• Home
Name
Date
Size
#Lines
LOC

..--

BlocksRuntime/03-May-2024-991561

cmake/03-May-2024-9171

lib/03-May-2024-9,2024,617

make/03-May-2024-784408

test/03-May-2024-100,41895,567

www/03-May-2024-234185

.gitignoreD03-May-202425 54

Android.mkD03-May-20242.5 KiB9466

CMakeLists.txtD03-May-20241.7 KiB5642

CREDITS.TXTD03-May-2024759 2217

LICENSE.TXTD03-May-20242.8 KiB6449

MakefileD03-May-20247.4 KiB238167

README.txtD03-May-202414 KiB332259

RuntimeDoc.rstD03-May-20247.6 KiB125103

README.txt

1 Compiler-RT
2 ================================
3 
4 This directory and its subdirectories contain source code for the compiler
5 support routines.
6 
7 Compiler-RT is open source software. You may freely distribute it under the
8 terms of the license agreement found in LICENSE.txt.
9 
10 ================================
11 
12 This is a replacement library for libgcc.  Each function is contained
13 in its own file.  Each function has a corresponding unit test under
14 test/Unit.
15 
16 A rudimentary script to test each file is in the file called
17 test/Unit/test.
18 
19 Here is the specification for this library:
20 
21 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22 
23 Here is a synopsis of the contents of this library:
24 
25 typedef      int si_int;
26 typedef unsigned su_int;
27 
28 typedef          long long di_int;
29 typedef unsigned long long du_int;
30 
31 // Integral bit manipulation
32 
33 di_int __ashldi3(di_int a, si_int b);      // a << b
34 ti_int __ashlti3(ti_int a, si_int b);      // a << b
35 
36 di_int __ashrdi3(di_int a, si_int b);      // a >> b  arithmetic (sign fill)
37 ti_int __ashrti3(ti_int a, si_int b);      // a >> b  arithmetic (sign fill)
38 di_int __lshrdi3(di_int a, si_int b);      // a >> b  logical    (zero fill)
39 ti_int __lshrti3(ti_int a, si_int b);      // a >> b  logical    (zero fill)
40 
41 si_int __clzsi2(si_int a);  // count leading zeros
42 si_int __clzdi2(di_int a);  // count leading zeros
43 si_int __clzti2(ti_int a);  // count leading zeros
44 si_int __ctzsi2(si_int a);  // count trailing zeros
45 si_int __ctzdi2(di_int a);  // count trailing zeros
46 si_int __ctzti2(ti_int a);  // count trailing zeros
47 
48 si_int __ffsdi2(di_int a);  // find least significant 1 bit
49 si_int __ffsti2(ti_int a);  // find least significant 1 bit
50 
51 si_int __paritysi2(si_int a);  // bit parity
52 si_int __paritydi2(di_int a);  // bit parity
53 si_int __parityti2(ti_int a);  // bit parity
54 
55 si_int __popcountsi2(si_int a);  // bit population
56 si_int __popcountdi2(di_int a);  // bit population
57 si_int __popcountti2(ti_int a);  // bit population
58 
59 uint32_t __bswapsi2(uint32_t a);   // a byteswapped, arm only
60 uint64_t __bswapdi2(uint64_t a);   // a byteswapped, arm only
61 
62 // Integral arithmetic
63 
64 di_int __negdi2    (di_int a);                         // -a
65 ti_int __negti2    (ti_int a);                         // -a
66 di_int __muldi3    (di_int a, di_int b);               // a * b
67 ti_int __multi3    (ti_int a, ti_int b);               // a * b
68 si_int __divsi3    (si_int a, si_int b);               // a / b   signed
69 di_int __divdi3    (di_int a, di_int b);               // a / b   signed
70 ti_int __divti3    (ti_int a, ti_int b);               // a / b   signed
71 su_int __udivsi3   (su_int n, su_int d);               // a / b   unsigned
72 du_int __udivdi3   (du_int a, du_int b);               // a / b   unsigned
73 tu_int __udivti3   (tu_int a, tu_int b);               // a / b   unsigned
74 si_int __modsi3    (si_int a, si_int b);               // a % b   signed
75 di_int __moddi3    (di_int a, di_int b);               // a % b   signed
76 ti_int __modti3    (ti_int a, ti_int b);               // a % b   signed
77 su_int __umodsi3   (su_int a, su_int b);               // a % b   unsigned
78 du_int __umoddi3   (du_int a, du_int b);               // a % b   unsigned
79 tu_int __umodti3   (tu_int a, tu_int b);               // a % b   unsigned
80 du_int __udivmoddi4(du_int a, du_int b, du_int* rem);  // a / b, *rem = a % b
81 tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);  // a / b, *rem = a % b
82 
83 //  Integral arithmetic with trapping overflow
84 
85 si_int __absvsi2(si_int a);           // abs(a)
86 di_int __absvdi2(di_int a);           // abs(a)
87 ti_int __absvti2(ti_int a);           // abs(a)
88 
89 si_int __negvsi2(si_int a);           // -a
90 di_int __negvdi2(di_int a);           // -a
91 ti_int __negvti2(ti_int a);           // -a
92 
93 si_int __addvsi3(si_int a, si_int b);  // a + b
94 di_int __addvdi3(di_int a, di_int b);  // a + b
95 ti_int __addvti3(ti_int a, ti_int b);  // a + b
96 
97 si_int __subvsi3(si_int a, si_int b);  // a - b
98 di_int __subvdi3(di_int a, di_int b);  // a - b
99 ti_int __subvti3(ti_int a, ti_int b);  // a - b
100 
101 si_int __mulvsi3(si_int a, si_int b);  // a * b
102 di_int __mulvdi3(di_int a, di_int b);  // a * b
103 ti_int __mulvti3(ti_int a, ti_int b);  // a * b
104 
105 //  Integral comparison: a  < b -> 0
106 //                       a == b -> 1
107 //                       a  > b -> 2
108 
109 si_int __cmpdi2 (di_int a, di_int b);
110 si_int __cmpti2 (ti_int a, ti_int b);
111 si_int __ucmpdi2(du_int a, du_int b);
112 si_int __ucmpti2(tu_int a, tu_int b);
113 
114 //  Integral / floating point conversion
115 
116 di_int __fixsfdi(      float a);
117 di_int __fixdfdi(     double a);
118 di_int __fixxfdi(long double a);
119 
120 ti_int __fixsfti(      float a);
121 ti_int __fixdfti(     double a);
122 ti_int __fixxfti(long double a);
123 uint64_t __fixtfdi(long double input);  // ppc only, doesn't match documentation
124 
125 su_int __fixunssfsi(      float a);
126 su_int __fixunsdfsi(     double a);
127 su_int __fixunsxfsi(long double a);
128 
129 du_int __fixunssfdi(      float a);
130 du_int __fixunsdfdi(     double a);
131 du_int __fixunsxfdi(long double a);
132 
133 tu_int __fixunssfti(      float a);
134 tu_int __fixunsdfti(     double a);
135 tu_int __fixunsxfti(long double a);
136 uint64_t __fixunstfdi(long double input);  // ppc only
137 
138 float       __floatdisf(di_int a);
139 double      __floatdidf(di_int a);
140 long double __floatdixf(di_int a);
141 long double __floatditf(int64_t a);        // ppc only
142 
143 float       __floattisf(ti_int a);
144 double      __floattidf(ti_int a);
145 long double __floattixf(ti_int a);
146 
147 float       __floatundisf(du_int a);
148 double      __floatundidf(du_int a);
149 long double __floatundixf(du_int a);
150 long double __floatunditf(uint64_t a);     // ppc only
151 
152 float       __floatuntisf(tu_int a);
153 double      __floatuntidf(tu_int a);
154 long double __floatuntixf(tu_int a);
155 
156 //  Floating point raised to integer power
157 
158 float       __powisf2(      float a, si_int b);  // a ^ b
159 double      __powidf2(     double a, si_int b);  // a ^ b
160 long double __powixf2(long double a, si_int b);  // a ^ b
161 long double __powitf2(long double a, si_int b);  // ppc only, a ^ b
162 
163 //  Complex arithmetic
164 
165 //  (a + ib) * (c + id)
166 
167       float _Complex __mulsc3( float a,  float b,  float c,  float d);
168      double _Complex __muldc3(double a, double b, double c, double d);
169 long double _Complex __mulxc3(long double a, long double b,
170                               long double c, long double d);
171 long double _Complex __multc3(long double a, long double b,
172                               long double c, long double d); // ppc only
173 
174 //  (a + ib) / (c + id)
175 
176       float _Complex __divsc3( float a,  float b,  float c,  float d);
177      double _Complex __divdc3(double a, double b, double c, double d);
178 long double _Complex __divxc3(long double a, long double b,
179                               long double c, long double d);
180 long double _Complex __divtc3(long double a, long double b,
181                               long double c, long double d);  // ppc only
182 
183 
184 //         Runtime support
185 
186 // __clear_cache() is used to tell process that new instructions have been
187 // written to an address range.  Necessary on processors that do not have
188 // a unified instuction and data cache.
189 void __clear_cache(void* start, void* end);
190 
191 // __enable_execute_stack() is used with nested functions when a trampoline
192 // function is written onto the stack and that page range needs to be made
193 // executable.
194 void __enable_execute_stack(void* addr);
195 
196 // __gcc_personality_v0() is normally only called by the system unwinder.
197 // C code (as opposed to C++) normally does not need a personality function
198 // because there are no catch clauses or destructors to be run.  But there
199 // is a C language extension __attribute__((cleanup(func))) which marks local
200 // variables as needing the cleanup function "func" to be run when the
201 // variable goes out of scope.  That includes when an exception is thrown,
202 // so a personality handler is needed.
203 _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
204          uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
205          _Unwind_Context_t context);
206 
207 // for use with some implementations of assert() in <assert.h>
208 void __eprintf(const char* format, const char* assertion_expression,
209 				const char* line, const char* file);
210 
211 
212 
213 //   Power PC specific functions
214 
215 // There is no C interface to the saveFP/restFP functions.  They are helper
216 // functions called by the prolog and epilog of functions that need to save
217 // a number of non-volatile float point registers.
218 saveFP
219 restFP
220 
221 // PowerPC has a standard template for trampoline functions.  This function
222 // generates a custom trampoline function with the specific realFunc
223 // and localsPtr values.
224 void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
225                                 const void* realFunc, void* localsPtr);
226 
227 // adds two 128-bit double-double precision values ( x + y )
228 long double __gcc_qadd(long double x, long double y);
229 
230 // subtracts two 128-bit double-double precision values ( x - y )
231 long double __gcc_qsub(long double x, long double y);
232 
233 // multiples two 128-bit double-double precision values ( x * y )
234 long double __gcc_qmul(long double x, long double y);
235 
236 // divides two 128-bit double-double precision values ( x / y )
237 long double __gcc_qdiv(long double a, long double b);
238 
239 
240 //    ARM specific functions
241 
242 // There is no C interface to the switch* functions.  These helper functions
243 // are only needed by Thumb1 code for efficient switch table generation.
244 switch16
245 switch32
246 switch8
247 switchu8
248 
249 // There is no C interface to the *_vfp_d8_d15_regs functions.  There are
250 // called in the prolog and epilog of Thumb1 functions.  When the C++ ABI use
251 // SJLJ for exceptions, each function with a catch clause or destuctors needs
252 // to save and restore all registers in it prolog and epliog.  But there is
253 // no way to access vector and high float registers from thumb1 code, so the
254 // compiler must add call outs to these helper functions in the prolog and
255 // epilog.
256 restore_vfp_d8_d15_regs
257 save_vfp_d8_d15_regs
258 
259 
260 // Note: long ago ARM processors did not have floating point hardware support.
261 // Floating point was done in software and floating point parameters were
262 // passed in integer registers.  When hardware support was added for floating
263 // point, new *vfp functions were added to do the same operations but with
264 // floating point parameters in floating point registers.
265 
266 
267 // Undocumented functions
268 
269 float  __addsf3vfp(float a, float b);   // Appears to return a + b
270 double __adddf3vfp(double a, double b); // Appears to return a + b
271 float  __divsf3vfp(float a, float b);   // Appears to return a / b
272 double __divdf3vfp(double a, double b); // Appears to return a / b
273 int    __eqsf2vfp(float a, float b);    // Appears to return  one
274                                         //     iff a == b and neither is NaN.
275 int    __eqdf2vfp(double a, double b);  // Appears to return  one
276                                         //     iff a == b and neither is NaN.
277 double __extendsfdf2vfp(float a);       // Appears to convert from
278                                         //     float to double.
279 int    __fixdfsivfp(double a);          // Appears to convert from
280                                         //     double to int.
281 int    __fixsfsivfp(float a);           // Appears to convert from
282                                         //     float to int.
283 unsigned int __fixunssfsivfp(float a);  // Appears to convert from
284                                         //     float to unsigned int.
285 unsigned int __fixunsdfsivfp(double a); // Appears to convert from
286                                         //     double to unsigned int.
287 double __floatsidfvfp(int a);           // Appears to convert from
288                                         //     int to double.
289 float __floatsisfvfp(int a);            // Appears to convert from
290                                         //     int to float.
291 double __floatunssidfvfp(unsigned int a); // Appears to convert from
292                                         //     unisgned int to double.
293 float __floatunssisfvfp(unsigned int a); // Appears to convert from
294                                         //     unisgned int to float.
295 int __gedf2vfp(double a, double b);     // Appears to return __gedf2
296                                         //     (a >= b)
297 int __gesf2vfp(float a, float b);       // Appears to return __gesf2
298                                         //     (a >= b)
299 int __gtdf2vfp(double a, double b);     // Appears to return __gtdf2
300                                         //     (a > b)
301 int __gtsf2vfp(float a, float b);       // Appears to return __gtsf2
302                                         //     (a > b)
303 int __ledf2vfp(double a, double b);     // Appears to return __ledf2
304                                         //     (a <= b)
305 int __lesf2vfp(float a, float b);       // Appears to return __lesf2
306                                         //     (a <= b)
307 int __ltdf2vfp(double a, double b);     // Appears to return __ltdf2
308                                         //     (a < b)
309 int __ltsf2vfp(float a, float b);       // Appears to return __ltsf2
310                                         //     (a < b)
311 double __muldf3vfp(double a, double b); // Appears to return a * b
312 float __mulsf3vfp(float a, float b);    // Appears to return a * b
313 int __nedf2vfp(double a, double b);     // Appears to return __nedf2
314                                         //     (a != b)
315 double __negdf2vfp(double a);           // Appears to return -a
316 float __negsf2vfp(float a);             // Appears to return -a
317 float __negsf2vfp(float a);             // Appears to return -a
318 double __subdf3vfp(double a, double b); // Appears to return a - b
319 float __subsf3vfp(float a, float b);    // Appears to return a - b
320 float __truncdfsf2vfp(double a);        // Appears to convert from
321                                         //     double to float.
322 int __unorddf2vfp(double a, double b);  // Appears to return __unorddf2
323 int __unordsf2vfp(float a, float b);    // Appears to return __unordsf2
324 
325 
326 Preconditions are listed for each function at the definition when there are any.
327 Any preconditions reflect the specification at
328 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
329 
330 Assumptions are listed in "int_lib.h", and in individual files.  Where possible
331 assumptions are checked at compile time.
332