//===--- Parser.cpp - C Language Family Parser ----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "ParsePragma.h" #include "RAIIObjectsForParser.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/DeclTemplate.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/Scope.h" #include "llvm/Support/raw_ostream.h" using namespace clang; namespace { /// \brief A comment handler that passes comments found by the preprocessor /// to the parser action. class ActionCommentHandler : public CommentHandler { Sema &S; public: explicit ActionCommentHandler(Sema &S) : S(S) { } virtual bool HandleComment(Preprocessor &PP, SourceRange Comment) { S.ActOnComment(Comment); return false; } }; } // end anonymous namespace IdentifierInfo *Parser::getSEHExceptKeyword() { // __except is accepted as a (contextual) keyword if (!Ident__except && (getLangOpts().MicrosoftExt || getLangOpts().Borland)) Ident__except = PP.getIdentifierInfo("__except"); return Ident__except; } Parser::Parser(Preprocessor &pp, Sema &actions, bool skipFunctionBodies) : PP(pp), Actions(actions), Diags(PP.getDiagnostics()), GreaterThanIsOperator(true), ColonIsSacred(false), InMessageExpression(false), TemplateParameterDepth(0), ParsingInObjCContainer(false) { SkipFunctionBodies = pp.isCodeCompletionEnabled() || skipFunctionBodies; Tok.startToken(); Tok.setKind(tok::eof); Actions.CurScope = 0; NumCachedScopes = 0; ParenCount = BracketCount = BraceCount = 0; CurParsedObjCImpl = 0; // Add #pragma handlers. These are removed and destroyed in the // destructor. AlignHandler.reset(new PragmaAlignHandler()); PP.AddPragmaHandler(AlignHandler.get()); GCCVisibilityHandler.reset(new PragmaGCCVisibilityHandler()); PP.AddPragmaHandler("GCC", GCCVisibilityHandler.get()); OptionsHandler.reset(new PragmaOptionsHandler()); PP.AddPragmaHandler(OptionsHandler.get()); PackHandler.reset(new PragmaPackHandler()); PP.AddPragmaHandler(PackHandler.get()); MSStructHandler.reset(new PragmaMSStructHandler()); PP.AddPragmaHandler(MSStructHandler.get()); UnusedHandler.reset(new PragmaUnusedHandler()); PP.AddPragmaHandler(UnusedHandler.get()); WeakHandler.reset(new PragmaWeakHandler()); PP.AddPragmaHandler(WeakHandler.get()); RedefineExtnameHandler.reset(new PragmaRedefineExtnameHandler()); PP.AddPragmaHandler(RedefineExtnameHandler.get()); FPContractHandler.reset(new PragmaFPContractHandler()); PP.AddPragmaHandler("STDC", FPContractHandler.get()); if (getLangOpts().OpenCL) { OpenCLExtensionHandler.reset(new PragmaOpenCLExtensionHandler()); PP.AddPragmaHandler("OPENCL", OpenCLExtensionHandler.get()); PP.AddPragmaHandler("OPENCL", FPContractHandler.get()); } CommentSemaHandler.reset(new ActionCommentHandler(actions)); PP.addCommentHandler(CommentSemaHandler.get()); PP.setCodeCompletionHandler(*this); } DiagnosticBuilder Parser::Diag(SourceLocation Loc, unsigned DiagID) { return Diags.Report(Loc, DiagID); } DiagnosticBuilder Parser::Diag(const Token &Tok, unsigned DiagID) { return Diag(Tok.getLocation(), DiagID); } /// \brief Emits a diagnostic suggesting parentheses surrounding a /// given range. /// /// \param Loc The location where we'll emit the diagnostic. /// \param DK The kind of diagnostic to emit. /// \param ParenRange Source range enclosing code that should be parenthesized. void Parser::SuggestParentheses(SourceLocation Loc, unsigned DK, SourceRange ParenRange) { SourceLocation EndLoc = PP.getLocForEndOfToken(ParenRange.getEnd()); if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { // We can't display the parentheses, so just dig the // warning/error and return. Diag(Loc, DK); return; } Diag(Loc, DK) << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") << FixItHint::CreateInsertion(EndLoc, ")"); } static bool IsCommonTypo(tok::TokenKind ExpectedTok, const Token &Tok) { switch (ExpectedTok) { case tok::semi: return Tok.is(tok::colon) || Tok.is(tok::comma); // : or , for ; default: return false; } } /// ExpectAndConsume - The parser expects that 'ExpectedTok' is next in the /// input. If so, it is consumed and false is returned. /// /// If the input is malformed, this emits the specified diagnostic. Next, if /// SkipToTok is specified, it calls SkipUntil(SkipToTok). Finally, true is /// returned. bool Parser::ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned DiagID, const char *Msg, tok::TokenKind SkipToTok) { if (Tok.is(ExpectedTok) || Tok.is(tok::code_completion)) { ConsumeAnyToken(); return false; } // Detect common single-character typos and resume. if (IsCommonTypo(ExpectedTok, Tok)) { SourceLocation Loc = Tok.getLocation(); Diag(Loc, DiagID) << Msg << FixItHint::CreateReplacement(SourceRange(Loc), getTokenSimpleSpelling(ExpectedTok)); ConsumeAnyToken(); // Pretend there wasn't a problem. return false; } const char *Spelling = 0; SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation); if (EndLoc.isValid() && (Spelling = tok::getTokenSimpleSpelling(ExpectedTok))) { // Show what code to insert to fix this problem. Diag(EndLoc, DiagID) << Msg << FixItHint::CreateInsertion(EndLoc, Spelling); } else Diag(Tok, DiagID) << Msg; if (SkipToTok != tok::unknown) SkipUntil(SkipToTok); return true; } bool Parser::ExpectAndConsumeSemi(unsigned DiagID) { if (Tok.is(tok::semi) || Tok.is(tok::code_completion)) { ConsumeToken(); return false; } if ((Tok.is(tok::r_paren) || Tok.is(tok::r_square)) && NextToken().is(tok::semi)) { Diag(Tok, diag::err_extraneous_token_before_semi) << PP.getSpelling(Tok) << FixItHint::CreateRemoval(Tok.getLocation()); ConsumeAnyToken(); // The ')' or ']'. ConsumeToken(); // The ';'. return false; } return ExpectAndConsume(tok::semi, DiagID); } void Parser::ConsumeExtraSemi(ExtraSemiKind Kind, unsigned TST) { if (!Tok.is(tok::semi)) return; bool HadMultipleSemis = false; SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc = Tok.getLocation(); ConsumeToken(); while ((Tok.is(tok::semi) && !Tok.isAtStartOfLine())) { HadMultipleSemis = true; EndLoc = Tok.getLocation(); ConsumeToken(); } // C++11 allows extra semicolons at namespace scope, but not in any of the // other contexts. if (Kind == OutsideFunction && getLangOpts().CPlusPlus) { if (getLangOpts().CPlusPlus11) Diag(StartLoc, diag::warn_cxx98_compat_top_level_semi) << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); else Diag(StartLoc, diag::ext_extra_semi_cxx11) << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); return; } if (Kind != AfterMemberFunctionDefinition || HadMultipleSemis) Diag(StartLoc, diag::ext_extra_semi) << Kind << DeclSpec::getSpecifierName((DeclSpec::TST)TST) << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); else // A single semicolon is valid after a member function definition. Diag(StartLoc, diag::warn_extra_semi_after_mem_fn_def) << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); } //===----------------------------------------------------------------------===// // Error recovery. //===----------------------------------------------------------------------===// /// SkipUntil - Read tokens until we get to the specified token, then consume /// it (unless DontConsume is true). Because we cannot guarantee that the /// token will ever occur, this skips to the next token, or to some likely /// good stopping point. If StopAtSemi is true, skipping will stop at a ';' /// character. /// /// If SkipUntil finds the specified token, it returns true, otherwise it /// returns false. bool Parser::SkipUntil(ArrayRef Toks, bool StopAtSemi, bool DontConsume, bool StopAtCodeCompletion) { // We always want this function to skip at least one token if the first token // isn't T and if not at EOF. bool isFirstTokenSkipped = true; while (1) { // If we found one of the tokens, stop and return true. for (unsigned i = 0, NumToks = Toks.size(); i != NumToks; ++i) { if (Tok.is(Toks[i])) { if (DontConsume) { // Noop, don't consume the token. } else { ConsumeAnyToken(); } return true; } } switch (Tok.getKind()) { case tok::eof: // Ran out of tokens. return false; case tok::code_completion: if (!StopAtCodeCompletion) ConsumeToken(); return false; case tok::l_paren: // Recursively skip properly-nested parens. ConsumeParen(); SkipUntil(tok::r_paren, false, false, StopAtCodeCompletion); break; case tok::l_square: // Recursively skip properly-nested square brackets. ConsumeBracket(); SkipUntil(tok::r_square, false, false, StopAtCodeCompletion); break; case tok::l_brace: // Recursively skip properly-nested braces. ConsumeBrace(); SkipUntil(tok::r_brace, false, false, StopAtCodeCompletion); break; // Okay, we found a ']' or '}' or ')', which we think should be balanced. // Since the user wasn't looking for this token (if they were, it would // already be handled), this isn't balanced. If there is a LHS token at a // higher level, we will assume that this matches the unbalanced token // and return it. Otherwise, this is a spurious RHS token, which we skip. case tok::r_paren: if (ParenCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeParen(); break; case tok::r_square: if (BracketCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeBracket(); break; case tok::r_brace: if (BraceCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeBrace(); break; case tok::string_literal: case tok::wide_string_literal: case tok::utf8_string_literal: case tok::utf16_string_literal: case tok::utf32_string_literal: ConsumeStringToken(); break; case tok::semi: if (StopAtSemi) return false; // FALL THROUGH. default: // Skip this token. ConsumeToken(); break; } isFirstTokenSkipped = false; } } //===----------------------------------------------------------------------===// // Scope manipulation //===----------------------------------------------------------------------===// /// EnterScope - Start a new scope. void Parser::EnterScope(unsigned ScopeFlags) { if (NumCachedScopes) { Scope *N = ScopeCache[--NumCachedScopes]; N->Init(getCurScope(), ScopeFlags); Actions.CurScope = N; } else { Actions.CurScope = new Scope(getCurScope(), ScopeFlags, Diags); } } /// ExitScope - Pop a scope off the scope stack. void Parser::ExitScope() { assert(getCurScope() && "Scope imbalance!"); // Inform the actions module that this scope is going away if there are any // decls in it. if (!getCurScope()->decl_empty()) Actions.ActOnPopScope(Tok.getLocation(), getCurScope()); Scope *OldScope = getCurScope(); Actions.CurScope = OldScope->getParent(); if (NumCachedScopes == ScopeCacheSize) delete OldScope; else ScopeCache[NumCachedScopes++] = OldScope; } /// Set the flags for the current scope to ScopeFlags. If ManageFlags is false, /// this object does nothing. Parser::ParseScopeFlags::ParseScopeFlags(Parser *Self, unsigned ScopeFlags, bool ManageFlags) : CurScope(ManageFlags ? Self->getCurScope() : 0) { if (CurScope) { OldFlags = CurScope->getFlags(); CurScope->setFlags(ScopeFlags); } } /// Restore the flags for the current scope to what they were before this /// object overrode them. Parser::ParseScopeFlags::~ParseScopeFlags() { if (CurScope) CurScope->setFlags(OldFlags); } //===----------------------------------------------------------------------===// // C99 6.9: External Definitions. //===----------------------------------------------------------------------===// Parser::~Parser() { // If we still have scopes active, delete the scope tree. delete getCurScope(); Actions.CurScope = 0; // Free the scope cache. for (unsigned i = 0, e = NumCachedScopes; i != e; ++i) delete ScopeCache[i]; // Free LateParsedTemplatedFunction nodes. for (LateParsedTemplateMapT::iterator it = LateParsedTemplateMap.begin(); it != LateParsedTemplateMap.end(); ++it) delete it->second; // Remove the pragma handlers we installed. PP.RemovePragmaHandler(AlignHandler.get()); AlignHandler.reset(); PP.RemovePragmaHandler("GCC", GCCVisibilityHandler.get()); GCCVisibilityHandler.reset(); PP.RemovePragmaHandler(OptionsHandler.get()); OptionsHandler.reset(); PP.RemovePragmaHandler(PackHandler.get()); PackHandler.reset(); PP.RemovePragmaHandler(MSStructHandler.get()); MSStructHandler.reset(); PP.RemovePragmaHandler(UnusedHandler.get()); UnusedHandler.reset(); PP.RemovePragmaHandler(WeakHandler.get()); WeakHandler.reset(); PP.RemovePragmaHandler(RedefineExtnameHandler.get()); RedefineExtnameHandler.reset(); if (getLangOpts().OpenCL) { PP.RemovePragmaHandler("OPENCL", OpenCLExtensionHandler.get()); OpenCLExtensionHandler.reset(); PP.RemovePragmaHandler("OPENCL", FPContractHandler.get()); } PP.RemovePragmaHandler("STDC", FPContractHandler.get()); FPContractHandler.reset(); PP.removeCommentHandler(CommentSemaHandler.get()); PP.clearCodeCompletionHandler(); assert(TemplateIds.empty() && "Still alive TemplateIdAnnotations around?"); } /// Initialize - Warm up the parser. /// void Parser::Initialize() { // Create the translation unit scope. Install it as the current scope. assert(getCurScope() == 0 && "A scope is already active?"); EnterScope(Scope::DeclScope); Actions.ActOnTranslationUnitScope(getCurScope()); // Initialization for Objective-C context sensitive keywords recognition. // Referenced in Parser::ParseObjCTypeQualifierList. if (getLangOpts().ObjC1) { ObjCTypeQuals[objc_in] = &PP.getIdentifierTable().get("in"); ObjCTypeQuals[objc_out] = &PP.getIdentifierTable().get("out"); ObjCTypeQuals[objc_inout] = &PP.getIdentifierTable().get("inout"); ObjCTypeQuals[objc_oneway] = &PP.getIdentifierTable().get("oneway"); ObjCTypeQuals[objc_bycopy] = &PP.getIdentifierTable().get("bycopy"); ObjCTypeQuals[objc_byref] = &PP.getIdentifierTable().get("byref"); } Ident_instancetype = 0; Ident_final = 0; Ident_override = 0; Ident_super = &PP.getIdentifierTable().get("super"); if (getLangOpts().AltiVec) { Ident_vector = &PP.getIdentifierTable().get("vector"); Ident_pixel = &PP.getIdentifierTable().get("pixel"); } Ident_introduced = 0; Ident_deprecated = 0; Ident_obsoleted = 0; Ident_unavailable = 0; Ident__except = 0; Ident__exception_code = Ident__exception_info = Ident__abnormal_termination = 0; Ident___exception_code = Ident___exception_info = Ident___abnormal_termination = 0; Ident_GetExceptionCode = Ident_GetExceptionInfo = Ident_AbnormalTermination = 0; if(getLangOpts().Borland) { Ident__exception_info = PP.getIdentifierInfo("_exception_info"); Ident___exception_info = PP.getIdentifierInfo("__exception_info"); Ident_GetExceptionInfo = PP.getIdentifierInfo("GetExceptionInformation"); Ident__exception_code = PP.getIdentifierInfo("_exception_code"); Ident___exception_code = PP.getIdentifierInfo("__exception_code"); Ident_GetExceptionCode = PP.getIdentifierInfo("GetExceptionCode"); Ident__abnormal_termination = PP.getIdentifierInfo("_abnormal_termination"); Ident___abnormal_termination = PP.getIdentifierInfo("__abnormal_termination"); Ident_AbnormalTermination = PP.getIdentifierInfo("AbnormalTermination"); PP.SetPoisonReason(Ident__exception_code,diag::err_seh___except_block); PP.SetPoisonReason(Ident___exception_code,diag::err_seh___except_block); PP.SetPoisonReason(Ident_GetExceptionCode,diag::err_seh___except_block); PP.SetPoisonReason(Ident__exception_info,diag::err_seh___except_filter); PP.SetPoisonReason(Ident___exception_info,diag::err_seh___except_filter); PP.SetPoisonReason(Ident_GetExceptionInfo,diag::err_seh___except_filter); PP.SetPoisonReason(Ident__abnormal_termination,diag::err_seh___finally_block); PP.SetPoisonReason(Ident___abnormal_termination,diag::err_seh___finally_block); PP.SetPoisonReason(Ident_AbnormalTermination,diag::err_seh___finally_block); } Actions.Initialize(); // Prime the lexer look-ahead. ConsumeToken(); } namespace { /// \brief RAIIObject to destroy the contents of a SmallVector of /// TemplateIdAnnotation pointers and clear the vector. class DestroyTemplateIdAnnotationsRAIIObj { SmallVectorImpl &Container; public: DestroyTemplateIdAnnotationsRAIIObj(SmallVectorImpl &Container) : Container(Container) {} ~DestroyTemplateIdAnnotationsRAIIObj() { for (SmallVectorImpl::iterator I = Container.begin(), E = Container.end(); I != E; ++I) (*I)->Destroy(); Container.clear(); } }; } /// ParseTopLevelDecl - Parse one top-level declaration, return whatever the /// action tells us to. This returns true if the EOF was encountered. bool Parser::ParseTopLevelDecl(DeclGroupPtrTy &Result) { DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(TemplateIds); // Skip over the EOF token, flagging end of previous input for incremental // processing if (PP.isIncrementalProcessingEnabled() && Tok.is(tok::eof)) ConsumeToken(); while (Tok.is(tok::annot_pragma_unused)) HandlePragmaUnused(); Result = DeclGroupPtrTy(); if (Tok.is(tok::eof)) { // Late template parsing can begin. if (getLangOpts().DelayedTemplateParsing) Actions.SetLateTemplateParser(LateTemplateParserCallback, this); if (!PP.isIncrementalProcessingEnabled()) Actions.ActOnEndOfTranslationUnit(); //else don't tell Sema that we ended parsing: more input might come. return true; } ParsedAttributesWithRange attrs(AttrFactory); MaybeParseCXX11Attributes(attrs); MaybeParseMicrosoftAttributes(attrs); Result = ParseExternalDeclaration(attrs); return false; } /// ParseExternalDeclaration: /// /// external-declaration: [C99 6.9], declaration: [C++ dcl.dcl] /// function-definition /// declaration /// [GNU] asm-definition /// [GNU] __extension__ external-declaration /// [OBJC] objc-class-definition /// [OBJC] objc-class-declaration /// [OBJC] objc-alias-declaration /// [OBJC] objc-protocol-definition /// [OBJC] objc-method-definition /// [OBJC] @end /// [C++] linkage-specification /// [GNU] asm-definition: /// simple-asm-expr ';' /// [C++11] empty-declaration /// [C++11] attribute-declaration /// /// [C++11] empty-declaration: /// ';' /// /// [C++0x/GNU] 'extern' 'template' declaration Parser::DeclGroupPtrTy Parser::ParseExternalDeclaration(ParsedAttributesWithRange &attrs, ParsingDeclSpec *DS) { DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(TemplateIds); ParenBraceBracketBalancer BalancerRAIIObj(*this); if (PP.isCodeCompletionReached()) { cutOffParsing(); return DeclGroupPtrTy(); } Decl *SingleDecl = 0; switch (Tok.getKind()) { case tok::annot_pragma_vis: HandlePragmaVisibility(); return DeclGroupPtrTy(); case tok::annot_pragma_pack: HandlePragmaPack(); return DeclGroupPtrTy(); case tok::annot_pragma_msstruct: HandlePragmaMSStruct(); return DeclGroupPtrTy(); case tok::annot_pragma_align: HandlePragmaAlign(); return DeclGroupPtrTy(); case tok::annot_pragma_weak: HandlePragmaWeak(); return DeclGroupPtrTy(); case tok::annot_pragma_weakalias: HandlePragmaWeakAlias(); return DeclGroupPtrTy(); case tok::annot_pragma_redefine_extname: HandlePragmaRedefineExtname(); return DeclGroupPtrTy(); case tok::annot_pragma_fp_contract: HandlePragmaFPContract(); return DeclGroupPtrTy(); case tok::annot_pragma_opencl_extension: HandlePragmaOpenCLExtension(); return DeclGroupPtrTy(); case tok::semi: // Either a C++11 empty-declaration or attribute-declaration. SingleDecl = Actions.ActOnEmptyDeclaration(getCurScope(), attrs.getList(), Tok.getLocation()); ConsumeExtraSemi(OutsideFunction); break; case tok::r_brace: Diag(Tok, diag::err_extraneous_closing_brace); ConsumeBrace(); return DeclGroupPtrTy(); case tok::eof: Diag(Tok, diag::err_expected_external_declaration); return DeclGroupPtrTy(); case tok::kw___extension__: { // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. ConsumeToken(); return ParseExternalDeclaration(attrs); } case tok::kw_asm: { ProhibitAttributes(attrs); SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc; ExprResult Result(ParseSimpleAsm(&EndLoc)); ExpectAndConsume(tok::semi, diag::err_expected_semi_after, "top-level asm block"); if (Result.isInvalid()) return DeclGroupPtrTy(); SingleDecl = Actions.ActOnFileScopeAsmDecl(Result.get(), StartLoc, EndLoc); break; } case tok::at: return ParseObjCAtDirectives(); case tok::minus: case tok::plus: if (!getLangOpts().ObjC1) { Diag(Tok, diag::err_expected_external_declaration); ConsumeToken(); return DeclGroupPtrTy(); } SingleDecl = ParseObjCMethodDefinition(); break; case tok::code_completion: Actions.CodeCompleteOrdinaryName(getCurScope(), CurParsedObjCImpl? Sema::PCC_ObjCImplementation : Sema::PCC_Namespace); cutOffParsing(); return DeclGroupPtrTy(); case tok::kw_using: case tok::kw_namespace: case tok::kw_typedef: case tok::kw_template: case tok::kw_export: // As in 'export template' case tok::kw_static_assert: case tok::kw__Static_assert: // A function definition cannot start with any of these keywords. { SourceLocation DeclEnd; StmtVector Stmts; return ParseDeclaration(Stmts, Declarator::FileContext, DeclEnd, attrs); } case tok::kw_static: // Parse (then ignore) 'static' prior to a template instantiation. This is // a GCC extension that we intentionally do not support. if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_template)) { Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored) << 0; SourceLocation DeclEnd; StmtVector Stmts; return ParseDeclaration(Stmts, Declarator::FileContext, DeclEnd, attrs); } goto dont_know; case tok::kw_inline: if (getLangOpts().CPlusPlus) { tok::TokenKind NextKind = NextToken().getKind(); // Inline namespaces. Allowed as an extension even in C++03. if (NextKind == tok::kw_namespace) { SourceLocation DeclEnd; StmtVector Stmts; return ParseDeclaration(Stmts, Declarator::FileContext, DeclEnd, attrs); } // Parse (then ignore) 'inline' prior to a template instantiation. This is // a GCC extension that we intentionally do not support. if (NextKind == tok::kw_template) { Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored) << 1; SourceLocation DeclEnd; StmtVector Stmts; return ParseDeclaration(Stmts, Declarator::FileContext, DeclEnd, attrs); } } goto dont_know; case tok::kw_extern: if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_template)) { // Extern templates SourceLocation ExternLoc = ConsumeToken(); SourceLocation TemplateLoc = ConsumeToken(); Diag(ExternLoc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_extern_template : diag::ext_extern_template) << SourceRange(ExternLoc, TemplateLoc); SourceLocation DeclEnd; return Actions.ConvertDeclToDeclGroup( ParseExplicitInstantiation(Declarator::FileContext, ExternLoc, TemplateLoc, DeclEnd)); } // FIXME: Detect C++ linkage specifications here? goto dont_know; case tok::kw___if_exists: case tok::kw___if_not_exists: ParseMicrosoftIfExistsExternalDeclaration(); return DeclGroupPtrTy(); default: dont_know: // We can't tell whether this is a function-definition or declaration yet. return ParseDeclarationOrFunctionDefinition(attrs, DS); } // This routine returns a DeclGroup, if the thing we parsed only contains a // single decl, convert it now. return Actions.ConvertDeclToDeclGroup(SingleDecl); } /// \brief Determine whether the current token, if it occurs after a /// declarator, continues a declaration or declaration list. bool Parser::isDeclarationAfterDeclarator() { // Check for '= delete' or '= default' if (getLangOpts().CPlusPlus && Tok.is(tok::equal)) { const Token &KW = NextToken(); if (KW.is(tok::kw_default) || KW.is(tok::kw_delete)) return false; } return Tok.is(tok::equal) || // int X()= -> not a function def Tok.is(tok::comma) || // int X(), -> not a function def Tok.is(tok::semi) || // int X(); -> not a function def Tok.is(tok::kw_asm) || // int X() __asm__ -> not a function def Tok.is(tok::kw___attribute) || // int X() __attr__ -> not a function def (getLangOpts().CPlusPlus && Tok.is(tok::l_paren)); // int X(0) -> not a function def [C++] } /// \brief Determine whether the current token, if it occurs after a /// declarator, indicates the start of a function definition. bool Parser::isStartOfFunctionDefinition(const ParsingDeclarator &Declarator) { assert(Declarator.isFunctionDeclarator() && "Isn't a function declarator"); if (Tok.is(tok::l_brace)) // int X() {} return true; // Handle K&R C argument lists: int X(f) int f; {} if (!getLangOpts().CPlusPlus && Declarator.getFunctionTypeInfo().isKNRPrototype()) return isDeclarationSpecifier(); if (getLangOpts().CPlusPlus && Tok.is(tok::equal)) { const Token &KW = NextToken(); return KW.is(tok::kw_default) || KW.is(tok::kw_delete); } return Tok.is(tok::colon) || // X() : Base() {} (used for ctors) Tok.is(tok::kw_try); // X() try { ... } } /// ParseDeclarationOrFunctionDefinition - Parse either a function-definition or /// a declaration. We can't tell which we have until we read up to the /// compound-statement in function-definition. TemplateParams, if /// non-NULL, provides the template parameters when we're parsing a /// C++ template-declaration. /// /// function-definition: [C99 6.9.1] /// decl-specs declarator declaration-list[opt] compound-statement /// [C90] function-definition: [C99 6.7.1] - implicit int result /// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement /// /// declaration: [C99 6.7] /// declaration-specifiers init-declarator-list[opt] ';' /// [!C99] init-declarator-list ';' [TODO: warn in c99 mode] /// [OMP] threadprivate-directive [TODO] /// Parser::DeclGroupPtrTy Parser::ParseDeclOrFunctionDefInternal(ParsedAttributesWithRange &attrs, ParsingDeclSpec &DS, AccessSpecifier AS) { // Parse the common declaration-specifiers piece. ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC_top_level); // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.is(tok::semi)) { ProhibitAttributes(attrs); ConsumeToken(); Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS); DS.complete(TheDecl); return Actions.ConvertDeclToDeclGroup(TheDecl); } DS.takeAttributesFrom(attrs); // ObjC2 allows prefix attributes on class interfaces and protocols. // FIXME: This still needs better diagnostics. We should only accept // attributes here, no types, etc. if (getLangOpts().ObjC2 && Tok.is(tok::at)) { SourceLocation AtLoc = ConsumeToken(); // the "@" if (!Tok.isObjCAtKeyword(tok::objc_interface) && !Tok.isObjCAtKeyword(tok::objc_protocol)) { Diag(Tok, diag::err_objc_unexpected_attr); SkipUntil(tok::semi); // FIXME: better skip? return DeclGroupPtrTy(); } DS.abort(); const char *PrevSpec = 0; unsigned DiagID; if (DS.SetTypeSpecType(DeclSpec::TST_unspecified, AtLoc, PrevSpec, DiagID)) Diag(AtLoc, DiagID) << PrevSpec; if (Tok.isObjCAtKeyword(tok::objc_protocol)) return ParseObjCAtProtocolDeclaration(AtLoc, DS.getAttributes()); return Actions.ConvertDeclToDeclGroup( ParseObjCAtInterfaceDeclaration(AtLoc, DS.getAttributes())); } // If the declspec consisted only of 'extern' and we have a string // literal following it, this must be a C++ linkage specifier like // 'extern "C"'. if (Tok.is(tok::string_literal) && getLangOpts().CPlusPlus && DS.getStorageClassSpec() == DeclSpec::SCS_extern && DS.getParsedSpecifiers() == DeclSpec::PQ_StorageClassSpecifier) { Decl *TheDecl = ParseLinkage(DS, Declarator::FileContext); return Actions.ConvertDeclToDeclGroup(TheDecl); } return ParseDeclGroup(DS, Declarator::FileContext, true); } Parser::DeclGroupPtrTy Parser::ParseDeclarationOrFunctionDefinition(ParsedAttributesWithRange &attrs, ParsingDeclSpec *DS, AccessSpecifier AS) { if (DS) { return ParseDeclOrFunctionDefInternal(attrs, *DS, AS); } else { ParsingDeclSpec PDS(*this); // Must temporarily exit the objective-c container scope for // parsing c constructs and re-enter objc container scope // afterwards. ObjCDeclContextSwitch ObjCDC(*this); return ParseDeclOrFunctionDefInternal(attrs, PDS, AS); } } /// ParseFunctionDefinition - We parsed and verified that the specified /// Declarator is well formed. If this is a K&R-style function, read the /// parameters declaration-list, then start the compound-statement. /// /// function-definition: [C99 6.9.1] /// decl-specs declarator declaration-list[opt] compound-statement /// [C90] function-definition: [C99 6.7.1] - implicit int result /// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement /// [C++] function-definition: [C++ 8.4] /// decl-specifier-seq[opt] declarator ctor-initializer[opt] /// function-body /// [C++] function-definition: [C++ 8.4] /// decl-specifier-seq[opt] declarator function-try-block /// Decl *Parser::ParseFunctionDefinition(ParsingDeclarator &D, const ParsedTemplateInfo &TemplateInfo, LateParsedAttrList *LateParsedAttrs) { // Poison the SEH identifiers so they are flagged as illegal in function bodies PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true); const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); // If this is C90 and the declspecs were completely missing, fudge in an // implicit int. We do this here because this is the only place where // declaration-specifiers are completely optional in the grammar. if (getLangOpts().ImplicitInt && D.getDeclSpec().isEmpty()) { const char *PrevSpec; unsigned DiagID; D.getMutableDeclSpec().SetTypeSpecType(DeclSpec::TST_int, D.getIdentifierLoc(), PrevSpec, DiagID); D.SetRangeBegin(D.getDeclSpec().getSourceRange().getBegin()); } // If this declaration was formed with a K&R-style identifier list for the // arguments, parse declarations for all of the args next. // int foo(a,b) int a; float b; {} if (FTI.isKNRPrototype()) ParseKNRParamDeclarations(D); // We should have either an opening brace or, in a C++ constructor, // we may have a colon. if (Tok.isNot(tok::l_brace) && (!getLangOpts().CPlusPlus || (Tok.isNot(tok::colon) && Tok.isNot(tok::kw_try) && Tok.isNot(tok::equal)))) { Diag(Tok, diag::err_expected_fn_body); // Skip over garbage, until we get to '{'. Don't eat the '{'. SkipUntil(tok::l_brace, true, true); // If we didn't find the '{', bail out. if (Tok.isNot(tok::l_brace)) return 0; } // Check to make sure that any normal attributes are allowed to be on // a definition. Late parsed attributes are checked at the end. if (Tok.isNot(tok::equal)) { AttributeList *DtorAttrs = D.getAttributes(); while (DtorAttrs) { if (!IsThreadSafetyAttribute(DtorAttrs->getName()->getName()) && !DtorAttrs->isCXX11Attribute()) { Diag(DtorAttrs->getLoc(), diag::warn_attribute_on_function_definition) << DtorAttrs->getName()->getName(); } DtorAttrs = DtorAttrs->getNext(); } } // In delayed template parsing mode, for function template we consume the // tokens and store them for late parsing at the end of the translation unit. if (getLangOpts().DelayedTemplateParsing && Tok.isNot(tok::equal) && TemplateInfo.Kind == ParsedTemplateInfo::Template) { MultiTemplateParamsArg TemplateParameterLists(*TemplateInfo.TemplateParams); ParseScope BodyScope(this, Scope::FnScope|Scope::DeclScope); Scope *ParentScope = getCurScope()->getParent(); D.setFunctionDefinitionKind(FDK_Definition); Decl *DP = Actions.HandleDeclarator(ParentScope, D, TemplateParameterLists); D.complete(DP); D.getMutableDeclSpec().abort(); if (DP) { LateParsedTemplatedFunction *LPT = new LateParsedTemplatedFunction(DP); FunctionDecl *FnD = 0; if (FunctionTemplateDecl *FunTmpl = dyn_cast(DP)) FnD = FunTmpl->getTemplatedDecl(); else FnD = cast(DP); Actions.CheckForFunctionRedefinition(FnD); LateParsedTemplateMap[FnD] = LPT; Actions.MarkAsLateParsedTemplate(FnD); LexTemplateFunctionForLateParsing(LPT->Toks); } else { CachedTokens Toks; LexTemplateFunctionForLateParsing(Toks); } return DP; } else if (CurParsedObjCImpl && !TemplateInfo.TemplateParams && (Tok.is(tok::l_brace) || Tok.is(tok::kw_try) || Tok.is(tok::colon)) && Actions.CurContext->isTranslationUnit()) { ParseScope BodyScope(this, Scope::FnScope|Scope::DeclScope); Scope *ParentScope = getCurScope()->getParent(); D.setFunctionDefinitionKind(FDK_Definition); Decl *FuncDecl = Actions.HandleDeclarator(ParentScope, D, MultiTemplateParamsArg()); D.complete(FuncDecl); D.getMutableDeclSpec().abort(); if (FuncDecl) { // Consume the tokens and store them for later parsing. StashAwayMethodOrFunctionBodyTokens(FuncDecl); CurParsedObjCImpl->HasCFunction = true; return FuncDecl; } } // Enter a scope for the function body. ParseScope BodyScope(this, Scope::FnScope|Scope::DeclScope); // Tell the actions module that we have entered a function definition with the // specified Declarator for the function. Decl *Res = TemplateInfo.TemplateParams? Actions.ActOnStartOfFunctionTemplateDef(getCurScope(), *TemplateInfo.TemplateParams, D) : Actions.ActOnStartOfFunctionDef(getCurScope(), D); // Break out of the ParsingDeclarator context before we parse the body. D.complete(Res); // Break out of the ParsingDeclSpec context, too. This const_cast is // safe because we're always the sole owner. D.getMutableDeclSpec().abort(); if (Tok.is(tok::equal)) { assert(getLangOpts().CPlusPlus && "Only C++ function definitions have '='"); ConsumeToken(); Actions.ActOnFinishFunctionBody(Res, 0, false); bool Delete = false; SourceLocation KWLoc; if (Tok.is(tok::kw_delete)) { Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_deleted_function : diag::ext_deleted_function); KWLoc = ConsumeToken(); Actions.SetDeclDeleted(Res, KWLoc); Delete = true; } else if (Tok.is(tok::kw_default)) { Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_defaulted_function : diag::ext_defaulted_function); KWLoc = ConsumeToken(); Actions.SetDeclDefaulted(Res, KWLoc); } else { llvm_unreachable("function definition after = not 'delete' or 'default'"); } if (Tok.is(tok::comma)) { Diag(KWLoc, diag::err_default_delete_in_multiple_declaration) << Delete; SkipUntil(tok::semi); } else { ExpectAndConsume(tok::semi, diag::err_expected_semi_after, Delete ? "delete" : "default", tok::semi); } return Res; } if (Tok.is(tok::kw_try)) return ParseFunctionTryBlock(Res, BodyScope); // If we have a colon, then we're probably parsing a C++ // ctor-initializer. if (Tok.is(tok::colon)) { ParseConstructorInitializer(Res); // Recover from error. if (!Tok.is(tok::l_brace)) { BodyScope.Exit(); Actions.ActOnFinishFunctionBody(Res, 0); return Res; } } else Actions.ActOnDefaultCtorInitializers(Res); // Late attributes are parsed in the same scope as the function body. if (LateParsedAttrs) ParseLexedAttributeList(*LateParsedAttrs, Res, false, true); return ParseFunctionStatementBody(Res, BodyScope); } /// ParseKNRParamDeclarations - Parse 'declaration-list[opt]' which provides /// types for a function with a K&R-style identifier list for arguments. void Parser::ParseKNRParamDeclarations(Declarator &D) { // We know that the top-level of this declarator is a function. DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope | Scope::FunctionDeclarationScope | Scope::DeclScope); // Read all the argument declarations. while (isDeclarationSpecifier()) { SourceLocation DSStart = Tok.getLocation(); // Parse the common declaration-specifiers piece. DeclSpec DS(AttrFactory); ParseDeclarationSpecifiers(DS); // C99 6.9.1p6: 'each declaration in the declaration list shall have at // least one declarator'. // NOTE: GCC just makes this an ext-warn. It's not clear what it does with // the declarations though. It's trivial to ignore them, really hard to do // anything else with them. if (Tok.is(tok::semi)) { Diag(DSStart, diag::err_declaration_does_not_declare_param); ConsumeToken(); continue; } // C99 6.9.1p6: Declarations shall contain no storage-class specifiers other // than register. if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && DS.getStorageClassSpec() != DeclSpec::SCS_register) { Diag(DS.getStorageClassSpecLoc(), diag::err_invalid_storage_class_in_func_decl); DS.ClearStorageClassSpecs(); } if (DS.isThreadSpecified()) { Diag(DS.getThreadSpecLoc(), diag::err_invalid_storage_class_in_func_decl); DS.ClearStorageClassSpecs(); } // Parse the first declarator attached to this declspec. Declarator ParmDeclarator(DS, Declarator::KNRTypeListContext); ParseDeclarator(ParmDeclarator); // Handle the full declarator list. while (1) { // If attributes are present, parse them. MaybeParseGNUAttributes(ParmDeclarator); // Ask the actions module to compute the type for this declarator. Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator); if (Param && // A missing identifier has already been diagnosed. ParmDeclarator.getIdentifier()) { // Scan the argument list looking for the correct param to apply this // type. for (unsigned i = 0; ; ++i) { // C99 6.9.1p6: those declarators shall declare only identifiers from // the identifier list. if (i == FTI.NumArgs) { Diag(ParmDeclarator.getIdentifierLoc(), diag::err_no_matching_param) << ParmDeclarator.getIdentifier(); break; } if (FTI.ArgInfo[i].Ident == ParmDeclarator.getIdentifier()) { // Reject redefinitions of parameters. if (FTI.ArgInfo[i].Param) { Diag(ParmDeclarator.getIdentifierLoc(), diag::err_param_redefinition) << ParmDeclarator.getIdentifier(); } else { FTI.ArgInfo[i].Param = Param; } break; } } } // If we don't have a comma, it is either the end of the list (a ';') or // an error, bail out. if (Tok.isNot(tok::comma)) break; ParmDeclarator.clear(); // Consume the comma. ParmDeclarator.setCommaLoc(ConsumeToken()); // Parse the next declarator. ParseDeclarator(ParmDeclarator); } if (ExpectAndConsumeSemi(diag::err_expected_semi_declaration)) { // Skip to end of block or statement SkipUntil(tok::semi, true); if (Tok.is(tok::semi)) ConsumeToken(); } } // The actions module must verify that all arguments were declared. Actions.ActOnFinishKNRParamDeclarations(getCurScope(), D, Tok.getLocation()); } /// ParseAsmStringLiteral - This is just a normal string-literal, but is not /// allowed to be a wide string, and is not subject to character translation. /// /// [GNU] asm-string-literal: /// string-literal /// Parser::ExprResult Parser::ParseAsmStringLiteral() { switch (Tok.getKind()) { case tok::string_literal: break; case tok::utf8_string_literal: case tok::utf16_string_literal: case tok::utf32_string_literal: case tok::wide_string_literal: { SourceLocation L = Tok.getLocation(); Diag(Tok, diag::err_asm_operand_wide_string_literal) << (Tok.getKind() == tok::wide_string_literal) << SourceRange(L, L); return ExprError(); } default: Diag(Tok, diag::err_expected_string_literal) << /*Source='in...'*/0 << "'asm'"; return ExprError(); } return ParseStringLiteralExpression(); } /// ParseSimpleAsm /// /// [GNU] simple-asm-expr: /// 'asm' '(' asm-string-literal ')' /// Parser::ExprResult Parser::ParseSimpleAsm(SourceLocation *EndLoc) { assert(Tok.is(tok::kw_asm) && "Not an asm!"); SourceLocation Loc = ConsumeToken(); if (Tok.is(tok::kw_volatile)) { // Remove from the end of 'asm' to the end of 'volatile'. SourceRange RemovalRange(PP.getLocForEndOfToken(Loc), PP.getLocForEndOfToken(Tok.getLocation())); Diag(Tok, diag::warn_file_asm_volatile) << FixItHint::CreateRemoval(RemovalRange); ConsumeToken(); } BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected_lparen_after) << "asm"; return ExprError(); } ExprResult Result(ParseAsmStringLiteral()); if (Result.isInvalid()) { SkipUntil(tok::r_paren, true, true); if (EndLoc) *EndLoc = Tok.getLocation(); ConsumeAnyToken(); } else { // Close the paren and get the location of the end bracket T.consumeClose(); if (EndLoc) *EndLoc = T.getCloseLocation(); } return Result; } /// \brief Get the TemplateIdAnnotation from the token and put it in the /// cleanup pool so that it gets destroyed when parsing the current top level /// declaration is finished. TemplateIdAnnotation *Parser::takeTemplateIdAnnotation(const Token &tok) { assert(tok.is(tok::annot_template_id) && "Expected template-id token"); TemplateIdAnnotation * Id = static_cast(tok.getAnnotationValue()); return Id; } void Parser::AnnotateScopeToken(CXXScopeSpec &SS, bool IsNewAnnotation) { // Push the current token back into the token stream (or revert it if it is // cached) and use an annotation scope token for current token. if (PP.isBacktrackEnabled()) PP.RevertCachedTokens(1); else PP.EnterToken(Tok); Tok.setKind(tok::annot_cxxscope); Tok.setAnnotationValue(Actions.SaveNestedNameSpecifierAnnotation(SS)); Tok.setAnnotationRange(SS.getRange()); // In case the tokens were cached, have Preprocessor replace them // with the annotation token. We don't need to do this if we've // just reverted back to a prior state. if (IsNewAnnotation) PP.AnnotateCachedTokens(Tok); } /// \brief Attempt to classify the name at the current token position. This may /// form a type, scope or primary expression annotation, or replace the token /// with a typo-corrected keyword. This is only appropriate when the current /// name must refer to an entity which has already been declared. /// /// \param IsAddressOfOperand Must be \c true if the name is preceded by an '&' /// and might possibly have a dependent nested name specifier. /// \param CCC Indicates how to perform typo-correction for this name. If NULL, /// no typo correction will be performed. Parser::AnnotatedNameKind Parser::TryAnnotateName(bool IsAddressOfOperand, CorrectionCandidateCallback *CCC) { assert(Tok.is(tok::identifier) || Tok.is(tok::annot_cxxscope)); const bool EnteringContext = false; const bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope); CXXScopeSpec SS; if (getLangOpts().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext)) return ANK_Error; if (Tok.isNot(tok::identifier) || SS.isInvalid()) { if (TryAnnotateTypeOrScopeTokenAfterScopeSpec(EnteringContext, false, SS, !WasScopeAnnotation)) return ANK_Error; return ANK_Unresolved; } IdentifierInfo *Name = Tok.getIdentifierInfo(); SourceLocation NameLoc = Tok.getLocation(); // FIXME: Move the tentative declaration logic into ClassifyName so we can // typo-correct to tentatively-declared identifiers. if (isTentativelyDeclared(Name)) { // Identifier has been tentatively declared, and thus cannot be resolved as // an expression. Fall back to annotating it as a type. if (TryAnnotateTypeOrScopeTokenAfterScopeSpec(EnteringContext, false, SS, !WasScopeAnnotation)) return ANK_Error; return Tok.is(tok::annot_typename) ? ANK_Success : ANK_TentativeDecl; } Token Next = NextToken(); // Look up and classify the identifier. We don't perform any typo-correction // after a scope specifier, because in general we can't recover from typos // there (eg, after correcting 'A::tempalte B::C', we would need to jump // back into scope specifier parsing). Sema::NameClassification Classification = Actions.ClassifyName(getCurScope(), SS, Name, NameLoc, Next, IsAddressOfOperand, SS.isEmpty() ? CCC : 0); switch (Classification.getKind()) { case Sema::NC_Error: return ANK_Error; case Sema::NC_Keyword: // The identifier was typo-corrected to a keyword. Tok.setIdentifierInfo(Name); Tok.setKind(Name->getTokenID()); PP.TypoCorrectToken(Tok); if (SS.isNotEmpty()) AnnotateScopeToken(SS, !WasScopeAnnotation); // We've "annotated" this as a keyword. return ANK_Success; case Sema::NC_Unknown: // It's not something we know about. Leave it unannotated. break; case Sema::NC_Type: Tok.setKind(tok::annot_typename); setTypeAnnotation(Tok, Classification.getType()); Tok.setAnnotationEndLoc(NameLoc); if (SS.isNotEmpty()) Tok.setLocation(SS.getBeginLoc()); PP.AnnotateCachedTokens(Tok); return ANK_Success; case Sema::NC_Expression: Tok.setKind(tok::annot_primary_expr); setExprAnnotation(Tok, Classification.getExpression()); Tok.setAnnotationEndLoc(NameLoc); if (SS.isNotEmpty()) Tok.setLocation(SS.getBeginLoc()); PP.AnnotateCachedTokens(Tok); return ANK_Success; case Sema::NC_TypeTemplate: if (Next.isNot(tok::less)) { // This may be a type template being used as a template template argument. if (SS.isNotEmpty()) AnnotateScopeToken(SS, !WasScopeAnnotation); return ANK_TemplateName; } // Fall through. case Sema::NC_FunctionTemplate: { // We have a type or function template followed by '<'. ConsumeToken(); UnqualifiedId Id; Id.setIdentifier(Name, NameLoc); if (AnnotateTemplateIdToken( TemplateTy::make(Classification.getTemplateName()), Classification.getTemplateNameKind(), SS, SourceLocation(), Id)) return ANK_Error; return ANK_Success; } case Sema::NC_NestedNameSpecifier: llvm_unreachable("already parsed nested name specifier"); } // Unable to classify the name, but maybe we can annotate a scope specifier. if (SS.isNotEmpty()) AnnotateScopeToken(SS, !WasScopeAnnotation); return ANK_Unresolved; } /// TryAnnotateTypeOrScopeToken - If the current token position is on a /// typename (possibly qualified in C++) or a C++ scope specifier not followed /// by a typename, TryAnnotateTypeOrScopeToken will replace one or more tokens /// with a single annotation token representing the typename or C++ scope /// respectively. /// This simplifies handling of C++ scope specifiers and allows efficient /// backtracking without the need to re-parse and resolve nested-names and /// typenames. /// It will mainly be called when we expect to treat identifiers as typenames /// (if they are typenames). For example, in C we do not expect identifiers /// inside expressions to be treated as typenames so it will not be called /// for expressions in C. /// The benefit for C/ObjC is that a typename will be annotated and /// Actions.getTypeName will not be needed to be called again (e.g. getTypeName /// will not be called twice, once to check whether we have a declaration /// specifier, and another one to get the actual type inside /// ParseDeclarationSpecifiers). /// /// This returns true if an error occurred. /// /// Note that this routine emits an error if you call it with ::new or ::delete /// as the current tokens, so only call it in contexts where these are invalid. bool Parser::TryAnnotateTypeOrScopeToken(bool EnteringContext, bool NeedType) { assert((Tok.is(tok::identifier) || Tok.is(tok::coloncolon) || Tok.is(tok::kw_typename) || Tok.is(tok::annot_cxxscope) || Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id)) && "Cannot be a type or scope token!"); if (Tok.is(tok::kw_typename)) { // Parse a C++ typename-specifier, e.g., "typename T::type". // // typename-specifier: // 'typename' '::' [opt] nested-name-specifier identifier // 'typename' '::' [opt] nested-name-specifier template [opt] // simple-template-id SourceLocation TypenameLoc = ConsumeToken(); CXXScopeSpec SS; if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/ParsedType(), /*EnteringContext=*/false, 0, /*IsTypename*/true)) return true; if (!SS.isSet()) { if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id) || Tok.is(tok::annot_decltype)) { // Attempt to recover by skipping the invalid 'typename' if (Tok.is(tok::annot_decltype) || (!TryAnnotateTypeOrScopeToken(EnteringContext, NeedType) && Tok.isAnnotation())) { unsigned DiagID = diag::err_expected_qualified_after_typename; // MS compatibility: MSVC permits using known types with typename. // e.g. "typedef typename T* pointer_type" if (getLangOpts().MicrosoftExt) DiagID = diag::warn_expected_qualified_after_typename; Diag(Tok.getLocation(), DiagID); return false; } } Diag(Tok.getLocation(), diag::err_expected_qualified_after_typename); return true; } TypeResult Ty; if (Tok.is(tok::identifier)) { // FIXME: check whether the next token is '<', first! Ty = Actions.ActOnTypenameType(getCurScope(), TypenameLoc, SS, *Tok.getIdentifierInfo(), Tok.getLocation()); } else if (Tok.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind == TNK_Function_template) { Diag(Tok, diag::err_typename_refers_to_non_type_template) << Tok.getAnnotationRange(); return true; } ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), TemplateId->NumArgs); Ty = Actions.ActOnTypenameType(getCurScope(), TypenameLoc, SS, TemplateId->TemplateKWLoc, TemplateId->Template, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc); } else { Diag(Tok, diag::err_expected_type_name_after_typename) << SS.getRange(); return true; } SourceLocation EndLoc = Tok.getLastLoc(); Tok.setKind(tok::annot_typename); setTypeAnnotation(Tok, Ty.isInvalid() ? ParsedType() : Ty.get()); Tok.setAnnotationEndLoc(EndLoc); Tok.setLocation(TypenameLoc); PP.AnnotateCachedTokens(Tok); return false; } // Remembers whether the token was originally a scope annotation. bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope); CXXScopeSpec SS; if (getLangOpts().CPlusPlus) if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext)) return true; return TryAnnotateTypeOrScopeTokenAfterScopeSpec(EnteringContext, NeedType, SS, !WasScopeAnnotation); } /// \brief Try to annotate a type or scope token, having already parsed an /// optional scope specifier. \p IsNewScope should be \c true unless the scope /// specifier was extracted from an existing tok::annot_cxxscope annotation. bool Parser::TryAnnotateTypeOrScopeTokenAfterScopeSpec(bool EnteringContext, bool NeedType, CXXScopeSpec &SS, bool IsNewScope) { if (Tok.is(tok::identifier)) { IdentifierInfo *CorrectedII = 0; // Determine whether the identifier is a type name. if (ParsedType Ty = Actions.getTypeName(*Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), &SS, false, NextToken().is(tok::period), ParsedType(), /*IsCtorOrDtorName=*/false, /*NonTrivialTypeSourceInfo*/true, NeedType ? &CorrectedII : NULL)) { // A FixIt was applied as a result of typo correction if (CorrectedII) Tok.setIdentifierInfo(CorrectedII); // This is a typename. Replace the current token in-place with an // annotation type token. Tok.setKind(tok::annot_typename); setTypeAnnotation(Tok, Ty); Tok.setAnnotationEndLoc(Tok.getLocation()); if (SS.isNotEmpty()) // it was a C++ qualified type name. Tok.setLocation(SS.getBeginLoc()); // In case the tokens were cached, have Preprocessor replace // them with the annotation token. PP.AnnotateCachedTokens(Tok); return false; } if (!getLangOpts().CPlusPlus) { // If we're in C, we can't have :: tokens at all (the lexer won't return // them). If the identifier is not a type, then it can't be scope either, // just early exit. return false; } // If this is a template-id, annotate with a template-id or type token. if (NextToken().is(tok::less)) { TemplateTy Template; UnqualifiedId TemplateName; TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); bool MemberOfUnknownSpecialization; if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false, TemplateName, /*ObjectType=*/ ParsedType(), EnteringContext, Template, MemberOfUnknownSpecialization)) { // Consume the identifier. ConsumeToken(); if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), TemplateName)) { // If an unrecoverable error occurred, we need to return true here, // because the token stream is in a damaged state. We may not return // a valid identifier. return true; } } } // The current token, which is either an identifier or a // template-id, is not part of the annotation. Fall through to // push that token back into the stream and complete the C++ scope // specifier annotation. } if (Tok.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind == TNK_Type_template) { // A template-id that refers to a type was parsed into a // template-id annotation in a context where we weren't allowed // to produce a type annotation token. Update the template-id // annotation token to a type annotation token now. AnnotateTemplateIdTokenAsType(); return false; } } if (SS.isEmpty()) return false; // A C++ scope specifier that isn't followed by a typename. AnnotateScopeToken(SS, IsNewScope); return false; } /// TryAnnotateScopeToken - Like TryAnnotateTypeOrScopeToken but only /// annotates C++ scope specifiers and template-ids. This returns /// true if there was an error that could not be recovered from. /// /// Note that this routine emits an error if you call it with ::new or ::delete /// as the current tokens, so only call it in contexts where these are invalid. bool Parser::TryAnnotateCXXScopeToken(bool EnteringContext) { assert(getLangOpts().CPlusPlus && "Call sites of this function should be guarded by checking for C++"); assert((Tok.is(tok::identifier) || Tok.is(tok::coloncolon) || (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) || Tok.is(tok::kw_decltype)) && "Cannot be a type or scope token!"); CXXScopeSpec SS; if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext)) return true; if (SS.isEmpty()) return false; AnnotateScopeToken(SS, true); return false; } bool Parser::isTokenEqualOrEqualTypo() { tok::TokenKind Kind = Tok.getKind(); switch (Kind) { default: return false; case tok::ampequal: // &= case tok::starequal: // *= case tok::plusequal: // += case tok::minusequal: // -= case tok::exclaimequal: // != case tok::slashequal: // /= case tok::percentequal: // %= case tok::lessequal: // <= case tok::lesslessequal: // <<= case tok::greaterequal: // >= case tok::greatergreaterequal: // >>= case tok::caretequal: // ^= case tok::pipeequal: // |= case tok::equalequal: // == Diag(Tok, diag::err_invalid_token_after_declarator_suggest_equal) << getTokenSimpleSpelling(Kind) << FixItHint::CreateReplacement(SourceRange(Tok.getLocation()), "="); case tok::equal: return true; } } SourceLocation Parser::handleUnexpectedCodeCompletionToken() { assert(Tok.is(tok::code_completion)); PrevTokLocation = Tok.getLocation(); for (Scope *S = getCurScope(); S; S = S->getParent()) { if (S->getFlags() & Scope::FnScope) { Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_RecoveryInFunction); cutOffParsing(); return PrevTokLocation; } if (S->getFlags() & Scope::ClassScope) { Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Class); cutOffParsing(); return PrevTokLocation; } } Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Namespace); cutOffParsing(); return PrevTokLocation; } // Anchor the Parser::FieldCallback vtable to this translation unit. // We use a spurious method instead of the destructor because // destroying FieldCallbacks can actually be slightly // performance-sensitive. void Parser::FieldCallback::_anchor() { } // Code-completion pass-through functions void Parser::CodeCompleteDirective(bool InConditional) { Actions.CodeCompletePreprocessorDirective(InConditional); } void Parser::CodeCompleteInConditionalExclusion() { Actions.CodeCompleteInPreprocessorConditionalExclusion(getCurScope()); } void Parser::CodeCompleteMacroName(bool IsDefinition) { Actions.CodeCompletePreprocessorMacroName(IsDefinition); } void Parser::CodeCompletePreprocessorExpression() { Actions.CodeCompletePreprocessorExpression(); } void Parser::CodeCompleteMacroArgument(IdentifierInfo *Macro, MacroInfo *MacroInfo, unsigned ArgumentIndex) { Actions.CodeCompletePreprocessorMacroArgument(getCurScope(), Macro, MacroInfo, ArgumentIndex); } void Parser::CodeCompleteNaturalLanguage() { Actions.CodeCompleteNaturalLanguage(); } bool Parser::ParseMicrosoftIfExistsCondition(IfExistsCondition& Result) { assert((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists)) && "Expected '__if_exists' or '__if_not_exists'"); Result.IsIfExists = Tok.is(tok::kw___if_exists); Result.KeywordLoc = ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected_lparen_after) << (Result.IsIfExists? "__if_exists" : "__if_not_exists"); return true; } // Parse nested-name-specifier. ParseOptionalCXXScopeSpecifier(Result.SS, ParsedType(), /*EnteringContext=*/false); // Check nested-name specifier. if (Result.SS.isInvalid()) { T.skipToEnd(); return true; } // Parse the unqualified-id. SourceLocation TemplateKWLoc; // FIXME: parsed, but unused. if (ParseUnqualifiedId(Result.SS, false, true, true, ParsedType(), TemplateKWLoc, Result.Name)) { T.skipToEnd(); return true; } if (T.consumeClose()) return true; // Check if the symbol exists. switch (Actions.CheckMicrosoftIfExistsSymbol(getCurScope(), Result.KeywordLoc, Result.IsIfExists, Result.SS, Result.Name)) { case Sema::IER_Exists: Result.Behavior = Result.IsIfExists ? IEB_Parse : IEB_Skip; break; case Sema::IER_DoesNotExist: Result.Behavior = !Result.IsIfExists ? IEB_Parse : IEB_Skip; break; case Sema::IER_Dependent: Result.Behavior = IEB_Dependent; break; case Sema::IER_Error: return true; } return false; } void Parser::ParseMicrosoftIfExistsExternalDeclaration() { IfExistsCondition Result; if (ParseMicrosoftIfExistsCondition(Result)) return; BalancedDelimiterTracker Braces(*this, tok::l_brace); if (Braces.consumeOpen()) { Diag(Tok, diag::err_expected_lbrace); return; } switch (Result.Behavior) { case IEB_Parse: // Parse declarations below. break; case IEB_Dependent: llvm_unreachable("Cannot have a dependent external declaration"); case IEB_Skip: Braces.skipToEnd(); return; } // Parse the declarations. while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { ParsedAttributesWithRange attrs(AttrFactory); MaybeParseCXX11Attributes(attrs); MaybeParseMicrosoftAttributes(attrs); DeclGroupPtrTy Result = ParseExternalDeclaration(attrs); if (Result && !getCurScope()->getParent()) Actions.getASTConsumer().HandleTopLevelDecl(Result.get()); } Braces.consumeClose(); } Parser::DeclGroupPtrTy Parser::ParseModuleImport(SourceLocation AtLoc) { assert(Tok.isObjCAtKeyword(tok::objc_import) && "Improper start to module import"); SourceLocation ImportLoc = ConsumeToken(); SmallVector, 2> Path; // Parse the module path. do { if (!Tok.is(tok::identifier)) { if (Tok.is(tok::code_completion)) { Actions.CodeCompleteModuleImport(ImportLoc, Path); ConsumeCodeCompletionToken(); SkipUntil(tok::semi); return DeclGroupPtrTy(); } Diag(Tok, diag::err_module_expected_ident); SkipUntil(tok::semi); return DeclGroupPtrTy(); } // Record this part of the module path. Path.push_back(std::make_pair(Tok.getIdentifierInfo(), Tok.getLocation())); ConsumeToken(); if (Tok.is(tok::period)) { ConsumeToken(); continue; } break; } while (true); DeclResult Import = Actions.ActOnModuleImport(AtLoc, ImportLoc, Path); ExpectAndConsumeSemi(diag::err_module_expected_semi); if (Import.isInvalid()) return DeclGroupPtrTy(); return Actions.ConvertDeclToDeclGroup(Import.get()); } bool BalancedDelimiterTracker::diagnoseOverflow() { P.Diag(P.Tok, diag::err_bracket_depth_exceeded) << P.getLangOpts().BracketDepth; P.Diag(P.Tok, diag::note_bracket_depth); P.SkipUntil(tok::eof); return true; } bool BalancedDelimiterTracker::expectAndConsume(unsigned DiagID, const char *Msg, tok::TokenKind SkipToToc ) { LOpen = P.Tok.getLocation(); if (P.ExpectAndConsume(Kind, DiagID, Msg, SkipToToc)) return true; if (getDepth() < MaxDepth) return false; return diagnoseOverflow(); } bool BalancedDelimiterTracker::diagnoseMissingClose() { assert(!P.Tok.is(Close) && "Should have consumed closing delimiter"); const char *LHSName = "unknown"; diag::kind DID; switch (Close) { default: llvm_unreachable("Unexpected balanced token"); case tok::r_paren : LHSName = "("; DID = diag::err_expected_rparen; break; case tok::r_brace : LHSName = "{"; DID = diag::err_expected_rbrace; break; case tok::r_square: LHSName = "["; DID = diag::err_expected_rsquare; break; } P.Diag(P.Tok, DID); P.Diag(LOpen, diag::note_matching) << LHSName; if (P.SkipUntil(Close, /*StopAtSemi*/ true, /*DontConsume*/ true)) LClose = P.ConsumeAnyToken(); return true; } void BalancedDelimiterTracker::skipToEnd() { P.SkipUntil(Close, false); }