// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // keir@google.com (Keir Mierle) #include "ceres/problem_impl.h" #include #include #include #include #include #include #include "ceres/cost_function.h" #include "ceres/loss_function.h" #include "ceres/map_util.h" #include "ceres/parameter_block.h" #include "ceres/program.h" #include "ceres/residual_block.h" #include "ceres/stl_util.h" #include "ceres/stringprintf.h" #include "glog/logging.h" namespace ceres { namespace internal { typedef map ParameterMap; // Returns true if two regions of memory, a and b, with sizes size_a and size_b // respectively, overlap. static bool RegionsAlias(const double* a, int size_a, const double* b, int size_b) { return (a < b) ? b < (a + size_a) : a < (b + size_b); } static void CheckForNoAliasing(double* existing_block, int existing_block_size, double* new_block, int new_block_size) { CHECK(!RegionsAlias(existing_block, existing_block_size, new_block, new_block_size)) << "Aliasing detected between existing parameter block at memory " << "location " << existing_block << " and has size " << existing_block_size << " with new parameter " << "block that has memory adderss " << new_block << " and would have " << "size " << new_block_size << "."; } static ParameterBlock* InternalAddParameterBlock( double* values, int size, ParameterMap* parameter_map, vector* parameter_blocks) { CHECK(values) << "Null pointer passed to AddParameterBlock for a parameter " << "with size " << size; // Ignore the request if there is a block for the given pointer already. ParameterMap::iterator it = parameter_map->find(values); if (it != parameter_map->end()) { int existing_size = it->second->Size(); CHECK(size == existing_size) << "Tried adding a parameter block with the same double pointer, " << values << ", twice, but with different block sizes. Original " << "size was " << existing_size << " but new size is " << size; return it->second; } // Before adding the parameter block, also check that it doesn't alias any // other parameter blocks. if (!parameter_map->empty()) { ParameterMap::iterator lb = parameter_map->lower_bound(values); // If lb is not the first block, check the previous block for aliasing. if (lb != parameter_map->begin()) { ParameterMap::iterator previous = lb; --previous; CheckForNoAliasing(previous->first, previous->second->Size(), values, size); } // If lb is not off the end, check lb for aliasing. if (lb != parameter_map->end()) { CheckForNoAliasing(lb->first, lb->second->Size(), values, size); } } ParameterBlock* new_parameter_block = new ParameterBlock(values, size); (*parameter_map)[values] = new_parameter_block; parameter_blocks->push_back(new_parameter_block); return new_parameter_block; } ProblemImpl::ProblemImpl() : program_(new internal::Program) {} ProblemImpl::ProblemImpl(const Problem::Options& options) : options_(options), program_(new internal::Program) {} ProblemImpl::~ProblemImpl() { // Collect the unique cost/loss functions and delete the residuals. set cost_functions; set loss_functions; for (int i = 0; i < program_->residual_blocks_.size(); ++i) { ResidualBlock* residual_block = program_->residual_blocks_[i]; // The const casts here are legit, since ResidualBlock holds these // pointers as const pointers but we have ownership of them and // have the right to destroy them when the destructor is called. if (options_.cost_function_ownership == TAKE_OWNERSHIP) { cost_functions.insert( const_cast(residual_block->cost_function())); } if (options_.loss_function_ownership == TAKE_OWNERSHIP) { loss_functions.insert( const_cast(residual_block->loss_function())); } delete residual_block; } // Collect the unique parameterizations and delete the parameters. set local_parameterizations; for (int i = 0; i < program_->parameter_blocks_.size(); ++i) { ParameterBlock* parameter_block = program_->parameter_blocks_[i]; if (options_.local_parameterization_ownership == TAKE_OWNERSHIP) { local_parameterizations.insert(parameter_block->local_parameterization_); } delete parameter_block; } // Delete the owned cost/loss functions and parameterizations. STLDeleteContainerPointers(local_parameterizations.begin(), local_parameterizations.end()); STLDeleteContainerPointers(cost_functions.begin(), cost_functions.end()); STLDeleteContainerPointers(loss_functions.begin(), loss_functions.end()); } const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, const vector& parameter_blocks) { CHECK_NOTNULL(cost_function); CHECK_EQ(parameter_blocks.size(), cost_function->parameter_block_sizes().size()); // Check the sizes match. const vector& parameter_block_sizes = cost_function->parameter_block_sizes(); CHECK_EQ(parameter_block_sizes.size(), parameter_blocks.size()) << "Number of blocks input is different than the number of blocks " << "that the cost function expects."; // Check for duplicate parameter blocks. vector sorted_parameter_blocks(parameter_blocks); sort(sorted_parameter_blocks.begin(), sorted_parameter_blocks.end()); vector::const_iterator duplicate_items = unique(sorted_parameter_blocks.begin(), sorted_parameter_blocks.end()); if (duplicate_items != sorted_parameter_blocks.end()) { string blocks; for (int i = 0; i < parameter_blocks.size(); ++i) { blocks += internal::StringPrintf(" %p ", parameter_blocks[i]); } LOG(FATAL) << "Duplicate parameter blocks in a residual parameter " << "are not allowed. Parameter block pointers: [" << blocks << "]"; } // Add parameter blocks and convert the double*'s to parameter blocks. vector parameter_block_ptrs(parameter_blocks.size()); for (int i = 0; i < parameter_blocks.size(); ++i) { parameter_block_ptrs[i] = InternalAddParameterBlock(parameter_blocks[i], parameter_block_sizes[i], ¶meter_block_map_, &program_->parameter_blocks_); } // Check that the block sizes match the block sizes expected by the // cost_function. for (int i = 0; i < parameter_block_ptrs.size(); ++i) { CHECK_EQ(cost_function->parameter_block_sizes()[i], parameter_block_ptrs[i]->Size()) << "The cost function expects parameter block " << i << " of size " << cost_function->parameter_block_sizes()[i] << " but was given a block of size " << parameter_block_ptrs[i]->Size(); } ResidualBlock* new_residual_block = new ResidualBlock(cost_function, loss_function, parameter_block_ptrs); program_->residual_blocks_.push_back(new_residual_block); return new_residual_block; } // Unfortunately, macros don't help much to reduce this code, and var args don't // work because of the ambiguous case that there is no loss function. const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, double* x0) { vector residual_parameters; residual_parameters.push_back(x0); return AddResidualBlock(cost_function, loss_function, residual_parameters); } const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1) { vector residual_parameters; residual_parameters.push_back(x0); residual_parameters.push_back(x1); return AddResidualBlock(cost_function, loss_function, residual_parameters); } const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2) { vector residual_parameters; residual_parameters.push_back(x0); residual_parameters.push_back(x1); residual_parameters.push_back(x2); return AddResidualBlock(cost_function, loss_function, residual_parameters); } const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3) { vector residual_parameters; residual_parameters.push_back(x0); residual_parameters.push_back(x1); residual_parameters.push_back(x2); residual_parameters.push_back(x3); return AddResidualBlock(cost_function, loss_function, residual_parameters); } const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4) { vector residual_parameters; residual_parameters.push_back(x0); residual_parameters.push_back(x1); residual_parameters.push_back(x2); residual_parameters.push_back(x3); residual_parameters.push_back(x4); return AddResidualBlock(cost_function, loss_function, residual_parameters); } const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4, double* x5) { vector residual_parameters; residual_parameters.push_back(x0); residual_parameters.push_back(x1); residual_parameters.push_back(x2); residual_parameters.push_back(x3); residual_parameters.push_back(x4); residual_parameters.push_back(x5); return AddResidualBlock(cost_function, loss_function, residual_parameters); } const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, double* x6) { vector residual_parameters; residual_parameters.push_back(x0); residual_parameters.push_back(x1); residual_parameters.push_back(x2); residual_parameters.push_back(x3); residual_parameters.push_back(x4); residual_parameters.push_back(x5); residual_parameters.push_back(x6); return AddResidualBlock(cost_function, loss_function, residual_parameters); } const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, double* x6, double* x7) { vector residual_parameters; residual_parameters.push_back(x0); residual_parameters.push_back(x1); residual_parameters.push_back(x2); residual_parameters.push_back(x3); residual_parameters.push_back(x4); residual_parameters.push_back(x5); residual_parameters.push_back(x6); residual_parameters.push_back(x7); return AddResidualBlock(cost_function, loss_function, residual_parameters); } const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, double* x6, double* x7, double* x8) { vector residual_parameters; residual_parameters.push_back(x0); residual_parameters.push_back(x1); residual_parameters.push_back(x2); residual_parameters.push_back(x3); residual_parameters.push_back(x4); residual_parameters.push_back(x5); residual_parameters.push_back(x6); residual_parameters.push_back(x7); residual_parameters.push_back(x8); return AddResidualBlock(cost_function, loss_function, residual_parameters); } const ResidualBlock* ProblemImpl::AddResidualBlock( CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, double* x6, double* x7, double* x8, double* x9) { vector residual_parameters; residual_parameters.push_back(x0); residual_parameters.push_back(x1); residual_parameters.push_back(x2); residual_parameters.push_back(x3); residual_parameters.push_back(x4); residual_parameters.push_back(x5); residual_parameters.push_back(x6); residual_parameters.push_back(x7); residual_parameters.push_back(x8); residual_parameters.push_back(x9); return AddResidualBlock(cost_function, loss_function, residual_parameters); } void ProblemImpl::AddParameterBlock(double* values, int size) { InternalAddParameterBlock(values, size, ¶meter_block_map_, &program_->parameter_blocks_); } void ProblemImpl::AddParameterBlock( double* values, int size, LocalParameterization* local_parameterization) { ParameterBlock* parameter_block = InternalAddParameterBlock(values, size, ¶meter_block_map_, &program_->parameter_blocks_); if (local_parameterization != NULL) { parameter_block->SetParameterization(local_parameterization); } } void ProblemImpl::SetParameterBlockConstant(double* values) { FindOrDie(parameter_block_map_, values)->SetConstant(); } void ProblemImpl::SetParameterBlockVariable(double* values) { FindOrDie(parameter_block_map_, values)->SetVarying(); } void ProblemImpl::SetParameterization( double* values, LocalParameterization* local_parameterization) { FindOrDie(parameter_block_map_, values) ->SetParameterization(local_parameterization); } int ProblemImpl::NumParameterBlocks() const { return program_->NumParameterBlocks(); } int ProblemImpl::NumParameters() const { return program_->NumParameters(); } int ProblemImpl::NumResidualBlocks() const { return program_->NumResidualBlocks(); } int ProblemImpl::NumResiduals() const { return program_->NumResiduals(); } } // namespace internal } // namespace ceres