { Label convert_to_object, use_global_receiver, patch_receiver;
592     // Change context eagerly in case we need the global receiver.
593     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
594 
595     // Do not transform the receiver for strict mode functions.
596     __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
597     __ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset),
598               1 << SharedFunctionInfo::kStrictModeBitWithinByte);
599     __ j(not_equal, &shift_arguments);
600 
601     // Do not transform the receiver for natives (shared already in ebx).
602     __ test_b(FieldOperand(ebx, SharedFunctionInfo::kNativeByteOffset),
603               1 << SharedFunctionInfo::kNativeBitWithinByte);
604     __ j(not_equal, &shift_arguments);
605 
606     // Compute the receiver in non-strict mode.
607     __ mov(ebx, Operand(esp, eax, times_4, 0));  // First argument.
608 
609     // Call ToObject on the receiver if it is not an object, or use the
610     // global object if it is null or undefined.
611     __ JumpIfSmi(ebx, &convert_to_object);
612     __ cmp(ebx, factory->null_value());
613     __ j(equal, &use_global_receiver);
614     __ cmp(ebx, factory->undefined_value());
615     __ j(equal, &use_global_receiver);
616     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
617     __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
618     __ j(above_equal, &shift_arguments);
619 
620     __ bind(&convert_to_object);
621 
622     { // In order to preserve argument count.
623       FrameScope scope(masm, StackFrame::INTERNAL);
624       __ SmiTag(eax);
625       __ push(eax);
626 
627       __ push(ebx);
628       __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
629       __ mov(ebx, eax);
630       __ Set(edx, Immediate(0));  // restore
631 
632       __ pop(eax);
633       __ SmiUntag(eax);
634     }
635 
636     // Restore the function to edi.
637     __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
638     __ jmp(&patch_receiver);
639 
640     // Use the global receiver object from the called function as the
641     // receiver.
642     __ bind(&use_global_receiver);
643     const int kGlobalIndex =
644         Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
645     __ mov(ebx, FieldOperand(esi, kGlobalIndex));
646     __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset));
647     __ mov(ebx, FieldOperand(ebx, kGlobalIndex));
648     __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
649 
650     __ bind(&patch_receiver);
651     __ mov(Operand(esp, eax, times_4, 0), ebx);
652 
653     __ jmp(&shift_arguments);
654   }
655 
656   // 3b. Check for function proxy.
657   __ bind(&slow);
658   __ Set(edx, Immediate(1));  // indicate function proxy
659   __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
660   __ j(equal, &shift_arguments);
661   __ bind(&non_function);
662   __ Set(edx, Immediate(2));  // indicate non-function
663 
664   // 3c. Patch the first argument when calling a non-function.  The
665   //     CALL_NON_FUNCTION builtin expects the non-function callee as
666   //     receiver, so overwrite the first argument which will ultimately
667   //     become the receiver.
668   __ mov(Operand(esp, eax, times_4, 0), edi);
669 
670   // 4. Shift arguments and return address one slot down on the stack
671   //    (overwriting the original receiver).  Adjust argument count to make
672   //    the original first argument the new receiver.
673   __ bind(&shift_arguments);
674   { Label loop;
675     __ mov(ecx, eax);
676     __ bind(&loop);
677     __ mov(ebx, Operand(esp, ecx, times_4, 0));
678     __ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
679     __ dec(ecx);
680     __ j(not_sign, &loop);  // While non-negative (to copy return address).
681     __ pop(ebx);  // Discard copy of return address.
682     __ dec(eax);  // One fewer argument (first argument is new receiver).
683   }
684 
685   // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
686   //     or a function proxy via CALL_FUNCTION_PROXY.
687   { Label function, non_proxy;
688     __ test(edx, edx);
689     __ j(zero, &function);
690     __ Set(ebx, Immediate(0));
691     __ cmp(edx, Immediate(1));
692     __ j(not_equal, &non_proxy);
693 
694     __ pop(edx);   // return address
695     __ push(edi);  // re-add proxy object as additional argument
696     __ push(edx);
697     __ inc(eax);
698     __ SetCallKind(ecx, CALL_AS_FUNCTION);
699     __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
700     __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
701            RelocInfo::CODE_TARGET);
702 
703     __ bind(&non_proxy);
704     __ SetCallKind(ecx, CALL_AS_METHOD);
705     __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
706     __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
707            RelocInfo::CODE_TARGET);
708     __ bind(&function);
709   }
710 
711   // 5b. Get the code to call from the function and check that the number of
712   //     expected arguments matches what we're providing.  If so, jump
713   //     (tail-call) to the code in register edx without checking arguments.
714   __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
715   __ mov(ebx,
716          FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
717   __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
718   __ SmiUntag(ebx);
719   __ SetCallKind(ecx, CALL_AS_METHOD);
720   __ cmp(eax, ebx);
721   __ j(not_equal,
722        masm->isolate()->builtins()->ArgumentsAdaptorTrampoline());
723 
724   ParameterCount expected(0);
725   __ InvokeCode(edx, expected, expected, JUMP_FUNCTION, NullCallWrapper(),
726                 CALL_AS_METHOD);
727 }
728 
729 
Generate_FunctionApply(MacroAssembler * masm)730 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
731   static const int kArgumentsOffset = 2 * kPointerSize;
732   static const int kReceiverOffset = 3 * kPointerSize;
733   static const int kFunctionOffset = 4 * kPointerSize;
734   {
735     FrameScope frame_scope(masm, StackFrame::INTERNAL);
736 
737     __ push(Operand(ebp, kFunctionOffset));  // push this
738     __ push(Operand(ebp, kArgumentsOffset));  // push arguments
739     __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
740 
741     // Check the stack for overflow. We are not trying to catch
742     // interruptions (e.g. debug break and preemption) here, so the "real stack
743     // limit" is checked.
744     Label okay;
745     ExternalReference real_stack_limit =
746         ExternalReference::address_of_real_stack_limit(masm->isolate());
747     __ mov(edi, Operand::StaticVariable(real_stack_limit));
748     // Make ecx the space we have left. The stack might already be overflowed
749     // here which will cause ecx to become negative.
750     __ mov(ecx, esp);
751     __ sub(ecx, edi);
752     // Make edx the space we need for the array when it is unrolled onto the
753     // stack.
754     __ mov(edx, eax);
755     __ shl(edx, kPointerSizeLog2 - kSmiTagSize);
756     // Check if the arguments will overflow the stack.
757     __ cmp(ecx, edx);
758     __ j(greater, &okay);  // Signed comparison.
759 
760     // Out of stack space.
761     __ push(Operand(ebp, 4 * kPointerSize));  // push this
762     __ push(eax);
763     __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
764     __ bind(&okay);
765     // End of stack check.
766 
767     // Push current index and limit.
768     const int kLimitOffset =
769         StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
770     const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
771     __ push(eax);  // limit
772     __ push(Immediate(0));  // index
773 
774     // Get the receiver.
775     __ mov(ebx, Operand(ebp, kReceiverOffset));
776 
777     // Check that the function is a JS function (otherwise it must be a proxy).
778     Label push_receiver;
779     __ mov(edi, Operand(ebp, kFunctionOffset));
780     __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
781     __ j(not_equal, &push_receiver);
782 
783     // Change context eagerly to get the right global object if necessary.
784     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
785 
786     // Compute the receiver.
787     // Do not transform the receiver for strict mode functions.
788     Label call_to_object, use_global_receiver;
789     __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
790     __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
791               1 << SharedFunctionInfo::kStrictModeBitWithinByte);
792     __ j(not_equal, &push_receiver);
793 
794     Factory* factory = masm->isolate()->factory();
795 
796     // Do not transform the receiver for natives (shared already in ecx).
797     __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
798               1 << SharedFunctionInfo::kNativeBitWithinByte);
799     __ j(not_equal, &push_receiver);
800 
801     // Compute the receiver in non-strict mode.
802     // Call ToObject on the receiver if it is not an object, or use the
803     // global object if it is null or undefined.
804     __ JumpIfSmi(ebx, &call_to_object);
805     __ cmp(ebx, factory->null_value());
806     __ j(equal, &use_global_receiver);
807     __ cmp(ebx, factory->undefined_value());
808     __ j(equal, &use_global_receiver);
809     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
810     __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
811     __ j(above_equal, &push_receiver);
812 
813     __ bind(&call_to_object);
814     __ push(ebx);
815     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
816     __ mov(ebx, eax);
817     __ jmp(&push_receiver);
818 
819     // Use the current global receiver object as the receiver.
820     __ bind(&use_global_receiver);
821     const int kGlobalOffset =
822         Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
823     __ mov(ebx, FieldOperand(esi, kGlobalOffset));
824     __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset));
825     __ mov(ebx, FieldOperand(ebx, kGlobalOffset));
826     __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
827 
828     // Push the receiver.
829     __ bind(&push_receiver);
830     __ push(ebx);
831 
832     // Copy all arguments from the array to the stack.
833     Label entry, loop;
834     __ mov(eax, Operand(ebp, kIndexOffset));
835     __ jmp(&entry);
836     __ bind(&loop);
837     __ mov(edx, Operand(ebp, kArgumentsOffset));  // load arguments
838 
839     // Use inline caching to speed up access to arguments.
840     Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize();
841     __ call(ic, RelocInfo::CODE_TARGET);
842     // It is important that we do not have a test instruction after the
843     // call.  A test instruction after the call is used to indicate that
844     // we have generated an inline version of the keyed load.  In this
845     // case, we know that we are not generating a test instruction next.
846 
847     // Push the nth argument.
848     __ push(eax);
849 
850     // Update the index on the stack and in register eax.
851     __ mov(eax, Operand(ebp, kIndexOffset));
852     __ add(eax, Immediate(1 << kSmiTagSize));
853     __ mov(Operand(ebp, kIndexOffset), eax);
854 
855     __ bind(&entry);
856     __ cmp(eax, Operand(ebp, kLimitOffset));
857     __ j(not_equal, &loop);
858 
859     // Invoke the function.
860     Label call_proxy;
861     ParameterCount actual(eax);
862     __ SmiUntag(eax);
863     __ mov(edi, Operand(ebp, kFunctionOffset));
864     __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
865     __ j(not_equal, &call_proxy);
866     __ InvokeFunction(edi, actual, CALL_FUNCTION,
867                       NullCallWrapper(), CALL_AS_METHOD);
868 
869     frame_scope.GenerateLeaveFrame();
870     __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
871 
872     // Invoke the function proxy.
873     __ bind(&call_proxy);
874     __ push(edi);  // add function proxy as last argument
875     __ inc(eax);
876     __ Set(ebx, Immediate(0));
877     __ SetCallKind(ecx, CALL_AS_METHOD);
878     __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
879     __ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
880             RelocInfo::CODE_TARGET);
881 
882     // Leave internal frame.
883   }
884   __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
885 }
886 
887 
888 // Allocate an empty JSArray. The allocated array is put into the result
889 // register. If the parameter initial_capacity is larger than zero an elements
890 // backing store is allocated with this size and filled with the hole values.
891 // Otherwise the elements backing store is set to the empty FixedArray.
AllocateEmptyJSArray(MacroAssembler * masm,Register array_function,Register result,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)892 static void AllocateEmptyJSArray(MacroAssembler* masm,
893                                  Register array_function,
894                                  Register result,
895                                  Register scratch1,
896                                  Register scratch2,
897                                  Register scratch3,
898                                  Label* gc_required) {
899   const int initial_capacity = JSArray::kPreallocatedArrayElements;
900   STATIC_ASSERT(initial_capacity >= 0);
901 
902   __ LoadInitialArrayMap(array_function, scratch2, scratch1);
903 
904   // Allocate the JSArray object together with space for a fixed array with the
905   // requested elements.
906   int size = JSArray::kSize;
907   if (initial_capacity > 0) {
908     size += FixedArray::SizeFor(initial_capacity);
909   }
910   __ AllocateInNewSpace(size,
911                         result,
912                         scratch2,
913                         scratch3,
914                         gc_required,
915                         TAG_OBJECT);
916 
917   // Allocated the JSArray. Now initialize the fields except for the elements
918   // array.
919   // result: JSObject
920   // scratch1: initial map
921   // scratch2: start of next object
922   __ mov(FieldOperand(result, JSObject::kMapOffset), scratch1);
923   Factory* factory = masm->isolate()->factory();
924   __ mov(FieldOperand(result, JSArray::kPropertiesOffset),
925          factory->empty_fixed_array());
926   // Field JSArray::kElementsOffset is initialized later.
927   __ mov(FieldOperand(result, JSArray::kLengthOffset), Immediate(0));
928 
929   // If no storage is requested for the elements array just set the empty
930   // fixed array.
931   if (initial_capacity == 0) {
932     __ mov(FieldOperand(result, JSArray::kElementsOffset),
933            factory->empty_fixed_array());
934     return;
935   }
936 
937   // Calculate the location of the elements array and set elements array member
938   // of the JSArray.
939   // result: JSObject
940   // scratch2: start of next object
941   __ lea(scratch1, Operand(result, JSArray::kSize));
942   __ mov(FieldOperand(result, JSArray::kElementsOffset), scratch1);
943 
944   // Initialize the FixedArray and fill it with holes. FixedArray length is
945   // stored as a smi.
946   // result: JSObject
947   // scratch1: elements array
948   // scratch2: start of next object
949   __ mov(FieldOperand(scratch1, FixedArray::kMapOffset),
950          factory->fixed_array_map());
951   __ mov(FieldOperand(scratch1, FixedArray::kLengthOffset),
952          Immediate(Smi::FromInt(initial_capacity)));
953 
954   // Fill the FixedArray with the hole value. Inline the code if short.
955   // Reconsider loop unfolding if kPreallocatedArrayElements gets changed.
956   static const int kLoopUnfoldLimit = 4;
957   if (initial_capacity <= kLoopUnfoldLimit) {
958     // Use a scratch register here to have only one reloc info when unfolding
959     // the loop.
960     __ mov(scratch3, factory->the_hole_value());
961     for (int i = 0; i < initial_capacity; i++) {
962       __ mov(FieldOperand(scratch1,
963                           FixedArray::kHeaderSize + i * kPointerSize),
964              scratch3);
965     }
966   } else {
967     Label loop, entry;
968     __ mov(scratch2, Immediate(initial_capacity));
969     __ jmp(&entry);
970     __ bind(&loop);
971     __ mov(FieldOperand(scratch1,
972                         scratch2,
973                         times_pointer_size,
974                         FixedArray::kHeaderSize),
975            factory->the_hole_value());
976     __ bind(&entry);
977     __ dec(scratch2);
978     __ j(not_sign, &loop);
979   }
980 }
981 
982 
983 // Allocate a JSArray with the number of elements stored in a register. The
984 // register array_function holds the built-in Array function and the register
985 // array_size holds the size of the array as a smi. The allocated array is put
986 // into the result register and beginning and end of the FixedArray elements
987 // storage is put into registers elements_array and elements_array_end  (see
988 // below for when that is not the case). If the parameter fill_with_holes is
989 // true the allocated elements backing store is filled with the hole values
990 // otherwise it is left uninitialized. When the backing store is filled the
991 // register elements_array is scratched.
AllocateJSArray(MacroAssembler * masm,Register array_function,Register array_size,Register result,Register elements_array,Register elements_array_end,Register scratch,bool fill_with_hole,Label * gc_required)992 static void AllocateJSArray(MacroAssembler* masm,
993                             Register array_function,  // Array function.
994                             Register array_size,  // As a smi, cannot be 0.
995                             Register result,
996                             Register elements_array,
997                             Register elements_array_end,
998                             Register scratch,
999                             bool fill_with_hole,
1000                             Label* gc_required) {
1001   ASSERT(scratch.is(edi));  // rep stos destination
1002   ASSERT(!fill_with_hole || array_size.is(ecx));  // rep stos count
1003   ASSERT(!fill_with_hole || !result.is(eax));  // result is never eax
1004 
1005   __ LoadInitialArrayMap(array_function, scratch, elements_array);
1006 
1007   // Allocate the JSArray object together with space for a FixedArray with the
1008   // requested elements.
1009   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
1010   __ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
1011                         times_half_pointer_size,  // array_size is a smi.
1012                         array_size,
1013                         result,
1014                         elements_array_end,
1015                         scratch,
1016                         gc_required,
1017                         TAG_OBJECT);
1018 
1019   // Allocated the JSArray. Now initialize the fields except for the elements
1020   // array.
1021   // result: JSObject
1022   // elements_array: initial map
1023   // elements_array_end: start of next object
1024   // array_size: size of array (smi)
1025   __ mov(FieldOperand(result, JSObject::kMapOffset), elements_array);
1026   Factory* factory = masm->isolate()->factory();
1027   __ mov(elements_array, factory->empty_fixed_array());
1028   __ mov(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
1029   // Field JSArray::kElementsOffset is initialized later.
1030   __ mov(FieldOperand(result, JSArray::kLengthOffset), array_size);
1031 
1032   // Calculate the location of the elements array and set elements array member
1033   // of the JSArray.
1034   // result: JSObject
1035   // elements_array_end: start of next object
1036   // array_size: size of array (smi)
1037   __ lea(elements_array, Operand(result, JSArray::kSize));
1038   __ mov(FieldOperand(result, JSArray::kElementsOffset), elements_array);
1039 
1040   // Initialize the fixed array. FixedArray length is stored as a smi.
1041   // result: JSObject
1042   // elements_array: elements array
1043   // elements_array_end: start of next object
1044   // array_size: size of array (smi)
1045   __ mov(FieldOperand(elements_array, FixedArray::kMapOffset),
1046          factory->fixed_array_map());
1047   // For non-empty JSArrays the length of the FixedArray and the JSArray is the
1048   // same.
1049   __ mov(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size);
1050 
1051   // Fill the allocated FixedArray with the hole value if requested.
1052   // result: JSObject
1053   // elements_array: elements array
1054   if (fill_with_hole) {
1055     __ SmiUntag(array_size);
1056     __ lea(edi, Operand(elements_array,
1057                         FixedArray::kHeaderSize - kHeapObjectTag));
1058     __ mov(eax, factory->the_hole_value());
1059     __ cld();
1060     // Do not use rep stos when filling less than kRepStosThreshold
1061     // words.
1062     const int kRepStosThreshold = 16;
1063     Label loop, entry, done;
1064     __ cmp(ecx, kRepStosThreshold);
1065     __ j(below, &loop);  // Note: ecx > 0.
1066     __ rep_stos();
1067     __ jmp(&done);
1068     __ bind(&loop);
1069     __ stos();
1070     __ bind(&entry);
1071     __ cmp(edi, elements_array_end);
1072     __ j(below, &loop);
1073     __ bind(&done);
1074   }
1075 }
1076 
1077 
1078 // Create a new array for the built-in Array function. This function allocates
1079 // the JSArray object and the FixedArray elements array and initializes these.
1080 // If the Array cannot be constructed in native code the runtime is called. This
1081 // function assumes the following state:
1082 //   edi: constructor (built-in Array function)
1083 //   eax: argc
1084 //   esp[0]: return address
1085 //   esp[4]: last argument
1086 // This function is used for both construct and normal calls of Array. Whether
1087 // it is a construct call or not is indicated by the construct_call parameter.
1088 // The only difference between handling a construct call and a normal call is
1089 // that for a construct call the constructor function in edi needs to be
1090 // preserved for entering the generic code. In both cases argc in eax needs to
1091 // be preserved.
ArrayNativeCode(MacroAssembler * masm,bool construct_call,Label * call_generic_code)1092 static void ArrayNativeCode(MacroAssembler* masm,
1093                             bool construct_call,
1094                             Label* call_generic_code) {
1095   Label argc_one_or_more, argc_two_or_more, prepare_generic_code_call,
1096       empty_array, not_empty_array, finish, cant_transition_map, not_double;
1097 
1098   // Push the constructor and argc. No need to tag argc as a smi, as there will
1099   // be no garbage collection with this on the stack.
1100   int push_count = 0;
1101   if (construct_call) {
1102     push_count++;
1103     __ push(edi);
1104   }
1105   push_count++;
1106   __ push(eax);
1107 
1108   // Check for array construction with zero arguments.
1109   __ test(eax, eax);
1110   __ j(not_zero, &argc_one_or_more);
1111 
1112   __ bind(&empty_array);
1113   // Handle construction of an empty array.
1114   AllocateEmptyJSArray(masm,
1115                        edi,
1116                        eax,
1117                        ebx,
1118                        ecx,
1119                        edi,
1120                        &prepare_generic_code_call);
1121   __ IncrementCounter(masm->isolate()->counters()->array_function_native(), 1);
1122   __ pop(ebx);
1123   if (construct_call) {
1124     __ pop(edi);
1125   }
1126   __ ret(kPointerSize);
1127 
1128   // Check for one argument. Bail out if argument is not smi or if it is
1129   // negative.
1130   __ bind(&argc_one_or_more);
1131   __ cmp(eax, 1);
1132   __ j(not_equal, &argc_two_or_more);
1133   STATIC_ASSERT(kSmiTag == 0);
1134   __ mov(ecx, Operand(esp, (push_count + 1) * kPointerSize));
1135   __ test(ecx, ecx);
1136   __ j(not_zero, &not_empty_array);
1137 
1138   // The single argument passed is zero, so we jump to the code above used to
1139   // handle the case of no arguments passed. To adapt the stack for that we move
1140   // the return address and the pushed constructor (if pushed) one stack slot up
1141   // thereby removing the passed argument. Argc is also on the stack - at the
1142   // bottom - and it needs to be changed from 1 to 0 to have the call into the
1143   // runtime system work in case a GC is required.
1144   for (int i = push_count; i > 0; i--) {
1145     __ mov(eax, Operand(esp, i * kPointerSize));
1146     __ mov(Operand(esp, (i + 1) * kPointerSize), eax);
1147   }
1148   __ Drop(2);  // Drop two stack slots.
1149   __ push(Immediate(0));  // Treat this as a call with argc of zero.
1150   __ jmp(&empty_array);
1151 
1152   __ bind(&not_empty_array);
1153   __ test(ecx, Immediate(kIntptrSignBit | kSmiTagMask));
1154   __ j(not_zero, &prepare_generic_code_call);
1155 
1156   // Handle construction of an empty array of a certain size. Get the size from
1157   // the stack and bail out if size is to large to actually allocate an elements
1158   // array.
1159   __ cmp(ecx, JSObject::kInitialMaxFastElementArray << kSmiTagSize);
1160   __ j(greater_equal, &prepare_generic_code_call);
1161 
1162   // edx: array_size (smi)
1163   // edi: constructor
1164   // esp[0]: argc (cannot be 0 here)
1165   // esp[4]: constructor (only if construct_call)
1166   // esp[8]: return address
1167   // esp[C]: argument
1168   AllocateJSArray(masm,
1169                   edi,
1170                   ecx,
1171                   ebx,
1172                   eax,
1173                   edx,
1174                   edi,
1175                   true,
1176                   &prepare_generic_code_call);
1177   Counters* counters = masm->isolate()->counters();
1178   __ IncrementCounter(counters->array_function_native(), 1);
1179   __ mov(eax, ebx);
1180   __ pop(ebx);
1181   if (construct_call) {
1182     __ pop(edi);
1183   }
1184   __ ret(2 * kPointerSize);
1185 
1186   // Handle construction of an array from a list of arguments.
1187   __ bind(&argc_two_or_more);
1188   STATIC_ASSERT(kSmiTag == 0);
1189   __ SmiTag(eax);  // Convet argc to a smi.
1190   // eax: array_size (smi)
1191   // edi: constructor
1192   // esp[0] : argc
1193   // esp[4]: constructor (only if construct_call)
1194   // esp[8] : return address
1195   // esp[C] : last argument
1196   AllocateJSArray(masm,
1197                   edi,
1198                   eax,
1199                   ebx,
1200                   ecx,
1201                   edx,
1202                   edi,
1203                   false,
1204                   &prepare_generic_code_call);
1205   __ IncrementCounter(counters->array_function_native(), 1);
1206   __ push(ebx);
1207   __ mov(ebx, Operand(esp, kPointerSize));
1208   // ebx: argc
1209   // edx: elements_array_end (untagged)
1210   // esp[0]: JSArray
1211   // esp[4]: argc
1212   // esp[8]: constructor (only if construct_call)
1213   // esp[12]: return address
1214   // esp[16]: last argument
1215 
1216   // Location of the last argument
1217   int last_arg_offset = (construct_call ? 4 : 3) * kPointerSize;
1218   __ lea(edi, Operand(esp, last_arg_offset));
1219 
1220   // Location of the first array element (Parameter fill_with_holes to
1221   // AllocateJSArray is false, so the FixedArray is returned in ecx).
1222   __ lea(edx, Operand(ecx, FixedArray::kHeaderSize - kHeapObjectTag));
1223 
1224   Label has_non_smi_element;
1225 
1226   // ebx: argc
1227   // edx: location of the first array element
1228   // edi: location of the last argument
1229   // esp[0]: JSArray
1230   // esp[4]: argc
1231   // esp[8]: constructor (only if construct_call)
1232   // esp[12]: return address
1233   // esp[16]: last argument
1234   Label loop, entry;
1235   __ mov(ecx, ebx);
1236   __ jmp(&entry);
1237   __ bind(&loop);
1238   __ mov(eax, Operand(edi, ecx, times_pointer_size, 0));
1239   if (FLAG_smi_only_arrays) {
1240     __ JumpIfNotSmi(eax, &has_non_smi_element);
1241   }
1242   __ mov(Operand(edx, 0), eax);
1243   __ add(edx, Immediate(kPointerSize));
1244   __ bind(&entry);
1245   __ dec(ecx);
1246   __ j(greater_equal, &loop);
1247 
1248   // Remove caller arguments from the stack and return.
1249   // ebx: argc
1250   // esp[0]: JSArray
1251   // esp[4]: argc
1252   // esp[8]: constructor (only if construct_call)
1253   // esp[12]: return address
1254   // esp[16]: last argument
1255   __ bind(&finish);
1256   __ mov(ecx, Operand(esp, last_arg_offset - kPointerSize));
1257   __ pop(eax);
1258   __ pop(ebx);
1259   __ lea(esp, Operand(esp, ebx, times_pointer_size,
1260                       last_arg_offset - kPointerSize));
1261   __ jmp(ecx);
1262 
1263   __ bind(&has_non_smi_element);
1264   // Double values are handled by the runtime.
1265   __ CheckMap(eax,
1266               masm->isolate()->factory()->heap_number_map(),
1267               &not_double,
1268               DONT_DO_SMI_CHECK);
1269   __ bind(&cant_transition_map);
1270   // Throw away the array that's only been partially constructed.
1271   __ pop(eax);
1272   __ UndoAllocationInNewSpace(eax);
1273   __ jmp(&prepare_generic_code_call);
1274 
1275   __ bind(&not_double);
1276   // Transition FAST_SMI_ONLY_ELEMENTS to FAST_ELEMENTS.
1277   __ mov(ebx, Operand(esp, 0));
1278   __ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
1279   __ LoadTransitionedArrayMapConditional(
1280       FAST_SMI_ONLY_ELEMENTS,
1281       FAST_ELEMENTS,
1282       edi,
1283       eax,
1284       &cant_transition_map);
1285   __ mov(FieldOperand(ebx, HeapObject::kMapOffset), edi);
1286   __ RecordWriteField(ebx, HeapObject::kMapOffset, edi, eax,
1287                       kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
1288 
1289   // Prepare to re-enter the loop
1290   __ lea(edi, Operand(esp, last_arg_offset));
1291 
1292   // Finish the array initialization loop.
1293   Label loop2;
1294   __ bind(&loop2);
1295   __ mov(eax, Operand(edi, ecx, times_pointer_size, 0));
1296   __ mov(Operand(edx, 0), eax);
1297   __ add(edx, Immediate(kPointerSize));
1298   __ dec(ecx);
1299   __ j(greater_equal, &loop2);
1300   __ jmp(&finish);
1301 
1302   // Restore argc and constructor before running the generic code.
1303   __ bind(&prepare_generic_code_call);
1304   __ pop(eax);
1305   if (construct_call) {
1306     __ pop(edi);
1307   }
1308   __ jmp(call_generic_code);
1309 }
1310 
1311 
Generate_InternalArrayCode(MacroAssembler * masm)1312 void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
1313   // ----------- S t a t e -------------
1314   //  -- eax : argc
1315   //  -- esp[0] : return address
1316   //  -- esp[4] : last argument
1317   // -----------------------------------
1318   Label generic_array_code;
1319 
1320   // Get the InternalArray function.
1321   __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi);
1322 
1323   if (FLAG_debug_code) {
1324     // Initial map for the builtin InternalArray function should be a map.
1325     __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
1326     // Will both indicate a NULL and a Smi.
1327     __ test(ebx, Immediate(kSmiTagMask));
1328     __ Assert(not_zero, "Unexpected initial map for InternalArray function");
1329     __ CmpObjectType(ebx, MAP_TYPE, ecx);
1330     __ Assert(equal, "Unexpected initial map for InternalArray function");
1331   }
1332 
1333   // Run the native code for the InternalArray function called as a normal
1334   // function.
1335   ArrayNativeCode(masm, false, &generic_array_code);
1336 
1337   // Jump to the generic internal array code in case the specialized code cannot
1338   // handle the construction.
1339   __ bind(&generic_array_code);
1340   Handle<Code> array_code =
1341       masm->isolate()->builtins()->InternalArrayCodeGeneric();
1342   __ jmp(array_code, RelocInfo::CODE_TARGET);
1343 }
1344 
1345 
Generate_ArrayCode(MacroAssembler * masm)1346 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
1347   // ----------- S t a t e -------------
1348   //  -- eax : argc
1349   //  -- esp[0] : return address
1350   //  -- esp[4] : last argument
1351   // -----------------------------------
1352   Label generic_array_code;
1353 
1354   // Get the Array function.
1355   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
1356 
1357   if (FLAG_debug_code) {
1358     // Initial map for the builtin Array function should be a map.
1359     __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
1360     // Will both indicate a NULL and a Smi.
1361     __ test(ebx, Immediate(kSmiTagMask));
1362     __ Assert(not_zero, "Unexpected initial map for Array function");
1363     __ CmpObjectType(ebx, MAP_TYPE, ecx);
1364     __ Assert(equal, "Unexpected initial map for Array function");
1365   }
1366 
1367   // Run the native code for the Array function called as a normal function.
1368   ArrayNativeCode(masm, false, &generic_array_code);
1369 
1370   // Jump to the generic array code in case the specialized code cannot handle
1371   // the construction.
1372   __ bind(&generic_array_code);
1373   Handle<Code> array_code =
1374       masm->isolate()->builtins()->ArrayCodeGeneric();
1375   __ jmp(array_code, RelocInfo::CODE_TARGET);
1376 }
1377 
1378 
Generate_ArrayConstructCode(MacroAssembler * masm)1379 void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
1380   // ----------- S t a t e -------------
1381   //  -- eax : argc
1382   //  -- edi : constructor
1383   //  -- esp[0] : return address
1384   //  -- esp[4] : last argument
1385   // -----------------------------------
1386   Label generic_constructor;
1387 
1388   if (FLAG_debug_code) {
1389     // The array construct code is only set for the global and natives
1390     // builtin Array functions which always have maps.
1391 
1392     // Initial map for the builtin Array function should be a map.
1393     __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
1394     // Will both indicate a NULL and a Smi.
1395     __ test(ebx, Immediate(kSmiTagMask));
1396     __ Assert(not_zero, "Unexpected initial map for Array function");
1397     __ CmpObjectType(ebx, MAP_TYPE, ecx);
1398     __ Assert(equal, "Unexpected initial map for Array function");
1399   }
1400 
1401   // Run the native code for the Array function called as constructor.
1402   ArrayNativeCode(masm, true, &generic_constructor);
1403 
1404   // Jump to the generic construct code in case the specialized code cannot
1405   // handle the construction.
1406   __ bind(&generic_constructor);
1407   Handle<Code> generic_construct_stub =
1408       masm->isolate()->builtins()->JSConstructStubGeneric();
1409   __ jmp(generic_construct_stub, RelocInfo::CODE_TARGET);
1410 }
1411 
1412 
Generate_StringConstructCode(MacroAssembler * masm)1413 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
1414   // ----------- S t a t e -------------
1415   //  -- eax                 : number of arguments
1416   //  -- edi                 : constructor function
1417   //  -- esp[0]              : return address
1418   //  -- esp[(argc - n) * 4] : arg[n] (zero-based)
1419   //  -- esp[(argc + 1) * 4] : receiver
1420   // -----------------------------------
1421   Counters* counters = masm->isolate()->counters();
1422   __ IncrementCounter(counters->string_ctor_calls(), 1);
1423 
1424   if (FLAG_debug_code) {
1425     __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx);
1426     __ cmp(edi, ecx);
1427     __ Assert(equal, "Unexpected String function");
1428   }
1429 
1430   // Load the first argument into eax and get rid of the rest
1431   // (including the receiver).
1432   Label no_arguments;
1433   __ test(eax, eax);
1434   __ j(zero, &no_arguments);
1435   __ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
1436   __ pop(ecx);
1437   __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
1438   __ push(ecx);
1439   __ mov(eax, ebx);
1440 
1441   // Lookup the argument in the number to string cache.
1442   Label not_cached, argument_is_string;
1443   NumberToStringStub::GenerateLookupNumberStringCache(
1444       masm,
1445       eax,  // Input.
1446       ebx,  // Result.
1447       ecx,  // Scratch 1.
1448       edx,  // Scratch 2.
1449       false,  // Input is known to be smi?
1450       &not_cached);
1451   __ IncrementCounter(counters->string_ctor_cached_number(), 1);
1452   __ bind(&argument_is_string);
1453   // ----------- S t a t e -------------
1454   //  -- ebx    : argument converted to string
1455   //  -- edi    : constructor function
1456   //  -- esp[0] : return address
1457   // -----------------------------------
1458 
1459   // Allocate a JSValue and put the tagged pointer into eax.
1460   Label gc_required;
1461   __ AllocateInNewSpace(JSValue::kSize,
1462                         eax,  // Result.
1463                         ecx,  // New allocation top (we ignore it).
1464                         no_reg,
1465                         &gc_required,
1466                         TAG_OBJECT);
1467 
1468   // Set the map.
1469   __ LoadGlobalFunctionInitialMap(edi, ecx);
1470   if (FLAG_debug_code) {
1471     __ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset),
1472             JSValue::kSize >> kPointerSizeLog2);
1473     __ Assert(equal, "Unexpected string wrapper instance size");
1474     __ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0);
1475     __ Assert(equal, "Unexpected unused properties of string wrapper");
1476   }
1477   __ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx);
1478 
1479   // Set properties and elements.
1480   Factory* factory = masm->isolate()->factory();
1481   __ Set(ecx, Immediate(factory->empty_fixed_array()));
1482   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
1483   __ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx);
1484 
1485   // Set the value.
1486   __ mov(FieldOperand(eax, JSValue::kValueOffset), ebx);
1487 
1488   // Ensure the object is fully initialized.
1489   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
1490 
1491   // We're done. Return.
1492   __ ret(0);
1493 
1494   // The argument was not found in the number to string cache. Check
1495   // if it's a string already before calling the conversion builtin.
1496   Label convert_argument;
1497   __ bind(&not_cached);
1498   STATIC_ASSERT(kSmiTag == 0);
1499   __ JumpIfSmi(eax, &convert_argument);
1500   Condition is_string = masm->IsObjectStringType(eax, ebx, ecx);
1501   __ j(NegateCondition(is_string), &convert_argument);
1502   __ mov(ebx, eax);
1503   __ IncrementCounter(counters->string_ctor_string_value(), 1);
1504   __ jmp(&argument_is_string);
1505 
1506   // Invoke the conversion builtin and put the result into ebx.
1507   __ bind(&convert_argument);
1508   __ IncrementCounter(counters->string_ctor_conversions(), 1);
1509   {
1510     FrameScope scope(masm, StackFrame::INTERNAL);
1511     __ push(edi);  // Preserve the function.
1512     __ push(eax);
1513     __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
1514     __ pop(edi);
1515   }
1516   __ mov(ebx, eax);
1517   __ jmp(&argument_is_string);
1518 
1519   // Load the empty string into ebx, remove the receiver from the
1520   // stack, and jump back to the case where the argument is a string.
1521   __ bind(&no_arguments);
1522   __ Set(ebx, Immediate(factory->empty_string()));
1523   __ pop(ecx);
1524   __ lea(esp, Operand(esp, kPointerSize));
1525   __ push(ecx);
1526   __ jmp(&argument_is_string);
1527 
1528   // At this point the argument is already a string. Call runtime to
1529   // create a string wrapper.
1530   __ bind(&gc_required);
1531   __ IncrementCounter(counters->string_ctor_gc_required(), 1);
1532   {
1533     FrameScope scope(masm, StackFrame::INTERNAL);
1534     __ push(ebx);
1535     __ CallRuntime(Runtime::kNewStringWrapper, 1);
1536   }
1537   __ ret(0);
1538 }
1539 
1540 
EnterArgumentsAdaptorFrame(MacroAssembler * masm)1541 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1542   __ push(ebp);
1543   __ mov(ebp, esp);
1544 
1545   // Store the arguments adaptor context sentinel.
1546   __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1547 
1548   // Push the function on the stack.
1549   __ push(edi);
1550 
1551   // Preserve the number of arguments on the stack. Must preserve eax,
1552   // ebx and ecx because these registers are used when copying the
1553   // arguments and the receiver.
1554   STATIC_ASSERT(kSmiTagSize == 1);
1555   __ lea(edi, Operand(eax, eax, times_1, kSmiTag));
1556   __ push(edi);
1557 }
1558 
1559 
LeaveArgumentsAdaptorFrame(MacroAssembler * masm)1560 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1561   // Retrieve the number of arguments from the stack.
1562   __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1563 
1564   // Leave the frame.
1565   __ leave();
1566 
1567   // Remove caller arguments from the stack.
1568   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
1569   __ pop(ecx);
1570   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
1571   __ push(ecx);
1572 }
1573 
1574 
Generate_ArgumentsAdaptorTrampoline(MacroAssembler * masm)1575 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1576   // ----------- S t a t e -------------
1577   //  -- eax : actual number of arguments
1578   //  -- ebx : expected number of arguments
1579   //  -- ecx : call kind information
1580   //  -- edx : code entry to call
1581   // -----------------------------------
1582 
1583   Label invoke, dont_adapt_arguments;
1584   __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
1585 
1586   Label enough, too_few;
1587   __ cmp(eax, ebx);
1588   __ j(less, &too_few);
1589   __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
1590   __ j(equal, &dont_adapt_arguments);
1591 
1592   {  // Enough parameters: Actual >= expected.
1593     __ bind(&enough);
1594     EnterArgumentsAdaptorFrame(masm);
1595 
1596     // Copy receiver and all expected arguments.
1597     const int offset = StandardFrameConstants::kCallerSPOffset;
1598     __ lea(eax, Operand(ebp, eax, times_4, offset));
1599     __ mov(edi, -1);  // account for receiver
1600 
1601     Label copy;
1602     __ bind(&copy);
1603     __ inc(edi);
1604     __ push(Operand(eax, 0));
1605     __ sub(eax, Immediate(kPointerSize));
1606     __ cmp(edi, ebx);
1607     __ j(less, &copy);
1608     __ jmp(&invoke);
1609   }
1610 
1611   {  // Too few parameters: Actual < expected.
1612     __ bind(&too_few);
1613     EnterArgumentsAdaptorFrame(masm);
1614 
1615     // Copy receiver and all actual arguments.
1616     const int offset = StandardFrameConstants::kCallerSPOffset;
1617     __ lea(edi, Operand(ebp, eax, times_4, offset));
1618     // ebx = expected - actual.
1619     __ sub(ebx, eax);
1620     // eax = -actual - 1
1621     __ neg(eax);
1622     __ sub(eax, Immediate(1));
1623 
1624     Label copy;
1625     __ bind(&copy);
1626     __ inc(eax);
1627     __ push(Operand(edi, 0));
1628     __ sub(edi, Immediate(kPointerSize));
1629     __ test(eax, eax);
1630     __ j(not_zero, &copy);
1631 
1632     // Fill remaining expected arguments with undefined values.
1633     Label fill;
1634     __ bind(&fill);
1635     __ inc(eax);
1636     __ push(Immediate(masm->isolate()->factory()->undefined_value()));
1637     __ cmp(eax, ebx);
1638     __ j(less, &fill);
1639   }
1640 
1641   // Call the entry point.
1642   __ bind(&invoke);
1643   // Restore function pointer.
1644   __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1645   __ call(edx);
1646 
1647   // Store offset of return address for deoptimizer.
1648   masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1649 
1650   // Leave frame and return.
1651   LeaveArgumentsAdaptorFrame(masm);
1652   __ ret(0);
1653 
1654   // -------------------------------------------
1655   // Dont adapt arguments.
1656   // -------------------------------------------
1657   __ bind(&dont_adapt_arguments);
1658   __ jmp(edx);
1659 }
1660 
1661 
Generate_OnStackReplacement(MacroAssembler * masm)1662 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1663   CpuFeatures::TryForceFeatureScope scope(SSE2);
1664   if (!CpuFeatures::IsSupported(SSE2) && FLAG_debug_code) {
1665     __ Abort("Unreachable code: Cannot optimize without SSE2 support.");
1666     return;
1667   }
1668 
1669   // Get the loop depth of the stack guard check. This is recorded in
1670   // a test(eax, depth) instruction right after the call.
1671   Label stack_check;
1672   __ mov(ebx, Operand(esp, 0));  // return address
1673   if (FLAG_debug_code) {
1674     __ cmpb(Operand(ebx, 0), Assembler::kTestAlByte);
1675     __ Assert(equal, "test eax instruction not found after loop stack check");
1676   }
1677   __ movzx_b(ebx, Operand(ebx, 1));  // depth
1678 
1679   // Get the loop nesting level at which we allow OSR from the
1680   // unoptimized code and check if we want to do OSR yet. If not we
1681   // should perform a stack guard check so we can get interrupts while
1682   // waiting for on-stack replacement.
1683   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1684   __ mov(ecx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
1685   __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kCodeOffset));
1686   __ cmpb(ebx, FieldOperand(ecx, Code::kAllowOSRAtLoopNestingLevelOffset));
1687   __ j(greater, &stack_check);
1688 
1689   // Pass the function to optimize as the argument to the on-stack
1690   // replacement runtime function.
1691   {
1692     FrameScope scope(masm, StackFrame::INTERNAL);
1693     __ push(eax);
1694     __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1695   }
1696 
1697   // If the result was -1 it means that we couldn't optimize the
1698   // function. Just return and continue in the unoptimized version.
1699   Label skip;
1700   __ cmp(eax, Immediate(Smi::FromInt(-1)));
1701   __ j(not_equal, &skip, Label::kNear);
1702   __ ret(0);
1703 
1704   // Insert a stack guard check so that if we decide not to perform
1705   // on-stack replacement right away, the function calling this stub can
1706   // still be interrupted.
1707   __ bind(&stack_check);
1708   Label ok;
1709   ExternalReference stack_limit =
1710       ExternalReference::address_of_stack_limit(masm->isolate());
1711   __ cmp(esp, Operand::StaticVariable(stack_limit));
1712   __ j(above_equal, &ok, Label::kNear);
1713   StackCheckStub stub;
1714   __ TailCallStub(&stub);
1715   if (FLAG_debug_code) {
1716     __ Abort("Unreachable code: returned from tail call.");
1717   }
1718   __ bind(&ok);
1719   __ ret(0);
1720 
1721   __ bind(&skip);
1722   // Untag the AST id and push it on the stack.
1723   __ SmiUntag(eax);
1724   __ push(eax);
1725 
1726   // Generate the code for doing the frame-to-frame translation using
1727   // the deoptimizer infrastructure.
1728   Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
1729   generator.Generate();
1730 }
1731 
1732 
1733 #undef __
1734 }
1735 }  // namespace v8::internal
1736 
1737 #endif  // V8_TARGET_ARCH_IA32
1738