page.title=Implementing In-app Billing (IAB Version 2) excludeFromSuggestions=true @jd:body
This document helps you implement In-app Billing Version 2 by stepping through the primary implementation tasks, using the sample application as an example.
Before you implement in-app billing in your own application, be sure that you read Overview of In-app Billing Version 2 and Security and Design. These documents provide background information that will make it easier for you to implement in-app billing.
To implement in-app billing in your application, you need to do the following:
MarketBillingService
so your application can send billing requests and receive
billing responses from Google Play.The in-app billing sample application shows you how to perform several tasks that are common to all in-app billing implementations, including:
The sample application includes an application file (Dungeons.java
), the AIDL file
for the MarketBillingService
(IMarketBillingService.aidl
), and several
classes that demonstrate in-app billing messaging. It also includes a class that demonstrates basic
security tasks, such as signature verification.
Table 1 lists the source files that are included with the sample application.
File | Description |
---|---|
IMarketBillingService.aidl | Android Interface Definition Library (AIDL) file that defines the IPC interface to Google
Play's in-app billing service (MarketBillingService ). |
Dungeons.java | Sample application file that provides a UI for making purchases and displaying purchase history. |
PurchaseDatabase.java | A local database for storing purchase information. |
BillingReceiver.java | A {@link android.content.BroadcastReceiver} that receives asynchronous response messages
(broadcast intents) from Google Play. Forwards all messages to the
BillingService . |
BillingService.java | A {@link android.app.Service} that sends messages to Google Play on behalf of the
application by connecting (binding) to the MarketBillingService . |
ResponseHandler.java | A {@link android.os.Handler} that contains methods for updating the purchases database and the UI. |
PurchaseObserver.java | An abstract class for observing changes related to purchases. |
Security.java | Provides various security-related methods. |
Consts.java | Defines various Google Play constants and sample application constants. All constants that are defined by Google Play must be defined the same way in your application. |
Base64.java and Base64DecoderException.java | Provides conversion services from binary to Base64 encoding. The Security class
relies on these utility classes. |
The in-app billing sample application is available as a downloadable component of the Android SDK. To download the sample application component, launch the Android SDK Manager and then select the Google Market Billing package component (see figure 1), and click Install Selected to begin the download.
When the download is complete, the Android SDK Manager saves the component into the following directory:
<sdk>/extras/google/market_billing/
If you want to see an end-to-end demonstration of in-app billing before you integrate in-app billing into your own application, you can build and run the sample application. Building and running the sample application involves three tasks:
Note: Building and running the sample application is necessary only if you want to see a demonstration of in-app billing. If you do not want to run the sample application, you can skip to the next section, Adding the AIDL file to your project.
Before you can run the sample application, you need to configure it and build it by doing the following:
This enables the application to verify the signature of the transaction information that is returned from Google Play. To add your public key to the sample application code, do the following:
src/com/example/dungeons/Security.java
in the editor of your choice.
You can find this file in the sample application's project folder.
String base64EncodedPublicKey = "your public key here";
The current package name is com.example.dungeons
. Google Play does not let
you upload applications with package names that contain com.example
, so you must
change the package name to something else.
To learn how to build and sign applications, see Building and Running.
After you build a release version of the sample application and sign it, you need to upload it as a draft to the Google Play Developer Console. You also need to create a product list for the in-app items that are available for purchase in the sample application. The following instructions show you how to do this.
Do not publish the sample application; leave it as an unpublished draft application. The sample application is for demonstration purposes only and should not be made publicly available on Google Play. To learn how to upload an application to Google Play, see Uploading applications.
The sample application lets you purchase two items: a two-handed sword
(sword_001
) and a potion (potion_001
). We recommend that you set up
your product list so that sword_001
has a purchase type of "Managed per user
account" and potion_001
has a purchase type of "Unmanaged" so you can see how these
two purchase types behave. To learn how to set up a product list, see Creating a Product
List.
Note: You must publish the items in your product
list (sword_001
and potion_001
) even though you are not publishing the
sample application. Also, you must have a Google Wallet merchant account to add items to the
sample application's product list.
You cannot run the sample application in the emulator. You must install the sample application onto a device to run it. To run the sample application, do the following:
You cannot purchase items from yourself (Google Wallet prohibits this), so you need to create at least one test account that you can use to purchase items in the sample application. To learn how to set up a test account, see Setting up Test Accounts.
If your device is running Android 3.0, in-app billing requires version 5.0.12 (or higher) of the MyApps application. If your device is running any other version of Android, in-app billing requires version 2.3.4 (or higher) of the Google Play application. To learn how to check the version of the Google Play application, see Updating Google Play.
Even though you uploaded the application to Google Play, the application is not published, so you cannot download it from Google Play to a device. Instead, you must install the application onto your device. To learn how to install an application onto a device, see Running on a device.
The primary account on your device must be one of the test accounts that you registered on the Google Play Developer Console. If the primary account on your device is not a test account, you must do a factory reset of the device and then sign in with one of your test accounts. To perform a factory reset, do the following:
When you use a test account to purchase items, the test account is billed through Google Wallet and your Google Wallet merchant account receives a payout for the purchase. Therefore, you may want to refund purchases that are made with test accounts, otherwise the purchases will show up as actual payouts to your merchant account.
Note: Debug log messages are turned off by default in the
sample application. You can turn them on by setting the variable DEBUG
to true
in the Consts.java
file.
The sample application contains an Android Interface Definition Language (AIDL) file, which
defines the interface to Google Play's in-app billing service
(MarketBillingService
). When you add this file to your project, the Android build
environment creates an interface file (IMarketBillingService.java
). You can then use
this interface to make billing requests by invoking IPC method calls.
If you are using the ADT plug-in with Eclipse, you can just add this file to your
/src
directory. Eclipse will automatically generate the interface file when you build
your project (which should happen immediately). If you are not using the ADT plug-in, you can put
the AIDL file into your project and use the Ant tool to build your project so that the
IMarketBillingService.java
file gets generated.
To add the IMarketBillingService.aidl
file to your project, do the following:
/src
directory:
com/android/vending/billing/
IMarketBillingService.aidl
file into the
sample/src/com/android/vending/billing/
directory.You should now find a generated interface file named IMarketBillingService.java
in
the gen
folder of your project.
In-app billing relies on the Google Play application, which handles all communication between
your application and the Google Play server. To use the Google Play application, your
application must request the proper permission. You can do this by adding the
com.android.vending.BILLING
permission to your AndroidManifest.xml file. If your
application does not declare the in-app billing permission, but attempts to send billing requests,
Google Play will refuse the requests and respond with a RESULT_DEVELOPER_ERROR
response code.
In addition to the billing permission, you need to declare the {@link
android.content.BroadcastReceiver} that you will use to receive asynchronous response messages
(broadcast intents) from Google Play, and you need to declare the {@link android.app.Service}
that you will use to bind with the IMarketBillingService
and send messages to Google
Play. You must also declare intent filters for the {@link
android.content.BroadcastReceiver} so that the Android system knows how to handle the broadcast
intents that are sent from the Google Play application.
For example, here is how the in-app billing sample application declares the billing permission,
the {@link android.content.BroadcastReceiver}, the {@link android.app.Service}, and the intent
filters. In the sample application, BillingReceiver
is the {@link
android.content.BroadcastReceiver} that handles broadcast intents from the Google Play
application and BillingService
is the {@link android.app.Service} that sends requests
to the Google Play application.
<?xml version="1.0" encoding="utf-8"?> <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.example.dungeons" android:versionCode="1" android:versionName="1.0"> <uses-permission android:name="com.android.vending.BILLING" /> <application android:icon="@drawable/icon" android:label="@string/app_name"> <activity android:name=".Dungeons" android:label="@string/app_name"> <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> <service android:name="BillingService" /> <receiver android:name="BillingReceiver"> <intent-filter> <action android:name="com.android.vending.billing.IN_APP_NOTIFY" /> <action android:name="com.android.vending.billing.RESPONSE_CODE" /> <action android:name="com.android.vending.billing.PURCHASE_STATE_CHANGED" /> </intent-filter> </receiver> </application> </manifest>
Your application must have a local {@link android.app.Service} to facilitate messaging between your application and Google Play. At a minimum, this service must do the following:
MarketBillingService
.
CHECK_BILLING_SUPPORTED
requestsREQUEST_PURCHASE
requestsGET_PURCHASE_INFORMATION
requestsCONFIRM_NOTIFICATIONS
requestsRESTORE_TRANSACTIONS
requestsBinding to the MarketBillingService
is relatively easy if you've already added the
IMarketBillingService.aidl
file to your project. The following code sample shows how to
use the {@link android.content.Context#bindService bindService()} method to bind a service to the
MarketBillingService
. You could put this code in your service's {@link
android.app.Activity#onCreate onCreate()} method.
try { boolean bindResult = mContext.bindService( new Intent("com.android.vending.billing.MarketBillingService.BIND"), this, Context.BIND_AUTO_CREATE); if (bindResult) { Log.i(TAG, "Service bind successful."); } else { Log.e(TAG, "Could not bind to the MarketBillingService."); } } catch (SecurityException e) { Log.e(TAG, "Security exception: " + e); }
After you bind to the service, you need to create a reference to the
IMarketBillingService
interface so you can make billing requests via IPC method calls.
The following code shows you how to do this using the {@link
android.content.ServiceConnection#onServiceConnected onServiceConnected()} callback method.
/** * The Android system calls this when we are connected to the MarketBillingService. */ public void onServiceConnected(ComponentName name, IBinder service) { Log.i(TAG, "MarketBillingService connected."); mService = IMarketBillingService.Stub.asInterface(service); }
You can now use the mService
reference to invoke the
sendBillingRequest()
method.
For a complete implementation of a service that binds to the MarketBillingService
,
see the BillingService
class in the sample application.
Now that your {@link android.app.Service} has a reference to the
IMarketBillingService
interface, you can use that reference to send billing requests
(via IPC method calls) to the MarketBillingService
. The
MarketBillingService
IPC interface exposes a single public method
(sendBillingRequest()
), which takes a single {@link android.os.Bundle} parameter. The
Bundle that you deliver with this method specifies the type of request you want to perform, using
various key-value pairs. For instance, one key indicates the type of request you are making, another
indicates the item being purchased, and another identifies your application. The
sendBillingRequest()
method immediately returns a Bundle containing an initial response
code. However, this is not the complete purchase response; the complete response is delivered with
an asynchronous broadcast intent. For more information about the various Bundle keys that are
supported by the MarketBillingService
, see In-app Billing
Service Interface.
You can use the sendBillingRequest()
method to send five types of billing requests.
The five request types are specified using the BILLING_REQUEST
Bundle key. This Bundle
key can have the following five values:
CHECK_BILLING_SUPPORTED
—verifies that the Google Play application
supports in-app billing and the version of the In-app Billing API available.REQUEST_PURCHASE
—sends a purchase request for an in-app item.GET_PURCHASE_INFORMATION
—retrieves transaction information for a purchase
or refund.CONFIRM_NOTIFICATIONS
—acknowledges that you received the transaction
information for a purchase or refund.RESTORE_TRANSACTIONS
—retrieves a user's transaction history for managed
purchases.To make any of these billing requests, you first need to build an initial {@link
android.os.Bundle} that contains the three keys that are required for all requests:
BILLING_REQUEST
, API_VERSION
, and PACKAGE_NAME
. The following
code sample shows you how to create a helper method named makeRequestBundle()
that does
this.
protected Bundle makeRequestBundle(String method) { Bundle request = new Bundle(); request.putString(BILLING_REQUEST, method); request.putInt(API_VERSION, 1); request.putString(PACKAGE_NAME, getPackageName()); return request;
To use this helper method, you pass in a String
that corresponds to one of the five
types of billing requests. The method returns a Bundle that has the three required keys defined. The
following sections show you how to use this helper method when you send a billing request.
Important: You must make all in-app billing requests from your application's main thread.
The following code sample shows how to verify whether the Google Play application supports
in-app billing and confirm what version of the API it supports. In the sample, mService
is an instance of the MarketBillingService
interface.
/** * Request type is CHECK_BILLING_SUPPORTED */ Bundle request = makeRequestBundle("CHECK_BILLING_SUPPORTED"); Bundle response = mService.sendBillingRequest(request); // Do something with this response. }
The makeRequestBundle()
method constructs an initial Bundle, which contains the
three keys that are required for all requests: BILLING_REQUEST
,
API_VERSION
, and PACKAGE_NAME
. If you are offering subscriptions in
your app, set the API_VERSION key to a value of "2", to confirm that In-app Billing v2 is
available. For an example, see
Subscriptions.
The CHECK_BILLING_SUPPORTED
request returns a synchronous {@link
android.os.Bundle} response, which contains only a single key: RESPONSE_CODE
. The
RESPONSE_CODE
key can have the following values:
RESULT_OK
—the spedified version of in-app billing is supported.RESULT_BILLING_UNAVAILABLE
—in-app billing is not available because the API
version you specified is not recognized or the user is not eligible to make in-app purchases (for
example, the user resides in a country that prohibits in-app purchases).RESULT_ERROR
—there was an error connecting with the Google Play
application.RESULT_DEVELOPER_ERROR
—the application is trying to make an in-app billing
request but the application has not declared the com.android.vending.BILLING
permission in its manifest. Can also indicate that an application is not properly signed, or that
you sent a malformed request.The CHECK_BILLING_SUPPORTED
request does not trigger any asynchronous responses
(broadcast intents).
We recommend that you invoke the CHECK_BILLING_SUPPORTED
request within a
RemoteException
block. When your code throws a RemoteException
it
indicates that the remote method call failed, which means that the Google Play application is out
of date and needs to be updated. In this case, you can provide users with an error message that
contains a link to the Updating Google Play
Help topic.
The sample application demonstrates how you can handle this error condition (see
DIALOG_CANNOT_CONNECT_ID
in Dungeons.java
).
To make a purchase request you must do the following:
REQUEST_PURCHASE
request.You must specify four keys in the request {@link android.os.Bundle}. The following code sample
shows how to set these keys and make a purchase request for a single in-app item. In the sample,
mProductId
is the Google Play product ID of an in-app item (which is listed in the
application's product
list), and mService
is an instance of the MarketBillingService
interface.
/** * Request type is REQUEST_PURCHASE */ Bundle request = makeRequestBundle("REQUEST_PURCHASE"); request.putString(ITEM_ID, mProductId); // Request is for a standard in-app product request.putString(ITEM_TYPE, "inapp"); // Note that the developer payload is optional. if (mDeveloperPayload != null) { request.putString(DEVELOPER_PAYLOAD, mDeveloperPayload); } Bundle response = mService.sendBillingRequest(request); // Do something with this response.
The makeRequestBundle()
method constructs an initial Bundle, which contains the
three keys that are required for all requests: BILLING_REQUEST
,
API_VERSION
, and PACKAGE_NAME
. The ITEM_ID
key is then added
to the Bundle prior to invoking the sendBillingRequest()
method.
The request returns a synchronous {@link android.os.Bundle} response, which contains three keys:
RESPONSE_CODE
, PURCHASE_INTENT
, and REQUEST_ID
. The
RESPONSE_CODE
key provides you with the status of the request and the
REQUEST_ID
key provides you with a unique request identifier for the request. The
PURCHASE_INTENT
key provides you with a {@link android.app.PendingIntent}, which you
can use to launch the checkout UI.
How you use the pending intent depends on which version of Android a device is running. On
Android 1.6, you must use the pending intent to launch the checkout UI in its own separate task
instead of your application's activity stack. On Android 2.0 and higher, you can use the pending
intent to launch the checkout UI on your application's activity stack. The following code shows you
how to do this. You can find this code in the PurchaseObserver.java
file in the sample
application.
void startBuyPageActivity(PendingIntent pendingIntent, Intent intent) { if (mStartIntentSender != null) { // This is on Android 2.0 and beyond. The in-app checkout page activity // will be on the activity stack of the application. try { // This implements the method call: // mActivity.startIntentSender(pendingIntent.getIntentSender(), // intent, 0, 0, 0); mStartIntentSenderArgs[0] = pendingIntent.getIntentSender(); mStartIntentSenderArgs[1] = intent; mStartIntentSenderArgs[2] = Integer.valueOf(0); mStartIntentSenderArgs[3] = Integer.valueOf(0); mStartIntentSenderArgs[4] = Integer.valueOf(0); mStartIntentSender.invoke(mActivity, mStartIntentSenderArgs); } catch (Exception e) { Log.e(TAG, "error starting activity", e); } } else { // This is on Android 1.6. The in-app checkout page activity will be on its // own separate activity stack instead of on the activity stack of // the application. try { pendingIntent.send(mActivity, 0 /* code */, intent); } catch (CanceledException e) { Log.e(TAG, "error starting activity", e); } } }
Important: You must launch the pending intent from an activity
context and not an application context. Also, you cannot use the singleTop
launch mode to launch the
pending intent. If you do either of these, the Android system will not attach the pending intent to
your application process. Instead, it will bring Google Play to the foreground, disrupting your
application.
A REQUEST_PURCHASE
request also triggers two asynchronous responses (broadcast
intents). First, the Google Play application sends a RESPONSE_CODE
broadcast intent,
which provides error information about the request. If the request does not generate an
error, the RESPONSE_CODE
broadcast intent returns RESULT_OK
, which
indicates that the request was successfully sent. (To be clear, a RESULT_OK
response
does not indicate that the requested purchase was successful; it indicates that the request was sent
successfully to Google Play.)
Next, when the requested transaction changes state (for example, the purchase is successfully
charged to a credit card or the user cancels the purchase), the Google Play application sends an
IN_APP_NOTIFY
broadcast intent. This message contains a notification ID, which you can
use to retrieve the transaction details for the REQUEST_PURCHASE
request.
Note: The Google Play application also sends
an IN_APP_NOTIFY
for refunds. For more information, see Handling
IN_APP_NOTIFY messages.
Because the purchase process is not instantaneous and can take several seconds (or more), you
must assume that a purchase request is pending from the time you receive a RESULT_OK
message until you receive an IN_APP_NOTIFY
message for the transaction. While the
transaction is pending, the Google Play checkout UI displays an "Authorizing purchase..."
notification; however, this notification is dismissed after 60 seconds and you should not rely on
this notification as your primary means of conveying transaction status to users. Instead, we
recommend that you do the following:
To use these two UI elements, you could invoke a status bar notification with a ticker-text
message that says "Purchase pending" when your application receives a RESULT_OK
message. Then, when your application receives an IN_APP_NOTIFY
message, you could
update the notification with a new message that says "Purchase succeeded" or "Purchase failed." When
a user touches the expanded status bar notification, you could launch the activity that shows the
status of pending and completed in-app purchases.
If you use some other UI technique to inform users about the state of a pending transaction, be sure that your pending status UI does not block your application. For example, you should avoid using a hovering progress wheel to convey the status of a pending transaction because a pending transaction could last a long time, particularly if a device loses network connectivity and cannot receive transaction updates from Google Play.
Important: If a user purchases a managed item, you must prevent
the user from purchasing the item again while the original transaction is pending. If a user
attempts to purchase a managed item twice, and the first transaction is still pending, Google
Play will display an error to the user; however, Google Play will not send an error to your
application notifying you that the second purchase request was canceled. This might cause your
application to get stuck in a pending state while it waits for an IN_APP_NOTIFY
message
for the second purchase request.
You retrieve transaction information in response to an IN_APP_NOTIFY
broadcast
intent. The IN_APP_NOTIFY
message contains a notification ID, which you can use to
retrieve transaction information.
To retrieve transaction information for a purchase or refund you must specify five keys in the
request {@link android.os.Bundle}. The following code sample shows how to set these keys and make
the request. In the sample, mService
is an instance of the
MarketBillingService
interface.
/** * Request type is GET_PURCHASE_INFORMATION */ Bundle request = makeRequestBundle("GET_PURCHASE_INFORMATION"); request.putLong(REQUEST_NONCE, mNonce); request.putStringArray(NOTIFY_IDS, mNotifyIds); Bundle response = mService.sendBillingRequest(request); // Do something with this response. }
The makeRequestBundle()
method constructs an initial Bundle, which contains the
three keys that are required for all requests: BILLING_REQUEST
,
API_VERSION
, and PACKAGE_NAME
. The additional keys are then added to the
bundle prior to invoking the sendBillingRequest()
method. The
REQUEST_NONCE
key contains a cryptographically secure nonce (number used once) that you
must generate. The Google Play application returns this nonce with the
PURCHASE_STATE_CHANGED
broadcast intent so you can verify the integrity of the
transaction information. The NOTIFY_IDS
key contains an array of notification IDs,
which you received in the IN_APP_NOTIFY
broadcast intent.
The request returns a synchronous {@link android.os.Bundle} response, which contains two keys:
RESPONSE_CODE
and REQUEST_ID
. The RESPONSE_CODE
key provides
you with the status of the request and the REQUEST_ID
key provides you with a unique
request identifier for the request.
A GET_PURCHASE_INFORMATION
request also triggers two asynchronous responses
(broadcast intents). First, the Google Play application sends a RESPONSE_CODE
broadcast intent, which provides status and error information about the request. Next, if the
request was successful, the Google Play application sends a PURCHASE_STATE_CHANGED
broadcast intent. This message contains detailed transaction information. The transaction
information is contained in a signed JSON string (unencrypted). The message includes the signature
so you can verify the integrity of the signed string.
To acknowledge that you received transaction information you send a
CONFIRM_NOTIFICATIONS
request. You must specify four keys in the request {@link
android.os.Bundle}. The following code sample shows how to set these keys and make the request. In
the sample, mService
is an instance of the MarketBillingService
interface.
/** * Request type is CONFIRM_NOTIFICATIONS */ Bundle request = makeRequestBundle("CONFIRM_NOTIFICATIONS"); request.putStringArray(NOTIFY_IDS, mNotifyIds); Bundle response = mService.sendBillingRequest(request); // Do something with this response. }
The makeRequestBundle()
method constructs an initial Bundle, which contains the
three keys that are required for all requests: BILLING_REQUEST
,
API_VERSION
, and PACKAGE_NAME
. The additional NOTIFY_IDS
key
is then added to the bundle prior to invoking the sendBillingRequest()
method. The
NOTIFY_IDS
key contains an array of notification IDs, which you received in an
IN_APP_NOTIFY
broadcast intent and also used in a GET_PURCHASE_INFORMATION
request.
The request returns a synchronous {@link android.os.Bundle} response, which contains two keys:
RESPONSE_CODE
and REQUEST_ID
. The RESPONSE_CODE
key provides
you with the status of the request and the REQUEST_ID
key provides you with a unique
request identifier for the request.
A CONFIRM_NOTIFICATIONS
request triggers a single asynchronous response—a
RESPONSE_CODE
broadcast intent. This broadcast intent provides status and error
information about the request.
You must send a confirmation when you receive transaction information from Google Play. If you
don't send a confirmation message, Google Play will continue sending
IN_APP_NOTIFY
messages for the transactions you have not confirmed. Also,
your application must be able to handle IN_APP_NOTIFY
messages that contain multiple
orders.
In addition, as a best practice, you should not send a CONFIRM_NOTIFICATIONS
request
for a purchased item until you have delivered the item to the user. This way, if your application
crashes or something else prevents your application from delivering the product, your application
will still receive an IN_APP_NOTIFY
broadcast intent from Google Play indicating
that you need to deliver the product.
To restore a user's transaction information, you send a RESTORE_TRANSACTIONS
request. You must specify four keys in the request {@link android.os.Bundle}. The following code
sample shows how to set these keys and make the request. In the sample, mService
is an
instance of the MarketBillingService
interface.
/** * Request type is RESTORE_TRANSACTIONS */ Bundle request = makeRequestBundle("RESTORE_TRANSACTIONS"); request.putLong(REQUEST_NONCE, mNonce); Bundle response = mService.sendBillingRequest(request); // Do something with this response. }
The makeRequestBundle()
method constructs an initial Bundle, which contains the
three keys that are required for all requests: BILLING_REQUEST
,
API_VERSION
, and PACKAGE_NAME
. The additional REQUEST_NONCE
key is then added to the bundle prior to invoking the sendBillingRequest()
method. The
REQUEST_NONCE
key contains a cryptographically secure nonce (number used once) that you
must generate. The Google Play application returns this nonce with the transactions information
contained in the PURCHASE_STATE_CHANGED
broadcast intent so you can verify the
integrity of the transaction information.
The request returns a synchronous {@link android.os.Bundle} response, which contains two keys:
RESPONSE_CODE
and REQUEST_ID
. The RESPONSE_CODE
key provides
you with the status of the request and the REQUEST_ID
key provides you with a unique
request identifier for the request.
A RESTORE_TRANSACTIONS
request also triggers two asynchronous responses (broadcast
intents). First, the Google Play application sends a RESPONSE_CODE
broadcast intent,
which provides status and error information about the request. Next, if the request was successful,
the Google Play application sends a PURCHASE_STATE_CHANGED
broadcast intent. This
message contains the detailed transaction information. The transaction information is contained in a
signed JSON string (unencrypted). The message includes the signature so you can verify the integrity
of the signed string.
Note: You should use the RESTORE_TRANSACTIONS
request type only when your application is installed for the first time on a device or when your
application has been removed from a device and reinstalled.
You may also want your {@link android.app.Service} to receive intent messages from your {@link
android.content.BroadcastReceiver}. You can use these intent messages to convey the information that
was sent asynchronously from the Google Play application to your {@link
android.content.BroadcastReceiver}. To see an example of how you can send and receive these intent
messages, see the BillingReceiver.java
and BillingService.java
files in
the sample application. You can use these samples as a basis for your own implementation. However,
if you use any of the code from the sample application, be sure you follow the guidelines in Security and Design.
The Google Play application uses broadcast intents to send asynchronous billing responses to your application. To receive these intent messages, you need to create a {@link android.content.BroadcastReceiver} that can handle the following intents:
This broadcast intent contains a Google Play response code, and is sent after you make an in-app billing request. For more information about the response codes that are sent with this response, see Google Play Response Codes for In-app Billing.
This response indicates that a purchase has changed state, which means a purchase succeeded, was canceled, or was refunded. For more information about notification messages, see In-app Billing Broadcast Intents
This broadcast intent contains detailed information about one or more transactions. For more information about purchase state messages, see In-app Billing Broadcast Intents
Each of these broadcast intents provide intent extras, which your {@link android.content.BroadcastReceiver} must handle. The intent extras are listed in the following table (see table 1).
Intent | Extra | Description |
---|---|---|
com.android.vending.billing.RESPONSE_CODE |
request_id |
A long representing a request ID. A request ID identifies a specific billing
request and is returned by Google Play at the time a request is made. |
com.android.vending.billing.RESPONSE_CODE |
response_code |
An int representing the actual Google Play server response code. |
com.android.vending.billing.IN_APP_NOTIFY |
notification_id |
A String representing the notification ID for a given purchase state change.
Google Play notifies you when there is a purchase state change and the notification includes a
unique notification ID. To get the details of the purchase state change, you send the notification
ID with the GET_PURCHASE_INFORMATION request. |
com.android.vending.billing.PURCHASE_STATE_CHANGED |
inapp_signed_data |
A String representing the signed JSON string. The JSON string contains
information about the billing transaction, such as order number, amount, and the item that was
purchased or refunded. |
com.android.vending.billing.PURCHASE_STATE_CHANGED |
inapp_signature |
A String representing the signature of the JSON string. |
The following code sample shows how to handle these broadcast intents and intent extras within a
{@link android.content.BroadcastReceiver}. The BroadcastReceiver in this case is named
BillingReceiver
, just as it is in the sample application.
public class BillingReceiver extends BroadcastReceiver { private static final String TAG = "BillingReceiver"; // Intent actions that we receive in the BillingReceiver from Google Play. // These are defined by Google Play and cannot be changed. // The sample application defines these in the Consts.java file. public static final String ACTION_NOTIFY = "com.android.vending.billing.IN_APP_NOTIFY"; public static final String ACTION_RESPONSE_CODE = "com.android.vending.billing.RESPONSE_CODE"; public static final String ACTION_PURCHASE_STATE_CHANGED = "com.android.vending.billing.PURCHASE_STATE_CHANGED"; // The intent extras that are passed in an intent from Google Play. // These are defined by Google Play and cannot be changed. // The sample application defines these in the Consts.java file. public static final String NOTIFICATION_ID = "notification_id"; public static final String INAPP_SIGNED_DATA = "inapp_signed_data"; public static final String INAPP_SIGNATURE = "inapp_signature"; public static final String INAPP_REQUEST_ID = "request_id"; public static final String INAPP_RESPONSE_CODE = "response_code"; @Override public void onReceive(Context context, Intent intent) { String action = intent.getAction(); if (ACTION_PURCHASE_STATE_CHANGED.equals(action)) { String signedData = intent.getStringExtra(INAPP_SIGNED_DATA); String signature = intent.getStringExtra(INAPP_SIGNATURE); // Do something with the signedData and the signature. } else if (ACTION_NOTIFY.equals(action)) { String notifyId = intent.getStringExtra(NOTIFICATION_ID); // Do something with the notifyId. } else if (ACTION_RESPONSE_CODE.equals(action)) { long requestId = intent.getLongExtra(INAPP_REQUEST_ID, -1); int responseCodeIndex = intent.getIntExtra(INAPP_RESPONSE_CODE, ResponseCode.RESULT_ERROR.ordinal()); // Do something with the requestId and the responseCodeIndex. } else { Log.w(TAG, "unexpected action: " + action); } } // Perform other processing here, such as forwarding intent messages to your local service. }
In addition to receiving broadcast intents from the Google Play application, your {@link
android.content.BroadcastReceiver} must handle the information it received in the broadcast intents.
Usually, your {@link android.content.BroadcastReceiver} does this by sending the information to a
local service (discussed in the next section). The BillingReceiver.java
file in the
sample application shows you how to do this. You can use this sample as a basis for your own {@link
android.content.BroadcastReceiver}. However, if you use any of the code from the sample application,
be sure you follow the guidelines that are discussed in Security and Design .
To help ensure the integrity of the transaction information that is sent to your application,
Google Play signs the JSON string that is contained in the PURCHASE_STATE_CHANGED
broadcast intent. Google Play uses the private key that is associated with your publisher account
to create this signature. The Developer Console generates an RSA key pair for each publisher account.
You can find the public key portion of this key pair on your account's profile page. It is the same
public key that is used with Google Play licensing.
When Google Play signs a billing response, it includes the signed JSON string (unencrypted) and the signature. When your application receives this signed response you can use the public key portion of your RSA key pair to verify the signature. By performing signature verification you can help detect responses that have been tampered with or that have been spoofed. You can perform this signature verification step in your application; however, if your application connects to a secure remote server then we recommend that you perform the signature verification on that server.
In-app billing also uses nonces (a random number used once) to help verify the integrity of the
purchase information that's returned from Google Play. Your application must generate a nonce and
send it with a GET_PURCHASE_INFORMATION
request and a RESTORE_TRANSACTIONS
request. When Google Play receives the request, it adds the nonce to the JSON string that
contains the transaction information. The JSON string is then signed and returned to your
application. When your application receives the JSON string, you need to verify the nonce as well as
the signature of the JSON string.
For more information about best practices for security and design, see Security and Design.
Google Play's in-app billing service uses two mechanisms to help verify the integrity of the
transaction information you receive from Google Play: nonces and signatures. A nonce (number used
once) is a cryptographically secure number that your application generates and sends with every
GET_PURCHASE_INFORMATION
and RESTORE_TRANSACTIONS
request. The nonce is
returned with the PURCHASE_STATE_CHANGED
broadcast intent, enabling you to verify that
any given PURCHASE_STATE_CHANGED
response corresponds to an actual request that you
made. Every PURCHASE_STATE_CHANGED
broadcast intent also includes a signed JSON string
and a signature, which you can use to verify the integrity of the response.
Your application must provide a way to generate, manage, and verify nonces. The following sample code shows some simple methods you can use to do this.
private static final SecureRandom RANDOM = new SecureRandom(); private static HashSet<Long> sKnownNonces = new HashSet<Long>(); public static long generateNonce() { long nonce = RANDOM.nextLong(); sKnownNonces.add(nonce); return nonce; } public static void removeNonce(long nonce) { sKnownNonces.remove(nonce); } public static boolean isNonceKnown(long nonce) { return sKnownNonces.contains(nonce); }
Your application must also provide a way to verify the signatures that accompany every
PURCHASE_STATE_CHANGED
broadcast intent. The Security.java
file in the
sample application shows you how to do this. If you use this file as a basis for your own security
implementation, be sure to follow the guidelines in Security and Design and
obfuscate your code.
You will need to use your Google Play public key to perform the signature verification. The following procedure shows you how to retrieve Base64-encoded public key from the Google Play Developer Console.
Important: To keep your public key safe from malicious users and hackers, do not embed your public key as an entire literal string. Instead, construct the string at runtime from pieces or use bit manipulation (for example, XOR with some other string) to hide the actual key. The key itself is not secret information, but you do not want to make it easy for a hacker or malicious user to replace the public key with another key.
After you finish adding in-app billing components to your project, you are ready to modify your application's code. For a typical implementation, like the one that is demonstrated in the sample application, this means you need to write code to do the following:
The sample code in Dungeons.java
shows you how to do both of these tasks.
You must set up a database or some other mechanism for storing users' purchase information. The sample application provides an example database (PurchaseDatabase.java); however, the example database has been simplified for clarity and does not exhibit the security best practices that we recommend. If you have a remote server, we recommend that you store purchase information on your server instead of in a local database on a device. For more information about security best practices, see Security and Design.
Note: If you store any purchase information on a device, be sure to
encrypt the data and use a device-specific encryption key. Also, if the purchase type for any of
your items is "unmanaged," we recommend that you back up the purchase information for these items to
a remote server or use Android's data
backup framework to back up the purchase information. Backing up purchase information for
unmanaged items is important because unmanaged items cannot be restored by using the
RESTORE_TRANSACTIONS
request type.
You must provide users with a means for selecting items that they want to purchase. Google
Play provides the checkout user interface (which is where the user provides a form of payment and
approves the purchase), but your application must provide a control (widget) that invokes the
sendBillingRequest()
method when a user selects an item for purchase.
You can render the control and trigger the sendBillingRequest()
method any way you
want. The sample application uses a spinner widget and a button to present items to a user and
trigger a billing request (see Dungeons.java
). The user interface also shows a list of
recently purchased items.