/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkOrderedWriteBuffer.h" #include "SkBitmap.h" #include "SkData.h" #include "SkPixelRef.h" #include "SkPtrRecorder.h" #include "SkStream.h" #include "SkTypeface.h" SkOrderedWriteBuffer::SkOrderedWriteBuffer(size_t minSize) : INHERITED() , fFactorySet(NULL) , fNamedFactorySet(NULL) , fWriter(minSize) , fBitmapHeap(NULL) , fTFSet(NULL) , fBitmapEncoder(NULL) { } SkOrderedWriteBuffer::SkOrderedWriteBuffer(size_t minSize, void* storage, size_t storageSize) : INHERITED() , fFactorySet(NULL) , fNamedFactorySet(NULL) , fWriter(minSize, storage, storageSize) , fBitmapHeap(NULL) , fTFSet(NULL) , fBitmapEncoder(NULL) { } SkOrderedWriteBuffer::~SkOrderedWriteBuffer() { SkSafeUnref(fFactorySet); SkSafeUnref(fNamedFactorySet); SkSafeUnref(fBitmapHeap); SkSafeUnref(fTFSet); } void SkOrderedWriteBuffer::writeByteArray(const void* data, size_t size) { fWriter.write32(size); fWriter.writePad(data, size); } void SkOrderedWriteBuffer::writeBool(bool value) { fWriter.writeBool(value); } void SkOrderedWriteBuffer::writeFixed(SkFixed value) { fWriter.write32(value); } void SkOrderedWriteBuffer::writeScalar(SkScalar value) { fWriter.writeScalar(value); } void SkOrderedWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { fWriter.write32(count); fWriter.write(value, count * sizeof(SkScalar)); } void SkOrderedWriteBuffer::writeInt(int32_t value) { fWriter.write32(value); } void SkOrderedWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { fWriter.write32(count); fWriter.write(value, count * sizeof(int32_t)); } void SkOrderedWriteBuffer::writeUInt(uint32_t value) { fWriter.write32(value); } void SkOrderedWriteBuffer::write32(int32_t value) { fWriter.write32(value); } void SkOrderedWriteBuffer::writeString(const char* value) { fWriter.writeString(value); } void SkOrderedWriteBuffer::writeEncodedString(const void* value, size_t byteLength, SkPaint::TextEncoding encoding) { fWriter.writeInt(encoding); fWriter.writeInt(byteLength); fWriter.write(value, byteLength); } void SkOrderedWriteBuffer::writeColor(const SkColor& color) { fWriter.write32(color); } void SkOrderedWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { fWriter.write32(count); fWriter.write(color, count * sizeof(SkColor)); } void SkOrderedWriteBuffer::writePoint(const SkPoint& point) { fWriter.writeScalar(point.fX); fWriter.writeScalar(point.fY); } void SkOrderedWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { fWriter.write32(count); fWriter.write(point, count * sizeof(SkPoint)); } void SkOrderedWriteBuffer::writeMatrix(const SkMatrix& matrix) { fWriter.writeMatrix(matrix); } void SkOrderedWriteBuffer::writeIRect(const SkIRect& rect) { fWriter.write(&rect, sizeof(SkIRect)); } void SkOrderedWriteBuffer::writeRect(const SkRect& rect) { fWriter.writeRect(rect); } void SkOrderedWriteBuffer::writeRegion(const SkRegion& region) { fWriter.writeRegion(region); } void SkOrderedWriteBuffer::writePath(const SkPath& path) { fWriter.writePath(path); } size_t SkOrderedWriteBuffer::writeStream(SkStream* stream, size_t length) { fWriter.write32(length); size_t bytesWritten = fWriter.readFromStream(stream, length); if (bytesWritten < length) { fWriter.reservePad(length - bytesWritten); } return bytesWritten; } bool SkOrderedWriteBuffer::writeToStream(SkWStream* stream) { return fWriter.writeToStream(stream); } void SkOrderedWriteBuffer::writeBitmap(const SkBitmap& bitmap) { // Record information about the bitmap in one of three ways, in order of priority: // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the // bitmap entirely or serialize it later as desired. // 2. Write an encoded version of the bitmap. Afterwards the width and height are written, so // a reader without a decoder can draw a dummy bitmap of the right size. // A. If the bitmap has an encoded representation, write it to the stream. // B. If there is a function for encoding bitmaps, use it. // 3. Call SkBitmap::flatten. // For an encoded bitmap, write the size first. Otherwise store a 0 so the reader knows not to // decode. if (fBitmapHeap != NULL) { SkASSERT(NULL == fBitmapEncoder); // Bitmap was not encoded. Record a zero, implying that the reader need not decode. this->writeUInt(0); int32_t slot = fBitmapHeap->insert(bitmap); fWriter.write32(slot); // crbug.com/155875 // The generation ID is not required information. We write it to prevent collisions // in SkFlatDictionary. It is possible to get a collision when a previously // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary // and the instance currently being written is re-using the same slot from the // bitmap heap. fWriter.write32(bitmap.getGenerationID()); return; } bool encoded = false; // Before attempting to encode the SkBitmap, check to see if there is already an encoded // version. SkPixelRef* ref = bitmap.pixelRef(); if (ref != NULL) { SkAutoDataUnref data(ref->refEncodedData()); if (data.get() != NULL) { // Write the length to indicate that the bitmap was encoded successfully, followed // by the actual data. This must match the case where fBitmapEncoder is used so the // reader need not know the difference. this->writeUInt(data->size()); fWriter.writePad(data->data(), data->size()); encoded = true; } } if (fBitmapEncoder != NULL && !encoded) { SkASSERT(NULL == fBitmapHeap); SkDynamicMemoryWStream stream; if (fBitmapEncoder(&stream, bitmap)) { uint32_t offset = fWriter.bytesWritten(); // Write the length to indicate that the bitmap was encoded successfully, followed // by the actual data. This must match the case where the original data is used so the // reader need not know the difference. size_t length = stream.getOffset(); this->writeUInt(length); if (stream.read(fWriter.reservePad(length), 0, length)) { encoded = true; } else { // Writing the stream failed, so go back to original state to store another way. fWriter.rewindToOffset(offset); } } } if (encoded) { // Write the width and height in case the reader does not have a decoder. this->writeInt(bitmap.width()); this->writeInt(bitmap.height()); } else { // Bitmap was not encoded. Record a zero, implying that the reader need not decode. this->writeUInt(0); bitmap.flatten(*this); } } void SkOrderedWriteBuffer::writeTypeface(SkTypeface* obj) { if (NULL == obj || NULL == fTFSet) { fWriter.write32(0); } else { fWriter.write32(fTFSet->add(obj)); } } SkFactorySet* SkOrderedWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { SkRefCnt_SafeAssign(fFactorySet, rec); if (fNamedFactorySet != NULL) { fNamedFactorySet->unref(); fNamedFactorySet = NULL; } return rec; } SkNamedFactorySet* SkOrderedWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) { SkRefCnt_SafeAssign(fNamedFactorySet, rec); if (fFactorySet != NULL) { fFactorySet->unref(); fFactorySet = NULL; } return rec; } SkRefCntSet* SkOrderedWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { SkRefCnt_SafeAssign(fTFSet, rec); return rec; } void SkOrderedWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) { SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap); if (bitmapHeap != NULL) { SkASSERT(NULL == fBitmapEncoder); fBitmapEncoder = NULL; } } void SkOrderedWriteBuffer::setBitmapEncoder(SkSerializationHelpers::EncodeBitmap bitmapEncoder) { fBitmapEncoder = bitmapEncoder; if (bitmapEncoder != NULL) { SkASSERT(NULL == fBitmapHeap); SkSafeUnref(fBitmapHeap); fBitmapHeap = NULL; } } void SkOrderedWriteBuffer::writeFlattenable(SkFlattenable* flattenable) { /* * If we have a factoryset, then the first 32bits tell us... * 0: failure to write the flattenable * >0: (1-based) index into the SkFactorySet or SkNamedFactorySet * If we don't have a factoryset, then the first "ptr" is either the * factory, or null for failure. * * The distinction is important, since 0-index is 32bits (always), but a * 0-functionptr might be 32 or 64 bits. */ SkFlattenable::Factory factory = NULL; if (flattenable) { factory = flattenable->getFactory(); } if (NULL == factory) { if (fFactorySet != NULL || fNamedFactorySet != NULL) { this->write32(0); } else { this->writeFunctionPtr(NULL); } return; } /* * We can write 1 of 3 versions of the flattenable: * 1. function-ptr : this is the fastest for the reader, but assumes that * the writer and reader are in the same process. * 2. index into fFactorySet : This is assumes the writer will later * resolve the function-ptrs into strings for its reader. SkPicture * does exactly this, by writing a table of names (matching the indices) * up front in its serialized form. * 3. index into fNamedFactorySet. fNamedFactorySet will also store the * name. SkGPipe uses this technique so it can write the name to its * stream before writing the flattenable. */ if (fFactorySet) { this->write32(fFactorySet->add(factory)); } else if (fNamedFactorySet) { int32_t index = fNamedFactorySet->find(factory); this->write32(index); if (0 == index) { return; } } else { this->writeFunctionPtr((void*)factory); } // make room for the size of the flattened object (void)fWriter.reserve(sizeof(uint32_t)); // record the current size, so we can subtract after the object writes. uint32_t offset = fWriter.size(); // now flatten the object flattenObject(flattenable, *this); uint32_t objSize = fWriter.size() - offset; // record the obj's size *fWriter.peek32(offset - sizeof(uint32_t)) = objSize; }