• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TreeTransform.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Sema/AnalysisBasedWarnings.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Sema/Designator.h"
37 #include "clang/Sema/Initialization.h"
38 #include "clang/Sema/Lookup.h"
39 #include "clang/Sema/ParsedTemplate.h"
40 #include "clang/Sema/Scope.h"
41 #include "clang/Sema/ScopeInfo.h"
42 #include "clang/Sema/SemaFixItUtils.h"
43 #include "clang/Sema/Template.h"
44 using namespace clang;
45 using namespace sema;
46 
47 /// \brief Determine whether the use of this declaration is valid, without
48 /// emitting diagnostics.
CanUseDecl(NamedDecl * D)49 bool Sema::CanUseDecl(NamedDecl *D) {
50   // See if this is an auto-typed variable whose initializer we are parsing.
51   if (ParsingInitForAutoVars.count(D))
52     return false;
53 
54   // See if this is a deleted function.
55   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
56     if (FD->isDeleted())
57       return false;
58   }
59 
60   // See if this function is unavailable.
61   if (D->getAvailability() == AR_Unavailable &&
62       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
63     return false;
64 
65   return true;
66 }
67 
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)68 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
69   // Warn if this is used but marked unused.
70   if (D->hasAttr<UnusedAttr>()) {
71     const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
72     if (!DC->hasAttr<UnusedAttr>())
73       S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
74   }
75 }
76 
DiagnoseAvailabilityOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)77 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
78                               NamedDecl *D, SourceLocation Loc,
79                               const ObjCInterfaceDecl *UnknownObjCClass) {
80   // See if this declaration is unavailable or deprecated.
81   std::string Message;
82   AvailabilityResult Result = D->getAvailability(&Message);
83   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
84     if (Result == AR_Available) {
85       const DeclContext *DC = ECD->getDeclContext();
86       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
87         Result = TheEnumDecl->getAvailability(&Message);
88     }
89 
90   const ObjCPropertyDecl *ObjCPDecl = 0;
91   if (Result == AR_Deprecated || Result == AR_Unavailable) {
92     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
93       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
94         AvailabilityResult PDeclResult = PD->getAvailability(0);
95         if (PDeclResult == Result)
96           ObjCPDecl = PD;
97       }
98     }
99   }
100 
101   switch (Result) {
102     case AR_Available:
103     case AR_NotYetIntroduced:
104       break;
105 
106     case AR_Deprecated:
107       S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass, ObjCPDecl);
108       break;
109 
110     case AR_Unavailable:
111       if (S.getCurContextAvailability() != AR_Unavailable) {
112         if (Message.empty()) {
113           if (!UnknownObjCClass) {
114             S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
115             if (ObjCPDecl)
116               S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
117                 << ObjCPDecl->getDeclName() << 1;
118           }
119           else
120             S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
121               << D->getDeclName();
122         }
123         else
124           S.Diag(Loc, diag::err_unavailable_message)
125             << D->getDeclName() << Message;
126         S.Diag(D->getLocation(), diag::note_unavailable_here)
127                   << isa<FunctionDecl>(D) << false;
128         if (ObjCPDecl)
129           S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
130           << ObjCPDecl->getDeclName() << 1;
131       }
132       break;
133     }
134     return Result;
135 }
136 
137 /// \brief Emit a note explaining that this function is deleted or unavailable.
NoteDeletedFunction(FunctionDecl * Decl)138 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
139   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
140 
141   if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
142     // If the method was explicitly defaulted, point at that declaration.
143     if (!Method->isImplicit())
144       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
145 
146     // Try to diagnose why this special member function was implicitly
147     // deleted. This might fail, if that reason no longer applies.
148     CXXSpecialMember CSM = getSpecialMember(Method);
149     if (CSM != CXXInvalid)
150       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
151 
152     return;
153   }
154 
155   Diag(Decl->getLocation(), diag::note_unavailable_here)
156     << 1 << Decl->isDeleted();
157 }
158 
159 /// \brief Determine whether a FunctionDecl was ever declared with an
160 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)161 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
162   for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
163                                      E = D->redecls_end();
164        I != E; ++I) {
165     if (I->getStorageClassAsWritten() != SC_None)
166       return true;
167   }
168   return false;
169 }
170 
171 /// \brief Check whether we're in an extern inline function and referring to a
172 /// variable or function with internal linkage (C11 6.7.4p3).
173 ///
174 /// This is only a warning because we used to silently accept this code, but
175 /// in many cases it will not behave correctly. This is not enabled in C++ mode
176 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
177 /// and so while there may still be user mistakes, most of the time we can't
178 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)179 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
180                                                       const NamedDecl *D,
181                                                       SourceLocation Loc) {
182   // This is disabled under C++; there are too many ways for this to fire in
183   // contexts where the warning is a false positive, or where it is technically
184   // correct but benign.
185   if (S.getLangOpts().CPlusPlus)
186     return;
187 
188   // Check if this is an inlined function or method.
189   FunctionDecl *Current = S.getCurFunctionDecl();
190   if (!Current)
191     return;
192   if (!Current->isInlined())
193     return;
194   if (Current->getLinkage() != ExternalLinkage)
195     return;
196 
197   // Check if the decl has internal linkage.
198   if (D->getLinkage() != InternalLinkage)
199     return;
200 
201   // Downgrade from ExtWarn to Extension if
202   //  (1) the supposedly external inline function is in the main file,
203   //      and probably won't be included anywhere else.
204   //  (2) the thing we're referencing is a pure function.
205   //  (3) the thing we're referencing is another inline function.
206   // This last can give us false negatives, but it's better than warning on
207   // wrappers for simple C library functions.
208   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
209   bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
210   if (!DowngradeWarning && UsedFn)
211     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
212 
213   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
214                                : diag::warn_internal_in_extern_inline)
215     << /*IsVar=*/!UsedFn << D;
216 
217   // Suggest "static" on the inline function, if possible.
218   if (!hasAnyExplicitStorageClass(Current)) {
219     const FunctionDecl *FirstDecl = Current->getCanonicalDecl();
220     SourceLocation DeclBegin = FirstDecl->getSourceRange().getBegin();
221     S.Diag(DeclBegin, diag::note_convert_inline_to_static)
222       << Current << FixItHint::CreateInsertion(DeclBegin, "static ");
223   }
224 
225   S.Diag(D->getCanonicalDecl()->getLocation(),
226          diag::note_internal_decl_declared_here)
227     << D;
228 }
229 
230 /// \brief Determine whether the use of this declaration is valid, and
231 /// emit any corresponding diagnostics.
232 ///
233 /// This routine diagnoses various problems with referencing
234 /// declarations that can occur when using a declaration. For example,
235 /// it might warn if a deprecated or unavailable declaration is being
236 /// used, or produce an error (and return true) if a C++0x deleted
237 /// function is being used.
238 ///
239 /// \returns true if there was an error (this declaration cannot be
240 /// referenced), false otherwise.
241 ///
DiagnoseUseOfDecl(NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)242 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
243                              const ObjCInterfaceDecl *UnknownObjCClass) {
244   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
245     // If there were any diagnostics suppressed by template argument deduction,
246     // emit them now.
247     llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
248       Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
249     if (Pos != SuppressedDiagnostics.end()) {
250       SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
251       for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
252         Diag(Suppressed[I].first, Suppressed[I].second);
253 
254       // Clear out the list of suppressed diagnostics, so that we don't emit
255       // them again for this specialization. However, we don't obsolete this
256       // entry from the table, because we want to avoid ever emitting these
257       // diagnostics again.
258       Suppressed.clear();
259     }
260   }
261 
262   // See if this is an auto-typed variable whose initializer we are parsing.
263   if (ParsingInitForAutoVars.count(D)) {
264     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
265       << D->getDeclName();
266     return true;
267   }
268 
269   // See if this is a deleted function.
270   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
271     if (FD->isDeleted()) {
272       Diag(Loc, diag::err_deleted_function_use);
273       NoteDeletedFunction(FD);
274       return true;
275     }
276   }
277   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
278 
279   DiagnoseUnusedOfDecl(*this, D, Loc);
280 
281   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
282 
283   return false;
284 }
285 
286 /// \brief Retrieve the message suffix that should be added to a
287 /// diagnostic complaining about the given function being deleted or
288 /// unavailable.
getDeletedOrUnavailableSuffix(const FunctionDecl * FD)289 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
290   std::string Message;
291   if (FD->getAvailability(&Message))
292     return ": " + Message;
293 
294   return std::string();
295 }
296 
297 /// DiagnoseSentinelCalls - This routine checks whether a call or
298 /// message-send is to a declaration with the sentinel attribute, and
299 /// if so, it checks that the requirements of the sentinel are
300 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,Expr ** args,unsigned numArgs)301 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
302                                  Expr **args, unsigned numArgs) {
303   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
304   if (!attr)
305     return;
306 
307   // The number of formal parameters of the declaration.
308   unsigned numFormalParams;
309 
310   // The kind of declaration.  This is also an index into a %select in
311   // the diagnostic.
312   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
313 
314   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
315     numFormalParams = MD->param_size();
316     calleeType = CT_Method;
317   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
318     numFormalParams = FD->param_size();
319     calleeType = CT_Function;
320   } else if (isa<VarDecl>(D)) {
321     QualType type = cast<ValueDecl>(D)->getType();
322     const FunctionType *fn = 0;
323     if (const PointerType *ptr = type->getAs<PointerType>()) {
324       fn = ptr->getPointeeType()->getAs<FunctionType>();
325       if (!fn) return;
326       calleeType = CT_Function;
327     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
328       fn = ptr->getPointeeType()->castAs<FunctionType>();
329       calleeType = CT_Block;
330     } else {
331       return;
332     }
333 
334     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
335       numFormalParams = proto->getNumArgs();
336     } else {
337       numFormalParams = 0;
338     }
339   } else {
340     return;
341   }
342 
343   // "nullPos" is the number of formal parameters at the end which
344   // effectively count as part of the variadic arguments.  This is
345   // useful if you would prefer to not have *any* formal parameters,
346   // but the language forces you to have at least one.
347   unsigned nullPos = attr->getNullPos();
348   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
349   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
350 
351   // The number of arguments which should follow the sentinel.
352   unsigned numArgsAfterSentinel = attr->getSentinel();
353 
354   // If there aren't enough arguments for all the formal parameters,
355   // the sentinel, and the args after the sentinel, complain.
356   if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
357     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
358     Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
359     return;
360   }
361 
362   // Otherwise, find the sentinel expression.
363   Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
364   if (!sentinelExpr) return;
365   if (sentinelExpr->isValueDependent()) return;
366   if (Context.isSentinelNullExpr(sentinelExpr)) return;
367 
368   // Pick a reasonable string to insert.  Optimistically use 'nil' or
369   // 'NULL' if those are actually defined in the context.  Only use
370   // 'nil' for ObjC methods, where it's much more likely that the
371   // variadic arguments form a list of object pointers.
372   SourceLocation MissingNilLoc
373     = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
374   std::string NullValue;
375   if (calleeType == CT_Method &&
376       PP.getIdentifierInfo("nil")->hasMacroDefinition())
377     NullValue = "nil";
378   else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
379     NullValue = "NULL";
380   else
381     NullValue = "(void*) 0";
382 
383   if (MissingNilLoc.isInvalid())
384     Diag(Loc, diag::warn_missing_sentinel) << calleeType;
385   else
386     Diag(MissingNilLoc, diag::warn_missing_sentinel)
387       << calleeType
388       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
389   Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
390 }
391 
getExprRange(Expr * E) const392 SourceRange Sema::getExprRange(Expr *E) const {
393   return E ? E->getSourceRange() : SourceRange();
394 }
395 
396 //===----------------------------------------------------------------------===//
397 //  Standard Promotions and Conversions
398 //===----------------------------------------------------------------------===//
399 
400 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E)401 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
402   // Handle any placeholder expressions which made it here.
403   if (E->getType()->isPlaceholderType()) {
404     ExprResult result = CheckPlaceholderExpr(E);
405     if (result.isInvalid()) return ExprError();
406     E = result.take();
407   }
408 
409   QualType Ty = E->getType();
410   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
411 
412   if (Ty->isFunctionType())
413     E = ImpCastExprToType(E, Context.getPointerType(Ty),
414                           CK_FunctionToPointerDecay).take();
415   else if (Ty->isArrayType()) {
416     // In C90 mode, arrays only promote to pointers if the array expression is
417     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
418     // type 'array of type' is converted to an expression that has type 'pointer
419     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
420     // that has type 'array of type' ...".  The relevant change is "an lvalue"
421     // (C90) to "an expression" (C99).
422     //
423     // C++ 4.2p1:
424     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
425     // T" can be converted to an rvalue of type "pointer to T".
426     //
427     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
428       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
429                             CK_ArrayToPointerDecay).take();
430   }
431   return Owned(E);
432 }
433 
CheckForNullPointerDereference(Sema & S,Expr * E)434 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
435   // Check to see if we are dereferencing a null pointer.  If so,
436   // and if not volatile-qualified, this is undefined behavior that the
437   // optimizer will delete, so warn about it.  People sometimes try to use this
438   // to get a deterministic trap and are surprised by clang's behavior.  This
439   // only handles the pattern "*null", which is a very syntactic check.
440   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
441     if (UO->getOpcode() == UO_Deref &&
442         UO->getSubExpr()->IgnoreParenCasts()->
443           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
444         !UO->getType().isVolatileQualified()) {
445     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
446                           S.PDiag(diag::warn_indirection_through_null)
447                             << UO->getSubExpr()->getSourceRange());
448     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
449                         S.PDiag(diag::note_indirection_through_null));
450   }
451 }
452 
DefaultLvalueConversion(Expr * E)453 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
454   // Handle any placeholder expressions which made it here.
455   if (E->getType()->isPlaceholderType()) {
456     ExprResult result = CheckPlaceholderExpr(E);
457     if (result.isInvalid()) return ExprError();
458     E = result.take();
459   }
460 
461   // C++ [conv.lval]p1:
462   //   A glvalue of a non-function, non-array type T can be
463   //   converted to a prvalue.
464   if (!E->isGLValue()) return Owned(E);
465 
466   QualType T = E->getType();
467   assert(!T.isNull() && "r-value conversion on typeless expression?");
468 
469   // We don't want to throw lvalue-to-rvalue casts on top of
470   // expressions of certain types in C++.
471   if (getLangOpts().CPlusPlus &&
472       (E->getType() == Context.OverloadTy ||
473        T->isDependentType() ||
474        T->isRecordType()))
475     return Owned(E);
476 
477   // The C standard is actually really unclear on this point, and
478   // DR106 tells us what the result should be but not why.  It's
479   // generally best to say that void types just doesn't undergo
480   // lvalue-to-rvalue at all.  Note that expressions of unqualified
481   // 'void' type are never l-values, but qualified void can be.
482   if (T->isVoidType())
483     return Owned(E);
484 
485   // OpenCL usually rejects direct accesses to values of 'half' type.
486   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
487       T->isHalfType()) {
488     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
489       << 0 << T;
490     return ExprError();
491   }
492 
493   CheckForNullPointerDereference(*this, E);
494 
495   // C++ [conv.lval]p1:
496   //   [...] If T is a non-class type, the type of the prvalue is the
497   //   cv-unqualified version of T. Otherwise, the type of the
498   //   rvalue is T.
499   //
500   // C99 6.3.2.1p2:
501   //   If the lvalue has qualified type, the value has the unqualified
502   //   version of the type of the lvalue; otherwise, the value has the
503   //   type of the lvalue.
504   if (T.hasQualifiers())
505     T = T.getUnqualifiedType();
506 
507   UpdateMarkingForLValueToRValue(E);
508 
509   // Loading a __weak object implicitly retains the value, so we need a cleanup to
510   // balance that.
511   if (getLangOpts().ObjCAutoRefCount &&
512       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
513     ExprNeedsCleanups = true;
514 
515   ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
516                                                   E, 0, VK_RValue));
517 
518   // C11 6.3.2.1p2:
519   //   ... if the lvalue has atomic type, the value has the non-atomic version
520   //   of the type of the lvalue ...
521   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
522     T = Atomic->getValueType().getUnqualifiedType();
523     Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
524                                          Res.get(), 0, VK_RValue));
525   }
526 
527   return Res;
528 }
529 
DefaultFunctionArrayLvalueConversion(Expr * E)530 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
531   ExprResult Res = DefaultFunctionArrayConversion(E);
532   if (Res.isInvalid())
533     return ExprError();
534   Res = DefaultLvalueConversion(Res.take());
535   if (Res.isInvalid())
536     return ExprError();
537   return Res;
538 }
539 
540 
541 /// UsualUnaryConversions - Performs various conversions that are common to most
542 /// operators (C99 6.3). The conversions of array and function types are
543 /// sometimes suppressed. For example, the array->pointer conversion doesn't
544 /// apply if the array is an argument to the sizeof or address (&) operators.
545 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)546 ExprResult Sema::UsualUnaryConversions(Expr *E) {
547   // First, convert to an r-value.
548   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
549   if (Res.isInvalid())
550     return ExprError();
551   E = Res.take();
552 
553   QualType Ty = E->getType();
554   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
555 
556   // Half FP have to be promoted to float unless it is natively supported
557   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
558     return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
559 
560   // Try to perform integral promotions if the object has a theoretically
561   // promotable type.
562   if (Ty->isIntegralOrUnscopedEnumerationType()) {
563     // C99 6.3.1.1p2:
564     //
565     //   The following may be used in an expression wherever an int or
566     //   unsigned int may be used:
567     //     - an object or expression with an integer type whose integer
568     //       conversion rank is less than or equal to the rank of int
569     //       and unsigned int.
570     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
571     //
572     //   If an int can represent all values of the original type, the
573     //   value is converted to an int; otherwise, it is converted to an
574     //   unsigned int. These are called the integer promotions. All
575     //   other types are unchanged by the integer promotions.
576 
577     QualType PTy = Context.isPromotableBitField(E);
578     if (!PTy.isNull()) {
579       E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
580       return Owned(E);
581     }
582     if (Ty->isPromotableIntegerType()) {
583       QualType PT = Context.getPromotedIntegerType(Ty);
584       E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
585       return Owned(E);
586     }
587   }
588   return Owned(E);
589 }
590 
591 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
592 /// do not have a prototype. Arguments that have type float or __fp16
593 /// are promoted to double. All other argument types are converted by
594 /// UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)595 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
596   QualType Ty = E->getType();
597   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
598 
599   ExprResult Res = UsualUnaryConversions(E);
600   if (Res.isInvalid())
601     return ExprError();
602   E = Res.take();
603 
604   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
605   // double.
606   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
607   if (BTy && (BTy->getKind() == BuiltinType::Half ||
608               BTy->getKind() == BuiltinType::Float))
609     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
610 
611   // C++ performs lvalue-to-rvalue conversion as a default argument
612   // promotion, even on class types, but note:
613   //   C++11 [conv.lval]p2:
614   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
615   //     operand or a subexpression thereof the value contained in the
616   //     referenced object is not accessed. Otherwise, if the glvalue
617   //     has a class type, the conversion copy-initializes a temporary
618   //     of type T from the glvalue and the result of the conversion
619   //     is a prvalue for the temporary.
620   // FIXME: add some way to gate this entire thing for correctness in
621   // potentially potentially evaluated contexts.
622   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
623     ExprResult Temp = PerformCopyInitialization(
624                        InitializedEntity::InitializeTemporary(E->getType()),
625                                                 E->getExprLoc(),
626                                                 Owned(E));
627     if (Temp.isInvalid())
628       return ExprError();
629     E = Temp.get();
630   }
631 
632   return Owned(E);
633 }
634 
635 /// Determine the degree of POD-ness for an expression.
636 /// Incomplete types are considered POD, since this check can be performed
637 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)638 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
639   if (Ty->isIncompleteType()) {
640     if (Ty->isObjCObjectType())
641       return VAK_Invalid;
642     return VAK_Valid;
643   }
644 
645   if (Ty.isCXX98PODType(Context))
646     return VAK_Valid;
647 
648   // C++11 [expr.call]p7:
649   //   Passing a potentially-evaluated argument of class type (Clause 9)
650   //   having a non-trivial copy constructor, a non-trivial move constructor,
651   //   or a non-trivial destructor, with no corresponding parameter,
652   //   is conditionally-supported with implementation-defined semantics.
653   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
654     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
655       if (!Record->hasNonTrivialCopyConstructor() &&
656           !Record->hasNonTrivialMoveConstructor() &&
657           !Record->hasNonTrivialDestructor())
658         return VAK_ValidInCXX11;
659 
660   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
661     return VAK_Valid;
662   return VAK_Invalid;
663 }
664 
variadicArgumentPODCheck(const Expr * E,VariadicCallType CT)665 bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
666   // Don't allow one to pass an Objective-C interface to a vararg.
667   const QualType & Ty = E->getType();
668 
669   // Complain about passing non-POD types through varargs.
670   switch (isValidVarArgType(Ty)) {
671   case VAK_Valid:
672     break;
673   case VAK_ValidInCXX11:
674     DiagRuntimeBehavior(E->getLocStart(), 0,
675         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
676         << E->getType() << CT);
677     break;
678   case VAK_Invalid: {
679     if (Ty->isObjCObjectType())
680       return DiagRuntimeBehavior(E->getLocStart(), 0,
681                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
682                             << Ty << CT);
683 
684     return DiagRuntimeBehavior(E->getLocStart(), 0,
685                    PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
686                    << getLangOpts().CPlusPlus11 << Ty << CT);
687   }
688   }
689   // c++ rules are enforced elsewhere.
690   return false;
691 }
692 
693 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
694 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)695 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
696                                                   FunctionDecl *FDecl) {
697   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
698     // Strip the unbridged-cast placeholder expression off, if applicable.
699     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
700         (CT == VariadicMethod ||
701          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
702       E = stripARCUnbridgedCast(E);
703 
704     // Otherwise, do normal placeholder checking.
705     } else {
706       ExprResult ExprRes = CheckPlaceholderExpr(E);
707       if (ExprRes.isInvalid())
708         return ExprError();
709       E = ExprRes.take();
710     }
711   }
712 
713   ExprResult ExprRes = DefaultArgumentPromotion(E);
714   if (ExprRes.isInvalid())
715     return ExprError();
716   E = ExprRes.take();
717 
718   // Diagnostics regarding non-POD argument types are
719   // emitted along with format string checking in Sema::CheckFunctionCall().
720   if (isValidVarArgType(E->getType()) == VAK_Invalid) {
721     // Turn this into a trap.
722     CXXScopeSpec SS;
723     SourceLocation TemplateKWLoc;
724     UnqualifiedId Name;
725     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
726                        E->getLocStart());
727     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
728                                           Name, true, false);
729     if (TrapFn.isInvalid())
730       return ExprError();
731 
732     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
733                                     E->getLocStart(), MultiExprArg(),
734                                     E->getLocEnd());
735     if (Call.isInvalid())
736       return ExprError();
737 
738     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
739                                   Call.get(), E);
740     if (Comma.isInvalid())
741       return ExprError();
742     return Comma.get();
743   }
744 
745   if (!getLangOpts().CPlusPlus &&
746       RequireCompleteType(E->getExprLoc(), E->getType(),
747                           diag::err_call_incomplete_argument))
748     return ExprError();
749 
750   return Owned(E);
751 }
752 
753 /// \brief Converts an integer to complex float type.  Helper function of
754 /// UsualArithmeticConversions()
755 ///
756 /// \return false if the integer expression is an integer type and is
757 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)758 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
759                                                   ExprResult &ComplexExpr,
760                                                   QualType IntTy,
761                                                   QualType ComplexTy,
762                                                   bool SkipCast) {
763   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
764   if (SkipCast) return false;
765   if (IntTy->isIntegerType()) {
766     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
767     IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
768     IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
769                                   CK_FloatingRealToComplex);
770   } else {
771     assert(IntTy->isComplexIntegerType());
772     IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
773                                   CK_IntegralComplexToFloatingComplex);
774   }
775   return false;
776 }
777 
778 /// \brief Takes two complex float types and converts them to the same type.
779 /// Helper function of UsualArithmeticConversions()
780 static QualType
handleComplexFloatToComplexFloatConverstion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)781 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
782                                             ExprResult &RHS, QualType LHSType,
783                                             QualType RHSType,
784                                             bool IsCompAssign) {
785   int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
786 
787   if (order < 0) {
788     // _Complex float -> _Complex double
789     if (!IsCompAssign)
790       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
791     return RHSType;
792   }
793   if (order > 0)
794     // _Complex float -> _Complex double
795     RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
796   return LHSType;
797 }
798 
799 /// \brief Converts otherExpr to complex float and promotes complexExpr if
800 /// necessary.  Helper function of UsualArithmeticConversions()
handleOtherComplexFloatConversion(Sema & S,ExprResult & ComplexExpr,ExprResult & OtherExpr,QualType ComplexTy,QualType OtherTy,bool ConvertComplexExpr,bool ConvertOtherExpr)801 static QualType handleOtherComplexFloatConversion(Sema &S,
802                                                   ExprResult &ComplexExpr,
803                                                   ExprResult &OtherExpr,
804                                                   QualType ComplexTy,
805                                                   QualType OtherTy,
806                                                   bool ConvertComplexExpr,
807                                                   bool ConvertOtherExpr) {
808   int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
809 
810   // If just the complexExpr is complex, the otherExpr needs to be converted,
811   // and the complexExpr might need to be promoted.
812   if (order > 0) { // complexExpr is wider
813     // float -> _Complex double
814     if (ConvertOtherExpr) {
815       QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
816       OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
817       OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
818                                       CK_FloatingRealToComplex);
819     }
820     return ComplexTy;
821   }
822 
823   // otherTy is at least as wide.  Find its corresponding complex type.
824   QualType result = (order == 0 ? ComplexTy :
825                                   S.Context.getComplexType(OtherTy));
826 
827   // double -> _Complex double
828   if (ConvertOtherExpr)
829     OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
830                                     CK_FloatingRealToComplex);
831 
832   // _Complex float -> _Complex double
833   if (ConvertComplexExpr && order < 0)
834     ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
835                                       CK_FloatingComplexCast);
836 
837   return result;
838 }
839 
840 /// \brief Handle arithmetic conversion with complex types.  Helper function of
841 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)842 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
843                                              ExprResult &RHS, QualType LHSType,
844                                              QualType RHSType,
845                                              bool IsCompAssign) {
846   // if we have an integer operand, the result is the complex type.
847   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
848                                              /*skipCast*/false))
849     return LHSType;
850   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
851                                              /*skipCast*/IsCompAssign))
852     return RHSType;
853 
854   // This handles complex/complex, complex/float, or float/complex.
855   // When both operands are complex, the shorter operand is converted to the
856   // type of the longer, and that is the type of the result. This corresponds
857   // to what is done when combining two real floating-point operands.
858   // The fun begins when size promotion occur across type domains.
859   // From H&S 6.3.4: When one operand is complex and the other is a real
860   // floating-point type, the less precise type is converted, within it's
861   // real or complex domain, to the precision of the other type. For example,
862   // when combining a "long double" with a "double _Complex", the
863   // "double _Complex" is promoted to "long double _Complex".
864 
865   bool LHSComplexFloat = LHSType->isComplexType();
866   bool RHSComplexFloat = RHSType->isComplexType();
867 
868   // If both are complex, just cast to the more precise type.
869   if (LHSComplexFloat && RHSComplexFloat)
870     return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
871                                                        LHSType, RHSType,
872                                                        IsCompAssign);
873 
874   // If only one operand is complex, promote it if necessary and convert the
875   // other operand to complex.
876   if (LHSComplexFloat)
877     return handleOtherComplexFloatConversion(
878         S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
879         /*convertOtherExpr*/ true);
880 
881   assert(RHSComplexFloat);
882   return handleOtherComplexFloatConversion(
883       S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
884       /*convertOtherExpr*/ !IsCompAssign);
885 }
886 
887 /// \brief Hande arithmetic conversion from integer to float.  Helper function
888 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)889 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
890                                            ExprResult &IntExpr,
891                                            QualType FloatTy, QualType IntTy,
892                                            bool ConvertFloat, bool ConvertInt) {
893   if (IntTy->isIntegerType()) {
894     if (ConvertInt)
895       // Convert intExpr to the lhs floating point type.
896       IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
897                                     CK_IntegralToFloating);
898     return FloatTy;
899   }
900 
901   // Convert both sides to the appropriate complex float.
902   assert(IntTy->isComplexIntegerType());
903   QualType result = S.Context.getComplexType(FloatTy);
904 
905   // _Complex int -> _Complex float
906   if (ConvertInt)
907     IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
908                                   CK_IntegralComplexToFloatingComplex);
909 
910   // float -> _Complex float
911   if (ConvertFloat)
912     FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
913                                     CK_FloatingRealToComplex);
914 
915   return result;
916 }
917 
918 /// \brief Handle arithmethic conversion with floating point types.  Helper
919 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)920 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
921                                       ExprResult &RHS, QualType LHSType,
922                                       QualType RHSType, bool IsCompAssign) {
923   bool LHSFloat = LHSType->isRealFloatingType();
924   bool RHSFloat = RHSType->isRealFloatingType();
925 
926   // If we have two real floating types, convert the smaller operand
927   // to the bigger result.
928   if (LHSFloat && RHSFloat) {
929     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
930     if (order > 0) {
931       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
932       return LHSType;
933     }
934 
935     assert(order < 0 && "illegal float comparison");
936     if (!IsCompAssign)
937       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
938     return RHSType;
939   }
940 
941   if (LHSFloat)
942     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
943                                       /*convertFloat=*/!IsCompAssign,
944                                       /*convertInt=*/ true);
945   assert(RHSFloat);
946   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
947                                     /*convertInt=*/ true,
948                                     /*convertFloat=*/!IsCompAssign);
949 }
950 
951 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
952 
953 namespace {
954 /// These helper callbacks are placed in an anonymous namespace to
955 /// permit their use as function template parameters.
doIntegralCast(Sema & S,Expr * op,QualType toType)956 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
957   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
958 }
959 
doComplexIntegralCast(Sema & S,Expr * op,QualType toType)960 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
961   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
962                              CK_IntegralComplexCast);
963 }
964 }
965 
966 /// \brief Handle integer arithmetic conversions.  Helper function of
967 /// UsualArithmeticConversions()
968 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)969 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
970                                         ExprResult &RHS, QualType LHSType,
971                                         QualType RHSType, bool IsCompAssign) {
972   // The rules for this case are in C99 6.3.1.8
973   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
974   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
975   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
976   if (LHSSigned == RHSSigned) {
977     // Same signedness; use the higher-ranked type
978     if (order >= 0) {
979       RHS = (*doRHSCast)(S, RHS.take(), LHSType);
980       return LHSType;
981     } else if (!IsCompAssign)
982       LHS = (*doLHSCast)(S, LHS.take(), RHSType);
983     return RHSType;
984   } else if (order != (LHSSigned ? 1 : -1)) {
985     // The unsigned type has greater than or equal rank to the
986     // signed type, so use the unsigned type
987     if (RHSSigned) {
988       RHS = (*doRHSCast)(S, RHS.take(), LHSType);
989       return LHSType;
990     } else if (!IsCompAssign)
991       LHS = (*doLHSCast)(S, LHS.take(), RHSType);
992     return RHSType;
993   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
994     // The two types are different widths; if we are here, that
995     // means the signed type is larger than the unsigned type, so
996     // use the signed type.
997     if (LHSSigned) {
998       RHS = (*doRHSCast)(S, RHS.take(), LHSType);
999       return LHSType;
1000     } else if (!IsCompAssign)
1001       LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1002     return RHSType;
1003   } else {
1004     // The signed type is higher-ranked than the unsigned type,
1005     // but isn't actually any bigger (like unsigned int and long
1006     // on most 32-bit systems).  Use the unsigned type corresponding
1007     // to the signed type.
1008     QualType result =
1009       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1010     RHS = (*doRHSCast)(S, RHS.take(), result);
1011     if (!IsCompAssign)
1012       LHS = (*doLHSCast)(S, LHS.take(), result);
1013     return result;
1014   }
1015 }
1016 
1017 /// \brief Handle conversions with GCC complex int extension.  Helper function
1018 /// of UsualArithmeticConversions()
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1019 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1020                                            ExprResult &RHS, QualType LHSType,
1021                                            QualType RHSType,
1022                                            bool IsCompAssign) {
1023   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1024   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1025 
1026   if (LHSComplexInt && RHSComplexInt) {
1027     QualType LHSEltType = LHSComplexInt->getElementType();
1028     QualType RHSEltType = RHSComplexInt->getElementType();
1029     QualType ScalarType =
1030       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1031         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1032 
1033     return S.Context.getComplexType(ScalarType);
1034   }
1035 
1036   if (LHSComplexInt) {
1037     QualType LHSEltType = LHSComplexInt->getElementType();
1038     QualType ScalarType =
1039       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1040         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1041     QualType ComplexType = S.Context.getComplexType(ScalarType);
1042     RHS = S.ImpCastExprToType(RHS.take(), ComplexType,
1043                               CK_IntegralRealToComplex);
1044 
1045     return ComplexType;
1046   }
1047 
1048   assert(RHSComplexInt);
1049 
1050   QualType RHSEltType = RHSComplexInt->getElementType();
1051   QualType ScalarType =
1052     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1053       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1054   QualType ComplexType = S.Context.getComplexType(ScalarType);
1055 
1056   if (!IsCompAssign)
1057     LHS = S.ImpCastExprToType(LHS.take(), ComplexType,
1058                               CK_IntegralRealToComplex);
1059   return ComplexType;
1060 }
1061 
1062 /// UsualArithmeticConversions - Performs various conversions that are common to
1063 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1064 /// routine returns the first non-arithmetic type found. The client is
1065 /// responsible for emitting appropriate error diagnostics.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,bool IsCompAssign)1066 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1067                                           bool IsCompAssign) {
1068   if (!IsCompAssign) {
1069     LHS = UsualUnaryConversions(LHS.take());
1070     if (LHS.isInvalid())
1071       return QualType();
1072   }
1073 
1074   RHS = UsualUnaryConversions(RHS.take());
1075   if (RHS.isInvalid())
1076     return QualType();
1077 
1078   // For conversion purposes, we ignore any qualifiers.
1079   // For example, "const float" and "float" are equivalent.
1080   QualType LHSType =
1081     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1082   QualType RHSType =
1083     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1084 
1085   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1086   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1087     LHSType = AtomicLHS->getValueType();
1088 
1089   // If both types are identical, no conversion is needed.
1090   if (LHSType == RHSType)
1091     return LHSType;
1092 
1093   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1094   // The caller can deal with this (e.g. pointer + int).
1095   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1096     return QualType();
1097 
1098   // Apply unary and bitfield promotions to the LHS's type.
1099   QualType LHSUnpromotedType = LHSType;
1100   if (LHSType->isPromotableIntegerType())
1101     LHSType = Context.getPromotedIntegerType(LHSType);
1102   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1103   if (!LHSBitfieldPromoteTy.isNull())
1104     LHSType = LHSBitfieldPromoteTy;
1105   if (LHSType != LHSUnpromotedType && !IsCompAssign)
1106     LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1107 
1108   // If both types are identical, no conversion is needed.
1109   if (LHSType == RHSType)
1110     return LHSType;
1111 
1112   // At this point, we have two different arithmetic types.
1113 
1114   // Handle complex types first (C99 6.3.1.8p1).
1115   if (LHSType->isComplexType() || RHSType->isComplexType())
1116     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1117                                         IsCompAssign);
1118 
1119   // Now handle "real" floating types (i.e. float, double, long double).
1120   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1121     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1122                                  IsCompAssign);
1123 
1124   // Handle GCC complex int extension.
1125   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1126     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1127                                       IsCompAssign);
1128 
1129   // Finally, we have two differing integer types.
1130   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1131            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1132 }
1133 
1134 
1135 //===----------------------------------------------------------------------===//
1136 //  Semantic Analysis for various Expression Types
1137 //===----------------------------------------------------------------------===//
1138 
1139 
1140 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,MultiTypeArg ArgTypes,MultiExprArg ArgExprs)1141 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1142                                 SourceLocation DefaultLoc,
1143                                 SourceLocation RParenLoc,
1144                                 Expr *ControllingExpr,
1145                                 MultiTypeArg ArgTypes,
1146                                 MultiExprArg ArgExprs) {
1147   unsigned NumAssocs = ArgTypes.size();
1148   assert(NumAssocs == ArgExprs.size());
1149 
1150   ParsedType *ParsedTypes = ArgTypes.data();
1151   Expr **Exprs = ArgExprs.data();
1152 
1153   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1154   for (unsigned i = 0; i < NumAssocs; ++i) {
1155     if (ParsedTypes[i])
1156       (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1157     else
1158       Types[i] = 0;
1159   }
1160 
1161   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1162                                              ControllingExpr, Types, Exprs,
1163                                              NumAssocs);
1164   delete [] Types;
1165   return ER;
1166 }
1167 
1168 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,TypeSourceInfo ** Types,Expr ** Exprs,unsigned NumAssocs)1169 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1170                                  SourceLocation DefaultLoc,
1171                                  SourceLocation RParenLoc,
1172                                  Expr *ControllingExpr,
1173                                  TypeSourceInfo **Types,
1174                                  Expr **Exprs,
1175                                  unsigned NumAssocs) {
1176   if (ControllingExpr->getType()->isPlaceholderType()) {
1177     ExprResult result = CheckPlaceholderExpr(ControllingExpr);
1178     if (result.isInvalid()) return ExprError();
1179     ControllingExpr = result.take();
1180   }
1181 
1182   bool TypeErrorFound = false,
1183        IsResultDependent = ControllingExpr->isTypeDependent(),
1184        ContainsUnexpandedParameterPack
1185          = ControllingExpr->containsUnexpandedParameterPack();
1186 
1187   for (unsigned i = 0; i < NumAssocs; ++i) {
1188     if (Exprs[i]->containsUnexpandedParameterPack())
1189       ContainsUnexpandedParameterPack = true;
1190 
1191     if (Types[i]) {
1192       if (Types[i]->getType()->containsUnexpandedParameterPack())
1193         ContainsUnexpandedParameterPack = true;
1194 
1195       if (Types[i]->getType()->isDependentType()) {
1196         IsResultDependent = true;
1197       } else {
1198         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1199         // complete object type other than a variably modified type."
1200         unsigned D = 0;
1201         if (Types[i]->getType()->isIncompleteType())
1202           D = diag::err_assoc_type_incomplete;
1203         else if (!Types[i]->getType()->isObjectType())
1204           D = diag::err_assoc_type_nonobject;
1205         else if (Types[i]->getType()->isVariablyModifiedType())
1206           D = diag::err_assoc_type_variably_modified;
1207 
1208         if (D != 0) {
1209           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1210             << Types[i]->getTypeLoc().getSourceRange()
1211             << Types[i]->getType();
1212           TypeErrorFound = true;
1213         }
1214 
1215         // C11 6.5.1.1p2 "No two generic associations in the same generic
1216         // selection shall specify compatible types."
1217         for (unsigned j = i+1; j < NumAssocs; ++j)
1218           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1219               Context.typesAreCompatible(Types[i]->getType(),
1220                                          Types[j]->getType())) {
1221             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1222                  diag::err_assoc_compatible_types)
1223               << Types[j]->getTypeLoc().getSourceRange()
1224               << Types[j]->getType()
1225               << Types[i]->getType();
1226             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1227                  diag::note_compat_assoc)
1228               << Types[i]->getTypeLoc().getSourceRange()
1229               << Types[i]->getType();
1230             TypeErrorFound = true;
1231           }
1232       }
1233     }
1234   }
1235   if (TypeErrorFound)
1236     return ExprError();
1237 
1238   // If we determined that the generic selection is result-dependent, don't
1239   // try to compute the result expression.
1240   if (IsResultDependent)
1241     return Owned(new (Context) GenericSelectionExpr(
1242                    Context, KeyLoc, ControllingExpr,
1243                    llvm::makeArrayRef(Types, NumAssocs),
1244                    llvm::makeArrayRef(Exprs, NumAssocs),
1245                    DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
1246 
1247   SmallVector<unsigned, 1> CompatIndices;
1248   unsigned DefaultIndex = -1U;
1249   for (unsigned i = 0; i < NumAssocs; ++i) {
1250     if (!Types[i])
1251       DefaultIndex = i;
1252     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1253                                         Types[i]->getType()))
1254       CompatIndices.push_back(i);
1255   }
1256 
1257   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1258   // type compatible with at most one of the types named in its generic
1259   // association list."
1260   if (CompatIndices.size() > 1) {
1261     // We strip parens here because the controlling expression is typically
1262     // parenthesized in macro definitions.
1263     ControllingExpr = ControllingExpr->IgnoreParens();
1264     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1265       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1266       << (unsigned) CompatIndices.size();
1267     for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1268          E = CompatIndices.end(); I != E; ++I) {
1269       Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1270            diag::note_compat_assoc)
1271         << Types[*I]->getTypeLoc().getSourceRange()
1272         << Types[*I]->getType();
1273     }
1274     return ExprError();
1275   }
1276 
1277   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1278   // its controlling expression shall have type compatible with exactly one of
1279   // the types named in its generic association list."
1280   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1281     // We strip parens here because the controlling expression is typically
1282     // parenthesized in macro definitions.
1283     ControllingExpr = ControllingExpr->IgnoreParens();
1284     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1285       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1286     return ExprError();
1287   }
1288 
1289   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1290   // type name that is compatible with the type of the controlling expression,
1291   // then the result expression of the generic selection is the expression
1292   // in that generic association. Otherwise, the result expression of the
1293   // generic selection is the expression in the default generic association."
1294   unsigned ResultIndex =
1295     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1296 
1297   return Owned(new (Context) GenericSelectionExpr(
1298                  Context, KeyLoc, ControllingExpr,
1299                  llvm::makeArrayRef(Types, NumAssocs),
1300                  llvm::makeArrayRef(Exprs, NumAssocs),
1301                  DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
1302                  ResultIndex));
1303 }
1304 
1305 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1306 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1307 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1308                                      unsigned Offset) {
1309   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1310                                         S.getLangOpts());
1311 }
1312 
1313 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1314 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1315 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1316                                                  IdentifierInfo *UDSuffix,
1317                                                  SourceLocation UDSuffixLoc,
1318                                                  ArrayRef<Expr*> Args,
1319                                                  SourceLocation LitEndLoc) {
1320   assert(Args.size() <= 2 && "too many arguments for literal operator");
1321 
1322   QualType ArgTy[2];
1323   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1324     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1325     if (ArgTy[ArgIdx]->isArrayType())
1326       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1327   }
1328 
1329   DeclarationName OpName =
1330     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1331   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1332   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1333 
1334   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1335   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1336                               /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1337     return ExprError();
1338 
1339   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1340 }
1341 
1342 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1343 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1344 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1345 /// multiple tokens.  However, the common case is that StringToks points to one
1346 /// string.
1347 ///
1348 ExprResult
ActOnStringLiteral(const Token * StringToks,unsigned NumStringToks,Scope * UDLScope)1349 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1350                          Scope *UDLScope) {
1351   assert(NumStringToks && "Must have at least one string!");
1352 
1353   StringLiteralParser Literal(StringToks, NumStringToks, PP);
1354   if (Literal.hadError)
1355     return ExprError();
1356 
1357   SmallVector<SourceLocation, 4> StringTokLocs;
1358   for (unsigned i = 0; i != NumStringToks; ++i)
1359     StringTokLocs.push_back(StringToks[i].getLocation());
1360 
1361   QualType StrTy = Context.CharTy;
1362   if (Literal.isWide())
1363     StrTy = Context.getWCharType();
1364   else if (Literal.isUTF16())
1365     StrTy = Context.Char16Ty;
1366   else if (Literal.isUTF32())
1367     StrTy = Context.Char32Ty;
1368   else if (Literal.isPascal())
1369     StrTy = Context.UnsignedCharTy;
1370 
1371   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1372   if (Literal.isWide())
1373     Kind = StringLiteral::Wide;
1374   else if (Literal.isUTF8())
1375     Kind = StringLiteral::UTF8;
1376   else if (Literal.isUTF16())
1377     Kind = StringLiteral::UTF16;
1378   else if (Literal.isUTF32())
1379     Kind = StringLiteral::UTF32;
1380 
1381   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1382   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1383     StrTy.addConst();
1384 
1385   // Get an array type for the string, according to C99 6.4.5.  This includes
1386   // the nul terminator character as well as the string length for pascal
1387   // strings.
1388   StrTy = Context.getConstantArrayType(StrTy,
1389                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
1390                                        ArrayType::Normal, 0);
1391 
1392   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1393   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1394                                              Kind, Literal.Pascal, StrTy,
1395                                              &StringTokLocs[0],
1396                                              StringTokLocs.size());
1397   if (Literal.getUDSuffix().empty())
1398     return Owned(Lit);
1399 
1400   // We're building a user-defined literal.
1401   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1402   SourceLocation UDSuffixLoc =
1403     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1404                    Literal.getUDSuffixOffset());
1405 
1406   // Make sure we're allowed user-defined literals here.
1407   if (!UDLScope)
1408     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1409 
1410   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1411   //   operator "" X (str, len)
1412   QualType SizeType = Context.getSizeType();
1413   llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1414   IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1415                                                   StringTokLocs[0]);
1416   Expr *Args[] = { Lit, LenArg };
1417   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1418                                         Args, StringTokLocs.back());
1419 }
1420 
1421 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1422 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1423                        SourceLocation Loc,
1424                        const CXXScopeSpec *SS) {
1425   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1426   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1427 }
1428 
1429 /// BuildDeclRefExpr - Build an expression that references a
1430 /// declaration that does not require a closure capture.
1431 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS)1432 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1433                        const DeclarationNameInfo &NameInfo,
1434                        const CXXScopeSpec *SS) {
1435   if (getLangOpts().CUDA)
1436     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1437       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1438         CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1439                            CalleeTarget = IdentifyCUDATarget(Callee);
1440         if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1441           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1442             << CalleeTarget << D->getIdentifier() << CallerTarget;
1443           Diag(D->getLocation(), diag::note_previous_decl)
1444             << D->getIdentifier();
1445           return ExprError();
1446         }
1447       }
1448 
1449   bool refersToEnclosingScope =
1450     (CurContext != D->getDeclContext() &&
1451      D->getDeclContext()->isFunctionOrMethod());
1452 
1453   DeclRefExpr *E = DeclRefExpr::Create(Context,
1454                                        SS ? SS->getWithLocInContext(Context)
1455                                               : NestedNameSpecifierLoc(),
1456                                        SourceLocation(),
1457                                        D, refersToEnclosingScope,
1458                                        NameInfo, Ty, VK);
1459 
1460   MarkDeclRefReferenced(E);
1461 
1462   if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
1463       Ty.getObjCLifetime() == Qualifiers::OCL_Weak) {
1464     DiagnosticsEngine::Level Level =
1465       Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1466                                E->getLocStart());
1467     if (Level != DiagnosticsEngine::Ignored)
1468       getCurFunction()->recordUseOfWeak(E);
1469   }
1470 
1471   // Just in case we're building an illegal pointer-to-member.
1472   FieldDecl *FD = dyn_cast<FieldDecl>(D);
1473   if (FD && FD->isBitField())
1474     E->setObjectKind(OK_BitField);
1475 
1476   return Owned(E);
1477 }
1478 
1479 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1480 /// possibly a list of template arguments.
1481 ///
1482 /// If this produces template arguments, it is permitted to call
1483 /// DecomposeTemplateName.
1484 ///
1485 /// This actually loses a lot of source location information for
1486 /// non-standard name kinds; we should consider preserving that in
1487 /// some way.
1488 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)1489 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1490                              TemplateArgumentListInfo &Buffer,
1491                              DeclarationNameInfo &NameInfo,
1492                              const TemplateArgumentListInfo *&TemplateArgs) {
1493   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1494     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1495     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1496 
1497     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1498                                        Id.TemplateId->NumArgs);
1499     translateTemplateArguments(TemplateArgsPtr, Buffer);
1500 
1501     TemplateName TName = Id.TemplateId->Template.get();
1502     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1503     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1504     TemplateArgs = &Buffer;
1505   } else {
1506     NameInfo = GetNameFromUnqualifiedId(Id);
1507     TemplateArgs = 0;
1508   }
1509 }
1510 
1511 /// Diagnose an empty lookup.
1512 ///
1513 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args)1514 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1515                                CorrectionCandidateCallback &CCC,
1516                                TemplateArgumentListInfo *ExplicitTemplateArgs,
1517                                llvm::ArrayRef<Expr *> Args) {
1518   DeclarationName Name = R.getLookupName();
1519 
1520   unsigned diagnostic = diag::err_undeclared_var_use;
1521   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1522   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1523       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1524       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1525     diagnostic = diag::err_undeclared_use;
1526     diagnostic_suggest = diag::err_undeclared_use_suggest;
1527   }
1528 
1529   // If the original lookup was an unqualified lookup, fake an
1530   // unqualified lookup.  This is useful when (for example) the
1531   // original lookup would not have found something because it was a
1532   // dependent name.
1533   DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1534     ? CurContext : 0;
1535   while (DC) {
1536     if (isa<CXXRecordDecl>(DC)) {
1537       LookupQualifiedName(R, DC);
1538 
1539       if (!R.empty()) {
1540         // Don't give errors about ambiguities in this lookup.
1541         R.suppressDiagnostics();
1542 
1543         // During a default argument instantiation the CurContext points
1544         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1545         // function parameter list, hence add an explicit check.
1546         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1547                               ActiveTemplateInstantiations.back().Kind ==
1548             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1549         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1550         bool isInstance = CurMethod &&
1551                           CurMethod->isInstance() &&
1552                           DC == CurMethod->getParent() && !isDefaultArgument;
1553 
1554 
1555         // Give a code modification hint to insert 'this->'.
1556         // TODO: fixit for inserting 'Base<T>::' in the other cases.
1557         // Actually quite difficult!
1558         if (getLangOpts().MicrosoftMode)
1559           diagnostic = diag::warn_found_via_dependent_bases_lookup;
1560         if (isInstance) {
1561           Diag(R.getNameLoc(), diagnostic) << Name
1562             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1563           UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1564               CallsUndergoingInstantiation.back()->getCallee());
1565 
1566 
1567           CXXMethodDecl *DepMethod;
1568           if (CurMethod->getTemplatedKind() ==
1569               FunctionDecl::TK_FunctionTemplateSpecialization)
1570             DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1571                 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1572           else
1573             DepMethod = cast<CXXMethodDecl>(
1574                 CurMethod->getInstantiatedFromMemberFunction());
1575           assert(DepMethod && "No template pattern found");
1576 
1577           QualType DepThisType = DepMethod->getThisType(Context);
1578           CheckCXXThisCapture(R.getNameLoc());
1579           CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1580                                      R.getNameLoc(), DepThisType, false);
1581           TemplateArgumentListInfo TList;
1582           if (ULE->hasExplicitTemplateArgs())
1583             ULE->copyTemplateArgumentsInto(TList);
1584 
1585           CXXScopeSpec SS;
1586           SS.Adopt(ULE->getQualifierLoc());
1587           CXXDependentScopeMemberExpr *DepExpr =
1588               CXXDependentScopeMemberExpr::Create(
1589                   Context, DepThis, DepThisType, true, SourceLocation(),
1590                   SS.getWithLocInContext(Context),
1591                   ULE->getTemplateKeywordLoc(), 0,
1592                   R.getLookupNameInfo(),
1593                   ULE->hasExplicitTemplateArgs() ? &TList : 0);
1594           CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1595         } else {
1596           Diag(R.getNameLoc(), diagnostic) << Name;
1597         }
1598 
1599         // Do we really want to note all of these?
1600         for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1601           Diag((*I)->getLocation(), diag::note_dependent_var_use);
1602 
1603         // Return true if we are inside a default argument instantiation
1604         // and the found name refers to an instance member function, otherwise
1605         // the function calling DiagnoseEmptyLookup will try to create an
1606         // implicit member call and this is wrong for default argument.
1607         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1608           Diag(R.getNameLoc(), diag::err_member_call_without_object);
1609           return true;
1610         }
1611 
1612         // Tell the callee to try to recover.
1613         return false;
1614       }
1615 
1616       R.clear();
1617     }
1618 
1619     // In Microsoft mode, if we are performing lookup from within a friend
1620     // function definition declared at class scope then we must set
1621     // DC to the lexical parent to be able to search into the parent
1622     // class.
1623     if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1624         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1625         DC->getLexicalParent()->isRecord())
1626       DC = DC->getLexicalParent();
1627     else
1628       DC = DC->getParent();
1629   }
1630 
1631   // We didn't find anything, so try to correct for a typo.
1632   TypoCorrection Corrected;
1633   if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1634                                     S, &SS, CCC))) {
1635     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1636     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1637     R.setLookupName(Corrected.getCorrection());
1638 
1639     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1640       if (Corrected.isOverloaded()) {
1641         OverloadCandidateSet OCS(R.getNameLoc());
1642         OverloadCandidateSet::iterator Best;
1643         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1644                                         CDEnd = Corrected.end();
1645              CD != CDEnd; ++CD) {
1646           if (FunctionTemplateDecl *FTD =
1647                    dyn_cast<FunctionTemplateDecl>(*CD))
1648             AddTemplateOverloadCandidate(
1649                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1650                 Args, OCS);
1651           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1652             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1653               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1654                                    Args, OCS);
1655         }
1656         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1657           case OR_Success:
1658             ND = Best->Function;
1659             break;
1660           default:
1661             break;
1662         }
1663       }
1664       R.addDecl(ND);
1665       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1666         if (SS.isEmpty())
1667           Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1668             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1669         else
1670           Diag(R.getNameLoc(), diag::err_no_member_suggest)
1671             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1672             << SS.getRange()
1673             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
1674                                             CorrectedStr);
1675 
1676         unsigned diag = isa<ImplicitParamDecl>(ND)
1677           ? diag::note_implicit_param_decl
1678           : diag::note_previous_decl;
1679 
1680         Diag(ND->getLocation(), diag)
1681           << CorrectedQuotedStr;
1682 
1683         // Tell the callee to try to recover.
1684         return false;
1685       }
1686 
1687       if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1688         // FIXME: If we ended up with a typo for a type name or
1689         // Objective-C class name, we're in trouble because the parser
1690         // is in the wrong place to recover. Suggest the typo
1691         // correction, but don't make it a fix-it since we're not going
1692         // to recover well anyway.
1693         if (SS.isEmpty())
1694           Diag(R.getNameLoc(), diagnostic_suggest)
1695             << Name << CorrectedQuotedStr;
1696         else
1697           Diag(R.getNameLoc(), diag::err_no_member_suggest)
1698             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1699             << SS.getRange();
1700 
1701         // Don't try to recover; it won't work.
1702         return true;
1703       }
1704     } else {
1705       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1706       // because we aren't able to recover.
1707       if (SS.isEmpty())
1708         Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1709       else
1710         Diag(R.getNameLoc(), diag::err_no_member_suggest)
1711         << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1712         << SS.getRange();
1713       return true;
1714     }
1715   }
1716   R.clear();
1717 
1718   // Emit a special diagnostic for failed member lookups.
1719   // FIXME: computing the declaration context might fail here (?)
1720   if (!SS.isEmpty()) {
1721     Diag(R.getNameLoc(), diag::err_no_member)
1722       << Name << computeDeclContext(SS, false)
1723       << SS.getRange();
1724     return true;
1725   }
1726 
1727   // Give up, we can't recover.
1728   Diag(R.getNameLoc(), diagnostic) << Name;
1729   return true;
1730 }
1731 
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)1732 ExprResult Sema::ActOnIdExpression(Scope *S,
1733                                    CXXScopeSpec &SS,
1734                                    SourceLocation TemplateKWLoc,
1735                                    UnqualifiedId &Id,
1736                                    bool HasTrailingLParen,
1737                                    bool IsAddressOfOperand,
1738                                    CorrectionCandidateCallback *CCC) {
1739   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1740          "cannot be direct & operand and have a trailing lparen");
1741 
1742   if (SS.isInvalid())
1743     return ExprError();
1744 
1745   TemplateArgumentListInfo TemplateArgsBuffer;
1746 
1747   // Decompose the UnqualifiedId into the following data.
1748   DeclarationNameInfo NameInfo;
1749   const TemplateArgumentListInfo *TemplateArgs;
1750   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1751 
1752   DeclarationName Name = NameInfo.getName();
1753   IdentifierInfo *II = Name.getAsIdentifierInfo();
1754   SourceLocation NameLoc = NameInfo.getLoc();
1755 
1756   // C++ [temp.dep.expr]p3:
1757   //   An id-expression is type-dependent if it contains:
1758   //     -- an identifier that was declared with a dependent type,
1759   //        (note: handled after lookup)
1760   //     -- a template-id that is dependent,
1761   //        (note: handled in BuildTemplateIdExpr)
1762   //     -- a conversion-function-id that specifies a dependent type,
1763   //     -- a nested-name-specifier that contains a class-name that
1764   //        names a dependent type.
1765   // Determine whether this is a member of an unknown specialization;
1766   // we need to handle these differently.
1767   bool DependentID = false;
1768   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1769       Name.getCXXNameType()->isDependentType()) {
1770     DependentID = true;
1771   } else if (SS.isSet()) {
1772     if (DeclContext *DC = computeDeclContext(SS, false)) {
1773       if (RequireCompleteDeclContext(SS, DC))
1774         return ExprError();
1775     } else {
1776       DependentID = true;
1777     }
1778   }
1779 
1780   if (DependentID)
1781     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1782                                       IsAddressOfOperand, TemplateArgs);
1783 
1784   // Perform the required lookup.
1785   LookupResult R(*this, NameInfo,
1786                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1787                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1788   if (TemplateArgs) {
1789     // Lookup the template name again to correctly establish the context in
1790     // which it was found. This is really unfortunate as we already did the
1791     // lookup to determine that it was a template name in the first place. If
1792     // this becomes a performance hit, we can work harder to preserve those
1793     // results until we get here but it's likely not worth it.
1794     bool MemberOfUnknownSpecialization;
1795     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1796                        MemberOfUnknownSpecialization);
1797 
1798     if (MemberOfUnknownSpecialization ||
1799         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1800       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1801                                         IsAddressOfOperand, TemplateArgs);
1802   } else {
1803     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1804     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1805 
1806     // If the result might be in a dependent base class, this is a dependent
1807     // id-expression.
1808     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1809       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1810                                         IsAddressOfOperand, TemplateArgs);
1811 
1812     // If this reference is in an Objective-C method, then we need to do
1813     // some special Objective-C lookup, too.
1814     if (IvarLookupFollowUp) {
1815       ExprResult E(LookupInObjCMethod(R, S, II, true));
1816       if (E.isInvalid())
1817         return ExprError();
1818 
1819       if (Expr *Ex = E.takeAs<Expr>())
1820         return Owned(Ex);
1821     }
1822   }
1823 
1824   if (R.isAmbiguous())
1825     return ExprError();
1826 
1827   // Determine whether this name might be a candidate for
1828   // argument-dependent lookup.
1829   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1830 
1831   if (R.empty() && !ADL) {
1832     // Otherwise, this could be an implicitly declared function reference (legal
1833     // in C90, extension in C99, forbidden in C++).
1834     if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1835       NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1836       if (D) R.addDecl(D);
1837     }
1838 
1839     // If this name wasn't predeclared and if this is not a function
1840     // call, diagnose the problem.
1841     if (R.empty()) {
1842 
1843       // In Microsoft mode, if we are inside a template class member function
1844       // and we can't resolve an identifier then assume the identifier is type
1845       // dependent. The goal is to postpone name lookup to instantiation time
1846       // to be able to search into type dependent base classes.
1847       if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1848           isa<CXXMethodDecl>(CurContext))
1849         return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1850                                           IsAddressOfOperand, TemplateArgs);
1851 
1852       CorrectionCandidateCallback DefaultValidator;
1853       if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1854         return ExprError();
1855 
1856       assert(!R.empty() &&
1857              "DiagnoseEmptyLookup returned false but added no results");
1858 
1859       // If we found an Objective-C instance variable, let
1860       // LookupInObjCMethod build the appropriate expression to
1861       // reference the ivar.
1862       if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1863         R.clear();
1864         ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1865         // In a hopelessly buggy code, Objective-C instance variable
1866         // lookup fails and no expression will be built to reference it.
1867         if (!E.isInvalid() && !E.get())
1868           return ExprError();
1869         return E;
1870       }
1871     }
1872   }
1873 
1874   // This is guaranteed from this point on.
1875   assert(!R.empty() || ADL);
1876 
1877   // Check whether this might be a C++ implicit instance member access.
1878   // C++ [class.mfct.non-static]p3:
1879   //   When an id-expression that is not part of a class member access
1880   //   syntax and not used to form a pointer to member is used in the
1881   //   body of a non-static member function of class X, if name lookup
1882   //   resolves the name in the id-expression to a non-static non-type
1883   //   member of some class C, the id-expression is transformed into a
1884   //   class member access expression using (*this) as the
1885   //   postfix-expression to the left of the . operator.
1886   //
1887   // But we don't actually need to do this for '&' operands if R
1888   // resolved to a function or overloaded function set, because the
1889   // expression is ill-formed if it actually works out to be a
1890   // non-static member function:
1891   //
1892   // C++ [expr.ref]p4:
1893   //   Otherwise, if E1.E2 refers to a non-static member function. . .
1894   //   [t]he expression can be used only as the left-hand operand of a
1895   //   member function call.
1896   //
1897   // There are other safeguards against such uses, but it's important
1898   // to get this right here so that we don't end up making a
1899   // spuriously dependent expression if we're inside a dependent
1900   // instance method.
1901   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1902     bool MightBeImplicitMember;
1903     if (!IsAddressOfOperand)
1904       MightBeImplicitMember = true;
1905     else if (!SS.isEmpty())
1906       MightBeImplicitMember = false;
1907     else if (R.isOverloadedResult())
1908       MightBeImplicitMember = false;
1909     else if (R.isUnresolvableResult())
1910       MightBeImplicitMember = true;
1911     else
1912       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1913                               isa<IndirectFieldDecl>(R.getFoundDecl());
1914 
1915     if (MightBeImplicitMember)
1916       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1917                                              R, TemplateArgs);
1918   }
1919 
1920   if (TemplateArgs || TemplateKWLoc.isValid())
1921     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1922 
1923   return BuildDeclarationNameExpr(SS, R, ADL);
1924 }
1925 
1926 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1927 /// declaration name, generally during template instantiation.
1928 /// There's a large number of things which don't need to be done along
1929 /// this path.
1930 ExprResult
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,bool IsAddressOfOperand)1931 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1932                                         const DeclarationNameInfo &NameInfo,
1933                                         bool IsAddressOfOperand) {
1934   DeclContext *DC = computeDeclContext(SS, false);
1935   if (!DC)
1936     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1937                                      NameInfo, /*TemplateArgs=*/0);
1938 
1939   if (RequireCompleteDeclContext(SS, DC))
1940     return ExprError();
1941 
1942   LookupResult R(*this, NameInfo, LookupOrdinaryName);
1943   LookupQualifiedName(R, DC);
1944 
1945   if (R.isAmbiguous())
1946     return ExprError();
1947 
1948   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1949     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1950                                      NameInfo, /*TemplateArgs=*/0);
1951 
1952   if (R.empty()) {
1953     Diag(NameInfo.getLoc(), diag::err_no_member)
1954       << NameInfo.getName() << DC << SS.getRange();
1955     return ExprError();
1956   }
1957 
1958   // Defend against this resolving to an implicit member access. We usually
1959   // won't get here if this might be a legitimate a class member (we end up in
1960   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
1961   // a pointer-to-member or in an unevaluated context in C++11.
1962   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
1963     return BuildPossibleImplicitMemberExpr(SS,
1964                                            /*TemplateKWLoc=*/SourceLocation(),
1965                                            R, /*TemplateArgs=*/0);
1966 
1967   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
1968 }
1969 
1970 /// LookupInObjCMethod - The parser has read a name in, and Sema has
1971 /// detected that we're currently inside an ObjC method.  Perform some
1972 /// additional lookup.
1973 ///
1974 /// Ideally, most of this would be done by lookup, but there's
1975 /// actually quite a lot of extra work involved.
1976 ///
1977 /// Returns a null sentinel to indicate trivial success.
1978 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)1979 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1980                          IdentifierInfo *II, bool AllowBuiltinCreation) {
1981   SourceLocation Loc = Lookup.getNameLoc();
1982   ObjCMethodDecl *CurMethod = getCurMethodDecl();
1983 
1984   // Check for error condition which is already reported.
1985   if (!CurMethod)
1986     return ExprError();
1987 
1988   // There are two cases to handle here.  1) scoped lookup could have failed,
1989   // in which case we should look for an ivar.  2) scoped lookup could have
1990   // found a decl, but that decl is outside the current instance method (i.e.
1991   // a global variable).  In these two cases, we do a lookup for an ivar with
1992   // this name, if the lookup sucedes, we replace it our current decl.
1993 
1994   // If we're in a class method, we don't normally want to look for
1995   // ivars.  But if we don't find anything else, and there's an
1996   // ivar, that's an error.
1997   bool IsClassMethod = CurMethod->isClassMethod();
1998 
1999   bool LookForIvars;
2000   if (Lookup.empty())
2001     LookForIvars = true;
2002   else if (IsClassMethod)
2003     LookForIvars = false;
2004   else
2005     LookForIvars = (Lookup.isSingleResult() &&
2006                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2007   ObjCInterfaceDecl *IFace = 0;
2008   if (LookForIvars) {
2009     IFace = CurMethod->getClassInterface();
2010     ObjCInterfaceDecl *ClassDeclared;
2011     ObjCIvarDecl *IV = 0;
2012     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2013       // Diagnose using an ivar in a class method.
2014       if (IsClassMethod)
2015         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2016                          << IV->getDeclName());
2017 
2018       // If we're referencing an invalid decl, just return this as a silent
2019       // error node.  The error diagnostic was already emitted on the decl.
2020       if (IV->isInvalidDecl())
2021         return ExprError();
2022 
2023       // Check if referencing a field with __attribute__((deprecated)).
2024       if (DiagnoseUseOfDecl(IV, Loc))
2025         return ExprError();
2026 
2027       // Diagnose the use of an ivar outside of the declaring class.
2028       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2029           !declaresSameEntity(ClassDeclared, IFace) &&
2030           !getLangOpts().DebuggerSupport)
2031         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2032 
2033       // FIXME: This should use a new expr for a direct reference, don't
2034       // turn this into Self->ivar, just return a BareIVarExpr or something.
2035       IdentifierInfo &II = Context.Idents.get("self");
2036       UnqualifiedId SelfName;
2037       SelfName.setIdentifier(&II, SourceLocation());
2038       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2039       CXXScopeSpec SelfScopeSpec;
2040       SourceLocation TemplateKWLoc;
2041       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2042                                               SelfName, false, false);
2043       if (SelfExpr.isInvalid())
2044         return ExprError();
2045 
2046       SelfExpr = DefaultLvalueConversion(SelfExpr.take());
2047       if (SelfExpr.isInvalid())
2048         return ExprError();
2049 
2050       MarkAnyDeclReferenced(Loc, IV, true);
2051 
2052       ObjCMethodFamily MF = CurMethod->getMethodFamily();
2053       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2054           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2055         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2056 
2057       ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2058                                                               Loc,
2059                                                               SelfExpr.take(),
2060                                                               true, true);
2061 
2062       if (getLangOpts().ObjCAutoRefCount) {
2063         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2064           DiagnosticsEngine::Level Level =
2065             Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
2066           if (Level != DiagnosticsEngine::Ignored)
2067             getCurFunction()->recordUseOfWeak(Result);
2068         }
2069         if (CurContext->isClosure())
2070           Diag(Loc, diag::warn_implicitly_retains_self)
2071             << FixItHint::CreateInsertion(Loc, "self->");
2072       }
2073 
2074       return Owned(Result);
2075     }
2076   } else if (CurMethod->isInstanceMethod()) {
2077     // We should warn if a local variable hides an ivar.
2078     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2079       ObjCInterfaceDecl *ClassDeclared;
2080       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2081         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2082             declaresSameEntity(IFace, ClassDeclared))
2083           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2084       }
2085     }
2086   } else if (Lookup.isSingleResult() &&
2087              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2088     // If accessing a stand-alone ivar in a class method, this is an error.
2089     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2090       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2091                        << IV->getDeclName());
2092   }
2093 
2094   if (Lookup.empty() && II && AllowBuiltinCreation) {
2095     // FIXME. Consolidate this with similar code in LookupName.
2096     if (unsigned BuiltinID = II->getBuiltinID()) {
2097       if (!(getLangOpts().CPlusPlus &&
2098             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2099         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2100                                            S, Lookup.isForRedeclaration(),
2101                                            Lookup.getNameLoc());
2102         if (D) Lookup.addDecl(D);
2103       }
2104     }
2105   }
2106   // Sentinel value saying that we didn't do anything special.
2107   return Owned((Expr*) 0);
2108 }
2109 
2110 /// \brief Cast a base object to a member's actual type.
2111 ///
2112 /// Logically this happens in three phases:
2113 ///
2114 /// * First we cast from the base type to the naming class.
2115 ///   The naming class is the class into which we were looking
2116 ///   when we found the member;  it's the qualifier type if a
2117 ///   qualifier was provided, and otherwise it's the base type.
2118 ///
2119 /// * Next we cast from the naming class to the declaring class.
2120 ///   If the member we found was brought into a class's scope by
2121 ///   a using declaration, this is that class;  otherwise it's
2122 ///   the class declaring the member.
2123 ///
2124 /// * Finally we cast from the declaring class to the "true"
2125 ///   declaring class of the member.  This conversion does not
2126 ///   obey access control.
2127 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)2128 Sema::PerformObjectMemberConversion(Expr *From,
2129                                     NestedNameSpecifier *Qualifier,
2130                                     NamedDecl *FoundDecl,
2131                                     NamedDecl *Member) {
2132   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2133   if (!RD)
2134     return Owned(From);
2135 
2136   QualType DestRecordType;
2137   QualType DestType;
2138   QualType FromRecordType;
2139   QualType FromType = From->getType();
2140   bool PointerConversions = false;
2141   if (isa<FieldDecl>(Member)) {
2142     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2143 
2144     if (FromType->getAs<PointerType>()) {
2145       DestType = Context.getPointerType(DestRecordType);
2146       FromRecordType = FromType->getPointeeType();
2147       PointerConversions = true;
2148     } else {
2149       DestType = DestRecordType;
2150       FromRecordType = FromType;
2151     }
2152   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2153     if (Method->isStatic())
2154       return Owned(From);
2155 
2156     DestType = Method->getThisType(Context);
2157     DestRecordType = DestType->getPointeeType();
2158 
2159     if (FromType->getAs<PointerType>()) {
2160       FromRecordType = FromType->getPointeeType();
2161       PointerConversions = true;
2162     } else {
2163       FromRecordType = FromType;
2164       DestType = DestRecordType;
2165     }
2166   } else {
2167     // No conversion necessary.
2168     return Owned(From);
2169   }
2170 
2171   if (DestType->isDependentType() || FromType->isDependentType())
2172     return Owned(From);
2173 
2174   // If the unqualified types are the same, no conversion is necessary.
2175   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2176     return Owned(From);
2177 
2178   SourceRange FromRange = From->getSourceRange();
2179   SourceLocation FromLoc = FromRange.getBegin();
2180 
2181   ExprValueKind VK = From->getValueKind();
2182 
2183   // C++ [class.member.lookup]p8:
2184   //   [...] Ambiguities can often be resolved by qualifying a name with its
2185   //   class name.
2186   //
2187   // If the member was a qualified name and the qualified referred to a
2188   // specific base subobject type, we'll cast to that intermediate type
2189   // first and then to the object in which the member is declared. That allows
2190   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2191   //
2192   //   class Base { public: int x; };
2193   //   class Derived1 : public Base { };
2194   //   class Derived2 : public Base { };
2195   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2196   //
2197   //   void VeryDerived::f() {
2198   //     x = 17; // error: ambiguous base subobjects
2199   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2200   //   }
2201   if (Qualifier) {
2202     QualType QType = QualType(Qualifier->getAsType(), 0);
2203     assert(!QType.isNull() && "lookup done with dependent qualifier?");
2204     assert(QType->isRecordType() && "lookup done with non-record type");
2205 
2206     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2207 
2208     // In C++98, the qualifier type doesn't actually have to be a base
2209     // type of the object type, in which case we just ignore it.
2210     // Otherwise build the appropriate casts.
2211     if (IsDerivedFrom(FromRecordType, QRecordType)) {
2212       CXXCastPath BasePath;
2213       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2214                                        FromLoc, FromRange, &BasePath))
2215         return ExprError();
2216 
2217       if (PointerConversions)
2218         QType = Context.getPointerType(QType);
2219       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2220                                VK, &BasePath).take();
2221 
2222       FromType = QType;
2223       FromRecordType = QRecordType;
2224 
2225       // If the qualifier type was the same as the destination type,
2226       // we're done.
2227       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2228         return Owned(From);
2229     }
2230   }
2231 
2232   bool IgnoreAccess = false;
2233 
2234   // If we actually found the member through a using declaration, cast
2235   // down to the using declaration's type.
2236   //
2237   // Pointer equality is fine here because only one declaration of a
2238   // class ever has member declarations.
2239   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2240     assert(isa<UsingShadowDecl>(FoundDecl));
2241     QualType URecordType = Context.getTypeDeclType(
2242                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2243 
2244     // We only need to do this if the naming-class to declaring-class
2245     // conversion is non-trivial.
2246     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2247       assert(IsDerivedFrom(FromRecordType, URecordType));
2248       CXXCastPath BasePath;
2249       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2250                                        FromLoc, FromRange, &BasePath))
2251         return ExprError();
2252 
2253       QualType UType = URecordType;
2254       if (PointerConversions)
2255         UType = Context.getPointerType(UType);
2256       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2257                                VK, &BasePath).take();
2258       FromType = UType;
2259       FromRecordType = URecordType;
2260     }
2261 
2262     // We don't do access control for the conversion from the
2263     // declaring class to the true declaring class.
2264     IgnoreAccess = true;
2265   }
2266 
2267   CXXCastPath BasePath;
2268   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2269                                    FromLoc, FromRange, &BasePath,
2270                                    IgnoreAccess))
2271     return ExprError();
2272 
2273   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2274                            VK, &BasePath);
2275 }
2276 
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)2277 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2278                                       const LookupResult &R,
2279                                       bool HasTrailingLParen) {
2280   // Only when used directly as the postfix-expression of a call.
2281   if (!HasTrailingLParen)
2282     return false;
2283 
2284   // Never if a scope specifier was provided.
2285   if (SS.isSet())
2286     return false;
2287 
2288   // Only in C++ or ObjC++.
2289   if (!getLangOpts().CPlusPlus)
2290     return false;
2291 
2292   // Turn off ADL when we find certain kinds of declarations during
2293   // normal lookup:
2294   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2295     NamedDecl *D = *I;
2296 
2297     // C++0x [basic.lookup.argdep]p3:
2298     //     -- a declaration of a class member
2299     // Since using decls preserve this property, we check this on the
2300     // original decl.
2301     if (D->isCXXClassMember())
2302       return false;
2303 
2304     // C++0x [basic.lookup.argdep]p3:
2305     //     -- a block-scope function declaration that is not a
2306     //        using-declaration
2307     // NOTE: we also trigger this for function templates (in fact, we
2308     // don't check the decl type at all, since all other decl types
2309     // turn off ADL anyway).
2310     if (isa<UsingShadowDecl>(D))
2311       D = cast<UsingShadowDecl>(D)->getTargetDecl();
2312     else if (D->getDeclContext()->isFunctionOrMethod())
2313       return false;
2314 
2315     // C++0x [basic.lookup.argdep]p3:
2316     //     -- a declaration that is neither a function or a function
2317     //        template
2318     // And also for builtin functions.
2319     if (isa<FunctionDecl>(D)) {
2320       FunctionDecl *FDecl = cast<FunctionDecl>(D);
2321 
2322       // But also builtin functions.
2323       if (FDecl->getBuiltinID() && FDecl->isImplicit())
2324         return false;
2325     } else if (!isa<FunctionTemplateDecl>(D))
2326       return false;
2327   }
2328 
2329   return true;
2330 }
2331 
2332 
2333 /// Diagnoses obvious problems with the use of the given declaration
2334 /// as an expression.  This is only actually called for lookups that
2335 /// were not overloaded, and it doesn't promise that the declaration
2336 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)2337 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2338   if (isa<TypedefNameDecl>(D)) {
2339     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2340     return true;
2341   }
2342 
2343   if (isa<ObjCInterfaceDecl>(D)) {
2344     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2345     return true;
2346   }
2347 
2348   if (isa<NamespaceDecl>(D)) {
2349     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2350     return true;
2351   }
2352 
2353   return false;
2354 }
2355 
2356 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL)2357 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2358                                LookupResult &R,
2359                                bool NeedsADL) {
2360   // If this is a single, fully-resolved result and we don't need ADL,
2361   // just build an ordinary singleton decl ref.
2362   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2363     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2364                                     R.getFoundDecl());
2365 
2366   // We only need to check the declaration if there's exactly one
2367   // result, because in the overloaded case the results can only be
2368   // functions and function templates.
2369   if (R.isSingleResult() &&
2370       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2371     return ExprError();
2372 
2373   // Otherwise, just build an unresolved lookup expression.  Suppress
2374   // any lookup-related diagnostics; we'll hash these out later, when
2375   // we've picked a target.
2376   R.suppressDiagnostics();
2377 
2378   UnresolvedLookupExpr *ULE
2379     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2380                                    SS.getWithLocInContext(Context),
2381                                    R.getLookupNameInfo(),
2382                                    NeedsADL, R.isOverloadedResult(),
2383                                    R.begin(), R.end());
2384 
2385   return Owned(ULE);
2386 }
2387 
2388 /// \brief Complete semantic analysis for a reference to the given declaration.
2389 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D)2390 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2391                                const DeclarationNameInfo &NameInfo,
2392                                NamedDecl *D) {
2393   assert(D && "Cannot refer to a NULL declaration");
2394   assert(!isa<FunctionTemplateDecl>(D) &&
2395          "Cannot refer unambiguously to a function template");
2396 
2397   SourceLocation Loc = NameInfo.getLoc();
2398   if (CheckDeclInExpr(*this, Loc, D))
2399     return ExprError();
2400 
2401   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2402     // Specifically diagnose references to class templates that are missing
2403     // a template argument list.
2404     Diag(Loc, diag::err_template_decl_ref)
2405       << Template << SS.getRange();
2406     Diag(Template->getLocation(), diag::note_template_decl_here);
2407     return ExprError();
2408   }
2409 
2410   // Make sure that we're referring to a value.
2411   ValueDecl *VD = dyn_cast<ValueDecl>(D);
2412   if (!VD) {
2413     Diag(Loc, diag::err_ref_non_value)
2414       << D << SS.getRange();
2415     Diag(D->getLocation(), diag::note_declared_at);
2416     return ExprError();
2417   }
2418 
2419   // Check whether this declaration can be used. Note that we suppress
2420   // this check when we're going to perform argument-dependent lookup
2421   // on this function name, because this might not be the function
2422   // that overload resolution actually selects.
2423   if (DiagnoseUseOfDecl(VD, Loc))
2424     return ExprError();
2425 
2426   // Only create DeclRefExpr's for valid Decl's.
2427   if (VD->isInvalidDecl())
2428     return ExprError();
2429 
2430   // Handle members of anonymous structs and unions.  If we got here,
2431   // and the reference is to a class member indirect field, then this
2432   // must be the subject of a pointer-to-member expression.
2433   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2434     if (!indirectField->isCXXClassMember())
2435       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2436                                                       indirectField);
2437 
2438   {
2439     QualType type = VD->getType();
2440     ExprValueKind valueKind = VK_RValue;
2441 
2442     switch (D->getKind()) {
2443     // Ignore all the non-ValueDecl kinds.
2444 #define ABSTRACT_DECL(kind)
2445 #define VALUE(type, base)
2446 #define DECL(type, base) \
2447     case Decl::type:
2448 #include "clang/AST/DeclNodes.inc"
2449       llvm_unreachable("invalid value decl kind");
2450 
2451     // These shouldn't make it here.
2452     case Decl::ObjCAtDefsField:
2453     case Decl::ObjCIvar:
2454       llvm_unreachable("forming non-member reference to ivar?");
2455 
2456     // Enum constants are always r-values and never references.
2457     // Unresolved using declarations are dependent.
2458     case Decl::EnumConstant:
2459     case Decl::UnresolvedUsingValue:
2460       valueKind = VK_RValue;
2461       break;
2462 
2463     // Fields and indirect fields that got here must be for
2464     // pointer-to-member expressions; we just call them l-values for
2465     // internal consistency, because this subexpression doesn't really
2466     // exist in the high-level semantics.
2467     case Decl::Field:
2468     case Decl::IndirectField:
2469       assert(getLangOpts().CPlusPlus &&
2470              "building reference to field in C?");
2471 
2472       // These can't have reference type in well-formed programs, but
2473       // for internal consistency we do this anyway.
2474       type = type.getNonReferenceType();
2475       valueKind = VK_LValue;
2476       break;
2477 
2478     // Non-type template parameters are either l-values or r-values
2479     // depending on the type.
2480     case Decl::NonTypeTemplateParm: {
2481       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2482         type = reftype->getPointeeType();
2483         valueKind = VK_LValue; // even if the parameter is an r-value reference
2484         break;
2485       }
2486 
2487       // For non-references, we need to strip qualifiers just in case
2488       // the template parameter was declared as 'const int' or whatever.
2489       valueKind = VK_RValue;
2490       type = type.getUnqualifiedType();
2491       break;
2492     }
2493 
2494     case Decl::Var:
2495       // In C, "extern void blah;" is valid and is an r-value.
2496       if (!getLangOpts().CPlusPlus &&
2497           !type.hasQualifiers() &&
2498           type->isVoidType()) {
2499         valueKind = VK_RValue;
2500         break;
2501       }
2502       // fallthrough
2503 
2504     case Decl::ImplicitParam:
2505     case Decl::ParmVar: {
2506       // These are always l-values.
2507       valueKind = VK_LValue;
2508       type = type.getNonReferenceType();
2509 
2510       // FIXME: Does the addition of const really only apply in
2511       // potentially-evaluated contexts? Since the variable isn't actually
2512       // captured in an unevaluated context, it seems that the answer is no.
2513       if (!isUnevaluatedContext()) {
2514         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2515         if (!CapturedType.isNull())
2516           type = CapturedType;
2517       }
2518 
2519       break;
2520     }
2521 
2522     case Decl::Function: {
2523       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2524         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2525           type = Context.BuiltinFnTy;
2526           valueKind = VK_RValue;
2527           break;
2528         }
2529       }
2530 
2531       const FunctionType *fty = type->castAs<FunctionType>();
2532 
2533       // If we're referring to a function with an __unknown_anytype
2534       // result type, make the entire expression __unknown_anytype.
2535       if (fty->getResultType() == Context.UnknownAnyTy) {
2536         type = Context.UnknownAnyTy;
2537         valueKind = VK_RValue;
2538         break;
2539       }
2540 
2541       // Functions are l-values in C++.
2542       if (getLangOpts().CPlusPlus) {
2543         valueKind = VK_LValue;
2544         break;
2545       }
2546 
2547       // C99 DR 316 says that, if a function type comes from a
2548       // function definition (without a prototype), that type is only
2549       // used for checking compatibility. Therefore, when referencing
2550       // the function, we pretend that we don't have the full function
2551       // type.
2552       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2553           isa<FunctionProtoType>(fty))
2554         type = Context.getFunctionNoProtoType(fty->getResultType(),
2555                                               fty->getExtInfo());
2556 
2557       // Functions are r-values in C.
2558       valueKind = VK_RValue;
2559       break;
2560     }
2561 
2562     case Decl::CXXMethod:
2563       // If we're referring to a method with an __unknown_anytype
2564       // result type, make the entire expression __unknown_anytype.
2565       // This should only be possible with a type written directly.
2566       if (const FunctionProtoType *proto
2567             = dyn_cast<FunctionProtoType>(VD->getType()))
2568         if (proto->getResultType() == Context.UnknownAnyTy) {
2569           type = Context.UnknownAnyTy;
2570           valueKind = VK_RValue;
2571           break;
2572         }
2573 
2574       // C++ methods are l-values if static, r-values if non-static.
2575       if (cast<CXXMethodDecl>(VD)->isStatic()) {
2576         valueKind = VK_LValue;
2577         break;
2578       }
2579       // fallthrough
2580 
2581     case Decl::CXXConversion:
2582     case Decl::CXXDestructor:
2583     case Decl::CXXConstructor:
2584       valueKind = VK_RValue;
2585       break;
2586     }
2587 
2588     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2589   }
2590 }
2591 
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)2592 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2593   PredefinedExpr::IdentType IT;
2594 
2595   switch (Kind) {
2596   default: llvm_unreachable("Unknown simple primary expr!");
2597   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2598   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2599   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2600   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2601   }
2602 
2603   // Pre-defined identifiers are of type char[x], where x is the length of the
2604   // string.
2605 
2606   Decl *currentDecl = getCurFunctionOrMethodDecl();
2607   // Blocks and lambdas can occur at global scope. Don't emit a warning.
2608   if (!currentDecl) {
2609     if (const BlockScopeInfo *BSI = getCurBlock())
2610       currentDecl = BSI->TheDecl;
2611     else if (const LambdaScopeInfo *LSI = getCurLambda())
2612       currentDecl = LSI->CallOperator;
2613   }
2614 
2615   if (!currentDecl) {
2616     Diag(Loc, diag::ext_predef_outside_function);
2617     currentDecl = Context.getTranslationUnitDecl();
2618   }
2619 
2620   QualType ResTy;
2621   if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2622     ResTy = Context.DependentTy;
2623   } else {
2624     unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2625 
2626     llvm::APInt LengthI(32, Length + 1);
2627     if (IT == PredefinedExpr::LFunction)
2628       ResTy = Context.WCharTy.withConst();
2629     else
2630       ResTy = Context.CharTy.withConst();
2631     ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2632   }
2633   return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2634 }
2635 
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)2636 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2637   SmallString<16> CharBuffer;
2638   bool Invalid = false;
2639   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2640   if (Invalid)
2641     return ExprError();
2642 
2643   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2644                             PP, Tok.getKind());
2645   if (Literal.hadError())
2646     return ExprError();
2647 
2648   QualType Ty;
2649   if (Literal.isWide())
2650     Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2651   else if (Literal.isUTF16())
2652     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2653   else if (Literal.isUTF32())
2654     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2655   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2656     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2657   else
2658     Ty = Context.CharTy;  // 'x' -> char in C++
2659 
2660   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2661   if (Literal.isWide())
2662     Kind = CharacterLiteral::Wide;
2663   else if (Literal.isUTF16())
2664     Kind = CharacterLiteral::UTF16;
2665   else if (Literal.isUTF32())
2666     Kind = CharacterLiteral::UTF32;
2667 
2668   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2669                                              Tok.getLocation());
2670 
2671   if (Literal.getUDSuffix().empty())
2672     return Owned(Lit);
2673 
2674   // We're building a user-defined literal.
2675   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2676   SourceLocation UDSuffixLoc =
2677     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2678 
2679   // Make sure we're allowed user-defined literals here.
2680   if (!UDLScope)
2681     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2682 
2683   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2684   //   operator "" X (ch)
2685   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2686                                         llvm::makeArrayRef(&Lit, 1),
2687                                         Tok.getLocation());
2688 }
2689 
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)2690 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2691   unsigned IntSize = Context.getTargetInfo().getIntWidth();
2692   return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2693                                       Context.IntTy, Loc));
2694 }
2695 
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)2696 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2697                                   QualType Ty, SourceLocation Loc) {
2698   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2699 
2700   using llvm::APFloat;
2701   APFloat Val(Format);
2702 
2703   APFloat::opStatus result = Literal.GetFloatValue(Val);
2704 
2705   // Overflow is always an error, but underflow is only an error if
2706   // we underflowed to zero (APFloat reports denormals as underflow).
2707   if ((result & APFloat::opOverflow) ||
2708       ((result & APFloat::opUnderflow) && Val.isZero())) {
2709     unsigned diagnostic;
2710     SmallString<20> buffer;
2711     if (result & APFloat::opOverflow) {
2712       diagnostic = diag::warn_float_overflow;
2713       APFloat::getLargest(Format).toString(buffer);
2714     } else {
2715       diagnostic = diag::warn_float_underflow;
2716       APFloat::getSmallest(Format).toString(buffer);
2717     }
2718 
2719     S.Diag(Loc, diagnostic)
2720       << Ty
2721       << StringRef(buffer.data(), buffer.size());
2722   }
2723 
2724   bool isExact = (result == APFloat::opOK);
2725   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2726 }
2727 
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)2728 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2729   // Fast path for a single digit (which is quite common).  A single digit
2730   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2731   if (Tok.getLength() == 1) {
2732     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2733     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2734   }
2735 
2736   SmallString<128> SpellingBuffer;
2737   // NumericLiteralParser wants to overread by one character.  Add padding to
2738   // the buffer in case the token is copied to the buffer.  If getSpelling()
2739   // returns a StringRef to the memory buffer, it should have a null char at
2740   // the EOF, so it is also safe.
2741   SpellingBuffer.resize(Tok.getLength() + 1);
2742 
2743   // Get the spelling of the token, which eliminates trigraphs, etc.
2744   bool Invalid = false;
2745   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
2746   if (Invalid)
2747     return ExprError();
2748 
2749   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
2750   if (Literal.hadError)
2751     return ExprError();
2752 
2753   if (Literal.hasUDSuffix()) {
2754     // We're building a user-defined literal.
2755     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2756     SourceLocation UDSuffixLoc =
2757       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2758 
2759     // Make sure we're allowed user-defined literals here.
2760     if (!UDLScope)
2761       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2762 
2763     QualType CookedTy;
2764     if (Literal.isFloatingLiteral()) {
2765       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2766       // long double, the literal is treated as a call of the form
2767       //   operator "" X (f L)
2768       CookedTy = Context.LongDoubleTy;
2769     } else {
2770       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2771       // unsigned long long, the literal is treated as a call of the form
2772       //   operator "" X (n ULL)
2773       CookedTy = Context.UnsignedLongLongTy;
2774     }
2775 
2776     DeclarationName OpName =
2777       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2778     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2779     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2780 
2781     // Perform literal operator lookup to determine if we're building a raw
2782     // literal or a cooked one.
2783     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2784     switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2785                                   /*AllowRawAndTemplate*/true)) {
2786     case LOLR_Error:
2787       return ExprError();
2788 
2789     case LOLR_Cooked: {
2790       Expr *Lit;
2791       if (Literal.isFloatingLiteral()) {
2792         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2793       } else {
2794         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2795         if (Literal.GetIntegerValue(ResultVal))
2796           Diag(Tok.getLocation(), diag::warn_integer_too_large);
2797         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2798                                      Tok.getLocation());
2799       }
2800       return BuildLiteralOperatorCall(R, OpNameInfo,
2801                                       llvm::makeArrayRef(&Lit, 1),
2802                                       Tok.getLocation());
2803     }
2804 
2805     case LOLR_Raw: {
2806       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2807       // literal is treated as a call of the form
2808       //   operator "" X ("n")
2809       SourceLocation TokLoc = Tok.getLocation();
2810       unsigned Length = Literal.getUDSuffixOffset();
2811       QualType StrTy = Context.getConstantArrayType(
2812           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
2813           ArrayType::Normal, 0);
2814       Expr *Lit = StringLiteral::Create(
2815           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
2816           /*Pascal*/false, StrTy, &TokLoc, 1);
2817       return BuildLiteralOperatorCall(R, OpNameInfo,
2818                                       llvm::makeArrayRef(&Lit, 1), TokLoc);
2819     }
2820 
2821     case LOLR_Template:
2822       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2823       // template), L is treated as a call fo the form
2824       //   operator "" X <'c1', 'c2', ... 'ck'>()
2825       // where n is the source character sequence c1 c2 ... ck.
2826       TemplateArgumentListInfo ExplicitArgs;
2827       unsigned CharBits = Context.getIntWidth(Context.CharTy);
2828       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2829       llvm::APSInt Value(CharBits, CharIsUnsigned);
2830       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2831         Value = TokSpelling[I];
2832         TemplateArgument Arg(Context, Value, Context.CharTy);
2833         TemplateArgumentLocInfo ArgInfo;
2834         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2835       }
2836       return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2837                                       Tok.getLocation(), &ExplicitArgs);
2838     }
2839 
2840     llvm_unreachable("unexpected literal operator lookup result");
2841   }
2842 
2843   Expr *Res;
2844 
2845   if (Literal.isFloatingLiteral()) {
2846     QualType Ty;
2847     if (Literal.isFloat)
2848       Ty = Context.FloatTy;
2849     else if (!Literal.isLong)
2850       Ty = Context.DoubleTy;
2851     else
2852       Ty = Context.LongDoubleTy;
2853 
2854     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2855 
2856     if (Ty == Context.DoubleTy) {
2857       if (getLangOpts().SinglePrecisionConstants) {
2858         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2859       } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2860         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2861         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2862       }
2863     }
2864   } else if (!Literal.isIntegerLiteral()) {
2865     return ExprError();
2866   } else {
2867     QualType Ty;
2868 
2869     // 'long long' is a C99 or C++11 feature.
2870     if (!getLangOpts().C99 && Literal.isLongLong) {
2871       if (getLangOpts().CPlusPlus)
2872         Diag(Tok.getLocation(),
2873              getLangOpts().CPlusPlus11 ?
2874              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
2875       else
2876         Diag(Tok.getLocation(), diag::ext_c99_longlong);
2877     }
2878 
2879     // Get the value in the widest-possible width.
2880     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
2881     // The microsoft literal suffix extensions support 128-bit literals, which
2882     // may be wider than [u]intmax_t.
2883     // FIXME: Actually, they don't. We seem to have accidentally invented the
2884     //        i128 suffix.
2885     if (Literal.isMicrosoftInteger && MaxWidth < 128 &&
2886         PP.getTargetInfo().hasInt128Type())
2887       MaxWidth = 128;
2888     llvm::APInt ResultVal(MaxWidth, 0);
2889 
2890     if (Literal.GetIntegerValue(ResultVal)) {
2891       // If this value didn't fit into uintmax_t, warn and force to ull.
2892       Diag(Tok.getLocation(), diag::warn_integer_too_large);
2893       Ty = Context.UnsignedLongLongTy;
2894       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2895              "long long is not intmax_t?");
2896     } else {
2897       // If this value fits into a ULL, try to figure out what else it fits into
2898       // according to the rules of C99 6.4.4.1p5.
2899 
2900       // Octal, Hexadecimal, and integers with a U suffix are allowed to
2901       // be an unsigned int.
2902       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2903 
2904       // Check from smallest to largest, picking the smallest type we can.
2905       unsigned Width = 0;
2906       if (!Literal.isLong && !Literal.isLongLong) {
2907         // Are int/unsigned possibilities?
2908         unsigned IntSize = Context.getTargetInfo().getIntWidth();
2909 
2910         // Does it fit in a unsigned int?
2911         if (ResultVal.isIntN(IntSize)) {
2912           // Does it fit in a signed int?
2913           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2914             Ty = Context.IntTy;
2915           else if (AllowUnsigned)
2916             Ty = Context.UnsignedIntTy;
2917           Width = IntSize;
2918         }
2919       }
2920 
2921       // Are long/unsigned long possibilities?
2922       if (Ty.isNull() && !Literal.isLongLong) {
2923         unsigned LongSize = Context.getTargetInfo().getLongWidth();
2924 
2925         // Does it fit in a unsigned long?
2926         if (ResultVal.isIntN(LongSize)) {
2927           // Does it fit in a signed long?
2928           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2929             Ty = Context.LongTy;
2930           else if (AllowUnsigned)
2931             Ty = Context.UnsignedLongTy;
2932           Width = LongSize;
2933         }
2934       }
2935 
2936       // Check long long if needed.
2937       if (Ty.isNull()) {
2938         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2939 
2940         // Does it fit in a unsigned long long?
2941         if (ResultVal.isIntN(LongLongSize)) {
2942           // Does it fit in a signed long long?
2943           // To be compatible with MSVC, hex integer literals ending with the
2944           // LL or i64 suffix are always signed in Microsoft mode.
2945           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2946               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2947             Ty = Context.LongLongTy;
2948           else if (AllowUnsigned)
2949             Ty = Context.UnsignedLongLongTy;
2950           Width = LongLongSize;
2951         }
2952       }
2953 
2954       // If it doesn't fit in unsigned long long, and we're using Microsoft
2955       // extensions, then its a 128-bit integer literal.
2956       if (Ty.isNull() && Literal.isMicrosoftInteger &&
2957           PP.getTargetInfo().hasInt128Type()) {
2958         if (Literal.isUnsigned)
2959           Ty = Context.UnsignedInt128Ty;
2960         else
2961           Ty = Context.Int128Ty;
2962         Width = 128;
2963       }
2964 
2965       // If we still couldn't decide a type, we probably have something that
2966       // does not fit in a signed long long, but has no U suffix.
2967       if (Ty.isNull()) {
2968         Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2969         Ty = Context.UnsignedLongLongTy;
2970         Width = Context.getTargetInfo().getLongLongWidth();
2971       }
2972 
2973       if (ResultVal.getBitWidth() != Width)
2974         ResultVal = ResultVal.trunc(Width);
2975     }
2976     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2977   }
2978 
2979   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2980   if (Literal.isImaginary)
2981     Res = new (Context) ImaginaryLiteral(Res,
2982                                         Context.getComplexType(Res->getType()));
2983 
2984   return Owned(Res);
2985 }
2986 
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)2987 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2988   assert((E != 0) && "ActOnParenExpr() missing expr");
2989   return Owned(new (Context) ParenExpr(L, R, E));
2990 }
2991 
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)2992 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2993                                          SourceLocation Loc,
2994                                          SourceRange ArgRange) {
2995   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2996   // scalar or vector data type argument..."
2997   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2998   // type (C99 6.2.5p18) or void.
2999   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3000     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3001       << T << ArgRange;
3002     return true;
3003   }
3004 
3005   assert((T->isVoidType() || !T->isIncompleteType()) &&
3006          "Scalar types should always be complete");
3007   return false;
3008 }
3009 
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)3010 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3011                                            SourceLocation Loc,
3012                                            SourceRange ArgRange,
3013                                            UnaryExprOrTypeTrait TraitKind) {
3014   // C99 6.5.3.4p1:
3015   if (T->isFunctionType()) {
3016     // alignof(function) is allowed as an extension.
3017     if (TraitKind == UETT_SizeOf)
3018       S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
3019     return false;
3020   }
3021 
3022   // Allow sizeof(void)/alignof(void) as an extension.
3023   if (T->isVoidType()) {
3024     S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
3025     return false;
3026   }
3027 
3028   return true;
3029 }
3030 
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)3031 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3032                                              SourceLocation Loc,
3033                                              SourceRange ArgRange,
3034                                              UnaryExprOrTypeTrait TraitKind) {
3035   // Reject sizeof(interface) and sizeof(interface<proto>) if the
3036   // runtime doesn't allow it.
3037   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3038     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3039       << T << (TraitKind == UETT_SizeOf)
3040       << ArgRange;
3041     return true;
3042   }
3043 
3044   return false;
3045 }
3046 
3047 /// \brief Check the constrains on expression operands to unary type expression
3048 /// and type traits.
3049 ///
3050 /// Completes any types necessary and validates the constraints on the operand
3051 /// expression. The logic mostly mirrors the type-based overload, but may modify
3052 /// the expression as it completes the type for that expression through template
3053 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)3054 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3055                                             UnaryExprOrTypeTrait ExprKind) {
3056   QualType ExprTy = E->getType();
3057 
3058   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3059   //   the result is the size of the referenced type."
3060   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3061   //   result shall be the alignment of the referenced type."
3062   if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
3063     ExprTy = Ref->getPointeeType();
3064 
3065   if (ExprKind == UETT_VecStep)
3066     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3067                                         E->getSourceRange());
3068 
3069   // Whitelist some types as extensions
3070   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3071                                       E->getSourceRange(), ExprKind))
3072     return false;
3073 
3074   if (RequireCompleteExprType(E,
3075                               diag::err_sizeof_alignof_incomplete_type,
3076                               ExprKind, E->getSourceRange()))
3077     return true;
3078 
3079   // Completeing the expression's type may have changed it.
3080   ExprTy = E->getType();
3081   if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
3082     ExprTy = Ref->getPointeeType();
3083 
3084   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3085                                        E->getSourceRange(), ExprKind))
3086     return true;
3087 
3088   if (ExprKind == UETT_SizeOf) {
3089     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3090       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3091         QualType OType = PVD->getOriginalType();
3092         QualType Type = PVD->getType();
3093         if (Type->isPointerType() && OType->isArrayType()) {
3094           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3095             << Type << OType;
3096           Diag(PVD->getLocation(), diag::note_declared_at);
3097         }
3098       }
3099     }
3100   }
3101 
3102   return false;
3103 }
3104 
3105 /// \brief Check the constraints on operands to unary expression and type
3106 /// traits.
3107 ///
3108 /// This will complete any types necessary, and validate the various constraints
3109 /// on those operands.
3110 ///
3111 /// The UsualUnaryConversions() function is *not* called by this routine.
3112 /// C99 6.3.2.1p[2-4] all state:
3113 ///   Except when it is the operand of the sizeof operator ...
3114 ///
3115 /// C++ [expr.sizeof]p4
3116 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3117 ///   standard conversions are not applied to the operand of sizeof.
3118 ///
3119 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)3120 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3121                                             SourceLocation OpLoc,
3122                                             SourceRange ExprRange,
3123                                             UnaryExprOrTypeTrait ExprKind) {
3124   if (ExprType->isDependentType())
3125     return false;
3126 
3127   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3128   //   the result is the size of the referenced type."
3129   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3130   //   result shall be the alignment of the referenced type."
3131   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3132     ExprType = Ref->getPointeeType();
3133 
3134   if (ExprKind == UETT_VecStep)
3135     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3136 
3137   // Whitelist some types as extensions
3138   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3139                                       ExprKind))
3140     return false;
3141 
3142   if (RequireCompleteType(OpLoc, ExprType,
3143                           diag::err_sizeof_alignof_incomplete_type,
3144                           ExprKind, ExprRange))
3145     return true;
3146 
3147   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3148                                        ExprKind))
3149     return true;
3150 
3151   return false;
3152 }
3153 
CheckAlignOfExpr(Sema & S,Expr * E)3154 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3155   E = E->IgnoreParens();
3156 
3157   // alignof decl is always ok.
3158   if (isa<DeclRefExpr>(E))
3159     return false;
3160 
3161   // Cannot know anything else if the expression is dependent.
3162   if (E->isTypeDependent())
3163     return false;
3164 
3165   if (E->getBitField()) {
3166     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3167        << 1 << E->getSourceRange();
3168     return true;
3169   }
3170 
3171   // Alignment of a field access is always okay, so long as it isn't a
3172   // bit-field.
3173   if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
3174     if (isa<FieldDecl>(ME->getMemberDecl()))
3175       return false;
3176 
3177   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3178 }
3179 
CheckVecStepExpr(Expr * E)3180 bool Sema::CheckVecStepExpr(Expr *E) {
3181   E = E->IgnoreParens();
3182 
3183   // Cannot know anything else if the expression is dependent.
3184   if (E->isTypeDependent())
3185     return false;
3186 
3187   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3188 }
3189 
3190 /// \brief Build a sizeof or alignof expression given a type operand.
3191 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)3192 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3193                                      SourceLocation OpLoc,
3194                                      UnaryExprOrTypeTrait ExprKind,
3195                                      SourceRange R) {
3196   if (!TInfo)
3197     return ExprError();
3198 
3199   QualType T = TInfo->getType();
3200 
3201   if (!T->isDependentType() &&
3202       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3203     return ExprError();
3204 
3205   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3206   return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3207                                                       Context.getSizeType(),
3208                                                       OpLoc, R.getEnd()));
3209 }
3210 
3211 /// \brief Build a sizeof or alignof expression given an expression
3212 /// operand.
3213 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)3214 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3215                                      UnaryExprOrTypeTrait ExprKind) {
3216   ExprResult PE = CheckPlaceholderExpr(E);
3217   if (PE.isInvalid())
3218     return ExprError();
3219 
3220   E = PE.get();
3221 
3222   // Verify that the operand is valid.
3223   bool isInvalid = false;
3224   if (E->isTypeDependent()) {
3225     // Delay type-checking for type-dependent expressions.
3226   } else if (ExprKind == UETT_AlignOf) {
3227     isInvalid = CheckAlignOfExpr(*this, E);
3228   } else if (ExprKind == UETT_VecStep) {
3229     isInvalid = CheckVecStepExpr(E);
3230   } else if (E->getBitField()) {  // C99 6.5.3.4p1.
3231     Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3232     isInvalid = true;
3233   } else {
3234     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3235   }
3236 
3237   if (isInvalid)
3238     return ExprError();
3239 
3240   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3241     PE = TransformToPotentiallyEvaluated(E);
3242     if (PE.isInvalid()) return ExprError();
3243     E = PE.take();
3244   }
3245 
3246   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3247   return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3248       ExprKind, E, Context.getSizeType(), OpLoc,
3249       E->getSourceRange().getEnd()));
3250 }
3251 
3252 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3253 /// expr and the same for @c alignof and @c __alignof
3254 /// Note that the ArgRange is invalid if isType is false.
3255 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,const SourceRange & ArgRange)3256 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3257                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
3258                                     void *TyOrEx, const SourceRange &ArgRange) {
3259   // If error parsing type, ignore.
3260   if (TyOrEx == 0) return ExprError();
3261 
3262   if (IsType) {
3263     TypeSourceInfo *TInfo;
3264     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3265     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3266   }
3267 
3268   Expr *ArgEx = (Expr *)TyOrEx;
3269   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3270   return Result;
3271 }
3272 
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)3273 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3274                                      bool IsReal) {
3275   if (V.get()->isTypeDependent())
3276     return S.Context.DependentTy;
3277 
3278   // _Real and _Imag are only l-values for normal l-values.
3279   if (V.get()->getObjectKind() != OK_Ordinary) {
3280     V = S.DefaultLvalueConversion(V.take());
3281     if (V.isInvalid())
3282       return QualType();
3283   }
3284 
3285   // These operators return the element type of a complex type.
3286   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3287     return CT->getElementType();
3288 
3289   // Otherwise they pass through real integer and floating point types here.
3290   if (V.get()->getType()->isArithmeticType())
3291     return V.get()->getType();
3292 
3293   // Test for placeholders.
3294   ExprResult PR = S.CheckPlaceholderExpr(V.get());
3295   if (PR.isInvalid()) return QualType();
3296   if (PR.get() != V.get()) {
3297     V = PR;
3298     return CheckRealImagOperand(S, V, Loc, IsReal);
3299   }
3300 
3301   // Reject anything else.
3302   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3303     << (IsReal ? "__real" : "__imag");
3304   return QualType();
3305 }
3306 
3307 
3308 
3309 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)3310 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3311                           tok::TokenKind Kind, Expr *Input) {
3312   UnaryOperatorKind Opc;
3313   switch (Kind) {
3314   default: llvm_unreachable("Unknown unary op!");
3315   case tok::plusplus:   Opc = UO_PostInc; break;
3316   case tok::minusminus: Opc = UO_PostDec; break;
3317   }
3318 
3319   // Since this might is a postfix expression, get rid of ParenListExprs.
3320   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3321   if (Result.isInvalid()) return ExprError();
3322   Input = Result.take();
3323 
3324   return BuildUnaryOp(S, OpLoc, Opc, Input);
3325 }
3326 
3327 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3328 ///
3329 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)3330 static bool checkArithmeticOnObjCPointer(Sema &S,
3331                                          SourceLocation opLoc,
3332                                          Expr *op) {
3333   assert(op->getType()->isObjCObjectPointerType());
3334   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
3335     return false;
3336 
3337   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3338     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3339     << op->getSourceRange();
3340   return true;
3341 }
3342 
3343 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * base,SourceLocation lbLoc,Expr * idx,SourceLocation rbLoc)3344 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
3345                               Expr *idx, SourceLocation rbLoc) {
3346   // Since this might be a postfix expression, get rid of ParenListExprs.
3347   if (isa<ParenListExpr>(base)) {
3348     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
3349     if (result.isInvalid()) return ExprError();
3350     base = result.take();
3351   }
3352 
3353   // Handle any non-overload placeholder types in the base and index
3354   // expressions.  We can't handle overloads here because the other
3355   // operand might be an overloadable type, in which case the overload
3356   // resolution for the operator overload should get the first crack
3357   // at the overload.
3358   if (base->getType()->isNonOverloadPlaceholderType()) {
3359     ExprResult result = CheckPlaceholderExpr(base);
3360     if (result.isInvalid()) return ExprError();
3361     base = result.take();
3362   }
3363   if (idx->getType()->isNonOverloadPlaceholderType()) {
3364     ExprResult result = CheckPlaceholderExpr(idx);
3365     if (result.isInvalid()) return ExprError();
3366     idx = result.take();
3367   }
3368 
3369   // Build an unanalyzed expression if either operand is type-dependent.
3370   if (getLangOpts().CPlusPlus &&
3371       (base->isTypeDependent() || idx->isTypeDependent())) {
3372     return Owned(new (Context) ArraySubscriptExpr(base, idx,
3373                                                   Context.DependentTy,
3374                                                   VK_LValue, OK_Ordinary,
3375                                                   rbLoc));
3376   }
3377 
3378   // Use C++ overloaded-operator rules if either operand has record
3379   // type.  The spec says to do this if either type is *overloadable*,
3380   // but enum types can't declare subscript operators or conversion
3381   // operators, so there's nothing interesting for overload resolution
3382   // to do if there aren't any record types involved.
3383   //
3384   // ObjC pointers have their own subscripting logic that is not tied
3385   // to overload resolution and so should not take this path.
3386   if (getLangOpts().CPlusPlus &&
3387       (base->getType()->isRecordType() ||
3388        (!base->getType()->isObjCObjectPointerType() &&
3389         idx->getType()->isRecordType()))) {
3390     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
3391   }
3392 
3393   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
3394 }
3395 
3396 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3397 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3398                                       Expr *Idx, SourceLocation RLoc) {
3399   Expr *LHSExp = Base;
3400   Expr *RHSExp = Idx;
3401 
3402   // Perform default conversions.
3403   if (!LHSExp->getType()->getAs<VectorType>()) {
3404     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3405     if (Result.isInvalid())
3406       return ExprError();
3407     LHSExp = Result.take();
3408   }
3409   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3410   if (Result.isInvalid())
3411     return ExprError();
3412   RHSExp = Result.take();
3413 
3414   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3415   ExprValueKind VK = VK_LValue;
3416   ExprObjectKind OK = OK_Ordinary;
3417 
3418   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3419   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3420   // in the subscript position. As a result, we need to derive the array base
3421   // and index from the expression types.
3422   Expr *BaseExpr, *IndexExpr;
3423   QualType ResultType;
3424   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3425     BaseExpr = LHSExp;
3426     IndexExpr = RHSExp;
3427     ResultType = Context.DependentTy;
3428   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3429     BaseExpr = LHSExp;
3430     IndexExpr = RHSExp;
3431     ResultType = PTy->getPointeeType();
3432   } else if (const ObjCObjectPointerType *PTy =
3433                LHSTy->getAs<ObjCObjectPointerType>()) {
3434     BaseExpr = LHSExp;
3435     IndexExpr = RHSExp;
3436 
3437     // Use custom logic if this should be the pseudo-object subscript
3438     // expression.
3439     if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
3440       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3441 
3442     ResultType = PTy->getPointeeType();
3443     if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3444       Diag(LLoc, diag::err_subscript_nonfragile_interface)
3445         << ResultType << BaseExpr->getSourceRange();
3446       return ExprError();
3447     }
3448   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3449      // Handle the uncommon case of "123[Ptr]".
3450     BaseExpr = RHSExp;
3451     IndexExpr = LHSExp;
3452     ResultType = PTy->getPointeeType();
3453   } else if (const ObjCObjectPointerType *PTy =
3454                RHSTy->getAs<ObjCObjectPointerType>()) {
3455      // Handle the uncommon case of "123[Ptr]".
3456     BaseExpr = RHSExp;
3457     IndexExpr = LHSExp;
3458     ResultType = PTy->getPointeeType();
3459     if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3460       Diag(LLoc, diag::err_subscript_nonfragile_interface)
3461         << ResultType << BaseExpr->getSourceRange();
3462       return ExprError();
3463     }
3464   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3465     BaseExpr = LHSExp;    // vectors: V[123]
3466     IndexExpr = RHSExp;
3467     VK = LHSExp->getValueKind();
3468     if (VK != VK_RValue)
3469       OK = OK_VectorComponent;
3470 
3471     // FIXME: need to deal with const...
3472     ResultType = VTy->getElementType();
3473   } else if (LHSTy->isArrayType()) {
3474     // If we see an array that wasn't promoted by
3475     // DefaultFunctionArrayLvalueConversion, it must be an array that
3476     // wasn't promoted because of the C90 rule that doesn't
3477     // allow promoting non-lvalue arrays.  Warn, then
3478     // force the promotion here.
3479     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3480         LHSExp->getSourceRange();
3481     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3482                                CK_ArrayToPointerDecay).take();
3483     LHSTy = LHSExp->getType();
3484 
3485     BaseExpr = LHSExp;
3486     IndexExpr = RHSExp;
3487     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3488   } else if (RHSTy->isArrayType()) {
3489     // Same as previous, except for 123[f().a] case
3490     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3491         RHSExp->getSourceRange();
3492     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3493                                CK_ArrayToPointerDecay).take();
3494     RHSTy = RHSExp->getType();
3495 
3496     BaseExpr = RHSExp;
3497     IndexExpr = LHSExp;
3498     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3499   } else {
3500     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3501        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3502   }
3503   // C99 6.5.2.1p1
3504   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3505     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3506                      << IndexExpr->getSourceRange());
3507 
3508   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3509        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3510          && !IndexExpr->isTypeDependent())
3511     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3512 
3513   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3514   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3515   // type. Note that Functions are not objects, and that (in C99 parlance)
3516   // incomplete types are not object types.
3517   if (ResultType->isFunctionType()) {
3518     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3519       << ResultType << BaseExpr->getSourceRange();
3520     return ExprError();
3521   }
3522 
3523   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3524     // GNU extension: subscripting on pointer to void
3525     Diag(LLoc, diag::ext_gnu_subscript_void_type)
3526       << BaseExpr->getSourceRange();
3527 
3528     // C forbids expressions of unqualified void type from being l-values.
3529     // See IsCForbiddenLValueType.
3530     if (!ResultType.hasQualifiers()) VK = VK_RValue;
3531   } else if (!ResultType->isDependentType() &&
3532       RequireCompleteType(LLoc, ResultType,
3533                           diag::err_subscript_incomplete_type, BaseExpr))
3534     return ExprError();
3535 
3536   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3537          !ResultType.isCForbiddenLValueType());
3538 
3539   return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3540                                                 ResultType, VK, OK, RLoc));
3541 }
3542 
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)3543 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3544                                         FunctionDecl *FD,
3545                                         ParmVarDecl *Param) {
3546   if (Param->hasUnparsedDefaultArg()) {
3547     Diag(CallLoc,
3548          diag::err_use_of_default_argument_to_function_declared_later) <<
3549       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3550     Diag(UnparsedDefaultArgLocs[Param],
3551          diag::note_default_argument_declared_here);
3552     return ExprError();
3553   }
3554 
3555   if (Param->hasUninstantiatedDefaultArg()) {
3556     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3557 
3558     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3559                                                  Param);
3560 
3561     // Instantiate the expression.
3562     MultiLevelTemplateArgumentList ArgList
3563       = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3564 
3565     std::pair<const TemplateArgument *, unsigned> Innermost
3566       = ArgList.getInnermost();
3567     InstantiatingTemplate Inst(*this, CallLoc, Param,
3568                                ArrayRef<TemplateArgument>(Innermost.first,
3569                                                           Innermost.second));
3570     if (Inst)
3571       return ExprError();
3572 
3573     ExprResult Result;
3574     {
3575       // C++ [dcl.fct.default]p5:
3576       //   The names in the [default argument] expression are bound, and
3577       //   the semantic constraints are checked, at the point where the
3578       //   default argument expression appears.
3579       ContextRAII SavedContext(*this, FD);
3580       LocalInstantiationScope Local(*this);
3581       Result = SubstExpr(UninstExpr, ArgList);
3582     }
3583     if (Result.isInvalid())
3584       return ExprError();
3585 
3586     // Check the expression as an initializer for the parameter.
3587     InitializedEntity Entity
3588       = InitializedEntity::InitializeParameter(Context, Param);
3589     InitializationKind Kind
3590       = InitializationKind::CreateCopy(Param->getLocation(),
3591              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3592     Expr *ResultE = Result.takeAs<Expr>();
3593 
3594     InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3595     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
3596     if (Result.isInvalid())
3597       return ExprError();
3598 
3599     Expr *Arg = Result.takeAs<Expr>();
3600     CheckCompletedExpr(Arg, Param->getOuterLocStart());
3601     // Build the default argument expression.
3602     return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3603   }
3604 
3605   // If the default expression creates temporaries, we need to
3606   // push them to the current stack of expression temporaries so they'll
3607   // be properly destroyed.
3608   // FIXME: We should really be rebuilding the default argument with new
3609   // bound temporaries; see the comment in PR5810.
3610   // We don't need to do that with block decls, though, because
3611   // blocks in default argument expression can never capture anything.
3612   if (isa<ExprWithCleanups>(Param->getInit())) {
3613     // Set the "needs cleanups" bit regardless of whether there are
3614     // any explicit objects.
3615     ExprNeedsCleanups = true;
3616 
3617     // Append all the objects to the cleanup list.  Right now, this
3618     // should always be a no-op, because blocks in default argument
3619     // expressions should never be able to capture anything.
3620     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3621            "default argument expression has capturing blocks?");
3622   }
3623 
3624   // We already type-checked the argument, so we know it works.
3625   // Just mark all of the declarations in this potentially-evaluated expression
3626   // as being "referenced".
3627   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3628                                    /*SkipLocalVariables=*/true);
3629   return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3630 }
3631 
3632 
3633 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)3634 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3635                           Expr *Fn) {
3636   if (Proto && Proto->isVariadic()) {
3637     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3638       return VariadicConstructor;
3639     else if (Fn && Fn->getType()->isBlockPointerType())
3640       return VariadicBlock;
3641     else if (FDecl) {
3642       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3643         if (Method->isInstance())
3644           return VariadicMethod;
3645     }
3646     return VariadicFunction;
3647   }
3648   return VariadicDoesNotApply;
3649 }
3650 
3651 /// ConvertArgumentsForCall - Converts the arguments specified in
3652 /// Args/NumArgs to the parameter types of the function FDecl with
3653 /// function prototype Proto. Call is the call expression itself, and
3654 /// Fn is the function expression. For a C++ member function, this
3655 /// routine does not attempt to convert the object argument. Returns
3656 /// true if the call is ill-formed.
3657 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,bool IsExecConfig)3658 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3659                               FunctionDecl *FDecl,
3660                               const FunctionProtoType *Proto,
3661                               Expr **Args, unsigned NumArgs,
3662                               SourceLocation RParenLoc,
3663                               bool IsExecConfig) {
3664   // Bail out early if calling a builtin with custom typechecking.
3665   // We don't need to do this in the
3666   if (FDecl)
3667     if (unsigned ID = FDecl->getBuiltinID())
3668       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3669         return false;
3670 
3671   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3672   // assignment, to the types of the corresponding parameter, ...
3673   unsigned NumArgsInProto = Proto->getNumArgs();
3674   bool Invalid = false;
3675   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3676   unsigned FnKind = Fn->getType()->isBlockPointerType()
3677                        ? 1 /* block */
3678                        : (IsExecConfig ? 3 /* kernel function (exec config) */
3679                                        : 0 /* function */);
3680 
3681   // If too few arguments are available (and we don't have default
3682   // arguments for the remaining parameters), don't make the call.
3683   if (NumArgs < NumArgsInProto) {
3684     if (NumArgs < MinArgs) {
3685       if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3686         Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3687                           ? diag::err_typecheck_call_too_few_args_one
3688                           : diag::err_typecheck_call_too_few_args_at_least_one)
3689           << FnKind
3690           << FDecl->getParamDecl(0) << Fn->getSourceRange();
3691       else
3692         Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3693                           ? diag::err_typecheck_call_too_few_args
3694                           : diag::err_typecheck_call_too_few_args_at_least)
3695           << FnKind
3696           << MinArgs << NumArgs << Fn->getSourceRange();
3697 
3698       // Emit the location of the prototype.
3699       if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3700         Diag(FDecl->getLocStart(), diag::note_callee_decl)
3701           << FDecl;
3702 
3703       return true;
3704     }
3705     Call->setNumArgs(Context, NumArgsInProto);
3706   }
3707 
3708   // If too many are passed and not variadic, error on the extras and drop
3709   // them.
3710   if (NumArgs > NumArgsInProto) {
3711     if (!Proto->isVariadic()) {
3712       if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3713         Diag(Args[NumArgsInProto]->getLocStart(),
3714              MinArgs == NumArgsInProto
3715                ? diag::err_typecheck_call_too_many_args_one
3716                : diag::err_typecheck_call_too_many_args_at_most_one)
3717           << FnKind
3718           << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
3719           << SourceRange(Args[NumArgsInProto]->getLocStart(),
3720                          Args[NumArgs-1]->getLocEnd());
3721       else
3722         Diag(Args[NumArgsInProto]->getLocStart(),
3723              MinArgs == NumArgsInProto
3724                ? diag::err_typecheck_call_too_many_args
3725                : diag::err_typecheck_call_too_many_args_at_most)
3726           << FnKind
3727           << NumArgsInProto << NumArgs << Fn->getSourceRange()
3728           << SourceRange(Args[NumArgsInProto]->getLocStart(),
3729                          Args[NumArgs-1]->getLocEnd());
3730 
3731       // Emit the location of the prototype.
3732       if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3733         Diag(FDecl->getLocStart(), diag::note_callee_decl)
3734           << FDecl;
3735 
3736       // This deletes the extra arguments.
3737       Call->setNumArgs(Context, NumArgsInProto);
3738       return true;
3739     }
3740   }
3741   SmallVector<Expr *, 8> AllArgs;
3742   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
3743 
3744   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3745                                    Proto, 0, Args, NumArgs, AllArgs, CallType);
3746   if (Invalid)
3747     return true;
3748   unsigned TotalNumArgs = AllArgs.size();
3749   for (unsigned i = 0; i < TotalNumArgs; ++i)
3750     Call->setArg(i, AllArgs[i]);
3751 
3752   return false;
3753 }
3754 
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstProtoArg,Expr ** Args,unsigned NumArgs,SmallVector<Expr *,8> & AllArgs,VariadicCallType CallType,bool AllowExplicit,bool IsListInitialization)3755 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3756                                   FunctionDecl *FDecl,
3757                                   const FunctionProtoType *Proto,
3758                                   unsigned FirstProtoArg,
3759                                   Expr **Args, unsigned NumArgs,
3760                                   SmallVector<Expr *, 8> &AllArgs,
3761                                   VariadicCallType CallType,
3762                                   bool AllowExplicit,
3763                                   bool IsListInitialization) {
3764   unsigned NumArgsInProto = Proto->getNumArgs();
3765   unsigned NumArgsToCheck = NumArgs;
3766   bool Invalid = false;
3767   if (NumArgs != NumArgsInProto)
3768     // Use default arguments for missing arguments
3769     NumArgsToCheck = NumArgsInProto;
3770   unsigned ArgIx = 0;
3771   // Continue to check argument types (even if we have too few/many args).
3772   for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3773     QualType ProtoArgType = Proto->getArgType(i);
3774 
3775     Expr *Arg;
3776     ParmVarDecl *Param;
3777     if (ArgIx < NumArgs) {
3778       Arg = Args[ArgIx++];
3779 
3780       if (RequireCompleteType(Arg->getLocStart(),
3781                               ProtoArgType,
3782                               diag::err_call_incomplete_argument, Arg))
3783         return true;
3784 
3785       // Pass the argument
3786       Param = 0;
3787       if (FDecl && i < FDecl->getNumParams())
3788         Param = FDecl->getParamDecl(i);
3789 
3790       // Strip the unbridged-cast placeholder expression off, if applicable.
3791       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3792           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3793           (!Param || !Param->hasAttr<CFConsumedAttr>()))
3794         Arg = stripARCUnbridgedCast(Arg);
3795 
3796       InitializedEntity Entity = Param ?
3797           InitializedEntity::InitializeParameter(Context, Param, ProtoArgType)
3798         : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3799                                                  Proto->isArgConsumed(i));
3800       ExprResult ArgE = PerformCopyInitialization(Entity,
3801                                                   SourceLocation(),
3802                                                   Owned(Arg),
3803                                                   IsListInitialization,
3804                                                   AllowExplicit);
3805       if (ArgE.isInvalid())
3806         return true;
3807 
3808       Arg = ArgE.takeAs<Expr>();
3809     } else {
3810       assert(FDecl && "can't use default arguments without a known callee");
3811       Param = FDecl->getParamDecl(i);
3812 
3813       ExprResult ArgExpr =
3814         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3815       if (ArgExpr.isInvalid())
3816         return true;
3817 
3818       Arg = ArgExpr.takeAs<Expr>();
3819     }
3820 
3821     // Check for array bounds violations for each argument to the call. This
3822     // check only triggers warnings when the argument isn't a more complex Expr
3823     // with its own checking, such as a BinaryOperator.
3824     CheckArrayAccess(Arg);
3825 
3826     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3827     CheckStaticArrayArgument(CallLoc, Param, Arg);
3828 
3829     AllArgs.push_back(Arg);
3830   }
3831 
3832   // If this is a variadic call, handle args passed through "...".
3833   if (CallType != VariadicDoesNotApply) {
3834     // Assume that extern "C" functions with variadic arguments that
3835     // return __unknown_anytype aren't *really* variadic.
3836     if (Proto->getResultType() == Context.UnknownAnyTy &&
3837         FDecl && FDecl->isExternC()) {
3838       for (unsigned i = ArgIx; i != NumArgs; ++i) {
3839         QualType paramType; // ignored
3840         ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
3841         Invalid |= arg.isInvalid();
3842         AllArgs.push_back(arg.take());
3843       }
3844 
3845     // Otherwise do argument promotion, (C99 6.5.2.2p7).
3846     } else {
3847       for (unsigned i = ArgIx; i != NumArgs; ++i) {
3848         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3849                                                           FDecl);
3850         Invalid |= Arg.isInvalid();
3851         AllArgs.push_back(Arg.take());
3852       }
3853     }
3854 
3855     // Check for array bounds violations.
3856     for (unsigned i = ArgIx; i != NumArgs; ++i)
3857       CheckArrayAccess(Args[i]);
3858   }
3859   return Invalid;
3860 }
3861 
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)3862 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3863   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3864   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
3865     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3866       << ATL.getLocalSourceRange();
3867 }
3868 
3869 /// CheckStaticArrayArgument - If the given argument corresponds to a static
3870 /// array parameter, check that it is non-null, and that if it is formed by
3871 /// array-to-pointer decay, the underlying array is sufficiently large.
3872 ///
3873 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3874 /// array type derivation, then for each call to the function, the value of the
3875 /// corresponding actual argument shall provide access to the first element of
3876 /// an array with at least as many elements as specified by the size expression.
3877 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)3878 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3879                                ParmVarDecl *Param,
3880                                const Expr *ArgExpr) {
3881   // Static array parameters are not supported in C++.
3882   if (!Param || getLangOpts().CPlusPlus)
3883     return;
3884 
3885   QualType OrigTy = Param->getOriginalType();
3886 
3887   const ArrayType *AT = Context.getAsArrayType(OrigTy);
3888   if (!AT || AT->getSizeModifier() != ArrayType::Static)
3889     return;
3890 
3891   if (ArgExpr->isNullPointerConstant(Context,
3892                                      Expr::NPC_NeverValueDependent)) {
3893     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3894     DiagnoseCalleeStaticArrayParam(*this, Param);
3895     return;
3896   }
3897 
3898   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3899   if (!CAT)
3900     return;
3901 
3902   const ConstantArrayType *ArgCAT =
3903     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3904   if (!ArgCAT)
3905     return;
3906 
3907   if (ArgCAT->getSize().ult(CAT->getSize())) {
3908     Diag(CallLoc, diag::warn_static_array_too_small)
3909       << ArgExpr->getSourceRange()
3910       << (unsigned) ArgCAT->getSize().getZExtValue()
3911       << (unsigned) CAT->getSize().getZExtValue();
3912     DiagnoseCalleeStaticArrayParam(*this, Param);
3913   }
3914 }
3915 
3916 /// Given a function expression of unknown-any type, try to rebuild it
3917 /// to have a function type.
3918 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3919 
3920 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3921 /// This provides the location of the left/right parens and a list of comma
3922 /// locations.
3923 ExprResult
ActOnCallExpr(Scope * S,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig)3924 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3925                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
3926                     Expr *ExecConfig, bool IsExecConfig) {
3927   // Since this might be a postfix expression, get rid of ParenListExprs.
3928   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3929   if (Result.isInvalid()) return ExprError();
3930   Fn = Result.take();
3931 
3932   if (getLangOpts().CPlusPlus) {
3933     // If this is a pseudo-destructor expression, build the call immediately.
3934     if (isa<CXXPseudoDestructorExpr>(Fn)) {
3935       if (!ArgExprs.empty()) {
3936         // Pseudo-destructor calls should not have any arguments.
3937         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3938           << FixItHint::CreateRemoval(
3939                                     SourceRange(ArgExprs[0]->getLocStart(),
3940                                                 ArgExprs.back()->getLocEnd()));
3941       }
3942 
3943       return Owned(new (Context) CallExpr(Context, Fn, MultiExprArg(),
3944                                           Context.VoidTy, VK_RValue,
3945                                           RParenLoc));
3946     }
3947 
3948     // Determine whether this is a dependent call inside a C++ template,
3949     // in which case we won't do any semantic analysis now.
3950     // FIXME: Will need to cache the results of name lookup (including ADL) in
3951     // Fn.
3952     bool Dependent = false;
3953     if (Fn->isTypeDependent())
3954       Dependent = true;
3955     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
3956       Dependent = true;
3957 
3958     if (Dependent) {
3959       if (ExecConfig) {
3960         return Owned(new (Context) CUDAKernelCallExpr(
3961             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
3962             Context.DependentTy, VK_RValue, RParenLoc));
3963       } else {
3964         return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
3965                                             Context.DependentTy, VK_RValue,
3966                                             RParenLoc));
3967       }
3968     }
3969 
3970     // Determine whether this is a call to an object (C++ [over.call.object]).
3971     if (Fn->getType()->isRecordType())
3972       return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
3973                                                 ArgExprs.data(),
3974                                                 ArgExprs.size(), RParenLoc));
3975 
3976     if (Fn->getType() == Context.UnknownAnyTy) {
3977       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3978       if (result.isInvalid()) return ExprError();
3979       Fn = result.take();
3980     }
3981 
3982     if (Fn->getType() == Context.BoundMemberTy) {
3983       return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
3984                                        ArgExprs.size(), RParenLoc);
3985     }
3986   }
3987 
3988   // Check for overloaded calls.  This can happen even in C due to extensions.
3989   if (Fn->getType() == Context.OverloadTy) {
3990     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3991 
3992     // We aren't supposed to apply this logic for if there's an '&' involved.
3993     if (!find.HasFormOfMemberPointer) {
3994       OverloadExpr *ovl = find.Expression;
3995       if (isa<UnresolvedLookupExpr>(ovl)) {
3996         UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3997         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs.data(),
3998                                        ArgExprs.size(), RParenLoc, ExecConfig);
3999       } else {
4000         return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
4001                                          ArgExprs.size(), RParenLoc);
4002       }
4003     }
4004   }
4005 
4006   // If we're directly calling a function, get the appropriate declaration.
4007   if (Fn->getType() == Context.UnknownAnyTy) {
4008     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4009     if (result.isInvalid()) return ExprError();
4010     Fn = result.take();
4011   }
4012 
4013   Expr *NakedFn = Fn->IgnoreParens();
4014 
4015   NamedDecl *NDecl = 0;
4016   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4017     if (UnOp->getOpcode() == UO_AddrOf)
4018       NakedFn = UnOp->getSubExpr()->IgnoreParens();
4019 
4020   if (isa<DeclRefExpr>(NakedFn))
4021     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4022   else if (isa<MemberExpr>(NakedFn))
4023     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
4024 
4025   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs.data(),
4026                                ArgExprs.size(), RParenLoc, ExecConfig,
4027                                IsExecConfig);
4028 }
4029 
4030 ExprResult
ActOnCUDAExecConfigExpr(Scope * S,SourceLocation LLLLoc,MultiExprArg ExecConfig,SourceLocation GGGLoc)4031 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
4032                               MultiExprArg ExecConfig, SourceLocation GGGLoc) {
4033   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
4034   if (!ConfigDecl)
4035     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
4036                           << "cudaConfigureCall");
4037   QualType ConfigQTy = ConfigDecl->getType();
4038 
4039   DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
4040       ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
4041   MarkFunctionReferenced(LLLLoc, ConfigDecl);
4042 
4043   return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
4044                        /*IsExecConfig=*/true);
4045 }
4046 
4047 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
4048 ///
4049 /// __builtin_astype( value, dst type )
4050 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)4051 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
4052                                  SourceLocation BuiltinLoc,
4053                                  SourceLocation RParenLoc) {
4054   ExprValueKind VK = VK_RValue;
4055   ExprObjectKind OK = OK_Ordinary;
4056   QualType DstTy = GetTypeFromParser(ParsedDestTy);
4057   QualType SrcTy = E->getType();
4058   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
4059     return ExprError(Diag(BuiltinLoc,
4060                           diag::err_invalid_astype_of_different_size)
4061                      << DstTy
4062                      << SrcTy
4063                      << E->getSourceRange());
4064   return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
4065                RParenLoc));
4066 }
4067 
4068 /// BuildResolvedCallExpr - Build a call to a resolved expression,
4069 /// i.e. an expression not of \p OverloadTy.  The expression should
4070 /// unary-convert to an expression of function-pointer or
4071 /// block-pointer type.
4072 ///
4073 /// \param NDecl the declaration being called, if available
4074 ExprResult
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig)4075 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4076                             SourceLocation LParenLoc,
4077                             Expr **Args, unsigned NumArgs,
4078                             SourceLocation RParenLoc,
4079                             Expr *Config, bool IsExecConfig) {
4080   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4081   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
4082 
4083   // Promote the function operand.
4084   // We special-case function promotion here because we only allow promoting
4085   // builtin functions to function pointers in the callee of a call.
4086   ExprResult Result;
4087   if (BuiltinID &&
4088       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
4089     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
4090                                CK_BuiltinFnToFnPtr).take();
4091   } else {
4092     Result = UsualUnaryConversions(Fn);
4093   }
4094   if (Result.isInvalid())
4095     return ExprError();
4096   Fn = Result.take();
4097 
4098   // Make the call expr early, before semantic checks.  This guarantees cleanup
4099   // of arguments and function on error.
4100   CallExpr *TheCall;
4101   if (Config)
4102     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
4103                                                cast<CallExpr>(Config),
4104                                                llvm::makeArrayRef(Args,NumArgs),
4105                                                Context.BoolTy,
4106                                                VK_RValue,
4107                                                RParenLoc);
4108   else
4109     TheCall = new (Context) CallExpr(Context, Fn,
4110                                      llvm::makeArrayRef(Args, NumArgs),
4111                                      Context.BoolTy,
4112                                      VK_RValue,
4113                                      RParenLoc);
4114 
4115   // Bail out early if calling a builtin with custom typechecking.
4116   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
4117     return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4118 
4119  retry:
4120   const FunctionType *FuncT;
4121   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
4122     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4123     // have type pointer to function".
4124     FuncT = PT->getPointeeType()->getAs<FunctionType>();
4125     if (FuncT == 0)
4126       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4127                          << Fn->getType() << Fn->getSourceRange());
4128   } else if (const BlockPointerType *BPT =
4129                Fn->getType()->getAs<BlockPointerType>()) {
4130     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
4131   } else {
4132     // Handle calls to expressions of unknown-any type.
4133     if (Fn->getType() == Context.UnknownAnyTy) {
4134       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4135       if (rewrite.isInvalid()) return ExprError();
4136       Fn = rewrite.take();
4137       TheCall->setCallee(Fn);
4138       goto retry;
4139     }
4140 
4141     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4142       << Fn->getType() << Fn->getSourceRange());
4143   }
4144 
4145   if (getLangOpts().CUDA) {
4146     if (Config) {
4147       // CUDA: Kernel calls must be to global functions
4148       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4149         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4150             << FDecl->getName() << Fn->getSourceRange());
4151 
4152       // CUDA: Kernel function must have 'void' return type
4153       if (!FuncT->getResultType()->isVoidType())
4154         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4155             << Fn->getType() << Fn->getSourceRange());
4156     } else {
4157       // CUDA: Calls to global functions must be configured
4158       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4159         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4160             << FDecl->getName() << Fn->getSourceRange());
4161     }
4162   }
4163 
4164   // Check for a valid return type
4165   if (CheckCallReturnType(FuncT->getResultType(),
4166                           Fn->getLocStart(), TheCall,
4167                           FDecl))
4168     return ExprError();
4169 
4170   // We know the result type of the call, set it.
4171   TheCall->setType(FuncT->getCallResultType(Context));
4172   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4173 
4174   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4175   if (Proto) {
4176     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
4177                                 RParenLoc, IsExecConfig))
4178       return ExprError();
4179   } else {
4180     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4181 
4182     if (FDecl) {
4183       // Check if we have too few/too many template arguments, based
4184       // on our knowledge of the function definition.
4185       const FunctionDecl *Def = 0;
4186       if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4187         Proto = Def->getType()->getAs<FunctionProtoType>();
4188         if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4189           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4190             << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4191       }
4192 
4193       // If the function we're calling isn't a function prototype, but we have
4194       // a function prototype from a prior declaratiom, use that prototype.
4195       if (!FDecl->hasPrototype())
4196         Proto = FDecl->getType()->getAs<FunctionProtoType>();
4197     }
4198 
4199     // Promote the arguments (C99 6.5.2.2p6).
4200     for (unsigned i = 0; i != NumArgs; i++) {
4201       Expr *Arg = Args[i];
4202 
4203       if (Proto && i < Proto->getNumArgs()) {
4204         InitializedEntity Entity
4205           = InitializedEntity::InitializeParameter(Context,
4206                                                    Proto->getArgType(i),
4207                                                    Proto->isArgConsumed(i));
4208         ExprResult ArgE = PerformCopyInitialization(Entity,
4209                                                     SourceLocation(),
4210                                                     Owned(Arg));
4211         if (ArgE.isInvalid())
4212           return true;
4213 
4214         Arg = ArgE.takeAs<Expr>();
4215 
4216       } else {
4217         ExprResult ArgE = DefaultArgumentPromotion(Arg);
4218 
4219         if (ArgE.isInvalid())
4220           return true;
4221 
4222         Arg = ArgE.takeAs<Expr>();
4223       }
4224 
4225       if (RequireCompleteType(Arg->getLocStart(),
4226                               Arg->getType(),
4227                               diag::err_call_incomplete_argument, Arg))
4228         return ExprError();
4229 
4230       TheCall->setArg(i, Arg);
4231     }
4232   }
4233 
4234   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4235     if (!Method->isStatic())
4236       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4237         << Fn->getSourceRange());
4238 
4239   // Check for sentinels
4240   if (NDecl)
4241     DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4242 
4243   // Do special checking on direct calls to functions.
4244   if (FDecl) {
4245     if (CheckFunctionCall(FDecl, TheCall, Proto))
4246       return ExprError();
4247 
4248     if (BuiltinID)
4249       return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4250   } else if (NDecl) {
4251     if (CheckBlockCall(NDecl, TheCall, Proto))
4252       return ExprError();
4253   }
4254 
4255   return MaybeBindToTemporary(TheCall);
4256 }
4257 
4258 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)4259 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4260                            SourceLocation RParenLoc, Expr *InitExpr) {
4261   assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4262   // FIXME: put back this assert when initializers are worked out.
4263   //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4264 
4265   TypeSourceInfo *TInfo;
4266   QualType literalType = GetTypeFromParser(Ty, &TInfo);
4267   if (!TInfo)
4268     TInfo = Context.getTrivialTypeSourceInfo(literalType);
4269 
4270   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4271 }
4272 
4273 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)4274 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4275                                SourceLocation RParenLoc, Expr *LiteralExpr) {
4276   QualType literalType = TInfo->getType();
4277 
4278   if (literalType->isArrayType()) {
4279     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4280           diag::err_illegal_decl_array_incomplete_type,
4281           SourceRange(LParenLoc,
4282                       LiteralExpr->getSourceRange().getEnd())))
4283       return ExprError();
4284     if (literalType->isVariableArrayType())
4285       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4286         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4287   } else if (!literalType->isDependentType() &&
4288              RequireCompleteType(LParenLoc, literalType,
4289                diag::err_typecheck_decl_incomplete_type,
4290                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4291     return ExprError();
4292 
4293   InitializedEntity Entity
4294     = InitializedEntity::InitializeTemporary(literalType);
4295   InitializationKind Kind
4296     = InitializationKind::CreateCStyleCast(LParenLoc,
4297                                            SourceRange(LParenLoc, RParenLoc),
4298                                            /*InitList=*/true);
4299   InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
4300   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4301                                       &literalType);
4302   if (Result.isInvalid())
4303     return ExprError();
4304   LiteralExpr = Result.get();
4305 
4306   bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4307   if (isFileScope) { // 6.5.2.5p3
4308     if (CheckForConstantInitializer(LiteralExpr, literalType))
4309       return ExprError();
4310   }
4311 
4312   // In C, compound literals are l-values for some reason.
4313   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4314 
4315   return MaybeBindToTemporary(
4316            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4317                                              VK, LiteralExpr, isFileScope));
4318 }
4319 
4320 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)4321 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4322                     SourceLocation RBraceLoc) {
4323   // Immediately handle non-overload placeholders.  Overloads can be
4324   // resolved contextually, but everything else here can't.
4325   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4326     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4327       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4328 
4329       // Ignore failures; dropping the entire initializer list because
4330       // of one failure would be terrible for indexing/etc.
4331       if (result.isInvalid()) continue;
4332 
4333       InitArgList[I] = result.take();
4334     }
4335   }
4336 
4337   // Semantic analysis for initializers is done by ActOnDeclarator() and
4338   // CheckInitializer() - it requires knowledge of the object being intialized.
4339 
4340   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4341                                                RBraceLoc);
4342   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4343   return Owned(E);
4344 }
4345 
4346 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(Sema & S,ExprResult & E)4347 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4348   assert(E.get()->getType()->isBlockPointerType());
4349   assert(E.get()->isRValue());
4350 
4351   // Only do this in an r-value context.
4352   if (!S.getLangOpts().ObjCAutoRefCount) return;
4353 
4354   E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4355                                CK_ARCExtendBlockObject, E.get(),
4356                                /*base path*/ 0, VK_RValue);
4357   S.ExprNeedsCleanups = true;
4358 }
4359 
4360 /// Prepare a conversion of the given expression to an ObjC object
4361 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)4362 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4363   QualType type = E.get()->getType();
4364   if (type->isObjCObjectPointerType()) {
4365     return CK_BitCast;
4366   } else if (type->isBlockPointerType()) {
4367     maybeExtendBlockObject(*this, E);
4368     return CK_BlockPointerToObjCPointerCast;
4369   } else {
4370     assert(type->isPointerType());
4371     return CK_CPointerToObjCPointerCast;
4372   }
4373 }
4374 
4375 /// Prepares for a scalar cast, performing all the necessary stages
4376 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)4377 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4378   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4379   // Also, callers should have filtered out the invalid cases with
4380   // pointers.  Everything else should be possible.
4381 
4382   QualType SrcTy = Src.get()->getType();
4383   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4384     return CK_NoOp;
4385 
4386   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4387   case Type::STK_MemberPointer:
4388     llvm_unreachable("member pointer type in C");
4389 
4390   case Type::STK_CPointer:
4391   case Type::STK_BlockPointer:
4392   case Type::STK_ObjCObjectPointer:
4393     switch (DestTy->getScalarTypeKind()) {
4394     case Type::STK_CPointer:
4395       return CK_BitCast;
4396     case Type::STK_BlockPointer:
4397       return (SrcKind == Type::STK_BlockPointer
4398                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4399     case Type::STK_ObjCObjectPointer:
4400       if (SrcKind == Type::STK_ObjCObjectPointer)
4401         return CK_BitCast;
4402       if (SrcKind == Type::STK_CPointer)
4403         return CK_CPointerToObjCPointerCast;
4404       maybeExtendBlockObject(*this, Src);
4405       return CK_BlockPointerToObjCPointerCast;
4406     case Type::STK_Bool:
4407       return CK_PointerToBoolean;
4408     case Type::STK_Integral:
4409       return CK_PointerToIntegral;
4410     case Type::STK_Floating:
4411     case Type::STK_FloatingComplex:
4412     case Type::STK_IntegralComplex:
4413     case Type::STK_MemberPointer:
4414       llvm_unreachable("illegal cast from pointer");
4415     }
4416     llvm_unreachable("Should have returned before this");
4417 
4418   case Type::STK_Bool: // casting from bool is like casting from an integer
4419   case Type::STK_Integral:
4420     switch (DestTy->getScalarTypeKind()) {
4421     case Type::STK_CPointer:
4422     case Type::STK_ObjCObjectPointer:
4423     case Type::STK_BlockPointer:
4424       if (Src.get()->isNullPointerConstant(Context,
4425                                            Expr::NPC_ValueDependentIsNull))
4426         return CK_NullToPointer;
4427       return CK_IntegralToPointer;
4428     case Type::STK_Bool:
4429       return CK_IntegralToBoolean;
4430     case Type::STK_Integral:
4431       return CK_IntegralCast;
4432     case Type::STK_Floating:
4433       return CK_IntegralToFloating;
4434     case Type::STK_IntegralComplex:
4435       Src = ImpCastExprToType(Src.take(),
4436                               DestTy->castAs<ComplexType>()->getElementType(),
4437                               CK_IntegralCast);
4438       return CK_IntegralRealToComplex;
4439     case Type::STK_FloatingComplex:
4440       Src = ImpCastExprToType(Src.take(),
4441                               DestTy->castAs<ComplexType>()->getElementType(),
4442                               CK_IntegralToFloating);
4443       return CK_FloatingRealToComplex;
4444     case Type::STK_MemberPointer:
4445       llvm_unreachable("member pointer type in C");
4446     }
4447     llvm_unreachable("Should have returned before this");
4448 
4449   case Type::STK_Floating:
4450     switch (DestTy->getScalarTypeKind()) {
4451     case Type::STK_Floating:
4452       return CK_FloatingCast;
4453     case Type::STK_Bool:
4454       return CK_FloatingToBoolean;
4455     case Type::STK_Integral:
4456       return CK_FloatingToIntegral;
4457     case Type::STK_FloatingComplex:
4458       Src = ImpCastExprToType(Src.take(),
4459                               DestTy->castAs<ComplexType>()->getElementType(),
4460                               CK_FloatingCast);
4461       return CK_FloatingRealToComplex;
4462     case Type::STK_IntegralComplex:
4463       Src = ImpCastExprToType(Src.take(),
4464                               DestTy->castAs<ComplexType>()->getElementType(),
4465                               CK_FloatingToIntegral);
4466       return CK_IntegralRealToComplex;
4467     case Type::STK_CPointer:
4468     case Type::STK_ObjCObjectPointer:
4469     case Type::STK_BlockPointer:
4470       llvm_unreachable("valid float->pointer cast?");
4471     case Type::STK_MemberPointer:
4472       llvm_unreachable("member pointer type in C");
4473     }
4474     llvm_unreachable("Should have returned before this");
4475 
4476   case Type::STK_FloatingComplex:
4477     switch (DestTy->getScalarTypeKind()) {
4478     case Type::STK_FloatingComplex:
4479       return CK_FloatingComplexCast;
4480     case Type::STK_IntegralComplex:
4481       return CK_FloatingComplexToIntegralComplex;
4482     case Type::STK_Floating: {
4483       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4484       if (Context.hasSameType(ET, DestTy))
4485         return CK_FloatingComplexToReal;
4486       Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4487       return CK_FloatingCast;
4488     }
4489     case Type::STK_Bool:
4490       return CK_FloatingComplexToBoolean;
4491     case Type::STK_Integral:
4492       Src = ImpCastExprToType(Src.take(),
4493                               SrcTy->castAs<ComplexType>()->getElementType(),
4494                               CK_FloatingComplexToReal);
4495       return CK_FloatingToIntegral;
4496     case Type::STK_CPointer:
4497     case Type::STK_ObjCObjectPointer:
4498     case Type::STK_BlockPointer:
4499       llvm_unreachable("valid complex float->pointer cast?");
4500     case Type::STK_MemberPointer:
4501       llvm_unreachable("member pointer type in C");
4502     }
4503     llvm_unreachable("Should have returned before this");
4504 
4505   case Type::STK_IntegralComplex:
4506     switch (DestTy->getScalarTypeKind()) {
4507     case Type::STK_FloatingComplex:
4508       return CK_IntegralComplexToFloatingComplex;
4509     case Type::STK_IntegralComplex:
4510       return CK_IntegralComplexCast;
4511     case Type::STK_Integral: {
4512       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4513       if (Context.hasSameType(ET, DestTy))
4514         return CK_IntegralComplexToReal;
4515       Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4516       return CK_IntegralCast;
4517     }
4518     case Type::STK_Bool:
4519       return CK_IntegralComplexToBoolean;
4520     case Type::STK_Floating:
4521       Src = ImpCastExprToType(Src.take(),
4522                               SrcTy->castAs<ComplexType>()->getElementType(),
4523                               CK_IntegralComplexToReal);
4524       return CK_IntegralToFloating;
4525     case Type::STK_CPointer:
4526     case Type::STK_ObjCObjectPointer:
4527     case Type::STK_BlockPointer:
4528       llvm_unreachable("valid complex int->pointer cast?");
4529     case Type::STK_MemberPointer:
4530       llvm_unreachable("member pointer type in C");
4531     }
4532     llvm_unreachable("Should have returned before this");
4533   }
4534 
4535   llvm_unreachable("Unhandled scalar cast");
4536 }
4537 
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)4538 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4539                            CastKind &Kind) {
4540   assert(VectorTy->isVectorType() && "Not a vector type!");
4541 
4542   if (Ty->isVectorType() || Ty->isIntegerType()) {
4543     if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4544       return Diag(R.getBegin(),
4545                   Ty->isVectorType() ?
4546                   diag::err_invalid_conversion_between_vectors :
4547                   diag::err_invalid_conversion_between_vector_and_integer)
4548         << VectorTy << Ty << R;
4549   } else
4550     return Diag(R.getBegin(),
4551                 diag::err_invalid_conversion_between_vector_and_scalar)
4552       << VectorTy << Ty << R;
4553 
4554   Kind = CK_BitCast;
4555   return false;
4556 }
4557 
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)4558 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4559                                     Expr *CastExpr, CastKind &Kind) {
4560   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4561 
4562   QualType SrcTy = CastExpr->getType();
4563 
4564   // If SrcTy is a VectorType, the total size must match to explicitly cast to
4565   // an ExtVectorType.
4566   // In OpenCL, casts between vectors of different types are not allowed.
4567   // (See OpenCL 6.2).
4568   if (SrcTy->isVectorType()) {
4569     if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4570         || (getLangOpts().OpenCL &&
4571             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4572       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4573         << DestTy << SrcTy << R;
4574       return ExprError();
4575     }
4576     Kind = CK_BitCast;
4577     return Owned(CastExpr);
4578   }
4579 
4580   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4581   // conversion will take place first from scalar to elt type, and then
4582   // splat from elt type to vector.
4583   if (SrcTy->isPointerType())
4584     return Diag(R.getBegin(),
4585                 diag::err_invalid_conversion_between_vector_and_scalar)
4586       << DestTy << SrcTy << R;
4587 
4588   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4589   ExprResult CastExprRes = Owned(CastExpr);
4590   CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4591   if (CastExprRes.isInvalid())
4592     return ExprError();
4593   CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4594 
4595   Kind = CK_VectorSplat;
4596   return Owned(CastExpr);
4597 }
4598 
4599 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)4600 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4601                     Declarator &D, ParsedType &Ty,
4602                     SourceLocation RParenLoc, Expr *CastExpr) {
4603   assert(!D.isInvalidType() && (CastExpr != 0) &&
4604          "ActOnCastExpr(): missing type or expr");
4605 
4606   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4607   if (D.isInvalidType())
4608     return ExprError();
4609 
4610   if (getLangOpts().CPlusPlus) {
4611     // Check that there are no default arguments (C++ only).
4612     CheckExtraCXXDefaultArguments(D);
4613   }
4614 
4615   checkUnusedDeclAttributes(D);
4616 
4617   QualType castType = castTInfo->getType();
4618   Ty = CreateParsedType(castType, castTInfo);
4619 
4620   bool isVectorLiteral = false;
4621 
4622   // Check for an altivec or OpenCL literal,
4623   // i.e. all the elements are integer constants.
4624   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4625   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4626   if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4627        && castType->isVectorType() && (PE || PLE)) {
4628     if (PLE && PLE->getNumExprs() == 0) {
4629       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4630       return ExprError();
4631     }
4632     if (PE || PLE->getNumExprs() == 1) {
4633       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4634       if (!E->getType()->isVectorType())
4635         isVectorLiteral = true;
4636     }
4637     else
4638       isVectorLiteral = true;
4639   }
4640 
4641   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4642   // then handle it as such.
4643   if (isVectorLiteral)
4644     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4645 
4646   // If the Expr being casted is a ParenListExpr, handle it specially.
4647   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4648   // sequence of BinOp comma operators.
4649   if (isa<ParenListExpr>(CastExpr)) {
4650     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4651     if (Result.isInvalid()) return ExprError();
4652     CastExpr = Result.take();
4653   }
4654 
4655   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4656 }
4657 
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)4658 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4659                                     SourceLocation RParenLoc, Expr *E,
4660                                     TypeSourceInfo *TInfo) {
4661   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4662          "Expected paren or paren list expression");
4663 
4664   Expr **exprs;
4665   unsigned numExprs;
4666   Expr *subExpr;
4667   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
4668   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4669     LiteralLParenLoc = PE->getLParenLoc();
4670     LiteralRParenLoc = PE->getRParenLoc();
4671     exprs = PE->getExprs();
4672     numExprs = PE->getNumExprs();
4673   } else { // isa<ParenExpr> by assertion at function entrance
4674     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
4675     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
4676     subExpr = cast<ParenExpr>(E)->getSubExpr();
4677     exprs = &subExpr;
4678     numExprs = 1;
4679   }
4680 
4681   QualType Ty = TInfo->getType();
4682   assert(Ty->isVectorType() && "Expected vector type");
4683 
4684   SmallVector<Expr *, 8> initExprs;
4685   const VectorType *VTy = Ty->getAs<VectorType>();
4686   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4687 
4688   // '(...)' form of vector initialization in AltiVec: the number of
4689   // initializers must be one or must match the size of the vector.
4690   // If a single value is specified in the initializer then it will be
4691   // replicated to all the components of the vector
4692   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4693     // The number of initializers must be one or must match the size of the
4694     // vector. If a single value is specified in the initializer then it will
4695     // be replicated to all the components of the vector
4696     if (numExprs == 1) {
4697       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4698       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4699       if (Literal.isInvalid())
4700         return ExprError();
4701       Literal = ImpCastExprToType(Literal.take(), ElemTy,
4702                                   PrepareScalarCast(Literal, ElemTy));
4703       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4704     }
4705     else if (numExprs < numElems) {
4706       Diag(E->getExprLoc(),
4707            diag::err_incorrect_number_of_vector_initializers);
4708       return ExprError();
4709     }
4710     else
4711       initExprs.append(exprs, exprs + numExprs);
4712   }
4713   else {
4714     // For OpenCL, when the number of initializers is a single value,
4715     // it will be replicated to all components of the vector.
4716     if (getLangOpts().OpenCL &&
4717         VTy->getVectorKind() == VectorType::GenericVector &&
4718         numExprs == 1) {
4719         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4720         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4721         if (Literal.isInvalid())
4722           return ExprError();
4723         Literal = ImpCastExprToType(Literal.take(), ElemTy,
4724                                     PrepareScalarCast(Literal, ElemTy));
4725         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4726     }
4727 
4728     initExprs.append(exprs, exprs + numExprs);
4729   }
4730   // FIXME: This means that pretty-printing the final AST will produce curly
4731   // braces instead of the original commas.
4732   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
4733                                                    initExprs, LiteralRParenLoc);
4734   initE->setType(Ty);
4735   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4736 }
4737 
4738 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4739 /// the ParenListExpr into a sequence of comma binary operators.
4740 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)4741 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4742   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4743   if (!E)
4744     return Owned(OrigExpr);
4745 
4746   ExprResult Result(E->getExpr(0));
4747 
4748   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4749     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4750                         E->getExpr(i));
4751 
4752   if (Result.isInvalid()) return ExprError();
4753 
4754   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4755 }
4756 
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)4757 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4758                                     SourceLocation R,
4759                                     MultiExprArg Val) {
4760   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
4761   return Owned(expr);
4762 }
4763 
4764 /// \brief Emit a specialized diagnostic when one expression is a null pointer
4765 /// constant and the other is not a pointer.  Returns true if a diagnostic is
4766 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)4767 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4768                                       SourceLocation QuestionLoc) {
4769   Expr *NullExpr = LHSExpr;
4770   Expr *NonPointerExpr = RHSExpr;
4771   Expr::NullPointerConstantKind NullKind =
4772       NullExpr->isNullPointerConstant(Context,
4773                                       Expr::NPC_ValueDependentIsNotNull);
4774 
4775   if (NullKind == Expr::NPCK_NotNull) {
4776     NullExpr = RHSExpr;
4777     NonPointerExpr = LHSExpr;
4778     NullKind =
4779         NullExpr->isNullPointerConstant(Context,
4780                                         Expr::NPC_ValueDependentIsNotNull);
4781   }
4782 
4783   if (NullKind == Expr::NPCK_NotNull)
4784     return false;
4785 
4786   if (NullKind == Expr::NPCK_ZeroExpression)
4787     return false;
4788 
4789   if (NullKind == Expr::NPCK_ZeroLiteral) {
4790     // In this case, check to make sure that we got here from a "NULL"
4791     // string in the source code.
4792     NullExpr = NullExpr->IgnoreParenImpCasts();
4793     SourceLocation loc = NullExpr->getExprLoc();
4794     if (!findMacroSpelling(loc, "NULL"))
4795       return false;
4796   }
4797 
4798   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
4799   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4800       << NonPointerExpr->getType() << DiagType
4801       << NonPointerExpr->getSourceRange();
4802   return true;
4803 }
4804 
4805 /// \brief Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond)4806 static bool checkCondition(Sema &S, Expr *Cond) {
4807   QualType CondTy = Cond->getType();
4808 
4809   // C99 6.5.15p2
4810   if (CondTy->isScalarType()) return false;
4811 
4812   // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4813   if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4814     return false;
4815 
4816   // Emit the proper error message.
4817   S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4818                               diag::err_typecheck_cond_expect_scalar :
4819                               diag::err_typecheck_cond_expect_scalar_or_vector)
4820     << CondTy;
4821   return true;
4822 }
4823 
4824 /// \brief Return false if the two expressions can be converted to a vector,
4825 /// true otherwise
checkConditionalConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy)4826 static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4827                                                     ExprResult &RHS,
4828                                                     QualType CondTy) {
4829   // Both operands should be of scalar type.
4830   if (!LHS.get()->getType()->isScalarType()) {
4831     S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4832       << CondTy;
4833     return true;
4834   }
4835   if (!RHS.get()->getType()->isScalarType()) {
4836     S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4837       << CondTy;
4838     return true;
4839   }
4840 
4841   // Implicity convert these scalars to the type of the condition.
4842   LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4843   RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4844   return false;
4845 }
4846 
4847 /// \brief Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)4848 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4849                                          ExprResult &RHS) {
4850     Expr *LHSExpr = LHS.get();
4851     Expr *RHSExpr = RHS.get();
4852 
4853     if (!LHSExpr->getType()->isVoidType())
4854       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4855         << RHSExpr->getSourceRange();
4856     if (!RHSExpr->getType()->isVoidType())
4857       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4858         << LHSExpr->getSourceRange();
4859     LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4860     RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4861     return S.Context.VoidTy;
4862 }
4863 
4864 /// \brief Return false if the NullExpr can be promoted to PointerTy,
4865 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)4866 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4867                                         QualType PointerTy) {
4868   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4869       !NullExpr.get()->isNullPointerConstant(S.Context,
4870                                             Expr::NPC_ValueDependentIsNull))
4871     return true;
4872 
4873   NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4874   return false;
4875 }
4876 
4877 /// \brief Checks compatibility between two pointers and return the resulting
4878 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4879 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4880                                                      ExprResult &RHS,
4881                                                      SourceLocation Loc) {
4882   QualType LHSTy = LHS.get()->getType();
4883   QualType RHSTy = RHS.get()->getType();
4884 
4885   if (S.Context.hasSameType(LHSTy, RHSTy)) {
4886     // Two identical pointers types are always compatible.
4887     return LHSTy;
4888   }
4889 
4890   QualType lhptee, rhptee;
4891 
4892   // Get the pointee types.
4893   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4894     lhptee = LHSBTy->getPointeeType();
4895     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4896   } else {
4897     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4898     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4899   }
4900 
4901   // C99 6.5.15p6: If both operands are pointers to compatible types or to
4902   // differently qualified versions of compatible types, the result type is
4903   // a pointer to an appropriately qualified version of the composite
4904   // type.
4905 
4906   // Only CVR-qualifiers exist in the standard, and the differently-qualified
4907   // clause doesn't make sense for our extensions. E.g. address space 2 should
4908   // be incompatible with address space 3: they may live on different devices or
4909   // anything.
4910   Qualifiers lhQual = lhptee.getQualifiers();
4911   Qualifiers rhQual = rhptee.getQualifiers();
4912 
4913   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4914   lhQual.removeCVRQualifiers();
4915   rhQual.removeCVRQualifiers();
4916 
4917   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4918   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4919 
4920   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4921 
4922   if (CompositeTy.isNull()) {
4923     S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4924       << LHSTy << RHSTy << LHS.get()->getSourceRange()
4925       << RHS.get()->getSourceRange();
4926     // In this situation, we assume void* type. No especially good
4927     // reason, but this is what gcc does, and we do have to pick
4928     // to get a consistent AST.
4929     QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4930     LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4931     RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4932     return incompatTy;
4933   }
4934 
4935   // The pointer types are compatible.
4936   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4937   ResultTy = S.Context.getPointerType(ResultTy);
4938 
4939   LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4940   RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4941   return ResultTy;
4942 }
4943 
4944 /// \brief Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4945 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4946                                                           ExprResult &LHS,
4947                                                           ExprResult &RHS,
4948                                                           SourceLocation Loc) {
4949   QualType LHSTy = LHS.get()->getType();
4950   QualType RHSTy = RHS.get()->getType();
4951 
4952   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4953     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4954       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4955       LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4956       RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4957       return destType;
4958     }
4959     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4960       << LHSTy << RHSTy << LHS.get()->getSourceRange()
4961       << RHS.get()->getSourceRange();
4962     return QualType();
4963   }
4964 
4965   // We have 2 block pointer types.
4966   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4967 }
4968 
4969 /// \brief Return the resulting type when the operands are both pointers.
4970 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4971 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4972                                             ExprResult &RHS,
4973                                             SourceLocation Loc) {
4974   // get the pointer types
4975   QualType LHSTy = LHS.get()->getType();
4976   QualType RHSTy = RHS.get()->getType();
4977 
4978   // get the "pointed to" types
4979   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4980   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4981 
4982   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4983   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4984     // Figure out necessary qualifiers (C99 6.5.15p6)
4985     QualType destPointee
4986       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4987     QualType destType = S.Context.getPointerType(destPointee);
4988     // Add qualifiers if necessary.
4989     LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4990     // Promote to void*.
4991     RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4992     return destType;
4993   }
4994   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4995     QualType destPointee
4996       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4997     QualType destType = S.Context.getPointerType(destPointee);
4998     // Add qualifiers if necessary.
4999     RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5000     // Promote to void*.
5001     LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5002     return destType;
5003   }
5004 
5005   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5006 }
5007 
5008 /// \brief Return false if the first expression is not an integer and the second
5009 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)5010 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
5011                                         Expr* PointerExpr, SourceLocation Loc,
5012                                         bool IsIntFirstExpr) {
5013   if (!PointerExpr->getType()->isPointerType() ||
5014       !Int.get()->getType()->isIntegerType())
5015     return false;
5016 
5017   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
5018   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
5019 
5020   S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
5021     << Expr1->getType() << Expr2->getType()
5022     << Expr1->getSourceRange() << Expr2->getSourceRange();
5023   Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
5024                             CK_IntegralToPointer);
5025   return true;
5026 }
5027 
5028 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
5029 /// In that case, LHS = cond.
5030 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)5031 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5032                                         ExprResult &RHS, ExprValueKind &VK,
5033                                         ExprObjectKind &OK,
5034                                         SourceLocation QuestionLoc) {
5035 
5036   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
5037   if (!LHSResult.isUsable()) return QualType();
5038   LHS = LHSResult;
5039 
5040   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
5041   if (!RHSResult.isUsable()) return QualType();
5042   RHS = RHSResult;
5043 
5044   // C++ is sufficiently different to merit its own checker.
5045   if (getLangOpts().CPlusPlus)
5046     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
5047 
5048   VK = VK_RValue;
5049   OK = OK_Ordinary;
5050 
5051   Cond = UsualUnaryConversions(Cond.take());
5052   if (Cond.isInvalid())
5053     return QualType();
5054   LHS = UsualUnaryConversions(LHS.take());
5055   if (LHS.isInvalid())
5056     return QualType();
5057   RHS = UsualUnaryConversions(RHS.take());
5058   if (RHS.isInvalid())
5059     return QualType();
5060 
5061   QualType CondTy = Cond.get()->getType();
5062   QualType LHSTy = LHS.get()->getType();
5063   QualType RHSTy = RHS.get()->getType();
5064 
5065   // first, check the condition.
5066   if (checkCondition(*this, Cond.get()))
5067     return QualType();
5068 
5069   // Now check the two expressions.
5070   if (LHSTy->isVectorType() || RHSTy->isVectorType())
5071     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
5072 
5073   // OpenCL: If the condition is a vector, and both operands are scalar,
5074   // attempt to implicity convert them to the vector type to act like the
5075   // built in select.
5076   if (getLangOpts().OpenCL && CondTy->isVectorType())
5077     if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
5078       return QualType();
5079 
5080   // If both operands have arithmetic type, do the usual arithmetic conversions
5081   // to find a common type: C99 6.5.15p3,5.
5082   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
5083     UsualArithmeticConversions(LHS, RHS);
5084     if (LHS.isInvalid() || RHS.isInvalid())
5085       return QualType();
5086     return LHS.get()->getType();
5087   }
5088 
5089   // If both operands are the same structure or union type, the result is that
5090   // type.
5091   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
5092     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5093       if (LHSRT->getDecl() == RHSRT->getDecl())
5094         // "If both the operands have structure or union type, the result has
5095         // that type."  This implies that CV qualifiers are dropped.
5096         return LHSTy.getUnqualifiedType();
5097     // FIXME: Type of conditional expression must be complete in C mode.
5098   }
5099 
5100   // C99 6.5.15p5: "If both operands have void type, the result has void type."
5101   // The following || allows only one side to be void (a GCC-ism).
5102   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5103     return checkConditionalVoidType(*this, LHS, RHS);
5104   }
5105 
5106   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5107   // the type of the other operand."
5108   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
5109   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
5110 
5111   // All objective-c pointer type analysis is done here.
5112   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5113                                                         QuestionLoc);
5114   if (LHS.isInvalid() || RHS.isInvalid())
5115     return QualType();
5116   if (!compositeType.isNull())
5117     return compositeType;
5118 
5119 
5120   // Handle block pointer types.
5121   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
5122     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
5123                                                      QuestionLoc);
5124 
5125   // Check constraints for C object pointers types (C99 6.5.15p3,6).
5126   if (LHSTy->isPointerType() && RHSTy->isPointerType())
5127     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
5128                                                        QuestionLoc);
5129 
5130   // GCC compatibility: soften pointer/integer mismatch.  Note that
5131   // null pointers have been filtered out by this point.
5132   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
5133       /*isIntFirstExpr=*/true))
5134     return RHSTy;
5135   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
5136       /*isIntFirstExpr=*/false))
5137     return LHSTy;
5138 
5139   // Emit a better diagnostic if one of the expressions is a null pointer
5140   // constant and the other is not a pointer type. In this case, the user most
5141   // likely forgot to take the address of the other expression.
5142   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5143     return QualType();
5144 
5145   // Otherwise, the operands are not compatible.
5146   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5147     << LHSTy << RHSTy << LHS.get()->getSourceRange()
5148     << RHS.get()->getSourceRange();
5149   return QualType();
5150 }
5151 
5152 /// FindCompositeObjCPointerType - Helper method to find composite type of
5153 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)5154 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5155                                             SourceLocation QuestionLoc) {
5156   QualType LHSTy = LHS.get()->getType();
5157   QualType RHSTy = RHS.get()->getType();
5158 
5159   // Handle things like Class and struct objc_class*.  Here we case the result
5160   // to the pseudo-builtin, because that will be implicitly cast back to the
5161   // redefinition type if an attempt is made to access its fields.
5162   if (LHSTy->isObjCClassType() &&
5163       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5164     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5165     return LHSTy;
5166   }
5167   if (RHSTy->isObjCClassType() &&
5168       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5169     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5170     return RHSTy;
5171   }
5172   // And the same for struct objc_object* / id
5173   if (LHSTy->isObjCIdType() &&
5174       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5175     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5176     return LHSTy;
5177   }
5178   if (RHSTy->isObjCIdType() &&
5179       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5180     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5181     return RHSTy;
5182   }
5183   // And the same for struct objc_selector* / SEL
5184   if (Context.isObjCSelType(LHSTy) &&
5185       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5186     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5187     return LHSTy;
5188   }
5189   if (Context.isObjCSelType(RHSTy) &&
5190       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5191     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5192     return RHSTy;
5193   }
5194   // Check constraints for Objective-C object pointers types.
5195   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5196 
5197     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5198       // Two identical object pointer types are always compatible.
5199       return LHSTy;
5200     }
5201     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5202     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5203     QualType compositeType = LHSTy;
5204 
5205     // If both operands are interfaces and either operand can be
5206     // assigned to the other, use that type as the composite
5207     // type. This allows
5208     //   xxx ? (A*) a : (B*) b
5209     // where B is a subclass of A.
5210     //
5211     // Additionally, as for assignment, if either type is 'id'
5212     // allow silent coercion. Finally, if the types are
5213     // incompatible then make sure to use 'id' as the composite
5214     // type so the result is acceptable for sending messages to.
5215 
5216     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5217     // It could return the composite type.
5218     if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5219       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5220     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5221       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5222     } else if ((LHSTy->isObjCQualifiedIdType() ||
5223                 RHSTy->isObjCQualifiedIdType()) &&
5224                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5225       // Need to handle "id<xx>" explicitly.
5226       // GCC allows qualified id and any Objective-C type to devolve to
5227       // id. Currently localizing to here until clear this should be
5228       // part of ObjCQualifiedIdTypesAreCompatible.
5229       compositeType = Context.getObjCIdType();
5230     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5231       compositeType = Context.getObjCIdType();
5232     } else if (!(compositeType =
5233                  Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5234       ;
5235     else {
5236       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5237       << LHSTy << RHSTy
5238       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5239       QualType incompatTy = Context.getObjCIdType();
5240       LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5241       RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5242       return incompatTy;
5243     }
5244     // The object pointer types are compatible.
5245     LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5246     RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5247     return compositeType;
5248   }
5249   // Check Objective-C object pointer types and 'void *'
5250   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5251     if (getLangOpts().ObjCAutoRefCount) {
5252       // ARC forbids the implicit conversion of object pointers to 'void *',
5253       // so these types are not compatible.
5254       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5255           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5256       LHS = RHS = true;
5257       return QualType();
5258     }
5259     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5260     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5261     QualType destPointee
5262     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5263     QualType destType = Context.getPointerType(destPointee);
5264     // Add qualifiers if necessary.
5265     LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5266     // Promote to void*.
5267     RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5268     return destType;
5269   }
5270   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5271     if (getLangOpts().ObjCAutoRefCount) {
5272       // ARC forbids the implicit conversion of object pointers to 'void *',
5273       // so these types are not compatible.
5274       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5275           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5276       LHS = RHS = true;
5277       return QualType();
5278     }
5279     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5280     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5281     QualType destPointee
5282     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5283     QualType destType = Context.getPointerType(destPointee);
5284     // Add qualifiers if necessary.
5285     RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5286     // Promote to void*.
5287     LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5288     return destType;
5289   }
5290   return QualType();
5291 }
5292 
5293 /// SuggestParentheses - Emit a note with a fixit hint that wraps
5294 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)5295 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5296                                const PartialDiagnostic &Note,
5297                                SourceRange ParenRange) {
5298   SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5299   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5300       EndLoc.isValid()) {
5301     Self.Diag(Loc, Note)
5302       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5303       << FixItHint::CreateInsertion(EndLoc, ")");
5304   } else {
5305     // We can't display the parentheses, so just show the bare note.
5306     Self.Diag(Loc, Note) << ParenRange;
5307   }
5308 }
5309 
IsArithmeticOp(BinaryOperatorKind Opc)5310 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5311   return Opc >= BO_Mul && Opc <= BO_Shr;
5312 }
5313 
5314 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5315 /// expression, either using a built-in or overloaded operator,
5316 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5317 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)5318 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5319                                    Expr **RHSExprs) {
5320   // Don't strip parenthesis: we should not warn if E is in parenthesis.
5321   E = E->IgnoreImpCasts();
5322   E = E->IgnoreConversionOperator();
5323   E = E->IgnoreImpCasts();
5324 
5325   // Built-in binary operator.
5326   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5327     if (IsArithmeticOp(OP->getOpcode())) {
5328       *Opcode = OP->getOpcode();
5329       *RHSExprs = OP->getRHS();
5330       return true;
5331     }
5332   }
5333 
5334   // Overloaded operator.
5335   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5336     if (Call->getNumArgs() != 2)
5337       return false;
5338 
5339     // Make sure this is really a binary operator that is safe to pass into
5340     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5341     OverloadedOperatorKind OO = Call->getOperator();
5342     if (OO < OO_Plus || OO > OO_Arrow)
5343       return false;
5344 
5345     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5346     if (IsArithmeticOp(OpKind)) {
5347       *Opcode = OpKind;
5348       *RHSExprs = Call->getArg(1);
5349       return true;
5350     }
5351   }
5352 
5353   return false;
5354 }
5355 
IsLogicOp(BinaryOperatorKind Opc)5356 static bool IsLogicOp(BinaryOperatorKind Opc) {
5357   return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5358 }
5359 
5360 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5361 /// or is a logical expression such as (x==y) which has int type, but is
5362 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)5363 static bool ExprLooksBoolean(Expr *E) {
5364   E = E->IgnoreParenImpCasts();
5365 
5366   if (E->getType()->isBooleanType())
5367     return true;
5368   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5369     return IsLogicOp(OP->getOpcode());
5370   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5371     return OP->getOpcode() == UO_LNot;
5372 
5373   return false;
5374 }
5375 
5376 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5377 /// and binary operator are mixed in a way that suggests the programmer assumed
5378 /// the conditional operator has higher precedence, for example:
5379 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)5380 static void DiagnoseConditionalPrecedence(Sema &Self,
5381                                           SourceLocation OpLoc,
5382                                           Expr *Condition,
5383                                           Expr *LHSExpr,
5384                                           Expr *RHSExpr) {
5385   BinaryOperatorKind CondOpcode;
5386   Expr *CondRHS;
5387 
5388   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5389     return;
5390   if (!ExprLooksBoolean(CondRHS))
5391     return;
5392 
5393   // The condition is an arithmetic binary expression, with a right-
5394   // hand side that looks boolean, so warn.
5395 
5396   Self.Diag(OpLoc, diag::warn_precedence_conditional)
5397       << Condition->getSourceRange()
5398       << BinaryOperator::getOpcodeStr(CondOpcode);
5399 
5400   SuggestParentheses(Self, OpLoc,
5401     Self.PDiag(diag::note_precedence_silence)
5402       << BinaryOperator::getOpcodeStr(CondOpcode),
5403     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5404 
5405   SuggestParentheses(Self, OpLoc,
5406     Self.PDiag(diag::note_precedence_conditional_first),
5407     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5408 }
5409 
5410 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5411 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)5412 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5413                                     SourceLocation ColonLoc,
5414                                     Expr *CondExpr, Expr *LHSExpr,
5415                                     Expr *RHSExpr) {
5416   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5417   // was the condition.
5418   OpaqueValueExpr *opaqueValue = 0;
5419   Expr *commonExpr = 0;
5420   if (LHSExpr == 0) {
5421     commonExpr = CondExpr;
5422 
5423     // We usually want to apply unary conversions *before* saving, except
5424     // in the special case of a C++ l-value conditional.
5425     if (!(getLangOpts().CPlusPlus
5426           && !commonExpr->isTypeDependent()
5427           && commonExpr->getValueKind() == RHSExpr->getValueKind()
5428           && commonExpr->isGLValue()
5429           && commonExpr->isOrdinaryOrBitFieldObject()
5430           && RHSExpr->isOrdinaryOrBitFieldObject()
5431           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5432       ExprResult commonRes = UsualUnaryConversions(commonExpr);
5433       if (commonRes.isInvalid())
5434         return ExprError();
5435       commonExpr = commonRes.take();
5436     }
5437 
5438     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5439                                                 commonExpr->getType(),
5440                                                 commonExpr->getValueKind(),
5441                                                 commonExpr->getObjectKind(),
5442                                                 commonExpr);
5443     LHSExpr = CondExpr = opaqueValue;
5444   }
5445 
5446   ExprValueKind VK = VK_RValue;
5447   ExprObjectKind OK = OK_Ordinary;
5448   ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5449   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5450                                              VK, OK, QuestionLoc);
5451   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5452       RHS.isInvalid())
5453     return ExprError();
5454 
5455   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5456                                 RHS.get());
5457 
5458   if (!commonExpr)
5459     return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5460                                                    LHS.take(), ColonLoc,
5461                                                    RHS.take(), result, VK, OK));
5462 
5463   return Owned(new (Context)
5464     BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5465                               RHS.take(), QuestionLoc, ColonLoc, result, VK,
5466                               OK));
5467 }
5468 
5469 // checkPointerTypesForAssignment - This is a very tricky routine (despite
5470 // being closely modeled after the C99 spec:-). The odd characteristic of this
5471 // routine is it effectively iqnores the qualifiers on the top level pointee.
5472 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5473 // FIXME: add a couple examples in this comment.
5474 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5475 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5476   assert(LHSType.isCanonical() && "LHS not canonicalized!");
5477   assert(RHSType.isCanonical() && "RHS not canonicalized!");
5478 
5479   // get the "pointed to" type (ignoring qualifiers at the top level)
5480   const Type *lhptee, *rhptee;
5481   Qualifiers lhq, rhq;
5482   llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5483   llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5484 
5485   Sema::AssignConvertType ConvTy = Sema::Compatible;
5486 
5487   // C99 6.5.16.1p1: This following citation is common to constraints
5488   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5489   // qualifiers of the type *pointed to* by the right;
5490   Qualifiers lq;
5491 
5492   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5493   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5494       lhq.compatiblyIncludesObjCLifetime(rhq)) {
5495     // Ignore lifetime for further calculation.
5496     lhq.removeObjCLifetime();
5497     rhq.removeObjCLifetime();
5498   }
5499 
5500   if (!lhq.compatiblyIncludes(rhq)) {
5501     // Treat address-space mismatches as fatal.  TODO: address subspaces
5502     if (lhq.getAddressSpace() != rhq.getAddressSpace())
5503       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5504 
5505     // It's okay to add or remove GC or lifetime qualifiers when converting to
5506     // and from void*.
5507     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5508                         .compatiblyIncludes(
5509                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
5510              && (lhptee->isVoidType() || rhptee->isVoidType()))
5511       ; // keep old
5512 
5513     // Treat lifetime mismatches as fatal.
5514     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5515       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5516 
5517     // For GCC compatibility, other qualifier mismatches are treated
5518     // as still compatible in C.
5519     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5520   }
5521 
5522   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5523   // incomplete type and the other is a pointer to a qualified or unqualified
5524   // version of void...
5525   if (lhptee->isVoidType()) {
5526     if (rhptee->isIncompleteOrObjectType())
5527       return ConvTy;
5528 
5529     // As an extension, we allow cast to/from void* to function pointer.
5530     assert(rhptee->isFunctionType());
5531     return Sema::FunctionVoidPointer;
5532   }
5533 
5534   if (rhptee->isVoidType()) {
5535     if (lhptee->isIncompleteOrObjectType())
5536       return ConvTy;
5537 
5538     // As an extension, we allow cast to/from void* to function pointer.
5539     assert(lhptee->isFunctionType());
5540     return Sema::FunctionVoidPointer;
5541   }
5542 
5543   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5544   // unqualified versions of compatible types, ...
5545   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5546   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5547     // Check if the pointee types are compatible ignoring the sign.
5548     // We explicitly check for char so that we catch "char" vs
5549     // "unsigned char" on systems where "char" is unsigned.
5550     if (lhptee->isCharType())
5551       ltrans = S.Context.UnsignedCharTy;
5552     else if (lhptee->hasSignedIntegerRepresentation())
5553       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5554 
5555     if (rhptee->isCharType())
5556       rtrans = S.Context.UnsignedCharTy;
5557     else if (rhptee->hasSignedIntegerRepresentation())
5558       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5559 
5560     if (ltrans == rtrans) {
5561       // Types are compatible ignoring the sign. Qualifier incompatibility
5562       // takes priority over sign incompatibility because the sign
5563       // warning can be disabled.
5564       if (ConvTy != Sema::Compatible)
5565         return ConvTy;
5566 
5567       return Sema::IncompatiblePointerSign;
5568     }
5569 
5570     // If we are a multi-level pointer, it's possible that our issue is simply
5571     // one of qualification - e.g. char ** -> const char ** is not allowed. If
5572     // the eventual target type is the same and the pointers have the same
5573     // level of indirection, this must be the issue.
5574     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5575       do {
5576         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5577         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5578       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5579 
5580       if (lhptee == rhptee)
5581         return Sema::IncompatibleNestedPointerQualifiers;
5582     }
5583 
5584     // General pointer incompatibility takes priority over qualifiers.
5585     return Sema::IncompatiblePointer;
5586   }
5587   if (!S.getLangOpts().CPlusPlus &&
5588       S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5589     return Sema::IncompatiblePointer;
5590   return ConvTy;
5591 }
5592 
5593 /// checkBlockPointerTypesForAssignment - This routine determines whether two
5594 /// block pointer types are compatible or whether a block and normal pointer
5595 /// are compatible. It is more restrict than comparing two function pointer
5596 // types.
5597 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5598 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5599                                     QualType RHSType) {
5600   assert(LHSType.isCanonical() && "LHS not canonicalized!");
5601   assert(RHSType.isCanonical() && "RHS not canonicalized!");
5602 
5603   QualType lhptee, rhptee;
5604 
5605   // get the "pointed to" type (ignoring qualifiers at the top level)
5606   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5607   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5608 
5609   // In C++, the types have to match exactly.
5610   if (S.getLangOpts().CPlusPlus)
5611     return Sema::IncompatibleBlockPointer;
5612 
5613   Sema::AssignConvertType ConvTy = Sema::Compatible;
5614 
5615   // For blocks we enforce that qualifiers are identical.
5616   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5617     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5618 
5619   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5620     return Sema::IncompatibleBlockPointer;
5621 
5622   return ConvTy;
5623 }
5624 
5625 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5626 /// for assignment compatibility.
5627 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5628 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5629                                    QualType RHSType) {
5630   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5631   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5632 
5633   if (LHSType->isObjCBuiltinType()) {
5634     // Class is not compatible with ObjC object pointers.
5635     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5636         !RHSType->isObjCQualifiedClassType())
5637       return Sema::IncompatiblePointer;
5638     return Sema::Compatible;
5639   }
5640   if (RHSType->isObjCBuiltinType()) {
5641     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5642         !LHSType->isObjCQualifiedClassType())
5643       return Sema::IncompatiblePointer;
5644     return Sema::Compatible;
5645   }
5646   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5647   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5648 
5649   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5650       // make an exception for id<P>
5651       !LHSType->isObjCQualifiedIdType())
5652     return Sema::CompatiblePointerDiscardsQualifiers;
5653 
5654   if (S.Context.typesAreCompatible(LHSType, RHSType))
5655     return Sema::Compatible;
5656   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5657     return Sema::IncompatibleObjCQualifiedId;
5658   return Sema::IncompatiblePointer;
5659 }
5660 
5661 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)5662 Sema::CheckAssignmentConstraints(SourceLocation Loc,
5663                                  QualType LHSType, QualType RHSType) {
5664   // Fake up an opaque expression.  We don't actually care about what
5665   // cast operations are required, so if CheckAssignmentConstraints
5666   // adds casts to this they'll be wasted, but fortunately that doesn't
5667   // usually happen on valid code.
5668   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5669   ExprResult RHSPtr = &RHSExpr;
5670   CastKind K = CK_Invalid;
5671 
5672   return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5673 }
5674 
5675 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5676 /// has code to accommodate several GCC extensions when type checking
5677 /// pointers. Here are some objectionable examples that GCC considers warnings:
5678 ///
5679 ///  int a, *pint;
5680 ///  short *pshort;
5681 ///  struct foo *pfoo;
5682 ///
5683 ///  pint = pshort; // warning: assignment from incompatible pointer type
5684 ///  a = pint; // warning: assignment makes integer from pointer without a cast
5685 ///  pint = a; // warning: assignment makes pointer from integer without a cast
5686 ///  pint = pfoo; // warning: assignment from incompatible pointer type
5687 ///
5688 /// As a result, the code for dealing with pointers is more complex than the
5689 /// C99 spec dictates.
5690 ///
5691 /// Sets 'Kind' for any result kind except Incompatible.
5692 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind)5693 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5694                                  CastKind &Kind) {
5695   QualType RHSType = RHS.get()->getType();
5696   QualType OrigLHSType = LHSType;
5697 
5698   // Get canonical types.  We're not formatting these types, just comparing
5699   // them.
5700   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5701   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5702 
5703   // Common case: no conversion required.
5704   if (LHSType == RHSType) {
5705     Kind = CK_NoOp;
5706     return Compatible;
5707   }
5708 
5709   // If we have an atomic type, try a non-atomic assignment, then just add an
5710   // atomic qualification step.
5711   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5712     Sema::AssignConvertType result =
5713       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
5714     if (result != Compatible)
5715       return result;
5716     if (Kind != CK_NoOp)
5717       RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
5718     Kind = CK_NonAtomicToAtomic;
5719     return Compatible;
5720   }
5721 
5722   // If the left-hand side is a reference type, then we are in a
5723   // (rare!) case where we've allowed the use of references in C,
5724   // e.g., as a parameter type in a built-in function. In this case,
5725   // just make sure that the type referenced is compatible with the
5726   // right-hand side type. The caller is responsible for adjusting
5727   // LHSType so that the resulting expression does not have reference
5728   // type.
5729   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5730     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5731       Kind = CK_LValueBitCast;
5732       return Compatible;
5733     }
5734     return Incompatible;
5735   }
5736 
5737   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5738   // to the same ExtVector type.
5739   if (LHSType->isExtVectorType()) {
5740     if (RHSType->isExtVectorType())
5741       return Incompatible;
5742     if (RHSType->isArithmeticType()) {
5743       // CK_VectorSplat does T -> vector T, so first cast to the
5744       // element type.
5745       QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5746       if (elType != RHSType) {
5747         Kind = PrepareScalarCast(RHS, elType);
5748         RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5749       }
5750       Kind = CK_VectorSplat;
5751       return Compatible;
5752     }
5753   }
5754 
5755   // Conversions to or from vector type.
5756   if (LHSType->isVectorType() || RHSType->isVectorType()) {
5757     if (LHSType->isVectorType() && RHSType->isVectorType()) {
5758       // Allow assignments of an AltiVec vector type to an equivalent GCC
5759       // vector type and vice versa
5760       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5761         Kind = CK_BitCast;
5762         return Compatible;
5763       }
5764 
5765       // If we are allowing lax vector conversions, and LHS and RHS are both
5766       // vectors, the total size only needs to be the same. This is a bitcast;
5767       // no bits are changed but the result type is different.
5768       if (getLangOpts().LaxVectorConversions &&
5769           (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5770         Kind = CK_BitCast;
5771         return IncompatibleVectors;
5772       }
5773     }
5774     return Incompatible;
5775   }
5776 
5777   // Arithmetic conversions.
5778   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5779       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5780     Kind = PrepareScalarCast(RHS, LHSType);
5781     return Compatible;
5782   }
5783 
5784   // Conversions to normal pointers.
5785   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5786     // U* -> T*
5787     if (isa<PointerType>(RHSType)) {
5788       Kind = CK_BitCast;
5789       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5790     }
5791 
5792     // int -> T*
5793     if (RHSType->isIntegerType()) {
5794       Kind = CK_IntegralToPointer; // FIXME: null?
5795       return IntToPointer;
5796     }
5797 
5798     // C pointers are not compatible with ObjC object pointers,
5799     // with two exceptions:
5800     if (isa<ObjCObjectPointerType>(RHSType)) {
5801       //  - conversions to void*
5802       if (LHSPointer->getPointeeType()->isVoidType()) {
5803         Kind = CK_BitCast;
5804         return Compatible;
5805       }
5806 
5807       //  - conversions from 'Class' to the redefinition type
5808       if (RHSType->isObjCClassType() &&
5809           Context.hasSameType(LHSType,
5810                               Context.getObjCClassRedefinitionType())) {
5811         Kind = CK_BitCast;
5812         return Compatible;
5813       }
5814 
5815       Kind = CK_BitCast;
5816       return IncompatiblePointer;
5817     }
5818 
5819     // U^ -> void*
5820     if (RHSType->getAs<BlockPointerType>()) {
5821       if (LHSPointer->getPointeeType()->isVoidType()) {
5822         Kind = CK_BitCast;
5823         return Compatible;
5824       }
5825     }
5826 
5827     return Incompatible;
5828   }
5829 
5830   // Conversions to block pointers.
5831   if (isa<BlockPointerType>(LHSType)) {
5832     // U^ -> T^
5833     if (RHSType->isBlockPointerType()) {
5834       Kind = CK_BitCast;
5835       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5836     }
5837 
5838     // int or null -> T^
5839     if (RHSType->isIntegerType()) {
5840       Kind = CK_IntegralToPointer; // FIXME: null
5841       return IntToBlockPointer;
5842     }
5843 
5844     // id -> T^
5845     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5846       Kind = CK_AnyPointerToBlockPointerCast;
5847       return Compatible;
5848     }
5849 
5850     // void* -> T^
5851     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5852       if (RHSPT->getPointeeType()->isVoidType()) {
5853         Kind = CK_AnyPointerToBlockPointerCast;
5854         return Compatible;
5855       }
5856 
5857     return Incompatible;
5858   }
5859 
5860   // Conversions to Objective-C pointers.
5861   if (isa<ObjCObjectPointerType>(LHSType)) {
5862     // A* -> B*
5863     if (RHSType->isObjCObjectPointerType()) {
5864       Kind = CK_BitCast;
5865       Sema::AssignConvertType result =
5866         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5867       if (getLangOpts().ObjCAutoRefCount &&
5868           result == Compatible &&
5869           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5870         result = IncompatibleObjCWeakRef;
5871       return result;
5872     }
5873 
5874     // int or null -> A*
5875     if (RHSType->isIntegerType()) {
5876       Kind = CK_IntegralToPointer; // FIXME: null
5877       return IntToPointer;
5878     }
5879 
5880     // In general, C pointers are not compatible with ObjC object pointers,
5881     // with two exceptions:
5882     if (isa<PointerType>(RHSType)) {
5883       Kind = CK_CPointerToObjCPointerCast;
5884 
5885       //  - conversions from 'void*'
5886       if (RHSType->isVoidPointerType()) {
5887         return Compatible;
5888       }
5889 
5890       //  - conversions to 'Class' from its redefinition type
5891       if (LHSType->isObjCClassType() &&
5892           Context.hasSameType(RHSType,
5893                               Context.getObjCClassRedefinitionType())) {
5894         return Compatible;
5895       }
5896 
5897       return IncompatiblePointer;
5898     }
5899 
5900     // T^ -> A*
5901     if (RHSType->isBlockPointerType()) {
5902       maybeExtendBlockObject(*this, RHS);
5903       Kind = CK_BlockPointerToObjCPointerCast;
5904       return Compatible;
5905     }
5906 
5907     return Incompatible;
5908   }
5909 
5910   // Conversions from pointers that are not covered by the above.
5911   if (isa<PointerType>(RHSType)) {
5912     // T* -> _Bool
5913     if (LHSType == Context.BoolTy) {
5914       Kind = CK_PointerToBoolean;
5915       return Compatible;
5916     }
5917 
5918     // T* -> int
5919     if (LHSType->isIntegerType()) {
5920       Kind = CK_PointerToIntegral;
5921       return PointerToInt;
5922     }
5923 
5924     return Incompatible;
5925   }
5926 
5927   // Conversions from Objective-C pointers that are not covered by the above.
5928   if (isa<ObjCObjectPointerType>(RHSType)) {
5929     // T* -> _Bool
5930     if (LHSType == Context.BoolTy) {
5931       Kind = CK_PointerToBoolean;
5932       return Compatible;
5933     }
5934 
5935     // T* -> int
5936     if (LHSType->isIntegerType()) {
5937       Kind = CK_PointerToIntegral;
5938       return PointerToInt;
5939     }
5940 
5941     return Incompatible;
5942   }
5943 
5944   // struct A -> struct B
5945   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5946     if (Context.typesAreCompatible(LHSType, RHSType)) {
5947       Kind = CK_NoOp;
5948       return Compatible;
5949     }
5950   }
5951 
5952   return Incompatible;
5953 }
5954 
5955 /// \brief Constructs a transparent union from an expression that is
5956 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)5957 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5958                                       ExprResult &EResult, QualType UnionType,
5959                                       FieldDecl *Field) {
5960   // Build an initializer list that designates the appropriate member
5961   // of the transparent union.
5962   Expr *E = EResult.take();
5963   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5964                                                    E, SourceLocation());
5965   Initializer->setType(UnionType);
5966   Initializer->setInitializedFieldInUnion(Field);
5967 
5968   // Build a compound literal constructing a value of the transparent
5969   // union type from this initializer list.
5970   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5971   EResult = S.Owned(
5972     new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5973                                 VK_RValue, Initializer, false));
5974 }
5975 
5976 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)5977 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5978                                                ExprResult &RHS) {
5979   QualType RHSType = RHS.get()->getType();
5980 
5981   // If the ArgType is a Union type, we want to handle a potential
5982   // transparent_union GCC extension.
5983   const RecordType *UT = ArgType->getAsUnionType();
5984   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5985     return Incompatible;
5986 
5987   // The field to initialize within the transparent union.
5988   RecordDecl *UD = UT->getDecl();
5989   FieldDecl *InitField = 0;
5990   // It's compatible if the expression matches any of the fields.
5991   for (RecordDecl::field_iterator it = UD->field_begin(),
5992          itend = UD->field_end();
5993        it != itend; ++it) {
5994     if (it->getType()->isPointerType()) {
5995       // If the transparent union contains a pointer type, we allow:
5996       // 1) void pointer
5997       // 2) null pointer constant
5998       if (RHSType->isPointerType())
5999         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
6000           RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
6001           InitField = *it;
6002           break;
6003         }
6004 
6005       if (RHS.get()->isNullPointerConstant(Context,
6006                                            Expr::NPC_ValueDependentIsNull)) {
6007         RHS = ImpCastExprToType(RHS.take(), it->getType(),
6008                                 CK_NullToPointer);
6009         InitField = *it;
6010         break;
6011       }
6012     }
6013 
6014     CastKind Kind = CK_Invalid;
6015     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
6016           == Compatible) {
6017       RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
6018       InitField = *it;
6019       break;
6020     }
6021   }
6022 
6023   if (!InitField)
6024     return Incompatible;
6025 
6026   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
6027   return Compatible;
6028 }
6029 
6030 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & RHS,bool Diagnose)6031 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6032                                        bool Diagnose) {
6033   if (getLangOpts().CPlusPlus) {
6034     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
6035       // C++ 5.17p3: If the left operand is not of class type, the
6036       // expression is implicitly converted (C++ 4) to the
6037       // cv-unqualified type of the left operand.
6038       ExprResult Res;
6039       if (Diagnose) {
6040         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6041                                         AA_Assigning);
6042       } else {
6043         ImplicitConversionSequence ICS =
6044             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6045                                   /*SuppressUserConversions=*/false,
6046                                   /*AllowExplicit=*/false,
6047                                   /*InOverloadResolution=*/false,
6048                                   /*CStyle=*/false,
6049                                   /*AllowObjCWritebackConversion=*/false);
6050         if (ICS.isFailure())
6051           return Incompatible;
6052         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6053                                         ICS, AA_Assigning);
6054       }
6055       if (Res.isInvalid())
6056         return Incompatible;
6057       Sema::AssignConvertType result = Compatible;
6058       if (getLangOpts().ObjCAutoRefCount &&
6059           !CheckObjCARCUnavailableWeakConversion(LHSType,
6060                                                  RHS.get()->getType()))
6061         result = IncompatibleObjCWeakRef;
6062       RHS = Res;
6063       return result;
6064     }
6065 
6066     // FIXME: Currently, we fall through and treat C++ classes like C
6067     // structures.
6068     // FIXME: We also fall through for atomics; not sure what should
6069     // happen there, though.
6070   }
6071 
6072   // C99 6.5.16.1p1: the left operand is a pointer and the right is
6073   // a null pointer constant.
6074   if ((LHSType->isPointerType() ||
6075        LHSType->isObjCObjectPointerType() ||
6076        LHSType->isBlockPointerType())
6077       && RHS.get()->isNullPointerConstant(Context,
6078                                           Expr::NPC_ValueDependentIsNull)) {
6079     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6080     return Compatible;
6081   }
6082 
6083   // This check seems unnatural, however it is necessary to ensure the proper
6084   // conversion of functions/arrays. If the conversion were done for all
6085   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6086   // expressions that suppress this implicit conversion (&, sizeof).
6087   //
6088   // Suppress this for references: C++ 8.5.3p5.
6089   if (!LHSType->isReferenceType()) {
6090     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6091     if (RHS.isInvalid())
6092       return Incompatible;
6093   }
6094 
6095   CastKind Kind = CK_Invalid;
6096   Sema::AssignConvertType result =
6097     CheckAssignmentConstraints(LHSType, RHS, Kind);
6098 
6099   // C99 6.5.16.1p2: The value of the right operand is converted to the
6100   // type of the assignment expression.
6101   // CheckAssignmentConstraints allows the left-hand side to be a reference,
6102   // so that we can use references in built-in functions even in C.
6103   // The getNonReferenceType() call makes sure that the resulting expression
6104   // does not have reference type.
6105   if (result != Incompatible && RHS.get()->getType() != LHSType)
6106     RHS = ImpCastExprToType(RHS.take(),
6107                             LHSType.getNonLValueExprType(Context), Kind);
6108   return result;
6109 }
6110 
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6111 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
6112                                ExprResult &RHS) {
6113   Diag(Loc, diag::err_typecheck_invalid_operands)
6114     << LHS.get()->getType() << RHS.get()->getType()
6115     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6116   return QualType();
6117 }
6118 
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)6119 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
6120                                    SourceLocation Loc, bool IsCompAssign) {
6121   if (!IsCompAssign) {
6122     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
6123     if (LHS.isInvalid())
6124       return QualType();
6125   }
6126   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6127   if (RHS.isInvalid())
6128     return QualType();
6129 
6130   // For conversion purposes, we ignore any qualifiers.
6131   // For example, "const float" and "float" are equivalent.
6132   QualType LHSType =
6133     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6134   QualType RHSType =
6135     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6136 
6137   // If the vector types are identical, return.
6138   if (LHSType == RHSType)
6139     return LHSType;
6140 
6141   // Handle the case of equivalent AltiVec and GCC vector types
6142   if (LHSType->isVectorType() && RHSType->isVectorType() &&
6143       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6144     if (LHSType->isExtVectorType()) {
6145       RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6146       return LHSType;
6147     }
6148 
6149     if (!IsCompAssign)
6150       LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6151     return RHSType;
6152   }
6153 
6154   if (getLangOpts().LaxVectorConversions &&
6155       Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6156     // If we are allowing lax vector conversions, and LHS and RHS are both
6157     // vectors, the total size only needs to be the same. This is a
6158     // bitcast; no bits are changed but the result type is different.
6159     // FIXME: Should we really be allowing this?
6160     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6161     return LHSType;
6162   }
6163 
6164   // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6165   // swap back (so that we don't reverse the inputs to a subtract, for instance.
6166   bool swapped = false;
6167   if (RHSType->isExtVectorType() && !IsCompAssign) {
6168     swapped = true;
6169     std::swap(RHS, LHS);
6170     std::swap(RHSType, LHSType);
6171   }
6172 
6173   // Handle the case of an ext vector and scalar.
6174   if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6175     QualType EltTy = LV->getElementType();
6176     if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6177       int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6178       if (order > 0)
6179         RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6180       if (order >= 0) {
6181         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6182         if (swapped) std::swap(RHS, LHS);
6183         return LHSType;
6184       }
6185     }
6186     if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
6187         RHSType->isRealFloatingType()) {
6188       int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6189       if (order > 0)
6190         RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6191       if (order >= 0) {
6192         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6193         if (swapped) std::swap(RHS, LHS);
6194         return LHSType;
6195       }
6196     }
6197   }
6198 
6199   // Vectors of different size or scalar and non-ext-vector are errors.
6200   if (swapped) std::swap(RHS, LHS);
6201   Diag(Loc, diag::err_typecheck_vector_not_convertable)
6202     << LHS.get()->getType() << RHS.get()->getType()
6203     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6204   return QualType();
6205 }
6206 
6207 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
6208 // expression.  These are mainly cases where the null pointer is used as an
6209 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)6210 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6211                                 SourceLocation Loc, bool IsCompare) {
6212   // The canonical way to check for a GNU null is with isNullPointerConstant,
6213   // but we use a bit of a hack here for speed; this is a relatively
6214   // hot path, and isNullPointerConstant is slow.
6215   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6216   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6217 
6218   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6219 
6220   // Avoid analyzing cases where the result will either be invalid (and
6221   // diagnosed as such) or entirely valid and not something to warn about.
6222   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6223       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6224     return;
6225 
6226   // Comparison operations would not make sense with a null pointer no matter
6227   // what the other expression is.
6228   if (!IsCompare) {
6229     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6230         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6231         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6232     return;
6233   }
6234 
6235   // The rest of the operations only make sense with a null pointer
6236   // if the other expression is a pointer.
6237   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6238       NonNullType->canDecayToPointerType())
6239     return;
6240 
6241   S.Diag(Loc, diag::warn_null_in_comparison_operation)
6242       << LHSNull /* LHS is NULL */ << NonNullType
6243       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6244 }
6245 
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)6246 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6247                                            SourceLocation Loc,
6248                                            bool IsCompAssign, bool IsDiv) {
6249   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6250 
6251   if (LHS.get()->getType()->isVectorType() ||
6252       RHS.get()->getType()->isVectorType())
6253     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6254 
6255   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6256   if (LHS.isInvalid() || RHS.isInvalid())
6257     return QualType();
6258 
6259 
6260   if (compType.isNull() || !compType->isArithmeticType())
6261     return InvalidOperands(Loc, LHS, RHS);
6262 
6263   // Check for division by zero.
6264   if (IsDiv &&
6265       RHS.get()->isNullPointerConstant(Context,
6266                                        Expr::NPC_ValueDependentIsNotNull))
6267     DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
6268                                           << RHS.get()->getSourceRange());
6269 
6270   return compType;
6271 }
6272 
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)6273 QualType Sema::CheckRemainderOperands(
6274   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6275   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6276 
6277   if (LHS.get()->getType()->isVectorType() ||
6278       RHS.get()->getType()->isVectorType()) {
6279     if (LHS.get()->getType()->hasIntegerRepresentation() &&
6280         RHS.get()->getType()->hasIntegerRepresentation())
6281       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6282     return InvalidOperands(Loc, LHS, RHS);
6283   }
6284 
6285   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6286   if (LHS.isInvalid() || RHS.isInvalid())
6287     return QualType();
6288 
6289   if (compType.isNull() || !compType->isIntegerType())
6290     return InvalidOperands(Loc, LHS, RHS);
6291 
6292   // Check for remainder by zero.
6293   if (RHS.get()->isNullPointerConstant(Context,
6294                                        Expr::NPC_ValueDependentIsNotNull))
6295     DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
6296                                  << RHS.get()->getSourceRange());
6297 
6298   return compType;
6299 }
6300 
6301 /// \brief Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6302 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6303                                                 Expr *LHSExpr, Expr *RHSExpr) {
6304   S.Diag(Loc, S.getLangOpts().CPlusPlus
6305                 ? diag::err_typecheck_pointer_arith_void_type
6306                 : diag::ext_gnu_void_ptr)
6307     << 1 /* two pointers */ << LHSExpr->getSourceRange()
6308                             << RHSExpr->getSourceRange();
6309 }
6310 
6311 /// \brief Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6312 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6313                                             Expr *Pointer) {
6314   S.Diag(Loc, S.getLangOpts().CPlusPlus
6315                 ? diag::err_typecheck_pointer_arith_void_type
6316                 : diag::ext_gnu_void_ptr)
6317     << 0 /* one pointer */ << Pointer->getSourceRange();
6318 }
6319 
6320 /// \brief Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)6321 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6322                                                     Expr *LHS, Expr *RHS) {
6323   assert(LHS->getType()->isAnyPointerType());
6324   assert(RHS->getType()->isAnyPointerType());
6325   S.Diag(Loc, S.getLangOpts().CPlusPlus
6326                 ? diag::err_typecheck_pointer_arith_function_type
6327                 : diag::ext_gnu_ptr_func_arith)
6328     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6329     // We only show the second type if it differs from the first.
6330     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6331                                                    RHS->getType())
6332     << RHS->getType()->getPointeeType()
6333     << LHS->getSourceRange() << RHS->getSourceRange();
6334 }
6335 
6336 /// \brief Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6337 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6338                                                 Expr *Pointer) {
6339   assert(Pointer->getType()->isAnyPointerType());
6340   S.Diag(Loc, S.getLangOpts().CPlusPlus
6341                 ? diag::err_typecheck_pointer_arith_function_type
6342                 : diag::ext_gnu_ptr_func_arith)
6343     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6344     << 0 /* one pointer, so only one type */
6345     << Pointer->getSourceRange();
6346 }
6347 
6348 /// \brief Emit error if Operand is incomplete pointer type
6349 ///
6350 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)6351 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6352                                                  Expr *Operand) {
6353   assert(Operand->getType()->isAnyPointerType() &&
6354          !Operand->getType()->isDependentType());
6355   QualType PointeeTy = Operand->getType()->getPointeeType();
6356   return S.RequireCompleteType(Loc, PointeeTy,
6357                                diag::err_typecheck_arithmetic_incomplete_type,
6358                                PointeeTy, Operand->getSourceRange());
6359 }
6360 
6361 /// \brief Check the validity of an arithmetic pointer operand.
6362 ///
6363 /// If the operand has pointer type, this code will check for pointer types
6364 /// which are invalid in arithmetic operations. These will be diagnosed
6365 /// appropriately, including whether or not the use is supported as an
6366 /// extension.
6367 ///
6368 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)6369 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6370                                             Expr *Operand) {
6371   if (!Operand->getType()->isAnyPointerType()) return true;
6372 
6373   QualType PointeeTy = Operand->getType()->getPointeeType();
6374   if (PointeeTy->isVoidType()) {
6375     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6376     return !S.getLangOpts().CPlusPlus;
6377   }
6378   if (PointeeTy->isFunctionType()) {
6379     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6380     return !S.getLangOpts().CPlusPlus;
6381   }
6382 
6383   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6384 
6385   return true;
6386 }
6387 
6388 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6389 /// operands.
6390 ///
6391 /// This routine will diagnose any invalid arithmetic on pointer operands much
6392 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
6393 /// for emitting a single diagnostic even for operations where both LHS and RHS
6394 /// are (potentially problematic) pointers.
6395 ///
6396 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6397 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6398                                                 Expr *LHSExpr, Expr *RHSExpr) {
6399   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6400   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6401   if (!isLHSPointer && !isRHSPointer) return true;
6402 
6403   QualType LHSPointeeTy, RHSPointeeTy;
6404   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6405   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6406 
6407   // Check for arithmetic on pointers to incomplete types.
6408   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6409   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6410   if (isLHSVoidPtr || isRHSVoidPtr) {
6411     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6412     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6413     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6414 
6415     return !S.getLangOpts().CPlusPlus;
6416   }
6417 
6418   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6419   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6420   if (isLHSFuncPtr || isRHSFuncPtr) {
6421     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6422     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6423                                                                 RHSExpr);
6424     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6425 
6426     return !S.getLangOpts().CPlusPlus;
6427   }
6428 
6429   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6430     return false;
6431   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6432     return false;
6433 
6434   return true;
6435 }
6436 
6437 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6438 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)6439 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6440                                   Expr *LHSExpr, Expr *RHSExpr) {
6441   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6442   Expr* IndexExpr = RHSExpr;
6443   if (!StrExpr) {
6444     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6445     IndexExpr = LHSExpr;
6446   }
6447 
6448   bool IsStringPlusInt = StrExpr &&
6449       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6450   if (!IsStringPlusInt)
6451     return;
6452 
6453   llvm::APSInt index;
6454   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6455     unsigned StrLenWithNull = StrExpr->getLength() + 1;
6456     if (index.isNonNegative() &&
6457         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6458                               index.isUnsigned()))
6459       return;
6460   }
6461 
6462   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6463   Self.Diag(OpLoc, diag::warn_string_plus_int)
6464       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6465 
6466   // Only print a fixit for "str" + int, not for int + "str".
6467   if (IndexExpr == RHSExpr) {
6468     SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6469     Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6470         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6471         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6472         << FixItHint::CreateInsertion(EndLoc, "]");
6473   } else
6474     Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6475 }
6476 
6477 /// \brief Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6478 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6479                                            Expr *LHSExpr, Expr *RHSExpr) {
6480   assert(LHSExpr->getType()->isAnyPointerType());
6481   assert(RHSExpr->getType()->isAnyPointerType());
6482   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6483     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6484     << RHSExpr->getSourceRange();
6485 }
6486 
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType * CompLHSTy)6487 QualType Sema::CheckAdditionOperands( // C99 6.5.6
6488     ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6489     QualType* CompLHSTy) {
6490   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6491 
6492   if (LHS.get()->getType()->isVectorType() ||
6493       RHS.get()->getType()->isVectorType()) {
6494     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6495     if (CompLHSTy) *CompLHSTy = compType;
6496     return compType;
6497   }
6498 
6499   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6500   if (LHS.isInvalid() || RHS.isInvalid())
6501     return QualType();
6502 
6503   // Diagnose "string literal" '+' int.
6504   if (Opc == BO_Add)
6505     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6506 
6507   // handle the common case first (both operands are arithmetic).
6508   if (!compType.isNull() && compType->isArithmeticType()) {
6509     if (CompLHSTy) *CompLHSTy = compType;
6510     return compType;
6511   }
6512 
6513   // Type-checking.  Ultimately the pointer's going to be in PExp;
6514   // note that we bias towards the LHS being the pointer.
6515   Expr *PExp = LHS.get(), *IExp = RHS.get();
6516 
6517   bool isObjCPointer;
6518   if (PExp->getType()->isPointerType()) {
6519     isObjCPointer = false;
6520   } else if (PExp->getType()->isObjCObjectPointerType()) {
6521     isObjCPointer = true;
6522   } else {
6523     std::swap(PExp, IExp);
6524     if (PExp->getType()->isPointerType()) {
6525       isObjCPointer = false;
6526     } else if (PExp->getType()->isObjCObjectPointerType()) {
6527       isObjCPointer = true;
6528     } else {
6529       return InvalidOperands(Loc, LHS, RHS);
6530     }
6531   }
6532   assert(PExp->getType()->isAnyPointerType());
6533 
6534   if (!IExp->getType()->isIntegerType())
6535     return InvalidOperands(Loc, LHS, RHS);
6536 
6537   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6538     return QualType();
6539 
6540   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
6541     return QualType();
6542 
6543   // Check array bounds for pointer arithemtic
6544   CheckArrayAccess(PExp, IExp);
6545 
6546   if (CompLHSTy) {
6547     QualType LHSTy = Context.isPromotableBitField(LHS.get());
6548     if (LHSTy.isNull()) {
6549       LHSTy = LHS.get()->getType();
6550       if (LHSTy->isPromotableIntegerType())
6551         LHSTy = Context.getPromotedIntegerType(LHSTy);
6552     }
6553     *CompLHSTy = LHSTy;
6554   }
6555 
6556   return PExp->getType();
6557 }
6558 
6559 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)6560 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6561                                         SourceLocation Loc,
6562                                         QualType* CompLHSTy) {
6563   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6564 
6565   if (LHS.get()->getType()->isVectorType() ||
6566       RHS.get()->getType()->isVectorType()) {
6567     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6568     if (CompLHSTy) *CompLHSTy = compType;
6569     return compType;
6570   }
6571 
6572   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6573   if (LHS.isInvalid() || RHS.isInvalid())
6574     return QualType();
6575 
6576   // Enforce type constraints: C99 6.5.6p3.
6577 
6578   // Handle the common case first (both operands are arithmetic).
6579   if (!compType.isNull() && compType->isArithmeticType()) {
6580     if (CompLHSTy) *CompLHSTy = compType;
6581     return compType;
6582   }
6583 
6584   // Either ptr - int   or   ptr - ptr.
6585   if (LHS.get()->getType()->isAnyPointerType()) {
6586     QualType lpointee = LHS.get()->getType()->getPointeeType();
6587 
6588     // Diagnose bad cases where we step over interface counts.
6589     if (LHS.get()->getType()->isObjCObjectPointerType() &&
6590         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
6591       return QualType();
6592 
6593     // The result type of a pointer-int computation is the pointer type.
6594     if (RHS.get()->getType()->isIntegerType()) {
6595       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6596         return QualType();
6597 
6598       // Check array bounds for pointer arithemtic
6599       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6600                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6601 
6602       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6603       return LHS.get()->getType();
6604     }
6605 
6606     // Handle pointer-pointer subtractions.
6607     if (const PointerType *RHSPTy
6608           = RHS.get()->getType()->getAs<PointerType>()) {
6609       QualType rpointee = RHSPTy->getPointeeType();
6610 
6611       if (getLangOpts().CPlusPlus) {
6612         // Pointee types must be the same: C++ [expr.add]
6613         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6614           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6615         }
6616       } else {
6617         // Pointee types must be compatible C99 6.5.6p3
6618         if (!Context.typesAreCompatible(
6619                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
6620                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6621           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6622           return QualType();
6623         }
6624       }
6625 
6626       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6627                                                LHS.get(), RHS.get()))
6628         return QualType();
6629 
6630       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6631       return Context.getPointerDiffType();
6632     }
6633   }
6634 
6635   return InvalidOperands(Loc, LHS, RHS);
6636 }
6637 
isScopedEnumerationType(QualType T)6638 static bool isScopedEnumerationType(QualType T) {
6639   if (const EnumType *ET = dyn_cast<EnumType>(T))
6640     return ET->getDecl()->isScoped();
6641   return false;
6642 }
6643 
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType LHSType)6644 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6645                                    SourceLocation Loc, unsigned Opc,
6646                                    QualType LHSType) {
6647   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
6648   // so skip remaining warnings as we don't want to modify values within Sema.
6649   if (S.getLangOpts().OpenCL)
6650     return;
6651 
6652   llvm::APSInt Right;
6653   // Check right/shifter operand
6654   if (RHS.get()->isValueDependent() ||
6655       !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6656     return;
6657 
6658   if (Right.isNegative()) {
6659     S.DiagRuntimeBehavior(Loc, RHS.get(),
6660                           S.PDiag(diag::warn_shift_negative)
6661                             << RHS.get()->getSourceRange());
6662     return;
6663   }
6664   llvm::APInt LeftBits(Right.getBitWidth(),
6665                        S.Context.getTypeSize(LHS.get()->getType()));
6666   if (Right.uge(LeftBits)) {
6667     S.DiagRuntimeBehavior(Loc, RHS.get(),
6668                           S.PDiag(diag::warn_shift_gt_typewidth)
6669                             << RHS.get()->getSourceRange());
6670     return;
6671   }
6672   if (Opc != BO_Shl)
6673     return;
6674 
6675   // When left shifting an ICE which is signed, we can check for overflow which
6676   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6677   // integers have defined behavior modulo one more than the maximum value
6678   // representable in the result type, so never warn for those.
6679   llvm::APSInt Left;
6680   if (LHS.get()->isValueDependent() ||
6681       !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6682       LHSType->hasUnsignedIntegerRepresentation())
6683     return;
6684   llvm::APInt ResultBits =
6685       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6686   if (LeftBits.uge(ResultBits))
6687     return;
6688   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6689   Result = Result.shl(Right);
6690 
6691   // Print the bit representation of the signed integer as an unsigned
6692   // hexadecimal number.
6693   SmallString<40> HexResult;
6694   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6695 
6696   // If we are only missing a sign bit, this is less likely to result in actual
6697   // bugs -- if the result is cast back to an unsigned type, it will have the
6698   // expected value. Thus we place this behind a different warning that can be
6699   // turned off separately if needed.
6700   if (LeftBits == ResultBits - 1) {
6701     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6702         << HexResult.str() << LHSType
6703         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6704     return;
6705   }
6706 
6707   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6708     << HexResult.str() << Result.getMinSignedBits() << LHSType
6709     << Left.getBitWidth() << LHS.get()->getSourceRange()
6710     << RHS.get()->getSourceRange();
6711 }
6712 
6713 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,bool IsCompAssign)6714 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6715                                   SourceLocation Loc, unsigned Opc,
6716                                   bool IsCompAssign) {
6717   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6718 
6719   // C99 6.5.7p2: Each of the operands shall have integer type.
6720   if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6721       !RHS.get()->getType()->hasIntegerRepresentation())
6722     return InvalidOperands(Loc, LHS, RHS);
6723 
6724   // C++0x: Don't allow scoped enums. FIXME: Use something better than
6725   // hasIntegerRepresentation() above instead of this.
6726   if (isScopedEnumerationType(LHS.get()->getType()) ||
6727       isScopedEnumerationType(RHS.get()->getType())) {
6728     return InvalidOperands(Loc, LHS, RHS);
6729   }
6730 
6731   // Vector shifts promote their scalar inputs to vector type.
6732   if (LHS.get()->getType()->isVectorType() ||
6733       RHS.get()->getType()->isVectorType())
6734     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6735 
6736   // Shifts don't perform usual arithmetic conversions, they just do integer
6737   // promotions on each operand. C99 6.5.7p3
6738 
6739   // For the LHS, do usual unary conversions, but then reset them away
6740   // if this is a compound assignment.
6741   ExprResult OldLHS = LHS;
6742   LHS = UsualUnaryConversions(LHS.take());
6743   if (LHS.isInvalid())
6744     return QualType();
6745   QualType LHSType = LHS.get()->getType();
6746   if (IsCompAssign) LHS = OldLHS;
6747 
6748   // The RHS is simpler.
6749   RHS = UsualUnaryConversions(RHS.take());
6750   if (RHS.isInvalid())
6751     return QualType();
6752 
6753   // Sanity-check shift operands
6754   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6755 
6756   // "The type of the result is that of the promoted left operand."
6757   return LHSType;
6758 }
6759 
IsWithinTemplateSpecialization(Decl * D)6760 static bool IsWithinTemplateSpecialization(Decl *D) {
6761   if (DeclContext *DC = D->getDeclContext()) {
6762     if (isa<ClassTemplateSpecializationDecl>(DC))
6763       return true;
6764     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6765       return FD->isFunctionTemplateSpecialization();
6766   }
6767   return false;
6768 }
6769 
6770 /// If two different enums are compared, raise a warning.
checkEnumComparison(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)6771 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
6772                                 Expr *RHS) {
6773   QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
6774   QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
6775 
6776   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6777   if (!LHSEnumType)
6778     return;
6779   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6780   if (!RHSEnumType)
6781     return;
6782 
6783   // Ignore anonymous enums.
6784   if (!LHSEnumType->getDecl()->getIdentifier())
6785     return;
6786   if (!RHSEnumType->getDecl()->getIdentifier())
6787     return;
6788 
6789   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6790     return;
6791 
6792   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6793       << LHSStrippedType << RHSStrippedType
6794       << LHS->getSourceRange() << RHS->getSourceRange();
6795 }
6796 
6797 /// \brief Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6798 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6799                                               ExprResult &LHS, ExprResult &RHS,
6800                                               bool IsError) {
6801   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6802                       : diag::ext_typecheck_comparison_of_distinct_pointers)
6803     << LHS.get()->getType() << RHS.get()->getType()
6804     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6805 }
6806 
6807 /// \brief Returns false if the pointers are converted to a composite type,
6808 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6809 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6810                                            ExprResult &LHS, ExprResult &RHS) {
6811   // C++ [expr.rel]p2:
6812   //   [...] Pointer conversions (4.10) and qualification
6813   //   conversions (4.4) are performed on pointer operands (or on
6814   //   a pointer operand and a null pointer constant) to bring
6815   //   them to their composite pointer type. [...]
6816   //
6817   // C++ [expr.eq]p1 uses the same notion for (in)equality
6818   // comparisons of pointers.
6819 
6820   // C++ [expr.eq]p2:
6821   //   In addition, pointers to members can be compared, or a pointer to
6822   //   member and a null pointer constant. Pointer to member conversions
6823   //   (4.11) and qualification conversions (4.4) are performed to bring
6824   //   them to a common type. If one operand is a null pointer constant,
6825   //   the common type is the type of the other operand. Otherwise, the
6826   //   common type is a pointer to member type similar (4.4) to the type
6827   //   of one of the operands, with a cv-qualification signature (4.4)
6828   //   that is the union of the cv-qualification signatures of the operand
6829   //   types.
6830 
6831   QualType LHSType = LHS.get()->getType();
6832   QualType RHSType = RHS.get()->getType();
6833   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6834          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6835 
6836   bool NonStandardCompositeType = false;
6837   bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6838   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6839   if (T.isNull()) {
6840     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6841     return true;
6842   }
6843 
6844   if (NonStandardCompositeType)
6845     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6846       << LHSType << RHSType << T << LHS.get()->getSourceRange()
6847       << RHS.get()->getSourceRange();
6848 
6849   LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6850   RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6851   return false;
6852 }
6853 
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6854 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6855                                                     ExprResult &LHS,
6856                                                     ExprResult &RHS,
6857                                                     bool IsError) {
6858   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6859                       : diag::ext_typecheck_comparison_of_fptr_to_void)
6860     << LHS.get()->getType() << RHS.get()->getType()
6861     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6862 }
6863 
isObjCObjectLiteral(ExprResult & E)6864 static bool isObjCObjectLiteral(ExprResult &E) {
6865   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
6866   case Stmt::ObjCArrayLiteralClass:
6867   case Stmt::ObjCDictionaryLiteralClass:
6868   case Stmt::ObjCStringLiteralClass:
6869   case Stmt::ObjCBoxedExprClass:
6870     return true;
6871   default:
6872     // Note that ObjCBoolLiteral is NOT an object literal!
6873     return false;
6874   }
6875 }
6876 
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)6877 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
6878   const ObjCObjectPointerType *Type =
6879     LHS->getType()->getAs<ObjCObjectPointerType>();
6880 
6881   // If this is not actually an Objective-C object, bail out.
6882   if (!Type)
6883     return false;
6884 
6885   // Get the LHS object's interface type.
6886   QualType InterfaceType = Type->getPointeeType();
6887   if (const ObjCObjectType *iQFaceTy =
6888       InterfaceType->getAsObjCQualifiedInterfaceType())
6889     InterfaceType = iQFaceTy->getBaseType();
6890 
6891   // If the RHS isn't an Objective-C object, bail out.
6892   if (!RHS->getType()->isObjCObjectPointerType())
6893     return false;
6894 
6895   // Try to find the -isEqual: method.
6896   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
6897   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
6898                                                       InterfaceType,
6899                                                       /*instance=*/true);
6900   if (!Method) {
6901     if (Type->isObjCIdType()) {
6902       // For 'id', just check the global pool.
6903       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
6904                                                   /*receiverId=*/true,
6905                                                   /*warn=*/false);
6906     } else {
6907       // Check protocols.
6908       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
6909                                              /*instance=*/true);
6910     }
6911   }
6912 
6913   if (!Method)
6914     return false;
6915 
6916   QualType T = Method->param_begin()[0]->getType();
6917   if (!T->isObjCObjectPointerType())
6918     return false;
6919 
6920   QualType R = Method->getResultType();
6921   if (!R->isScalarType())
6922     return false;
6923 
6924   return true;
6925 }
6926 
CheckLiteralKind(Expr * FromE)6927 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
6928   FromE = FromE->IgnoreParenImpCasts();
6929   switch (FromE->getStmtClass()) {
6930     default:
6931       break;
6932     case Stmt::ObjCStringLiteralClass:
6933       // "string literal"
6934       return LK_String;
6935     case Stmt::ObjCArrayLiteralClass:
6936       // "array literal"
6937       return LK_Array;
6938     case Stmt::ObjCDictionaryLiteralClass:
6939       // "dictionary literal"
6940       return LK_Dictionary;
6941     case Stmt::BlockExprClass:
6942       return LK_Block;
6943     case Stmt::ObjCBoxedExprClass: {
6944       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
6945       switch (Inner->getStmtClass()) {
6946         case Stmt::IntegerLiteralClass:
6947         case Stmt::FloatingLiteralClass:
6948         case Stmt::CharacterLiteralClass:
6949         case Stmt::ObjCBoolLiteralExprClass:
6950         case Stmt::CXXBoolLiteralExprClass:
6951           // "numeric literal"
6952           return LK_Numeric;
6953         case Stmt::ImplicitCastExprClass: {
6954           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
6955           // Boolean literals can be represented by implicit casts.
6956           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
6957             return LK_Numeric;
6958           break;
6959         }
6960         default:
6961           break;
6962       }
6963       return LK_Boxed;
6964     }
6965   }
6966   return LK_None;
6967 }
6968 
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)6969 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
6970                                           ExprResult &LHS, ExprResult &RHS,
6971                                           BinaryOperator::Opcode Opc){
6972   Expr *Literal;
6973   Expr *Other;
6974   if (isObjCObjectLiteral(LHS)) {
6975     Literal = LHS.get();
6976     Other = RHS.get();
6977   } else {
6978     Literal = RHS.get();
6979     Other = LHS.get();
6980   }
6981 
6982   // Don't warn on comparisons against nil.
6983   Other = Other->IgnoreParenCasts();
6984   if (Other->isNullPointerConstant(S.getASTContext(),
6985                                    Expr::NPC_ValueDependentIsNotNull))
6986     return;
6987 
6988   // This should be kept in sync with warn_objc_literal_comparison.
6989   // LK_String should always be after the other literals, since it has its own
6990   // warning flag.
6991   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
6992   assert(LiteralKind != Sema::LK_Block);
6993   if (LiteralKind == Sema::LK_None) {
6994     llvm_unreachable("Unknown Objective-C object literal kind");
6995   }
6996 
6997   if (LiteralKind == Sema::LK_String)
6998     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
6999       << Literal->getSourceRange();
7000   else
7001     S.Diag(Loc, diag::warn_objc_literal_comparison)
7002       << LiteralKind << Literal->getSourceRange();
7003 
7004   if (BinaryOperator::isEqualityOp(Opc) &&
7005       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
7006     SourceLocation Start = LHS.get()->getLocStart();
7007     SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
7008     CharSourceRange OpRange =
7009       CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
7010 
7011     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
7012       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
7013       << FixItHint::CreateReplacement(OpRange, " isEqual:")
7014       << FixItHint::CreateInsertion(End, "]");
7015   }
7016 }
7017 
7018 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned OpaqueOpc,bool IsRelational)7019 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
7020                                     SourceLocation Loc, unsigned OpaqueOpc,
7021                                     bool IsRelational) {
7022   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
7023 
7024   BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
7025 
7026   // Handle vector comparisons separately.
7027   if (LHS.get()->getType()->isVectorType() ||
7028       RHS.get()->getType()->isVectorType())
7029     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
7030 
7031   QualType LHSType = LHS.get()->getType();
7032   QualType RHSType = RHS.get()->getType();
7033 
7034   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
7035   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
7036 
7037   checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
7038 
7039   if (!LHSType->hasFloatingRepresentation() &&
7040       !(LHSType->isBlockPointerType() && IsRelational) &&
7041       !LHS.get()->getLocStart().isMacroID() &&
7042       !RHS.get()->getLocStart().isMacroID()) {
7043     // For non-floating point types, check for self-comparisons of the form
7044     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7045     // often indicate logic errors in the program.
7046     //
7047     // NOTE: Don't warn about comparison expressions resulting from macro
7048     // expansion. Also don't warn about comparisons which are only self
7049     // comparisons within a template specialization. The warnings should catch
7050     // obvious cases in the definition of the template anyways. The idea is to
7051     // warn when the typed comparison operator will always evaluate to the same
7052     // result.
7053     if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
7054       if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
7055         if (DRL->getDecl() == DRR->getDecl() &&
7056             !IsWithinTemplateSpecialization(DRL->getDecl())) {
7057           DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7058                               << 0 // self-
7059                               << (Opc == BO_EQ
7060                                   || Opc == BO_LE
7061                                   || Opc == BO_GE));
7062         } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
7063                    !DRL->getDecl()->getType()->isReferenceType() &&
7064                    !DRR->getDecl()->getType()->isReferenceType()) {
7065             // what is it always going to eval to?
7066             char always_evals_to;
7067             switch(Opc) {
7068             case BO_EQ: // e.g. array1 == array2
7069               always_evals_to = 0; // false
7070               break;
7071             case BO_NE: // e.g. array1 != array2
7072               always_evals_to = 1; // true
7073               break;
7074             default:
7075               // best we can say is 'a constant'
7076               always_evals_to = 2; // e.g. array1 <= array2
7077               break;
7078             }
7079             DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7080                                 << 1 // array
7081                                 << always_evals_to);
7082         }
7083       }
7084     }
7085 
7086     if (isa<CastExpr>(LHSStripped))
7087       LHSStripped = LHSStripped->IgnoreParenCasts();
7088     if (isa<CastExpr>(RHSStripped))
7089       RHSStripped = RHSStripped->IgnoreParenCasts();
7090 
7091     // Warn about comparisons against a string constant (unless the other
7092     // operand is null), the user probably wants strcmp.
7093     Expr *literalString = 0;
7094     Expr *literalStringStripped = 0;
7095     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
7096         !RHSStripped->isNullPointerConstant(Context,
7097                                             Expr::NPC_ValueDependentIsNull)) {
7098       literalString = LHS.get();
7099       literalStringStripped = LHSStripped;
7100     } else if ((isa<StringLiteral>(RHSStripped) ||
7101                 isa<ObjCEncodeExpr>(RHSStripped)) &&
7102                !LHSStripped->isNullPointerConstant(Context,
7103                                             Expr::NPC_ValueDependentIsNull)) {
7104       literalString = RHS.get();
7105       literalStringStripped = RHSStripped;
7106     }
7107 
7108     if (literalString) {
7109       std::string resultComparison;
7110       switch (Opc) {
7111       case BO_LT: resultComparison = ") < 0"; break;
7112       case BO_GT: resultComparison = ") > 0"; break;
7113       case BO_LE: resultComparison = ") <= 0"; break;
7114       case BO_GE: resultComparison = ") >= 0"; break;
7115       case BO_EQ: resultComparison = ") == 0"; break;
7116       case BO_NE: resultComparison = ") != 0"; break;
7117       default: llvm_unreachable("Invalid comparison operator");
7118       }
7119 
7120       DiagRuntimeBehavior(Loc, 0,
7121         PDiag(diag::warn_stringcompare)
7122           << isa<ObjCEncodeExpr>(literalStringStripped)
7123           << literalString->getSourceRange());
7124     }
7125   }
7126 
7127   // C99 6.5.8p3 / C99 6.5.9p4
7128   if (LHS.get()->getType()->isArithmeticType() &&
7129       RHS.get()->getType()->isArithmeticType()) {
7130     UsualArithmeticConversions(LHS, RHS);
7131     if (LHS.isInvalid() || RHS.isInvalid())
7132       return QualType();
7133   }
7134   else {
7135     LHS = UsualUnaryConversions(LHS.take());
7136     if (LHS.isInvalid())
7137       return QualType();
7138 
7139     RHS = UsualUnaryConversions(RHS.take());
7140     if (RHS.isInvalid())
7141       return QualType();
7142   }
7143 
7144   LHSType = LHS.get()->getType();
7145   RHSType = RHS.get()->getType();
7146 
7147   // The result of comparisons is 'bool' in C++, 'int' in C.
7148   QualType ResultTy = Context.getLogicalOperationType();
7149 
7150   if (IsRelational) {
7151     if (LHSType->isRealType() && RHSType->isRealType())
7152       return ResultTy;
7153   } else {
7154     // Check for comparisons of floating point operands using != and ==.
7155     if (LHSType->hasFloatingRepresentation())
7156       CheckFloatComparison(Loc, LHS.get(), RHS.get());
7157 
7158     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7159       return ResultTy;
7160   }
7161 
7162   bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7163                                               Expr::NPC_ValueDependentIsNull);
7164   bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7165                                               Expr::NPC_ValueDependentIsNull);
7166 
7167   // All of the following pointer-related warnings are GCC extensions, except
7168   // when handling null pointer constants.
7169   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7170     QualType LCanPointeeTy =
7171       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7172     QualType RCanPointeeTy =
7173       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7174 
7175     if (getLangOpts().CPlusPlus) {
7176       if (LCanPointeeTy == RCanPointeeTy)
7177         return ResultTy;
7178       if (!IsRelational &&
7179           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7180         // Valid unless comparison between non-null pointer and function pointer
7181         // This is a gcc extension compatibility comparison.
7182         // In a SFINAE context, we treat this as a hard error to maintain
7183         // conformance with the C++ standard.
7184         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7185             && !LHSIsNull && !RHSIsNull) {
7186           diagnoseFunctionPointerToVoidComparison(
7187               *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
7188 
7189           if (isSFINAEContext())
7190             return QualType();
7191 
7192           RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7193           return ResultTy;
7194         }
7195       }
7196 
7197       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7198         return QualType();
7199       else
7200         return ResultTy;
7201     }
7202     // C99 6.5.9p2 and C99 6.5.8p2
7203     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7204                                    RCanPointeeTy.getUnqualifiedType())) {
7205       // Valid unless a relational comparison of function pointers
7206       if (IsRelational && LCanPointeeTy->isFunctionType()) {
7207         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7208           << LHSType << RHSType << LHS.get()->getSourceRange()
7209           << RHS.get()->getSourceRange();
7210       }
7211     } else if (!IsRelational &&
7212                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7213       // Valid unless comparison between non-null pointer and function pointer
7214       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7215           && !LHSIsNull && !RHSIsNull)
7216         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7217                                                 /*isError*/false);
7218     } else {
7219       // Invalid
7220       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7221     }
7222     if (LCanPointeeTy != RCanPointeeTy) {
7223       if (LHSIsNull && !RHSIsNull)
7224         LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7225       else
7226         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7227     }
7228     return ResultTy;
7229   }
7230 
7231   if (getLangOpts().CPlusPlus) {
7232     // Comparison of nullptr_t with itself.
7233     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7234       return ResultTy;
7235 
7236     // Comparison of pointers with null pointer constants and equality
7237     // comparisons of member pointers to null pointer constants.
7238     if (RHSIsNull &&
7239         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7240          (!IsRelational &&
7241           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7242       RHS = ImpCastExprToType(RHS.take(), LHSType,
7243                         LHSType->isMemberPointerType()
7244                           ? CK_NullToMemberPointer
7245                           : CK_NullToPointer);
7246       return ResultTy;
7247     }
7248     if (LHSIsNull &&
7249         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7250          (!IsRelational &&
7251           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7252       LHS = ImpCastExprToType(LHS.take(), RHSType,
7253                         RHSType->isMemberPointerType()
7254                           ? CK_NullToMemberPointer
7255                           : CK_NullToPointer);
7256       return ResultTy;
7257     }
7258 
7259     // Comparison of member pointers.
7260     if (!IsRelational &&
7261         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7262       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7263         return QualType();
7264       else
7265         return ResultTy;
7266     }
7267 
7268     // Handle scoped enumeration types specifically, since they don't promote
7269     // to integers.
7270     if (LHS.get()->getType()->isEnumeralType() &&
7271         Context.hasSameUnqualifiedType(LHS.get()->getType(),
7272                                        RHS.get()->getType()))
7273       return ResultTy;
7274   }
7275 
7276   // Handle block pointer types.
7277   if (!IsRelational && LHSType->isBlockPointerType() &&
7278       RHSType->isBlockPointerType()) {
7279     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7280     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7281 
7282     if (!LHSIsNull && !RHSIsNull &&
7283         !Context.typesAreCompatible(lpointee, rpointee)) {
7284       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7285         << LHSType << RHSType << LHS.get()->getSourceRange()
7286         << RHS.get()->getSourceRange();
7287     }
7288     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7289     return ResultTy;
7290   }
7291 
7292   // Allow block pointers to be compared with null pointer constants.
7293   if (!IsRelational
7294       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7295           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7296     if (!LHSIsNull && !RHSIsNull) {
7297       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7298              ->getPointeeType()->isVoidType())
7299             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7300                 ->getPointeeType()->isVoidType())))
7301         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7302           << LHSType << RHSType << LHS.get()->getSourceRange()
7303           << RHS.get()->getSourceRange();
7304     }
7305     if (LHSIsNull && !RHSIsNull)
7306       LHS = ImpCastExprToType(LHS.take(), RHSType,
7307                               RHSType->isPointerType() ? CK_BitCast
7308                                 : CK_AnyPointerToBlockPointerCast);
7309     else
7310       RHS = ImpCastExprToType(RHS.take(), LHSType,
7311                               LHSType->isPointerType() ? CK_BitCast
7312                                 : CK_AnyPointerToBlockPointerCast);
7313     return ResultTy;
7314   }
7315 
7316   if (LHSType->isObjCObjectPointerType() ||
7317       RHSType->isObjCObjectPointerType()) {
7318     const PointerType *LPT = LHSType->getAs<PointerType>();
7319     const PointerType *RPT = RHSType->getAs<PointerType>();
7320     if (LPT || RPT) {
7321       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7322       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7323 
7324       if (!LPtrToVoid && !RPtrToVoid &&
7325           !Context.typesAreCompatible(LHSType, RHSType)) {
7326         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7327                                           /*isError*/false);
7328       }
7329       if (LHSIsNull && !RHSIsNull)
7330         LHS = ImpCastExprToType(LHS.take(), RHSType,
7331                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7332       else
7333         RHS = ImpCastExprToType(RHS.take(), LHSType,
7334                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7335       return ResultTy;
7336     }
7337     if (LHSType->isObjCObjectPointerType() &&
7338         RHSType->isObjCObjectPointerType()) {
7339       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7340         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7341                                           /*isError*/false);
7342       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7343         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7344 
7345       if (LHSIsNull && !RHSIsNull)
7346         LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7347       else
7348         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7349       return ResultTy;
7350     }
7351   }
7352   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7353       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7354     unsigned DiagID = 0;
7355     bool isError = false;
7356     if (LangOpts.DebuggerSupport) {
7357       // Under a debugger, allow the comparison of pointers to integers,
7358       // since users tend to want to compare addresses.
7359     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
7360         (RHSIsNull && RHSType->isIntegerType())) {
7361       if (IsRelational && !getLangOpts().CPlusPlus)
7362         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7363     } else if (IsRelational && !getLangOpts().CPlusPlus)
7364       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7365     else if (getLangOpts().CPlusPlus) {
7366       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7367       isError = true;
7368     } else
7369       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7370 
7371     if (DiagID) {
7372       Diag(Loc, DiagID)
7373         << LHSType << RHSType << LHS.get()->getSourceRange()
7374         << RHS.get()->getSourceRange();
7375       if (isError)
7376         return QualType();
7377     }
7378 
7379     if (LHSType->isIntegerType())
7380       LHS = ImpCastExprToType(LHS.take(), RHSType,
7381                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7382     else
7383       RHS = ImpCastExprToType(RHS.take(), LHSType,
7384                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7385     return ResultTy;
7386   }
7387 
7388   // Handle block pointers.
7389   if (!IsRelational && RHSIsNull
7390       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
7391     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
7392     return ResultTy;
7393   }
7394   if (!IsRelational && LHSIsNull
7395       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
7396     LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
7397     return ResultTy;
7398   }
7399 
7400   return InvalidOperands(Loc, LHS, RHS);
7401 }
7402 
7403 
7404 // Return a signed type that is of identical size and number of elements.
7405 // For floating point vectors, return an integer type of identical size
7406 // and number of elements.
GetSignedVectorType(QualType V)7407 QualType Sema::GetSignedVectorType(QualType V) {
7408   const VectorType *VTy = V->getAs<VectorType>();
7409   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7410   if (TypeSize == Context.getTypeSize(Context.CharTy))
7411     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
7412   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
7413     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
7414   else if (TypeSize == Context.getTypeSize(Context.IntTy))
7415     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7416   else if (TypeSize == Context.getTypeSize(Context.LongTy))
7417     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7418   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7419          "Unhandled vector element size in vector compare");
7420   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7421 }
7422 
7423 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
7424 /// operates on extended vector types.  Instead of producing an IntTy result,
7425 /// like a scalar comparison, a vector comparison produces a vector of integer
7426 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsRelational)7427 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
7428                                           SourceLocation Loc,
7429                                           bool IsRelational) {
7430   // Check to make sure we're operating on vectors of the same type and width,
7431   // Allowing one side to be a scalar of element type.
7432   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
7433   if (vType.isNull())
7434     return vType;
7435 
7436   QualType LHSType = LHS.get()->getType();
7437 
7438   // If AltiVec, the comparison results in a numeric type, i.e.
7439   // bool for C++, int for C
7440   if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7441     return Context.getLogicalOperationType();
7442 
7443   // For non-floating point types, check for self-comparisons of the form
7444   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7445   // often indicate logic errors in the program.
7446   if (!LHSType->hasFloatingRepresentation()) {
7447     if (DeclRefExpr* DRL
7448           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7449       if (DeclRefExpr* DRR
7450             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7451         if (DRL->getDecl() == DRR->getDecl())
7452           DiagRuntimeBehavior(Loc, 0,
7453                               PDiag(diag::warn_comparison_always)
7454                                 << 0 // self-
7455                                 << 2 // "a constant"
7456                               );
7457   }
7458 
7459   // Check for comparisons of floating point operands using != and ==.
7460   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7461     assert (RHS.get()->getType()->hasFloatingRepresentation());
7462     CheckFloatComparison(Loc, LHS.get(), RHS.get());
7463   }
7464 
7465   // Return a signed type for the vector.
7466   return GetSignedVectorType(LHSType);
7467 }
7468 
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7469 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7470                                           SourceLocation Loc) {
7471   // Ensure that either both operands are of the same vector type, or
7472   // one operand is of a vector type and the other is of its element type.
7473   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7474   if (vType.isNull())
7475     return InvalidOperands(Loc, LHS, RHS);
7476   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
7477       vType->hasFloatingRepresentation())
7478     return InvalidOperands(Loc, LHS, RHS);
7479 
7480   return GetSignedVectorType(LHS.get()->getType());
7481 }
7482 
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)7483 inline QualType Sema::CheckBitwiseOperands(
7484   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7485   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7486 
7487   if (LHS.get()->getType()->isVectorType() ||
7488       RHS.get()->getType()->isVectorType()) {
7489     if (LHS.get()->getType()->hasIntegerRepresentation() &&
7490         RHS.get()->getType()->hasIntegerRepresentation())
7491       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7492 
7493     return InvalidOperands(Loc, LHS, RHS);
7494   }
7495 
7496   ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7497   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7498                                                  IsCompAssign);
7499   if (LHSResult.isInvalid() || RHSResult.isInvalid())
7500     return QualType();
7501   LHS = LHSResult.take();
7502   RHS = RHSResult.take();
7503 
7504   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
7505     return compType;
7506   return InvalidOperands(Loc, LHS, RHS);
7507 }
7508 
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc)7509 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7510   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7511 
7512   // Check vector operands differently.
7513   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7514     return CheckVectorLogicalOperands(LHS, RHS, Loc);
7515 
7516   // Diagnose cases where the user write a logical and/or but probably meant a
7517   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7518   // is a constant.
7519   if (LHS.get()->getType()->isIntegerType() &&
7520       !LHS.get()->getType()->isBooleanType() &&
7521       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7522       // Don't warn in macros or template instantiations.
7523       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7524     // If the RHS can be constant folded, and if it constant folds to something
7525     // that isn't 0 or 1 (which indicate a potential logical operation that
7526     // happened to fold to true/false) then warn.
7527     // Parens on the RHS are ignored.
7528     llvm::APSInt Result;
7529     if (RHS.get()->EvaluateAsInt(Result, Context))
7530       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7531           (Result != 0 && Result != 1)) {
7532         Diag(Loc, diag::warn_logical_instead_of_bitwise)
7533           << RHS.get()->getSourceRange()
7534           << (Opc == BO_LAnd ? "&&" : "||");
7535         // Suggest replacing the logical operator with the bitwise version
7536         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7537             << (Opc == BO_LAnd ? "&" : "|")
7538             << FixItHint::CreateReplacement(SourceRange(
7539                 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7540                                                 getLangOpts())),
7541                                             Opc == BO_LAnd ? "&" : "|");
7542         if (Opc == BO_LAnd)
7543           // Suggest replacing "Foo() && kNonZero" with "Foo()"
7544           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7545               << FixItHint::CreateRemoval(
7546                   SourceRange(
7547                       Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7548                                                  0, getSourceManager(),
7549                                                  getLangOpts()),
7550                       RHS.get()->getLocEnd()));
7551       }
7552   }
7553 
7554   if (!Context.getLangOpts().CPlusPlus) {
7555     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
7556     // not operate on the built-in scalar and vector float types.
7557     if (Context.getLangOpts().OpenCL &&
7558         Context.getLangOpts().OpenCLVersion < 120) {
7559       if (LHS.get()->getType()->isFloatingType() ||
7560           RHS.get()->getType()->isFloatingType())
7561         return InvalidOperands(Loc, LHS, RHS);
7562     }
7563 
7564     LHS = UsualUnaryConversions(LHS.take());
7565     if (LHS.isInvalid())
7566       return QualType();
7567 
7568     RHS = UsualUnaryConversions(RHS.take());
7569     if (RHS.isInvalid())
7570       return QualType();
7571 
7572     if (!LHS.get()->getType()->isScalarType() ||
7573         !RHS.get()->getType()->isScalarType())
7574       return InvalidOperands(Loc, LHS, RHS);
7575 
7576     return Context.IntTy;
7577   }
7578 
7579   // The following is safe because we only use this method for
7580   // non-overloadable operands.
7581 
7582   // C++ [expr.log.and]p1
7583   // C++ [expr.log.or]p1
7584   // The operands are both contextually converted to type bool.
7585   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7586   if (LHSRes.isInvalid())
7587     return InvalidOperands(Loc, LHS, RHS);
7588   LHS = LHSRes;
7589 
7590   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7591   if (RHSRes.isInvalid())
7592     return InvalidOperands(Loc, LHS, RHS);
7593   RHS = RHSRes;
7594 
7595   // C++ [expr.log.and]p2
7596   // C++ [expr.log.or]p2
7597   // The result is a bool.
7598   return Context.BoolTy;
7599 }
7600 
7601 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7602 /// is a read-only property; return true if so. A readonly property expression
7603 /// depends on various declarations and thus must be treated specially.
7604 ///
IsReadonlyProperty(Expr * E,Sema & S)7605 static bool IsReadonlyProperty(Expr *E, Sema &S) {
7606   const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7607   if (!PropExpr) return false;
7608   if (PropExpr->isImplicitProperty()) return false;
7609 
7610   ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7611   QualType BaseType = PropExpr->isSuperReceiver() ?
7612                             PropExpr->getSuperReceiverType() :
7613                             PropExpr->getBase()->getType();
7614 
7615   if (const ObjCObjectPointerType *OPT =
7616       BaseType->getAsObjCInterfacePointerType())
7617     if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7618       if (S.isPropertyReadonly(PDecl, IFace))
7619         return true;
7620   return false;
7621 }
7622 
IsReadonlyMessage(Expr * E,Sema & S)7623 static bool IsReadonlyMessage(Expr *E, Sema &S) {
7624   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7625   if (!ME) return false;
7626   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7627   ObjCMessageExpr *Base =
7628     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7629   if (!Base) return false;
7630   return Base->getMethodDecl() != 0;
7631 }
7632 
7633 /// Is the given expression (which must be 'const') a reference to a
7634 /// variable which was originally non-const, but which has become
7635 /// 'const' due to being captured within a block?
7636 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)7637 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7638   assert(E->isLValue() && E->getType().isConstQualified());
7639   E = E->IgnoreParens();
7640 
7641   // Must be a reference to a declaration from an enclosing scope.
7642   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7643   if (!DRE) return NCCK_None;
7644   if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7645 
7646   // The declaration must be a variable which is not declared 'const'.
7647   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7648   if (!var) return NCCK_None;
7649   if (var->getType().isConstQualified()) return NCCK_None;
7650   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7651 
7652   // Decide whether the first capture was for a block or a lambda.
7653   DeclContext *DC = S.CurContext;
7654   while (DC->getParent() != var->getDeclContext())
7655     DC = DC->getParent();
7656   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7657 }
7658 
7659 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7660 /// emit an error and return true.  If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)7661 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7662   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7663   SourceLocation OrigLoc = Loc;
7664   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7665                                                               &Loc);
7666   if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7667     IsLV = Expr::MLV_ReadonlyProperty;
7668   else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7669     IsLV = Expr::MLV_InvalidMessageExpression;
7670   if (IsLV == Expr::MLV_Valid)
7671     return false;
7672 
7673   unsigned Diag = 0;
7674   bool NeedType = false;
7675   switch (IsLV) { // C99 6.5.16p2
7676   case Expr::MLV_ConstQualified:
7677     Diag = diag::err_typecheck_assign_const;
7678 
7679     // Use a specialized diagnostic when we're assigning to an object
7680     // from an enclosing function or block.
7681     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7682       if (NCCK == NCCK_Block)
7683         Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7684       else
7685         Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7686       break;
7687     }
7688 
7689     // In ARC, use some specialized diagnostics for occasions where we
7690     // infer 'const'.  These are always pseudo-strong variables.
7691     if (S.getLangOpts().ObjCAutoRefCount) {
7692       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7693       if (declRef && isa<VarDecl>(declRef->getDecl())) {
7694         VarDecl *var = cast<VarDecl>(declRef->getDecl());
7695 
7696         // Use the normal diagnostic if it's pseudo-__strong but the
7697         // user actually wrote 'const'.
7698         if (var->isARCPseudoStrong() &&
7699             (!var->getTypeSourceInfo() ||
7700              !var->getTypeSourceInfo()->getType().isConstQualified())) {
7701           // There are two pseudo-strong cases:
7702           //  - self
7703           ObjCMethodDecl *method = S.getCurMethodDecl();
7704           if (method && var == method->getSelfDecl())
7705             Diag = method->isClassMethod()
7706               ? diag::err_typecheck_arc_assign_self_class_method
7707               : diag::err_typecheck_arc_assign_self;
7708 
7709           //  - fast enumeration variables
7710           else
7711             Diag = diag::err_typecheck_arr_assign_enumeration;
7712 
7713           SourceRange Assign;
7714           if (Loc != OrigLoc)
7715             Assign = SourceRange(OrigLoc, OrigLoc);
7716           S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7717           // We need to preserve the AST regardless, so migration tool
7718           // can do its job.
7719           return false;
7720         }
7721       }
7722     }
7723 
7724     break;
7725   case Expr::MLV_ArrayType:
7726   case Expr::MLV_ArrayTemporary:
7727     Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7728     NeedType = true;
7729     break;
7730   case Expr::MLV_NotObjectType:
7731     Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7732     NeedType = true;
7733     break;
7734   case Expr::MLV_LValueCast:
7735     Diag = diag::err_typecheck_lvalue_casts_not_supported;
7736     break;
7737   case Expr::MLV_Valid:
7738     llvm_unreachable("did not take early return for MLV_Valid");
7739   case Expr::MLV_InvalidExpression:
7740   case Expr::MLV_MemberFunction:
7741   case Expr::MLV_ClassTemporary:
7742     Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7743     break;
7744   case Expr::MLV_IncompleteType:
7745   case Expr::MLV_IncompleteVoidType:
7746     return S.RequireCompleteType(Loc, E->getType(),
7747              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
7748   case Expr::MLV_DuplicateVectorComponents:
7749     Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7750     break;
7751   case Expr::MLV_ReadonlyProperty:
7752   case Expr::MLV_NoSetterProperty:
7753     llvm_unreachable("readonly properties should be processed differently");
7754   case Expr::MLV_InvalidMessageExpression:
7755     Diag = diag::error_readonly_message_assignment;
7756     break;
7757   case Expr::MLV_SubObjCPropertySetting:
7758     Diag = diag::error_no_subobject_property_setting;
7759     break;
7760   }
7761 
7762   SourceRange Assign;
7763   if (Loc != OrigLoc)
7764     Assign = SourceRange(OrigLoc, OrigLoc);
7765   if (NeedType)
7766     S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7767   else
7768     S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7769   return true;
7770 }
7771 
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)7772 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
7773                                          SourceLocation Loc,
7774                                          Sema &Sema) {
7775   // C / C++ fields
7776   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
7777   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
7778   if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
7779     if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
7780       Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
7781   }
7782 
7783   // Objective-C instance variables
7784   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
7785   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
7786   if (OL && OR && OL->getDecl() == OR->getDecl()) {
7787     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
7788     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
7789     if (RL && RR && RL->getDecl() == RR->getDecl())
7790       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
7791   }
7792 }
7793 
7794 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)7795 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7796                                        SourceLocation Loc,
7797                                        QualType CompoundType) {
7798   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7799 
7800   // Verify that LHS is a modifiable lvalue, and emit error if not.
7801   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7802     return QualType();
7803 
7804   QualType LHSType = LHSExpr->getType();
7805   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7806                                              CompoundType;
7807   AssignConvertType ConvTy;
7808   if (CompoundType.isNull()) {
7809     Expr *RHSCheck = RHS.get();
7810 
7811     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
7812 
7813     QualType LHSTy(LHSType);
7814     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7815     if (RHS.isInvalid())
7816       return QualType();
7817     // Special case of NSObject attributes on c-style pointer types.
7818     if (ConvTy == IncompatiblePointer &&
7819         ((Context.isObjCNSObjectType(LHSType) &&
7820           RHSType->isObjCObjectPointerType()) ||
7821          (Context.isObjCNSObjectType(RHSType) &&
7822           LHSType->isObjCObjectPointerType())))
7823       ConvTy = Compatible;
7824 
7825     if (ConvTy == Compatible &&
7826         LHSType->isObjCObjectType())
7827         Diag(Loc, diag::err_objc_object_assignment)
7828           << LHSType;
7829 
7830     // If the RHS is a unary plus or minus, check to see if they = and + are
7831     // right next to each other.  If so, the user may have typo'd "x =+ 4"
7832     // instead of "x += 4".
7833     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7834       RHSCheck = ICE->getSubExpr();
7835     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7836       if ((UO->getOpcode() == UO_Plus ||
7837            UO->getOpcode() == UO_Minus) &&
7838           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7839           // Only if the two operators are exactly adjacent.
7840           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7841           // And there is a space or other character before the subexpr of the
7842           // unary +/-.  We don't want to warn on "x=-1".
7843           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7844           UO->getSubExpr()->getLocStart().isFileID()) {
7845         Diag(Loc, diag::warn_not_compound_assign)
7846           << (UO->getOpcode() == UO_Plus ? "+" : "-")
7847           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7848       }
7849     }
7850 
7851     if (ConvTy == Compatible) {
7852       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
7853         // Warn about retain cycles where a block captures the LHS, but
7854         // not if the LHS is a simple variable into which the block is
7855         // being stored...unless that variable can be captured by reference!
7856         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
7857         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
7858         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
7859           checkRetainCycles(LHSExpr, RHS.get());
7860 
7861         // It is safe to assign a weak reference into a strong variable.
7862         // Although this code can still have problems:
7863         //   id x = self.weakProp;
7864         //   id y = self.weakProp;
7865         // we do not warn to warn spuriously when 'x' and 'y' are on separate
7866         // paths through the function. This should be revisited if
7867         // -Wrepeated-use-of-weak is made flow-sensitive.
7868         DiagnosticsEngine::Level Level =
7869           Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7870                                    RHS.get()->getLocStart());
7871         if (Level != DiagnosticsEngine::Ignored)
7872           getCurFunction()->markSafeWeakUse(RHS.get());
7873 
7874       } else if (getLangOpts().ObjCAutoRefCount) {
7875         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7876       }
7877     }
7878   } else {
7879     // Compound assignment "x += y"
7880     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7881   }
7882 
7883   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7884                                RHS.get(), AA_Assigning))
7885     return QualType();
7886 
7887   CheckForNullPointerDereference(*this, LHSExpr);
7888 
7889   // C99 6.5.16p3: The type of an assignment expression is the type of the
7890   // left operand unless the left operand has qualified type, in which case
7891   // it is the unqualified version of the type of the left operand.
7892   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7893   // is converted to the type of the assignment expression (above).
7894   // C++ 5.17p1: the type of the assignment expression is that of its left
7895   // operand.
7896   return (getLangOpts().CPlusPlus
7897           ? LHSType : LHSType.getUnqualifiedType());
7898 }
7899 
7900 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7901 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7902                                    SourceLocation Loc) {
7903   LHS = S.CheckPlaceholderExpr(LHS.take());
7904   RHS = S.CheckPlaceholderExpr(RHS.take());
7905   if (LHS.isInvalid() || RHS.isInvalid())
7906     return QualType();
7907 
7908   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7909   // operands, but not unary promotions.
7910   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7911 
7912   // So we treat the LHS as a ignored value, and in C++ we allow the
7913   // containing site to determine what should be done with the RHS.
7914   LHS = S.IgnoredValueConversions(LHS.take());
7915   if (LHS.isInvalid())
7916     return QualType();
7917 
7918   S.DiagnoseUnusedExprResult(LHS.get());
7919 
7920   if (!S.getLangOpts().CPlusPlus) {
7921     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7922     if (RHS.isInvalid())
7923       return QualType();
7924     if (!RHS.get()->getType()->isVoidType())
7925       S.RequireCompleteType(Loc, RHS.get()->getType(),
7926                             diag::err_incomplete_type);
7927   }
7928 
7929   return RHS.get()->getType();
7930 }
7931 
7932 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7933 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)7934 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7935                                                ExprValueKind &VK,
7936                                                SourceLocation OpLoc,
7937                                                bool IsInc, bool IsPrefix) {
7938   if (Op->isTypeDependent())
7939     return S.Context.DependentTy;
7940 
7941   QualType ResType = Op->getType();
7942   // Atomic types can be used for increment / decrement where the non-atomic
7943   // versions can, so ignore the _Atomic() specifier for the purpose of
7944   // checking.
7945   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7946     ResType = ResAtomicType->getValueType();
7947 
7948   assert(!ResType.isNull() && "no type for increment/decrement expression");
7949 
7950   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7951     // Decrement of bool is not allowed.
7952     if (!IsInc) {
7953       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7954       return QualType();
7955     }
7956     // Increment of bool sets it to true, but is deprecated.
7957     S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7958   } else if (ResType->isRealType()) {
7959     // OK!
7960   } else if (ResType->isPointerType()) {
7961     // C99 6.5.2.4p2, 6.5.6p2
7962     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7963       return QualType();
7964   } else if (ResType->isObjCObjectPointerType()) {
7965     // On modern runtimes, ObjC pointer arithmetic is forbidden.
7966     // Otherwise, we just need a complete type.
7967     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
7968         checkArithmeticOnObjCPointer(S, OpLoc, Op))
7969       return QualType();
7970   } else if (ResType->isAnyComplexType()) {
7971     // C99 does not support ++/-- on complex types, we allow as an extension.
7972     S.Diag(OpLoc, diag::ext_integer_increment_complex)
7973       << ResType << Op->getSourceRange();
7974   } else if (ResType->isPlaceholderType()) {
7975     ExprResult PR = S.CheckPlaceholderExpr(Op);
7976     if (PR.isInvalid()) return QualType();
7977     return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7978                                           IsInc, IsPrefix);
7979   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7980     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7981   } else {
7982     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7983       << ResType << int(IsInc) << Op->getSourceRange();
7984     return QualType();
7985   }
7986   // At this point, we know we have a real, complex or pointer type.
7987   // Now make sure the operand is a modifiable lvalue.
7988   if (CheckForModifiableLvalue(Op, OpLoc, S))
7989     return QualType();
7990   // In C++, a prefix increment is the same type as the operand. Otherwise
7991   // (in C or with postfix), the increment is the unqualified type of the
7992   // operand.
7993   if (IsPrefix && S.getLangOpts().CPlusPlus) {
7994     VK = VK_LValue;
7995     return ResType;
7996   } else {
7997     VK = VK_RValue;
7998     return ResType.getUnqualifiedType();
7999   }
8000 }
8001 
8002 
8003 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
8004 /// This routine allows us to typecheck complex/recursive expressions
8005 /// where the declaration is needed for type checking. We only need to
8006 /// handle cases when the expression references a function designator
8007 /// or is an lvalue. Here are some examples:
8008 ///  - &(x) => x
8009 ///  - &*****f => f for f a function designator.
8010 ///  - &s.xx => s
8011 ///  - &s.zz[1].yy -> s, if zz is an array
8012 ///  - *(x + 1) -> x, if x is an array
8013 ///  - &"123"[2] -> 0
8014 ///  - & __real__ x -> x
getPrimaryDecl(Expr * E)8015 static ValueDecl *getPrimaryDecl(Expr *E) {
8016   switch (E->getStmtClass()) {
8017   case Stmt::DeclRefExprClass:
8018     return cast<DeclRefExpr>(E)->getDecl();
8019   case Stmt::MemberExprClass:
8020     // If this is an arrow operator, the address is an offset from
8021     // the base's value, so the object the base refers to is
8022     // irrelevant.
8023     if (cast<MemberExpr>(E)->isArrow())
8024       return 0;
8025     // Otherwise, the expression refers to a part of the base
8026     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
8027   case Stmt::ArraySubscriptExprClass: {
8028     // FIXME: This code shouldn't be necessary!  We should catch the implicit
8029     // promotion of register arrays earlier.
8030     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
8031     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
8032       if (ICE->getSubExpr()->getType()->isArrayType())
8033         return getPrimaryDecl(ICE->getSubExpr());
8034     }
8035     return 0;
8036   }
8037   case Stmt::UnaryOperatorClass: {
8038     UnaryOperator *UO = cast<UnaryOperator>(E);
8039 
8040     switch(UO->getOpcode()) {
8041     case UO_Real:
8042     case UO_Imag:
8043     case UO_Extension:
8044       return getPrimaryDecl(UO->getSubExpr());
8045     default:
8046       return 0;
8047     }
8048   }
8049   case Stmt::ParenExprClass:
8050     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
8051   case Stmt::ImplicitCastExprClass:
8052     // If the result of an implicit cast is an l-value, we care about
8053     // the sub-expression; otherwise, the result here doesn't matter.
8054     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
8055   default:
8056     return 0;
8057   }
8058 }
8059 
8060 namespace {
8061   enum {
8062     AO_Bit_Field = 0,
8063     AO_Vector_Element = 1,
8064     AO_Property_Expansion = 2,
8065     AO_Register_Variable = 3,
8066     AO_No_Error = 4
8067   };
8068 }
8069 /// \brief Diagnose invalid operand for address of operations.
8070 ///
8071 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)8072 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
8073                                          Expr *E, unsigned Type) {
8074   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
8075 }
8076 
8077 /// CheckAddressOfOperand - The operand of & must be either a function
8078 /// designator or an lvalue designating an object. If it is an lvalue, the
8079 /// object cannot be declared with storage class register or be a bit field.
8080 /// Note: The usual conversions are *not* applied to the operand of the &
8081 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
8082 /// In C++, the operand might be an overloaded function name, in which case
8083 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(Sema & S,ExprResult & OrigOp,SourceLocation OpLoc)8084 static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
8085                                       SourceLocation OpLoc) {
8086   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
8087     if (PTy->getKind() == BuiltinType::Overload) {
8088       if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
8089         assert(cast<UnaryOperator>(OrigOp.get()->IgnoreParens())->getOpcode()
8090                  == UO_AddrOf);
8091         S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
8092           << OrigOp.get()->getSourceRange();
8093         return QualType();
8094       }
8095 
8096       return S.Context.OverloadTy;
8097     }
8098 
8099     if (PTy->getKind() == BuiltinType::UnknownAny)
8100       return S.Context.UnknownAnyTy;
8101 
8102     if (PTy->getKind() == BuiltinType::BoundMember) {
8103       S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8104         << OrigOp.get()->getSourceRange();
8105       return QualType();
8106     }
8107 
8108     OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
8109     if (OrigOp.isInvalid()) return QualType();
8110   }
8111 
8112   if (OrigOp.get()->isTypeDependent())
8113     return S.Context.DependentTy;
8114 
8115   assert(!OrigOp.get()->getType()->isPlaceholderType());
8116 
8117   // Make sure to ignore parentheses in subsequent checks
8118   Expr *op = OrigOp.get()->IgnoreParens();
8119 
8120   if (S.getLangOpts().C99) {
8121     // Implement C99-only parts of addressof rules.
8122     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
8123       if (uOp->getOpcode() == UO_Deref)
8124         // Per C99 6.5.3.2, the address of a deref always returns a valid result
8125         // (assuming the deref expression is valid).
8126         return uOp->getSubExpr()->getType();
8127     }
8128     // Technically, there should be a check for array subscript
8129     // expressions here, but the result of one is always an lvalue anyway.
8130   }
8131   ValueDecl *dcl = getPrimaryDecl(op);
8132   Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
8133   unsigned AddressOfError = AO_No_Error;
8134 
8135   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
8136     bool sfinae = (bool)S.isSFINAEContext();
8137     S.Diag(OpLoc, S.isSFINAEContext() ? diag::err_typecheck_addrof_temporary
8138                          : diag::ext_typecheck_addrof_temporary)
8139       << op->getType() << op->getSourceRange();
8140     if (sfinae)
8141       return QualType();
8142   } else if (isa<ObjCSelectorExpr>(op)) {
8143     return S.Context.getPointerType(op->getType());
8144   } else if (lval == Expr::LV_MemberFunction) {
8145     // If it's an instance method, make a member pointer.
8146     // The expression must have exactly the form &A::foo.
8147 
8148     // If the underlying expression isn't a decl ref, give up.
8149     if (!isa<DeclRefExpr>(op)) {
8150       S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8151         << OrigOp.get()->getSourceRange();
8152       return QualType();
8153     }
8154     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
8155     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
8156 
8157     // The id-expression was parenthesized.
8158     if (OrigOp.get() != DRE) {
8159       S.Diag(OpLoc, diag::err_parens_pointer_member_function)
8160         << OrigOp.get()->getSourceRange();
8161 
8162     // The method was named without a qualifier.
8163     } else if (!DRE->getQualifier()) {
8164       if (MD->getParent()->getName().empty())
8165         S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8166           << op->getSourceRange();
8167       else {
8168         SmallString<32> Str;
8169         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
8170         S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8171           << op->getSourceRange()
8172           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
8173       }
8174     }
8175 
8176     return S.Context.getMemberPointerType(op->getType(),
8177               S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
8178   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
8179     // C99 6.5.3.2p1
8180     // The operand must be either an l-value or a function designator
8181     if (!op->getType()->isFunctionType()) {
8182       // Use a special diagnostic for loads from property references.
8183       if (isa<PseudoObjectExpr>(op)) {
8184         AddressOfError = AO_Property_Expansion;
8185       } else {
8186         S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8187           << op->getType() << op->getSourceRange();
8188         return QualType();
8189       }
8190     }
8191   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8192     // The operand cannot be a bit-field
8193     AddressOfError = AO_Bit_Field;
8194   } else if (op->getObjectKind() == OK_VectorComponent) {
8195     // The operand cannot be an element of a vector
8196     AddressOfError = AO_Vector_Element;
8197   } else if (dcl) { // C99 6.5.3.2p1
8198     // We have an lvalue with a decl. Make sure the decl is not declared
8199     // with the register storage-class specifier.
8200     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8201       // in C++ it is not error to take address of a register
8202       // variable (c++03 7.1.1P3)
8203       if (vd->getStorageClass() == SC_Register &&
8204           !S.getLangOpts().CPlusPlus) {
8205         AddressOfError = AO_Register_Variable;
8206       }
8207     } else if (isa<FunctionTemplateDecl>(dcl)) {
8208       return S.Context.OverloadTy;
8209     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8210       // Okay: we can take the address of a field.
8211       // Could be a pointer to member, though, if there is an explicit
8212       // scope qualifier for the class.
8213       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8214         DeclContext *Ctx = dcl->getDeclContext();
8215         if (Ctx && Ctx->isRecord()) {
8216           if (dcl->getType()->isReferenceType()) {
8217             S.Diag(OpLoc,
8218                    diag::err_cannot_form_pointer_to_member_of_reference_type)
8219               << dcl->getDeclName() << dcl->getType();
8220             return QualType();
8221           }
8222 
8223           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8224             Ctx = Ctx->getParent();
8225           return S.Context.getMemberPointerType(op->getType(),
8226                 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8227         }
8228       }
8229     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8230       llvm_unreachable("Unknown/unexpected decl type");
8231   }
8232 
8233   if (AddressOfError != AO_No_Error) {
8234     diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
8235     return QualType();
8236   }
8237 
8238   if (lval == Expr::LV_IncompleteVoidType) {
8239     // Taking the address of a void variable is technically illegal, but we
8240     // allow it in cases which are otherwise valid.
8241     // Example: "extern void x; void* y = &x;".
8242     S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8243   }
8244 
8245   // If the operand has type "type", the result has type "pointer to type".
8246   if (op->getType()->isObjCObjectType())
8247     return S.Context.getObjCObjectPointerType(op->getType());
8248   return S.Context.getPointerType(op->getType());
8249 }
8250 
8251 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)8252 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8253                                         SourceLocation OpLoc) {
8254   if (Op->isTypeDependent())
8255     return S.Context.DependentTy;
8256 
8257   ExprResult ConvResult = S.UsualUnaryConversions(Op);
8258   if (ConvResult.isInvalid())
8259     return QualType();
8260   Op = ConvResult.take();
8261   QualType OpTy = Op->getType();
8262   QualType Result;
8263 
8264   if (isa<CXXReinterpretCastExpr>(Op)) {
8265     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8266     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8267                                      Op->getSourceRange());
8268   }
8269 
8270   // Note that per both C89 and C99, indirection is always legal, even if OpTy
8271   // is an incomplete type or void.  It would be possible to warn about
8272   // dereferencing a void pointer, but it's completely well-defined, and such a
8273   // warning is unlikely to catch any mistakes.
8274   if (const PointerType *PT = OpTy->getAs<PointerType>())
8275     Result = PT->getPointeeType();
8276   else if (const ObjCObjectPointerType *OPT =
8277              OpTy->getAs<ObjCObjectPointerType>())
8278     Result = OPT->getPointeeType();
8279   else {
8280     ExprResult PR = S.CheckPlaceholderExpr(Op);
8281     if (PR.isInvalid()) return QualType();
8282     if (PR.take() != Op)
8283       return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8284   }
8285 
8286   if (Result.isNull()) {
8287     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8288       << OpTy << Op->getSourceRange();
8289     return QualType();
8290   }
8291 
8292   // Dereferences are usually l-values...
8293   VK = VK_LValue;
8294 
8295   // ...except that certain expressions are never l-values in C.
8296   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8297     VK = VK_RValue;
8298 
8299   return Result;
8300 }
8301 
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)8302 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8303   tok::TokenKind Kind) {
8304   BinaryOperatorKind Opc;
8305   switch (Kind) {
8306   default: llvm_unreachable("Unknown binop!");
8307   case tok::periodstar:           Opc = BO_PtrMemD; break;
8308   case tok::arrowstar:            Opc = BO_PtrMemI; break;
8309   case tok::star:                 Opc = BO_Mul; break;
8310   case tok::slash:                Opc = BO_Div; break;
8311   case tok::percent:              Opc = BO_Rem; break;
8312   case tok::plus:                 Opc = BO_Add; break;
8313   case tok::minus:                Opc = BO_Sub; break;
8314   case tok::lessless:             Opc = BO_Shl; break;
8315   case tok::greatergreater:       Opc = BO_Shr; break;
8316   case tok::lessequal:            Opc = BO_LE; break;
8317   case tok::less:                 Opc = BO_LT; break;
8318   case tok::greaterequal:         Opc = BO_GE; break;
8319   case tok::greater:              Opc = BO_GT; break;
8320   case tok::exclaimequal:         Opc = BO_NE; break;
8321   case tok::equalequal:           Opc = BO_EQ; break;
8322   case tok::amp:                  Opc = BO_And; break;
8323   case tok::caret:                Opc = BO_Xor; break;
8324   case tok::pipe:                 Opc = BO_Or; break;
8325   case tok::ampamp:               Opc = BO_LAnd; break;
8326   case tok::pipepipe:             Opc = BO_LOr; break;
8327   case tok::equal:                Opc = BO_Assign; break;
8328   case tok::starequal:            Opc = BO_MulAssign; break;
8329   case tok::slashequal:           Opc = BO_DivAssign; break;
8330   case tok::percentequal:         Opc = BO_RemAssign; break;
8331   case tok::plusequal:            Opc = BO_AddAssign; break;
8332   case tok::minusequal:           Opc = BO_SubAssign; break;
8333   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
8334   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
8335   case tok::ampequal:             Opc = BO_AndAssign; break;
8336   case tok::caretequal:           Opc = BO_XorAssign; break;
8337   case tok::pipeequal:            Opc = BO_OrAssign; break;
8338   case tok::comma:                Opc = BO_Comma; break;
8339   }
8340   return Opc;
8341 }
8342 
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)8343 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8344   tok::TokenKind Kind) {
8345   UnaryOperatorKind Opc;
8346   switch (Kind) {
8347   default: llvm_unreachable("Unknown unary op!");
8348   case tok::plusplus:     Opc = UO_PreInc; break;
8349   case tok::minusminus:   Opc = UO_PreDec; break;
8350   case tok::amp:          Opc = UO_AddrOf; break;
8351   case tok::star:         Opc = UO_Deref; break;
8352   case tok::plus:         Opc = UO_Plus; break;
8353   case tok::minus:        Opc = UO_Minus; break;
8354   case tok::tilde:        Opc = UO_Not; break;
8355   case tok::exclaim:      Opc = UO_LNot; break;
8356   case tok::kw___real:    Opc = UO_Real; break;
8357   case tok::kw___imag:    Opc = UO_Imag; break;
8358   case tok::kw___extension__: Opc = UO_Extension; break;
8359   }
8360   return Opc;
8361 }
8362 
8363 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8364 /// This warning is only emitted for builtin assignment operations. It is also
8365 /// suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc)8366 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8367                                    SourceLocation OpLoc) {
8368   if (!S.ActiveTemplateInstantiations.empty())
8369     return;
8370   if (OpLoc.isInvalid() || OpLoc.isMacroID())
8371     return;
8372   LHSExpr = LHSExpr->IgnoreParenImpCasts();
8373   RHSExpr = RHSExpr->IgnoreParenImpCasts();
8374   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8375   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8376   if (!LHSDeclRef || !RHSDeclRef ||
8377       LHSDeclRef->getLocation().isMacroID() ||
8378       RHSDeclRef->getLocation().isMacroID())
8379     return;
8380   const ValueDecl *LHSDecl =
8381     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8382   const ValueDecl *RHSDecl =
8383     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8384   if (LHSDecl != RHSDecl)
8385     return;
8386   if (LHSDecl->getType().isVolatileQualified())
8387     return;
8388   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
8389     if (RefTy->getPointeeType().isVolatileQualified())
8390       return;
8391 
8392   S.Diag(OpLoc, diag::warn_self_assignment)
8393       << LHSDeclRef->getType()
8394       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8395 }
8396 
8397 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
8398 /// operator @p Opc at location @c TokLoc. This routine only supports
8399 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8400 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8401                                     BinaryOperatorKind Opc,
8402                                     Expr *LHSExpr, Expr *RHSExpr) {
8403   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
8404     // The syntax only allows initializer lists on the RHS of assignment,
8405     // so we don't need to worry about accepting invalid code for
8406     // non-assignment operators.
8407     // C++11 5.17p9:
8408     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
8409     //   of x = {} is x = T().
8410     InitializationKind Kind =
8411         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
8412     InitializedEntity Entity =
8413         InitializedEntity::InitializeTemporary(LHSExpr->getType());
8414     InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
8415     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
8416     if (Init.isInvalid())
8417       return Init;
8418     RHSExpr = Init.take();
8419   }
8420 
8421   ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
8422   QualType ResultTy;     // Result type of the binary operator.
8423   // The following two variables are used for compound assignment operators
8424   QualType CompLHSTy;    // Type of LHS after promotions for computation
8425   QualType CompResultTy; // Type of computation result
8426   ExprValueKind VK = VK_RValue;
8427   ExprObjectKind OK = OK_Ordinary;
8428 
8429   switch (Opc) {
8430   case BO_Assign:
8431     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
8432     if (getLangOpts().CPlusPlus &&
8433         LHS.get()->getObjectKind() != OK_ObjCProperty) {
8434       VK = LHS.get()->getValueKind();
8435       OK = LHS.get()->getObjectKind();
8436     }
8437     if (!ResultTy.isNull())
8438       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
8439     break;
8440   case BO_PtrMemD:
8441   case BO_PtrMemI:
8442     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
8443                                             Opc == BO_PtrMemI);
8444     break;
8445   case BO_Mul:
8446   case BO_Div:
8447     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
8448                                            Opc == BO_Div);
8449     break;
8450   case BO_Rem:
8451     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
8452     break;
8453   case BO_Add:
8454     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
8455     break;
8456   case BO_Sub:
8457     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
8458     break;
8459   case BO_Shl:
8460   case BO_Shr:
8461     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
8462     break;
8463   case BO_LE:
8464   case BO_LT:
8465   case BO_GE:
8466   case BO_GT:
8467     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
8468     break;
8469   case BO_EQ:
8470   case BO_NE:
8471     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
8472     break;
8473   case BO_And:
8474   case BO_Xor:
8475   case BO_Or:
8476     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
8477     break;
8478   case BO_LAnd:
8479   case BO_LOr:
8480     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
8481     break;
8482   case BO_MulAssign:
8483   case BO_DivAssign:
8484     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
8485                                                Opc == BO_DivAssign);
8486     CompLHSTy = CompResultTy;
8487     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8488       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8489     break;
8490   case BO_RemAssign:
8491     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
8492     CompLHSTy = CompResultTy;
8493     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8494       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8495     break;
8496   case BO_AddAssign:
8497     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
8498     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8499       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8500     break;
8501   case BO_SubAssign:
8502     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
8503     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8504       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8505     break;
8506   case BO_ShlAssign:
8507   case BO_ShrAssign:
8508     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
8509     CompLHSTy = CompResultTy;
8510     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8511       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8512     break;
8513   case BO_AndAssign:
8514   case BO_XorAssign:
8515   case BO_OrAssign:
8516     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8517     CompLHSTy = CompResultTy;
8518     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8519       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8520     break;
8521   case BO_Comma:
8522     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8523     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
8524       VK = RHS.get()->getValueKind();
8525       OK = RHS.get()->getObjectKind();
8526     }
8527     break;
8528   }
8529   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8530     return ExprError();
8531 
8532   // Check for array bounds violations for both sides of the BinaryOperator
8533   CheckArrayAccess(LHS.get());
8534   CheckArrayAccess(RHS.get());
8535 
8536   if (CompResultTy.isNull())
8537     return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8538                                               ResultTy, VK, OK, OpLoc,
8539                                               FPFeatures.fp_contract));
8540   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8541       OK_ObjCProperty) {
8542     VK = VK_LValue;
8543     OK = LHS.get()->getObjectKind();
8544   }
8545   return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8546                                                     ResultTy, VK, OK, CompLHSTy,
8547                                                     CompResultTy, OpLoc,
8548                                                     FPFeatures.fp_contract));
8549 }
8550 
8551 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8552 /// operators are mixed in a way that suggests that the programmer forgot that
8553 /// comparison operators have higher precedence. The most typical example of
8554 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8555 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8556                                       SourceLocation OpLoc, Expr *LHSExpr,
8557                                       Expr *RHSExpr) {
8558   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
8559   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
8560 
8561   // Check that one of the sides is a comparison operator.
8562   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
8563   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
8564   if (!isLeftComp && !isRightComp)
8565     return;
8566 
8567   // Bitwise operations are sometimes used as eager logical ops.
8568   // Don't diagnose this.
8569   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
8570   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
8571   if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
8572     return;
8573 
8574   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8575                                                    OpLoc)
8576                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
8577   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
8578   SourceRange ParensRange = isLeftComp ?
8579       SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
8580     : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocStart());
8581 
8582   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8583     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
8584   SuggestParentheses(Self, OpLoc,
8585     Self.PDiag(diag::note_precedence_silence) << OpStr,
8586     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
8587   SuggestParentheses(Self, OpLoc,
8588     Self.PDiag(diag::note_precedence_bitwise_first)
8589       << BinaryOperator::getOpcodeStr(Opc),
8590     ParensRange);
8591 }
8592 
8593 /// \brief It accepts a '&' expr that is inside a '|' one.
8594 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8595 /// in parentheses.
8596 static void
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8597 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8598                                        BinaryOperator *Bop) {
8599   assert(Bop->getOpcode() == BO_And);
8600   Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8601       << Bop->getSourceRange() << OpLoc;
8602   SuggestParentheses(Self, Bop->getOperatorLoc(),
8603     Self.PDiag(diag::note_precedence_silence)
8604       << Bop->getOpcodeStr(),
8605     Bop->getSourceRange());
8606 }
8607 
8608 /// \brief It accepts a '&&' expr that is inside a '||' one.
8609 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8610 /// in parentheses.
8611 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8612 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8613                                        BinaryOperator *Bop) {
8614   assert(Bop->getOpcode() == BO_LAnd);
8615   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8616       << Bop->getSourceRange() << OpLoc;
8617   SuggestParentheses(Self, Bop->getOperatorLoc(),
8618     Self.PDiag(diag::note_precedence_silence)
8619       << Bop->getOpcodeStr(),
8620     Bop->getSourceRange());
8621 }
8622 
8623 /// \brief Returns true if the given expression can be evaluated as a constant
8624 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)8625 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8626   bool Res;
8627   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8628 }
8629 
8630 /// \brief Returns true if the given expression can be evaluated as a constant
8631 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)8632 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8633   bool Res;
8634   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8635 }
8636 
8637 /// \brief Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8638 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8639                                              Expr *LHSExpr, Expr *RHSExpr) {
8640   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8641     if (Bop->getOpcode() == BO_LAnd) {
8642       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8643       if (EvaluatesAsFalse(S, RHSExpr))
8644         return;
8645       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8646       if (!EvaluatesAsTrue(S, Bop->getLHS()))
8647         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8648     } else if (Bop->getOpcode() == BO_LOr) {
8649       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8650         // If it's "a || b && 1 || c" we didn't warn earlier for
8651         // "a || b && 1", but warn now.
8652         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8653           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8654       }
8655     }
8656   }
8657 }
8658 
8659 /// \brief Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8660 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8661                                              Expr *LHSExpr, Expr *RHSExpr) {
8662   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8663     if (Bop->getOpcode() == BO_LAnd) {
8664       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8665       if (EvaluatesAsFalse(S, LHSExpr))
8666         return;
8667       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8668       if (!EvaluatesAsTrue(S, Bop->getRHS()))
8669         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8670     }
8671   }
8672 }
8673 
8674 /// \brief Look for '&' in the left or right hand of a '|' expr.
DiagnoseBitwiseAndInBitwiseOr(Sema & S,SourceLocation OpLoc,Expr * OrArg)8675 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8676                                              Expr *OrArg) {
8677   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8678     if (Bop->getOpcode() == BO_And)
8679       return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8680   }
8681 }
8682 
DiagnoseAdditionInShift(Sema & S,SourceLocation OpLoc,Expr * SubExpr,StringRef Shift)8683 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
8684                                     Expr *SubExpr, StringRef Shift) {
8685   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
8686     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
8687       StringRef Op = Bop->getOpcodeStr();
8688       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
8689           << Bop->getSourceRange() << OpLoc << Shift << Op;
8690       SuggestParentheses(S, Bop->getOperatorLoc(),
8691           S.PDiag(diag::note_precedence_silence) << Op,
8692           Bop->getSourceRange());
8693     }
8694   }
8695 }
8696 
8697 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8698 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8699 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8700                                     SourceLocation OpLoc, Expr *LHSExpr,
8701                                     Expr *RHSExpr){
8702   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8703   if (BinaryOperator::isBitwiseOp(Opc))
8704     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8705 
8706   // Diagnose "arg1 & arg2 | arg3"
8707   if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8708     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8709     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8710   }
8711 
8712   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8713   // We don't warn for 'assert(a || b && "bad")' since this is safe.
8714   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8715     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8716     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8717   }
8718 
8719   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
8720       || Opc == BO_Shr) {
8721     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
8722     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
8723     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
8724   }
8725 }
8726 
8727 // Binary Operators.  'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)8728 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8729                             tok::TokenKind Kind,
8730                             Expr *LHSExpr, Expr *RHSExpr) {
8731   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8732   assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8733   assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8734 
8735   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8736   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8737 
8738   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8739 }
8740 
8741 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)8742 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8743                                        BinaryOperatorKind Opc,
8744                                        Expr *LHS, Expr *RHS) {
8745   // Find all of the overloaded operators visible from this
8746   // point. We perform both an operator-name lookup from the local
8747   // scope and an argument-dependent lookup based on the types of
8748   // the arguments.
8749   UnresolvedSet<16> Functions;
8750   OverloadedOperatorKind OverOp
8751     = BinaryOperator::getOverloadedOperator(Opc);
8752   if (Sc && OverOp != OO_None)
8753     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8754                                    RHS->getType(), Functions);
8755 
8756   // Build the (potentially-overloaded, potentially-dependent)
8757   // binary operation.
8758   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8759 }
8760 
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8761 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8762                             BinaryOperatorKind Opc,
8763                             Expr *LHSExpr, Expr *RHSExpr) {
8764   // We want to end up calling one of checkPseudoObjectAssignment
8765   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8766   // both expressions are overloadable or either is type-dependent),
8767   // or CreateBuiltinBinOp (in any other case).  We also want to get
8768   // any placeholder types out of the way.
8769 
8770   // Handle pseudo-objects in the LHS.
8771   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8772     // Assignments with a pseudo-object l-value need special analysis.
8773     if (pty->getKind() == BuiltinType::PseudoObject &&
8774         BinaryOperator::isAssignmentOp(Opc))
8775       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8776 
8777     // Don't resolve overloads if the other type is overloadable.
8778     if (pty->getKind() == BuiltinType::Overload) {
8779       // We can't actually test that if we still have a placeholder,
8780       // though.  Fortunately, none of the exceptions we see in that
8781       // code below are valid when the LHS is an overload set.  Note
8782       // that an overload set can be dependently-typed, but it never
8783       // instantiates to having an overloadable type.
8784       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8785       if (resolvedRHS.isInvalid()) return ExprError();
8786       RHSExpr = resolvedRHS.take();
8787 
8788       if (RHSExpr->isTypeDependent() ||
8789           RHSExpr->getType()->isOverloadableType())
8790         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8791     }
8792 
8793     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8794     if (LHS.isInvalid()) return ExprError();
8795     LHSExpr = LHS.take();
8796   }
8797 
8798   // Handle pseudo-objects in the RHS.
8799   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8800     // An overload in the RHS can potentially be resolved by the type
8801     // being assigned to.
8802     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8803       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8804         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8805 
8806       if (LHSExpr->getType()->isOverloadableType())
8807         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8808 
8809       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8810     }
8811 
8812     // Don't resolve overloads if the other type is overloadable.
8813     if (pty->getKind() == BuiltinType::Overload &&
8814         LHSExpr->getType()->isOverloadableType())
8815       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8816 
8817     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8818     if (!resolvedRHS.isUsable()) return ExprError();
8819     RHSExpr = resolvedRHS.take();
8820   }
8821 
8822   if (getLangOpts().CPlusPlus) {
8823     // If either expression is type-dependent, always build an
8824     // overloaded op.
8825     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8826       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8827 
8828     // Otherwise, build an overloaded op if either expression has an
8829     // overloadable type.
8830     if (LHSExpr->getType()->isOverloadableType() ||
8831         RHSExpr->getType()->isOverloadableType())
8832       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8833   }
8834 
8835   // Build a built-in binary operation.
8836   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8837 }
8838 
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)8839 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8840                                       UnaryOperatorKind Opc,
8841                                       Expr *InputExpr) {
8842   ExprResult Input = Owned(InputExpr);
8843   ExprValueKind VK = VK_RValue;
8844   ExprObjectKind OK = OK_Ordinary;
8845   QualType resultType;
8846   switch (Opc) {
8847   case UO_PreInc:
8848   case UO_PreDec:
8849   case UO_PostInc:
8850   case UO_PostDec:
8851     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8852                                                 Opc == UO_PreInc ||
8853                                                 Opc == UO_PostInc,
8854                                                 Opc == UO_PreInc ||
8855                                                 Opc == UO_PreDec);
8856     break;
8857   case UO_AddrOf:
8858     resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8859     break;
8860   case UO_Deref: {
8861     Input = DefaultFunctionArrayLvalueConversion(Input.take());
8862     if (Input.isInvalid()) return ExprError();
8863     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8864     break;
8865   }
8866   case UO_Plus:
8867   case UO_Minus:
8868     Input = UsualUnaryConversions(Input.take());
8869     if (Input.isInvalid()) return ExprError();
8870     resultType = Input.get()->getType();
8871     if (resultType->isDependentType())
8872       break;
8873     if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8874         resultType->isVectorType())
8875       break;
8876     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8877              resultType->isEnumeralType())
8878       break;
8879     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8880              Opc == UO_Plus &&
8881              resultType->isPointerType())
8882       break;
8883 
8884     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8885       << resultType << Input.get()->getSourceRange());
8886 
8887   case UO_Not: // bitwise complement
8888     Input = UsualUnaryConversions(Input.take());
8889     if (Input.isInvalid())
8890       return ExprError();
8891     resultType = Input.get()->getType();
8892     if (resultType->isDependentType())
8893       break;
8894     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8895     if (resultType->isComplexType() || resultType->isComplexIntegerType())
8896       // C99 does not support '~' for complex conjugation.
8897       Diag(OpLoc, diag::ext_integer_complement_complex)
8898           << resultType << Input.get()->getSourceRange();
8899     else if (resultType->hasIntegerRepresentation())
8900       break;
8901     else if (resultType->isExtVectorType()) {
8902       if (Context.getLangOpts().OpenCL) {
8903         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
8904         // on vector float types.
8905         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
8906         if (!T->isIntegerType())
8907           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8908                            << resultType << Input.get()->getSourceRange());
8909       }
8910       break;
8911     } else {
8912       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8913                        << resultType << Input.get()->getSourceRange());
8914     }
8915     break;
8916 
8917   case UO_LNot: // logical negation
8918     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8919     Input = DefaultFunctionArrayLvalueConversion(Input.take());
8920     if (Input.isInvalid()) return ExprError();
8921     resultType = Input.get()->getType();
8922 
8923     // Though we still have to promote half FP to float...
8924     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
8925       Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8926       resultType = Context.FloatTy;
8927     }
8928 
8929     if (resultType->isDependentType())
8930       break;
8931     if (resultType->isScalarType()) {
8932       // C99 6.5.3.3p1: ok, fallthrough;
8933       if (Context.getLangOpts().CPlusPlus) {
8934         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8935         // operand contextually converted to bool.
8936         Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8937                                   ScalarTypeToBooleanCastKind(resultType));
8938       } else if (Context.getLangOpts().OpenCL &&
8939                  Context.getLangOpts().OpenCLVersion < 120) {
8940         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
8941         // operate on scalar float types.
8942         if (!resultType->isIntegerType())
8943           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8944                            << resultType << Input.get()->getSourceRange());
8945       }
8946     } else if (resultType->isExtVectorType()) {
8947       if (Context.getLangOpts().OpenCL &&
8948           Context.getLangOpts().OpenCLVersion < 120) {
8949         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
8950         // operate on vector float types.
8951         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
8952         if (!T->isIntegerType())
8953           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8954                            << resultType << Input.get()->getSourceRange());
8955       }
8956       // Vector logical not returns the signed variant of the operand type.
8957       resultType = GetSignedVectorType(resultType);
8958       break;
8959     } else {
8960       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8961         << resultType << Input.get()->getSourceRange());
8962     }
8963 
8964     // LNot always has type int. C99 6.5.3.3p5.
8965     // In C++, it's bool. C++ 5.3.1p8
8966     resultType = Context.getLogicalOperationType();
8967     break;
8968   case UO_Real:
8969   case UO_Imag:
8970     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8971     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8972     // complex l-values to ordinary l-values and all other values to r-values.
8973     if (Input.isInvalid()) return ExprError();
8974     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8975       if (Input.get()->getValueKind() != VK_RValue &&
8976           Input.get()->getObjectKind() == OK_Ordinary)
8977         VK = Input.get()->getValueKind();
8978     } else if (!getLangOpts().CPlusPlus) {
8979       // In C, a volatile scalar is read by __imag. In C++, it is not.
8980       Input = DefaultLvalueConversion(Input.take());
8981     }
8982     break;
8983   case UO_Extension:
8984     resultType = Input.get()->getType();
8985     VK = Input.get()->getValueKind();
8986     OK = Input.get()->getObjectKind();
8987     break;
8988   }
8989   if (resultType.isNull() || Input.isInvalid())
8990     return ExprError();
8991 
8992   // Check for array bounds violations in the operand of the UnaryOperator,
8993   // except for the '*' and '&' operators that have to be handled specially
8994   // by CheckArrayAccess (as there are special cases like &array[arraysize]
8995   // that are explicitly defined as valid by the standard).
8996   if (Opc != UO_AddrOf && Opc != UO_Deref)
8997     CheckArrayAccess(Input.get());
8998 
8999   return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
9000                                            VK, OK, OpLoc));
9001 }
9002 
9003 /// \brief Determine whether the given expression is a qualified member
9004 /// access expression, of a form that could be turned into a pointer to member
9005 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)9006 static bool isQualifiedMemberAccess(Expr *E) {
9007   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9008     if (!DRE->getQualifier())
9009       return false;
9010 
9011     ValueDecl *VD = DRE->getDecl();
9012     if (!VD->isCXXClassMember())
9013       return false;
9014 
9015     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
9016       return true;
9017     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
9018       return Method->isInstance();
9019 
9020     return false;
9021   }
9022 
9023   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9024     if (!ULE->getQualifier())
9025       return false;
9026 
9027     for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
9028                                            DEnd = ULE->decls_end();
9029          D != DEnd; ++D) {
9030       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
9031         if (Method->isInstance())
9032           return true;
9033       } else {
9034         // Overload set does not contain methods.
9035         break;
9036       }
9037     }
9038 
9039     return false;
9040   }
9041 
9042   return false;
9043 }
9044 
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)9045 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
9046                               UnaryOperatorKind Opc, Expr *Input) {
9047   // First things first: handle placeholders so that the
9048   // overloaded-operator check considers the right type.
9049   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
9050     // Increment and decrement of pseudo-object references.
9051     if (pty->getKind() == BuiltinType::PseudoObject &&
9052         UnaryOperator::isIncrementDecrementOp(Opc))
9053       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
9054 
9055     // extension is always a builtin operator.
9056     if (Opc == UO_Extension)
9057       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9058 
9059     // & gets special logic for several kinds of placeholder.
9060     // The builtin code knows what to do.
9061     if (Opc == UO_AddrOf &&
9062         (pty->getKind() == BuiltinType::Overload ||
9063          pty->getKind() == BuiltinType::UnknownAny ||
9064          pty->getKind() == BuiltinType::BoundMember))
9065       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9066 
9067     // Anything else needs to be handled now.
9068     ExprResult Result = CheckPlaceholderExpr(Input);
9069     if (Result.isInvalid()) return ExprError();
9070     Input = Result.take();
9071   }
9072 
9073   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
9074       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
9075       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
9076     // Find all of the overloaded operators visible from this
9077     // point. We perform both an operator-name lookup from the local
9078     // scope and an argument-dependent lookup based on the types of
9079     // the arguments.
9080     UnresolvedSet<16> Functions;
9081     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
9082     if (S && OverOp != OO_None)
9083       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
9084                                    Functions);
9085 
9086     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
9087   }
9088 
9089   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9090 }
9091 
9092 // Unary Operators.  'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)9093 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
9094                               tok::TokenKind Op, Expr *Input) {
9095   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
9096 }
9097 
9098 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)9099 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
9100                                 LabelDecl *TheDecl) {
9101   TheDecl->setUsed();
9102   // Create the AST node.  The address of a label always has type 'void*'.
9103   return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
9104                                        Context.getPointerType(Context.VoidTy)));
9105 }
9106 
9107 /// Given the last statement in a statement-expression, check whether
9108 /// the result is a producing expression (like a call to an
9109 /// ns_returns_retained function) and, if so, rebuild it to hoist the
9110 /// release out of the full-expression.  Otherwise, return null.
9111 /// Cannot fail.
maybeRebuildARCConsumingStmt(Stmt * Statement)9112 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
9113   // Should always be wrapped with one of these.
9114   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
9115   if (!cleanups) return 0;
9116 
9117   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
9118   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
9119     return 0;
9120 
9121   // Splice out the cast.  This shouldn't modify any interesting
9122   // features of the statement.
9123   Expr *producer = cast->getSubExpr();
9124   assert(producer->getType() == cast->getType());
9125   assert(producer->getValueKind() == cast->getValueKind());
9126   cleanups->setSubExpr(producer);
9127   return cleanups;
9128 }
9129 
ActOnStartStmtExpr()9130 void Sema::ActOnStartStmtExpr() {
9131   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
9132 }
9133 
ActOnStmtExprError()9134 void Sema::ActOnStmtExprError() {
9135   // Note that function is also called by TreeTransform when leaving a
9136   // StmtExpr scope without rebuilding anything.
9137 
9138   DiscardCleanupsInEvaluationContext();
9139   PopExpressionEvaluationContext();
9140 }
9141 
9142 ExprResult
ActOnStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)9143 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
9144                     SourceLocation RPLoc) { // "({..})"
9145   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
9146   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
9147 
9148   if (hasAnyUnrecoverableErrorsInThisFunction())
9149     DiscardCleanupsInEvaluationContext();
9150   assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
9151   PopExpressionEvaluationContext();
9152 
9153   bool isFileScope
9154     = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
9155   if (isFileScope)
9156     return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
9157 
9158   // FIXME: there are a variety of strange constraints to enforce here, for
9159   // example, it is not possible to goto into a stmt expression apparently.
9160   // More semantic analysis is needed.
9161 
9162   // If there are sub stmts in the compound stmt, take the type of the last one
9163   // as the type of the stmtexpr.
9164   QualType Ty = Context.VoidTy;
9165   bool StmtExprMayBindToTemp = false;
9166   if (!Compound->body_empty()) {
9167     Stmt *LastStmt = Compound->body_back();
9168     LabelStmt *LastLabelStmt = 0;
9169     // If LastStmt is a label, skip down through into the body.
9170     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
9171       LastLabelStmt = Label;
9172       LastStmt = Label->getSubStmt();
9173     }
9174 
9175     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
9176       // Do function/array conversion on the last expression, but not
9177       // lvalue-to-rvalue.  However, initialize an unqualified type.
9178       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
9179       if (LastExpr.isInvalid())
9180         return ExprError();
9181       Ty = LastExpr.get()->getType().getUnqualifiedType();
9182 
9183       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
9184         // In ARC, if the final expression ends in a consume, splice
9185         // the consume out and bind it later.  In the alternate case
9186         // (when dealing with a retainable type), the result
9187         // initialization will create a produce.  In both cases the
9188         // result will be +1, and we'll need to balance that out with
9189         // a bind.
9190         if (Expr *rebuiltLastStmt
9191               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
9192           LastExpr = rebuiltLastStmt;
9193         } else {
9194           LastExpr = PerformCopyInitialization(
9195                             InitializedEntity::InitializeResult(LPLoc,
9196                                                                 Ty,
9197                                                                 false),
9198                                                    SourceLocation(),
9199                                                LastExpr);
9200         }
9201 
9202         if (LastExpr.isInvalid())
9203           return ExprError();
9204         if (LastExpr.get() != 0) {
9205           if (!LastLabelStmt)
9206             Compound->setLastStmt(LastExpr.take());
9207           else
9208             LastLabelStmt->setSubStmt(LastExpr.take());
9209           StmtExprMayBindToTemp = true;
9210         }
9211       }
9212     }
9213   }
9214 
9215   // FIXME: Check that expression type is complete/non-abstract; statement
9216   // expressions are not lvalues.
9217   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
9218   if (StmtExprMayBindToTemp)
9219     return MaybeBindToTemporary(ResStmtExpr);
9220   return Owned(ResStmtExpr);
9221 }
9222 
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)9223 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
9224                                       TypeSourceInfo *TInfo,
9225                                       OffsetOfComponent *CompPtr,
9226                                       unsigned NumComponents,
9227                                       SourceLocation RParenLoc) {
9228   QualType ArgTy = TInfo->getType();
9229   bool Dependent = ArgTy->isDependentType();
9230   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9231 
9232   // We must have at least one component that refers to the type, and the first
9233   // one is known to be a field designator.  Verify that the ArgTy represents
9234   // a struct/union/class.
9235   if (!Dependent && !ArgTy->isRecordType())
9236     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9237                        << ArgTy << TypeRange);
9238 
9239   // Type must be complete per C99 7.17p3 because a declaring a variable
9240   // with an incomplete type would be ill-formed.
9241   if (!Dependent
9242       && RequireCompleteType(BuiltinLoc, ArgTy,
9243                              diag::err_offsetof_incomplete_type, TypeRange))
9244     return ExprError();
9245 
9246   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9247   // GCC extension, diagnose them.
9248   // FIXME: This diagnostic isn't actually visible because the location is in
9249   // a system header!
9250   if (NumComponents != 1)
9251     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9252       << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9253 
9254   bool DidWarnAboutNonPOD = false;
9255   QualType CurrentType = ArgTy;
9256   typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9257   SmallVector<OffsetOfNode, 4> Comps;
9258   SmallVector<Expr*, 4> Exprs;
9259   for (unsigned i = 0; i != NumComponents; ++i) {
9260     const OffsetOfComponent &OC = CompPtr[i];
9261     if (OC.isBrackets) {
9262       // Offset of an array sub-field.  TODO: Should we allow vector elements?
9263       if (!CurrentType->isDependentType()) {
9264         const ArrayType *AT = Context.getAsArrayType(CurrentType);
9265         if(!AT)
9266           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9267                            << CurrentType);
9268         CurrentType = AT->getElementType();
9269       } else
9270         CurrentType = Context.DependentTy;
9271 
9272       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9273       if (IdxRval.isInvalid())
9274         return ExprError();
9275       Expr *Idx = IdxRval.take();
9276 
9277       // The expression must be an integral expression.
9278       // FIXME: An integral constant expression?
9279       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9280           !Idx->getType()->isIntegerType())
9281         return ExprError(Diag(Idx->getLocStart(),
9282                               diag::err_typecheck_subscript_not_integer)
9283                          << Idx->getSourceRange());
9284 
9285       // Record this array index.
9286       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9287       Exprs.push_back(Idx);
9288       continue;
9289     }
9290 
9291     // Offset of a field.
9292     if (CurrentType->isDependentType()) {
9293       // We have the offset of a field, but we can't look into the dependent
9294       // type. Just record the identifier of the field.
9295       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9296       CurrentType = Context.DependentTy;
9297       continue;
9298     }
9299 
9300     // We need to have a complete type to look into.
9301     if (RequireCompleteType(OC.LocStart, CurrentType,
9302                             diag::err_offsetof_incomplete_type))
9303       return ExprError();
9304 
9305     // Look for the designated field.
9306     const RecordType *RC = CurrentType->getAs<RecordType>();
9307     if (!RC)
9308       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9309                        << CurrentType);
9310     RecordDecl *RD = RC->getDecl();
9311 
9312     // C++ [lib.support.types]p5:
9313     //   The macro offsetof accepts a restricted set of type arguments in this
9314     //   International Standard. type shall be a POD structure or a POD union
9315     //   (clause 9).
9316     // C++11 [support.types]p4:
9317     //   If type is not a standard-layout class (Clause 9), the results are
9318     //   undefined.
9319     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9320       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
9321       unsigned DiagID =
9322         LangOpts.CPlusPlus11? diag::warn_offsetof_non_standardlayout_type
9323                             : diag::warn_offsetof_non_pod_type;
9324 
9325       if (!IsSafe && !DidWarnAboutNonPOD &&
9326           DiagRuntimeBehavior(BuiltinLoc, 0,
9327                               PDiag(DiagID)
9328                               << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9329                               << CurrentType))
9330         DidWarnAboutNonPOD = true;
9331     }
9332 
9333     // Look for the field.
9334     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9335     LookupQualifiedName(R, RD);
9336     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9337     IndirectFieldDecl *IndirectMemberDecl = 0;
9338     if (!MemberDecl) {
9339       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9340         MemberDecl = IndirectMemberDecl->getAnonField();
9341     }
9342 
9343     if (!MemberDecl)
9344       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9345                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9346                                                               OC.LocEnd));
9347 
9348     // C99 7.17p3:
9349     //   (If the specified member is a bit-field, the behavior is undefined.)
9350     //
9351     // We diagnose this as an error.
9352     if (MemberDecl->isBitField()) {
9353       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9354         << MemberDecl->getDeclName()
9355         << SourceRange(BuiltinLoc, RParenLoc);
9356       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9357       return ExprError();
9358     }
9359 
9360     RecordDecl *Parent = MemberDecl->getParent();
9361     if (IndirectMemberDecl)
9362       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9363 
9364     // If the member was found in a base class, introduce OffsetOfNodes for
9365     // the base class indirections.
9366     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9367                        /*DetectVirtual=*/false);
9368     if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9369       CXXBasePath &Path = Paths.front();
9370       for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9371            B != BEnd; ++B)
9372         Comps.push_back(OffsetOfNode(B->Base));
9373     }
9374 
9375     if (IndirectMemberDecl) {
9376       for (IndirectFieldDecl::chain_iterator FI =
9377            IndirectMemberDecl->chain_begin(),
9378            FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9379         assert(isa<FieldDecl>(*FI));
9380         Comps.push_back(OffsetOfNode(OC.LocStart,
9381                                      cast<FieldDecl>(*FI), OC.LocEnd));
9382       }
9383     } else
9384       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9385 
9386     CurrentType = MemberDecl->getType().getNonReferenceType();
9387   }
9388 
9389   return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9390                                     TInfo, Comps, Exprs, RParenLoc));
9391 }
9392 
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)9393 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9394                                       SourceLocation BuiltinLoc,
9395                                       SourceLocation TypeLoc,
9396                                       ParsedType ParsedArgTy,
9397                                       OffsetOfComponent *CompPtr,
9398                                       unsigned NumComponents,
9399                                       SourceLocation RParenLoc) {
9400 
9401   TypeSourceInfo *ArgTInfo;
9402   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
9403   if (ArgTy.isNull())
9404     return ExprError();
9405 
9406   if (!ArgTInfo)
9407     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9408 
9409   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9410                               RParenLoc);
9411 }
9412 
9413 
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)9414 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9415                                  Expr *CondExpr,
9416                                  Expr *LHSExpr, Expr *RHSExpr,
9417                                  SourceLocation RPLoc) {
9418   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9419 
9420   ExprValueKind VK = VK_RValue;
9421   ExprObjectKind OK = OK_Ordinary;
9422   QualType resType;
9423   bool ValueDependent = false;
9424   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9425     resType = Context.DependentTy;
9426     ValueDependent = true;
9427   } else {
9428     // The conditional expression is required to be a constant expression.
9429     llvm::APSInt condEval(32);
9430     ExprResult CondICE
9431       = VerifyIntegerConstantExpression(CondExpr, &condEval,
9432           diag::err_typecheck_choose_expr_requires_constant, false);
9433     if (CondICE.isInvalid())
9434       return ExprError();
9435     CondExpr = CondICE.take();
9436 
9437     // If the condition is > zero, then the AST type is the same as the LSHExpr.
9438     Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
9439 
9440     resType = ActiveExpr->getType();
9441     ValueDependent = ActiveExpr->isValueDependent();
9442     VK = ActiveExpr->getValueKind();
9443     OK = ActiveExpr->getObjectKind();
9444   }
9445 
9446   return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9447                                         resType, VK, OK, RPLoc,
9448                                         resType->isDependentType(),
9449                                         ValueDependent));
9450 }
9451 
9452 //===----------------------------------------------------------------------===//
9453 // Clang Extensions.
9454 //===----------------------------------------------------------------------===//
9455 
9456 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)9457 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
9458   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9459   PushBlockScope(CurScope, Block);
9460   CurContext->addDecl(Block);
9461   if (CurScope)
9462     PushDeclContext(CurScope, Block);
9463   else
9464     CurContext = Block;
9465 
9466   getCurBlock()->HasImplicitReturnType = true;
9467 
9468   // Enter a new evaluation context to insulate the block from any
9469   // cleanups from the enclosing full-expression.
9470   PushExpressionEvaluationContext(PotentiallyEvaluated);
9471 }
9472 
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)9473 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
9474                                Scope *CurScope) {
9475   assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
9476   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
9477   BlockScopeInfo *CurBlock = getCurBlock();
9478 
9479   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
9480   QualType T = Sig->getType();
9481 
9482   // FIXME: We should allow unexpanded parameter packs here, but that would,
9483   // in turn, make the block expression contain unexpanded parameter packs.
9484   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
9485     // Drop the parameters.
9486     FunctionProtoType::ExtProtoInfo EPI;
9487     EPI.HasTrailingReturn = false;
9488     EPI.TypeQuals |= DeclSpec::TQ_const;
9489     T = Context.getFunctionType(Context.DependentTy, ArrayRef<QualType>(), EPI);
9490     Sig = Context.getTrivialTypeSourceInfo(T);
9491   }
9492 
9493   // GetTypeForDeclarator always produces a function type for a block
9494   // literal signature.  Furthermore, it is always a FunctionProtoType
9495   // unless the function was written with a typedef.
9496   assert(T->isFunctionType() &&
9497          "GetTypeForDeclarator made a non-function block signature");
9498 
9499   // Look for an explicit signature in that function type.
9500   FunctionProtoTypeLoc ExplicitSignature;
9501 
9502   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
9503   if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
9504 
9505     // Check whether that explicit signature was synthesized by
9506     // GetTypeForDeclarator.  If so, don't save that as part of the
9507     // written signature.
9508     if (ExplicitSignature.getLocalRangeBegin() ==
9509         ExplicitSignature.getLocalRangeEnd()) {
9510       // This would be much cheaper if we stored TypeLocs instead of
9511       // TypeSourceInfos.
9512       TypeLoc Result = ExplicitSignature.getResultLoc();
9513       unsigned Size = Result.getFullDataSize();
9514       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
9515       Sig->getTypeLoc().initializeFullCopy(Result, Size);
9516 
9517       ExplicitSignature = FunctionProtoTypeLoc();
9518     }
9519   }
9520 
9521   CurBlock->TheDecl->setSignatureAsWritten(Sig);
9522   CurBlock->FunctionType = T;
9523 
9524   const FunctionType *Fn = T->getAs<FunctionType>();
9525   QualType RetTy = Fn->getResultType();
9526   bool isVariadic =
9527     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
9528 
9529   CurBlock->TheDecl->setIsVariadic(isVariadic);
9530 
9531   // Don't allow returning a objc interface by value.
9532   if (RetTy->isObjCObjectType()) {
9533     Diag(ParamInfo.getLocStart(),
9534          diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
9535     return;
9536   }
9537 
9538   // Context.DependentTy is used as a placeholder for a missing block
9539   // return type.  TODO:  what should we do with declarators like:
9540   //   ^ * { ... }
9541   // If the answer is "apply template argument deduction"....
9542   if (RetTy != Context.DependentTy) {
9543     CurBlock->ReturnType = RetTy;
9544     CurBlock->TheDecl->setBlockMissingReturnType(false);
9545     CurBlock->HasImplicitReturnType = false;
9546   }
9547 
9548   // Push block parameters from the declarator if we had them.
9549   SmallVector<ParmVarDecl*, 8> Params;
9550   if (ExplicitSignature) {
9551     for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
9552       ParmVarDecl *Param = ExplicitSignature.getArg(I);
9553       if (Param->getIdentifier() == 0 &&
9554           !Param->isImplicit() &&
9555           !Param->isInvalidDecl() &&
9556           !getLangOpts().CPlusPlus)
9557         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9558       Params.push_back(Param);
9559     }
9560 
9561   // Fake up parameter variables if we have a typedef, like
9562   //   ^ fntype { ... }
9563   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
9564     for (FunctionProtoType::arg_type_iterator
9565            I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
9566       ParmVarDecl *Param =
9567         BuildParmVarDeclForTypedef(CurBlock->TheDecl,
9568                                    ParamInfo.getLocStart(),
9569                                    *I);
9570       Params.push_back(Param);
9571     }
9572   }
9573 
9574   // Set the parameters on the block decl.
9575   if (!Params.empty()) {
9576     CurBlock->TheDecl->setParams(Params);
9577     CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9578                              CurBlock->TheDecl->param_end(),
9579                              /*CheckParameterNames=*/false);
9580   }
9581 
9582   // Finally we can process decl attributes.
9583   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9584 
9585   // Put the parameter variables in scope.  We can bail out immediately
9586   // if we don't have any.
9587   if (Params.empty())
9588     return;
9589 
9590   for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9591          E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9592     (*AI)->setOwningFunction(CurBlock->TheDecl);
9593 
9594     // If this has an identifier, add it to the scope stack.
9595     if ((*AI)->getIdentifier()) {
9596       CheckShadow(CurBlock->TheScope, *AI);
9597 
9598       PushOnScopeChains(*AI, CurBlock->TheScope);
9599     }
9600   }
9601 }
9602 
9603 /// ActOnBlockError - If there is an error parsing a block, this callback
9604 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)9605 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9606   // Leave the expression-evaluation context.
9607   DiscardCleanupsInEvaluationContext();
9608   PopExpressionEvaluationContext();
9609 
9610   // Pop off CurBlock, handle nested blocks.
9611   PopDeclContext();
9612   PopFunctionScopeInfo();
9613 }
9614 
9615 /// ActOnBlockStmtExpr - This is called when the body of a block statement
9616 /// literal was successfully completed.  ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)9617 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9618                                     Stmt *Body, Scope *CurScope) {
9619   // If blocks are disabled, emit an error.
9620   if (!LangOpts.Blocks)
9621     Diag(CaretLoc, diag::err_blocks_disable);
9622 
9623   // Leave the expression-evaluation context.
9624   if (hasAnyUnrecoverableErrorsInThisFunction())
9625     DiscardCleanupsInEvaluationContext();
9626   assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9627   PopExpressionEvaluationContext();
9628 
9629   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9630 
9631   if (BSI->HasImplicitReturnType)
9632     deduceClosureReturnType(*BSI);
9633 
9634   PopDeclContext();
9635 
9636   QualType RetTy = Context.VoidTy;
9637   if (!BSI->ReturnType.isNull())
9638     RetTy = BSI->ReturnType;
9639 
9640   bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9641   QualType BlockTy;
9642 
9643   // Set the captured variables on the block.
9644   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9645   SmallVector<BlockDecl::Capture, 4> Captures;
9646   for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9647     CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9648     if (Cap.isThisCapture())
9649       continue;
9650     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9651                               Cap.isNested(), Cap.getCopyExpr());
9652     Captures.push_back(NewCap);
9653   }
9654   BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9655                             BSI->CXXThisCaptureIndex != 0);
9656 
9657   // If the user wrote a function type in some form, try to use that.
9658   if (!BSI->FunctionType.isNull()) {
9659     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9660 
9661     FunctionType::ExtInfo Ext = FTy->getExtInfo();
9662     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9663 
9664     // Turn protoless block types into nullary block types.
9665     if (isa<FunctionNoProtoType>(FTy)) {
9666       FunctionProtoType::ExtProtoInfo EPI;
9667       EPI.ExtInfo = Ext;
9668       BlockTy = Context.getFunctionType(RetTy, ArrayRef<QualType>(), EPI);
9669 
9670     // Otherwise, if we don't need to change anything about the function type,
9671     // preserve its sugar structure.
9672     } else if (FTy->getResultType() == RetTy &&
9673                (!NoReturn || FTy->getNoReturnAttr())) {
9674       BlockTy = BSI->FunctionType;
9675 
9676     // Otherwise, make the minimal modifications to the function type.
9677     } else {
9678       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9679       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9680       EPI.TypeQuals = 0; // FIXME: silently?
9681       EPI.ExtInfo = Ext;
9682       BlockTy =
9683         Context.getFunctionType(RetTy,
9684                                 ArrayRef<QualType>(FPT->arg_type_begin(),
9685                                                    FPT->getNumArgs()),
9686                                 EPI);
9687     }
9688 
9689   // If we don't have a function type, just build one from nothing.
9690   } else {
9691     FunctionProtoType::ExtProtoInfo EPI;
9692     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9693     BlockTy = Context.getFunctionType(RetTy, ArrayRef<QualType>(), EPI);
9694   }
9695 
9696   DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9697                            BSI->TheDecl->param_end());
9698   BlockTy = Context.getBlockPointerType(BlockTy);
9699 
9700   // If needed, diagnose invalid gotos and switches in the block.
9701   if (getCurFunction()->NeedsScopeChecking() &&
9702       !hasAnyUnrecoverableErrorsInThisFunction() &&
9703       !PP.isCodeCompletionEnabled())
9704     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9705 
9706   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9707 
9708   // Try to apply the named return value optimization. We have to check again
9709   // if we can do this, though, because blocks keep return statements around
9710   // to deduce an implicit return type.
9711   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
9712       !BSI->TheDecl->isDependentContext())
9713     computeNRVO(Body, getCurBlock());
9714 
9715   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9716   const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9717   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9718 
9719   // If the block isn't obviously global, i.e. it captures anything at
9720   // all, then we need to do a few things in the surrounding context:
9721   if (Result->getBlockDecl()->hasCaptures()) {
9722     // First, this expression has a new cleanup object.
9723     ExprCleanupObjects.push_back(Result->getBlockDecl());
9724     ExprNeedsCleanups = true;
9725 
9726     // It also gets a branch-protected scope if any of the captured
9727     // variables needs destruction.
9728     for (BlockDecl::capture_const_iterator
9729            ci = Result->getBlockDecl()->capture_begin(),
9730            ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9731       const VarDecl *var = ci->getVariable();
9732       if (var->getType().isDestructedType() != QualType::DK_none) {
9733         getCurFunction()->setHasBranchProtectedScope();
9734         break;
9735       }
9736     }
9737   }
9738 
9739   return Owned(Result);
9740 }
9741 
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)9742 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9743                                         Expr *E, ParsedType Ty,
9744                                         SourceLocation RPLoc) {
9745   TypeSourceInfo *TInfo;
9746   GetTypeFromParser(Ty, &TInfo);
9747   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9748 }
9749 
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)9750 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9751                                 Expr *E, TypeSourceInfo *TInfo,
9752                                 SourceLocation RPLoc) {
9753   Expr *OrigExpr = E;
9754 
9755   // Get the va_list type
9756   QualType VaListType = Context.getBuiltinVaListType();
9757   if (VaListType->isArrayType()) {
9758     // Deal with implicit array decay; for example, on x86-64,
9759     // va_list is an array, but it's supposed to decay to
9760     // a pointer for va_arg.
9761     VaListType = Context.getArrayDecayedType(VaListType);
9762     // Make sure the input expression also decays appropriately.
9763     ExprResult Result = UsualUnaryConversions(E);
9764     if (Result.isInvalid())
9765       return ExprError();
9766     E = Result.take();
9767   } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
9768     // If va_list is a record type and we are compiling in C++ mode,
9769     // check the argument using reference binding.
9770     InitializedEntity Entity
9771       = InitializedEntity::InitializeParameter(Context,
9772           Context.getLValueReferenceType(VaListType), false);
9773     ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
9774     if (Init.isInvalid())
9775       return ExprError();
9776     E = Init.takeAs<Expr>();
9777   } else {
9778     // Otherwise, the va_list argument must be an l-value because
9779     // it is modified by va_arg.
9780     if (!E->isTypeDependent() &&
9781         CheckForModifiableLvalue(E, BuiltinLoc, *this))
9782       return ExprError();
9783   }
9784 
9785   if (!E->isTypeDependent() &&
9786       !Context.hasSameType(VaListType, E->getType())) {
9787     return ExprError(Diag(E->getLocStart(),
9788                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
9789       << OrigExpr->getType() << E->getSourceRange());
9790   }
9791 
9792   if (!TInfo->getType()->isDependentType()) {
9793     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9794                             diag::err_second_parameter_to_va_arg_incomplete,
9795                             TInfo->getTypeLoc()))
9796       return ExprError();
9797 
9798     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9799                                TInfo->getType(),
9800                                diag::err_second_parameter_to_va_arg_abstract,
9801                                TInfo->getTypeLoc()))
9802       return ExprError();
9803 
9804     if (!TInfo->getType().isPODType(Context)) {
9805       Diag(TInfo->getTypeLoc().getBeginLoc(),
9806            TInfo->getType()->isObjCLifetimeType()
9807              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9808              : diag::warn_second_parameter_to_va_arg_not_pod)
9809         << TInfo->getType()
9810         << TInfo->getTypeLoc().getSourceRange();
9811     }
9812 
9813     // Check for va_arg where arguments of the given type will be promoted
9814     // (i.e. this va_arg is guaranteed to have undefined behavior).
9815     QualType PromoteType;
9816     if (TInfo->getType()->isPromotableIntegerType()) {
9817       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9818       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9819         PromoteType = QualType();
9820     }
9821     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9822       PromoteType = Context.DoubleTy;
9823     if (!PromoteType.isNull())
9824       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
9825                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
9826                           << TInfo->getType()
9827                           << PromoteType
9828                           << TInfo->getTypeLoc().getSourceRange());
9829   }
9830 
9831   QualType T = TInfo->getType().getNonLValueExprType(Context);
9832   return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9833 }
9834 
ActOnGNUNullExpr(SourceLocation TokenLoc)9835 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9836   // The type of __null will be int or long, depending on the size of
9837   // pointers on the target.
9838   QualType Ty;
9839   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9840   if (pw == Context.getTargetInfo().getIntWidth())
9841     Ty = Context.IntTy;
9842   else if (pw == Context.getTargetInfo().getLongWidth())
9843     Ty = Context.LongTy;
9844   else if (pw == Context.getTargetInfo().getLongLongWidth())
9845     Ty = Context.LongLongTy;
9846   else {
9847     llvm_unreachable("I don't know size of pointer!");
9848   }
9849 
9850   return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9851 }
9852 
MakeObjCStringLiteralFixItHint(Sema & SemaRef,QualType DstType,Expr * SrcExpr,FixItHint & Hint)9853 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9854                                            Expr *SrcExpr, FixItHint &Hint) {
9855   if (!SemaRef.getLangOpts().ObjC1)
9856     return;
9857 
9858   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9859   if (!PT)
9860     return;
9861 
9862   // Check if the destination is of type 'id'.
9863   if (!PT->isObjCIdType()) {
9864     // Check if the destination is the 'NSString' interface.
9865     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9866     if (!ID || !ID->getIdentifier()->isStr("NSString"))
9867       return;
9868   }
9869 
9870   // Ignore any parens, implicit casts (should only be
9871   // array-to-pointer decays), and not-so-opaque values.  The last is
9872   // important for making this trigger for property assignments.
9873   SrcExpr = SrcExpr->IgnoreParenImpCasts();
9874   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9875     if (OV->getSourceExpr())
9876       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9877 
9878   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9879   if (!SL || !SL->isAscii())
9880     return;
9881 
9882   Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9883 }
9884 
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)9885 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9886                                     SourceLocation Loc,
9887                                     QualType DstType, QualType SrcType,
9888                                     Expr *SrcExpr, AssignmentAction Action,
9889                                     bool *Complained) {
9890   if (Complained)
9891     *Complained = false;
9892 
9893   // Decode the result (notice that AST's are still created for extensions).
9894   bool CheckInferredResultType = false;
9895   bool isInvalid = false;
9896   unsigned DiagKind = 0;
9897   FixItHint Hint;
9898   ConversionFixItGenerator ConvHints;
9899   bool MayHaveConvFixit = false;
9900   bool MayHaveFunctionDiff = false;
9901 
9902   switch (ConvTy) {
9903   case Compatible:
9904       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
9905       return false;
9906 
9907   case PointerToInt:
9908     DiagKind = diag::ext_typecheck_convert_pointer_int;
9909     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9910     MayHaveConvFixit = true;
9911     break;
9912   case IntToPointer:
9913     DiagKind = diag::ext_typecheck_convert_int_pointer;
9914     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9915     MayHaveConvFixit = true;
9916     break;
9917   case IncompatiblePointer:
9918     MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9919     DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9920     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9921       SrcType->isObjCObjectPointerType();
9922     if (Hint.isNull() && !CheckInferredResultType) {
9923       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9924     }
9925     MayHaveConvFixit = true;
9926     break;
9927   case IncompatiblePointerSign:
9928     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9929     break;
9930   case FunctionVoidPointer:
9931     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9932     break;
9933   case IncompatiblePointerDiscardsQualifiers: {
9934     // Perform array-to-pointer decay if necessary.
9935     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9936 
9937     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9938     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9939     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9940       DiagKind = diag::err_typecheck_incompatible_address_space;
9941       break;
9942 
9943 
9944     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9945       DiagKind = diag::err_typecheck_incompatible_ownership;
9946       break;
9947     }
9948 
9949     llvm_unreachable("unknown error case for discarding qualifiers!");
9950     // fallthrough
9951   }
9952   case CompatiblePointerDiscardsQualifiers:
9953     // If the qualifiers lost were because we were applying the
9954     // (deprecated) C++ conversion from a string literal to a char*
9955     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9956     // Ideally, this check would be performed in
9957     // checkPointerTypesForAssignment. However, that would require a
9958     // bit of refactoring (so that the second argument is an
9959     // expression, rather than a type), which should be done as part
9960     // of a larger effort to fix checkPointerTypesForAssignment for
9961     // C++ semantics.
9962     if (getLangOpts().CPlusPlus &&
9963         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9964       return false;
9965     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9966     break;
9967   case IncompatibleNestedPointerQualifiers:
9968     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9969     break;
9970   case IntToBlockPointer:
9971     DiagKind = diag::err_int_to_block_pointer;
9972     break;
9973   case IncompatibleBlockPointer:
9974     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9975     break;
9976   case IncompatibleObjCQualifiedId:
9977     // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9978     // it can give a more specific diagnostic.
9979     DiagKind = diag::warn_incompatible_qualified_id;
9980     break;
9981   case IncompatibleVectors:
9982     DiagKind = diag::warn_incompatible_vectors;
9983     break;
9984   case IncompatibleObjCWeakRef:
9985     DiagKind = diag::err_arc_weak_unavailable_assign;
9986     break;
9987   case Incompatible:
9988     DiagKind = diag::err_typecheck_convert_incompatible;
9989     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9990     MayHaveConvFixit = true;
9991     isInvalid = true;
9992     MayHaveFunctionDiff = true;
9993     break;
9994   }
9995 
9996   QualType FirstType, SecondType;
9997   switch (Action) {
9998   case AA_Assigning:
9999   case AA_Initializing:
10000     // The destination type comes first.
10001     FirstType = DstType;
10002     SecondType = SrcType;
10003     break;
10004 
10005   case AA_Returning:
10006   case AA_Passing:
10007   case AA_Converting:
10008   case AA_Sending:
10009   case AA_Casting:
10010     // The source type comes first.
10011     FirstType = SrcType;
10012     SecondType = DstType;
10013     break;
10014   }
10015 
10016   PartialDiagnostic FDiag = PDiag(DiagKind);
10017   FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
10018 
10019   // If we can fix the conversion, suggest the FixIts.
10020   assert(ConvHints.isNull() || Hint.isNull());
10021   if (!ConvHints.isNull()) {
10022     for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
10023          HE = ConvHints.Hints.end(); HI != HE; ++HI)
10024       FDiag << *HI;
10025   } else {
10026     FDiag << Hint;
10027   }
10028   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
10029 
10030   if (MayHaveFunctionDiff)
10031     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
10032 
10033   Diag(Loc, FDiag);
10034 
10035   if (SecondType == Context.OverloadTy)
10036     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
10037                               FirstType);
10038 
10039   if (CheckInferredResultType)
10040     EmitRelatedResultTypeNote(SrcExpr);
10041 
10042   if (Complained)
10043     *Complained = true;
10044   return isInvalid;
10045 }
10046 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result)10047 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10048                                                  llvm::APSInt *Result) {
10049   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
10050   public:
10051     virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10052       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
10053     }
10054   } Diagnoser;
10055 
10056   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
10057 }
10058 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,bool AllowFold)10059 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10060                                                  llvm::APSInt *Result,
10061                                                  unsigned DiagID,
10062                                                  bool AllowFold) {
10063   class IDDiagnoser : public VerifyICEDiagnoser {
10064     unsigned DiagID;
10065 
10066   public:
10067     IDDiagnoser(unsigned DiagID)
10068       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
10069 
10070     virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10071       S.Diag(Loc, DiagID) << SR;
10072     }
10073   } Diagnoser(DiagID);
10074 
10075   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
10076 }
10077 
diagnoseFold(Sema & S,SourceLocation Loc,SourceRange SR)10078 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
10079                                             SourceRange SR) {
10080   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
10081 }
10082 
10083 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,bool AllowFold)10084 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
10085                                       VerifyICEDiagnoser &Diagnoser,
10086                                       bool AllowFold) {
10087   SourceLocation DiagLoc = E->getLocStart();
10088 
10089   if (getLangOpts().CPlusPlus11) {
10090     // C++11 [expr.const]p5:
10091     //   If an expression of literal class type is used in a context where an
10092     //   integral constant expression is required, then that class type shall
10093     //   have a single non-explicit conversion function to an integral or
10094     //   unscoped enumeration type
10095     ExprResult Converted;
10096     if (!Diagnoser.Suppress) {
10097       class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
10098       public:
10099         CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
10100 
10101         virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
10102                                                  QualType T) {
10103           return S.Diag(Loc, diag::err_ice_not_integral) << T;
10104         }
10105 
10106         virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
10107                                                      SourceLocation Loc,
10108                                                      QualType T) {
10109           return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
10110         }
10111 
10112         virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
10113                                                        SourceLocation Loc,
10114                                                        QualType T,
10115                                                        QualType ConvTy) {
10116           return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
10117         }
10118 
10119         virtual DiagnosticBuilder noteExplicitConv(Sema &S,
10120                                                    CXXConversionDecl *Conv,
10121                                                    QualType ConvTy) {
10122           return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10123                    << ConvTy->isEnumeralType() << ConvTy;
10124         }
10125 
10126         virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
10127                                                     QualType T) {
10128           return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
10129         }
10130 
10131         virtual DiagnosticBuilder noteAmbiguous(Sema &S,
10132                                                 CXXConversionDecl *Conv,
10133                                                 QualType ConvTy) {
10134           return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10135                    << ConvTy->isEnumeralType() << ConvTy;
10136         }
10137 
10138         virtual DiagnosticBuilder diagnoseConversion(Sema &S,
10139                                                      SourceLocation Loc,
10140                                                      QualType T,
10141                                                      QualType ConvTy) {
10142           return DiagnosticBuilder::getEmpty();
10143         }
10144       } ConvertDiagnoser;
10145 
10146       Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
10147                                                      ConvertDiagnoser,
10148                                              /*AllowScopedEnumerations*/ false);
10149     } else {
10150       // The caller wants to silently enquire whether this is an ICE. Don't
10151       // produce any diagnostics if it isn't.
10152       class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
10153       public:
10154         SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
10155 
10156         virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
10157                                                  QualType T) {
10158           return DiagnosticBuilder::getEmpty();
10159         }
10160 
10161         virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
10162                                                      SourceLocation Loc,
10163                                                      QualType T) {
10164           return DiagnosticBuilder::getEmpty();
10165         }
10166 
10167         virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
10168                                                        SourceLocation Loc,
10169                                                        QualType T,
10170                                                        QualType ConvTy) {
10171           return DiagnosticBuilder::getEmpty();
10172         }
10173 
10174         virtual DiagnosticBuilder noteExplicitConv(Sema &S,
10175                                                    CXXConversionDecl *Conv,
10176                                                    QualType ConvTy) {
10177           return DiagnosticBuilder::getEmpty();
10178         }
10179 
10180         virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
10181                                                     QualType T) {
10182           return DiagnosticBuilder::getEmpty();
10183         }
10184 
10185         virtual DiagnosticBuilder noteAmbiguous(Sema &S,
10186                                                 CXXConversionDecl *Conv,
10187                                                 QualType ConvTy) {
10188           return DiagnosticBuilder::getEmpty();
10189         }
10190 
10191         virtual DiagnosticBuilder diagnoseConversion(Sema &S,
10192                                                      SourceLocation Loc,
10193                                                      QualType T,
10194                                                      QualType ConvTy) {
10195           return DiagnosticBuilder::getEmpty();
10196         }
10197       } ConvertDiagnoser;
10198 
10199       Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
10200                                                      ConvertDiagnoser, false);
10201     }
10202     if (Converted.isInvalid())
10203       return Converted;
10204     E = Converted.take();
10205     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
10206       return ExprError();
10207   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
10208     // An ICE must be of integral or unscoped enumeration type.
10209     if (!Diagnoser.Suppress)
10210       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10211     return ExprError();
10212   }
10213 
10214   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
10215   // in the non-ICE case.
10216   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
10217     if (Result)
10218       *Result = E->EvaluateKnownConstInt(Context);
10219     return Owned(E);
10220   }
10221 
10222   Expr::EvalResult EvalResult;
10223   SmallVector<PartialDiagnosticAt, 8> Notes;
10224   EvalResult.Diag = &Notes;
10225 
10226   // Try to evaluate the expression, and produce diagnostics explaining why it's
10227   // not a constant expression as a side-effect.
10228   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
10229                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
10230 
10231   // In C++11, we can rely on diagnostics being produced for any expression
10232   // which is not a constant expression. If no diagnostics were produced, then
10233   // this is a constant expression.
10234   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
10235     if (Result)
10236       *Result = EvalResult.Val.getInt();
10237     return Owned(E);
10238   }
10239 
10240   // If our only note is the usual "invalid subexpression" note, just point
10241   // the caret at its location rather than producing an essentially
10242   // redundant note.
10243   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10244         diag::note_invalid_subexpr_in_const_expr) {
10245     DiagLoc = Notes[0].first;
10246     Notes.clear();
10247   }
10248 
10249   if (!Folded || !AllowFold) {
10250     if (!Diagnoser.Suppress) {
10251       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10252       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10253         Diag(Notes[I].first, Notes[I].second);
10254     }
10255 
10256     return ExprError();
10257   }
10258 
10259   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10260   for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10261     Diag(Notes[I].first, Notes[I].second);
10262 
10263   if (Result)
10264     *Result = EvalResult.Val.getInt();
10265   return Owned(E);
10266 }
10267 
10268 namespace {
10269   // Handle the case where we conclude a expression which we speculatively
10270   // considered to be unevaluated is actually evaluated.
10271   class TransformToPE : public TreeTransform<TransformToPE> {
10272     typedef TreeTransform<TransformToPE> BaseTransform;
10273 
10274   public:
TransformToPE(Sema & SemaRef)10275     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10276 
10277     // Make sure we redo semantic analysis
AlwaysRebuild()10278     bool AlwaysRebuild() { return true; }
10279 
10280     // Make sure we handle LabelStmts correctly.
10281     // FIXME: This does the right thing, but maybe we need a more general
10282     // fix to TreeTransform?
TransformLabelStmt(LabelStmt * S)10283     StmtResult TransformLabelStmt(LabelStmt *S) {
10284       S->getDecl()->setStmt(0);
10285       return BaseTransform::TransformLabelStmt(S);
10286     }
10287 
10288     // We need to special-case DeclRefExprs referring to FieldDecls which
10289     // are not part of a member pointer formation; normal TreeTransforming
10290     // doesn't catch this case because of the way we represent them in the AST.
10291     // FIXME: This is a bit ugly; is it really the best way to handle this
10292     // case?
10293     //
10294     // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)10295     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10296       if (isa<FieldDecl>(E->getDecl()) &&
10297           !SemaRef.isUnevaluatedContext())
10298         return SemaRef.Diag(E->getLocation(),
10299                             diag::err_invalid_non_static_member_use)
10300             << E->getDecl() << E->getSourceRange();
10301 
10302       return BaseTransform::TransformDeclRefExpr(E);
10303     }
10304 
10305     // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)10306     ExprResult TransformUnaryOperator(UnaryOperator *E) {
10307       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10308         return E;
10309 
10310       return BaseTransform::TransformUnaryOperator(E);
10311     }
10312 
TransformLambdaExpr(LambdaExpr * E)10313     ExprResult TransformLambdaExpr(LambdaExpr *E) {
10314       // Lambdas never need to be transformed.
10315       return E;
10316     }
10317   };
10318 }
10319 
TransformToPotentiallyEvaluated(Expr * E)10320 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
10321   assert(ExprEvalContexts.back().Context == Unevaluated &&
10322          "Should only transform unevaluated expressions");
10323   ExprEvalContexts.back().Context =
10324       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10325   if (ExprEvalContexts.back().Context == Unevaluated)
10326     return E;
10327   return TransformToPE(*this).TransformExpr(E);
10328 }
10329 
10330 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,bool IsDecltype)10331 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10332                                       Decl *LambdaContextDecl,
10333                                       bool IsDecltype) {
10334   ExprEvalContexts.push_back(
10335              ExpressionEvaluationContextRecord(NewContext,
10336                                                ExprCleanupObjects.size(),
10337                                                ExprNeedsCleanups,
10338                                                LambdaContextDecl,
10339                                                IsDecltype));
10340   ExprNeedsCleanups = false;
10341   if (!MaybeODRUseExprs.empty())
10342     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
10343 }
10344 
10345 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,ReuseLambdaContextDecl_t,bool IsDecltype)10346 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10347                                       ReuseLambdaContextDecl_t,
10348                                       bool IsDecltype) {
10349   Decl *LambdaContextDecl = ExprEvalContexts.back().LambdaContextDecl;
10350   PushExpressionEvaluationContext(NewContext, LambdaContextDecl, IsDecltype);
10351 }
10352 
PopExpressionEvaluationContext()10353 void Sema::PopExpressionEvaluationContext() {
10354   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
10355 
10356   if (!Rec.Lambdas.empty()) {
10357     if (Rec.Context == Unevaluated) {
10358       // C++11 [expr.prim.lambda]p2:
10359       //   A lambda-expression shall not appear in an unevaluated operand
10360       //   (Clause 5).
10361       for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
10362         Diag(Rec.Lambdas[I]->getLocStart(),
10363              diag::err_lambda_unevaluated_operand);
10364     } else {
10365       // Mark the capture expressions odr-used. This was deferred
10366       // during lambda expression creation.
10367       for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
10368         LambdaExpr *Lambda = Rec.Lambdas[I];
10369         for (LambdaExpr::capture_init_iterator
10370                   C = Lambda->capture_init_begin(),
10371                CEnd = Lambda->capture_init_end();
10372              C != CEnd; ++C) {
10373           MarkDeclarationsReferencedInExpr(*C);
10374         }
10375       }
10376     }
10377   }
10378 
10379   // When are coming out of an unevaluated context, clear out any
10380   // temporaries that we may have created as part of the evaluation of
10381   // the expression in that context: they aren't relevant because they
10382   // will never be constructed.
10383   if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
10384     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
10385                              ExprCleanupObjects.end());
10386     ExprNeedsCleanups = Rec.ParentNeedsCleanups;
10387     CleanupVarDeclMarking();
10388     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
10389   // Otherwise, merge the contexts together.
10390   } else {
10391     ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
10392     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
10393                             Rec.SavedMaybeODRUseExprs.end());
10394   }
10395 
10396   // Pop the current expression evaluation context off the stack.
10397   ExprEvalContexts.pop_back();
10398 }
10399 
DiscardCleanupsInEvaluationContext()10400 void Sema::DiscardCleanupsInEvaluationContext() {
10401   ExprCleanupObjects.erase(
10402          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
10403          ExprCleanupObjects.end());
10404   ExprNeedsCleanups = false;
10405   MaybeODRUseExprs.clear();
10406 }
10407 
HandleExprEvaluationContextForTypeof(Expr * E)10408 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
10409   if (!E->getType()->isVariablyModifiedType())
10410     return E;
10411   return TransformToPotentiallyEvaluated(E);
10412 }
10413 
IsPotentiallyEvaluatedContext(Sema & SemaRef)10414 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
10415   // Do not mark anything as "used" within a dependent context; wait for
10416   // an instantiation.
10417   if (SemaRef.CurContext->isDependentContext())
10418     return false;
10419 
10420   switch (SemaRef.ExprEvalContexts.back().Context) {
10421     case Sema::Unevaluated:
10422       // We are in an expression that is not potentially evaluated; do nothing.
10423       // (Depending on how you read the standard, we actually do need to do
10424       // something here for null pointer constants, but the standard's
10425       // definition of a null pointer constant is completely crazy.)
10426       return false;
10427 
10428     case Sema::ConstantEvaluated:
10429     case Sema::PotentiallyEvaluated:
10430       // We are in a potentially evaluated expression (or a constant-expression
10431       // in C++03); we need to do implicit template instantiation, implicitly
10432       // define class members, and mark most declarations as used.
10433       return true;
10434 
10435     case Sema::PotentiallyEvaluatedIfUsed:
10436       // Referenced declarations will only be used if the construct in the
10437       // containing expression is used.
10438       return false;
10439   }
10440   llvm_unreachable("Invalid context");
10441 }
10442 
10443 /// \brief Mark a function referenced, and check whether it is odr-used
10444 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func)10445 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
10446   assert(Func && "No function?");
10447 
10448   Func->setReferenced();
10449 
10450   // C++11 [basic.def.odr]p3:
10451   //   A function whose name appears as a potentially-evaluated expression is
10452   //   odr-used if it is the unique lookup result or the selected member of a
10453   //   set of overloaded functions [...].
10454   //
10455   // We (incorrectly) mark overload resolution as an unevaluated context, so we
10456   // can just check that here. Skip the rest of this function if we've already
10457   // marked the function as used.
10458   if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
10459     // C++11 [temp.inst]p3:
10460     //   Unless a function template specialization has been explicitly
10461     //   instantiated or explicitly specialized, the function template
10462     //   specialization is implicitly instantiated when the specialization is
10463     //   referenced in a context that requires a function definition to exist.
10464     //
10465     // We consider constexpr function templates to be referenced in a context
10466     // that requires a definition to exist whenever they are referenced.
10467     //
10468     // FIXME: This instantiates constexpr functions too frequently. If this is
10469     // really an unevaluated context (and we're not just in the definition of a
10470     // function template or overload resolution or other cases which we
10471     // incorrectly consider to be unevaluated contexts), and we're not in a
10472     // subexpression which we actually need to evaluate (for instance, a
10473     // template argument, array bound or an expression in a braced-init-list),
10474     // we are not permitted to instantiate this constexpr function definition.
10475     //
10476     // FIXME: This also implicitly defines special members too frequently. They
10477     // are only supposed to be implicitly defined if they are odr-used, but they
10478     // are not odr-used from constant expressions in unevaluated contexts.
10479     // However, they cannot be referenced if they are deleted, and they are
10480     // deleted whenever the implicit definition of the special member would
10481     // fail.
10482     if (!Func->isConstexpr() || Func->getBody())
10483       return;
10484     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
10485     if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
10486       return;
10487   }
10488 
10489   // Note that this declaration has been used.
10490   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
10491     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
10492       if (Constructor->isDefaultConstructor()) {
10493         if (Constructor->isTrivial())
10494           return;
10495         if (!Constructor->isUsed(false))
10496           DefineImplicitDefaultConstructor(Loc, Constructor);
10497       } else if (Constructor->isCopyConstructor()) {
10498         if (!Constructor->isUsed(false))
10499           DefineImplicitCopyConstructor(Loc, Constructor);
10500       } else if (Constructor->isMoveConstructor()) {
10501         if (!Constructor->isUsed(false))
10502           DefineImplicitMoveConstructor(Loc, Constructor);
10503       }
10504     } else if (Constructor->getInheritedConstructor()) {
10505       if (!Constructor->isUsed(false))
10506         DefineInheritingConstructor(Loc, Constructor);
10507     }
10508 
10509     MarkVTableUsed(Loc, Constructor->getParent());
10510   } else if (CXXDestructorDecl *Destructor =
10511                  dyn_cast<CXXDestructorDecl>(Func)) {
10512     if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
10513         !Destructor->isUsed(false))
10514       DefineImplicitDestructor(Loc, Destructor);
10515     if (Destructor->isVirtual())
10516       MarkVTableUsed(Loc, Destructor->getParent());
10517   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
10518     if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
10519         MethodDecl->isOverloadedOperator() &&
10520         MethodDecl->getOverloadedOperator() == OO_Equal) {
10521       if (!MethodDecl->isUsed(false)) {
10522         if (MethodDecl->isCopyAssignmentOperator())
10523           DefineImplicitCopyAssignment(Loc, MethodDecl);
10524         else
10525           DefineImplicitMoveAssignment(Loc, MethodDecl);
10526       }
10527     } else if (isa<CXXConversionDecl>(MethodDecl) &&
10528                MethodDecl->getParent()->isLambda()) {
10529       CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
10530       if (Conversion->isLambdaToBlockPointerConversion())
10531         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
10532       else
10533         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
10534     } else if (MethodDecl->isVirtual())
10535       MarkVTableUsed(Loc, MethodDecl->getParent());
10536   }
10537 
10538   // Recursive functions should be marked when used from another function.
10539   // FIXME: Is this really right?
10540   if (CurContext == Func) return;
10541 
10542   // Resolve the exception specification for any function which is
10543   // used: CodeGen will need it.
10544   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
10545   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
10546     ResolveExceptionSpec(Loc, FPT);
10547 
10548   // Implicit instantiation of function templates and member functions of
10549   // class templates.
10550   if (Func->isImplicitlyInstantiable()) {
10551     bool AlreadyInstantiated = false;
10552     SourceLocation PointOfInstantiation = Loc;
10553     if (FunctionTemplateSpecializationInfo *SpecInfo
10554                               = Func->getTemplateSpecializationInfo()) {
10555       if (SpecInfo->getPointOfInstantiation().isInvalid())
10556         SpecInfo->setPointOfInstantiation(Loc);
10557       else if (SpecInfo->getTemplateSpecializationKind()
10558                  == TSK_ImplicitInstantiation) {
10559         AlreadyInstantiated = true;
10560         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
10561       }
10562     } else if (MemberSpecializationInfo *MSInfo
10563                                 = Func->getMemberSpecializationInfo()) {
10564       if (MSInfo->getPointOfInstantiation().isInvalid())
10565         MSInfo->setPointOfInstantiation(Loc);
10566       else if (MSInfo->getTemplateSpecializationKind()
10567                  == TSK_ImplicitInstantiation) {
10568         AlreadyInstantiated = true;
10569         PointOfInstantiation = MSInfo->getPointOfInstantiation();
10570       }
10571     }
10572 
10573     if (!AlreadyInstantiated || Func->isConstexpr()) {
10574       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
10575           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
10576         PendingLocalImplicitInstantiations.push_back(
10577             std::make_pair(Func, PointOfInstantiation));
10578       else if (Func->isConstexpr())
10579         // Do not defer instantiations of constexpr functions, to avoid the
10580         // expression evaluator needing to call back into Sema if it sees a
10581         // call to such a function.
10582         InstantiateFunctionDefinition(PointOfInstantiation, Func);
10583       else {
10584         PendingInstantiations.push_back(std::make_pair(Func,
10585                                                        PointOfInstantiation));
10586         // Notify the consumer that a function was implicitly instantiated.
10587         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
10588       }
10589     }
10590   } else {
10591     // Walk redefinitions, as some of them may be instantiable.
10592     for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
10593          e(Func->redecls_end()); i != e; ++i) {
10594       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
10595         MarkFunctionReferenced(Loc, *i);
10596     }
10597   }
10598 
10599   // Keep track of used but undefined functions.
10600   if (!Func->isDefined()) {
10601     if (mightHaveNonExternalLinkage(Func))
10602       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
10603     else if (Func->getMostRecentDecl()->isInlined() &&
10604              (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
10605              !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
10606       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
10607   }
10608 
10609   // Normally the must current decl is marked used while processing the use and
10610   // any subsequent decls are marked used by decl merging. This fails with
10611   // template instantiation since marking can happen at the end of the file
10612   // and, because of the two phase lookup, this function is called with at
10613   // decl in the middle of a decl chain. We loop to maintain the invariant
10614   // that once a decl is used, all decls after it are also used.
10615   for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
10616     F->setUsed(true);
10617     if (F == Func)
10618       break;
10619   }
10620 }
10621 
10622 static void
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,VarDecl * var,DeclContext * DC)10623 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
10624                                    VarDecl *var, DeclContext *DC) {
10625   DeclContext *VarDC = var->getDeclContext();
10626 
10627   //  If the parameter still belongs to the translation unit, then
10628   //  we're actually just using one parameter in the declaration of
10629   //  the next.
10630   if (isa<ParmVarDecl>(var) &&
10631       isa<TranslationUnitDecl>(VarDC))
10632     return;
10633 
10634   // For C code, don't diagnose about capture if we're not actually in code
10635   // right now; it's impossible to write a non-constant expression outside of
10636   // function context, so we'll get other (more useful) diagnostics later.
10637   //
10638   // For C++, things get a bit more nasty... it would be nice to suppress this
10639   // diagnostic for certain cases like using a local variable in an array bound
10640   // for a member of a local class, but the correct predicate is not obvious.
10641   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
10642     return;
10643 
10644   if (isa<CXXMethodDecl>(VarDC) &&
10645       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
10646     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
10647       << var->getIdentifier();
10648   } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
10649     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
10650       << var->getIdentifier() << fn->getDeclName();
10651   } else if (isa<BlockDecl>(VarDC)) {
10652     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
10653       << var->getIdentifier();
10654   } else {
10655     // FIXME: Is there any other context where a local variable can be
10656     // declared?
10657     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
10658       << var->getIdentifier();
10659   }
10660 
10661   S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
10662     << var->getIdentifier();
10663 
10664   // FIXME: Add additional diagnostic info about class etc. which prevents
10665   // capture.
10666 }
10667 
10668 /// \brief Capture the given variable in the given lambda expression.
captureInLambda(Sema & S,LambdaScopeInfo * LSI,VarDecl * Var,QualType FieldType,QualType DeclRefType,SourceLocation Loc,bool RefersToEnclosingLocal)10669 static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
10670                                   VarDecl *Var, QualType FieldType,
10671                                   QualType DeclRefType,
10672                                   SourceLocation Loc,
10673                                   bool RefersToEnclosingLocal) {
10674   CXXRecordDecl *Lambda = LSI->Lambda;
10675 
10676   // Build the non-static data member.
10677   FieldDecl *Field
10678     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
10679                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
10680                         0, false, ICIS_NoInit);
10681   Field->setImplicit(true);
10682   Field->setAccess(AS_private);
10683   Lambda->addDecl(Field);
10684 
10685   // C++11 [expr.prim.lambda]p21:
10686   //   When the lambda-expression is evaluated, the entities that
10687   //   are captured by copy are used to direct-initialize each
10688   //   corresponding non-static data member of the resulting closure
10689   //   object. (For array members, the array elements are
10690   //   direct-initialized in increasing subscript order.) These
10691   //   initializations are performed in the (unspecified) order in
10692   //   which the non-static data members are declared.
10693 
10694   // Introduce a new evaluation context for the initialization, so
10695   // that temporaries introduced as part of the capture are retained
10696   // to be re-"exported" from the lambda expression itself.
10697   S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
10698 
10699   // C++ [expr.prim.labda]p12:
10700   //   An entity captured by a lambda-expression is odr-used (3.2) in
10701   //   the scope containing the lambda-expression.
10702   Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
10703                                           DeclRefType, VK_LValue, Loc);
10704   Var->setReferenced(true);
10705   Var->setUsed(true);
10706 
10707   // When the field has array type, create index variables for each
10708   // dimension of the array. We use these index variables to subscript
10709   // the source array, and other clients (e.g., CodeGen) will perform
10710   // the necessary iteration with these index variables.
10711   SmallVector<VarDecl *, 4> IndexVariables;
10712   QualType BaseType = FieldType;
10713   QualType SizeType = S.Context.getSizeType();
10714   LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
10715   while (const ConstantArrayType *Array
10716                         = S.Context.getAsConstantArrayType(BaseType)) {
10717     // Create the iteration variable for this array index.
10718     IdentifierInfo *IterationVarName = 0;
10719     {
10720       SmallString<8> Str;
10721       llvm::raw_svector_ostream OS(Str);
10722       OS << "__i" << IndexVariables.size();
10723       IterationVarName = &S.Context.Idents.get(OS.str());
10724     }
10725     VarDecl *IterationVar
10726       = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
10727                         IterationVarName, SizeType,
10728                         S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
10729                         SC_None, SC_None);
10730     IndexVariables.push_back(IterationVar);
10731     LSI->ArrayIndexVars.push_back(IterationVar);
10732 
10733     // Create a reference to the iteration variable.
10734     ExprResult IterationVarRef
10735       = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
10736     assert(!IterationVarRef.isInvalid() &&
10737            "Reference to invented variable cannot fail!");
10738     IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
10739     assert(!IterationVarRef.isInvalid() &&
10740            "Conversion of invented variable cannot fail!");
10741 
10742     // Subscript the array with this iteration variable.
10743     ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
10744                              Ref, Loc, IterationVarRef.take(), Loc);
10745     if (Subscript.isInvalid()) {
10746       S.CleanupVarDeclMarking();
10747       S.DiscardCleanupsInEvaluationContext();
10748       S.PopExpressionEvaluationContext();
10749       return ExprError();
10750     }
10751 
10752     Ref = Subscript.take();
10753     BaseType = Array->getElementType();
10754   }
10755 
10756   // Construct the entity that we will be initializing. For an array, this
10757   // will be first element in the array, which may require several levels
10758   // of array-subscript entities.
10759   SmallVector<InitializedEntity, 4> Entities;
10760   Entities.reserve(1 + IndexVariables.size());
10761   Entities.push_back(
10762     InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
10763   for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
10764     Entities.push_back(InitializedEntity::InitializeElement(S.Context,
10765                                                             0,
10766                                                             Entities.back()));
10767 
10768   InitializationKind InitKind
10769     = InitializationKind::CreateDirect(Loc, Loc, Loc);
10770   InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
10771   ExprResult Result(true);
10772   if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
10773     Result = Init.Perform(S, Entities.back(), InitKind, Ref);
10774 
10775   // If this initialization requires any cleanups (e.g., due to a
10776   // default argument to a copy constructor), note that for the
10777   // lambda.
10778   if (S.ExprNeedsCleanups)
10779     LSI->ExprNeedsCleanups = true;
10780 
10781   // Exit the expression evaluation context used for the capture.
10782   S.CleanupVarDeclMarking();
10783   S.DiscardCleanupsInEvaluationContext();
10784   S.PopExpressionEvaluationContext();
10785   return Result;
10786 }
10787 
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType)10788 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10789                               TryCaptureKind Kind, SourceLocation EllipsisLoc,
10790                               bool BuildAndDiagnose,
10791                               QualType &CaptureType,
10792                               QualType &DeclRefType) {
10793   bool Nested = false;
10794 
10795   DeclContext *DC = CurContext;
10796   if (Var->getDeclContext() == DC) return true;
10797   if (!Var->hasLocalStorage()) return true;
10798 
10799   bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10800 
10801   // Walk up the stack to determine whether we can capture the variable,
10802   // performing the "simple" checks that don't depend on type. We stop when
10803   // we've either hit the declared scope of the variable or find an existing
10804   // capture of that variable.
10805   CaptureType = Var->getType();
10806   DeclRefType = CaptureType.getNonReferenceType();
10807   bool Explicit = (Kind != TryCapture_Implicit);
10808   unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10809   do {
10810     // Only block literals and lambda expressions can capture; other
10811     // scopes don't work.
10812     DeclContext *ParentDC;
10813     if (isa<BlockDecl>(DC))
10814       ParentDC = DC->getParent();
10815     else if (isa<CXXMethodDecl>(DC) &&
10816              cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10817              cast<CXXRecordDecl>(DC->getParent())->isLambda())
10818       ParentDC = DC->getParent()->getParent();
10819     else {
10820       if (BuildAndDiagnose)
10821         diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10822       return true;
10823     }
10824 
10825     CapturingScopeInfo *CSI =
10826       cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10827 
10828     // Check whether we've already captured it.
10829     if (CSI->CaptureMap.count(Var)) {
10830       // If we found a capture, any subcaptures are nested.
10831       Nested = true;
10832 
10833       // Retrieve the capture type for this variable.
10834       CaptureType = CSI->getCapture(Var).getCaptureType();
10835 
10836       // Compute the type of an expression that refers to this variable.
10837       DeclRefType = CaptureType.getNonReferenceType();
10838 
10839       const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10840       if (Cap.isCopyCapture() &&
10841           !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10842         DeclRefType.addConst();
10843       break;
10844     }
10845 
10846     bool IsBlock = isa<BlockScopeInfo>(CSI);
10847     bool IsLambda = !IsBlock;
10848 
10849     // Lambdas are not allowed to capture unnamed variables
10850     // (e.g. anonymous unions).
10851     // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10852     // assuming that's the intent.
10853     if (IsLambda && !Var->getDeclName()) {
10854       if (BuildAndDiagnose) {
10855         Diag(Loc, diag::err_lambda_capture_anonymous_var);
10856         Diag(Var->getLocation(), diag::note_declared_at);
10857       }
10858       return true;
10859     }
10860 
10861     // Prohibit variably-modified types; they're difficult to deal with.
10862     if (Var->getType()->isVariablyModifiedType()) {
10863       if (BuildAndDiagnose) {
10864         if (IsBlock)
10865           Diag(Loc, diag::err_ref_vm_type);
10866         else
10867           Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10868         Diag(Var->getLocation(), diag::note_previous_decl)
10869           << Var->getDeclName();
10870       }
10871       return true;
10872     }
10873     // Prohibit structs with flexible array members too.
10874     // We cannot capture what is in the tail end of the struct.
10875     if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
10876       if (VTTy->getDecl()->hasFlexibleArrayMember()) {
10877         if (BuildAndDiagnose) {
10878           if (IsBlock)
10879             Diag(Loc, diag::err_ref_flexarray_type);
10880           else
10881             Diag(Loc, diag::err_lambda_capture_flexarray_type)
10882               << Var->getDeclName();
10883           Diag(Var->getLocation(), diag::note_previous_decl)
10884             << Var->getDeclName();
10885         }
10886         return true;
10887       }
10888     }
10889     // Lambdas are not allowed to capture __block variables; they don't
10890     // support the expected semantics.
10891     if (IsLambda && HasBlocksAttr) {
10892       if (BuildAndDiagnose) {
10893         Diag(Loc, diag::err_lambda_capture_block)
10894           << Var->getDeclName();
10895         Diag(Var->getLocation(), diag::note_previous_decl)
10896           << Var->getDeclName();
10897       }
10898       return true;
10899     }
10900 
10901     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10902       // No capture-default
10903       if (BuildAndDiagnose) {
10904         Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10905         Diag(Var->getLocation(), diag::note_previous_decl)
10906           << Var->getDeclName();
10907         Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10908              diag::note_lambda_decl);
10909       }
10910       return true;
10911     }
10912 
10913     FunctionScopesIndex--;
10914     DC = ParentDC;
10915     Explicit = false;
10916   } while (!Var->getDeclContext()->Equals(DC));
10917 
10918   // Walk back down the scope stack, computing the type of the capture at
10919   // each step, checking type-specific requirements, and adding captures if
10920   // requested.
10921   for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10922        ++I) {
10923     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10924 
10925     // Compute the type of the capture and of a reference to the capture within
10926     // this scope.
10927     if (isa<BlockScopeInfo>(CSI)) {
10928       Expr *CopyExpr = 0;
10929       bool ByRef = false;
10930 
10931       // Blocks are not allowed to capture arrays.
10932       if (CaptureType->isArrayType()) {
10933         if (BuildAndDiagnose) {
10934           Diag(Loc, diag::err_ref_array_type);
10935           Diag(Var->getLocation(), diag::note_previous_decl)
10936           << Var->getDeclName();
10937         }
10938         return true;
10939       }
10940 
10941       // Forbid the block-capture of autoreleasing variables.
10942       if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10943         if (BuildAndDiagnose) {
10944           Diag(Loc, diag::err_arc_autoreleasing_capture)
10945             << /*block*/ 0;
10946           Diag(Var->getLocation(), diag::note_previous_decl)
10947             << Var->getDeclName();
10948         }
10949         return true;
10950       }
10951 
10952       if (HasBlocksAttr || CaptureType->isReferenceType()) {
10953         // Block capture by reference does not change the capture or
10954         // declaration reference types.
10955         ByRef = true;
10956       } else {
10957         // Block capture by copy introduces 'const'.
10958         CaptureType = CaptureType.getNonReferenceType().withConst();
10959         DeclRefType = CaptureType;
10960 
10961         if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10962           if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10963             // The capture logic needs the destructor, so make sure we mark it.
10964             // Usually this is unnecessary because most local variables have
10965             // their destructors marked at declaration time, but parameters are
10966             // an exception because it's technically only the call site that
10967             // actually requires the destructor.
10968             if (isa<ParmVarDecl>(Var))
10969               FinalizeVarWithDestructor(Var, Record);
10970 
10971             // According to the blocks spec, the capture of a variable from
10972             // the stack requires a const copy constructor.  This is not true
10973             // of the copy/move done to move a __block variable to the heap.
10974             Expr *DeclRef = new (Context) DeclRefExpr(Var, Nested,
10975                                                       DeclRefType.withConst(),
10976                                                       VK_LValue, Loc);
10977 
10978             ExprResult Result
10979               = PerformCopyInitialization(
10980                   InitializedEntity::InitializeBlock(Var->getLocation(),
10981                                                      CaptureType, false),
10982                   Loc, Owned(DeclRef));
10983 
10984             // Build a full-expression copy expression if initialization
10985             // succeeded and used a non-trivial constructor.  Recover from
10986             // errors by pretending that the copy isn't necessary.
10987             if (!Result.isInvalid() &&
10988                 !cast<CXXConstructExpr>(Result.get())->getConstructor()
10989                    ->isTrivial()) {
10990               Result = MaybeCreateExprWithCleanups(Result);
10991               CopyExpr = Result.take();
10992             }
10993           }
10994         }
10995       }
10996 
10997       // Actually capture the variable.
10998       if (BuildAndDiagnose)
10999         CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
11000                         SourceLocation(), CaptureType, CopyExpr);
11001       Nested = true;
11002       continue;
11003     }
11004 
11005     LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
11006 
11007     // Determine whether we are capturing by reference or by value.
11008     bool ByRef = false;
11009     if (I == N - 1 && Kind != TryCapture_Implicit) {
11010       ByRef = (Kind == TryCapture_ExplicitByRef);
11011     } else {
11012       ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
11013     }
11014 
11015     // Compute the type of the field that will capture this variable.
11016     if (ByRef) {
11017       // C++11 [expr.prim.lambda]p15:
11018       //   An entity is captured by reference if it is implicitly or
11019       //   explicitly captured but not captured by copy. It is
11020       //   unspecified whether additional unnamed non-static data
11021       //   members are declared in the closure type for entities
11022       //   captured by reference.
11023       //
11024       // FIXME: It is not clear whether we want to build an lvalue reference
11025       // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
11026       // to do the former, while EDG does the latter. Core issue 1249 will
11027       // clarify, but for now we follow GCC because it's a more permissive and
11028       // easily defensible position.
11029       CaptureType = Context.getLValueReferenceType(DeclRefType);
11030     } else {
11031       // C++11 [expr.prim.lambda]p14:
11032       //   For each entity captured by copy, an unnamed non-static
11033       //   data member is declared in the closure type. The
11034       //   declaration order of these members is unspecified. The type
11035       //   of such a data member is the type of the corresponding
11036       //   captured entity if the entity is not a reference to an
11037       //   object, or the referenced type otherwise. [Note: If the
11038       //   captured entity is a reference to a function, the
11039       //   corresponding data member is also a reference to a
11040       //   function. - end note ]
11041       if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
11042         if (!RefType->getPointeeType()->isFunctionType())
11043           CaptureType = RefType->getPointeeType();
11044       }
11045 
11046       // Forbid the lambda copy-capture of autoreleasing variables.
11047       if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11048         if (BuildAndDiagnose) {
11049           Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
11050           Diag(Var->getLocation(), diag::note_previous_decl)
11051             << Var->getDeclName();
11052         }
11053         return true;
11054       }
11055     }
11056 
11057     // Capture this variable in the lambda.
11058     Expr *CopyExpr = 0;
11059     if (BuildAndDiagnose) {
11060       ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
11061                                           DeclRefType, Loc,
11062                                           Nested);
11063       if (!Result.isInvalid())
11064         CopyExpr = Result.take();
11065     }
11066 
11067     // Compute the type of a reference to this captured variable.
11068     if (ByRef)
11069       DeclRefType = CaptureType.getNonReferenceType();
11070     else {
11071       // C++ [expr.prim.lambda]p5:
11072       //   The closure type for a lambda-expression has a public inline
11073       //   function call operator [...]. This function call operator is
11074       //   declared const (9.3.1) if and only if the lambda-expression’s
11075       //   parameter-declaration-clause is not followed by mutable.
11076       DeclRefType = CaptureType.getNonReferenceType();
11077       if (!LSI->Mutable && !CaptureType->isReferenceType())
11078         DeclRefType.addConst();
11079     }
11080 
11081     // Add the capture.
11082     if (BuildAndDiagnose)
11083       CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
11084                       EllipsisLoc, CaptureType, CopyExpr);
11085     Nested = true;
11086   }
11087 
11088   return false;
11089 }
11090 
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)11091 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
11092                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
11093   QualType CaptureType;
11094   QualType DeclRefType;
11095   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
11096                             /*BuildAndDiagnose=*/true, CaptureType,
11097                             DeclRefType);
11098 }
11099 
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)11100 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
11101   QualType CaptureType;
11102   QualType DeclRefType;
11103 
11104   // Determine whether we can capture this variable.
11105   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
11106                          /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
11107     return QualType();
11108 
11109   return DeclRefType;
11110 }
11111 
MarkVarDeclODRUsed(Sema & SemaRef,VarDecl * Var,SourceLocation Loc)11112 static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
11113                                SourceLocation Loc) {
11114   // Keep track of used but undefined variables.
11115   // FIXME: We shouldn't suppress this warning for static data members.
11116   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
11117       Var->getLinkage() != ExternalLinkage &&
11118       !(Var->isStaticDataMember() && Var->hasInit())) {
11119     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
11120     if (old.isInvalid()) old = Loc;
11121   }
11122 
11123   SemaRef.tryCaptureVariable(Var, Loc);
11124 
11125   Var->setUsed(true);
11126 }
11127 
UpdateMarkingForLValueToRValue(Expr * E)11128 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
11129   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
11130   // an object that satisfies the requirements for appearing in a
11131   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
11132   // is immediately applied."  This function handles the lvalue-to-rvalue
11133   // conversion part.
11134   MaybeODRUseExprs.erase(E->IgnoreParens());
11135 }
11136 
ActOnConstantExpression(ExprResult Res)11137 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
11138   if (!Res.isUsable())
11139     return Res;
11140 
11141   // If a constant-expression is a reference to a variable where we delay
11142   // deciding whether it is an odr-use, just assume we will apply the
11143   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
11144   // (a non-type template argument), we have special handling anyway.
11145   UpdateMarkingForLValueToRValue(Res.get());
11146   return Res;
11147 }
11148 
CleanupVarDeclMarking()11149 void Sema::CleanupVarDeclMarking() {
11150   for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
11151                                         e = MaybeODRUseExprs.end();
11152        i != e; ++i) {
11153     VarDecl *Var;
11154     SourceLocation Loc;
11155     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
11156       Var = cast<VarDecl>(DRE->getDecl());
11157       Loc = DRE->getLocation();
11158     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
11159       Var = cast<VarDecl>(ME->getMemberDecl());
11160       Loc = ME->getMemberLoc();
11161     } else {
11162       llvm_unreachable("Unexpcted expression");
11163     }
11164 
11165     MarkVarDeclODRUsed(*this, Var, Loc);
11166   }
11167 
11168   MaybeODRUseExprs.clear();
11169 }
11170 
11171 // Mark a VarDecl referenced, and perform the necessary handling to compute
11172 // odr-uses.
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E)11173 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
11174                                     VarDecl *Var, Expr *E) {
11175   Var->setReferenced();
11176 
11177   if (!IsPotentiallyEvaluatedContext(SemaRef))
11178     return;
11179 
11180   // Implicit instantiation of static data members of class templates.
11181   if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
11182     MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
11183     assert(MSInfo && "Missing member specialization information?");
11184     bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
11185     if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
11186         (!AlreadyInstantiated ||
11187          Var->isUsableInConstantExpressions(SemaRef.Context))) {
11188       if (!AlreadyInstantiated) {
11189         // This is a modification of an existing AST node. Notify listeners.
11190         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
11191           L->StaticDataMemberInstantiated(Var);
11192         MSInfo->setPointOfInstantiation(Loc);
11193       }
11194       SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
11195       if (Var->isUsableInConstantExpressions(SemaRef.Context))
11196         // Do not defer instantiations of variables which could be used in a
11197         // constant expression.
11198         SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
11199       else
11200         SemaRef.PendingInstantiations.push_back(
11201             std::make_pair(Var, PointOfInstantiation));
11202     }
11203   }
11204 
11205   // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
11206   // the requirements for appearing in a constant expression (5.19) and, if
11207   // it is an object, the lvalue-to-rvalue conversion (4.1)
11208   // is immediately applied."  We check the first part here, and
11209   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
11210   // Note that we use the C++11 definition everywhere because nothing in
11211   // C++03 depends on whether we get the C++03 version correct. The second
11212   // part does not apply to references, since they are not objects.
11213   const VarDecl *DefVD;
11214   if (E && !isa<ParmVarDecl>(Var) &&
11215       Var->isUsableInConstantExpressions(SemaRef.Context) &&
11216       Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE()) {
11217     if (!Var->getType()->isReferenceType())
11218       SemaRef.MaybeODRUseExprs.insert(E);
11219   } else
11220     MarkVarDeclODRUsed(SemaRef, Var, Loc);
11221 }
11222 
11223 /// \brief Mark a variable referenced, and check whether it is odr-used
11224 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
11225 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)11226 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
11227   DoMarkVarDeclReferenced(*this, Loc, Var, 0);
11228 }
11229 
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E,bool OdrUse)11230 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
11231                                Decl *D, Expr *E, bool OdrUse) {
11232   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
11233     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
11234     return;
11235   }
11236 
11237   SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
11238 
11239   // If this is a call to a method via a cast, also mark the method in the
11240   // derived class used in case codegen can devirtualize the call.
11241   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
11242   if (!ME)
11243     return;
11244   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
11245   if (!MD)
11246     return;
11247   const Expr *Base = ME->getBase();
11248   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
11249   if (!MostDerivedClassDecl)
11250     return;
11251   CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
11252   if (!DM || DM->isPure())
11253     return;
11254   SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
11255 }
11256 
11257 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
MarkDeclRefReferenced(DeclRefExpr * E)11258 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
11259   // TODO: update this with DR# once a defect report is filed.
11260   // C++11 defect. The address of a pure member should not be an ODR use, even
11261   // if it's a qualified reference.
11262   bool OdrUse = true;
11263   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
11264     if (Method->isVirtual())
11265       OdrUse = false;
11266   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
11267 }
11268 
11269 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)11270 void Sema::MarkMemberReferenced(MemberExpr *E) {
11271   // C++11 [basic.def.odr]p2:
11272   //   A non-overloaded function whose name appears as a potentially-evaluated
11273   //   expression or a member of a set of candidate functions, if selected by
11274   //   overload resolution when referred to from a potentially-evaluated
11275   //   expression, is odr-used, unless it is a pure virtual function and its
11276   //   name is not explicitly qualified.
11277   bool OdrUse = true;
11278   if (!E->hasQualifier()) {
11279     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
11280       if (Method->isPure())
11281         OdrUse = false;
11282   }
11283   SourceLocation Loc = E->getMemberLoc().isValid() ?
11284                             E->getMemberLoc() : E->getLocStart();
11285   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
11286 }
11287 
11288 /// \brief Perform marking for a reference to an arbitrary declaration.  It
11289 /// marks the declaration referenced, and performs odr-use checking for functions
11290 /// and variables. This method should not be used when building an normal
11291 /// expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D,bool OdrUse)11292 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
11293   if (OdrUse) {
11294     if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
11295       MarkVariableReferenced(Loc, VD);
11296       return;
11297     }
11298     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
11299       MarkFunctionReferenced(Loc, FD);
11300       return;
11301     }
11302   }
11303   D->setReferenced();
11304 }
11305 
11306 namespace {
11307   // Mark all of the declarations referenced
11308   // FIXME: Not fully implemented yet! We need to have a better understanding
11309   // of when we're entering
11310   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
11311     Sema &S;
11312     SourceLocation Loc;
11313 
11314   public:
11315     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
11316 
MarkReferencedDecls(Sema & S,SourceLocation Loc)11317     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
11318 
11319     bool TraverseTemplateArgument(const TemplateArgument &Arg);
11320     bool TraverseRecordType(RecordType *T);
11321   };
11322 }
11323 
TraverseTemplateArgument(const TemplateArgument & Arg)11324 bool MarkReferencedDecls::TraverseTemplateArgument(
11325   const TemplateArgument &Arg) {
11326   if (Arg.getKind() == TemplateArgument::Declaration) {
11327     if (Decl *D = Arg.getAsDecl())
11328       S.MarkAnyDeclReferenced(Loc, D, true);
11329   }
11330 
11331   return Inherited::TraverseTemplateArgument(Arg);
11332 }
11333 
TraverseRecordType(RecordType * T)11334 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
11335   if (ClassTemplateSpecializationDecl *Spec
11336                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
11337     const TemplateArgumentList &Args = Spec->getTemplateArgs();
11338     return TraverseTemplateArguments(Args.data(), Args.size());
11339   }
11340 
11341   return true;
11342 }
11343 
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)11344 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
11345   MarkReferencedDecls Marker(*this, Loc);
11346   Marker.TraverseType(Context.getCanonicalType(T));
11347 }
11348 
11349 namespace {
11350   /// \brief Helper class that marks all of the declarations referenced by
11351   /// potentially-evaluated subexpressions as "referenced".
11352   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
11353     Sema &S;
11354     bool SkipLocalVariables;
11355 
11356   public:
11357     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
11358 
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables)11359     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
11360       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
11361 
VisitDeclRefExpr(DeclRefExpr * E)11362     void VisitDeclRefExpr(DeclRefExpr *E) {
11363       // If we were asked not to visit local variables, don't.
11364       if (SkipLocalVariables) {
11365         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
11366           if (VD->hasLocalStorage())
11367             return;
11368       }
11369 
11370       S.MarkDeclRefReferenced(E);
11371     }
11372 
VisitMemberExpr(MemberExpr * E)11373     void VisitMemberExpr(MemberExpr *E) {
11374       S.MarkMemberReferenced(E);
11375       Inherited::VisitMemberExpr(E);
11376     }
11377 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)11378     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
11379       S.MarkFunctionReferenced(E->getLocStart(),
11380             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
11381       Visit(E->getSubExpr());
11382     }
11383 
VisitCXXNewExpr(CXXNewExpr * E)11384     void VisitCXXNewExpr(CXXNewExpr *E) {
11385       if (E->getOperatorNew())
11386         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
11387       if (E->getOperatorDelete())
11388         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11389       Inherited::VisitCXXNewExpr(E);
11390     }
11391 
VisitCXXDeleteExpr(CXXDeleteExpr * E)11392     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
11393       if (E->getOperatorDelete())
11394         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11395       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
11396       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11397         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11398         S.MarkFunctionReferenced(E->getLocStart(),
11399                                     S.LookupDestructor(Record));
11400       }
11401 
11402       Inherited::VisitCXXDeleteExpr(E);
11403     }
11404 
VisitCXXConstructExpr(CXXConstructExpr * E)11405     void VisitCXXConstructExpr(CXXConstructExpr *E) {
11406       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
11407       Inherited::VisitCXXConstructExpr(E);
11408     }
11409 
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * E)11410     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11411       Visit(E->getExpr());
11412     }
11413 
VisitImplicitCastExpr(ImplicitCastExpr * E)11414     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11415       Inherited::VisitImplicitCastExpr(E);
11416 
11417       if (E->getCastKind() == CK_LValueToRValue)
11418         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
11419     }
11420   };
11421 }
11422 
11423 /// \brief Mark any declarations that appear within this expression or any
11424 /// potentially-evaluated subexpressions as "referenced".
11425 ///
11426 /// \param SkipLocalVariables If true, don't mark local variables as
11427 /// 'referenced'.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables)11428 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
11429                                             bool SkipLocalVariables) {
11430   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
11431 }
11432 
11433 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
11434 /// of the program being compiled.
11435 ///
11436 /// This routine emits the given diagnostic when the code currently being
11437 /// type-checked is "potentially evaluated", meaning that there is a
11438 /// possibility that the code will actually be executable. Code in sizeof()
11439 /// expressions, code used only during overload resolution, etc., are not
11440 /// potentially evaluated. This routine will suppress such diagnostics or,
11441 /// in the absolutely nutty case of potentially potentially evaluated
11442 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
11443 /// later.
11444 ///
11445 /// This routine should be used for all diagnostics that describe the run-time
11446 /// behavior of a program, such as passing a non-POD value through an ellipsis.
11447 /// Failure to do so will likely result in spurious diagnostics or failures
11448 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)11449 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
11450                                const PartialDiagnostic &PD) {
11451   switch (ExprEvalContexts.back().Context) {
11452   case Unevaluated:
11453     // The argument will never be evaluated, so don't complain.
11454     break;
11455 
11456   case ConstantEvaluated:
11457     // Relevant diagnostics should be produced by constant evaluation.
11458     break;
11459 
11460   case PotentiallyEvaluated:
11461   case PotentiallyEvaluatedIfUsed:
11462     if (Statement && getCurFunctionOrMethodDecl()) {
11463       FunctionScopes.back()->PossiblyUnreachableDiags.
11464         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
11465     }
11466     else
11467       Diag(Loc, PD);
11468 
11469     return true;
11470   }
11471 
11472   return false;
11473 }
11474 
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)11475 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
11476                                CallExpr *CE, FunctionDecl *FD) {
11477   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
11478     return false;
11479 
11480   // If we're inside a decltype's expression, don't check for a valid return
11481   // type or construct temporaries until we know whether this is the last call.
11482   if (ExprEvalContexts.back().IsDecltype) {
11483     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
11484     return false;
11485   }
11486 
11487   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
11488     FunctionDecl *FD;
11489     CallExpr *CE;
11490 
11491   public:
11492     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
11493       : FD(FD), CE(CE) { }
11494 
11495     virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
11496       if (!FD) {
11497         S.Diag(Loc, diag::err_call_incomplete_return)
11498           << T << CE->getSourceRange();
11499         return;
11500       }
11501 
11502       S.Diag(Loc, diag::err_call_function_incomplete_return)
11503         << CE->getSourceRange() << FD->getDeclName() << T;
11504       S.Diag(FD->getLocation(),
11505              diag::note_function_with_incomplete_return_type_declared_here)
11506         << FD->getDeclName();
11507     }
11508   } Diagnoser(FD, CE);
11509 
11510   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
11511     return true;
11512 
11513   return false;
11514 }
11515 
11516 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
11517 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)11518 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
11519   SourceLocation Loc;
11520 
11521   unsigned diagnostic = diag::warn_condition_is_assignment;
11522   bool IsOrAssign = false;
11523 
11524   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
11525     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
11526       return;
11527 
11528     IsOrAssign = Op->getOpcode() == BO_OrAssign;
11529 
11530     // Greylist some idioms by putting them into a warning subcategory.
11531     if (ObjCMessageExpr *ME
11532           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
11533       Selector Sel = ME->getSelector();
11534 
11535       // self = [<foo> init...]
11536       if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
11537         diagnostic = diag::warn_condition_is_idiomatic_assignment;
11538 
11539       // <foo> = [<bar> nextObject]
11540       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
11541         diagnostic = diag::warn_condition_is_idiomatic_assignment;
11542     }
11543 
11544     Loc = Op->getOperatorLoc();
11545   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
11546     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
11547       return;
11548 
11549     IsOrAssign = Op->getOperator() == OO_PipeEqual;
11550     Loc = Op->getOperatorLoc();
11551   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
11552     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
11553   else {
11554     // Not an assignment.
11555     return;
11556   }
11557 
11558   Diag(Loc, diagnostic) << E->getSourceRange();
11559 
11560   SourceLocation Open = E->getLocStart();
11561   SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
11562   Diag(Loc, diag::note_condition_assign_silence)
11563         << FixItHint::CreateInsertion(Open, "(")
11564         << FixItHint::CreateInsertion(Close, ")");
11565 
11566   if (IsOrAssign)
11567     Diag(Loc, diag::note_condition_or_assign_to_comparison)
11568       << FixItHint::CreateReplacement(Loc, "!=");
11569   else
11570     Diag(Loc, diag::note_condition_assign_to_comparison)
11571       << FixItHint::CreateReplacement(Loc, "==");
11572 }
11573 
11574 /// \brief Redundant parentheses over an equality comparison can indicate
11575 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)11576 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
11577   // Don't warn if the parens came from a macro.
11578   SourceLocation parenLoc = ParenE->getLocStart();
11579   if (parenLoc.isInvalid() || parenLoc.isMacroID())
11580     return;
11581   // Don't warn for dependent expressions.
11582   if (ParenE->isTypeDependent())
11583     return;
11584 
11585   Expr *E = ParenE->IgnoreParens();
11586 
11587   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
11588     if (opE->getOpcode() == BO_EQ &&
11589         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
11590                                                            == Expr::MLV_Valid) {
11591       SourceLocation Loc = opE->getOperatorLoc();
11592 
11593       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
11594       SourceRange ParenERange = ParenE->getSourceRange();
11595       Diag(Loc, diag::note_equality_comparison_silence)
11596         << FixItHint::CreateRemoval(ParenERange.getBegin())
11597         << FixItHint::CreateRemoval(ParenERange.getEnd());
11598       Diag(Loc, diag::note_equality_comparison_to_assign)
11599         << FixItHint::CreateReplacement(Loc, "=");
11600     }
11601 }
11602 
CheckBooleanCondition(Expr * E,SourceLocation Loc)11603 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
11604   DiagnoseAssignmentAsCondition(E);
11605   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
11606     DiagnoseEqualityWithExtraParens(parenE);
11607 
11608   ExprResult result = CheckPlaceholderExpr(E);
11609   if (result.isInvalid()) return ExprError();
11610   E = result.take();
11611 
11612   if (!E->isTypeDependent()) {
11613     if (getLangOpts().CPlusPlus)
11614       return CheckCXXBooleanCondition(E); // C++ 6.4p4
11615 
11616     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
11617     if (ERes.isInvalid())
11618       return ExprError();
11619     E = ERes.take();
11620 
11621     QualType T = E->getType();
11622     if (!T->isScalarType()) { // C99 6.8.4.1p1
11623       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
11624         << T << E->getSourceRange();
11625       return ExprError();
11626     }
11627   }
11628 
11629   return Owned(E);
11630 }
11631 
ActOnBooleanCondition(Scope * S,SourceLocation Loc,Expr * SubExpr)11632 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
11633                                        Expr *SubExpr) {
11634   if (!SubExpr)
11635     return ExprError();
11636 
11637   return CheckBooleanCondition(SubExpr, Loc);
11638 }
11639 
11640 namespace {
11641   /// A visitor for rebuilding a call to an __unknown_any expression
11642   /// to have an appropriate type.
11643   struct RebuildUnknownAnyFunction
11644     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
11645 
11646     Sema &S;
11647 
RebuildUnknownAnyFunction__anona8222b7c0711::RebuildUnknownAnyFunction11648     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
11649 
VisitStmt__anona8222b7c0711::RebuildUnknownAnyFunction11650     ExprResult VisitStmt(Stmt *S) {
11651       llvm_unreachable("unexpected statement!");
11652     }
11653 
VisitExpr__anona8222b7c0711::RebuildUnknownAnyFunction11654     ExprResult VisitExpr(Expr *E) {
11655       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
11656         << E->getSourceRange();
11657       return ExprError();
11658     }
11659 
11660     /// Rebuild an expression which simply semantically wraps another
11661     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anona8222b7c0711::RebuildUnknownAnyFunction11662     template <class T> ExprResult rebuildSugarExpr(T *E) {
11663       ExprResult SubResult = Visit(E->getSubExpr());
11664       if (SubResult.isInvalid()) return ExprError();
11665 
11666       Expr *SubExpr = SubResult.take();
11667       E->setSubExpr(SubExpr);
11668       E->setType(SubExpr->getType());
11669       E->setValueKind(SubExpr->getValueKind());
11670       assert(E->getObjectKind() == OK_Ordinary);
11671       return E;
11672     }
11673 
VisitParenExpr__anona8222b7c0711::RebuildUnknownAnyFunction11674     ExprResult VisitParenExpr(ParenExpr *E) {
11675       return rebuildSugarExpr(E);
11676     }
11677 
VisitUnaryExtension__anona8222b7c0711::RebuildUnknownAnyFunction11678     ExprResult VisitUnaryExtension(UnaryOperator *E) {
11679       return rebuildSugarExpr(E);
11680     }
11681 
VisitUnaryAddrOf__anona8222b7c0711::RebuildUnknownAnyFunction11682     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11683       ExprResult SubResult = Visit(E->getSubExpr());
11684       if (SubResult.isInvalid()) return ExprError();
11685 
11686       Expr *SubExpr = SubResult.take();
11687       E->setSubExpr(SubExpr);
11688       E->setType(S.Context.getPointerType(SubExpr->getType()));
11689       assert(E->getValueKind() == VK_RValue);
11690       assert(E->getObjectKind() == OK_Ordinary);
11691       return E;
11692     }
11693 
resolveDecl__anona8222b7c0711::RebuildUnknownAnyFunction11694     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
11695       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
11696 
11697       E->setType(VD->getType());
11698 
11699       assert(E->getValueKind() == VK_RValue);
11700       if (S.getLangOpts().CPlusPlus &&
11701           !(isa<CXXMethodDecl>(VD) &&
11702             cast<CXXMethodDecl>(VD)->isInstance()))
11703         E->setValueKind(VK_LValue);
11704 
11705       return E;
11706     }
11707 
VisitMemberExpr__anona8222b7c0711::RebuildUnknownAnyFunction11708     ExprResult VisitMemberExpr(MemberExpr *E) {
11709       return resolveDecl(E, E->getMemberDecl());
11710     }
11711 
VisitDeclRefExpr__anona8222b7c0711::RebuildUnknownAnyFunction11712     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11713       return resolveDecl(E, E->getDecl());
11714     }
11715   };
11716 }
11717 
11718 /// Given a function expression of unknown-any type, try to rebuild it
11719 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)11720 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
11721   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
11722   if (Result.isInvalid()) return ExprError();
11723   return S.DefaultFunctionArrayConversion(Result.take());
11724 }
11725 
11726 namespace {
11727   /// A visitor for rebuilding an expression of type __unknown_anytype
11728   /// into one which resolves the type directly on the referring
11729   /// expression.  Strict preservation of the original source
11730   /// structure is not a goal.
11731   struct RebuildUnknownAnyExpr
11732     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
11733 
11734     Sema &S;
11735 
11736     /// The current destination type.
11737     QualType DestType;
11738 
RebuildUnknownAnyExpr__anona8222b7c0811::RebuildUnknownAnyExpr11739     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
11740       : S(S), DestType(CastType) {}
11741 
VisitStmt__anona8222b7c0811::RebuildUnknownAnyExpr11742     ExprResult VisitStmt(Stmt *S) {
11743       llvm_unreachable("unexpected statement!");
11744     }
11745 
VisitExpr__anona8222b7c0811::RebuildUnknownAnyExpr11746     ExprResult VisitExpr(Expr *E) {
11747       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11748         << E->getSourceRange();
11749       return ExprError();
11750     }
11751 
11752     ExprResult VisitCallExpr(CallExpr *E);
11753     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
11754 
11755     /// Rebuild an expression which simply semantically wraps another
11756     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anona8222b7c0811::RebuildUnknownAnyExpr11757     template <class T> ExprResult rebuildSugarExpr(T *E) {
11758       ExprResult SubResult = Visit(E->getSubExpr());
11759       if (SubResult.isInvalid()) return ExprError();
11760       Expr *SubExpr = SubResult.take();
11761       E->setSubExpr(SubExpr);
11762       E->setType(SubExpr->getType());
11763       E->setValueKind(SubExpr->getValueKind());
11764       assert(E->getObjectKind() == OK_Ordinary);
11765       return E;
11766     }
11767 
VisitParenExpr__anona8222b7c0811::RebuildUnknownAnyExpr11768     ExprResult VisitParenExpr(ParenExpr *E) {
11769       return rebuildSugarExpr(E);
11770     }
11771 
VisitUnaryExtension__anona8222b7c0811::RebuildUnknownAnyExpr11772     ExprResult VisitUnaryExtension(UnaryOperator *E) {
11773       return rebuildSugarExpr(E);
11774     }
11775 
VisitUnaryAddrOf__anona8222b7c0811::RebuildUnknownAnyExpr11776     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11777       const PointerType *Ptr = DestType->getAs<PointerType>();
11778       if (!Ptr) {
11779         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
11780           << E->getSourceRange();
11781         return ExprError();
11782       }
11783       assert(E->getValueKind() == VK_RValue);
11784       assert(E->getObjectKind() == OK_Ordinary);
11785       E->setType(DestType);
11786 
11787       // Build the sub-expression as if it were an object of the pointee type.
11788       DestType = Ptr->getPointeeType();
11789       ExprResult SubResult = Visit(E->getSubExpr());
11790       if (SubResult.isInvalid()) return ExprError();
11791       E->setSubExpr(SubResult.take());
11792       return E;
11793     }
11794 
11795     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
11796 
11797     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
11798 
VisitMemberExpr__anona8222b7c0811::RebuildUnknownAnyExpr11799     ExprResult VisitMemberExpr(MemberExpr *E) {
11800       return resolveDecl(E, E->getMemberDecl());
11801     }
11802 
VisitDeclRefExpr__anona8222b7c0811::RebuildUnknownAnyExpr11803     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11804       return resolveDecl(E, E->getDecl());
11805     }
11806   };
11807 }
11808 
11809 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)11810 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
11811   Expr *CalleeExpr = E->getCallee();
11812 
11813   enum FnKind {
11814     FK_MemberFunction,
11815     FK_FunctionPointer,
11816     FK_BlockPointer
11817   };
11818 
11819   FnKind Kind;
11820   QualType CalleeType = CalleeExpr->getType();
11821   if (CalleeType == S.Context.BoundMemberTy) {
11822     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
11823     Kind = FK_MemberFunction;
11824     CalleeType = Expr::findBoundMemberType(CalleeExpr);
11825   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
11826     CalleeType = Ptr->getPointeeType();
11827     Kind = FK_FunctionPointer;
11828   } else {
11829     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
11830     Kind = FK_BlockPointer;
11831   }
11832   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
11833 
11834   // Verify that this is a legal result type of a function.
11835   if (DestType->isArrayType() || DestType->isFunctionType()) {
11836     unsigned diagID = diag::err_func_returning_array_function;
11837     if (Kind == FK_BlockPointer)
11838       diagID = diag::err_block_returning_array_function;
11839 
11840     S.Diag(E->getExprLoc(), diagID)
11841       << DestType->isFunctionType() << DestType;
11842     return ExprError();
11843   }
11844 
11845   // Otherwise, go ahead and set DestType as the call's result.
11846   E->setType(DestType.getNonLValueExprType(S.Context));
11847   E->setValueKind(Expr::getValueKindForType(DestType));
11848   assert(E->getObjectKind() == OK_Ordinary);
11849 
11850   // Rebuild the function type, replacing the result type with DestType.
11851   if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
11852     DestType =
11853       S.Context.getFunctionType(DestType,
11854                                 ArrayRef<QualType>(Proto->arg_type_begin(),
11855                                                    Proto->getNumArgs()),
11856                                 Proto->getExtProtoInfo());
11857   else
11858     DestType = S.Context.getFunctionNoProtoType(DestType,
11859                                                 FnType->getExtInfo());
11860 
11861   // Rebuild the appropriate pointer-to-function type.
11862   switch (Kind) {
11863   case FK_MemberFunction:
11864     // Nothing to do.
11865     break;
11866 
11867   case FK_FunctionPointer:
11868     DestType = S.Context.getPointerType(DestType);
11869     break;
11870 
11871   case FK_BlockPointer:
11872     DestType = S.Context.getBlockPointerType(DestType);
11873     break;
11874   }
11875 
11876   // Finally, we can recurse.
11877   ExprResult CalleeResult = Visit(CalleeExpr);
11878   if (!CalleeResult.isUsable()) return ExprError();
11879   E->setCallee(CalleeResult.take());
11880 
11881   // Bind a temporary if necessary.
11882   return S.MaybeBindToTemporary(E);
11883 }
11884 
VisitObjCMessageExpr(ObjCMessageExpr * E)11885 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11886   // Verify that this is a legal result type of a call.
11887   if (DestType->isArrayType() || DestType->isFunctionType()) {
11888     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11889       << DestType->isFunctionType() << DestType;
11890     return ExprError();
11891   }
11892 
11893   // Rewrite the method result type if available.
11894   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11895     assert(Method->getResultType() == S.Context.UnknownAnyTy);
11896     Method->setResultType(DestType);
11897   }
11898 
11899   // Change the type of the message.
11900   E->setType(DestType.getNonReferenceType());
11901   E->setValueKind(Expr::getValueKindForType(DestType));
11902 
11903   return S.MaybeBindToTemporary(E);
11904 }
11905 
VisitImplicitCastExpr(ImplicitCastExpr * E)11906 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11907   // The only case we should ever see here is a function-to-pointer decay.
11908   if (E->getCastKind() == CK_FunctionToPointerDecay) {
11909     assert(E->getValueKind() == VK_RValue);
11910     assert(E->getObjectKind() == OK_Ordinary);
11911 
11912     E->setType(DestType);
11913 
11914     // Rebuild the sub-expression as the pointee (function) type.
11915     DestType = DestType->castAs<PointerType>()->getPointeeType();
11916 
11917     ExprResult Result = Visit(E->getSubExpr());
11918     if (!Result.isUsable()) return ExprError();
11919 
11920     E->setSubExpr(Result.take());
11921     return S.Owned(E);
11922   } else if (E->getCastKind() == CK_LValueToRValue) {
11923     assert(E->getValueKind() == VK_RValue);
11924     assert(E->getObjectKind() == OK_Ordinary);
11925 
11926     assert(isa<BlockPointerType>(E->getType()));
11927 
11928     E->setType(DestType);
11929 
11930     // The sub-expression has to be a lvalue reference, so rebuild it as such.
11931     DestType = S.Context.getLValueReferenceType(DestType);
11932 
11933     ExprResult Result = Visit(E->getSubExpr());
11934     if (!Result.isUsable()) return ExprError();
11935 
11936     E->setSubExpr(Result.take());
11937     return S.Owned(E);
11938   } else {
11939     llvm_unreachable("Unhandled cast type!");
11940   }
11941 }
11942 
resolveDecl(Expr * E,ValueDecl * VD)11943 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11944   ExprValueKind ValueKind = VK_LValue;
11945   QualType Type = DestType;
11946 
11947   // We know how to make this work for certain kinds of decls:
11948 
11949   //  - functions
11950   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11951     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11952       DestType = Ptr->getPointeeType();
11953       ExprResult Result = resolveDecl(E, VD);
11954       if (Result.isInvalid()) return ExprError();
11955       return S.ImpCastExprToType(Result.take(), Type,
11956                                  CK_FunctionToPointerDecay, VK_RValue);
11957     }
11958 
11959     if (!Type->isFunctionType()) {
11960       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11961         << VD << E->getSourceRange();
11962       return ExprError();
11963     }
11964 
11965     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11966       if (MD->isInstance()) {
11967         ValueKind = VK_RValue;
11968         Type = S.Context.BoundMemberTy;
11969       }
11970 
11971     // Function references aren't l-values in C.
11972     if (!S.getLangOpts().CPlusPlus)
11973       ValueKind = VK_RValue;
11974 
11975   //  - variables
11976   } else if (isa<VarDecl>(VD)) {
11977     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11978       Type = RefTy->getPointeeType();
11979     } else if (Type->isFunctionType()) {
11980       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11981         << VD << E->getSourceRange();
11982       return ExprError();
11983     }
11984 
11985   //  - nothing else
11986   } else {
11987     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11988       << VD << E->getSourceRange();
11989     return ExprError();
11990   }
11991 
11992   VD->setType(DestType);
11993   E->setType(Type);
11994   E->setValueKind(ValueKind);
11995   return S.Owned(E);
11996 }
11997 
11998 /// Check a cast of an unknown-any type.  We intentionally only
11999 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)12000 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
12001                                      Expr *CastExpr, CastKind &CastKind,
12002                                      ExprValueKind &VK, CXXCastPath &Path) {
12003   // Rewrite the casted expression from scratch.
12004   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
12005   if (!result.isUsable()) return ExprError();
12006 
12007   CastExpr = result.take();
12008   VK = CastExpr->getValueKind();
12009   CastKind = CK_NoOp;
12010 
12011   return CastExpr;
12012 }
12013 
forceUnknownAnyToType(Expr * E,QualType ToType)12014 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
12015   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
12016 }
12017 
checkUnknownAnyArg(SourceLocation callLoc,Expr * arg,QualType & paramType)12018 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
12019                                     Expr *arg, QualType &paramType) {
12020   // If the syntactic form of the argument is not an explicit cast of
12021   // any sort, just do default argument promotion.
12022   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
12023   if (!castArg) {
12024     ExprResult result = DefaultArgumentPromotion(arg);
12025     if (result.isInvalid()) return ExprError();
12026     paramType = result.get()->getType();
12027     return result;
12028   }
12029 
12030   // Otherwise, use the type that was written in the explicit cast.
12031   assert(!arg->hasPlaceholderType());
12032   paramType = castArg->getTypeAsWritten();
12033 
12034   // Copy-initialize a parameter of that type.
12035   InitializedEntity entity =
12036     InitializedEntity::InitializeParameter(Context, paramType,
12037                                            /*consumed*/ false);
12038   return PerformCopyInitialization(entity, callLoc, Owned(arg));
12039 }
12040 
diagnoseUnknownAnyExpr(Sema & S,Expr * E)12041 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
12042   Expr *orig = E;
12043   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
12044   while (true) {
12045     E = E->IgnoreParenImpCasts();
12046     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
12047       E = call->getCallee();
12048       diagID = diag::err_uncasted_call_of_unknown_any;
12049     } else {
12050       break;
12051     }
12052   }
12053 
12054   SourceLocation loc;
12055   NamedDecl *d;
12056   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
12057     loc = ref->getLocation();
12058     d = ref->getDecl();
12059   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
12060     loc = mem->getMemberLoc();
12061     d = mem->getMemberDecl();
12062   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
12063     diagID = diag::err_uncasted_call_of_unknown_any;
12064     loc = msg->getSelectorStartLoc();
12065     d = msg->getMethodDecl();
12066     if (!d) {
12067       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
12068         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
12069         << orig->getSourceRange();
12070       return ExprError();
12071     }
12072   } else {
12073     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
12074       << E->getSourceRange();
12075     return ExprError();
12076   }
12077 
12078   S.Diag(loc, diagID) << d << orig->getSourceRange();
12079 
12080   // Never recoverable.
12081   return ExprError();
12082 }
12083 
12084 /// Check for operands with placeholder types and complain if found.
12085 /// Returns true if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)12086 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
12087   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
12088   if (!placeholderType) return Owned(E);
12089 
12090   switch (placeholderType->getKind()) {
12091 
12092   // Overloaded expressions.
12093   case BuiltinType::Overload: {
12094     // Try to resolve a single function template specialization.
12095     // This is obligatory.
12096     ExprResult result = Owned(E);
12097     if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
12098       return result;
12099 
12100     // If that failed, try to recover with a call.
12101     } else {
12102       tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
12103                            /*complain*/ true);
12104       return result;
12105     }
12106   }
12107 
12108   // Bound member functions.
12109   case BuiltinType::BoundMember: {
12110     ExprResult result = Owned(E);
12111     tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
12112                          /*complain*/ true);
12113     return result;
12114   }
12115 
12116   // ARC unbridged casts.
12117   case BuiltinType::ARCUnbridgedCast: {
12118     Expr *realCast = stripARCUnbridgedCast(E);
12119     diagnoseARCUnbridgedCast(realCast);
12120     return Owned(realCast);
12121   }
12122 
12123   // Expressions of unknown type.
12124   case BuiltinType::UnknownAny:
12125     return diagnoseUnknownAnyExpr(*this, E);
12126 
12127   // Pseudo-objects.
12128   case BuiltinType::PseudoObject:
12129     return checkPseudoObjectRValue(E);
12130 
12131   case BuiltinType::BuiltinFn:
12132     Diag(E->getLocStart(), diag::err_builtin_fn_use);
12133     return ExprError();
12134 
12135   // Everything else should be impossible.
12136 #define BUILTIN_TYPE(Id, SingletonId) \
12137   case BuiltinType::Id:
12138 #define PLACEHOLDER_TYPE(Id, SingletonId)
12139 #include "clang/AST/BuiltinTypes.def"
12140     break;
12141   }
12142 
12143   llvm_unreachable("invalid placeholder type!");
12144 }
12145 
CheckCaseExpression(Expr * E)12146 bool Sema::CheckCaseExpression(Expr *E) {
12147   if (E->isTypeDependent())
12148     return true;
12149   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
12150     return E->getType()->isIntegralOrEnumerationType();
12151   return false;
12152 }
12153 
12154 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
12155 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)12156 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
12157   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
12158          "Unknown Objective-C Boolean value!");
12159   QualType BoolT = Context.ObjCBuiltinBoolTy;
12160   if (!Context.getBOOLDecl()) {
12161     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
12162                         Sema::LookupOrdinaryName);
12163     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
12164       NamedDecl *ND = Result.getFoundDecl();
12165       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
12166         Context.setBOOLDecl(TD);
12167     }
12168   }
12169   if (Context.getBOOLDecl())
12170     BoolT = Context.getBOOLType();
12171   return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
12172                                         BoolT, OpLoc));
12173 }
12174