//===-- tsan_rtl.cc -------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Main file (entry points) for the TSan run-time. //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_atomic.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_symbolizer.h" #include "tsan_defs.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_mman.h" #include "tsan_suppressions.h" volatile int __tsan_resumed = 0; extern "C" void __tsan_resume() { __tsan_resumed = 1; } namespace __tsan { #ifndef TSAN_GO THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64); #endif static char ctx_placeholder[sizeof(Context)] ALIGNED(64); // Can be overriden by a front-end. bool CPP_WEAK OnFinalize(bool failed) { return failed; } static Context *ctx; Context *CTX() { return ctx; } static char thread_registry_placeholder[sizeof(ThreadRegistry)]; static ThreadContextBase *CreateThreadContext(u32 tid) { // Map thread trace when context is created. MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event)); void *mem = MmapOrDie(sizeof(ThreadContext), "ThreadContext"); return new(mem) ThreadContext(tid); } #ifndef TSAN_GO static const u32 kThreadQuarantineSize = 16; #else static const u32 kThreadQuarantineSize = 64; #endif Context::Context() : initialized() , report_mtx(MutexTypeReport, StatMtxReport) , nreported() , nmissed_expected() , thread_registry(new(thread_registry_placeholder) ThreadRegistry( CreateThreadContext, kMaxTid, kThreadQuarantineSize)) , racy_stacks(MBlockRacyStacks) , racy_addresses(MBlockRacyAddresses) , fired_suppressions(MBlockRacyAddresses) { } // The objects are allocated in TLS, so one may rely on zero-initialization. ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, uptr stk_addr, uptr stk_size, uptr tls_addr, uptr tls_size) : fast_state(tid, epoch) // Do not touch these, rely on zero initialization, // they may be accessed before the ctor. // , fast_ignore_reads() // , fast_ignore_writes() // , in_rtl() , shadow_stack_pos(&shadow_stack[0]) , tid(tid) , unique_id(unique_id) , stk_addr(stk_addr) , stk_size(stk_size) , tls_addr(tls_addr) , tls_size(tls_size) { } static void MemoryProfileThread(void *arg) { ScopedInRtl in_rtl; fd_t fd = (fd_t)(uptr)arg; Context *ctx = CTX(); for (int i = 0; ; i++) { InternalScopedBuffer buf(4096); uptr n_threads; uptr n_running_threads; ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads); internal_snprintf(buf.data(), buf.size(), "%d: nthr=%d nlive=%d\n", i, n_threads, n_running_threads); internal_write(fd, buf.data(), internal_strlen(buf.data())); WriteMemoryProfile(buf.data(), buf.size()); internal_write(fd, buf.data(), internal_strlen(buf.data())); SleepForSeconds(1); } } static void InitializeMemoryProfile() { if (flags()->profile_memory == 0 || flags()->profile_memory[0] == 0) return; InternalScopedBuffer filename(4096); internal_snprintf(filename.data(), filename.size(), "%s.%d", flags()->profile_memory, GetPid()); fd_t fd = OpenFile(filename.data(), true); if (fd == kInvalidFd) { Printf("Failed to open memory profile file '%s'\n", &filename[0]); Die(); } internal_start_thread(&MemoryProfileThread, (void*)(uptr)fd); } void DontNeedShadowFor(uptr addr, uptr size) { uptr shadow_beg = MemToShadow(addr); uptr shadow_end = MemToShadow(addr + size); FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg); } static void MemoryFlushThread(void *arg) { ScopedInRtl in_rtl; for (int i = 0; ; i++) { SleepForMillis(flags()->flush_memory_ms); FlushShadowMemory(); } } static void InitializeMemoryFlush() { if (flags()->flush_memory_ms == 0) return; if (flags()->flush_memory_ms < 100) flags()->flush_memory_ms = 100; internal_start_thread(&MemoryFlushThread, 0); } void MapShadow(uptr addr, uptr size) { MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier); } void MapThreadTrace(uptr addr, uptr size) { DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size); CHECK_GE(addr, kTraceMemBegin); CHECK_LE(addr + size, kTraceMemBegin + kTraceMemSize); if (addr != (uptr)MmapFixedNoReserve(addr, size)) { Printf("FATAL: ThreadSanitizer can not mmap thread trace\n"); Die(); } } void Initialize(ThreadState *thr) { // Thread safe because done before all threads exist. static bool is_initialized = false; if (is_initialized) return; is_initialized = true; SanitizerToolName = "ThreadSanitizer"; // Install tool-specific callbacks in sanitizer_common. SetCheckFailedCallback(TsanCheckFailed); ScopedInRtl in_rtl; #ifndef TSAN_GO InitializeAllocator(); #endif InitializeInterceptors(); const char *env = InitializePlatform(); InitializeMutex(); InitializeDynamicAnnotations(); ctx = new(ctx_placeholder) Context; #ifndef TSAN_GO InitializeShadowMemory(); #endif InitializeFlags(&ctx->flags, env); // Setup correct file descriptor for error reports. if (internal_strcmp(flags()->log_path, "stdout") == 0) __sanitizer_set_report_fd(kStdoutFd); else if (internal_strcmp(flags()->log_path, "stderr") == 0) __sanitizer_set_report_fd(kStderrFd); else __sanitizer_set_report_path(flags()->log_path); InitializeSuppressions(); #ifndef TSAN_GO // Initialize external symbolizer before internal threads are started. const char *external_symbolizer = flags()->external_symbolizer_path; if (external_symbolizer != 0 && external_symbolizer[0] != '\0') { if (!InitializeExternalSymbolizer(external_symbolizer)) { Printf("Failed to start external symbolizer: '%s'\n", external_symbolizer); Die(); } } #endif InitializeMemoryProfile(); InitializeMemoryFlush(); if (ctx->flags.verbosity) Printf("***** Running under ThreadSanitizer v2 (pid %d) *****\n", GetPid()); // Initialize thread 0. int tid = ThreadCreate(thr, 0, 0, true); CHECK_EQ(tid, 0); ThreadStart(thr, tid, GetPid()); CHECK_EQ(thr->in_rtl, 1); ctx->initialized = true; if (flags()->stop_on_start) { Printf("ThreadSanitizer is suspended at startup (pid %d)." " Call __tsan_resume().\n", GetPid()); while (__tsan_resumed == 0) {} } } int Finalize(ThreadState *thr) { ScopedInRtl in_rtl; Context *ctx = __tsan::ctx; bool failed = false; if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) SleepForMillis(flags()->atexit_sleep_ms); // Wait for pending reports. ctx->report_mtx.Lock(); ctx->report_mtx.Unlock(); #ifndef TSAN_GO if (ctx->flags.verbosity) AllocatorPrintStats(); #endif ThreadFinalize(thr); if (ctx->nreported) { failed = true; #ifndef TSAN_GO Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); #else Printf("Found %d data race(s)\n", ctx->nreported); #endif } if (ctx->nmissed_expected) { failed = true; Printf("ThreadSanitizer: missed %d expected races\n", ctx->nmissed_expected); } failed = OnFinalize(failed); StatAggregate(ctx->stat, thr->stat); StatOutput(ctx->stat); return failed ? flags()->exitcode : 0; } #ifndef TSAN_GO u32 CurrentStackId(ThreadState *thr, uptr pc) { if (thr->shadow_stack_pos == 0) // May happen during bootstrap. return 0; if (pc) { thr->shadow_stack_pos[0] = pc; thr->shadow_stack_pos++; } u32 id = StackDepotPut(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack); if (pc) thr->shadow_stack_pos--; return id; } #endif void TraceSwitch(ThreadState *thr) { thr->nomalloc++; ScopedInRtl in_rtl; Lock l(&thr->trace.mtx); unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts(); TraceHeader *hdr = &thr->trace.headers[trace]; hdr->epoch0 = thr->fast_state.epoch(); hdr->stack0.ObtainCurrent(thr, 0); hdr->mset0 = thr->mset; thr->nomalloc--; } uptr TraceTopPC(ThreadState *thr) { Event *events = (Event*)GetThreadTrace(thr->tid); uptr pc = events[thr->fast_state.GetTracePos()]; return pc; } uptr TraceSize() { return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1)); } uptr TraceParts() { return TraceSize() / kTracePartSize; } #ifndef TSAN_GO extern "C" void __tsan_trace_switch() { TraceSwitch(cur_thread()); } extern "C" void __tsan_report_race() { ReportRace(cur_thread()); } #endif ALWAYS_INLINE static Shadow LoadShadow(u64 *p) { u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed); return Shadow(raw); } ALWAYS_INLINE static void StoreShadow(u64 *sp, u64 s) { atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed); } ALWAYS_INLINE static void StoreIfNotYetStored(u64 *sp, u64 *s) { StoreShadow(sp, *s); *s = 0; } static inline void HandleRace(ThreadState *thr, u64 *shadow_mem, Shadow cur, Shadow old) { thr->racy_state[0] = cur.raw(); thr->racy_state[1] = old.raw(); thr->racy_shadow_addr = shadow_mem; #ifndef TSAN_GO HACKY_CALL(__tsan_report_race); #else ReportRace(thr); #endif } static inline bool OldIsInSameSynchEpoch(Shadow old, ThreadState *thr) { return old.epoch() >= thr->fast_synch_epoch; } static inline bool HappensBefore(Shadow old, ThreadState *thr) { return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); } ALWAYS_INLINE void MemoryAccessImpl(ThreadState *thr, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem, Shadow cur) { StatInc(thr, StatMop); StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); // This potentially can live in an MMX/SSE scratch register. // The required intrinsics are: // __m128i _mm_move_epi64(__m128i*); // _mm_storel_epi64(u64*, __m128i); u64 store_word = cur.raw(); // scan all the shadow values and dispatch to 4 categories: // same, replace, candidate and race (see comments below). // we consider only 3 cases regarding access sizes: // equal, intersect and not intersect. initially I considered // larger and smaller as well, it allowed to replace some // 'candidates' with 'same' or 'replace', but I think // it's just not worth it (performance- and complexity-wise). Shadow old(0); if (kShadowCnt == 1) { int idx = 0; #include "tsan_update_shadow_word_inl.h" } else if (kShadowCnt == 2) { int idx = 0; #include "tsan_update_shadow_word_inl.h" idx = 1; #include "tsan_update_shadow_word_inl.h" } else if (kShadowCnt == 4) { int idx = 0; #include "tsan_update_shadow_word_inl.h" idx = 1; #include "tsan_update_shadow_word_inl.h" idx = 2; #include "tsan_update_shadow_word_inl.h" idx = 3; #include "tsan_update_shadow_word_inl.h" } else if (kShadowCnt == 8) { int idx = 0; #include "tsan_update_shadow_word_inl.h" idx = 1; #include "tsan_update_shadow_word_inl.h" idx = 2; #include "tsan_update_shadow_word_inl.h" idx = 3; #include "tsan_update_shadow_word_inl.h" idx = 4; #include "tsan_update_shadow_word_inl.h" idx = 5; #include "tsan_update_shadow_word_inl.h" idx = 6; #include "tsan_update_shadow_word_inl.h" idx = 7; #include "tsan_update_shadow_word_inl.h" } else { CHECK(false); } // we did not find any races and had already stored // the current access info, so we are done if (LIKELY(store_word == 0)) return; // choose a random candidate slot and replace it StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); StatInc(thr, StatShadowReplace); return; RACE: HandleRace(thr, shadow_mem, cur, old); return; } ALWAYS_INLINE void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) { u64 *shadow_mem = (u64*)MemToShadow(addr); DPrintf2("#%d: MemoryAccess: @%p %p size=%d" " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", (int)thr->fast_state.tid(), (void*)pc, (void*)addr, (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, (uptr)shadow_mem[0], (uptr)shadow_mem[1], (uptr)shadow_mem[2], (uptr)shadow_mem[3]); #if TSAN_DEBUG if (!IsAppMem(addr)) { Printf("Access to non app mem %zx\n", addr); DCHECK(IsAppMem(addr)); } if (!IsShadowMem((uptr)shadow_mem)) { Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); DCHECK(IsShadowMem((uptr)shadow_mem)); } #endif FastState fast_state = thr->fast_state; if (fast_state.GetIgnoreBit()) return; fast_state.IncrementEpoch(); thr->fast_state = fast_state; Shadow cur(fast_state); cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); cur.SetWrite(kAccessIsWrite); cur.SetAtomic(kIsAtomic); // We must not store to the trace if we do not store to the shadow. // That is, this call must be moved somewhere below. TraceAddEvent(thr, fast_state, EventTypeMop, pc); MemoryAccessImpl(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, shadow_mem, cur); } static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, u64 val) { (void)thr; (void)pc; if (size == 0) return; // FIXME: fix me. uptr offset = addr % kShadowCell; if (offset) { offset = kShadowCell - offset; if (size <= offset) return; addr += offset; size -= offset; } DCHECK_EQ(addr % 8, 0); // If a user passes some insane arguments (memset(0)), // let it just crash as usual. if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) return; // Don't want to touch lots of shadow memory. // If a program maps 10MB stack, there is no need reset the whole range. size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); if (size < 64*1024) { u64 *p = (u64*)MemToShadow(addr); CHECK(IsShadowMem((uptr)p)); CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1))); // FIXME: may overwrite a part outside the region for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { p[i++] = val; for (uptr j = 1; j < kShadowCnt; j++) p[i++] = 0; } } else { // The region is big, reset only beginning and end. const uptr kPageSize = 4096; u64 *begin = (u64*)MemToShadow(addr); u64 *end = begin + size / kShadowCell * kShadowCnt; u64 *p = begin; // Set at least first kPageSize/2 to page boundary. while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { *p++ = val; for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0; } // Reset middle part. u64 *p1 = p; p = RoundDown(end, kPageSize); UnmapOrDie((void*)p1, (uptr)p - (uptr)p1); MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1); // Set the ending. while (p < end) { *p++ = val; for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0; } } } void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { MemoryRangeSet(thr, pc, addr, size, 0); } void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { // Processing more than 1k (4k of shadow) is expensive, // can cause excessive memory consumption (user does not necessary touch // the whole range) and most likely unnecessary. if (size > 1024) size = 1024; CHECK_EQ(thr->is_freeing, false); thr->is_freeing = true; MemoryAccessRange(thr, pc, addr, size, true); thr->is_freeing = false; Shadow s(thr->fast_state); s.ClearIgnoreBit(); s.MarkAsFreed(); s.SetWrite(true); s.SetAddr0AndSizeLog(0, 3); MemoryRangeSet(thr, pc, addr, size, s.raw()); } void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { Shadow s(thr->fast_state); s.ClearIgnoreBit(); s.SetWrite(true); s.SetAddr0AndSizeLog(0, 3); MemoryRangeSet(thr, pc, addr, size, s.raw()); } ALWAYS_INLINE void FuncEntry(ThreadState *thr, uptr pc) { DCHECK_EQ(thr->in_rtl, 0); StatInc(thr, StatFuncEnter); DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc); thr->fast_state.IncrementEpoch(); TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc); // Shadow stack maintenance can be replaced with // stack unwinding during trace switch (which presumably must be faster). DCHECK_GE(thr->shadow_stack_pos, &thr->shadow_stack[0]); #ifndef TSAN_GO DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]); #else if (thr->shadow_stack_pos == thr->shadow_stack_end) { const int sz = thr->shadow_stack_end - thr->shadow_stack; const int newsz = 2 * sz; uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack, newsz * sizeof(uptr)); internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); internal_free(thr->shadow_stack); thr->shadow_stack = newstack; thr->shadow_stack_pos = newstack + sz; thr->shadow_stack_end = newstack + newsz; } #endif thr->shadow_stack_pos[0] = pc; thr->shadow_stack_pos++; } ALWAYS_INLINE void FuncExit(ThreadState *thr) { DCHECK_EQ(thr->in_rtl, 0); StatInc(thr, StatFuncExit); DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid()); thr->fast_state.IncrementEpoch(); TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0); DCHECK_GT(thr->shadow_stack_pos, &thr->shadow_stack[0]); #ifndef TSAN_GO DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]); #endif thr->shadow_stack_pos--; } void IgnoreCtl(ThreadState *thr, bool write, bool begin) { DPrintf("#%d: IgnoreCtl(%d, %d)\n", thr->tid, write, begin); thr->ignore_reads_and_writes += begin ? 1 : -1; CHECK_GE(thr->ignore_reads_and_writes, 0); if (thr->ignore_reads_and_writes) thr->fast_state.SetIgnoreBit(); else thr->fast_state.ClearIgnoreBit(); } bool MD5Hash::operator==(const MD5Hash &other) const { return hash[0] == other.hash[0] && hash[1] == other.hash[1]; } #if TSAN_DEBUG void build_consistency_debug() {} #else void build_consistency_release() {} #endif #if TSAN_COLLECT_STATS void build_consistency_stats() {} #else void build_consistency_nostats() {} #endif #if TSAN_SHADOW_COUNT == 1 void build_consistency_shadow1() {} #elif TSAN_SHADOW_COUNT == 2 void build_consistency_shadow2() {} #elif TSAN_SHADOW_COUNT == 4 void build_consistency_shadow4() {} #else void build_consistency_shadow8() {} #endif } // namespace __tsan #ifndef TSAN_GO // Must be included in this file to make sure everything is inlined. #include "tsan_interface_inl.h" #endif