1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TreeTransform.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Sema/AnalysisBasedWarnings.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Sema/Designator.h"
37 #include "clang/Sema/Initialization.h"
38 #include "clang/Sema/Lookup.h"
39 #include "clang/Sema/ParsedTemplate.h"
40 #include "clang/Sema/Scope.h"
41 #include "clang/Sema/ScopeInfo.h"
42 #include "clang/Sema/SemaFixItUtils.h"
43 #include "clang/Sema/Template.h"
44 using namespace clang;
45 using namespace sema;
46
47 /// \brief Determine whether the use of this declaration is valid, without
48 /// emitting diagnostics.
CanUseDecl(NamedDecl * D)49 bool Sema::CanUseDecl(NamedDecl *D) {
50 // See if this is an auto-typed variable whose initializer we are parsing.
51 if (ParsingInitForAutoVars.count(D))
52 return false;
53
54 // See if this is a deleted function.
55 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
56 if (FD->isDeleted())
57 return false;
58 }
59
60 // See if this function is unavailable.
61 if (D->getAvailability() == AR_Unavailable &&
62 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
63 return false;
64
65 return true;
66 }
67
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)68 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
69 // Warn if this is used but marked unused.
70 if (D->hasAttr<UnusedAttr>()) {
71 const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
72 if (!DC->hasAttr<UnusedAttr>())
73 S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
74 }
75 }
76
DiagnoseAvailabilityOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)77 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
78 NamedDecl *D, SourceLocation Loc,
79 const ObjCInterfaceDecl *UnknownObjCClass) {
80 // See if this declaration is unavailable or deprecated.
81 std::string Message;
82 AvailabilityResult Result = D->getAvailability(&Message);
83 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
84 if (Result == AR_Available) {
85 const DeclContext *DC = ECD->getDeclContext();
86 if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
87 Result = TheEnumDecl->getAvailability(&Message);
88 }
89
90 const ObjCPropertyDecl *ObjCPDecl = 0;
91 if (Result == AR_Deprecated || Result == AR_Unavailable) {
92 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
93 if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
94 AvailabilityResult PDeclResult = PD->getAvailability(0);
95 if (PDeclResult == Result)
96 ObjCPDecl = PD;
97 }
98 }
99 }
100
101 switch (Result) {
102 case AR_Available:
103 case AR_NotYetIntroduced:
104 break;
105
106 case AR_Deprecated:
107 S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass, ObjCPDecl);
108 break;
109
110 case AR_Unavailable:
111 if (S.getCurContextAvailability() != AR_Unavailable) {
112 if (Message.empty()) {
113 if (!UnknownObjCClass) {
114 S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
115 if (ObjCPDecl)
116 S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
117 << ObjCPDecl->getDeclName() << 1;
118 }
119 else
120 S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
121 << D->getDeclName();
122 }
123 else
124 S.Diag(Loc, diag::err_unavailable_message)
125 << D->getDeclName() << Message;
126 S.Diag(D->getLocation(), diag::note_unavailable_here)
127 << isa<FunctionDecl>(D) << false;
128 if (ObjCPDecl)
129 S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
130 << ObjCPDecl->getDeclName() << 1;
131 }
132 break;
133 }
134 return Result;
135 }
136
137 /// \brief Emit a note explaining that this function is deleted or unavailable.
NoteDeletedFunction(FunctionDecl * Decl)138 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
139 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
140
141 if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
142 // If the method was explicitly defaulted, point at that declaration.
143 if (!Method->isImplicit())
144 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
145
146 // Try to diagnose why this special member function was implicitly
147 // deleted. This might fail, if that reason no longer applies.
148 CXXSpecialMember CSM = getSpecialMember(Method);
149 if (CSM != CXXInvalid)
150 ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
151
152 return;
153 }
154
155 Diag(Decl->getLocation(), diag::note_unavailable_here)
156 << 1 << Decl->isDeleted();
157 }
158
159 /// \brief Determine whether a FunctionDecl was ever declared with an
160 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)161 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
162 for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
163 E = D->redecls_end();
164 I != E; ++I) {
165 if (I->getStorageClassAsWritten() != SC_None)
166 return true;
167 }
168 return false;
169 }
170
171 /// \brief Check whether we're in an extern inline function and referring to a
172 /// variable or function with internal linkage (C11 6.7.4p3).
173 ///
174 /// This is only a warning because we used to silently accept this code, but
175 /// in many cases it will not behave correctly. This is not enabled in C++ mode
176 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
177 /// and so while there may still be user mistakes, most of the time we can't
178 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)179 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
180 const NamedDecl *D,
181 SourceLocation Loc) {
182 // This is disabled under C++; there are too many ways for this to fire in
183 // contexts where the warning is a false positive, or where it is technically
184 // correct but benign.
185 if (S.getLangOpts().CPlusPlus)
186 return;
187
188 // Check if this is an inlined function or method.
189 FunctionDecl *Current = S.getCurFunctionDecl();
190 if (!Current)
191 return;
192 if (!Current->isInlined())
193 return;
194 if (Current->getLinkage() != ExternalLinkage)
195 return;
196
197 // Check if the decl has internal linkage.
198 if (D->getLinkage() != InternalLinkage)
199 return;
200
201 // Downgrade from ExtWarn to Extension if
202 // (1) the supposedly external inline function is in the main file,
203 // and probably won't be included anywhere else.
204 // (2) the thing we're referencing is a pure function.
205 // (3) the thing we're referencing is another inline function.
206 // This last can give us false negatives, but it's better than warning on
207 // wrappers for simple C library functions.
208 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
209 bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
210 if (!DowngradeWarning && UsedFn)
211 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
212
213 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
214 : diag::warn_internal_in_extern_inline)
215 << /*IsVar=*/!UsedFn << D;
216
217 // Suggest "static" on the inline function, if possible.
218 if (!hasAnyExplicitStorageClass(Current)) {
219 const FunctionDecl *FirstDecl = Current->getCanonicalDecl();
220 SourceLocation DeclBegin = FirstDecl->getSourceRange().getBegin();
221 S.Diag(DeclBegin, diag::note_convert_inline_to_static)
222 << Current << FixItHint::CreateInsertion(DeclBegin, "static ");
223 }
224
225 S.Diag(D->getCanonicalDecl()->getLocation(),
226 diag::note_internal_decl_declared_here)
227 << D;
228 }
229
230 /// \brief Determine whether the use of this declaration is valid, and
231 /// emit any corresponding diagnostics.
232 ///
233 /// This routine diagnoses various problems with referencing
234 /// declarations that can occur when using a declaration. For example,
235 /// it might warn if a deprecated or unavailable declaration is being
236 /// used, or produce an error (and return true) if a C++0x deleted
237 /// function is being used.
238 ///
239 /// \returns true if there was an error (this declaration cannot be
240 /// referenced), false otherwise.
241 ///
DiagnoseUseOfDecl(NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)242 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
243 const ObjCInterfaceDecl *UnknownObjCClass) {
244 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
245 // If there were any diagnostics suppressed by template argument deduction,
246 // emit them now.
247 llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
248 Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
249 if (Pos != SuppressedDiagnostics.end()) {
250 SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
251 for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
252 Diag(Suppressed[I].first, Suppressed[I].second);
253
254 // Clear out the list of suppressed diagnostics, so that we don't emit
255 // them again for this specialization. However, we don't obsolete this
256 // entry from the table, because we want to avoid ever emitting these
257 // diagnostics again.
258 Suppressed.clear();
259 }
260 }
261
262 // See if this is an auto-typed variable whose initializer we are parsing.
263 if (ParsingInitForAutoVars.count(D)) {
264 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
265 << D->getDeclName();
266 return true;
267 }
268
269 // See if this is a deleted function.
270 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
271 if (FD->isDeleted()) {
272 Diag(Loc, diag::err_deleted_function_use);
273 NoteDeletedFunction(FD);
274 return true;
275 }
276 }
277 DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
278
279 DiagnoseUnusedOfDecl(*this, D, Loc);
280
281 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
282
283 return false;
284 }
285
286 /// \brief Retrieve the message suffix that should be added to a
287 /// diagnostic complaining about the given function being deleted or
288 /// unavailable.
getDeletedOrUnavailableSuffix(const FunctionDecl * FD)289 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
290 std::string Message;
291 if (FD->getAvailability(&Message))
292 return ": " + Message;
293
294 return std::string();
295 }
296
297 /// DiagnoseSentinelCalls - This routine checks whether a call or
298 /// message-send is to a declaration with the sentinel attribute, and
299 /// if so, it checks that the requirements of the sentinel are
300 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,Expr ** args,unsigned numArgs)301 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
302 Expr **args, unsigned numArgs) {
303 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
304 if (!attr)
305 return;
306
307 // The number of formal parameters of the declaration.
308 unsigned numFormalParams;
309
310 // The kind of declaration. This is also an index into a %select in
311 // the diagnostic.
312 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
313
314 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
315 numFormalParams = MD->param_size();
316 calleeType = CT_Method;
317 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
318 numFormalParams = FD->param_size();
319 calleeType = CT_Function;
320 } else if (isa<VarDecl>(D)) {
321 QualType type = cast<ValueDecl>(D)->getType();
322 const FunctionType *fn = 0;
323 if (const PointerType *ptr = type->getAs<PointerType>()) {
324 fn = ptr->getPointeeType()->getAs<FunctionType>();
325 if (!fn) return;
326 calleeType = CT_Function;
327 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
328 fn = ptr->getPointeeType()->castAs<FunctionType>();
329 calleeType = CT_Block;
330 } else {
331 return;
332 }
333
334 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
335 numFormalParams = proto->getNumArgs();
336 } else {
337 numFormalParams = 0;
338 }
339 } else {
340 return;
341 }
342
343 // "nullPos" is the number of formal parameters at the end which
344 // effectively count as part of the variadic arguments. This is
345 // useful if you would prefer to not have *any* formal parameters,
346 // but the language forces you to have at least one.
347 unsigned nullPos = attr->getNullPos();
348 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
349 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
350
351 // The number of arguments which should follow the sentinel.
352 unsigned numArgsAfterSentinel = attr->getSentinel();
353
354 // If there aren't enough arguments for all the formal parameters,
355 // the sentinel, and the args after the sentinel, complain.
356 if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
357 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
358 Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
359 return;
360 }
361
362 // Otherwise, find the sentinel expression.
363 Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
364 if (!sentinelExpr) return;
365 if (sentinelExpr->isValueDependent()) return;
366 if (Context.isSentinelNullExpr(sentinelExpr)) return;
367
368 // Pick a reasonable string to insert. Optimistically use 'nil' or
369 // 'NULL' if those are actually defined in the context. Only use
370 // 'nil' for ObjC methods, where it's much more likely that the
371 // variadic arguments form a list of object pointers.
372 SourceLocation MissingNilLoc
373 = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
374 std::string NullValue;
375 if (calleeType == CT_Method &&
376 PP.getIdentifierInfo("nil")->hasMacroDefinition())
377 NullValue = "nil";
378 else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
379 NullValue = "NULL";
380 else
381 NullValue = "(void*) 0";
382
383 if (MissingNilLoc.isInvalid())
384 Diag(Loc, diag::warn_missing_sentinel) << calleeType;
385 else
386 Diag(MissingNilLoc, diag::warn_missing_sentinel)
387 << calleeType
388 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
389 Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
390 }
391
getExprRange(Expr * E) const392 SourceRange Sema::getExprRange(Expr *E) const {
393 return E ? E->getSourceRange() : SourceRange();
394 }
395
396 //===----------------------------------------------------------------------===//
397 // Standard Promotions and Conversions
398 //===----------------------------------------------------------------------===//
399
400 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E)401 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
402 // Handle any placeholder expressions which made it here.
403 if (E->getType()->isPlaceholderType()) {
404 ExprResult result = CheckPlaceholderExpr(E);
405 if (result.isInvalid()) return ExprError();
406 E = result.take();
407 }
408
409 QualType Ty = E->getType();
410 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
411
412 if (Ty->isFunctionType())
413 E = ImpCastExprToType(E, Context.getPointerType(Ty),
414 CK_FunctionToPointerDecay).take();
415 else if (Ty->isArrayType()) {
416 // In C90 mode, arrays only promote to pointers if the array expression is
417 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
418 // type 'array of type' is converted to an expression that has type 'pointer
419 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
420 // that has type 'array of type' ...". The relevant change is "an lvalue"
421 // (C90) to "an expression" (C99).
422 //
423 // C++ 4.2p1:
424 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
425 // T" can be converted to an rvalue of type "pointer to T".
426 //
427 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
428 E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
429 CK_ArrayToPointerDecay).take();
430 }
431 return Owned(E);
432 }
433
CheckForNullPointerDereference(Sema & S,Expr * E)434 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
435 // Check to see if we are dereferencing a null pointer. If so,
436 // and if not volatile-qualified, this is undefined behavior that the
437 // optimizer will delete, so warn about it. People sometimes try to use this
438 // to get a deterministic trap and are surprised by clang's behavior. This
439 // only handles the pattern "*null", which is a very syntactic check.
440 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
441 if (UO->getOpcode() == UO_Deref &&
442 UO->getSubExpr()->IgnoreParenCasts()->
443 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
444 !UO->getType().isVolatileQualified()) {
445 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
446 S.PDiag(diag::warn_indirection_through_null)
447 << UO->getSubExpr()->getSourceRange());
448 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
449 S.PDiag(diag::note_indirection_through_null));
450 }
451 }
452
DefaultLvalueConversion(Expr * E)453 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
454 // Handle any placeholder expressions which made it here.
455 if (E->getType()->isPlaceholderType()) {
456 ExprResult result = CheckPlaceholderExpr(E);
457 if (result.isInvalid()) return ExprError();
458 E = result.take();
459 }
460
461 // C++ [conv.lval]p1:
462 // A glvalue of a non-function, non-array type T can be
463 // converted to a prvalue.
464 if (!E->isGLValue()) return Owned(E);
465
466 QualType T = E->getType();
467 assert(!T.isNull() && "r-value conversion on typeless expression?");
468
469 // We don't want to throw lvalue-to-rvalue casts on top of
470 // expressions of certain types in C++.
471 if (getLangOpts().CPlusPlus &&
472 (E->getType() == Context.OverloadTy ||
473 T->isDependentType() ||
474 T->isRecordType()))
475 return Owned(E);
476
477 // The C standard is actually really unclear on this point, and
478 // DR106 tells us what the result should be but not why. It's
479 // generally best to say that void types just doesn't undergo
480 // lvalue-to-rvalue at all. Note that expressions of unqualified
481 // 'void' type are never l-values, but qualified void can be.
482 if (T->isVoidType())
483 return Owned(E);
484
485 // OpenCL usually rejects direct accesses to values of 'half' type.
486 if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
487 T->isHalfType()) {
488 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
489 << 0 << T;
490 return ExprError();
491 }
492
493 CheckForNullPointerDereference(*this, E);
494
495 // C++ [conv.lval]p1:
496 // [...] If T is a non-class type, the type of the prvalue is the
497 // cv-unqualified version of T. Otherwise, the type of the
498 // rvalue is T.
499 //
500 // C99 6.3.2.1p2:
501 // If the lvalue has qualified type, the value has the unqualified
502 // version of the type of the lvalue; otherwise, the value has the
503 // type of the lvalue.
504 if (T.hasQualifiers())
505 T = T.getUnqualifiedType();
506
507 UpdateMarkingForLValueToRValue(E);
508
509 // Loading a __weak object implicitly retains the value, so we need a cleanup to
510 // balance that.
511 if (getLangOpts().ObjCAutoRefCount &&
512 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
513 ExprNeedsCleanups = true;
514
515 ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
516 E, 0, VK_RValue));
517
518 // C11 6.3.2.1p2:
519 // ... if the lvalue has atomic type, the value has the non-atomic version
520 // of the type of the lvalue ...
521 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
522 T = Atomic->getValueType().getUnqualifiedType();
523 Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
524 Res.get(), 0, VK_RValue));
525 }
526
527 return Res;
528 }
529
DefaultFunctionArrayLvalueConversion(Expr * E)530 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
531 ExprResult Res = DefaultFunctionArrayConversion(E);
532 if (Res.isInvalid())
533 return ExprError();
534 Res = DefaultLvalueConversion(Res.take());
535 if (Res.isInvalid())
536 return ExprError();
537 return Res;
538 }
539
540
541 /// UsualUnaryConversions - Performs various conversions that are common to most
542 /// operators (C99 6.3). The conversions of array and function types are
543 /// sometimes suppressed. For example, the array->pointer conversion doesn't
544 /// apply if the array is an argument to the sizeof or address (&) operators.
545 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)546 ExprResult Sema::UsualUnaryConversions(Expr *E) {
547 // First, convert to an r-value.
548 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
549 if (Res.isInvalid())
550 return ExprError();
551 E = Res.take();
552
553 QualType Ty = E->getType();
554 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
555
556 // Half FP have to be promoted to float unless it is natively supported
557 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
558 return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
559
560 // Try to perform integral promotions if the object has a theoretically
561 // promotable type.
562 if (Ty->isIntegralOrUnscopedEnumerationType()) {
563 // C99 6.3.1.1p2:
564 //
565 // The following may be used in an expression wherever an int or
566 // unsigned int may be used:
567 // - an object or expression with an integer type whose integer
568 // conversion rank is less than or equal to the rank of int
569 // and unsigned int.
570 // - A bit-field of type _Bool, int, signed int, or unsigned int.
571 //
572 // If an int can represent all values of the original type, the
573 // value is converted to an int; otherwise, it is converted to an
574 // unsigned int. These are called the integer promotions. All
575 // other types are unchanged by the integer promotions.
576
577 QualType PTy = Context.isPromotableBitField(E);
578 if (!PTy.isNull()) {
579 E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
580 return Owned(E);
581 }
582 if (Ty->isPromotableIntegerType()) {
583 QualType PT = Context.getPromotedIntegerType(Ty);
584 E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
585 return Owned(E);
586 }
587 }
588 return Owned(E);
589 }
590
591 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
592 /// do not have a prototype. Arguments that have type float or __fp16
593 /// are promoted to double. All other argument types are converted by
594 /// UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)595 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
596 QualType Ty = E->getType();
597 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
598
599 ExprResult Res = UsualUnaryConversions(E);
600 if (Res.isInvalid())
601 return ExprError();
602 E = Res.take();
603
604 // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
605 // double.
606 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
607 if (BTy && (BTy->getKind() == BuiltinType::Half ||
608 BTy->getKind() == BuiltinType::Float))
609 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
610
611 // C++ performs lvalue-to-rvalue conversion as a default argument
612 // promotion, even on class types, but note:
613 // C++11 [conv.lval]p2:
614 // When an lvalue-to-rvalue conversion occurs in an unevaluated
615 // operand or a subexpression thereof the value contained in the
616 // referenced object is not accessed. Otherwise, if the glvalue
617 // has a class type, the conversion copy-initializes a temporary
618 // of type T from the glvalue and the result of the conversion
619 // is a prvalue for the temporary.
620 // FIXME: add some way to gate this entire thing for correctness in
621 // potentially potentially evaluated contexts.
622 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
623 ExprResult Temp = PerformCopyInitialization(
624 InitializedEntity::InitializeTemporary(E->getType()),
625 E->getExprLoc(),
626 Owned(E));
627 if (Temp.isInvalid())
628 return ExprError();
629 E = Temp.get();
630 }
631
632 return Owned(E);
633 }
634
635 /// Determine the degree of POD-ness for an expression.
636 /// Incomplete types are considered POD, since this check can be performed
637 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)638 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
639 if (Ty->isIncompleteType()) {
640 if (Ty->isObjCObjectType())
641 return VAK_Invalid;
642 return VAK_Valid;
643 }
644
645 if (Ty.isCXX98PODType(Context))
646 return VAK_Valid;
647
648 // C++11 [expr.call]p7:
649 // Passing a potentially-evaluated argument of class type (Clause 9)
650 // having a non-trivial copy constructor, a non-trivial move constructor,
651 // or a non-trivial destructor, with no corresponding parameter,
652 // is conditionally-supported with implementation-defined semantics.
653 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
654 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
655 if (!Record->hasNonTrivialCopyConstructor() &&
656 !Record->hasNonTrivialMoveConstructor() &&
657 !Record->hasNonTrivialDestructor())
658 return VAK_ValidInCXX11;
659
660 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
661 return VAK_Valid;
662 return VAK_Invalid;
663 }
664
variadicArgumentPODCheck(const Expr * E,VariadicCallType CT)665 bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
666 // Don't allow one to pass an Objective-C interface to a vararg.
667 const QualType & Ty = E->getType();
668
669 // Complain about passing non-POD types through varargs.
670 switch (isValidVarArgType(Ty)) {
671 case VAK_Valid:
672 break;
673 case VAK_ValidInCXX11:
674 DiagRuntimeBehavior(E->getLocStart(), 0,
675 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
676 << E->getType() << CT);
677 break;
678 case VAK_Invalid: {
679 if (Ty->isObjCObjectType())
680 return DiagRuntimeBehavior(E->getLocStart(), 0,
681 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
682 << Ty << CT);
683
684 return DiagRuntimeBehavior(E->getLocStart(), 0,
685 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
686 << getLangOpts().CPlusPlus11 << Ty << CT);
687 }
688 }
689 // c++ rules are enforced elsewhere.
690 return false;
691 }
692
693 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
694 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)695 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
696 FunctionDecl *FDecl) {
697 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
698 // Strip the unbridged-cast placeholder expression off, if applicable.
699 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
700 (CT == VariadicMethod ||
701 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
702 E = stripARCUnbridgedCast(E);
703
704 // Otherwise, do normal placeholder checking.
705 } else {
706 ExprResult ExprRes = CheckPlaceholderExpr(E);
707 if (ExprRes.isInvalid())
708 return ExprError();
709 E = ExprRes.take();
710 }
711 }
712
713 ExprResult ExprRes = DefaultArgumentPromotion(E);
714 if (ExprRes.isInvalid())
715 return ExprError();
716 E = ExprRes.take();
717
718 // Diagnostics regarding non-POD argument types are
719 // emitted along with format string checking in Sema::CheckFunctionCall().
720 if (isValidVarArgType(E->getType()) == VAK_Invalid) {
721 // Turn this into a trap.
722 CXXScopeSpec SS;
723 SourceLocation TemplateKWLoc;
724 UnqualifiedId Name;
725 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
726 E->getLocStart());
727 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
728 Name, true, false);
729 if (TrapFn.isInvalid())
730 return ExprError();
731
732 ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
733 E->getLocStart(), MultiExprArg(),
734 E->getLocEnd());
735 if (Call.isInvalid())
736 return ExprError();
737
738 ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
739 Call.get(), E);
740 if (Comma.isInvalid())
741 return ExprError();
742 return Comma.get();
743 }
744
745 if (!getLangOpts().CPlusPlus &&
746 RequireCompleteType(E->getExprLoc(), E->getType(),
747 diag::err_call_incomplete_argument))
748 return ExprError();
749
750 return Owned(E);
751 }
752
753 /// \brief Converts an integer to complex float type. Helper function of
754 /// UsualArithmeticConversions()
755 ///
756 /// \return false if the integer expression is an integer type and is
757 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)758 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
759 ExprResult &ComplexExpr,
760 QualType IntTy,
761 QualType ComplexTy,
762 bool SkipCast) {
763 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
764 if (SkipCast) return false;
765 if (IntTy->isIntegerType()) {
766 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
767 IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
768 IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
769 CK_FloatingRealToComplex);
770 } else {
771 assert(IntTy->isComplexIntegerType());
772 IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
773 CK_IntegralComplexToFloatingComplex);
774 }
775 return false;
776 }
777
778 /// \brief Takes two complex float types and converts them to the same type.
779 /// Helper function of UsualArithmeticConversions()
780 static QualType
handleComplexFloatToComplexFloatConverstion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)781 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
782 ExprResult &RHS, QualType LHSType,
783 QualType RHSType,
784 bool IsCompAssign) {
785 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
786
787 if (order < 0) {
788 // _Complex float -> _Complex double
789 if (!IsCompAssign)
790 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
791 return RHSType;
792 }
793 if (order > 0)
794 // _Complex float -> _Complex double
795 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
796 return LHSType;
797 }
798
799 /// \brief Converts otherExpr to complex float and promotes complexExpr if
800 /// necessary. Helper function of UsualArithmeticConversions()
handleOtherComplexFloatConversion(Sema & S,ExprResult & ComplexExpr,ExprResult & OtherExpr,QualType ComplexTy,QualType OtherTy,bool ConvertComplexExpr,bool ConvertOtherExpr)801 static QualType handleOtherComplexFloatConversion(Sema &S,
802 ExprResult &ComplexExpr,
803 ExprResult &OtherExpr,
804 QualType ComplexTy,
805 QualType OtherTy,
806 bool ConvertComplexExpr,
807 bool ConvertOtherExpr) {
808 int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
809
810 // If just the complexExpr is complex, the otherExpr needs to be converted,
811 // and the complexExpr might need to be promoted.
812 if (order > 0) { // complexExpr is wider
813 // float -> _Complex double
814 if (ConvertOtherExpr) {
815 QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
816 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
817 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
818 CK_FloatingRealToComplex);
819 }
820 return ComplexTy;
821 }
822
823 // otherTy is at least as wide. Find its corresponding complex type.
824 QualType result = (order == 0 ? ComplexTy :
825 S.Context.getComplexType(OtherTy));
826
827 // double -> _Complex double
828 if (ConvertOtherExpr)
829 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
830 CK_FloatingRealToComplex);
831
832 // _Complex float -> _Complex double
833 if (ConvertComplexExpr && order < 0)
834 ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
835 CK_FloatingComplexCast);
836
837 return result;
838 }
839
840 /// \brief Handle arithmetic conversion with complex types. Helper function of
841 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)842 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
843 ExprResult &RHS, QualType LHSType,
844 QualType RHSType,
845 bool IsCompAssign) {
846 // if we have an integer operand, the result is the complex type.
847 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
848 /*skipCast*/false))
849 return LHSType;
850 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
851 /*skipCast*/IsCompAssign))
852 return RHSType;
853
854 // This handles complex/complex, complex/float, or float/complex.
855 // When both operands are complex, the shorter operand is converted to the
856 // type of the longer, and that is the type of the result. This corresponds
857 // to what is done when combining two real floating-point operands.
858 // The fun begins when size promotion occur across type domains.
859 // From H&S 6.3.4: When one operand is complex and the other is a real
860 // floating-point type, the less precise type is converted, within it's
861 // real or complex domain, to the precision of the other type. For example,
862 // when combining a "long double" with a "double _Complex", the
863 // "double _Complex" is promoted to "long double _Complex".
864
865 bool LHSComplexFloat = LHSType->isComplexType();
866 bool RHSComplexFloat = RHSType->isComplexType();
867
868 // If both are complex, just cast to the more precise type.
869 if (LHSComplexFloat && RHSComplexFloat)
870 return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
871 LHSType, RHSType,
872 IsCompAssign);
873
874 // If only one operand is complex, promote it if necessary and convert the
875 // other operand to complex.
876 if (LHSComplexFloat)
877 return handleOtherComplexFloatConversion(
878 S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
879 /*convertOtherExpr*/ true);
880
881 assert(RHSComplexFloat);
882 return handleOtherComplexFloatConversion(
883 S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
884 /*convertOtherExpr*/ !IsCompAssign);
885 }
886
887 /// \brief Hande arithmetic conversion from integer to float. Helper function
888 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)889 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
890 ExprResult &IntExpr,
891 QualType FloatTy, QualType IntTy,
892 bool ConvertFloat, bool ConvertInt) {
893 if (IntTy->isIntegerType()) {
894 if (ConvertInt)
895 // Convert intExpr to the lhs floating point type.
896 IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
897 CK_IntegralToFloating);
898 return FloatTy;
899 }
900
901 // Convert both sides to the appropriate complex float.
902 assert(IntTy->isComplexIntegerType());
903 QualType result = S.Context.getComplexType(FloatTy);
904
905 // _Complex int -> _Complex float
906 if (ConvertInt)
907 IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
908 CK_IntegralComplexToFloatingComplex);
909
910 // float -> _Complex float
911 if (ConvertFloat)
912 FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
913 CK_FloatingRealToComplex);
914
915 return result;
916 }
917
918 /// \brief Handle arithmethic conversion with floating point types. Helper
919 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)920 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
921 ExprResult &RHS, QualType LHSType,
922 QualType RHSType, bool IsCompAssign) {
923 bool LHSFloat = LHSType->isRealFloatingType();
924 bool RHSFloat = RHSType->isRealFloatingType();
925
926 // If we have two real floating types, convert the smaller operand
927 // to the bigger result.
928 if (LHSFloat && RHSFloat) {
929 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
930 if (order > 0) {
931 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
932 return LHSType;
933 }
934
935 assert(order < 0 && "illegal float comparison");
936 if (!IsCompAssign)
937 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
938 return RHSType;
939 }
940
941 if (LHSFloat)
942 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
943 /*convertFloat=*/!IsCompAssign,
944 /*convertInt=*/ true);
945 assert(RHSFloat);
946 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
947 /*convertInt=*/ true,
948 /*convertFloat=*/!IsCompAssign);
949 }
950
951 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
952
953 namespace {
954 /// These helper callbacks are placed in an anonymous namespace to
955 /// permit their use as function template parameters.
doIntegralCast(Sema & S,Expr * op,QualType toType)956 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
957 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
958 }
959
doComplexIntegralCast(Sema & S,Expr * op,QualType toType)960 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
961 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
962 CK_IntegralComplexCast);
963 }
964 }
965
966 /// \brief Handle integer arithmetic conversions. Helper function of
967 /// UsualArithmeticConversions()
968 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)969 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
970 ExprResult &RHS, QualType LHSType,
971 QualType RHSType, bool IsCompAssign) {
972 // The rules for this case are in C99 6.3.1.8
973 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
974 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
975 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
976 if (LHSSigned == RHSSigned) {
977 // Same signedness; use the higher-ranked type
978 if (order >= 0) {
979 RHS = (*doRHSCast)(S, RHS.take(), LHSType);
980 return LHSType;
981 } else if (!IsCompAssign)
982 LHS = (*doLHSCast)(S, LHS.take(), RHSType);
983 return RHSType;
984 } else if (order != (LHSSigned ? 1 : -1)) {
985 // The unsigned type has greater than or equal rank to the
986 // signed type, so use the unsigned type
987 if (RHSSigned) {
988 RHS = (*doRHSCast)(S, RHS.take(), LHSType);
989 return LHSType;
990 } else if (!IsCompAssign)
991 LHS = (*doLHSCast)(S, LHS.take(), RHSType);
992 return RHSType;
993 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
994 // The two types are different widths; if we are here, that
995 // means the signed type is larger than the unsigned type, so
996 // use the signed type.
997 if (LHSSigned) {
998 RHS = (*doRHSCast)(S, RHS.take(), LHSType);
999 return LHSType;
1000 } else if (!IsCompAssign)
1001 LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1002 return RHSType;
1003 } else {
1004 // The signed type is higher-ranked than the unsigned type,
1005 // but isn't actually any bigger (like unsigned int and long
1006 // on most 32-bit systems). Use the unsigned type corresponding
1007 // to the signed type.
1008 QualType result =
1009 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1010 RHS = (*doRHSCast)(S, RHS.take(), result);
1011 if (!IsCompAssign)
1012 LHS = (*doLHSCast)(S, LHS.take(), result);
1013 return result;
1014 }
1015 }
1016
1017 /// \brief Handle conversions with GCC complex int extension. Helper function
1018 /// of UsualArithmeticConversions()
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1019 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1020 ExprResult &RHS, QualType LHSType,
1021 QualType RHSType,
1022 bool IsCompAssign) {
1023 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1024 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1025
1026 if (LHSComplexInt && RHSComplexInt) {
1027 QualType LHSEltType = LHSComplexInt->getElementType();
1028 QualType RHSEltType = RHSComplexInt->getElementType();
1029 QualType ScalarType =
1030 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1031 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1032
1033 return S.Context.getComplexType(ScalarType);
1034 }
1035
1036 if (LHSComplexInt) {
1037 QualType LHSEltType = LHSComplexInt->getElementType();
1038 QualType ScalarType =
1039 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1040 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1041 QualType ComplexType = S.Context.getComplexType(ScalarType);
1042 RHS = S.ImpCastExprToType(RHS.take(), ComplexType,
1043 CK_IntegralRealToComplex);
1044
1045 return ComplexType;
1046 }
1047
1048 assert(RHSComplexInt);
1049
1050 QualType RHSEltType = RHSComplexInt->getElementType();
1051 QualType ScalarType =
1052 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1053 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1054 QualType ComplexType = S.Context.getComplexType(ScalarType);
1055
1056 if (!IsCompAssign)
1057 LHS = S.ImpCastExprToType(LHS.take(), ComplexType,
1058 CK_IntegralRealToComplex);
1059 return ComplexType;
1060 }
1061
1062 /// UsualArithmeticConversions - Performs various conversions that are common to
1063 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1064 /// routine returns the first non-arithmetic type found. The client is
1065 /// responsible for emitting appropriate error diagnostics.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,bool IsCompAssign)1066 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1067 bool IsCompAssign) {
1068 if (!IsCompAssign) {
1069 LHS = UsualUnaryConversions(LHS.take());
1070 if (LHS.isInvalid())
1071 return QualType();
1072 }
1073
1074 RHS = UsualUnaryConversions(RHS.take());
1075 if (RHS.isInvalid())
1076 return QualType();
1077
1078 // For conversion purposes, we ignore any qualifiers.
1079 // For example, "const float" and "float" are equivalent.
1080 QualType LHSType =
1081 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1082 QualType RHSType =
1083 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1084
1085 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1086 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1087 LHSType = AtomicLHS->getValueType();
1088
1089 // If both types are identical, no conversion is needed.
1090 if (LHSType == RHSType)
1091 return LHSType;
1092
1093 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1094 // The caller can deal with this (e.g. pointer + int).
1095 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1096 return QualType();
1097
1098 // Apply unary and bitfield promotions to the LHS's type.
1099 QualType LHSUnpromotedType = LHSType;
1100 if (LHSType->isPromotableIntegerType())
1101 LHSType = Context.getPromotedIntegerType(LHSType);
1102 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1103 if (!LHSBitfieldPromoteTy.isNull())
1104 LHSType = LHSBitfieldPromoteTy;
1105 if (LHSType != LHSUnpromotedType && !IsCompAssign)
1106 LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1107
1108 // If both types are identical, no conversion is needed.
1109 if (LHSType == RHSType)
1110 return LHSType;
1111
1112 // At this point, we have two different arithmetic types.
1113
1114 // Handle complex types first (C99 6.3.1.8p1).
1115 if (LHSType->isComplexType() || RHSType->isComplexType())
1116 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1117 IsCompAssign);
1118
1119 // Now handle "real" floating types (i.e. float, double, long double).
1120 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1121 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1122 IsCompAssign);
1123
1124 // Handle GCC complex int extension.
1125 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1126 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1127 IsCompAssign);
1128
1129 // Finally, we have two differing integer types.
1130 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1131 (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1132 }
1133
1134
1135 //===----------------------------------------------------------------------===//
1136 // Semantic Analysis for various Expression Types
1137 //===----------------------------------------------------------------------===//
1138
1139
1140 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,MultiTypeArg ArgTypes,MultiExprArg ArgExprs)1141 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1142 SourceLocation DefaultLoc,
1143 SourceLocation RParenLoc,
1144 Expr *ControllingExpr,
1145 MultiTypeArg ArgTypes,
1146 MultiExprArg ArgExprs) {
1147 unsigned NumAssocs = ArgTypes.size();
1148 assert(NumAssocs == ArgExprs.size());
1149
1150 ParsedType *ParsedTypes = ArgTypes.data();
1151 Expr **Exprs = ArgExprs.data();
1152
1153 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1154 for (unsigned i = 0; i < NumAssocs; ++i) {
1155 if (ParsedTypes[i])
1156 (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1157 else
1158 Types[i] = 0;
1159 }
1160
1161 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1162 ControllingExpr, Types, Exprs,
1163 NumAssocs);
1164 delete [] Types;
1165 return ER;
1166 }
1167
1168 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,TypeSourceInfo ** Types,Expr ** Exprs,unsigned NumAssocs)1169 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1170 SourceLocation DefaultLoc,
1171 SourceLocation RParenLoc,
1172 Expr *ControllingExpr,
1173 TypeSourceInfo **Types,
1174 Expr **Exprs,
1175 unsigned NumAssocs) {
1176 if (ControllingExpr->getType()->isPlaceholderType()) {
1177 ExprResult result = CheckPlaceholderExpr(ControllingExpr);
1178 if (result.isInvalid()) return ExprError();
1179 ControllingExpr = result.take();
1180 }
1181
1182 bool TypeErrorFound = false,
1183 IsResultDependent = ControllingExpr->isTypeDependent(),
1184 ContainsUnexpandedParameterPack
1185 = ControllingExpr->containsUnexpandedParameterPack();
1186
1187 for (unsigned i = 0; i < NumAssocs; ++i) {
1188 if (Exprs[i]->containsUnexpandedParameterPack())
1189 ContainsUnexpandedParameterPack = true;
1190
1191 if (Types[i]) {
1192 if (Types[i]->getType()->containsUnexpandedParameterPack())
1193 ContainsUnexpandedParameterPack = true;
1194
1195 if (Types[i]->getType()->isDependentType()) {
1196 IsResultDependent = true;
1197 } else {
1198 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1199 // complete object type other than a variably modified type."
1200 unsigned D = 0;
1201 if (Types[i]->getType()->isIncompleteType())
1202 D = diag::err_assoc_type_incomplete;
1203 else if (!Types[i]->getType()->isObjectType())
1204 D = diag::err_assoc_type_nonobject;
1205 else if (Types[i]->getType()->isVariablyModifiedType())
1206 D = diag::err_assoc_type_variably_modified;
1207
1208 if (D != 0) {
1209 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1210 << Types[i]->getTypeLoc().getSourceRange()
1211 << Types[i]->getType();
1212 TypeErrorFound = true;
1213 }
1214
1215 // C11 6.5.1.1p2 "No two generic associations in the same generic
1216 // selection shall specify compatible types."
1217 for (unsigned j = i+1; j < NumAssocs; ++j)
1218 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1219 Context.typesAreCompatible(Types[i]->getType(),
1220 Types[j]->getType())) {
1221 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1222 diag::err_assoc_compatible_types)
1223 << Types[j]->getTypeLoc().getSourceRange()
1224 << Types[j]->getType()
1225 << Types[i]->getType();
1226 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1227 diag::note_compat_assoc)
1228 << Types[i]->getTypeLoc().getSourceRange()
1229 << Types[i]->getType();
1230 TypeErrorFound = true;
1231 }
1232 }
1233 }
1234 }
1235 if (TypeErrorFound)
1236 return ExprError();
1237
1238 // If we determined that the generic selection is result-dependent, don't
1239 // try to compute the result expression.
1240 if (IsResultDependent)
1241 return Owned(new (Context) GenericSelectionExpr(
1242 Context, KeyLoc, ControllingExpr,
1243 llvm::makeArrayRef(Types, NumAssocs),
1244 llvm::makeArrayRef(Exprs, NumAssocs),
1245 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
1246
1247 SmallVector<unsigned, 1> CompatIndices;
1248 unsigned DefaultIndex = -1U;
1249 for (unsigned i = 0; i < NumAssocs; ++i) {
1250 if (!Types[i])
1251 DefaultIndex = i;
1252 else if (Context.typesAreCompatible(ControllingExpr->getType(),
1253 Types[i]->getType()))
1254 CompatIndices.push_back(i);
1255 }
1256
1257 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1258 // type compatible with at most one of the types named in its generic
1259 // association list."
1260 if (CompatIndices.size() > 1) {
1261 // We strip parens here because the controlling expression is typically
1262 // parenthesized in macro definitions.
1263 ControllingExpr = ControllingExpr->IgnoreParens();
1264 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1265 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1266 << (unsigned) CompatIndices.size();
1267 for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1268 E = CompatIndices.end(); I != E; ++I) {
1269 Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1270 diag::note_compat_assoc)
1271 << Types[*I]->getTypeLoc().getSourceRange()
1272 << Types[*I]->getType();
1273 }
1274 return ExprError();
1275 }
1276
1277 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1278 // its controlling expression shall have type compatible with exactly one of
1279 // the types named in its generic association list."
1280 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1281 // We strip parens here because the controlling expression is typically
1282 // parenthesized in macro definitions.
1283 ControllingExpr = ControllingExpr->IgnoreParens();
1284 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1285 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1286 return ExprError();
1287 }
1288
1289 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1290 // type name that is compatible with the type of the controlling expression,
1291 // then the result expression of the generic selection is the expression
1292 // in that generic association. Otherwise, the result expression of the
1293 // generic selection is the expression in the default generic association."
1294 unsigned ResultIndex =
1295 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1296
1297 return Owned(new (Context) GenericSelectionExpr(
1298 Context, KeyLoc, ControllingExpr,
1299 llvm::makeArrayRef(Types, NumAssocs),
1300 llvm::makeArrayRef(Exprs, NumAssocs),
1301 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
1302 ResultIndex));
1303 }
1304
1305 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1306 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1307 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1308 unsigned Offset) {
1309 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1310 S.getLangOpts());
1311 }
1312
1313 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1314 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1315 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1316 IdentifierInfo *UDSuffix,
1317 SourceLocation UDSuffixLoc,
1318 ArrayRef<Expr*> Args,
1319 SourceLocation LitEndLoc) {
1320 assert(Args.size() <= 2 && "too many arguments for literal operator");
1321
1322 QualType ArgTy[2];
1323 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1324 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1325 if (ArgTy[ArgIdx]->isArrayType())
1326 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1327 }
1328
1329 DeclarationName OpName =
1330 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1331 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1332 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1333
1334 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1335 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1336 /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1337 return ExprError();
1338
1339 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1340 }
1341
1342 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1343 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1344 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1345 /// multiple tokens. However, the common case is that StringToks points to one
1346 /// string.
1347 ///
1348 ExprResult
ActOnStringLiteral(const Token * StringToks,unsigned NumStringToks,Scope * UDLScope)1349 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1350 Scope *UDLScope) {
1351 assert(NumStringToks && "Must have at least one string!");
1352
1353 StringLiteralParser Literal(StringToks, NumStringToks, PP);
1354 if (Literal.hadError)
1355 return ExprError();
1356
1357 SmallVector<SourceLocation, 4> StringTokLocs;
1358 for (unsigned i = 0; i != NumStringToks; ++i)
1359 StringTokLocs.push_back(StringToks[i].getLocation());
1360
1361 QualType StrTy = Context.CharTy;
1362 if (Literal.isWide())
1363 StrTy = Context.getWCharType();
1364 else if (Literal.isUTF16())
1365 StrTy = Context.Char16Ty;
1366 else if (Literal.isUTF32())
1367 StrTy = Context.Char32Ty;
1368 else if (Literal.isPascal())
1369 StrTy = Context.UnsignedCharTy;
1370
1371 StringLiteral::StringKind Kind = StringLiteral::Ascii;
1372 if (Literal.isWide())
1373 Kind = StringLiteral::Wide;
1374 else if (Literal.isUTF8())
1375 Kind = StringLiteral::UTF8;
1376 else if (Literal.isUTF16())
1377 Kind = StringLiteral::UTF16;
1378 else if (Literal.isUTF32())
1379 Kind = StringLiteral::UTF32;
1380
1381 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1382 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1383 StrTy.addConst();
1384
1385 // Get an array type for the string, according to C99 6.4.5. This includes
1386 // the nul terminator character as well as the string length for pascal
1387 // strings.
1388 StrTy = Context.getConstantArrayType(StrTy,
1389 llvm::APInt(32, Literal.GetNumStringChars()+1),
1390 ArrayType::Normal, 0);
1391
1392 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1393 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1394 Kind, Literal.Pascal, StrTy,
1395 &StringTokLocs[0],
1396 StringTokLocs.size());
1397 if (Literal.getUDSuffix().empty())
1398 return Owned(Lit);
1399
1400 // We're building a user-defined literal.
1401 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1402 SourceLocation UDSuffixLoc =
1403 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1404 Literal.getUDSuffixOffset());
1405
1406 // Make sure we're allowed user-defined literals here.
1407 if (!UDLScope)
1408 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1409
1410 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1411 // operator "" X (str, len)
1412 QualType SizeType = Context.getSizeType();
1413 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1414 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1415 StringTokLocs[0]);
1416 Expr *Args[] = { Lit, LenArg };
1417 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1418 Args, StringTokLocs.back());
1419 }
1420
1421 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1422 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1423 SourceLocation Loc,
1424 const CXXScopeSpec *SS) {
1425 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1426 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1427 }
1428
1429 /// BuildDeclRefExpr - Build an expression that references a
1430 /// declaration that does not require a closure capture.
1431 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS)1432 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1433 const DeclarationNameInfo &NameInfo,
1434 const CXXScopeSpec *SS) {
1435 if (getLangOpts().CUDA)
1436 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1437 if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1438 CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1439 CalleeTarget = IdentifyCUDATarget(Callee);
1440 if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1441 Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1442 << CalleeTarget << D->getIdentifier() << CallerTarget;
1443 Diag(D->getLocation(), diag::note_previous_decl)
1444 << D->getIdentifier();
1445 return ExprError();
1446 }
1447 }
1448
1449 bool refersToEnclosingScope =
1450 (CurContext != D->getDeclContext() &&
1451 D->getDeclContext()->isFunctionOrMethod());
1452
1453 DeclRefExpr *E = DeclRefExpr::Create(Context,
1454 SS ? SS->getWithLocInContext(Context)
1455 : NestedNameSpecifierLoc(),
1456 SourceLocation(),
1457 D, refersToEnclosingScope,
1458 NameInfo, Ty, VK);
1459
1460 MarkDeclRefReferenced(E);
1461
1462 if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
1463 Ty.getObjCLifetime() == Qualifiers::OCL_Weak) {
1464 DiagnosticsEngine::Level Level =
1465 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1466 E->getLocStart());
1467 if (Level != DiagnosticsEngine::Ignored)
1468 getCurFunction()->recordUseOfWeak(E);
1469 }
1470
1471 // Just in case we're building an illegal pointer-to-member.
1472 FieldDecl *FD = dyn_cast<FieldDecl>(D);
1473 if (FD && FD->isBitField())
1474 E->setObjectKind(OK_BitField);
1475
1476 return Owned(E);
1477 }
1478
1479 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1480 /// possibly a list of template arguments.
1481 ///
1482 /// If this produces template arguments, it is permitted to call
1483 /// DecomposeTemplateName.
1484 ///
1485 /// This actually loses a lot of source location information for
1486 /// non-standard name kinds; we should consider preserving that in
1487 /// some way.
1488 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)1489 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1490 TemplateArgumentListInfo &Buffer,
1491 DeclarationNameInfo &NameInfo,
1492 const TemplateArgumentListInfo *&TemplateArgs) {
1493 if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1494 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1495 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1496
1497 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1498 Id.TemplateId->NumArgs);
1499 translateTemplateArguments(TemplateArgsPtr, Buffer);
1500
1501 TemplateName TName = Id.TemplateId->Template.get();
1502 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1503 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1504 TemplateArgs = &Buffer;
1505 } else {
1506 NameInfo = GetNameFromUnqualifiedId(Id);
1507 TemplateArgs = 0;
1508 }
1509 }
1510
1511 /// Diagnose an empty lookup.
1512 ///
1513 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args)1514 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1515 CorrectionCandidateCallback &CCC,
1516 TemplateArgumentListInfo *ExplicitTemplateArgs,
1517 llvm::ArrayRef<Expr *> Args) {
1518 DeclarationName Name = R.getLookupName();
1519
1520 unsigned diagnostic = diag::err_undeclared_var_use;
1521 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1522 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1523 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1524 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1525 diagnostic = diag::err_undeclared_use;
1526 diagnostic_suggest = diag::err_undeclared_use_suggest;
1527 }
1528
1529 // If the original lookup was an unqualified lookup, fake an
1530 // unqualified lookup. This is useful when (for example) the
1531 // original lookup would not have found something because it was a
1532 // dependent name.
1533 DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1534 ? CurContext : 0;
1535 while (DC) {
1536 if (isa<CXXRecordDecl>(DC)) {
1537 LookupQualifiedName(R, DC);
1538
1539 if (!R.empty()) {
1540 // Don't give errors about ambiguities in this lookup.
1541 R.suppressDiagnostics();
1542
1543 // During a default argument instantiation the CurContext points
1544 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1545 // function parameter list, hence add an explicit check.
1546 bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1547 ActiveTemplateInstantiations.back().Kind ==
1548 ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1549 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1550 bool isInstance = CurMethod &&
1551 CurMethod->isInstance() &&
1552 DC == CurMethod->getParent() && !isDefaultArgument;
1553
1554
1555 // Give a code modification hint to insert 'this->'.
1556 // TODO: fixit for inserting 'Base<T>::' in the other cases.
1557 // Actually quite difficult!
1558 if (getLangOpts().MicrosoftMode)
1559 diagnostic = diag::warn_found_via_dependent_bases_lookup;
1560 if (isInstance) {
1561 Diag(R.getNameLoc(), diagnostic) << Name
1562 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1563 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1564 CallsUndergoingInstantiation.back()->getCallee());
1565
1566
1567 CXXMethodDecl *DepMethod;
1568 if (CurMethod->getTemplatedKind() ==
1569 FunctionDecl::TK_FunctionTemplateSpecialization)
1570 DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1571 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1572 else
1573 DepMethod = cast<CXXMethodDecl>(
1574 CurMethod->getInstantiatedFromMemberFunction());
1575 assert(DepMethod && "No template pattern found");
1576
1577 QualType DepThisType = DepMethod->getThisType(Context);
1578 CheckCXXThisCapture(R.getNameLoc());
1579 CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1580 R.getNameLoc(), DepThisType, false);
1581 TemplateArgumentListInfo TList;
1582 if (ULE->hasExplicitTemplateArgs())
1583 ULE->copyTemplateArgumentsInto(TList);
1584
1585 CXXScopeSpec SS;
1586 SS.Adopt(ULE->getQualifierLoc());
1587 CXXDependentScopeMemberExpr *DepExpr =
1588 CXXDependentScopeMemberExpr::Create(
1589 Context, DepThis, DepThisType, true, SourceLocation(),
1590 SS.getWithLocInContext(Context),
1591 ULE->getTemplateKeywordLoc(), 0,
1592 R.getLookupNameInfo(),
1593 ULE->hasExplicitTemplateArgs() ? &TList : 0);
1594 CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1595 } else {
1596 Diag(R.getNameLoc(), diagnostic) << Name;
1597 }
1598
1599 // Do we really want to note all of these?
1600 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1601 Diag((*I)->getLocation(), diag::note_dependent_var_use);
1602
1603 // Return true if we are inside a default argument instantiation
1604 // and the found name refers to an instance member function, otherwise
1605 // the function calling DiagnoseEmptyLookup will try to create an
1606 // implicit member call and this is wrong for default argument.
1607 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1608 Diag(R.getNameLoc(), diag::err_member_call_without_object);
1609 return true;
1610 }
1611
1612 // Tell the callee to try to recover.
1613 return false;
1614 }
1615
1616 R.clear();
1617 }
1618
1619 // In Microsoft mode, if we are performing lookup from within a friend
1620 // function definition declared at class scope then we must set
1621 // DC to the lexical parent to be able to search into the parent
1622 // class.
1623 if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1624 cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1625 DC->getLexicalParent()->isRecord())
1626 DC = DC->getLexicalParent();
1627 else
1628 DC = DC->getParent();
1629 }
1630
1631 // We didn't find anything, so try to correct for a typo.
1632 TypoCorrection Corrected;
1633 if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1634 S, &SS, CCC))) {
1635 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1636 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1637 R.setLookupName(Corrected.getCorrection());
1638
1639 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1640 if (Corrected.isOverloaded()) {
1641 OverloadCandidateSet OCS(R.getNameLoc());
1642 OverloadCandidateSet::iterator Best;
1643 for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1644 CDEnd = Corrected.end();
1645 CD != CDEnd; ++CD) {
1646 if (FunctionTemplateDecl *FTD =
1647 dyn_cast<FunctionTemplateDecl>(*CD))
1648 AddTemplateOverloadCandidate(
1649 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1650 Args, OCS);
1651 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1652 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1653 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1654 Args, OCS);
1655 }
1656 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1657 case OR_Success:
1658 ND = Best->Function;
1659 break;
1660 default:
1661 break;
1662 }
1663 }
1664 R.addDecl(ND);
1665 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1666 if (SS.isEmpty())
1667 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1668 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1669 else
1670 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1671 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1672 << SS.getRange()
1673 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
1674 CorrectedStr);
1675
1676 unsigned diag = isa<ImplicitParamDecl>(ND)
1677 ? diag::note_implicit_param_decl
1678 : diag::note_previous_decl;
1679
1680 Diag(ND->getLocation(), diag)
1681 << CorrectedQuotedStr;
1682
1683 // Tell the callee to try to recover.
1684 return false;
1685 }
1686
1687 if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1688 // FIXME: If we ended up with a typo for a type name or
1689 // Objective-C class name, we're in trouble because the parser
1690 // is in the wrong place to recover. Suggest the typo
1691 // correction, but don't make it a fix-it since we're not going
1692 // to recover well anyway.
1693 if (SS.isEmpty())
1694 Diag(R.getNameLoc(), diagnostic_suggest)
1695 << Name << CorrectedQuotedStr;
1696 else
1697 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1698 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1699 << SS.getRange();
1700
1701 // Don't try to recover; it won't work.
1702 return true;
1703 }
1704 } else {
1705 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1706 // because we aren't able to recover.
1707 if (SS.isEmpty())
1708 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1709 else
1710 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1711 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1712 << SS.getRange();
1713 return true;
1714 }
1715 }
1716 R.clear();
1717
1718 // Emit a special diagnostic for failed member lookups.
1719 // FIXME: computing the declaration context might fail here (?)
1720 if (!SS.isEmpty()) {
1721 Diag(R.getNameLoc(), diag::err_no_member)
1722 << Name << computeDeclContext(SS, false)
1723 << SS.getRange();
1724 return true;
1725 }
1726
1727 // Give up, we can't recover.
1728 Diag(R.getNameLoc(), diagnostic) << Name;
1729 return true;
1730 }
1731
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)1732 ExprResult Sema::ActOnIdExpression(Scope *S,
1733 CXXScopeSpec &SS,
1734 SourceLocation TemplateKWLoc,
1735 UnqualifiedId &Id,
1736 bool HasTrailingLParen,
1737 bool IsAddressOfOperand,
1738 CorrectionCandidateCallback *CCC) {
1739 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1740 "cannot be direct & operand and have a trailing lparen");
1741
1742 if (SS.isInvalid())
1743 return ExprError();
1744
1745 TemplateArgumentListInfo TemplateArgsBuffer;
1746
1747 // Decompose the UnqualifiedId into the following data.
1748 DeclarationNameInfo NameInfo;
1749 const TemplateArgumentListInfo *TemplateArgs;
1750 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1751
1752 DeclarationName Name = NameInfo.getName();
1753 IdentifierInfo *II = Name.getAsIdentifierInfo();
1754 SourceLocation NameLoc = NameInfo.getLoc();
1755
1756 // C++ [temp.dep.expr]p3:
1757 // An id-expression is type-dependent if it contains:
1758 // -- an identifier that was declared with a dependent type,
1759 // (note: handled after lookup)
1760 // -- a template-id that is dependent,
1761 // (note: handled in BuildTemplateIdExpr)
1762 // -- a conversion-function-id that specifies a dependent type,
1763 // -- a nested-name-specifier that contains a class-name that
1764 // names a dependent type.
1765 // Determine whether this is a member of an unknown specialization;
1766 // we need to handle these differently.
1767 bool DependentID = false;
1768 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1769 Name.getCXXNameType()->isDependentType()) {
1770 DependentID = true;
1771 } else if (SS.isSet()) {
1772 if (DeclContext *DC = computeDeclContext(SS, false)) {
1773 if (RequireCompleteDeclContext(SS, DC))
1774 return ExprError();
1775 } else {
1776 DependentID = true;
1777 }
1778 }
1779
1780 if (DependentID)
1781 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1782 IsAddressOfOperand, TemplateArgs);
1783
1784 // Perform the required lookup.
1785 LookupResult R(*this, NameInfo,
1786 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1787 ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1788 if (TemplateArgs) {
1789 // Lookup the template name again to correctly establish the context in
1790 // which it was found. This is really unfortunate as we already did the
1791 // lookup to determine that it was a template name in the first place. If
1792 // this becomes a performance hit, we can work harder to preserve those
1793 // results until we get here but it's likely not worth it.
1794 bool MemberOfUnknownSpecialization;
1795 LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1796 MemberOfUnknownSpecialization);
1797
1798 if (MemberOfUnknownSpecialization ||
1799 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1800 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1801 IsAddressOfOperand, TemplateArgs);
1802 } else {
1803 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1804 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1805
1806 // If the result might be in a dependent base class, this is a dependent
1807 // id-expression.
1808 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1809 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1810 IsAddressOfOperand, TemplateArgs);
1811
1812 // If this reference is in an Objective-C method, then we need to do
1813 // some special Objective-C lookup, too.
1814 if (IvarLookupFollowUp) {
1815 ExprResult E(LookupInObjCMethod(R, S, II, true));
1816 if (E.isInvalid())
1817 return ExprError();
1818
1819 if (Expr *Ex = E.takeAs<Expr>())
1820 return Owned(Ex);
1821 }
1822 }
1823
1824 if (R.isAmbiguous())
1825 return ExprError();
1826
1827 // Determine whether this name might be a candidate for
1828 // argument-dependent lookup.
1829 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1830
1831 if (R.empty() && !ADL) {
1832 // Otherwise, this could be an implicitly declared function reference (legal
1833 // in C90, extension in C99, forbidden in C++).
1834 if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1835 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1836 if (D) R.addDecl(D);
1837 }
1838
1839 // If this name wasn't predeclared and if this is not a function
1840 // call, diagnose the problem.
1841 if (R.empty()) {
1842
1843 // In Microsoft mode, if we are inside a template class member function
1844 // and we can't resolve an identifier then assume the identifier is type
1845 // dependent. The goal is to postpone name lookup to instantiation time
1846 // to be able to search into type dependent base classes.
1847 if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1848 isa<CXXMethodDecl>(CurContext))
1849 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1850 IsAddressOfOperand, TemplateArgs);
1851
1852 CorrectionCandidateCallback DefaultValidator;
1853 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1854 return ExprError();
1855
1856 assert(!R.empty() &&
1857 "DiagnoseEmptyLookup returned false but added no results");
1858
1859 // If we found an Objective-C instance variable, let
1860 // LookupInObjCMethod build the appropriate expression to
1861 // reference the ivar.
1862 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1863 R.clear();
1864 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1865 // In a hopelessly buggy code, Objective-C instance variable
1866 // lookup fails and no expression will be built to reference it.
1867 if (!E.isInvalid() && !E.get())
1868 return ExprError();
1869 return E;
1870 }
1871 }
1872 }
1873
1874 // This is guaranteed from this point on.
1875 assert(!R.empty() || ADL);
1876
1877 // Check whether this might be a C++ implicit instance member access.
1878 // C++ [class.mfct.non-static]p3:
1879 // When an id-expression that is not part of a class member access
1880 // syntax and not used to form a pointer to member is used in the
1881 // body of a non-static member function of class X, if name lookup
1882 // resolves the name in the id-expression to a non-static non-type
1883 // member of some class C, the id-expression is transformed into a
1884 // class member access expression using (*this) as the
1885 // postfix-expression to the left of the . operator.
1886 //
1887 // But we don't actually need to do this for '&' operands if R
1888 // resolved to a function or overloaded function set, because the
1889 // expression is ill-formed if it actually works out to be a
1890 // non-static member function:
1891 //
1892 // C++ [expr.ref]p4:
1893 // Otherwise, if E1.E2 refers to a non-static member function. . .
1894 // [t]he expression can be used only as the left-hand operand of a
1895 // member function call.
1896 //
1897 // There are other safeguards against such uses, but it's important
1898 // to get this right here so that we don't end up making a
1899 // spuriously dependent expression if we're inside a dependent
1900 // instance method.
1901 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1902 bool MightBeImplicitMember;
1903 if (!IsAddressOfOperand)
1904 MightBeImplicitMember = true;
1905 else if (!SS.isEmpty())
1906 MightBeImplicitMember = false;
1907 else if (R.isOverloadedResult())
1908 MightBeImplicitMember = false;
1909 else if (R.isUnresolvableResult())
1910 MightBeImplicitMember = true;
1911 else
1912 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1913 isa<IndirectFieldDecl>(R.getFoundDecl());
1914
1915 if (MightBeImplicitMember)
1916 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1917 R, TemplateArgs);
1918 }
1919
1920 if (TemplateArgs || TemplateKWLoc.isValid())
1921 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1922
1923 return BuildDeclarationNameExpr(SS, R, ADL);
1924 }
1925
1926 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1927 /// declaration name, generally during template instantiation.
1928 /// There's a large number of things which don't need to be done along
1929 /// this path.
1930 ExprResult
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,bool IsAddressOfOperand)1931 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1932 const DeclarationNameInfo &NameInfo,
1933 bool IsAddressOfOperand) {
1934 DeclContext *DC = computeDeclContext(SS, false);
1935 if (!DC)
1936 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1937 NameInfo, /*TemplateArgs=*/0);
1938
1939 if (RequireCompleteDeclContext(SS, DC))
1940 return ExprError();
1941
1942 LookupResult R(*this, NameInfo, LookupOrdinaryName);
1943 LookupQualifiedName(R, DC);
1944
1945 if (R.isAmbiguous())
1946 return ExprError();
1947
1948 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1949 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1950 NameInfo, /*TemplateArgs=*/0);
1951
1952 if (R.empty()) {
1953 Diag(NameInfo.getLoc(), diag::err_no_member)
1954 << NameInfo.getName() << DC << SS.getRange();
1955 return ExprError();
1956 }
1957
1958 // Defend against this resolving to an implicit member access. We usually
1959 // won't get here if this might be a legitimate a class member (we end up in
1960 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
1961 // a pointer-to-member or in an unevaluated context in C++11.
1962 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
1963 return BuildPossibleImplicitMemberExpr(SS,
1964 /*TemplateKWLoc=*/SourceLocation(),
1965 R, /*TemplateArgs=*/0);
1966
1967 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
1968 }
1969
1970 /// LookupInObjCMethod - The parser has read a name in, and Sema has
1971 /// detected that we're currently inside an ObjC method. Perform some
1972 /// additional lookup.
1973 ///
1974 /// Ideally, most of this would be done by lookup, but there's
1975 /// actually quite a lot of extra work involved.
1976 ///
1977 /// Returns a null sentinel to indicate trivial success.
1978 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)1979 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1980 IdentifierInfo *II, bool AllowBuiltinCreation) {
1981 SourceLocation Loc = Lookup.getNameLoc();
1982 ObjCMethodDecl *CurMethod = getCurMethodDecl();
1983
1984 // Check for error condition which is already reported.
1985 if (!CurMethod)
1986 return ExprError();
1987
1988 // There are two cases to handle here. 1) scoped lookup could have failed,
1989 // in which case we should look for an ivar. 2) scoped lookup could have
1990 // found a decl, but that decl is outside the current instance method (i.e.
1991 // a global variable). In these two cases, we do a lookup for an ivar with
1992 // this name, if the lookup sucedes, we replace it our current decl.
1993
1994 // If we're in a class method, we don't normally want to look for
1995 // ivars. But if we don't find anything else, and there's an
1996 // ivar, that's an error.
1997 bool IsClassMethod = CurMethod->isClassMethod();
1998
1999 bool LookForIvars;
2000 if (Lookup.empty())
2001 LookForIvars = true;
2002 else if (IsClassMethod)
2003 LookForIvars = false;
2004 else
2005 LookForIvars = (Lookup.isSingleResult() &&
2006 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2007 ObjCInterfaceDecl *IFace = 0;
2008 if (LookForIvars) {
2009 IFace = CurMethod->getClassInterface();
2010 ObjCInterfaceDecl *ClassDeclared;
2011 ObjCIvarDecl *IV = 0;
2012 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2013 // Diagnose using an ivar in a class method.
2014 if (IsClassMethod)
2015 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2016 << IV->getDeclName());
2017
2018 // If we're referencing an invalid decl, just return this as a silent
2019 // error node. The error diagnostic was already emitted on the decl.
2020 if (IV->isInvalidDecl())
2021 return ExprError();
2022
2023 // Check if referencing a field with __attribute__((deprecated)).
2024 if (DiagnoseUseOfDecl(IV, Loc))
2025 return ExprError();
2026
2027 // Diagnose the use of an ivar outside of the declaring class.
2028 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2029 !declaresSameEntity(ClassDeclared, IFace) &&
2030 !getLangOpts().DebuggerSupport)
2031 Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2032
2033 // FIXME: This should use a new expr for a direct reference, don't
2034 // turn this into Self->ivar, just return a BareIVarExpr or something.
2035 IdentifierInfo &II = Context.Idents.get("self");
2036 UnqualifiedId SelfName;
2037 SelfName.setIdentifier(&II, SourceLocation());
2038 SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2039 CXXScopeSpec SelfScopeSpec;
2040 SourceLocation TemplateKWLoc;
2041 ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2042 SelfName, false, false);
2043 if (SelfExpr.isInvalid())
2044 return ExprError();
2045
2046 SelfExpr = DefaultLvalueConversion(SelfExpr.take());
2047 if (SelfExpr.isInvalid())
2048 return ExprError();
2049
2050 MarkAnyDeclReferenced(Loc, IV, true);
2051
2052 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2053 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2054 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2055 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2056
2057 ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2058 Loc,
2059 SelfExpr.take(),
2060 true, true);
2061
2062 if (getLangOpts().ObjCAutoRefCount) {
2063 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2064 DiagnosticsEngine::Level Level =
2065 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
2066 if (Level != DiagnosticsEngine::Ignored)
2067 getCurFunction()->recordUseOfWeak(Result);
2068 }
2069 if (CurContext->isClosure())
2070 Diag(Loc, diag::warn_implicitly_retains_self)
2071 << FixItHint::CreateInsertion(Loc, "self->");
2072 }
2073
2074 return Owned(Result);
2075 }
2076 } else if (CurMethod->isInstanceMethod()) {
2077 // We should warn if a local variable hides an ivar.
2078 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2079 ObjCInterfaceDecl *ClassDeclared;
2080 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2081 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2082 declaresSameEntity(IFace, ClassDeclared))
2083 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2084 }
2085 }
2086 } else if (Lookup.isSingleResult() &&
2087 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2088 // If accessing a stand-alone ivar in a class method, this is an error.
2089 if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2090 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2091 << IV->getDeclName());
2092 }
2093
2094 if (Lookup.empty() && II && AllowBuiltinCreation) {
2095 // FIXME. Consolidate this with similar code in LookupName.
2096 if (unsigned BuiltinID = II->getBuiltinID()) {
2097 if (!(getLangOpts().CPlusPlus &&
2098 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2099 NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2100 S, Lookup.isForRedeclaration(),
2101 Lookup.getNameLoc());
2102 if (D) Lookup.addDecl(D);
2103 }
2104 }
2105 }
2106 // Sentinel value saying that we didn't do anything special.
2107 return Owned((Expr*) 0);
2108 }
2109
2110 /// \brief Cast a base object to a member's actual type.
2111 ///
2112 /// Logically this happens in three phases:
2113 ///
2114 /// * First we cast from the base type to the naming class.
2115 /// The naming class is the class into which we were looking
2116 /// when we found the member; it's the qualifier type if a
2117 /// qualifier was provided, and otherwise it's the base type.
2118 ///
2119 /// * Next we cast from the naming class to the declaring class.
2120 /// If the member we found was brought into a class's scope by
2121 /// a using declaration, this is that class; otherwise it's
2122 /// the class declaring the member.
2123 ///
2124 /// * Finally we cast from the declaring class to the "true"
2125 /// declaring class of the member. This conversion does not
2126 /// obey access control.
2127 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)2128 Sema::PerformObjectMemberConversion(Expr *From,
2129 NestedNameSpecifier *Qualifier,
2130 NamedDecl *FoundDecl,
2131 NamedDecl *Member) {
2132 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2133 if (!RD)
2134 return Owned(From);
2135
2136 QualType DestRecordType;
2137 QualType DestType;
2138 QualType FromRecordType;
2139 QualType FromType = From->getType();
2140 bool PointerConversions = false;
2141 if (isa<FieldDecl>(Member)) {
2142 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2143
2144 if (FromType->getAs<PointerType>()) {
2145 DestType = Context.getPointerType(DestRecordType);
2146 FromRecordType = FromType->getPointeeType();
2147 PointerConversions = true;
2148 } else {
2149 DestType = DestRecordType;
2150 FromRecordType = FromType;
2151 }
2152 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2153 if (Method->isStatic())
2154 return Owned(From);
2155
2156 DestType = Method->getThisType(Context);
2157 DestRecordType = DestType->getPointeeType();
2158
2159 if (FromType->getAs<PointerType>()) {
2160 FromRecordType = FromType->getPointeeType();
2161 PointerConversions = true;
2162 } else {
2163 FromRecordType = FromType;
2164 DestType = DestRecordType;
2165 }
2166 } else {
2167 // No conversion necessary.
2168 return Owned(From);
2169 }
2170
2171 if (DestType->isDependentType() || FromType->isDependentType())
2172 return Owned(From);
2173
2174 // If the unqualified types are the same, no conversion is necessary.
2175 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2176 return Owned(From);
2177
2178 SourceRange FromRange = From->getSourceRange();
2179 SourceLocation FromLoc = FromRange.getBegin();
2180
2181 ExprValueKind VK = From->getValueKind();
2182
2183 // C++ [class.member.lookup]p8:
2184 // [...] Ambiguities can often be resolved by qualifying a name with its
2185 // class name.
2186 //
2187 // If the member was a qualified name and the qualified referred to a
2188 // specific base subobject type, we'll cast to that intermediate type
2189 // first and then to the object in which the member is declared. That allows
2190 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2191 //
2192 // class Base { public: int x; };
2193 // class Derived1 : public Base { };
2194 // class Derived2 : public Base { };
2195 // class VeryDerived : public Derived1, public Derived2 { void f(); };
2196 //
2197 // void VeryDerived::f() {
2198 // x = 17; // error: ambiguous base subobjects
2199 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
2200 // }
2201 if (Qualifier) {
2202 QualType QType = QualType(Qualifier->getAsType(), 0);
2203 assert(!QType.isNull() && "lookup done with dependent qualifier?");
2204 assert(QType->isRecordType() && "lookup done with non-record type");
2205
2206 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2207
2208 // In C++98, the qualifier type doesn't actually have to be a base
2209 // type of the object type, in which case we just ignore it.
2210 // Otherwise build the appropriate casts.
2211 if (IsDerivedFrom(FromRecordType, QRecordType)) {
2212 CXXCastPath BasePath;
2213 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2214 FromLoc, FromRange, &BasePath))
2215 return ExprError();
2216
2217 if (PointerConversions)
2218 QType = Context.getPointerType(QType);
2219 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2220 VK, &BasePath).take();
2221
2222 FromType = QType;
2223 FromRecordType = QRecordType;
2224
2225 // If the qualifier type was the same as the destination type,
2226 // we're done.
2227 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2228 return Owned(From);
2229 }
2230 }
2231
2232 bool IgnoreAccess = false;
2233
2234 // If we actually found the member through a using declaration, cast
2235 // down to the using declaration's type.
2236 //
2237 // Pointer equality is fine here because only one declaration of a
2238 // class ever has member declarations.
2239 if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2240 assert(isa<UsingShadowDecl>(FoundDecl));
2241 QualType URecordType = Context.getTypeDeclType(
2242 cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2243
2244 // We only need to do this if the naming-class to declaring-class
2245 // conversion is non-trivial.
2246 if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2247 assert(IsDerivedFrom(FromRecordType, URecordType));
2248 CXXCastPath BasePath;
2249 if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2250 FromLoc, FromRange, &BasePath))
2251 return ExprError();
2252
2253 QualType UType = URecordType;
2254 if (PointerConversions)
2255 UType = Context.getPointerType(UType);
2256 From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2257 VK, &BasePath).take();
2258 FromType = UType;
2259 FromRecordType = URecordType;
2260 }
2261
2262 // We don't do access control for the conversion from the
2263 // declaring class to the true declaring class.
2264 IgnoreAccess = true;
2265 }
2266
2267 CXXCastPath BasePath;
2268 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2269 FromLoc, FromRange, &BasePath,
2270 IgnoreAccess))
2271 return ExprError();
2272
2273 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2274 VK, &BasePath);
2275 }
2276
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)2277 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2278 const LookupResult &R,
2279 bool HasTrailingLParen) {
2280 // Only when used directly as the postfix-expression of a call.
2281 if (!HasTrailingLParen)
2282 return false;
2283
2284 // Never if a scope specifier was provided.
2285 if (SS.isSet())
2286 return false;
2287
2288 // Only in C++ or ObjC++.
2289 if (!getLangOpts().CPlusPlus)
2290 return false;
2291
2292 // Turn off ADL when we find certain kinds of declarations during
2293 // normal lookup:
2294 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2295 NamedDecl *D = *I;
2296
2297 // C++0x [basic.lookup.argdep]p3:
2298 // -- a declaration of a class member
2299 // Since using decls preserve this property, we check this on the
2300 // original decl.
2301 if (D->isCXXClassMember())
2302 return false;
2303
2304 // C++0x [basic.lookup.argdep]p3:
2305 // -- a block-scope function declaration that is not a
2306 // using-declaration
2307 // NOTE: we also trigger this for function templates (in fact, we
2308 // don't check the decl type at all, since all other decl types
2309 // turn off ADL anyway).
2310 if (isa<UsingShadowDecl>(D))
2311 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2312 else if (D->getDeclContext()->isFunctionOrMethod())
2313 return false;
2314
2315 // C++0x [basic.lookup.argdep]p3:
2316 // -- a declaration that is neither a function or a function
2317 // template
2318 // And also for builtin functions.
2319 if (isa<FunctionDecl>(D)) {
2320 FunctionDecl *FDecl = cast<FunctionDecl>(D);
2321
2322 // But also builtin functions.
2323 if (FDecl->getBuiltinID() && FDecl->isImplicit())
2324 return false;
2325 } else if (!isa<FunctionTemplateDecl>(D))
2326 return false;
2327 }
2328
2329 return true;
2330 }
2331
2332
2333 /// Diagnoses obvious problems with the use of the given declaration
2334 /// as an expression. This is only actually called for lookups that
2335 /// were not overloaded, and it doesn't promise that the declaration
2336 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)2337 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2338 if (isa<TypedefNameDecl>(D)) {
2339 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2340 return true;
2341 }
2342
2343 if (isa<ObjCInterfaceDecl>(D)) {
2344 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2345 return true;
2346 }
2347
2348 if (isa<NamespaceDecl>(D)) {
2349 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2350 return true;
2351 }
2352
2353 return false;
2354 }
2355
2356 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL)2357 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2358 LookupResult &R,
2359 bool NeedsADL) {
2360 // If this is a single, fully-resolved result and we don't need ADL,
2361 // just build an ordinary singleton decl ref.
2362 if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2363 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2364 R.getFoundDecl());
2365
2366 // We only need to check the declaration if there's exactly one
2367 // result, because in the overloaded case the results can only be
2368 // functions and function templates.
2369 if (R.isSingleResult() &&
2370 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2371 return ExprError();
2372
2373 // Otherwise, just build an unresolved lookup expression. Suppress
2374 // any lookup-related diagnostics; we'll hash these out later, when
2375 // we've picked a target.
2376 R.suppressDiagnostics();
2377
2378 UnresolvedLookupExpr *ULE
2379 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2380 SS.getWithLocInContext(Context),
2381 R.getLookupNameInfo(),
2382 NeedsADL, R.isOverloadedResult(),
2383 R.begin(), R.end());
2384
2385 return Owned(ULE);
2386 }
2387
2388 /// \brief Complete semantic analysis for a reference to the given declaration.
2389 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D)2390 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2391 const DeclarationNameInfo &NameInfo,
2392 NamedDecl *D) {
2393 assert(D && "Cannot refer to a NULL declaration");
2394 assert(!isa<FunctionTemplateDecl>(D) &&
2395 "Cannot refer unambiguously to a function template");
2396
2397 SourceLocation Loc = NameInfo.getLoc();
2398 if (CheckDeclInExpr(*this, Loc, D))
2399 return ExprError();
2400
2401 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2402 // Specifically diagnose references to class templates that are missing
2403 // a template argument list.
2404 Diag(Loc, diag::err_template_decl_ref)
2405 << Template << SS.getRange();
2406 Diag(Template->getLocation(), diag::note_template_decl_here);
2407 return ExprError();
2408 }
2409
2410 // Make sure that we're referring to a value.
2411 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2412 if (!VD) {
2413 Diag(Loc, diag::err_ref_non_value)
2414 << D << SS.getRange();
2415 Diag(D->getLocation(), diag::note_declared_at);
2416 return ExprError();
2417 }
2418
2419 // Check whether this declaration can be used. Note that we suppress
2420 // this check when we're going to perform argument-dependent lookup
2421 // on this function name, because this might not be the function
2422 // that overload resolution actually selects.
2423 if (DiagnoseUseOfDecl(VD, Loc))
2424 return ExprError();
2425
2426 // Only create DeclRefExpr's for valid Decl's.
2427 if (VD->isInvalidDecl())
2428 return ExprError();
2429
2430 // Handle members of anonymous structs and unions. If we got here,
2431 // and the reference is to a class member indirect field, then this
2432 // must be the subject of a pointer-to-member expression.
2433 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2434 if (!indirectField->isCXXClassMember())
2435 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2436 indirectField);
2437
2438 {
2439 QualType type = VD->getType();
2440 ExprValueKind valueKind = VK_RValue;
2441
2442 switch (D->getKind()) {
2443 // Ignore all the non-ValueDecl kinds.
2444 #define ABSTRACT_DECL(kind)
2445 #define VALUE(type, base)
2446 #define DECL(type, base) \
2447 case Decl::type:
2448 #include "clang/AST/DeclNodes.inc"
2449 llvm_unreachable("invalid value decl kind");
2450
2451 // These shouldn't make it here.
2452 case Decl::ObjCAtDefsField:
2453 case Decl::ObjCIvar:
2454 llvm_unreachable("forming non-member reference to ivar?");
2455
2456 // Enum constants are always r-values and never references.
2457 // Unresolved using declarations are dependent.
2458 case Decl::EnumConstant:
2459 case Decl::UnresolvedUsingValue:
2460 valueKind = VK_RValue;
2461 break;
2462
2463 // Fields and indirect fields that got here must be for
2464 // pointer-to-member expressions; we just call them l-values for
2465 // internal consistency, because this subexpression doesn't really
2466 // exist in the high-level semantics.
2467 case Decl::Field:
2468 case Decl::IndirectField:
2469 assert(getLangOpts().CPlusPlus &&
2470 "building reference to field in C?");
2471
2472 // These can't have reference type in well-formed programs, but
2473 // for internal consistency we do this anyway.
2474 type = type.getNonReferenceType();
2475 valueKind = VK_LValue;
2476 break;
2477
2478 // Non-type template parameters are either l-values or r-values
2479 // depending on the type.
2480 case Decl::NonTypeTemplateParm: {
2481 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2482 type = reftype->getPointeeType();
2483 valueKind = VK_LValue; // even if the parameter is an r-value reference
2484 break;
2485 }
2486
2487 // For non-references, we need to strip qualifiers just in case
2488 // the template parameter was declared as 'const int' or whatever.
2489 valueKind = VK_RValue;
2490 type = type.getUnqualifiedType();
2491 break;
2492 }
2493
2494 case Decl::Var:
2495 // In C, "extern void blah;" is valid and is an r-value.
2496 if (!getLangOpts().CPlusPlus &&
2497 !type.hasQualifiers() &&
2498 type->isVoidType()) {
2499 valueKind = VK_RValue;
2500 break;
2501 }
2502 // fallthrough
2503
2504 case Decl::ImplicitParam:
2505 case Decl::ParmVar: {
2506 // These are always l-values.
2507 valueKind = VK_LValue;
2508 type = type.getNonReferenceType();
2509
2510 // FIXME: Does the addition of const really only apply in
2511 // potentially-evaluated contexts? Since the variable isn't actually
2512 // captured in an unevaluated context, it seems that the answer is no.
2513 if (!isUnevaluatedContext()) {
2514 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2515 if (!CapturedType.isNull())
2516 type = CapturedType;
2517 }
2518
2519 break;
2520 }
2521
2522 case Decl::Function: {
2523 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2524 if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2525 type = Context.BuiltinFnTy;
2526 valueKind = VK_RValue;
2527 break;
2528 }
2529 }
2530
2531 const FunctionType *fty = type->castAs<FunctionType>();
2532
2533 // If we're referring to a function with an __unknown_anytype
2534 // result type, make the entire expression __unknown_anytype.
2535 if (fty->getResultType() == Context.UnknownAnyTy) {
2536 type = Context.UnknownAnyTy;
2537 valueKind = VK_RValue;
2538 break;
2539 }
2540
2541 // Functions are l-values in C++.
2542 if (getLangOpts().CPlusPlus) {
2543 valueKind = VK_LValue;
2544 break;
2545 }
2546
2547 // C99 DR 316 says that, if a function type comes from a
2548 // function definition (without a prototype), that type is only
2549 // used for checking compatibility. Therefore, when referencing
2550 // the function, we pretend that we don't have the full function
2551 // type.
2552 if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2553 isa<FunctionProtoType>(fty))
2554 type = Context.getFunctionNoProtoType(fty->getResultType(),
2555 fty->getExtInfo());
2556
2557 // Functions are r-values in C.
2558 valueKind = VK_RValue;
2559 break;
2560 }
2561
2562 case Decl::CXXMethod:
2563 // If we're referring to a method with an __unknown_anytype
2564 // result type, make the entire expression __unknown_anytype.
2565 // This should only be possible with a type written directly.
2566 if (const FunctionProtoType *proto
2567 = dyn_cast<FunctionProtoType>(VD->getType()))
2568 if (proto->getResultType() == Context.UnknownAnyTy) {
2569 type = Context.UnknownAnyTy;
2570 valueKind = VK_RValue;
2571 break;
2572 }
2573
2574 // C++ methods are l-values if static, r-values if non-static.
2575 if (cast<CXXMethodDecl>(VD)->isStatic()) {
2576 valueKind = VK_LValue;
2577 break;
2578 }
2579 // fallthrough
2580
2581 case Decl::CXXConversion:
2582 case Decl::CXXDestructor:
2583 case Decl::CXXConstructor:
2584 valueKind = VK_RValue;
2585 break;
2586 }
2587
2588 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2589 }
2590 }
2591
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)2592 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2593 PredefinedExpr::IdentType IT;
2594
2595 switch (Kind) {
2596 default: llvm_unreachable("Unknown simple primary expr!");
2597 case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2598 case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2599 case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2600 case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2601 }
2602
2603 // Pre-defined identifiers are of type char[x], where x is the length of the
2604 // string.
2605
2606 Decl *currentDecl = getCurFunctionOrMethodDecl();
2607 // Blocks and lambdas can occur at global scope. Don't emit a warning.
2608 if (!currentDecl) {
2609 if (const BlockScopeInfo *BSI = getCurBlock())
2610 currentDecl = BSI->TheDecl;
2611 else if (const LambdaScopeInfo *LSI = getCurLambda())
2612 currentDecl = LSI->CallOperator;
2613 }
2614
2615 if (!currentDecl) {
2616 Diag(Loc, diag::ext_predef_outside_function);
2617 currentDecl = Context.getTranslationUnitDecl();
2618 }
2619
2620 QualType ResTy;
2621 if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2622 ResTy = Context.DependentTy;
2623 } else {
2624 unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2625
2626 llvm::APInt LengthI(32, Length + 1);
2627 if (IT == PredefinedExpr::LFunction)
2628 ResTy = Context.WCharTy.withConst();
2629 else
2630 ResTy = Context.CharTy.withConst();
2631 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2632 }
2633 return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2634 }
2635
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)2636 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2637 SmallString<16> CharBuffer;
2638 bool Invalid = false;
2639 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2640 if (Invalid)
2641 return ExprError();
2642
2643 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2644 PP, Tok.getKind());
2645 if (Literal.hadError())
2646 return ExprError();
2647
2648 QualType Ty;
2649 if (Literal.isWide())
2650 Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2651 else if (Literal.isUTF16())
2652 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2653 else if (Literal.isUTF32())
2654 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2655 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2656 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
2657 else
2658 Ty = Context.CharTy; // 'x' -> char in C++
2659
2660 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2661 if (Literal.isWide())
2662 Kind = CharacterLiteral::Wide;
2663 else if (Literal.isUTF16())
2664 Kind = CharacterLiteral::UTF16;
2665 else if (Literal.isUTF32())
2666 Kind = CharacterLiteral::UTF32;
2667
2668 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2669 Tok.getLocation());
2670
2671 if (Literal.getUDSuffix().empty())
2672 return Owned(Lit);
2673
2674 // We're building a user-defined literal.
2675 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2676 SourceLocation UDSuffixLoc =
2677 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2678
2679 // Make sure we're allowed user-defined literals here.
2680 if (!UDLScope)
2681 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2682
2683 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2684 // operator "" X (ch)
2685 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2686 llvm::makeArrayRef(&Lit, 1),
2687 Tok.getLocation());
2688 }
2689
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)2690 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2691 unsigned IntSize = Context.getTargetInfo().getIntWidth();
2692 return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2693 Context.IntTy, Loc));
2694 }
2695
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)2696 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2697 QualType Ty, SourceLocation Loc) {
2698 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2699
2700 using llvm::APFloat;
2701 APFloat Val(Format);
2702
2703 APFloat::opStatus result = Literal.GetFloatValue(Val);
2704
2705 // Overflow is always an error, but underflow is only an error if
2706 // we underflowed to zero (APFloat reports denormals as underflow).
2707 if ((result & APFloat::opOverflow) ||
2708 ((result & APFloat::opUnderflow) && Val.isZero())) {
2709 unsigned diagnostic;
2710 SmallString<20> buffer;
2711 if (result & APFloat::opOverflow) {
2712 diagnostic = diag::warn_float_overflow;
2713 APFloat::getLargest(Format).toString(buffer);
2714 } else {
2715 diagnostic = diag::warn_float_underflow;
2716 APFloat::getSmallest(Format).toString(buffer);
2717 }
2718
2719 S.Diag(Loc, diagnostic)
2720 << Ty
2721 << StringRef(buffer.data(), buffer.size());
2722 }
2723
2724 bool isExact = (result == APFloat::opOK);
2725 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2726 }
2727
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)2728 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2729 // Fast path for a single digit (which is quite common). A single digit
2730 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2731 if (Tok.getLength() == 1) {
2732 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2733 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2734 }
2735
2736 SmallString<128> SpellingBuffer;
2737 // NumericLiteralParser wants to overread by one character. Add padding to
2738 // the buffer in case the token is copied to the buffer. If getSpelling()
2739 // returns a StringRef to the memory buffer, it should have a null char at
2740 // the EOF, so it is also safe.
2741 SpellingBuffer.resize(Tok.getLength() + 1);
2742
2743 // Get the spelling of the token, which eliminates trigraphs, etc.
2744 bool Invalid = false;
2745 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
2746 if (Invalid)
2747 return ExprError();
2748
2749 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
2750 if (Literal.hadError)
2751 return ExprError();
2752
2753 if (Literal.hasUDSuffix()) {
2754 // We're building a user-defined literal.
2755 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2756 SourceLocation UDSuffixLoc =
2757 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2758
2759 // Make sure we're allowed user-defined literals here.
2760 if (!UDLScope)
2761 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2762
2763 QualType CookedTy;
2764 if (Literal.isFloatingLiteral()) {
2765 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2766 // long double, the literal is treated as a call of the form
2767 // operator "" X (f L)
2768 CookedTy = Context.LongDoubleTy;
2769 } else {
2770 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2771 // unsigned long long, the literal is treated as a call of the form
2772 // operator "" X (n ULL)
2773 CookedTy = Context.UnsignedLongLongTy;
2774 }
2775
2776 DeclarationName OpName =
2777 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2778 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2779 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2780
2781 // Perform literal operator lookup to determine if we're building a raw
2782 // literal or a cooked one.
2783 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2784 switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2785 /*AllowRawAndTemplate*/true)) {
2786 case LOLR_Error:
2787 return ExprError();
2788
2789 case LOLR_Cooked: {
2790 Expr *Lit;
2791 if (Literal.isFloatingLiteral()) {
2792 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2793 } else {
2794 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2795 if (Literal.GetIntegerValue(ResultVal))
2796 Diag(Tok.getLocation(), diag::warn_integer_too_large);
2797 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2798 Tok.getLocation());
2799 }
2800 return BuildLiteralOperatorCall(R, OpNameInfo,
2801 llvm::makeArrayRef(&Lit, 1),
2802 Tok.getLocation());
2803 }
2804
2805 case LOLR_Raw: {
2806 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2807 // literal is treated as a call of the form
2808 // operator "" X ("n")
2809 SourceLocation TokLoc = Tok.getLocation();
2810 unsigned Length = Literal.getUDSuffixOffset();
2811 QualType StrTy = Context.getConstantArrayType(
2812 Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
2813 ArrayType::Normal, 0);
2814 Expr *Lit = StringLiteral::Create(
2815 Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
2816 /*Pascal*/false, StrTy, &TokLoc, 1);
2817 return BuildLiteralOperatorCall(R, OpNameInfo,
2818 llvm::makeArrayRef(&Lit, 1), TokLoc);
2819 }
2820
2821 case LOLR_Template:
2822 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2823 // template), L is treated as a call fo the form
2824 // operator "" X <'c1', 'c2', ... 'ck'>()
2825 // where n is the source character sequence c1 c2 ... ck.
2826 TemplateArgumentListInfo ExplicitArgs;
2827 unsigned CharBits = Context.getIntWidth(Context.CharTy);
2828 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2829 llvm::APSInt Value(CharBits, CharIsUnsigned);
2830 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2831 Value = TokSpelling[I];
2832 TemplateArgument Arg(Context, Value, Context.CharTy);
2833 TemplateArgumentLocInfo ArgInfo;
2834 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2835 }
2836 return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2837 Tok.getLocation(), &ExplicitArgs);
2838 }
2839
2840 llvm_unreachable("unexpected literal operator lookup result");
2841 }
2842
2843 Expr *Res;
2844
2845 if (Literal.isFloatingLiteral()) {
2846 QualType Ty;
2847 if (Literal.isFloat)
2848 Ty = Context.FloatTy;
2849 else if (!Literal.isLong)
2850 Ty = Context.DoubleTy;
2851 else
2852 Ty = Context.LongDoubleTy;
2853
2854 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2855
2856 if (Ty == Context.DoubleTy) {
2857 if (getLangOpts().SinglePrecisionConstants) {
2858 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2859 } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2860 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2861 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2862 }
2863 }
2864 } else if (!Literal.isIntegerLiteral()) {
2865 return ExprError();
2866 } else {
2867 QualType Ty;
2868
2869 // 'long long' is a C99 or C++11 feature.
2870 if (!getLangOpts().C99 && Literal.isLongLong) {
2871 if (getLangOpts().CPlusPlus)
2872 Diag(Tok.getLocation(),
2873 getLangOpts().CPlusPlus11 ?
2874 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
2875 else
2876 Diag(Tok.getLocation(), diag::ext_c99_longlong);
2877 }
2878
2879 // Get the value in the widest-possible width.
2880 unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
2881 // The microsoft literal suffix extensions support 128-bit literals, which
2882 // may be wider than [u]intmax_t.
2883 // FIXME: Actually, they don't. We seem to have accidentally invented the
2884 // i128 suffix.
2885 if (Literal.isMicrosoftInteger && MaxWidth < 128 &&
2886 PP.getTargetInfo().hasInt128Type())
2887 MaxWidth = 128;
2888 llvm::APInt ResultVal(MaxWidth, 0);
2889
2890 if (Literal.GetIntegerValue(ResultVal)) {
2891 // If this value didn't fit into uintmax_t, warn and force to ull.
2892 Diag(Tok.getLocation(), diag::warn_integer_too_large);
2893 Ty = Context.UnsignedLongLongTy;
2894 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2895 "long long is not intmax_t?");
2896 } else {
2897 // If this value fits into a ULL, try to figure out what else it fits into
2898 // according to the rules of C99 6.4.4.1p5.
2899
2900 // Octal, Hexadecimal, and integers with a U suffix are allowed to
2901 // be an unsigned int.
2902 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2903
2904 // Check from smallest to largest, picking the smallest type we can.
2905 unsigned Width = 0;
2906 if (!Literal.isLong && !Literal.isLongLong) {
2907 // Are int/unsigned possibilities?
2908 unsigned IntSize = Context.getTargetInfo().getIntWidth();
2909
2910 // Does it fit in a unsigned int?
2911 if (ResultVal.isIntN(IntSize)) {
2912 // Does it fit in a signed int?
2913 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2914 Ty = Context.IntTy;
2915 else if (AllowUnsigned)
2916 Ty = Context.UnsignedIntTy;
2917 Width = IntSize;
2918 }
2919 }
2920
2921 // Are long/unsigned long possibilities?
2922 if (Ty.isNull() && !Literal.isLongLong) {
2923 unsigned LongSize = Context.getTargetInfo().getLongWidth();
2924
2925 // Does it fit in a unsigned long?
2926 if (ResultVal.isIntN(LongSize)) {
2927 // Does it fit in a signed long?
2928 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2929 Ty = Context.LongTy;
2930 else if (AllowUnsigned)
2931 Ty = Context.UnsignedLongTy;
2932 Width = LongSize;
2933 }
2934 }
2935
2936 // Check long long if needed.
2937 if (Ty.isNull()) {
2938 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2939
2940 // Does it fit in a unsigned long long?
2941 if (ResultVal.isIntN(LongLongSize)) {
2942 // Does it fit in a signed long long?
2943 // To be compatible with MSVC, hex integer literals ending with the
2944 // LL or i64 suffix are always signed in Microsoft mode.
2945 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2946 (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2947 Ty = Context.LongLongTy;
2948 else if (AllowUnsigned)
2949 Ty = Context.UnsignedLongLongTy;
2950 Width = LongLongSize;
2951 }
2952 }
2953
2954 // If it doesn't fit in unsigned long long, and we're using Microsoft
2955 // extensions, then its a 128-bit integer literal.
2956 if (Ty.isNull() && Literal.isMicrosoftInteger &&
2957 PP.getTargetInfo().hasInt128Type()) {
2958 if (Literal.isUnsigned)
2959 Ty = Context.UnsignedInt128Ty;
2960 else
2961 Ty = Context.Int128Ty;
2962 Width = 128;
2963 }
2964
2965 // If we still couldn't decide a type, we probably have something that
2966 // does not fit in a signed long long, but has no U suffix.
2967 if (Ty.isNull()) {
2968 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2969 Ty = Context.UnsignedLongLongTy;
2970 Width = Context.getTargetInfo().getLongLongWidth();
2971 }
2972
2973 if (ResultVal.getBitWidth() != Width)
2974 ResultVal = ResultVal.trunc(Width);
2975 }
2976 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2977 }
2978
2979 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2980 if (Literal.isImaginary)
2981 Res = new (Context) ImaginaryLiteral(Res,
2982 Context.getComplexType(Res->getType()));
2983
2984 return Owned(Res);
2985 }
2986
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)2987 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2988 assert((E != 0) && "ActOnParenExpr() missing expr");
2989 return Owned(new (Context) ParenExpr(L, R, E));
2990 }
2991
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)2992 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2993 SourceLocation Loc,
2994 SourceRange ArgRange) {
2995 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2996 // scalar or vector data type argument..."
2997 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2998 // type (C99 6.2.5p18) or void.
2999 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3000 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3001 << T << ArgRange;
3002 return true;
3003 }
3004
3005 assert((T->isVoidType() || !T->isIncompleteType()) &&
3006 "Scalar types should always be complete");
3007 return false;
3008 }
3009
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)3010 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3011 SourceLocation Loc,
3012 SourceRange ArgRange,
3013 UnaryExprOrTypeTrait TraitKind) {
3014 // C99 6.5.3.4p1:
3015 if (T->isFunctionType()) {
3016 // alignof(function) is allowed as an extension.
3017 if (TraitKind == UETT_SizeOf)
3018 S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
3019 return false;
3020 }
3021
3022 // Allow sizeof(void)/alignof(void) as an extension.
3023 if (T->isVoidType()) {
3024 S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
3025 return false;
3026 }
3027
3028 return true;
3029 }
3030
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)3031 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3032 SourceLocation Loc,
3033 SourceRange ArgRange,
3034 UnaryExprOrTypeTrait TraitKind) {
3035 // Reject sizeof(interface) and sizeof(interface<proto>) if the
3036 // runtime doesn't allow it.
3037 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3038 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3039 << T << (TraitKind == UETT_SizeOf)
3040 << ArgRange;
3041 return true;
3042 }
3043
3044 return false;
3045 }
3046
3047 /// \brief Check the constrains on expression operands to unary type expression
3048 /// and type traits.
3049 ///
3050 /// Completes any types necessary and validates the constraints on the operand
3051 /// expression. The logic mostly mirrors the type-based overload, but may modify
3052 /// the expression as it completes the type for that expression through template
3053 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)3054 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3055 UnaryExprOrTypeTrait ExprKind) {
3056 QualType ExprTy = E->getType();
3057
3058 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3059 // the result is the size of the referenced type."
3060 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3061 // result shall be the alignment of the referenced type."
3062 if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
3063 ExprTy = Ref->getPointeeType();
3064
3065 if (ExprKind == UETT_VecStep)
3066 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3067 E->getSourceRange());
3068
3069 // Whitelist some types as extensions
3070 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3071 E->getSourceRange(), ExprKind))
3072 return false;
3073
3074 if (RequireCompleteExprType(E,
3075 diag::err_sizeof_alignof_incomplete_type,
3076 ExprKind, E->getSourceRange()))
3077 return true;
3078
3079 // Completeing the expression's type may have changed it.
3080 ExprTy = E->getType();
3081 if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
3082 ExprTy = Ref->getPointeeType();
3083
3084 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3085 E->getSourceRange(), ExprKind))
3086 return true;
3087
3088 if (ExprKind == UETT_SizeOf) {
3089 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3090 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3091 QualType OType = PVD->getOriginalType();
3092 QualType Type = PVD->getType();
3093 if (Type->isPointerType() && OType->isArrayType()) {
3094 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3095 << Type << OType;
3096 Diag(PVD->getLocation(), diag::note_declared_at);
3097 }
3098 }
3099 }
3100 }
3101
3102 return false;
3103 }
3104
3105 /// \brief Check the constraints on operands to unary expression and type
3106 /// traits.
3107 ///
3108 /// This will complete any types necessary, and validate the various constraints
3109 /// on those operands.
3110 ///
3111 /// The UsualUnaryConversions() function is *not* called by this routine.
3112 /// C99 6.3.2.1p[2-4] all state:
3113 /// Except when it is the operand of the sizeof operator ...
3114 ///
3115 /// C++ [expr.sizeof]p4
3116 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3117 /// standard conversions are not applied to the operand of sizeof.
3118 ///
3119 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)3120 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3121 SourceLocation OpLoc,
3122 SourceRange ExprRange,
3123 UnaryExprOrTypeTrait ExprKind) {
3124 if (ExprType->isDependentType())
3125 return false;
3126
3127 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3128 // the result is the size of the referenced type."
3129 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3130 // result shall be the alignment of the referenced type."
3131 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3132 ExprType = Ref->getPointeeType();
3133
3134 if (ExprKind == UETT_VecStep)
3135 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3136
3137 // Whitelist some types as extensions
3138 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3139 ExprKind))
3140 return false;
3141
3142 if (RequireCompleteType(OpLoc, ExprType,
3143 diag::err_sizeof_alignof_incomplete_type,
3144 ExprKind, ExprRange))
3145 return true;
3146
3147 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3148 ExprKind))
3149 return true;
3150
3151 return false;
3152 }
3153
CheckAlignOfExpr(Sema & S,Expr * E)3154 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3155 E = E->IgnoreParens();
3156
3157 // alignof decl is always ok.
3158 if (isa<DeclRefExpr>(E))
3159 return false;
3160
3161 // Cannot know anything else if the expression is dependent.
3162 if (E->isTypeDependent())
3163 return false;
3164
3165 if (E->getBitField()) {
3166 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3167 << 1 << E->getSourceRange();
3168 return true;
3169 }
3170
3171 // Alignment of a field access is always okay, so long as it isn't a
3172 // bit-field.
3173 if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
3174 if (isa<FieldDecl>(ME->getMemberDecl()))
3175 return false;
3176
3177 return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3178 }
3179
CheckVecStepExpr(Expr * E)3180 bool Sema::CheckVecStepExpr(Expr *E) {
3181 E = E->IgnoreParens();
3182
3183 // Cannot know anything else if the expression is dependent.
3184 if (E->isTypeDependent())
3185 return false;
3186
3187 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3188 }
3189
3190 /// \brief Build a sizeof or alignof expression given a type operand.
3191 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)3192 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3193 SourceLocation OpLoc,
3194 UnaryExprOrTypeTrait ExprKind,
3195 SourceRange R) {
3196 if (!TInfo)
3197 return ExprError();
3198
3199 QualType T = TInfo->getType();
3200
3201 if (!T->isDependentType() &&
3202 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3203 return ExprError();
3204
3205 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3206 return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3207 Context.getSizeType(),
3208 OpLoc, R.getEnd()));
3209 }
3210
3211 /// \brief Build a sizeof or alignof expression given an expression
3212 /// operand.
3213 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)3214 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3215 UnaryExprOrTypeTrait ExprKind) {
3216 ExprResult PE = CheckPlaceholderExpr(E);
3217 if (PE.isInvalid())
3218 return ExprError();
3219
3220 E = PE.get();
3221
3222 // Verify that the operand is valid.
3223 bool isInvalid = false;
3224 if (E->isTypeDependent()) {
3225 // Delay type-checking for type-dependent expressions.
3226 } else if (ExprKind == UETT_AlignOf) {
3227 isInvalid = CheckAlignOfExpr(*this, E);
3228 } else if (ExprKind == UETT_VecStep) {
3229 isInvalid = CheckVecStepExpr(E);
3230 } else if (E->getBitField()) { // C99 6.5.3.4p1.
3231 Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3232 isInvalid = true;
3233 } else {
3234 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3235 }
3236
3237 if (isInvalid)
3238 return ExprError();
3239
3240 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3241 PE = TransformToPotentiallyEvaluated(E);
3242 if (PE.isInvalid()) return ExprError();
3243 E = PE.take();
3244 }
3245
3246 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3247 return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3248 ExprKind, E, Context.getSizeType(), OpLoc,
3249 E->getSourceRange().getEnd()));
3250 }
3251
3252 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3253 /// expr and the same for @c alignof and @c __alignof
3254 /// Note that the ArgRange is invalid if isType is false.
3255 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,const SourceRange & ArgRange)3256 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3257 UnaryExprOrTypeTrait ExprKind, bool IsType,
3258 void *TyOrEx, const SourceRange &ArgRange) {
3259 // If error parsing type, ignore.
3260 if (TyOrEx == 0) return ExprError();
3261
3262 if (IsType) {
3263 TypeSourceInfo *TInfo;
3264 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3265 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3266 }
3267
3268 Expr *ArgEx = (Expr *)TyOrEx;
3269 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3270 return Result;
3271 }
3272
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)3273 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3274 bool IsReal) {
3275 if (V.get()->isTypeDependent())
3276 return S.Context.DependentTy;
3277
3278 // _Real and _Imag are only l-values for normal l-values.
3279 if (V.get()->getObjectKind() != OK_Ordinary) {
3280 V = S.DefaultLvalueConversion(V.take());
3281 if (V.isInvalid())
3282 return QualType();
3283 }
3284
3285 // These operators return the element type of a complex type.
3286 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3287 return CT->getElementType();
3288
3289 // Otherwise they pass through real integer and floating point types here.
3290 if (V.get()->getType()->isArithmeticType())
3291 return V.get()->getType();
3292
3293 // Test for placeholders.
3294 ExprResult PR = S.CheckPlaceholderExpr(V.get());
3295 if (PR.isInvalid()) return QualType();
3296 if (PR.get() != V.get()) {
3297 V = PR;
3298 return CheckRealImagOperand(S, V, Loc, IsReal);
3299 }
3300
3301 // Reject anything else.
3302 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3303 << (IsReal ? "__real" : "__imag");
3304 return QualType();
3305 }
3306
3307
3308
3309 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)3310 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3311 tok::TokenKind Kind, Expr *Input) {
3312 UnaryOperatorKind Opc;
3313 switch (Kind) {
3314 default: llvm_unreachable("Unknown unary op!");
3315 case tok::plusplus: Opc = UO_PostInc; break;
3316 case tok::minusminus: Opc = UO_PostDec; break;
3317 }
3318
3319 // Since this might is a postfix expression, get rid of ParenListExprs.
3320 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3321 if (Result.isInvalid()) return ExprError();
3322 Input = Result.take();
3323
3324 return BuildUnaryOp(S, OpLoc, Opc, Input);
3325 }
3326
3327 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3328 ///
3329 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)3330 static bool checkArithmeticOnObjCPointer(Sema &S,
3331 SourceLocation opLoc,
3332 Expr *op) {
3333 assert(op->getType()->isObjCObjectPointerType());
3334 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
3335 return false;
3336
3337 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3338 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3339 << op->getSourceRange();
3340 return true;
3341 }
3342
3343 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * base,SourceLocation lbLoc,Expr * idx,SourceLocation rbLoc)3344 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
3345 Expr *idx, SourceLocation rbLoc) {
3346 // Since this might be a postfix expression, get rid of ParenListExprs.
3347 if (isa<ParenListExpr>(base)) {
3348 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
3349 if (result.isInvalid()) return ExprError();
3350 base = result.take();
3351 }
3352
3353 // Handle any non-overload placeholder types in the base and index
3354 // expressions. We can't handle overloads here because the other
3355 // operand might be an overloadable type, in which case the overload
3356 // resolution for the operator overload should get the first crack
3357 // at the overload.
3358 if (base->getType()->isNonOverloadPlaceholderType()) {
3359 ExprResult result = CheckPlaceholderExpr(base);
3360 if (result.isInvalid()) return ExprError();
3361 base = result.take();
3362 }
3363 if (idx->getType()->isNonOverloadPlaceholderType()) {
3364 ExprResult result = CheckPlaceholderExpr(idx);
3365 if (result.isInvalid()) return ExprError();
3366 idx = result.take();
3367 }
3368
3369 // Build an unanalyzed expression if either operand is type-dependent.
3370 if (getLangOpts().CPlusPlus &&
3371 (base->isTypeDependent() || idx->isTypeDependent())) {
3372 return Owned(new (Context) ArraySubscriptExpr(base, idx,
3373 Context.DependentTy,
3374 VK_LValue, OK_Ordinary,
3375 rbLoc));
3376 }
3377
3378 // Use C++ overloaded-operator rules if either operand has record
3379 // type. The spec says to do this if either type is *overloadable*,
3380 // but enum types can't declare subscript operators or conversion
3381 // operators, so there's nothing interesting for overload resolution
3382 // to do if there aren't any record types involved.
3383 //
3384 // ObjC pointers have their own subscripting logic that is not tied
3385 // to overload resolution and so should not take this path.
3386 if (getLangOpts().CPlusPlus &&
3387 (base->getType()->isRecordType() ||
3388 (!base->getType()->isObjCObjectPointerType() &&
3389 idx->getType()->isRecordType()))) {
3390 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
3391 }
3392
3393 return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
3394 }
3395
3396 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3397 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3398 Expr *Idx, SourceLocation RLoc) {
3399 Expr *LHSExp = Base;
3400 Expr *RHSExp = Idx;
3401
3402 // Perform default conversions.
3403 if (!LHSExp->getType()->getAs<VectorType>()) {
3404 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3405 if (Result.isInvalid())
3406 return ExprError();
3407 LHSExp = Result.take();
3408 }
3409 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3410 if (Result.isInvalid())
3411 return ExprError();
3412 RHSExp = Result.take();
3413
3414 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3415 ExprValueKind VK = VK_LValue;
3416 ExprObjectKind OK = OK_Ordinary;
3417
3418 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3419 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3420 // in the subscript position. As a result, we need to derive the array base
3421 // and index from the expression types.
3422 Expr *BaseExpr, *IndexExpr;
3423 QualType ResultType;
3424 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3425 BaseExpr = LHSExp;
3426 IndexExpr = RHSExp;
3427 ResultType = Context.DependentTy;
3428 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3429 BaseExpr = LHSExp;
3430 IndexExpr = RHSExp;
3431 ResultType = PTy->getPointeeType();
3432 } else if (const ObjCObjectPointerType *PTy =
3433 LHSTy->getAs<ObjCObjectPointerType>()) {
3434 BaseExpr = LHSExp;
3435 IndexExpr = RHSExp;
3436
3437 // Use custom logic if this should be the pseudo-object subscript
3438 // expression.
3439 if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
3440 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3441
3442 ResultType = PTy->getPointeeType();
3443 if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3444 Diag(LLoc, diag::err_subscript_nonfragile_interface)
3445 << ResultType << BaseExpr->getSourceRange();
3446 return ExprError();
3447 }
3448 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3449 // Handle the uncommon case of "123[Ptr]".
3450 BaseExpr = RHSExp;
3451 IndexExpr = LHSExp;
3452 ResultType = PTy->getPointeeType();
3453 } else if (const ObjCObjectPointerType *PTy =
3454 RHSTy->getAs<ObjCObjectPointerType>()) {
3455 // Handle the uncommon case of "123[Ptr]".
3456 BaseExpr = RHSExp;
3457 IndexExpr = LHSExp;
3458 ResultType = PTy->getPointeeType();
3459 if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3460 Diag(LLoc, diag::err_subscript_nonfragile_interface)
3461 << ResultType << BaseExpr->getSourceRange();
3462 return ExprError();
3463 }
3464 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3465 BaseExpr = LHSExp; // vectors: V[123]
3466 IndexExpr = RHSExp;
3467 VK = LHSExp->getValueKind();
3468 if (VK != VK_RValue)
3469 OK = OK_VectorComponent;
3470
3471 // FIXME: need to deal with const...
3472 ResultType = VTy->getElementType();
3473 } else if (LHSTy->isArrayType()) {
3474 // If we see an array that wasn't promoted by
3475 // DefaultFunctionArrayLvalueConversion, it must be an array that
3476 // wasn't promoted because of the C90 rule that doesn't
3477 // allow promoting non-lvalue arrays. Warn, then
3478 // force the promotion here.
3479 Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3480 LHSExp->getSourceRange();
3481 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3482 CK_ArrayToPointerDecay).take();
3483 LHSTy = LHSExp->getType();
3484
3485 BaseExpr = LHSExp;
3486 IndexExpr = RHSExp;
3487 ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3488 } else if (RHSTy->isArrayType()) {
3489 // Same as previous, except for 123[f().a] case
3490 Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3491 RHSExp->getSourceRange();
3492 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3493 CK_ArrayToPointerDecay).take();
3494 RHSTy = RHSExp->getType();
3495
3496 BaseExpr = RHSExp;
3497 IndexExpr = LHSExp;
3498 ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3499 } else {
3500 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3501 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3502 }
3503 // C99 6.5.2.1p1
3504 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3505 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3506 << IndexExpr->getSourceRange());
3507
3508 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3509 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3510 && !IndexExpr->isTypeDependent())
3511 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3512
3513 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3514 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3515 // type. Note that Functions are not objects, and that (in C99 parlance)
3516 // incomplete types are not object types.
3517 if (ResultType->isFunctionType()) {
3518 Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3519 << ResultType << BaseExpr->getSourceRange();
3520 return ExprError();
3521 }
3522
3523 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3524 // GNU extension: subscripting on pointer to void
3525 Diag(LLoc, diag::ext_gnu_subscript_void_type)
3526 << BaseExpr->getSourceRange();
3527
3528 // C forbids expressions of unqualified void type from being l-values.
3529 // See IsCForbiddenLValueType.
3530 if (!ResultType.hasQualifiers()) VK = VK_RValue;
3531 } else if (!ResultType->isDependentType() &&
3532 RequireCompleteType(LLoc, ResultType,
3533 diag::err_subscript_incomplete_type, BaseExpr))
3534 return ExprError();
3535
3536 assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3537 !ResultType.isCForbiddenLValueType());
3538
3539 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3540 ResultType, VK, OK, RLoc));
3541 }
3542
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)3543 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3544 FunctionDecl *FD,
3545 ParmVarDecl *Param) {
3546 if (Param->hasUnparsedDefaultArg()) {
3547 Diag(CallLoc,
3548 diag::err_use_of_default_argument_to_function_declared_later) <<
3549 FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3550 Diag(UnparsedDefaultArgLocs[Param],
3551 diag::note_default_argument_declared_here);
3552 return ExprError();
3553 }
3554
3555 if (Param->hasUninstantiatedDefaultArg()) {
3556 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3557
3558 EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3559 Param);
3560
3561 // Instantiate the expression.
3562 MultiLevelTemplateArgumentList ArgList
3563 = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3564
3565 std::pair<const TemplateArgument *, unsigned> Innermost
3566 = ArgList.getInnermost();
3567 InstantiatingTemplate Inst(*this, CallLoc, Param,
3568 ArrayRef<TemplateArgument>(Innermost.first,
3569 Innermost.second));
3570 if (Inst)
3571 return ExprError();
3572
3573 ExprResult Result;
3574 {
3575 // C++ [dcl.fct.default]p5:
3576 // The names in the [default argument] expression are bound, and
3577 // the semantic constraints are checked, at the point where the
3578 // default argument expression appears.
3579 ContextRAII SavedContext(*this, FD);
3580 LocalInstantiationScope Local(*this);
3581 Result = SubstExpr(UninstExpr, ArgList);
3582 }
3583 if (Result.isInvalid())
3584 return ExprError();
3585
3586 // Check the expression as an initializer for the parameter.
3587 InitializedEntity Entity
3588 = InitializedEntity::InitializeParameter(Context, Param);
3589 InitializationKind Kind
3590 = InitializationKind::CreateCopy(Param->getLocation(),
3591 /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3592 Expr *ResultE = Result.takeAs<Expr>();
3593
3594 InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3595 Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
3596 if (Result.isInvalid())
3597 return ExprError();
3598
3599 Expr *Arg = Result.takeAs<Expr>();
3600 CheckCompletedExpr(Arg, Param->getOuterLocStart());
3601 // Build the default argument expression.
3602 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3603 }
3604
3605 // If the default expression creates temporaries, we need to
3606 // push them to the current stack of expression temporaries so they'll
3607 // be properly destroyed.
3608 // FIXME: We should really be rebuilding the default argument with new
3609 // bound temporaries; see the comment in PR5810.
3610 // We don't need to do that with block decls, though, because
3611 // blocks in default argument expression can never capture anything.
3612 if (isa<ExprWithCleanups>(Param->getInit())) {
3613 // Set the "needs cleanups" bit regardless of whether there are
3614 // any explicit objects.
3615 ExprNeedsCleanups = true;
3616
3617 // Append all the objects to the cleanup list. Right now, this
3618 // should always be a no-op, because blocks in default argument
3619 // expressions should never be able to capture anything.
3620 assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3621 "default argument expression has capturing blocks?");
3622 }
3623
3624 // We already type-checked the argument, so we know it works.
3625 // Just mark all of the declarations in this potentially-evaluated expression
3626 // as being "referenced".
3627 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3628 /*SkipLocalVariables=*/true);
3629 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3630 }
3631
3632
3633 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)3634 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3635 Expr *Fn) {
3636 if (Proto && Proto->isVariadic()) {
3637 if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3638 return VariadicConstructor;
3639 else if (Fn && Fn->getType()->isBlockPointerType())
3640 return VariadicBlock;
3641 else if (FDecl) {
3642 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3643 if (Method->isInstance())
3644 return VariadicMethod;
3645 }
3646 return VariadicFunction;
3647 }
3648 return VariadicDoesNotApply;
3649 }
3650
3651 /// ConvertArgumentsForCall - Converts the arguments specified in
3652 /// Args/NumArgs to the parameter types of the function FDecl with
3653 /// function prototype Proto. Call is the call expression itself, and
3654 /// Fn is the function expression. For a C++ member function, this
3655 /// routine does not attempt to convert the object argument. Returns
3656 /// true if the call is ill-formed.
3657 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,bool IsExecConfig)3658 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3659 FunctionDecl *FDecl,
3660 const FunctionProtoType *Proto,
3661 Expr **Args, unsigned NumArgs,
3662 SourceLocation RParenLoc,
3663 bool IsExecConfig) {
3664 // Bail out early if calling a builtin with custom typechecking.
3665 // We don't need to do this in the
3666 if (FDecl)
3667 if (unsigned ID = FDecl->getBuiltinID())
3668 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3669 return false;
3670
3671 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3672 // assignment, to the types of the corresponding parameter, ...
3673 unsigned NumArgsInProto = Proto->getNumArgs();
3674 bool Invalid = false;
3675 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3676 unsigned FnKind = Fn->getType()->isBlockPointerType()
3677 ? 1 /* block */
3678 : (IsExecConfig ? 3 /* kernel function (exec config) */
3679 : 0 /* function */);
3680
3681 // If too few arguments are available (and we don't have default
3682 // arguments for the remaining parameters), don't make the call.
3683 if (NumArgs < NumArgsInProto) {
3684 if (NumArgs < MinArgs) {
3685 if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3686 Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3687 ? diag::err_typecheck_call_too_few_args_one
3688 : diag::err_typecheck_call_too_few_args_at_least_one)
3689 << FnKind
3690 << FDecl->getParamDecl(0) << Fn->getSourceRange();
3691 else
3692 Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3693 ? diag::err_typecheck_call_too_few_args
3694 : diag::err_typecheck_call_too_few_args_at_least)
3695 << FnKind
3696 << MinArgs << NumArgs << Fn->getSourceRange();
3697
3698 // Emit the location of the prototype.
3699 if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3700 Diag(FDecl->getLocStart(), diag::note_callee_decl)
3701 << FDecl;
3702
3703 return true;
3704 }
3705 Call->setNumArgs(Context, NumArgsInProto);
3706 }
3707
3708 // If too many are passed and not variadic, error on the extras and drop
3709 // them.
3710 if (NumArgs > NumArgsInProto) {
3711 if (!Proto->isVariadic()) {
3712 if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3713 Diag(Args[NumArgsInProto]->getLocStart(),
3714 MinArgs == NumArgsInProto
3715 ? diag::err_typecheck_call_too_many_args_one
3716 : diag::err_typecheck_call_too_many_args_at_most_one)
3717 << FnKind
3718 << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
3719 << SourceRange(Args[NumArgsInProto]->getLocStart(),
3720 Args[NumArgs-1]->getLocEnd());
3721 else
3722 Diag(Args[NumArgsInProto]->getLocStart(),
3723 MinArgs == NumArgsInProto
3724 ? diag::err_typecheck_call_too_many_args
3725 : diag::err_typecheck_call_too_many_args_at_most)
3726 << FnKind
3727 << NumArgsInProto << NumArgs << Fn->getSourceRange()
3728 << SourceRange(Args[NumArgsInProto]->getLocStart(),
3729 Args[NumArgs-1]->getLocEnd());
3730
3731 // Emit the location of the prototype.
3732 if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3733 Diag(FDecl->getLocStart(), diag::note_callee_decl)
3734 << FDecl;
3735
3736 // This deletes the extra arguments.
3737 Call->setNumArgs(Context, NumArgsInProto);
3738 return true;
3739 }
3740 }
3741 SmallVector<Expr *, 8> AllArgs;
3742 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
3743
3744 Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3745 Proto, 0, Args, NumArgs, AllArgs, CallType);
3746 if (Invalid)
3747 return true;
3748 unsigned TotalNumArgs = AllArgs.size();
3749 for (unsigned i = 0; i < TotalNumArgs; ++i)
3750 Call->setArg(i, AllArgs[i]);
3751
3752 return false;
3753 }
3754
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstProtoArg,Expr ** Args,unsigned NumArgs,SmallVector<Expr *,8> & AllArgs,VariadicCallType CallType,bool AllowExplicit,bool IsListInitialization)3755 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3756 FunctionDecl *FDecl,
3757 const FunctionProtoType *Proto,
3758 unsigned FirstProtoArg,
3759 Expr **Args, unsigned NumArgs,
3760 SmallVector<Expr *, 8> &AllArgs,
3761 VariadicCallType CallType,
3762 bool AllowExplicit,
3763 bool IsListInitialization) {
3764 unsigned NumArgsInProto = Proto->getNumArgs();
3765 unsigned NumArgsToCheck = NumArgs;
3766 bool Invalid = false;
3767 if (NumArgs != NumArgsInProto)
3768 // Use default arguments for missing arguments
3769 NumArgsToCheck = NumArgsInProto;
3770 unsigned ArgIx = 0;
3771 // Continue to check argument types (even if we have too few/many args).
3772 for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3773 QualType ProtoArgType = Proto->getArgType(i);
3774
3775 Expr *Arg;
3776 ParmVarDecl *Param;
3777 if (ArgIx < NumArgs) {
3778 Arg = Args[ArgIx++];
3779
3780 if (RequireCompleteType(Arg->getLocStart(),
3781 ProtoArgType,
3782 diag::err_call_incomplete_argument, Arg))
3783 return true;
3784
3785 // Pass the argument
3786 Param = 0;
3787 if (FDecl && i < FDecl->getNumParams())
3788 Param = FDecl->getParamDecl(i);
3789
3790 // Strip the unbridged-cast placeholder expression off, if applicable.
3791 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3792 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3793 (!Param || !Param->hasAttr<CFConsumedAttr>()))
3794 Arg = stripARCUnbridgedCast(Arg);
3795
3796 InitializedEntity Entity = Param ?
3797 InitializedEntity::InitializeParameter(Context, Param, ProtoArgType)
3798 : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3799 Proto->isArgConsumed(i));
3800 ExprResult ArgE = PerformCopyInitialization(Entity,
3801 SourceLocation(),
3802 Owned(Arg),
3803 IsListInitialization,
3804 AllowExplicit);
3805 if (ArgE.isInvalid())
3806 return true;
3807
3808 Arg = ArgE.takeAs<Expr>();
3809 } else {
3810 assert(FDecl && "can't use default arguments without a known callee");
3811 Param = FDecl->getParamDecl(i);
3812
3813 ExprResult ArgExpr =
3814 BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3815 if (ArgExpr.isInvalid())
3816 return true;
3817
3818 Arg = ArgExpr.takeAs<Expr>();
3819 }
3820
3821 // Check for array bounds violations for each argument to the call. This
3822 // check only triggers warnings when the argument isn't a more complex Expr
3823 // with its own checking, such as a BinaryOperator.
3824 CheckArrayAccess(Arg);
3825
3826 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3827 CheckStaticArrayArgument(CallLoc, Param, Arg);
3828
3829 AllArgs.push_back(Arg);
3830 }
3831
3832 // If this is a variadic call, handle args passed through "...".
3833 if (CallType != VariadicDoesNotApply) {
3834 // Assume that extern "C" functions with variadic arguments that
3835 // return __unknown_anytype aren't *really* variadic.
3836 if (Proto->getResultType() == Context.UnknownAnyTy &&
3837 FDecl && FDecl->isExternC()) {
3838 for (unsigned i = ArgIx; i != NumArgs; ++i) {
3839 QualType paramType; // ignored
3840 ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
3841 Invalid |= arg.isInvalid();
3842 AllArgs.push_back(arg.take());
3843 }
3844
3845 // Otherwise do argument promotion, (C99 6.5.2.2p7).
3846 } else {
3847 for (unsigned i = ArgIx; i != NumArgs; ++i) {
3848 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3849 FDecl);
3850 Invalid |= Arg.isInvalid();
3851 AllArgs.push_back(Arg.take());
3852 }
3853 }
3854
3855 // Check for array bounds violations.
3856 for (unsigned i = ArgIx; i != NumArgs; ++i)
3857 CheckArrayAccess(Args[i]);
3858 }
3859 return Invalid;
3860 }
3861
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)3862 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3863 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3864 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
3865 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3866 << ATL.getLocalSourceRange();
3867 }
3868
3869 /// CheckStaticArrayArgument - If the given argument corresponds to a static
3870 /// array parameter, check that it is non-null, and that if it is formed by
3871 /// array-to-pointer decay, the underlying array is sufficiently large.
3872 ///
3873 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3874 /// array type derivation, then for each call to the function, the value of the
3875 /// corresponding actual argument shall provide access to the first element of
3876 /// an array with at least as many elements as specified by the size expression.
3877 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)3878 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3879 ParmVarDecl *Param,
3880 const Expr *ArgExpr) {
3881 // Static array parameters are not supported in C++.
3882 if (!Param || getLangOpts().CPlusPlus)
3883 return;
3884
3885 QualType OrigTy = Param->getOriginalType();
3886
3887 const ArrayType *AT = Context.getAsArrayType(OrigTy);
3888 if (!AT || AT->getSizeModifier() != ArrayType::Static)
3889 return;
3890
3891 if (ArgExpr->isNullPointerConstant(Context,
3892 Expr::NPC_NeverValueDependent)) {
3893 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3894 DiagnoseCalleeStaticArrayParam(*this, Param);
3895 return;
3896 }
3897
3898 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3899 if (!CAT)
3900 return;
3901
3902 const ConstantArrayType *ArgCAT =
3903 Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3904 if (!ArgCAT)
3905 return;
3906
3907 if (ArgCAT->getSize().ult(CAT->getSize())) {
3908 Diag(CallLoc, diag::warn_static_array_too_small)
3909 << ArgExpr->getSourceRange()
3910 << (unsigned) ArgCAT->getSize().getZExtValue()
3911 << (unsigned) CAT->getSize().getZExtValue();
3912 DiagnoseCalleeStaticArrayParam(*this, Param);
3913 }
3914 }
3915
3916 /// Given a function expression of unknown-any type, try to rebuild it
3917 /// to have a function type.
3918 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3919
3920 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3921 /// This provides the location of the left/right parens and a list of comma
3922 /// locations.
3923 ExprResult
ActOnCallExpr(Scope * S,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig)3924 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3925 MultiExprArg ArgExprs, SourceLocation RParenLoc,
3926 Expr *ExecConfig, bool IsExecConfig) {
3927 // Since this might be a postfix expression, get rid of ParenListExprs.
3928 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3929 if (Result.isInvalid()) return ExprError();
3930 Fn = Result.take();
3931
3932 if (getLangOpts().CPlusPlus) {
3933 // If this is a pseudo-destructor expression, build the call immediately.
3934 if (isa<CXXPseudoDestructorExpr>(Fn)) {
3935 if (!ArgExprs.empty()) {
3936 // Pseudo-destructor calls should not have any arguments.
3937 Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3938 << FixItHint::CreateRemoval(
3939 SourceRange(ArgExprs[0]->getLocStart(),
3940 ArgExprs.back()->getLocEnd()));
3941 }
3942
3943 return Owned(new (Context) CallExpr(Context, Fn, MultiExprArg(),
3944 Context.VoidTy, VK_RValue,
3945 RParenLoc));
3946 }
3947
3948 // Determine whether this is a dependent call inside a C++ template,
3949 // in which case we won't do any semantic analysis now.
3950 // FIXME: Will need to cache the results of name lookup (including ADL) in
3951 // Fn.
3952 bool Dependent = false;
3953 if (Fn->isTypeDependent())
3954 Dependent = true;
3955 else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
3956 Dependent = true;
3957
3958 if (Dependent) {
3959 if (ExecConfig) {
3960 return Owned(new (Context) CUDAKernelCallExpr(
3961 Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
3962 Context.DependentTy, VK_RValue, RParenLoc));
3963 } else {
3964 return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
3965 Context.DependentTy, VK_RValue,
3966 RParenLoc));
3967 }
3968 }
3969
3970 // Determine whether this is a call to an object (C++ [over.call.object]).
3971 if (Fn->getType()->isRecordType())
3972 return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
3973 ArgExprs.data(),
3974 ArgExprs.size(), RParenLoc));
3975
3976 if (Fn->getType() == Context.UnknownAnyTy) {
3977 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3978 if (result.isInvalid()) return ExprError();
3979 Fn = result.take();
3980 }
3981
3982 if (Fn->getType() == Context.BoundMemberTy) {
3983 return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
3984 ArgExprs.size(), RParenLoc);
3985 }
3986 }
3987
3988 // Check for overloaded calls. This can happen even in C due to extensions.
3989 if (Fn->getType() == Context.OverloadTy) {
3990 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3991
3992 // We aren't supposed to apply this logic for if there's an '&' involved.
3993 if (!find.HasFormOfMemberPointer) {
3994 OverloadExpr *ovl = find.Expression;
3995 if (isa<UnresolvedLookupExpr>(ovl)) {
3996 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3997 return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs.data(),
3998 ArgExprs.size(), RParenLoc, ExecConfig);
3999 } else {
4000 return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
4001 ArgExprs.size(), RParenLoc);
4002 }
4003 }
4004 }
4005
4006 // If we're directly calling a function, get the appropriate declaration.
4007 if (Fn->getType() == Context.UnknownAnyTy) {
4008 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4009 if (result.isInvalid()) return ExprError();
4010 Fn = result.take();
4011 }
4012
4013 Expr *NakedFn = Fn->IgnoreParens();
4014
4015 NamedDecl *NDecl = 0;
4016 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4017 if (UnOp->getOpcode() == UO_AddrOf)
4018 NakedFn = UnOp->getSubExpr()->IgnoreParens();
4019
4020 if (isa<DeclRefExpr>(NakedFn))
4021 NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4022 else if (isa<MemberExpr>(NakedFn))
4023 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
4024
4025 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs.data(),
4026 ArgExprs.size(), RParenLoc, ExecConfig,
4027 IsExecConfig);
4028 }
4029
4030 ExprResult
ActOnCUDAExecConfigExpr(Scope * S,SourceLocation LLLLoc,MultiExprArg ExecConfig,SourceLocation GGGLoc)4031 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
4032 MultiExprArg ExecConfig, SourceLocation GGGLoc) {
4033 FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
4034 if (!ConfigDecl)
4035 return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
4036 << "cudaConfigureCall");
4037 QualType ConfigQTy = ConfigDecl->getType();
4038
4039 DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
4040 ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
4041 MarkFunctionReferenced(LLLLoc, ConfigDecl);
4042
4043 return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
4044 /*IsExecConfig=*/true);
4045 }
4046
4047 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
4048 ///
4049 /// __builtin_astype( value, dst type )
4050 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)4051 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
4052 SourceLocation BuiltinLoc,
4053 SourceLocation RParenLoc) {
4054 ExprValueKind VK = VK_RValue;
4055 ExprObjectKind OK = OK_Ordinary;
4056 QualType DstTy = GetTypeFromParser(ParsedDestTy);
4057 QualType SrcTy = E->getType();
4058 if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
4059 return ExprError(Diag(BuiltinLoc,
4060 diag::err_invalid_astype_of_different_size)
4061 << DstTy
4062 << SrcTy
4063 << E->getSourceRange());
4064 return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
4065 RParenLoc));
4066 }
4067
4068 /// BuildResolvedCallExpr - Build a call to a resolved expression,
4069 /// i.e. an expression not of \p OverloadTy. The expression should
4070 /// unary-convert to an expression of function-pointer or
4071 /// block-pointer type.
4072 ///
4073 /// \param NDecl the declaration being called, if available
4074 ExprResult
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig)4075 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4076 SourceLocation LParenLoc,
4077 Expr **Args, unsigned NumArgs,
4078 SourceLocation RParenLoc,
4079 Expr *Config, bool IsExecConfig) {
4080 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4081 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
4082
4083 // Promote the function operand.
4084 // We special-case function promotion here because we only allow promoting
4085 // builtin functions to function pointers in the callee of a call.
4086 ExprResult Result;
4087 if (BuiltinID &&
4088 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
4089 Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
4090 CK_BuiltinFnToFnPtr).take();
4091 } else {
4092 Result = UsualUnaryConversions(Fn);
4093 }
4094 if (Result.isInvalid())
4095 return ExprError();
4096 Fn = Result.take();
4097
4098 // Make the call expr early, before semantic checks. This guarantees cleanup
4099 // of arguments and function on error.
4100 CallExpr *TheCall;
4101 if (Config)
4102 TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
4103 cast<CallExpr>(Config),
4104 llvm::makeArrayRef(Args,NumArgs),
4105 Context.BoolTy,
4106 VK_RValue,
4107 RParenLoc);
4108 else
4109 TheCall = new (Context) CallExpr(Context, Fn,
4110 llvm::makeArrayRef(Args, NumArgs),
4111 Context.BoolTy,
4112 VK_RValue,
4113 RParenLoc);
4114
4115 // Bail out early if calling a builtin with custom typechecking.
4116 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
4117 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4118
4119 retry:
4120 const FunctionType *FuncT;
4121 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
4122 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4123 // have type pointer to function".
4124 FuncT = PT->getPointeeType()->getAs<FunctionType>();
4125 if (FuncT == 0)
4126 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4127 << Fn->getType() << Fn->getSourceRange());
4128 } else if (const BlockPointerType *BPT =
4129 Fn->getType()->getAs<BlockPointerType>()) {
4130 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
4131 } else {
4132 // Handle calls to expressions of unknown-any type.
4133 if (Fn->getType() == Context.UnknownAnyTy) {
4134 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4135 if (rewrite.isInvalid()) return ExprError();
4136 Fn = rewrite.take();
4137 TheCall->setCallee(Fn);
4138 goto retry;
4139 }
4140
4141 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4142 << Fn->getType() << Fn->getSourceRange());
4143 }
4144
4145 if (getLangOpts().CUDA) {
4146 if (Config) {
4147 // CUDA: Kernel calls must be to global functions
4148 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4149 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4150 << FDecl->getName() << Fn->getSourceRange());
4151
4152 // CUDA: Kernel function must have 'void' return type
4153 if (!FuncT->getResultType()->isVoidType())
4154 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4155 << Fn->getType() << Fn->getSourceRange());
4156 } else {
4157 // CUDA: Calls to global functions must be configured
4158 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4159 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4160 << FDecl->getName() << Fn->getSourceRange());
4161 }
4162 }
4163
4164 // Check for a valid return type
4165 if (CheckCallReturnType(FuncT->getResultType(),
4166 Fn->getLocStart(), TheCall,
4167 FDecl))
4168 return ExprError();
4169
4170 // We know the result type of the call, set it.
4171 TheCall->setType(FuncT->getCallResultType(Context));
4172 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4173
4174 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4175 if (Proto) {
4176 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
4177 RParenLoc, IsExecConfig))
4178 return ExprError();
4179 } else {
4180 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4181
4182 if (FDecl) {
4183 // Check if we have too few/too many template arguments, based
4184 // on our knowledge of the function definition.
4185 const FunctionDecl *Def = 0;
4186 if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4187 Proto = Def->getType()->getAs<FunctionProtoType>();
4188 if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4189 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4190 << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4191 }
4192
4193 // If the function we're calling isn't a function prototype, but we have
4194 // a function prototype from a prior declaratiom, use that prototype.
4195 if (!FDecl->hasPrototype())
4196 Proto = FDecl->getType()->getAs<FunctionProtoType>();
4197 }
4198
4199 // Promote the arguments (C99 6.5.2.2p6).
4200 for (unsigned i = 0; i != NumArgs; i++) {
4201 Expr *Arg = Args[i];
4202
4203 if (Proto && i < Proto->getNumArgs()) {
4204 InitializedEntity Entity
4205 = InitializedEntity::InitializeParameter(Context,
4206 Proto->getArgType(i),
4207 Proto->isArgConsumed(i));
4208 ExprResult ArgE = PerformCopyInitialization(Entity,
4209 SourceLocation(),
4210 Owned(Arg));
4211 if (ArgE.isInvalid())
4212 return true;
4213
4214 Arg = ArgE.takeAs<Expr>();
4215
4216 } else {
4217 ExprResult ArgE = DefaultArgumentPromotion(Arg);
4218
4219 if (ArgE.isInvalid())
4220 return true;
4221
4222 Arg = ArgE.takeAs<Expr>();
4223 }
4224
4225 if (RequireCompleteType(Arg->getLocStart(),
4226 Arg->getType(),
4227 diag::err_call_incomplete_argument, Arg))
4228 return ExprError();
4229
4230 TheCall->setArg(i, Arg);
4231 }
4232 }
4233
4234 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4235 if (!Method->isStatic())
4236 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4237 << Fn->getSourceRange());
4238
4239 // Check for sentinels
4240 if (NDecl)
4241 DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4242
4243 // Do special checking on direct calls to functions.
4244 if (FDecl) {
4245 if (CheckFunctionCall(FDecl, TheCall, Proto))
4246 return ExprError();
4247
4248 if (BuiltinID)
4249 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4250 } else if (NDecl) {
4251 if (CheckBlockCall(NDecl, TheCall, Proto))
4252 return ExprError();
4253 }
4254
4255 return MaybeBindToTemporary(TheCall);
4256 }
4257
4258 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)4259 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4260 SourceLocation RParenLoc, Expr *InitExpr) {
4261 assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4262 // FIXME: put back this assert when initializers are worked out.
4263 //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4264
4265 TypeSourceInfo *TInfo;
4266 QualType literalType = GetTypeFromParser(Ty, &TInfo);
4267 if (!TInfo)
4268 TInfo = Context.getTrivialTypeSourceInfo(literalType);
4269
4270 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4271 }
4272
4273 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)4274 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4275 SourceLocation RParenLoc, Expr *LiteralExpr) {
4276 QualType literalType = TInfo->getType();
4277
4278 if (literalType->isArrayType()) {
4279 if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4280 diag::err_illegal_decl_array_incomplete_type,
4281 SourceRange(LParenLoc,
4282 LiteralExpr->getSourceRange().getEnd())))
4283 return ExprError();
4284 if (literalType->isVariableArrayType())
4285 return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4286 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4287 } else if (!literalType->isDependentType() &&
4288 RequireCompleteType(LParenLoc, literalType,
4289 diag::err_typecheck_decl_incomplete_type,
4290 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4291 return ExprError();
4292
4293 InitializedEntity Entity
4294 = InitializedEntity::InitializeTemporary(literalType);
4295 InitializationKind Kind
4296 = InitializationKind::CreateCStyleCast(LParenLoc,
4297 SourceRange(LParenLoc, RParenLoc),
4298 /*InitList=*/true);
4299 InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
4300 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4301 &literalType);
4302 if (Result.isInvalid())
4303 return ExprError();
4304 LiteralExpr = Result.get();
4305
4306 bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4307 if (isFileScope) { // 6.5.2.5p3
4308 if (CheckForConstantInitializer(LiteralExpr, literalType))
4309 return ExprError();
4310 }
4311
4312 // In C, compound literals are l-values for some reason.
4313 ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4314
4315 return MaybeBindToTemporary(
4316 new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4317 VK, LiteralExpr, isFileScope));
4318 }
4319
4320 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)4321 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4322 SourceLocation RBraceLoc) {
4323 // Immediately handle non-overload placeholders. Overloads can be
4324 // resolved contextually, but everything else here can't.
4325 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4326 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4327 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4328
4329 // Ignore failures; dropping the entire initializer list because
4330 // of one failure would be terrible for indexing/etc.
4331 if (result.isInvalid()) continue;
4332
4333 InitArgList[I] = result.take();
4334 }
4335 }
4336
4337 // Semantic analysis for initializers is done by ActOnDeclarator() and
4338 // CheckInitializer() - it requires knowledge of the object being intialized.
4339
4340 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4341 RBraceLoc);
4342 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4343 return Owned(E);
4344 }
4345
4346 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(Sema & S,ExprResult & E)4347 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4348 assert(E.get()->getType()->isBlockPointerType());
4349 assert(E.get()->isRValue());
4350
4351 // Only do this in an r-value context.
4352 if (!S.getLangOpts().ObjCAutoRefCount) return;
4353
4354 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4355 CK_ARCExtendBlockObject, E.get(),
4356 /*base path*/ 0, VK_RValue);
4357 S.ExprNeedsCleanups = true;
4358 }
4359
4360 /// Prepare a conversion of the given expression to an ObjC object
4361 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)4362 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4363 QualType type = E.get()->getType();
4364 if (type->isObjCObjectPointerType()) {
4365 return CK_BitCast;
4366 } else if (type->isBlockPointerType()) {
4367 maybeExtendBlockObject(*this, E);
4368 return CK_BlockPointerToObjCPointerCast;
4369 } else {
4370 assert(type->isPointerType());
4371 return CK_CPointerToObjCPointerCast;
4372 }
4373 }
4374
4375 /// Prepares for a scalar cast, performing all the necessary stages
4376 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)4377 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4378 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4379 // Also, callers should have filtered out the invalid cases with
4380 // pointers. Everything else should be possible.
4381
4382 QualType SrcTy = Src.get()->getType();
4383 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4384 return CK_NoOp;
4385
4386 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4387 case Type::STK_MemberPointer:
4388 llvm_unreachable("member pointer type in C");
4389
4390 case Type::STK_CPointer:
4391 case Type::STK_BlockPointer:
4392 case Type::STK_ObjCObjectPointer:
4393 switch (DestTy->getScalarTypeKind()) {
4394 case Type::STK_CPointer:
4395 return CK_BitCast;
4396 case Type::STK_BlockPointer:
4397 return (SrcKind == Type::STK_BlockPointer
4398 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4399 case Type::STK_ObjCObjectPointer:
4400 if (SrcKind == Type::STK_ObjCObjectPointer)
4401 return CK_BitCast;
4402 if (SrcKind == Type::STK_CPointer)
4403 return CK_CPointerToObjCPointerCast;
4404 maybeExtendBlockObject(*this, Src);
4405 return CK_BlockPointerToObjCPointerCast;
4406 case Type::STK_Bool:
4407 return CK_PointerToBoolean;
4408 case Type::STK_Integral:
4409 return CK_PointerToIntegral;
4410 case Type::STK_Floating:
4411 case Type::STK_FloatingComplex:
4412 case Type::STK_IntegralComplex:
4413 case Type::STK_MemberPointer:
4414 llvm_unreachable("illegal cast from pointer");
4415 }
4416 llvm_unreachable("Should have returned before this");
4417
4418 case Type::STK_Bool: // casting from bool is like casting from an integer
4419 case Type::STK_Integral:
4420 switch (DestTy->getScalarTypeKind()) {
4421 case Type::STK_CPointer:
4422 case Type::STK_ObjCObjectPointer:
4423 case Type::STK_BlockPointer:
4424 if (Src.get()->isNullPointerConstant(Context,
4425 Expr::NPC_ValueDependentIsNull))
4426 return CK_NullToPointer;
4427 return CK_IntegralToPointer;
4428 case Type::STK_Bool:
4429 return CK_IntegralToBoolean;
4430 case Type::STK_Integral:
4431 return CK_IntegralCast;
4432 case Type::STK_Floating:
4433 return CK_IntegralToFloating;
4434 case Type::STK_IntegralComplex:
4435 Src = ImpCastExprToType(Src.take(),
4436 DestTy->castAs<ComplexType>()->getElementType(),
4437 CK_IntegralCast);
4438 return CK_IntegralRealToComplex;
4439 case Type::STK_FloatingComplex:
4440 Src = ImpCastExprToType(Src.take(),
4441 DestTy->castAs<ComplexType>()->getElementType(),
4442 CK_IntegralToFloating);
4443 return CK_FloatingRealToComplex;
4444 case Type::STK_MemberPointer:
4445 llvm_unreachable("member pointer type in C");
4446 }
4447 llvm_unreachable("Should have returned before this");
4448
4449 case Type::STK_Floating:
4450 switch (DestTy->getScalarTypeKind()) {
4451 case Type::STK_Floating:
4452 return CK_FloatingCast;
4453 case Type::STK_Bool:
4454 return CK_FloatingToBoolean;
4455 case Type::STK_Integral:
4456 return CK_FloatingToIntegral;
4457 case Type::STK_FloatingComplex:
4458 Src = ImpCastExprToType(Src.take(),
4459 DestTy->castAs<ComplexType>()->getElementType(),
4460 CK_FloatingCast);
4461 return CK_FloatingRealToComplex;
4462 case Type::STK_IntegralComplex:
4463 Src = ImpCastExprToType(Src.take(),
4464 DestTy->castAs<ComplexType>()->getElementType(),
4465 CK_FloatingToIntegral);
4466 return CK_IntegralRealToComplex;
4467 case Type::STK_CPointer:
4468 case Type::STK_ObjCObjectPointer:
4469 case Type::STK_BlockPointer:
4470 llvm_unreachable("valid float->pointer cast?");
4471 case Type::STK_MemberPointer:
4472 llvm_unreachable("member pointer type in C");
4473 }
4474 llvm_unreachable("Should have returned before this");
4475
4476 case Type::STK_FloatingComplex:
4477 switch (DestTy->getScalarTypeKind()) {
4478 case Type::STK_FloatingComplex:
4479 return CK_FloatingComplexCast;
4480 case Type::STK_IntegralComplex:
4481 return CK_FloatingComplexToIntegralComplex;
4482 case Type::STK_Floating: {
4483 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4484 if (Context.hasSameType(ET, DestTy))
4485 return CK_FloatingComplexToReal;
4486 Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4487 return CK_FloatingCast;
4488 }
4489 case Type::STK_Bool:
4490 return CK_FloatingComplexToBoolean;
4491 case Type::STK_Integral:
4492 Src = ImpCastExprToType(Src.take(),
4493 SrcTy->castAs<ComplexType>()->getElementType(),
4494 CK_FloatingComplexToReal);
4495 return CK_FloatingToIntegral;
4496 case Type::STK_CPointer:
4497 case Type::STK_ObjCObjectPointer:
4498 case Type::STK_BlockPointer:
4499 llvm_unreachable("valid complex float->pointer cast?");
4500 case Type::STK_MemberPointer:
4501 llvm_unreachable("member pointer type in C");
4502 }
4503 llvm_unreachable("Should have returned before this");
4504
4505 case Type::STK_IntegralComplex:
4506 switch (DestTy->getScalarTypeKind()) {
4507 case Type::STK_FloatingComplex:
4508 return CK_IntegralComplexToFloatingComplex;
4509 case Type::STK_IntegralComplex:
4510 return CK_IntegralComplexCast;
4511 case Type::STK_Integral: {
4512 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4513 if (Context.hasSameType(ET, DestTy))
4514 return CK_IntegralComplexToReal;
4515 Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4516 return CK_IntegralCast;
4517 }
4518 case Type::STK_Bool:
4519 return CK_IntegralComplexToBoolean;
4520 case Type::STK_Floating:
4521 Src = ImpCastExprToType(Src.take(),
4522 SrcTy->castAs<ComplexType>()->getElementType(),
4523 CK_IntegralComplexToReal);
4524 return CK_IntegralToFloating;
4525 case Type::STK_CPointer:
4526 case Type::STK_ObjCObjectPointer:
4527 case Type::STK_BlockPointer:
4528 llvm_unreachable("valid complex int->pointer cast?");
4529 case Type::STK_MemberPointer:
4530 llvm_unreachable("member pointer type in C");
4531 }
4532 llvm_unreachable("Should have returned before this");
4533 }
4534
4535 llvm_unreachable("Unhandled scalar cast");
4536 }
4537
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)4538 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4539 CastKind &Kind) {
4540 assert(VectorTy->isVectorType() && "Not a vector type!");
4541
4542 if (Ty->isVectorType() || Ty->isIntegerType()) {
4543 if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4544 return Diag(R.getBegin(),
4545 Ty->isVectorType() ?
4546 diag::err_invalid_conversion_between_vectors :
4547 diag::err_invalid_conversion_between_vector_and_integer)
4548 << VectorTy << Ty << R;
4549 } else
4550 return Diag(R.getBegin(),
4551 diag::err_invalid_conversion_between_vector_and_scalar)
4552 << VectorTy << Ty << R;
4553
4554 Kind = CK_BitCast;
4555 return false;
4556 }
4557
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)4558 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4559 Expr *CastExpr, CastKind &Kind) {
4560 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4561
4562 QualType SrcTy = CastExpr->getType();
4563
4564 // If SrcTy is a VectorType, the total size must match to explicitly cast to
4565 // an ExtVectorType.
4566 // In OpenCL, casts between vectors of different types are not allowed.
4567 // (See OpenCL 6.2).
4568 if (SrcTy->isVectorType()) {
4569 if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4570 || (getLangOpts().OpenCL &&
4571 (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4572 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4573 << DestTy << SrcTy << R;
4574 return ExprError();
4575 }
4576 Kind = CK_BitCast;
4577 return Owned(CastExpr);
4578 }
4579
4580 // All non-pointer scalars can be cast to ExtVector type. The appropriate
4581 // conversion will take place first from scalar to elt type, and then
4582 // splat from elt type to vector.
4583 if (SrcTy->isPointerType())
4584 return Diag(R.getBegin(),
4585 diag::err_invalid_conversion_between_vector_and_scalar)
4586 << DestTy << SrcTy << R;
4587
4588 QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4589 ExprResult CastExprRes = Owned(CastExpr);
4590 CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4591 if (CastExprRes.isInvalid())
4592 return ExprError();
4593 CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4594
4595 Kind = CK_VectorSplat;
4596 return Owned(CastExpr);
4597 }
4598
4599 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)4600 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4601 Declarator &D, ParsedType &Ty,
4602 SourceLocation RParenLoc, Expr *CastExpr) {
4603 assert(!D.isInvalidType() && (CastExpr != 0) &&
4604 "ActOnCastExpr(): missing type or expr");
4605
4606 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4607 if (D.isInvalidType())
4608 return ExprError();
4609
4610 if (getLangOpts().CPlusPlus) {
4611 // Check that there are no default arguments (C++ only).
4612 CheckExtraCXXDefaultArguments(D);
4613 }
4614
4615 checkUnusedDeclAttributes(D);
4616
4617 QualType castType = castTInfo->getType();
4618 Ty = CreateParsedType(castType, castTInfo);
4619
4620 bool isVectorLiteral = false;
4621
4622 // Check for an altivec or OpenCL literal,
4623 // i.e. all the elements are integer constants.
4624 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4625 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4626 if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4627 && castType->isVectorType() && (PE || PLE)) {
4628 if (PLE && PLE->getNumExprs() == 0) {
4629 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4630 return ExprError();
4631 }
4632 if (PE || PLE->getNumExprs() == 1) {
4633 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4634 if (!E->getType()->isVectorType())
4635 isVectorLiteral = true;
4636 }
4637 else
4638 isVectorLiteral = true;
4639 }
4640
4641 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4642 // then handle it as such.
4643 if (isVectorLiteral)
4644 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4645
4646 // If the Expr being casted is a ParenListExpr, handle it specially.
4647 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4648 // sequence of BinOp comma operators.
4649 if (isa<ParenListExpr>(CastExpr)) {
4650 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4651 if (Result.isInvalid()) return ExprError();
4652 CastExpr = Result.take();
4653 }
4654
4655 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4656 }
4657
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)4658 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4659 SourceLocation RParenLoc, Expr *E,
4660 TypeSourceInfo *TInfo) {
4661 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4662 "Expected paren or paren list expression");
4663
4664 Expr **exprs;
4665 unsigned numExprs;
4666 Expr *subExpr;
4667 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
4668 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4669 LiteralLParenLoc = PE->getLParenLoc();
4670 LiteralRParenLoc = PE->getRParenLoc();
4671 exprs = PE->getExprs();
4672 numExprs = PE->getNumExprs();
4673 } else { // isa<ParenExpr> by assertion at function entrance
4674 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
4675 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
4676 subExpr = cast<ParenExpr>(E)->getSubExpr();
4677 exprs = &subExpr;
4678 numExprs = 1;
4679 }
4680
4681 QualType Ty = TInfo->getType();
4682 assert(Ty->isVectorType() && "Expected vector type");
4683
4684 SmallVector<Expr *, 8> initExprs;
4685 const VectorType *VTy = Ty->getAs<VectorType>();
4686 unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4687
4688 // '(...)' form of vector initialization in AltiVec: the number of
4689 // initializers must be one or must match the size of the vector.
4690 // If a single value is specified in the initializer then it will be
4691 // replicated to all the components of the vector
4692 if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4693 // The number of initializers must be one or must match the size of the
4694 // vector. If a single value is specified in the initializer then it will
4695 // be replicated to all the components of the vector
4696 if (numExprs == 1) {
4697 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4698 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4699 if (Literal.isInvalid())
4700 return ExprError();
4701 Literal = ImpCastExprToType(Literal.take(), ElemTy,
4702 PrepareScalarCast(Literal, ElemTy));
4703 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4704 }
4705 else if (numExprs < numElems) {
4706 Diag(E->getExprLoc(),
4707 diag::err_incorrect_number_of_vector_initializers);
4708 return ExprError();
4709 }
4710 else
4711 initExprs.append(exprs, exprs + numExprs);
4712 }
4713 else {
4714 // For OpenCL, when the number of initializers is a single value,
4715 // it will be replicated to all components of the vector.
4716 if (getLangOpts().OpenCL &&
4717 VTy->getVectorKind() == VectorType::GenericVector &&
4718 numExprs == 1) {
4719 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4720 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4721 if (Literal.isInvalid())
4722 return ExprError();
4723 Literal = ImpCastExprToType(Literal.take(), ElemTy,
4724 PrepareScalarCast(Literal, ElemTy));
4725 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4726 }
4727
4728 initExprs.append(exprs, exprs + numExprs);
4729 }
4730 // FIXME: This means that pretty-printing the final AST will produce curly
4731 // braces instead of the original commas.
4732 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
4733 initExprs, LiteralRParenLoc);
4734 initE->setType(Ty);
4735 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4736 }
4737
4738 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4739 /// the ParenListExpr into a sequence of comma binary operators.
4740 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)4741 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4742 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4743 if (!E)
4744 return Owned(OrigExpr);
4745
4746 ExprResult Result(E->getExpr(0));
4747
4748 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4749 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4750 E->getExpr(i));
4751
4752 if (Result.isInvalid()) return ExprError();
4753
4754 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4755 }
4756
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)4757 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4758 SourceLocation R,
4759 MultiExprArg Val) {
4760 Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
4761 return Owned(expr);
4762 }
4763
4764 /// \brief Emit a specialized diagnostic when one expression is a null pointer
4765 /// constant and the other is not a pointer. Returns true if a diagnostic is
4766 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)4767 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4768 SourceLocation QuestionLoc) {
4769 Expr *NullExpr = LHSExpr;
4770 Expr *NonPointerExpr = RHSExpr;
4771 Expr::NullPointerConstantKind NullKind =
4772 NullExpr->isNullPointerConstant(Context,
4773 Expr::NPC_ValueDependentIsNotNull);
4774
4775 if (NullKind == Expr::NPCK_NotNull) {
4776 NullExpr = RHSExpr;
4777 NonPointerExpr = LHSExpr;
4778 NullKind =
4779 NullExpr->isNullPointerConstant(Context,
4780 Expr::NPC_ValueDependentIsNotNull);
4781 }
4782
4783 if (NullKind == Expr::NPCK_NotNull)
4784 return false;
4785
4786 if (NullKind == Expr::NPCK_ZeroExpression)
4787 return false;
4788
4789 if (NullKind == Expr::NPCK_ZeroLiteral) {
4790 // In this case, check to make sure that we got here from a "NULL"
4791 // string in the source code.
4792 NullExpr = NullExpr->IgnoreParenImpCasts();
4793 SourceLocation loc = NullExpr->getExprLoc();
4794 if (!findMacroSpelling(loc, "NULL"))
4795 return false;
4796 }
4797
4798 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
4799 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4800 << NonPointerExpr->getType() << DiagType
4801 << NonPointerExpr->getSourceRange();
4802 return true;
4803 }
4804
4805 /// \brief Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond)4806 static bool checkCondition(Sema &S, Expr *Cond) {
4807 QualType CondTy = Cond->getType();
4808
4809 // C99 6.5.15p2
4810 if (CondTy->isScalarType()) return false;
4811
4812 // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4813 if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4814 return false;
4815
4816 // Emit the proper error message.
4817 S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4818 diag::err_typecheck_cond_expect_scalar :
4819 diag::err_typecheck_cond_expect_scalar_or_vector)
4820 << CondTy;
4821 return true;
4822 }
4823
4824 /// \brief Return false if the two expressions can be converted to a vector,
4825 /// true otherwise
checkConditionalConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy)4826 static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4827 ExprResult &RHS,
4828 QualType CondTy) {
4829 // Both operands should be of scalar type.
4830 if (!LHS.get()->getType()->isScalarType()) {
4831 S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4832 << CondTy;
4833 return true;
4834 }
4835 if (!RHS.get()->getType()->isScalarType()) {
4836 S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4837 << CondTy;
4838 return true;
4839 }
4840
4841 // Implicity convert these scalars to the type of the condition.
4842 LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4843 RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4844 return false;
4845 }
4846
4847 /// \brief Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)4848 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4849 ExprResult &RHS) {
4850 Expr *LHSExpr = LHS.get();
4851 Expr *RHSExpr = RHS.get();
4852
4853 if (!LHSExpr->getType()->isVoidType())
4854 S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4855 << RHSExpr->getSourceRange();
4856 if (!RHSExpr->getType()->isVoidType())
4857 S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4858 << LHSExpr->getSourceRange();
4859 LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4860 RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4861 return S.Context.VoidTy;
4862 }
4863
4864 /// \brief Return false if the NullExpr can be promoted to PointerTy,
4865 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)4866 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4867 QualType PointerTy) {
4868 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4869 !NullExpr.get()->isNullPointerConstant(S.Context,
4870 Expr::NPC_ValueDependentIsNull))
4871 return true;
4872
4873 NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4874 return false;
4875 }
4876
4877 /// \brief Checks compatibility between two pointers and return the resulting
4878 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4879 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4880 ExprResult &RHS,
4881 SourceLocation Loc) {
4882 QualType LHSTy = LHS.get()->getType();
4883 QualType RHSTy = RHS.get()->getType();
4884
4885 if (S.Context.hasSameType(LHSTy, RHSTy)) {
4886 // Two identical pointers types are always compatible.
4887 return LHSTy;
4888 }
4889
4890 QualType lhptee, rhptee;
4891
4892 // Get the pointee types.
4893 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4894 lhptee = LHSBTy->getPointeeType();
4895 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4896 } else {
4897 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4898 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4899 }
4900
4901 // C99 6.5.15p6: If both operands are pointers to compatible types or to
4902 // differently qualified versions of compatible types, the result type is
4903 // a pointer to an appropriately qualified version of the composite
4904 // type.
4905
4906 // Only CVR-qualifiers exist in the standard, and the differently-qualified
4907 // clause doesn't make sense for our extensions. E.g. address space 2 should
4908 // be incompatible with address space 3: they may live on different devices or
4909 // anything.
4910 Qualifiers lhQual = lhptee.getQualifiers();
4911 Qualifiers rhQual = rhptee.getQualifiers();
4912
4913 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4914 lhQual.removeCVRQualifiers();
4915 rhQual.removeCVRQualifiers();
4916
4917 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4918 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4919
4920 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4921
4922 if (CompositeTy.isNull()) {
4923 S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4924 << LHSTy << RHSTy << LHS.get()->getSourceRange()
4925 << RHS.get()->getSourceRange();
4926 // In this situation, we assume void* type. No especially good
4927 // reason, but this is what gcc does, and we do have to pick
4928 // to get a consistent AST.
4929 QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4930 LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4931 RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4932 return incompatTy;
4933 }
4934
4935 // The pointer types are compatible.
4936 QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4937 ResultTy = S.Context.getPointerType(ResultTy);
4938
4939 LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4940 RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4941 return ResultTy;
4942 }
4943
4944 /// \brief Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4945 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4946 ExprResult &LHS,
4947 ExprResult &RHS,
4948 SourceLocation Loc) {
4949 QualType LHSTy = LHS.get()->getType();
4950 QualType RHSTy = RHS.get()->getType();
4951
4952 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4953 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4954 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4955 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4956 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4957 return destType;
4958 }
4959 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4960 << LHSTy << RHSTy << LHS.get()->getSourceRange()
4961 << RHS.get()->getSourceRange();
4962 return QualType();
4963 }
4964
4965 // We have 2 block pointer types.
4966 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4967 }
4968
4969 /// \brief Return the resulting type when the operands are both pointers.
4970 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4971 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4972 ExprResult &RHS,
4973 SourceLocation Loc) {
4974 // get the pointer types
4975 QualType LHSTy = LHS.get()->getType();
4976 QualType RHSTy = RHS.get()->getType();
4977
4978 // get the "pointed to" types
4979 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4980 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4981
4982 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4983 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4984 // Figure out necessary qualifiers (C99 6.5.15p6)
4985 QualType destPointee
4986 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4987 QualType destType = S.Context.getPointerType(destPointee);
4988 // Add qualifiers if necessary.
4989 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4990 // Promote to void*.
4991 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4992 return destType;
4993 }
4994 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4995 QualType destPointee
4996 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4997 QualType destType = S.Context.getPointerType(destPointee);
4998 // Add qualifiers if necessary.
4999 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5000 // Promote to void*.
5001 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5002 return destType;
5003 }
5004
5005 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5006 }
5007
5008 /// \brief Return false if the first expression is not an integer and the second
5009 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)5010 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
5011 Expr* PointerExpr, SourceLocation Loc,
5012 bool IsIntFirstExpr) {
5013 if (!PointerExpr->getType()->isPointerType() ||
5014 !Int.get()->getType()->isIntegerType())
5015 return false;
5016
5017 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
5018 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
5019
5020 S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
5021 << Expr1->getType() << Expr2->getType()
5022 << Expr1->getSourceRange() << Expr2->getSourceRange();
5023 Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
5024 CK_IntegralToPointer);
5025 return true;
5026 }
5027
5028 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
5029 /// In that case, LHS = cond.
5030 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)5031 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5032 ExprResult &RHS, ExprValueKind &VK,
5033 ExprObjectKind &OK,
5034 SourceLocation QuestionLoc) {
5035
5036 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
5037 if (!LHSResult.isUsable()) return QualType();
5038 LHS = LHSResult;
5039
5040 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
5041 if (!RHSResult.isUsable()) return QualType();
5042 RHS = RHSResult;
5043
5044 // C++ is sufficiently different to merit its own checker.
5045 if (getLangOpts().CPlusPlus)
5046 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
5047
5048 VK = VK_RValue;
5049 OK = OK_Ordinary;
5050
5051 Cond = UsualUnaryConversions(Cond.take());
5052 if (Cond.isInvalid())
5053 return QualType();
5054 LHS = UsualUnaryConversions(LHS.take());
5055 if (LHS.isInvalid())
5056 return QualType();
5057 RHS = UsualUnaryConversions(RHS.take());
5058 if (RHS.isInvalid())
5059 return QualType();
5060
5061 QualType CondTy = Cond.get()->getType();
5062 QualType LHSTy = LHS.get()->getType();
5063 QualType RHSTy = RHS.get()->getType();
5064
5065 // first, check the condition.
5066 if (checkCondition(*this, Cond.get()))
5067 return QualType();
5068
5069 // Now check the two expressions.
5070 if (LHSTy->isVectorType() || RHSTy->isVectorType())
5071 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
5072
5073 // OpenCL: If the condition is a vector, and both operands are scalar,
5074 // attempt to implicity convert them to the vector type to act like the
5075 // built in select.
5076 if (getLangOpts().OpenCL && CondTy->isVectorType())
5077 if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
5078 return QualType();
5079
5080 // If both operands have arithmetic type, do the usual arithmetic conversions
5081 // to find a common type: C99 6.5.15p3,5.
5082 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
5083 UsualArithmeticConversions(LHS, RHS);
5084 if (LHS.isInvalid() || RHS.isInvalid())
5085 return QualType();
5086 return LHS.get()->getType();
5087 }
5088
5089 // If both operands are the same structure or union type, the result is that
5090 // type.
5091 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
5092 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5093 if (LHSRT->getDecl() == RHSRT->getDecl())
5094 // "If both the operands have structure or union type, the result has
5095 // that type." This implies that CV qualifiers are dropped.
5096 return LHSTy.getUnqualifiedType();
5097 // FIXME: Type of conditional expression must be complete in C mode.
5098 }
5099
5100 // C99 6.5.15p5: "If both operands have void type, the result has void type."
5101 // The following || allows only one side to be void (a GCC-ism).
5102 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5103 return checkConditionalVoidType(*this, LHS, RHS);
5104 }
5105
5106 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5107 // the type of the other operand."
5108 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
5109 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
5110
5111 // All objective-c pointer type analysis is done here.
5112 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5113 QuestionLoc);
5114 if (LHS.isInvalid() || RHS.isInvalid())
5115 return QualType();
5116 if (!compositeType.isNull())
5117 return compositeType;
5118
5119
5120 // Handle block pointer types.
5121 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
5122 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
5123 QuestionLoc);
5124
5125 // Check constraints for C object pointers types (C99 6.5.15p3,6).
5126 if (LHSTy->isPointerType() && RHSTy->isPointerType())
5127 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
5128 QuestionLoc);
5129
5130 // GCC compatibility: soften pointer/integer mismatch. Note that
5131 // null pointers have been filtered out by this point.
5132 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
5133 /*isIntFirstExpr=*/true))
5134 return RHSTy;
5135 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
5136 /*isIntFirstExpr=*/false))
5137 return LHSTy;
5138
5139 // Emit a better diagnostic if one of the expressions is a null pointer
5140 // constant and the other is not a pointer type. In this case, the user most
5141 // likely forgot to take the address of the other expression.
5142 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5143 return QualType();
5144
5145 // Otherwise, the operands are not compatible.
5146 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5147 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5148 << RHS.get()->getSourceRange();
5149 return QualType();
5150 }
5151
5152 /// FindCompositeObjCPointerType - Helper method to find composite type of
5153 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)5154 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5155 SourceLocation QuestionLoc) {
5156 QualType LHSTy = LHS.get()->getType();
5157 QualType RHSTy = RHS.get()->getType();
5158
5159 // Handle things like Class and struct objc_class*. Here we case the result
5160 // to the pseudo-builtin, because that will be implicitly cast back to the
5161 // redefinition type if an attempt is made to access its fields.
5162 if (LHSTy->isObjCClassType() &&
5163 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5164 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5165 return LHSTy;
5166 }
5167 if (RHSTy->isObjCClassType() &&
5168 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5169 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5170 return RHSTy;
5171 }
5172 // And the same for struct objc_object* / id
5173 if (LHSTy->isObjCIdType() &&
5174 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5175 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5176 return LHSTy;
5177 }
5178 if (RHSTy->isObjCIdType() &&
5179 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5180 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5181 return RHSTy;
5182 }
5183 // And the same for struct objc_selector* / SEL
5184 if (Context.isObjCSelType(LHSTy) &&
5185 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5186 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5187 return LHSTy;
5188 }
5189 if (Context.isObjCSelType(RHSTy) &&
5190 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5191 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5192 return RHSTy;
5193 }
5194 // Check constraints for Objective-C object pointers types.
5195 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5196
5197 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5198 // Two identical object pointer types are always compatible.
5199 return LHSTy;
5200 }
5201 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5202 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5203 QualType compositeType = LHSTy;
5204
5205 // If both operands are interfaces and either operand can be
5206 // assigned to the other, use that type as the composite
5207 // type. This allows
5208 // xxx ? (A*) a : (B*) b
5209 // where B is a subclass of A.
5210 //
5211 // Additionally, as for assignment, if either type is 'id'
5212 // allow silent coercion. Finally, if the types are
5213 // incompatible then make sure to use 'id' as the composite
5214 // type so the result is acceptable for sending messages to.
5215
5216 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5217 // It could return the composite type.
5218 if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5219 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5220 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5221 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5222 } else if ((LHSTy->isObjCQualifiedIdType() ||
5223 RHSTy->isObjCQualifiedIdType()) &&
5224 Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5225 // Need to handle "id<xx>" explicitly.
5226 // GCC allows qualified id and any Objective-C type to devolve to
5227 // id. Currently localizing to here until clear this should be
5228 // part of ObjCQualifiedIdTypesAreCompatible.
5229 compositeType = Context.getObjCIdType();
5230 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5231 compositeType = Context.getObjCIdType();
5232 } else if (!(compositeType =
5233 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5234 ;
5235 else {
5236 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5237 << LHSTy << RHSTy
5238 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5239 QualType incompatTy = Context.getObjCIdType();
5240 LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5241 RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5242 return incompatTy;
5243 }
5244 // The object pointer types are compatible.
5245 LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5246 RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5247 return compositeType;
5248 }
5249 // Check Objective-C object pointer types and 'void *'
5250 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5251 if (getLangOpts().ObjCAutoRefCount) {
5252 // ARC forbids the implicit conversion of object pointers to 'void *',
5253 // so these types are not compatible.
5254 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5255 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5256 LHS = RHS = true;
5257 return QualType();
5258 }
5259 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5260 QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5261 QualType destPointee
5262 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5263 QualType destType = Context.getPointerType(destPointee);
5264 // Add qualifiers if necessary.
5265 LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5266 // Promote to void*.
5267 RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5268 return destType;
5269 }
5270 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5271 if (getLangOpts().ObjCAutoRefCount) {
5272 // ARC forbids the implicit conversion of object pointers to 'void *',
5273 // so these types are not compatible.
5274 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5275 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5276 LHS = RHS = true;
5277 return QualType();
5278 }
5279 QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5280 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5281 QualType destPointee
5282 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5283 QualType destType = Context.getPointerType(destPointee);
5284 // Add qualifiers if necessary.
5285 RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5286 // Promote to void*.
5287 LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5288 return destType;
5289 }
5290 return QualType();
5291 }
5292
5293 /// SuggestParentheses - Emit a note with a fixit hint that wraps
5294 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)5295 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5296 const PartialDiagnostic &Note,
5297 SourceRange ParenRange) {
5298 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5299 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5300 EndLoc.isValid()) {
5301 Self.Diag(Loc, Note)
5302 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5303 << FixItHint::CreateInsertion(EndLoc, ")");
5304 } else {
5305 // We can't display the parentheses, so just show the bare note.
5306 Self.Diag(Loc, Note) << ParenRange;
5307 }
5308 }
5309
IsArithmeticOp(BinaryOperatorKind Opc)5310 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5311 return Opc >= BO_Mul && Opc <= BO_Shr;
5312 }
5313
5314 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5315 /// expression, either using a built-in or overloaded operator,
5316 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5317 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)5318 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5319 Expr **RHSExprs) {
5320 // Don't strip parenthesis: we should not warn if E is in parenthesis.
5321 E = E->IgnoreImpCasts();
5322 E = E->IgnoreConversionOperator();
5323 E = E->IgnoreImpCasts();
5324
5325 // Built-in binary operator.
5326 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5327 if (IsArithmeticOp(OP->getOpcode())) {
5328 *Opcode = OP->getOpcode();
5329 *RHSExprs = OP->getRHS();
5330 return true;
5331 }
5332 }
5333
5334 // Overloaded operator.
5335 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5336 if (Call->getNumArgs() != 2)
5337 return false;
5338
5339 // Make sure this is really a binary operator that is safe to pass into
5340 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5341 OverloadedOperatorKind OO = Call->getOperator();
5342 if (OO < OO_Plus || OO > OO_Arrow)
5343 return false;
5344
5345 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5346 if (IsArithmeticOp(OpKind)) {
5347 *Opcode = OpKind;
5348 *RHSExprs = Call->getArg(1);
5349 return true;
5350 }
5351 }
5352
5353 return false;
5354 }
5355
IsLogicOp(BinaryOperatorKind Opc)5356 static bool IsLogicOp(BinaryOperatorKind Opc) {
5357 return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5358 }
5359
5360 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5361 /// or is a logical expression such as (x==y) which has int type, but is
5362 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)5363 static bool ExprLooksBoolean(Expr *E) {
5364 E = E->IgnoreParenImpCasts();
5365
5366 if (E->getType()->isBooleanType())
5367 return true;
5368 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5369 return IsLogicOp(OP->getOpcode());
5370 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5371 return OP->getOpcode() == UO_LNot;
5372
5373 return false;
5374 }
5375
5376 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5377 /// and binary operator are mixed in a way that suggests the programmer assumed
5378 /// the conditional operator has higher precedence, for example:
5379 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)5380 static void DiagnoseConditionalPrecedence(Sema &Self,
5381 SourceLocation OpLoc,
5382 Expr *Condition,
5383 Expr *LHSExpr,
5384 Expr *RHSExpr) {
5385 BinaryOperatorKind CondOpcode;
5386 Expr *CondRHS;
5387
5388 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5389 return;
5390 if (!ExprLooksBoolean(CondRHS))
5391 return;
5392
5393 // The condition is an arithmetic binary expression, with a right-
5394 // hand side that looks boolean, so warn.
5395
5396 Self.Diag(OpLoc, diag::warn_precedence_conditional)
5397 << Condition->getSourceRange()
5398 << BinaryOperator::getOpcodeStr(CondOpcode);
5399
5400 SuggestParentheses(Self, OpLoc,
5401 Self.PDiag(diag::note_precedence_silence)
5402 << BinaryOperator::getOpcodeStr(CondOpcode),
5403 SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5404
5405 SuggestParentheses(Self, OpLoc,
5406 Self.PDiag(diag::note_precedence_conditional_first),
5407 SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5408 }
5409
5410 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5411 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)5412 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5413 SourceLocation ColonLoc,
5414 Expr *CondExpr, Expr *LHSExpr,
5415 Expr *RHSExpr) {
5416 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5417 // was the condition.
5418 OpaqueValueExpr *opaqueValue = 0;
5419 Expr *commonExpr = 0;
5420 if (LHSExpr == 0) {
5421 commonExpr = CondExpr;
5422
5423 // We usually want to apply unary conversions *before* saving, except
5424 // in the special case of a C++ l-value conditional.
5425 if (!(getLangOpts().CPlusPlus
5426 && !commonExpr->isTypeDependent()
5427 && commonExpr->getValueKind() == RHSExpr->getValueKind()
5428 && commonExpr->isGLValue()
5429 && commonExpr->isOrdinaryOrBitFieldObject()
5430 && RHSExpr->isOrdinaryOrBitFieldObject()
5431 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5432 ExprResult commonRes = UsualUnaryConversions(commonExpr);
5433 if (commonRes.isInvalid())
5434 return ExprError();
5435 commonExpr = commonRes.take();
5436 }
5437
5438 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5439 commonExpr->getType(),
5440 commonExpr->getValueKind(),
5441 commonExpr->getObjectKind(),
5442 commonExpr);
5443 LHSExpr = CondExpr = opaqueValue;
5444 }
5445
5446 ExprValueKind VK = VK_RValue;
5447 ExprObjectKind OK = OK_Ordinary;
5448 ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5449 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5450 VK, OK, QuestionLoc);
5451 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5452 RHS.isInvalid())
5453 return ExprError();
5454
5455 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5456 RHS.get());
5457
5458 if (!commonExpr)
5459 return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5460 LHS.take(), ColonLoc,
5461 RHS.take(), result, VK, OK));
5462
5463 return Owned(new (Context)
5464 BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5465 RHS.take(), QuestionLoc, ColonLoc, result, VK,
5466 OK));
5467 }
5468
5469 // checkPointerTypesForAssignment - This is a very tricky routine (despite
5470 // being closely modeled after the C99 spec:-). The odd characteristic of this
5471 // routine is it effectively iqnores the qualifiers on the top level pointee.
5472 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5473 // FIXME: add a couple examples in this comment.
5474 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5475 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5476 assert(LHSType.isCanonical() && "LHS not canonicalized!");
5477 assert(RHSType.isCanonical() && "RHS not canonicalized!");
5478
5479 // get the "pointed to" type (ignoring qualifiers at the top level)
5480 const Type *lhptee, *rhptee;
5481 Qualifiers lhq, rhq;
5482 llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5483 llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5484
5485 Sema::AssignConvertType ConvTy = Sema::Compatible;
5486
5487 // C99 6.5.16.1p1: This following citation is common to constraints
5488 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5489 // qualifiers of the type *pointed to* by the right;
5490 Qualifiers lq;
5491
5492 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5493 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5494 lhq.compatiblyIncludesObjCLifetime(rhq)) {
5495 // Ignore lifetime for further calculation.
5496 lhq.removeObjCLifetime();
5497 rhq.removeObjCLifetime();
5498 }
5499
5500 if (!lhq.compatiblyIncludes(rhq)) {
5501 // Treat address-space mismatches as fatal. TODO: address subspaces
5502 if (lhq.getAddressSpace() != rhq.getAddressSpace())
5503 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5504
5505 // It's okay to add or remove GC or lifetime qualifiers when converting to
5506 // and from void*.
5507 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5508 .compatiblyIncludes(
5509 rhq.withoutObjCGCAttr().withoutObjCLifetime())
5510 && (lhptee->isVoidType() || rhptee->isVoidType()))
5511 ; // keep old
5512
5513 // Treat lifetime mismatches as fatal.
5514 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5515 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5516
5517 // For GCC compatibility, other qualifier mismatches are treated
5518 // as still compatible in C.
5519 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5520 }
5521
5522 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5523 // incomplete type and the other is a pointer to a qualified or unqualified
5524 // version of void...
5525 if (lhptee->isVoidType()) {
5526 if (rhptee->isIncompleteOrObjectType())
5527 return ConvTy;
5528
5529 // As an extension, we allow cast to/from void* to function pointer.
5530 assert(rhptee->isFunctionType());
5531 return Sema::FunctionVoidPointer;
5532 }
5533
5534 if (rhptee->isVoidType()) {
5535 if (lhptee->isIncompleteOrObjectType())
5536 return ConvTy;
5537
5538 // As an extension, we allow cast to/from void* to function pointer.
5539 assert(lhptee->isFunctionType());
5540 return Sema::FunctionVoidPointer;
5541 }
5542
5543 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5544 // unqualified versions of compatible types, ...
5545 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5546 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5547 // Check if the pointee types are compatible ignoring the sign.
5548 // We explicitly check for char so that we catch "char" vs
5549 // "unsigned char" on systems where "char" is unsigned.
5550 if (lhptee->isCharType())
5551 ltrans = S.Context.UnsignedCharTy;
5552 else if (lhptee->hasSignedIntegerRepresentation())
5553 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5554
5555 if (rhptee->isCharType())
5556 rtrans = S.Context.UnsignedCharTy;
5557 else if (rhptee->hasSignedIntegerRepresentation())
5558 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5559
5560 if (ltrans == rtrans) {
5561 // Types are compatible ignoring the sign. Qualifier incompatibility
5562 // takes priority over sign incompatibility because the sign
5563 // warning can be disabled.
5564 if (ConvTy != Sema::Compatible)
5565 return ConvTy;
5566
5567 return Sema::IncompatiblePointerSign;
5568 }
5569
5570 // If we are a multi-level pointer, it's possible that our issue is simply
5571 // one of qualification - e.g. char ** -> const char ** is not allowed. If
5572 // the eventual target type is the same and the pointers have the same
5573 // level of indirection, this must be the issue.
5574 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5575 do {
5576 lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5577 rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5578 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5579
5580 if (lhptee == rhptee)
5581 return Sema::IncompatibleNestedPointerQualifiers;
5582 }
5583
5584 // General pointer incompatibility takes priority over qualifiers.
5585 return Sema::IncompatiblePointer;
5586 }
5587 if (!S.getLangOpts().CPlusPlus &&
5588 S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5589 return Sema::IncompatiblePointer;
5590 return ConvTy;
5591 }
5592
5593 /// checkBlockPointerTypesForAssignment - This routine determines whether two
5594 /// block pointer types are compatible or whether a block and normal pointer
5595 /// are compatible. It is more restrict than comparing two function pointer
5596 // types.
5597 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5598 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5599 QualType RHSType) {
5600 assert(LHSType.isCanonical() && "LHS not canonicalized!");
5601 assert(RHSType.isCanonical() && "RHS not canonicalized!");
5602
5603 QualType lhptee, rhptee;
5604
5605 // get the "pointed to" type (ignoring qualifiers at the top level)
5606 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5607 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5608
5609 // In C++, the types have to match exactly.
5610 if (S.getLangOpts().CPlusPlus)
5611 return Sema::IncompatibleBlockPointer;
5612
5613 Sema::AssignConvertType ConvTy = Sema::Compatible;
5614
5615 // For blocks we enforce that qualifiers are identical.
5616 if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5617 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5618
5619 if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5620 return Sema::IncompatibleBlockPointer;
5621
5622 return ConvTy;
5623 }
5624
5625 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5626 /// for assignment compatibility.
5627 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5628 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5629 QualType RHSType) {
5630 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5631 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5632
5633 if (LHSType->isObjCBuiltinType()) {
5634 // Class is not compatible with ObjC object pointers.
5635 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5636 !RHSType->isObjCQualifiedClassType())
5637 return Sema::IncompatiblePointer;
5638 return Sema::Compatible;
5639 }
5640 if (RHSType->isObjCBuiltinType()) {
5641 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5642 !LHSType->isObjCQualifiedClassType())
5643 return Sema::IncompatiblePointer;
5644 return Sema::Compatible;
5645 }
5646 QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5647 QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5648
5649 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5650 // make an exception for id<P>
5651 !LHSType->isObjCQualifiedIdType())
5652 return Sema::CompatiblePointerDiscardsQualifiers;
5653
5654 if (S.Context.typesAreCompatible(LHSType, RHSType))
5655 return Sema::Compatible;
5656 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5657 return Sema::IncompatibleObjCQualifiedId;
5658 return Sema::IncompatiblePointer;
5659 }
5660
5661 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)5662 Sema::CheckAssignmentConstraints(SourceLocation Loc,
5663 QualType LHSType, QualType RHSType) {
5664 // Fake up an opaque expression. We don't actually care about what
5665 // cast operations are required, so if CheckAssignmentConstraints
5666 // adds casts to this they'll be wasted, but fortunately that doesn't
5667 // usually happen on valid code.
5668 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5669 ExprResult RHSPtr = &RHSExpr;
5670 CastKind K = CK_Invalid;
5671
5672 return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5673 }
5674
5675 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5676 /// has code to accommodate several GCC extensions when type checking
5677 /// pointers. Here are some objectionable examples that GCC considers warnings:
5678 ///
5679 /// int a, *pint;
5680 /// short *pshort;
5681 /// struct foo *pfoo;
5682 ///
5683 /// pint = pshort; // warning: assignment from incompatible pointer type
5684 /// a = pint; // warning: assignment makes integer from pointer without a cast
5685 /// pint = a; // warning: assignment makes pointer from integer without a cast
5686 /// pint = pfoo; // warning: assignment from incompatible pointer type
5687 ///
5688 /// As a result, the code for dealing with pointers is more complex than the
5689 /// C99 spec dictates.
5690 ///
5691 /// Sets 'Kind' for any result kind except Incompatible.
5692 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind)5693 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5694 CastKind &Kind) {
5695 QualType RHSType = RHS.get()->getType();
5696 QualType OrigLHSType = LHSType;
5697
5698 // Get canonical types. We're not formatting these types, just comparing
5699 // them.
5700 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5701 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5702
5703 // Common case: no conversion required.
5704 if (LHSType == RHSType) {
5705 Kind = CK_NoOp;
5706 return Compatible;
5707 }
5708
5709 // If we have an atomic type, try a non-atomic assignment, then just add an
5710 // atomic qualification step.
5711 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5712 Sema::AssignConvertType result =
5713 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
5714 if (result != Compatible)
5715 return result;
5716 if (Kind != CK_NoOp)
5717 RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
5718 Kind = CK_NonAtomicToAtomic;
5719 return Compatible;
5720 }
5721
5722 // If the left-hand side is a reference type, then we are in a
5723 // (rare!) case where we've allowed the use of references in C,
5724 // e.g., as a parameter type in a built-in function. In this case,
5725 // just make sure that the type referenced is compatible with the
5726 // right-hand side type. The caller is responsible for adjusting
5727 // LHSType so that the resulting expression does not have reference
5728 // type.
5729 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5730 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5731 Kind = CK_LValueBitCast;
5732 return Compatible;
5733 }
5734 return Incompatible;
5735 }
5736
5737 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5738 // to the same ExtVector type.
5739 if (LHSType->isExtVectorType()) {
5740 if (RHSType->isExtVectorType())
5741 return Incompatible;
5742 if (RHSType->isArithmeticType()) {
5743 // CK_VectorSplat does T -> vector T, so first cast to the
5744 // element type.
5745 QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5746 if (elType != RHSType) {
5747 Kind = PrepareScalarCast(RHS, elType);
5748 RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5749 }
5750 Kind = CK_VectorSplat;
5751 return Compatible;
5752 }
5753 }
5754
5755 // Conversions to or from vector type.
5756 if (LHSType->isVectorType() || RHSType->isVectorType()) {
5757 if (LHSType->isVectorType() && RHSType->isVectorType()) {
5758 // Allow assignments of an AltiVec vector type to an equivalent GCC
5759 // vector type and vice versa
5760 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5761 Kind = CK_BitCast;
5762 return Compatible;
5763 }
5764
5765 // If we are allowing lax vector conversions, and LHS and RHS are both
5766 // vectors, the total size only needs to be the same. This is a bitcast;
5767 // no bits are changed but the result type is different.
5768 if (getLangOpts().LaxVectorConversions &&
5769 (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5770 Kind = CK_BitCast;
5771 return IncompatibleVectors;
5772 }
5773 }
5774 return Incompatible;
5775 }
5776
5777 // Arithmetic conversions.
5778 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5779 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5780 Kind = PrepareScalarCast(RHS, LHSType);
5781 return Compatible;
5782 }
5783
5784 // Conversions to normal pointers.
5785 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5786 // U* -> T*
5787 if (isa<PointerType>(RHSType)) {
5788 Kind = CK_BitCast;
5789 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5790 }
5791
5792 // int -> T*
5793 if (RHSType->isIntegerType()) {
5794 Kind = CK_IntegralToPointer; // FIXME: null?
5795 return IntToPointer;
5796 }
5797
5798 // C pointers are not compatible with ObjC object pointers,
5799 // with two exceptions:
5800 if (isa<ObjCObjectPointerType>(RHSType)) {
5801 // - conversions to void*
5802 if (LHSPointer->getPointeeType()->isVoidType()) {
5803 Kind = CK_BitCast;
5804 return Compatible;
5805 }
5806
5807 // - conversions from 'Class' to the redefinition type
5808 if (RHSType->isObjCClassType() &&
5809 Context.hasSameType(LHSType,
5810 Context.getObjCClassRedefinitionType())) {
5811 Kind = CK_BitCast;
5812 return Compatible;
5813 }
5814
5815 Kind = CK_BitCast;
5816 return IncompatiblePointer;
5817 }
5818
5819 // U^ -> void*
5820 if (RHSType->getAs<BlockPointerType>()) {
5821 if (LHSPointer->getPointeeType()->isVoidType()) {
5822 Kind = CK_BitCast;
5823 return Compatible;
5824 }
5825 }
5826
5827 return Incompatible;
5828 }
5829
5830 // Conversions to block pointers.
5831 if (isa<BlockPointerType>(LHSType)) {
5832 // U^ -> T^
5833 if (RHSType->isBlockPointerType()) {
5834 Kind = CK_BitCast;
5835 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5836 }
5837
5838 // int or null -> T^
5839 if (RHSType->isIntegerType()) {
5840 Kind = CK_IntegralToPointer; // FIXME: null
5841 return IntToBlockPointer;
5842 }
5843
5844 // id -> T^
5845 if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5846 Kind = CK_AnyPointerToBlockPointerCast;
5847 return Compatible;
5848 }
5849
5850 // void* -> T^
5851 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5852 if (RHSPT->getPointeeType()->isVoidType()) {
5853 Kind = CK_AnyPointerToBlockPointerCast;
5854 return Compatible;
5855 }
5856
5857 return Incompatible;
5858 }
5859
5860 // Conversions to Objective-C pointers.
5861 if (isa<ObjCObjectPointerType>(LHSType)) {
5862 // A* -> B*
5863 if (RHSType->isObjCObjectPointerType()) {
5864 Kind = CK_BitCast;
5865 Sema::AssignConvertType result =
5866 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5867 if (getLangOpts().ObjCAutoRefCount &&
5868 result == Compatible &&
5869 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5870 result = IncompatibleObjCWeakRef;
5871 return result;
5872 }
5873
5874 // int or null -> A*
5875 if (RHSType->isIntegerType()) {
5876 Kind = CK_IntegralToPointer; // FIXME: null
5877 return IntToPointer;
5878 }
5879
5880 // In general, C pointers are not compatible with ObjC object pointers,
5881 // with two exceptions:
5882 if (isa<PointerType>(RHSType)) {
5883 Kind = CK_CPointerToObjCPointerCast;
5884
5885 // - conversions from 'void*'
5886 if (RHSType->isVoidPointerType()) {
5887 return Compatible;
5888 }
5889
5890 // - conversions to 'Class' from its redefinition type
5891 if (LHSType->isObjCClassType() &&
5892 Context.hasSameType(RHSType,
5893 Context.getObjCClassRedefinitionType())) {
5894 return Compatible;
5895 }
5896
5897 return IncompatiblePointer;
5898 }
5899
5900 // T^ -> A*
5901 if (RHSType->isBlockPointerType()) {
5902 maybeExtendBlockObject(*this, RHS);
5903 Kind = CK_BlockPointerToObjCPointerCast;
5904 return Compatible;
5905 }
5906
5907 return Incompatible;
5908 }
5909
5910 // Conversions from pointers that are not covered by the above.
5911 if (isa<PointerType>(RHSType)) {
5912 // T* -> _Bool
5913 if (LHSType == Context.BoolTy) {
5914 Kind = CK_PointerToBoolean;
5915 return Compatible;
5916 }
5917
5918 // T* -> int
5919 if (LHSType->isIntegerType()) {
5920 Kind = CK_PointerToIntegral;
5921 return PointerToInt;
5922 }
5923
5924 return Incompatible;
5925 }
5926
5927 // Conversions from Objective-C pointers that are not covered by the above.
5928 if (isa<ObjCObjectPointerType>(RHSType)) {
5929 // T* -> _Bool
5930 if (LHSType == Context.BoolTy) {
5931 Kind = CK_PointerToBoolean;
5932 return Compatible;
5933 }
5934
5935 // T* -> int
5936 if (LHSType->isIntegerType()) {
5937 Kind = CK_PointerToIntegral;
5938 return PointerToInt;
5939 }
5940
5941 return Incompatible;
5942 }
5943
5944 // struct A -> struct B
5945 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5946 if (Context.typesAreCompatible(LHSType, RHSType)) {
5947 Kind = CK_NoOp;
5948 return Compatible;
5949 }
5950 }
5951
5952 return Incompatible;
5953 }
5954
5955 /// \brief Constructs a transparent union from an expression that is
5956 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)5957 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5958 ExprResult &EResult, QualType UnionType,
5959 FieldDecl *Field) {
5960 // Build an initializer list that designates the appropriate member
5961 // of the transparent union.
5962 Expr *E = EResult.take();
5963 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5964 E, SourceLocation());
5965 Initializer->setType(UnionType);
5966 Initializer->setInitializedFieldInUnion(Field);
5967
5968 // Build a compound literal constructing a value of the transparent
5969 // union type from this initializer list.
5970 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5971 EResult = S.Owned(
5972 new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5973 VK_RValue, Initializer, false));
5974 }
5975
5976 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)5977 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5978 ExprResult &RHS) {
5979 QualType RHSType = RHS.get()->getType();
5980
5981 // If the ArgType is a Union type, we want to handle a potential
5982 // transparent_union GCC extension.
5983 const RecordType *UT = ArgType->getAsUnionType();
5984 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5985 return Incompatible;
5986
5987 // The field to initialize within the transparent union.
5988 RecordDecl *UD = UT->getDecl();
5989 FieldDecl *InitField = 0;
5990 // It's compatible if the expression matches any of the fields.
5991 for (RecordDecl::field_iterator it = UD->field_begin(),
5992 itend = UD->field_end();
5993 it != itend; ++it) {
5994 if (it->getType()->isPointerType()) {
5995 // If the transparent union contains a pointer type, we allow:
5996 // 1) void pointer
5997 // 2) null pointer constant
5998 if (RHSType->isPointerType())
5999 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
6000 RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
6001 InitField = *it;
6002 break;
6003 }
6004
6005 if (RHS.get()->isNullPointerConstant(Context,
6006 Expr::NPC_ValueDependentIsNull)) {
6007 RHS = ImpCastExprToType(RHS.take(), it->getType(),
6008 CK_NullToPointer);
6009 InitField = *it;
6010 break;
6011 }
6012 }
6013
6014 CastKind Kind = CK_Invalid;
6015 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
6016 == Compatible) {
6017 RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
6018 InitField = *it;
6019 break;
6020 }
6021 }
6022
6023 if (!InitField)
6024 return Incompatible;
6025
6026 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
6027 return Compatible;
6028 }
6029
6030 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & RHS,bool Diagnose)6031 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6032 bool Diagnose) {
6033 if (getLangOpts().CPlusPlus) {
6034 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
6035 // C++ 5.17p3: If the left operand is not of class type, the
6036 // expression is implicitly converted (C++ 4) to the
6037 // cv-unqualified type of the left operand.
6038 ExprResult Res;
6039 if (Diagnose) {
6040 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6041 AA_Assigning);
6042 } else {
6043 ImplicitConversionSequence ICS =
6044 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6045 /*SuppressUserConversions=*/false,
6046 /*AllowExplicit=*/false,
6047 /*InOverloadResolution=*/false,
6048 /*CStyle=*/false,
6049 /*AllowObjCWritebackConversion=*/false);
6050 if (ICS.isFailure())
6051 return Incompatible;
6052 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6053 ICS, AA_Assigning);
6054 }
6055 if (Res.isInvalid())
6056 return Incompatible;
6057 Sema::AssignConvertType result = Compatible;
6058 if (getLangOpts().ObjCAutoRefCount &&
6059 !CheckObjCARCUnavailableWeakConversion(LHSType,
6060 RHS.get()->getType()))
6061 result = IncompatibleObjCWeakRef;
6062 RHS = Res;
6063 return result;
6064 }
6065
6066 // FIXME: Currently, we fall through and treat C++ classes like C
6067 // structures.
6068 // FIXME: We also fall through for atomics; not sure what should
6069 // happen there, though.
6070 }
6071
6072 // C99 6.5.16.1p1: the left operand is a pointer and the right is
6073 // a null pointer constant.
6074 if ((LHSType->isPointerType() ||
6075 LHSType->isObjCObjectPointerType() ||
6076 LHSType->isBlockPointerType())
6077 && RHS.get()->isNullPointerConstant(Context,
6078 Expr::NPC_ValueDependentIsNull)) {
6079 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6080 return Compatible;
6081 }
6082
6083 // This check seems unnatural, however it is necessary to ensure the proper
6084 // conversion of functions/arrays. If the conversion were done for all
6085 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6086 // expressions that suppress this implicit conversion (&, sizeof).
6087 //
6088 // Suppress this for references: C++ 8.5.3p5.
6089 if (!LHSType->isReferenceType()) {
6090 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6091 if (RHS.isInvalid())
6092 return Incompatible;
6093 }
6094
6095 CastKind Kind = CK_Invalid;
6096 Sema::AssignConvertType result =
6097 CheckAssignmentConstraints(LHSType, RHS, Kind);
6098
6099 // C99 6.5.16.1p2: The value of the right operand is converted to the
6100 // type of the assignment expression.
6101 // CheckAssignmentConstraints allows the left-hand side to be a reference,
6102 // so that we can use references in built-in functions even in C.
6103 // The getNonReferenceType() call makes sure that the resulting expression
6104 // does not have reference type.
6105 if (result != Incompatible && RHS.get()->getType() != LHSType)
6106 RHS = ImpCastExprToType(RHS.take(),
6107 LHSType.getNonLValueExprType(Context), Kind);
6108 return result;
6109 }
6110
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6111 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
6112 ExprResult &RHS) {
6113 Diag(Loc, diag::err_typecheck_invalid_operands)
6114 << LHS.get()->getType() << RHS.get()->getType()
6115 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6116 return QualType();
6117 }
6118
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)6119 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
6120 SourceLocation Loc, bool IsCompAssign) {
6121 if (!IsCompAssign) {
6122 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
6123 if (LHS.isInvalid())
6124 return QualType();
6125 }
6126 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6127 if (RHS.isInvalid())
6128 return QualType();
6129
6130 // For conversion purposes, we ignore any qualifiers.
6131 // For example, "const float" and "float" are equivalent.
6132 QualType LHSType =
6133 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6134 QualType RHSType =
6135 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6136
6137 // If the vector types are identical, return.
6138 if (LHSType == RHSType)
6139 return LHSType;
6140
6141 // Handle the case of equivalent AltiVec and GCC vector types
6142 if (LHSType->isVectorType() && RHSType->isVectorType() &&
6143 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6144 if (LHSType->isExtVectorType()) {
6145 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6146 return LHSType;
6147 }
6148
6149 if (!IsCompAssign)
6150 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6151 return RHSType;
6152 }
6153
6154 if (getLangOpts().LaxVectorConversions &&
6155 Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6156 // If we are allowing lax vector conversions, and LHS and RHS are both
6157 // vectors, the total size only needs to be the same. This is a
6158 // bitcast; no bits are changed but the result type is different.
6159 // FIXME: Should we really be allowing this?
6160 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6161 return LHSType;
6162 }
6163
6164 // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6165 // swap back (so that we don't reverse the inputs to a subtract, for instance.
6166 bool swapped = false;
6167 if (RHSType->isExtVectorType() && !IsCompAssign) {
6168 swapped = true;
6169 std::swap(RHS, LHS);
6170 std::swap(RHSType, LHSType);
6171 }
6172
6173 // Handle the case of an ext vector and scalar.
6174 if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6175 QualType EltTy = LV->getElementType();
6176 if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6177 int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6178 if (order > 0)
6179 RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6180 if (order >= 0) {
6181 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6182 if (swapped) std::swap(RHS, LHS);
6183 return LHSType;
6184 }
6185 }
6186 if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
6187 RHSType->isRealFloatingType()) {
6188 int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6189 if (order > 0)
6190 RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6191 if (order >= 0) {
6192 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6193 if (swapped) std::swap(RHS, LHS);
6194 return LHSType;
6195 }
6196 }
6197 }
6198
6199 // Vectors of different size or scalar and non-ext-vector are errors.
6200 if (swapped) std::swap(RHS, LHS);
6201 Diag(Loc, diag::err_typecheck_vector_not_convertable)
6202 << LHS.get()->getType() << RHS.get()->getType()
6203 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6204 return QualType();
6205 }
6206
6207 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
6208 // expression. These are mainly cases where the null pointer is used as an
6209 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)6210 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6211 SourceLocation Loc, bool IsCompare) {
6212 // The canonical way to check for a GNU null is with isNullPointerConstant,
6213 // but we use a bit of a hack here for speed; this is a relatively
6214 // hot path, and isNullPointerConstant is slow.
6215 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6216 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6217
6218 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6219
6220 // Avoid analyzing cases where the result will either be invalid (and
6221 // diagnosed as such) or entirely valid and not something to warn about.
6222 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6223 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6224 return;
6225
6226 // Comparison operations would not make sense with a null pointer no matter
6227 // what the other expression is.
6228 if (!IsCompare) {
6229 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6230 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6231 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6232 return;
6233 }
6234
6235 // The rest of the operations only make sense with a null pointer
6236 // if the other expression is a pointer.
6237 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6238 NonNullType->canDecayToPointerType())
6239 return;
6240
6241 S.Diag(Loc, diag::warn_null_in_comparison_operation)
6242 << LHSNull /* LHS is NULL */ << NonNullType
6243 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6244 }
6245
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)6246 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6247 SourceLocation Loc,
6248 bool IsCompAssign, bool IsDiv) {
6249 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6250
6251 if (LHS.get()->getType()->isVectorType() ||
6252 RHS.get()->getType()->isVectorType())
6253 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6254
6255 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6256 if (LHS.isInvalid() || RHS.isInvalid())
6257 return QualType();
6258
6259
6260 if (compType.isNull() || !compType->isArithmeticType())
6261 return InvalidOperands(Loc, LHS, RHS);
6262
6263 // Check for division by zero.
6264 if (IsDiv &&
6265 RHS.get()->isNullPointerConstant(Context,
6266 Expr::NPC_ValueDependentIsNotNull))
6267 DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
6268 << RHS.get()->getSourceRange());
6269
6270 return compType;
6271 }
6272
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)6273 QualType Sema::CheckRemainderOperands(
6274 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6275 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6276
6277 if (LHS.get()->getType()->isVectorType() ||
6278 RHS.get()->getType()->isVectorType()) {
6279 if (LHS.get()->getType()->hasIntegerRepresentation() &&
6280 RHS.get()->getType()->hasIntegerRepresentation())
6281 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6282 return InvalidOperands(Loc, LHS, RHS);
6283 }
6284
6285 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6286 if (LHS.isInvalid() || RHS.isInvalid())
6287 return QualType();
6288
6289 if (compType.isNull() || !compType->isIntegerType())
6290 return InvalidOperands(Loc, LHS, RHS);
6291
6292 // Check for remainder by zero.
6293 if (RHS.get()->isNullPointerConstant(Context,
6294 Expr::NPC_ValueDependentIsNotNull))
6295 DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
6296 << RHS.get()->getSourceRange());
6297
6298 return compType;
6299 }
6300
6301 /// \brief Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6302 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6303 Expr *LHSExpr, Expr *RHSExpr) {
6304 S.Diag(Loc, S.getLangOpts().CPlusPlus
6305 ? diag::err_typecheck_pointer_arith_void_type
6306 : diag::ext_gnu_void_ptr)
6307 << 1 /* two pointers */ << LHSExpr->getSourceRange()
6308 << RHSExpr->getSourceRange();
6309 }
6310
6311 /// \brief Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6312 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6313 Expr *Pointer) {
6314 S.Diag(Loc, S.getLangOpts().CPlusPlus
6315 ? diag::err_typecheck_pointer_arith_void_type
6316 : diag::ext_gnu_void_ptr)
6317 << 0 /* one pointer */ << Pointer->getSourceRange();
6318 }
6319
6320 /// \brief Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)6321 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6322 Expr *LHS, Expr *RHS) {
6323 assert(LHS->getType()->isAnyPointerType());
6324 assert(RHS->getType()->isAnyPointerType());
6325 S.Diag(Loc, S.getLangOpts().CPlusPlus
6326 ? diag::err_typecheck_pointer_arith_function_type
6327 : diag::ext_gnu_ptr_func_arith)
6328 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6329 // We only show the second type if it differs from the first.
6330 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6331 RHS->getType())
6332 << RHS->getType()->getPointeeType()
6333 << LHS->getSourceRange() << RHS->getSourceRange();
6334 }
6335
6336 /// \brief Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6337 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6338 Expr *Pointer) {
6339 assert(Pointer->getType()->isAnyPointerType());
6340 S.Diag(Loc, S.getLangOpts().CPlusPlus
6341 ? diag::err_typecheck_pointer_arith_function_type
6342 : diag::ext_gnu_ptr_func_arith)
6343 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6344 << 0 /* one pointer, so only one type */
6345 << Pointer->getSourceRange();
6346 }
6347
6348 /// \brief Emit error if Operand is incomplete pointer type
6349 ///
6350 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)6351 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6352 Expr *Operand) {
6353 assert(Operand->getType()->isAnyPointerType() &&
6354 !Operand->getType()->isDependentType());
6355 QualType PointeeTy = Operand->getType()->getPointeeType();
6356 return S.RequireCompleteType(Loc, PointeeTy,
6357 diag::err_typecheck_arithmetic_incomplete_type,
6358 PointeeTy, Operand->getSourceRange());
6359 }
6360
6361 /// \brief Check the validity of an arithmetic pointer operand.
6362 ///
6363 /// If the operand has pointer type, this code will check for pointer types
6364 /// which are invalid in arithmetic operations. These will be diagnosed
6365 /// appropriately, including whether or not the use is supported as an
6366 /// extension.
6367 ///
6368 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)6369 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6370 Expr *Operand) {
6371 if (!Operand->getType()->isAnyPointerType()) return true;
6372
6373 QualType PointeeTy = Operand->getType()->getPointeeType();
6374 if (PointeeTy->isVoidType()) {
6375 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6376 return !S.getLangOpts().CPlusPlus;
6377 }
6378 if (PointeeTy->isFunctionType()) {
6379 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6380 return !S.getLangOpts().CPlusPlus;
6381 }
6382
6383 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6384
6385 return true;
6386 }
6387
6388 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6389 /// operands.
6390 ///
6391 /// This routine will diagnose any invalid arithmetic on pointer operands much
6392 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
6393 /// for emitting a single diagnostic even for operations where both LHS and RHS
6394 /// are (potentially problematic) pointers.
6395 ///
6396 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6397 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6398 Expr *LHSExpr, Expr *RHSExpr) {
6399 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6400 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6401 if (!isLHSPointer && !isRHSPointer) return true;
6402
6403 QualType LHSPointeeTy, RHSPointeeTy;
6404 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6405 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6406
6407 // Check for arithmetic on pointers to incomplete types.
6408 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6409 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6410 if (isLHSVoidPtr || isRHSVoidPtr) {
6411 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6412 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6413 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6414
6415 return !S.getLangOpts().CPlusPlus;
6416 }
6417
6418 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6419 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6420 if (isLHSFuncPtr || isRHSFuncPtr) {
6421 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6422 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6423 RHSExpr);
6424 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6425
6426 return !S.getLangOpts().CPlusPlus;
6427 }
6428
6429 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6430 return false;
6431 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6432 return false;
6433
6434 return true;
6435 }
6436
6437 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6438 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)6439 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6440 Expr *LHSExpr, Expr *RHSExpr) {
6441 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6442 Expr* IndexExpr = RHSExpr;
6443 if (!StrExpr) {
6444 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6445 IndexExpr = LHSExpr;
6446 }
6447
6448 bool IsStringPlusInt = StrExpr &&
6449 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6450 if (!IsStringPlusInt)
6451 return;
6452
6453 llvm::APSInt index;
6454 if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6455 unsigned StrLenWithNull = StrExpr->getLength() + 1;
6456 if (index.isNonNegative() &&
6457 index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6458 index.isUnsigned()))
6459 return;
6460 }
6461
6462 SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6463 Self.Diag(OpLoc, diag::warn_string_plus_int)
6464 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6465
6466 // Only print a fixit for "str" + int, not for int + "str".
6467 if (IndexExpr == RHSExpr) {
6468 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6469 Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6470 << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6471 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6472 << FixItHint::CreateInsertion(EndLoc, "]");
6473 } else
6474 Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6475 }
6476
6477 /// \brief Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6478 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6479 Expr *LHSExpr, Expr *RHSExpr) {
6480 assert(LHSExpr->getType()->isAnyPointerType());
6481 assert(RHSExpr->getType()->isAnyPointerType());
6482 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6483 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6484 << RHSExpr->getSourceRange();
6485 }
6486
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType * CompLHSTy)6487 QualType Sema::CheckAdditionOperands( // C99 6.5.6
6488 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6489 QualType* CompLHSTy) {
6490 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6491
6492 if (LHS.get()->getType()->isVectorType() ||
6493 RHS.get()->getType()->isVectorType()) {
6494 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6495 if (CompLHSTy) *CompLHSTy = compType;
6496 return compType;
6497 }
6498
6499 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6500 if (LHS.isInvalid() || RHS.isInvalid())
6501 return QualType();
6502
6503 // Diagnose "string literal" '+' int.
6504 if (Opc == BO_Add)
6505 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6506
6507 // handle the common case first (both operands are arithmetic).
6508 if (!compType.isNull() && compType->isArithmeticType()) {
6509 if (CompLHSTy) *CompLHSTy = compType;
6510 return compType;
6511 }
6512
6513 // Type-checking. Ultimately the pointer's going to be in PExp;
6514 // note that we bias towards the LHS being the pointer.
6515 Expr *PExp = LHS.get(), *IExp = RHS.get();
6516
6517 bool isObjCPointer;
6518 if (PExp->getType()->isPointerType()) {
6519 isObjCPointer = false;
6520 } else if (PExp->getType()->isObjCObjectPointerType()) {
6521 isObjCPointer = true;
6522 } else {
6523 std::swap(PExp, IExp);
6524 if (PExp->getType()->isPointerType()) {
6525 isObjCPointer = false;
6526 } else if (PExp->getType()->isObjCObjectPointerType()) {
6527 isObjCPointer = true;
6528 } else {
6529 return InvalidOperands(Loc, LHS, RHS);
6530 }
6531 }
6532 assert(PExp->getType()->isAnyPointerType());
6533
6534 if (!IExp->getType()->isIntegerType())
6535 return InvalidOperands(Loc, LHS, RHS);
6536
6537 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6538 return QualType();
6539
6540 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
6541 return QualType();
6542
6543 // Check array bounds for pointer arithemtic
6544 CheckArrayAccess(PExp, IExp);
6545
6546 if (CompLHSTy) {
6547 QualType LHSTy = Context.isPromotableBitField(LHS.get());
6548 if (LHSTy.isNull()) {
6549 LHSTy = LHS.get()->getType();
6550 if (LHSTy->isPromotableIntegerType())
6551 LHSTy = Context.getPromotedIntegerType(LHSTy);
6552 }
6553 *CompLHSTy = LHSTy;
6554 }
6555
6556 return PExp->getType();
6557 }
6558
6559 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)6560 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6561 SourceLocation Loc,
6562 QualType* CompLHSTy) {
6563 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6564
6565 if (LHS.get()->getType()->isVectorType() ||
6566 RHS.get()->getType()->isVectorType()) {
6567 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6568 if (CompLHSTy) *CompLHSTy = compType;
6569 return compType;
6570 }
6571
6572 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6573 if (LHS.isInvalid() || RHS.isInvalid())
6574 return QualType();
6575
6576 // Enforce type constraints: C99 6.5.6p3.
6577
6578 // Handle the common case first (both operands are arithmetic).
6579 if (!compType.isNull() && compType->isArithmeticType()) {
6580 if (CompLHSTy) *CompLHSTy = compType;
6581 return compType;
6582 }
6583
6584 // Either ptr - int or ptr - ptr.
6585 if (LHS.get()->getType()->isAnyPointerType()) {
6586 QualType lpointee = LHS.get()->getType()->getPointeeType();
6587
6588 // Diagnose bad cases where we step over interface counts.
6589 if (LHS.get()->getType()->isObjCObjectPointerType() &&
6590 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
6591 return QualType();
6592
6593 // The result type of a pointer-int computation is the pointer type.
6594 if (RHS.get()->getType()->isIntegerType()) {
6595 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6596 return QualType();
6597
6598 // Check array bounds for pointer arithemtic
6599 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6600 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6601
6602 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6603 return LHS.get()->getType();
6604 }
6605
6606 // Handle pointer-pointer subtractions.
6607 if (const PointerType *RHSPTy
6608 = RHS.get()->getType()->getAs<PointerType>()) {
6609 QualType rpointee = RHSPTy->getPointeeType();
6610
6611 if (getLangOpts().CPlusPlus) {
6612 // Pointee types must be the same: C++ [expr.add]
6613 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6614 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6615 }
6616 } else {
6617 // Pointee types must be compatible C99 6.5.6p3
6618 if (!Context.typesAreCompatible(
6619 Context.getCanonicalType(lpointee).getUnqualifiedType(),
6620 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6621 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6622 return QualType();
6623 }
6624 }
6625
6626 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6627 LHS.get(), RHS.get()))
6628 return QualType();
6629
6630 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6631 return Context.getPointerDiffType();
6632 }
6633 }
6634
6635 return InvalidOperands(Loc, LHS, RHS);
6636 }
6637
isScopedEnumerationType(QualType T)6638 static bool isScopedEnumerationType(QualType T) {
6639 if (const EnumType *ET = dyn_cast<EnumType>(T))
6640 return ET->getDecl()->isScoped();
6641 return false;
6642 }
6643
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType LHSType)6644 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6645 SourceLocation Loc, unsigned Opc,
6646 QualType LHSType) {
6647 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
6648 // so skip remaining warnings as we don't want to modify values within Sema.
6649 if (S.getLangOpts().OpenCL)
6650 return;
6651
6652 llvm::APSInt Right;
6653 // Check right/shifter operand
6654 if (RHS.get()->isValueDependent() ||
6655 !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6656 return;
6657
6658 if (Right.isNegative()) {
6659 S.DiagRuntimeBehavior(Loc, RHS.get(),
6660 S.PDiag(diag::warn_shift_negative)
6661 << RHS.get()->getSourceRange());
6662 return;
6663 }
6664 llvm::APInt LeftBits(Right.getBitWidth(),
6665 S.Context.getTypeSize(LHS.get()->getType()));
6666 if (Right.uge(LeftBits)) {
6667 S.DiagRuntimeBehavior(Loc, RHS.get(),
6668 S.PDiag(diag::warn_shift_gt_typewidth)
6669 << RHS.get()->getSourceRange());
6670 return;
6671 }
6672 if (Opc != BO_Shl)
6673 return;
6674
6675 // When left shifting an ICE which is signed, we can check for overflow which
6676 // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6677 // integers have defined behavior modulo one more than the maximum value
6678 // representable in the result type, so never warn for those.
6679 llvm::APSInt Left;
6680 if (LHS.get()->isValueDependent() ||
6681 !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6682 LHSType->hasUnsignedIntegerRepresentation())
6683 return;
6684 llvm::APInt ResultBits =
6685 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6686 if (LeftBits.uge(ResultBits))
6687 return;
6688 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6689 Result = Result.shl(Right);
6690
6691 // Print the bit representation of the signed integer as an unsigned
6692 // hexadecimal number.
6693 SmallString<40> HexResult;
6694 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6695
6696 // If we are only missing a sign bit, this is less likely to result in actual
6697 // bugs -- if the result is cast back to an unsigned type, it will have the
6698 // expected value. Thus we place this behind a different warning that can be
6699 // turned off separately if needed.
6700 if (LeftBits == ResultBits - 1) {
6701 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6702 << HexResult.str() << LHSType
6703 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6704 return;
6705 }
6706
6707 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6708 << HexResult.str() << Result.getMinSignedBits() << LHSType
6709 << Left.getBitWidth() << LHS.get()->getSourceRange()
6710 << RHS.get()->getSourceRange();
6711 }
6712
6713 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,bool IsCompAssign)6714 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6715 SourceLocation Loc, unsigned Opc,
6716 bool IsCompAssign) {
6717 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6718
6719 // C99 6.5.7p2: Each of the operands shall have integer type.
6720 if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6721 !RHS.get()->getType()->hasIntegerRepresentation())
6722 return InvalidOperands(Loc, LHS, RHS);
6723
6724 // C++0x: Don't allow scoped enums. FIXME: Use something better than
6725 // hasIntegerRepresentation() above instead of this.
6726 if (isScopedEnumerationType(LHS.get()->getType()) ||
6727 isScopedEnumerationType(RHS.get()->getType())) {
6728 return InvalidOperands(Loc, LHS, RHS);
6729 }
6730
6731 // Vector shifts promote their scalar inputs to vector type.
6732 if (LHS.get()->getType()->isVectorType() ||
6733 RHS.get()->getType()->isVectorType())
6734 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6735
6736 // Shifts don't perform usual arithmetic conversions, they just do integer
6737 // promotions on each operand. C99 6.5.7p3
6738
6739 // For the LHS, do usual unary conversions, but then reset them away
6740 // if this is a compound assignment.
6741 ExprResult OldLHS = LHS;
6742 LHS = UsualUnaryConversions(LHS.take());
6743 if (LHS.isInvalid())
6744 return QualType();
6745 QualType LHSType = LHS.get()->getType();
6746 if (IsCompAssign) LHS = OldLHS;
6747
6748 // The RHS is simpler.
6749 RHS = UsualUnaryConversions(RHS.take());
6750 if (RHS.isInvalid())
6751 return QualType();
6752
6753 // Sanity-check shift operands
6754 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6755
6756 // "The type of the result is that of the promoted left operand."
6757 return LHSType;
6758 }
6759
IsWithinTemplateSpecialization(Decl * D)6760 static bool IsWithinTemplateSpecialization(Decl *D) {
6761 if (DeclContext *DC = D->getDeclContext()) {
6762 if (isa<ClassTemplateSpecializationDecl>(DC))
6763 return true;
6764 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6765 return FD->isFunctionTemplateSpecialization();
6766 }
6767 return false;
6768 }
6769
6770 /// If two different enums are compared, raise a warning.
checkEnumComparison(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)6771 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
6772 Expr *RHS) {
6773 QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
6774 QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
6775
6776 const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6777 if (!LHSEnumType)
6778 return;
6779 const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6780 if (!RHSEnumType)
6781 return;
6782
6783 // Ignore anonymous enums.
6784 if (!LHSEnumType->getDecl()->getIdentifier())
6785 return;
6786 if (!RHSEnumType->getDecl()->getIdentifier())
6787 return;
6788
6789 if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6790 return;
6791
6792 S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6793 << LHSStrippedType << RHSStrippedType
6794 << LHS->getSourceRange() << RHS->getSourceRange();
6795 }
6796
6797 /// \brief Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6798 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6799 ExprResult &LHS, ExprResult &RHS,
6800 bool IsError) {
6801 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6802 : diag::ext_typecheck_comparison_of_distinct_pointers)
6803 << LHS.get()->getType() << RHS.get()->getType()
6804 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6805 }
6806
6807 /// \brief Returns false if the pointers are converted to a composite type,
6808 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6809 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6810 ExprResult &LHS, ExprResult &RHS) {
6811 // C++ [expr.rel]p2:
6812 // [...] Pointer conversions (4.10) and qualification
6813 // conversions (4.4) are performed on pointer operands (or on
6814 // a pointer operand and a null pointer constant) to bring
6815 // them to their composite pointer type. [...]
6816 //
6817 // C++ [expr.eq]p1 uses the same notion for (in)equality
6818 // comparisons of pointers.
6819
6820 // C++ [expr.eq]p2:
6821 // In addition, pointers to members can be compared, or a pointer to
6822 // member and a null pointer constant. Pointer to member conversions
6823 // (4.11) and qualification conversions (4.4) are performed to bring
6824 // them to a common type. If one operand is a null pointer constant,
6825 // the common type is the type of the other operand. Otherwise, the
6826 // common type is a pointer to member type similar (4.4) to the type
6827 // of one of the operands, with a cv-qualification signature (4.4)
6828 // that is the union of the cv-qualification signatures of the operand
6829 // types.
6830
6831 QualType LHSType = LHS.get()->getType();
6832 QualType RHSType = RHS.get()->getType();
6833 assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6834 (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6835
6836 bool NonStandardCompositeType = false;
6837 bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6838 QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6839 if (T.isNull()) {
6840 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6841 return true;
6842 }
6843
6844 if (NonStandardCompositeType)
6845 S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6846 << LHSType << RHSType << T << LHS.get()->getSourceRange()
6847 << RHS.get()->getSourceRange();
6848
6849 LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6850 RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6851 return false;
6852 }
6853
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6854 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6855 ExprResult &LHS,
6856 ExprResult &RHS,
6857 bool IsError) {
6858 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6859 : diag::ext_typecheck_comparison_of_fptr_to_void)
6860 << LHS.get()->getType() << RHS.get()->getType()
6861 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6862 }
6863
isObjCObjectLiteral(ExprResult & E)6864 static bool isObjCObjectLiteral(ExprResult &E) {
6865 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
6866 case Stmt::ObjCArrayLiteralClass:
6867 case Stmt::ObjCDictionaryLiteralClass:
6868 case Stmt::ObjCStringLiteralClass:
6869 case Stmt::ObjCBoxedExprClass:
6870 return true;
6871 default:
6872 // Note that ObjCBoolLiteral is NOT an object literal!
6873 return false;
6874 }
6875 }
6876
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)6877 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
6878 const ObjCObjectPointerType *Type =
6879 LHS->getType()->getAs<ObjCObjectPointerType>();
6880
6881 // If this is not actually an Objective-C object, bail out.
6882 if (!Type)
6883 return false;
6884
6885 // Get the LHS object's interface type.
6886 QualType InterfaceType = Type->getPointeeType();
6887 if (const ObjCObjectType *iQFaceTy =
6888 InterfaceType->getAsObjCQualifiedInterfaceType())
6889 InterfaceType = iQFaceTy->getBaseType();
6890
6891 // If the RHS isn't an Objective-C object, bail out.
6892 if (!RHS->getType()->isObjCObjectPointerType())
6893 return false;
6894
6895 // Try to find the -isEqual: method.
6896 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
6897 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
6898 InterfaceType,
6899 /*instance=*/true);
6900 if (!Method) {
6901 if (Type->isObjCIdType()) {
6902 // For 'id', just check the global pool.
6903 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
6904 /*receiverId=*/true,
6905 /*warn=*/false);
6906 } else {
6907 // Check protocols.
6908 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
6909 /*instance=*/true);
6910 }
6911 }
6912
6913 if (!Method)
6914 return false;
6915
6916 QualType T = Method->param_begin()[0]->getType();
6917 if (!T->isObjCObjectPointerType())
6918 return false;
6919
6920 QualType R = Method->getResultType();
6921 if (!R->isScalarType())
6922 return false;
6923
6924 return true;
6925 }
6926
CheckLiteralKind(Expr * FromE)6927 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
6928 FromE = FromE->IgnoreParenImpCasts();
6929 switch (FromE->getStmtClass()) {
6930 default:
6931 break;
6932 case Stmt::ObjCStringLiteralClass:
6933 // "string literal"
6934 return LK_String;
6935 case Stmt::ObjCArrayLiteralClass:
6936 // "array literal"
6937 return LK_Array;
6938 case Stmt::ObjCDictionaryLiteralClass:
6939 // "dictionary literal"
6940 return LK_Dictionary;
6941 case Stmt::BlockExprClass:
6942 return LK_Block;
6943 case Stmt::ObjCBoxedExprClass: {
6944 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
6945 switch (Inner->getStmtClass()) {
6946 case Stmt::IntegerLiteralClass:
6947 case Stmt::FloatingLiteralClass:
6948 case Stmt::CharacterLiteralClass:
6949 case Stmt::ObjCBoolLiteralExprClass:
6950 case Stmt::CXXBoolLiteralExprClass:
6951 // "numeric literal"
6952 return LK_Numeric;
6953 case Stmt::ImplicitCastExprClass: {
6954 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
6955 // Boolean literals can be represented by implicit casts.
6956 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
6957 return LK_Numeric;
6958 break;
6959 }
6960 default:
6961 break;
6962 }
6963 return LK_Boxed;
6964 }
6965 }
6966 return LK_None;
6967 }
6968
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)6969 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
6970 ExprResult &LHS, ExprResult &RHS,
6971 BinaryOperator::Opcode Opc){
6972 Expr *Literal;
6973 Expr *Other;
6974 if (isObjCObjectLiteral(LHS)) {
6975 Literal = LHS.get();
6976 Other = RHS.get();
6977 } else {
6978 Literal = RHS.get();
6979 Other = LHS.get();
6980 }
6981
6982 // Don't warn on comparisons against nil.
6983 Other = Other->IgnoreParenCasts();
6984 if (Other->isNullPointerConstant(S.getASTContext(),
6985 Expr::NPC_ValueDependentIsNotNull))
6986 return;
6987
6988 // This should be kept in sync with warn_objc_literal_comparison.
6989 // LK_String should always be after the other literals, since it has its own
6990 // warning flag.
6991 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
6992 assert(LiteralKind != Sema::LK_Block);
6993 if (LiteralKind == Sema::LK_None) {
6994 llvm_unreachable("Unknown Objective-C object literal kind");
6995 }
6996
6997 if (LiteralKind == Sema::LK_String)
6998 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
6999 << Literal->getSourceRange();
7000 else
7001 S.Diag(Loc, diag::warn_objc_literal_comparison)
7002 << LiteralKind << Literal->getSourceRange();
7003
7004 if (BinaryOperator::isEqualityOp(Opc) &&
7005 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
7006 SourceLocation Start = LHS.get()->getLocStart();
7007 SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
7008 CharSourceRange OpRange =
7009 CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
7010
7011 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
7012 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
7013 << FixItHint::CreateReplacement(OpRange, " isEqual:")
7014 << FixItHint::CreateInsertion(End, "]");
7015 }
7016 }
7017
7018 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned OpaqueOpc,bool IsRelational)7019 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
7020 SourceLocation Loc, unsigned OpaqueOpc,
7021 bool IsRelational) {
7022 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
7023
7024 BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
7025
7026 // Handle vector comparisons separately.
7027 if (LHS.get()->getType()->isVectorType() ||
7028 RHS.get()->getType()->isVectorType())
7029 return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
7030
7031 QualType LHSType = LHS.get()->getType();
7032 QualType RHSType = RHS.get()->getType();
7033
7034 Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
7035 Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
7036
7037 checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
7038
7039 if (!LHSType->hasFloatingRepresentation() &&
7040 !(LHSType->isBlockPointerType() && IsRelational) &&
7041 !LHS.get()->getLocStart().isMacroID() &&
7042 !RHS.get()->getLocStart().isMacroID()) {
7043 // For non-floating point types, check for self-comparisons of the form
7044 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
7045 // often indicate logic errors in the program.
7046 //
7047 // NOTE: Don't warn about comparison expressions resulting from macro
7048 // expansion. Also don't warn about comparisons which are only self
7049 // comparisons within a template specialization. The warnings should catch
7050 // obvious cases in the definition of the template anyways. The idea is to
7051 // warn when the typed comparison operator will always evaluate to the same
7052 // result.
7053 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
7054 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
7055 if (DRL->getDecl() == DRR->getDecl() &&
7056 !IsWithinTemplateSpecialization(DRL->getDecl())) {
7057 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7058 << 0 // self-
7059 << (Opc == BO_EQ
7060 || Opc == BO_LE
7061 || Opc == BO_GE));
7062 } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
7063 !DRL->getDecl()->getType()->isReferenceType() &&
7064 !DRR->getDecl()->getType()->isReferenceType()) {
7065 // what is it always going to eval to?
7066 char always_evals_to;
7067 switch(Opc) {
7068 case BO_EQ: // e.g. array1 == array2
7069 always_evals_to = 0; // false
7070 break;
7071 case BO_NE: // e.g. array1 != array2
7072 always_evals_to = 1; // true
7073 break;
7074 default:
7075 // best we can say is 'a constant'
7076 always_evals_to = 2; // e.g. array1 <= array2
7077 break;
7078 }
7079 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7080 << 1 // array
7081 << always_evals_to);
7082 }
7083 }
7084 }
7085
7086 if (isa<CastExpr>(LHSStripped))
7087 LHSStripped = LHSStripped->IgnoreParenCasts();
7088 if (isa<CastExpr>(RHSStripped))
7089 RHSStripped = RHSStripped->IgnoreParenCasts();
7090
7091 // Warn about comparisons against a string constant (unless the other
7092 // operand is null), the user probably wants strcmp.
7093 Expr *literalString = 0;
7094 Expr *literalStringStripped = 0;
7095 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
7096 !RHSStripped->isNullPointerConstant(Context,
7097 Expr::NPC_ValueDependentIsNull)) {
7098 literalString = LHS.get();
7099 literalStringStripped = LHSStripped;
7100 } else if ((isa<StringLiteral>(RHSStripped) ||
7101 isa<ObjCEncodeExpr>(RHSStripped)) &&
7102 !LHSStripped->isNullPointerConstant(Context,
7103 Expr::NPC_ValueDependentIsNull)) {
7104 literalString = RHS.get();
7105 literalStringStripped = RHSStripped;
7106 }
7107
7108 if (literalString) {
7109 std::string resultComparison;
7110 switch (Opc) {
7111 case BO_LT: resultComparison = ") < 0"; break;
7112 case BO_GT: resultComparison = ") > 0"; break;
7113 case BO_LE: resultComparison = ") <= 0"; break;
7114 case BO_GE: resultComparison = ") >= 0"; break;
7115 case BO_EQ: resultComparison = ") == 0"; break;
7116 case BO_NE: resultComparison = ") != 0"; break;
7117 default: llvm_unreachable("Invalid comparison operator");
7118 }
7119
7120 DiagRuntimeBehavior(Loc, 0,
7121 PDiag(diag::warn_stringcompare)
7122 << isa<ObjCEncodeExpr>(literalStringStripped)
7123 << literalString->getSourceRange());
7124 }
7125 }
7126
7127 // C99 6.5.8p3 / C99 6.5.9p4
7128 if (LHS.get()->getType()->isArithmeticType() &&
7129 RHS.get()->getType()->isArithmeticType()) {
7130 UsualArithmeticConversions(LHS, RHS);
7131 if (LHS.isInvalid() || RHS.isInvalid())
7132 return QualType();
7133 }
7134 else {
7135 LHS = UsualUnaryConversions(LHS.take());
7136 if (LHS.isInvalid())
7137 return QualType();
7138
7139 RHS = UsualUnaryConversions(RHS.take());
7140 if (RHS.isInvalid())
7141 return QualType();
7142 }
7143
7144 LHSType = LHS.get()->getType();
7145 RHSType = RHS.get()->getType();
7146
7147 // The result of comparisons is 'bool' in C++, 'int' in C.
7148 QualType ResultTy = Context.getLogicalOperationType();
7149
7150 if (IsRelational) {
7151 if (LHSType->isRealType() && RHSType->isRealType())
7152 return ResultTy;
7153 } else {
7154 // Check for comparisons of floating point operands using != and ==.
7155 if (LHSType->hasFloatingRepresentation())
7156 CheckFloatComparison(Loc, LHS.get(), RHS.get());
7157
7158 if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7159 return ResultTy;
7160 }
7161
7162 bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7163 Expr::NPC_ValueDependentIsNull);
7164 bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7165 Expr::NPC_ValueDependentIsNull);
7166
7167 // All of the following pointer-related warnings are GCC extensions, except
7168 // when handling null pointer constants.
7169 if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7170 QualType LCanPointeeTy =
7171 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7172 QualType RCanPointeeTy =
7173 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7174
7175 if (getLangOpts().CPlusPlus) {
7176 if (LCanPointeeTy == RCanPointeeTy)
7177 return ResultTy;
7178 if (!IsRelational &&
7179 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7180 // Valid unless comparison between non-null pointer and function pointer
7181 // This is a gcc extension compatibility comparison.
7182 // In a SFINAE context, we treat this as a hard error to maintain
7183 // conformance with the C++ standard.
7184 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7185 && !LHSIsNull && !RHSIsNull) {
7186 diagnoseFunctionPointerToVoidComparison(
7187 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
7188
7189 if (isSFINAEContext())
7190 return QualType();
7191
7192 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7193 return ResultTy;
7194 }
7195 }
7196
7197 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7198 return QualType();
7199 else
7200 return ResultTy;
7201 }
7202 // C99 6.5.9p2 and C99 6.5.8p2
7203 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7204 RCanPointeeTy.getUnqualifiedType())) {
7205 // Valid unless a relational comparison of function pointers
7206 if (IsRelational && LCanPointeeTy->isFunctionType()) {
7207 Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7208 << LHSType << RHSType << LHS.get()->getSourceRange()
7209 << RHS.get()->getSourceRange();
7210 }
7211 } else if (!IsRelational &&
7212 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7213 // Valid unless comparison between non-null pointer and function pointer
7214 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7215 && !LHSIsNull && !RHSIsNull)
7216 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7217 /*isError*/false);
7218 } else {
7219 // Invalid
7220 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7221 }
7222 if (LCanPointeeTy != RCanPointeeTy) {
7223 if (LHSIsNull && !RHSIsNull)
7224 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7225 else
7226 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7227 }
7228 return ResultTy;
7229 }
7230
7231 if (getLangOpts().CPlusPlus) {
7232 // Comparison of nullptr_t with itself.
7233 if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7234 return ResultTy;
7235
7236 // Comparison of pointers with null pointer constants and equality
7237 // comparisons of member pointers to null pointer constants.
7238 if (RHSIsNull &&
7239 ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7240 (!IsRelational &&
7241 (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7242 RHS = ImpCastExprToType(RHS.take(), LHSType,
7243 LHSType->isMemberPointerType()
7244 ? CK_NullToMemberPointer
7245 : CK_NullToPointer);
7246 return ResultTy;
7247 }
7248 if (LHSIsNull &&
7249 ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7250 (!IsRelational &&
7251 (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7252 LHS = ImpCastExprToType(LHS.take(), RHSType,
7253 RHSType->isMemberPointerType()
7254 ? CK_NullToMemberPointer
7255 : CK_NullToPointer);
7256 return ResultTy;
7257 }
7258
7259 // Comparison of member pointers.
7260 if (!IsRelational &&
7261 LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7262 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7263 return QualType();
7264 else
7265 return ResultTy;
7266 }
7267
7268 // Handle scoped enumeration types specifically, since they don't promote
7269 // to integers.
7270 if (LHS.get()->getType()->isEnumeralType() &&
7271 Context.hasSameUnqualifiedType(LHS.get()->getType(),
7272 RHS.get()->getType()))
7273 return ResultTy;
7274 }
7275
7276 // Handle block pointer types.
7277 if (!IsRelational && LHSType->isBlockPointerType() &&
7278 RHSType->isBlockPointerType()) {
7279 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7280 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7281
7282 if (!LHSIsNull && !RHSIsNull &&
7283 !Context.typesAreCompatible(lpointee, rpointee)) {
7284 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7285 << LHSType << RHSType << LHS.get()->getSourceRange()
7286 << RHS.get()->getSourceRange();
7287 }
7288 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7289 return ResultTy;
7290 }
7291
7292 // Allow block pointers to be compared with null pointer constants.
7293 if (!IsRelational
7294 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7295 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7296 if (!LHSIsNull && !RHSIsNull) {
7297 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7298 ->getPointeeType()->isVoidType())
7299 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7300 ->getPointeeType()->isVoidType())))
7301 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7302 << LHSType << RHSType << LHS.get()->getSourceRange()
7303 << RHS.get()->getSourceRange();
7304 }
7305 if (LHSIsNull && !RHSIsNull)
7306 LHS = ImpCastExprToType(LHS.take(), RHSType,
7307 RHSType->isPointerType() ? CK_BitCast
7308 : CK_AnyPointerToBlockPointerCast);
7309 else
7310 RHS = ImpCastExprToType(RHS.take(), LHSType,
7311 LHSType->isPointerType() ? CK_BitCast
7312 : CK_AnyPointerToBlockPointerCast);
7313 return ResultTy;
7314 }
7315
7316 if (LHSType->isObjCObjectPointerType() ||
7317 RHSType->isObjCObjectPointerType()) {
7318 const PointerType *LPT = LHSType->getAs<PointerType>();
7319 const PointerType *RPT = RHSType->getAs<PointerType>();
7320 if (LPT || RPT) {
7321 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7322 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7323
7324 if (!LPtrToVoid && !RPtrToVoid &&
7325 !Context.typesAreCompatible(LHSType, RHSType)) {
7326 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7327 /*isError*/false);
7328 }
7329 if (LHSIsNull && !RHSIsNull)
7330 LHS = ImpCastExprToType(LHS.take(), RHSType,
7331 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7332 else
7333 RHS = ImpCastExprToType(RHS.take(), LHSType,
7334 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7335 return ResultTy;
7336 }
7337 if (LHSType->isObjCObjectPointerType() &&
7338 RHSType->isObjCObjectPointerType()) {
7339 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7340 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7341 /*isError*/false);
7342 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7343 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7344
7345 if (LHSIsNull && !RHSIsNull)
7346 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7347 else
7348 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7349 return ResultTy;
7350 }
7351 }
7352 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7353 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7354 unsigned DiagID = 0;
7355 bool isError = false;
7356 if (LangOpts.DebuggerSupport) {
7357 // Under a debugger, allow the comparison of pointers to integers,
7358 // since users tend to want to compare addresses.
7359 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
7360 (RHSIsNull && RHSType->isIntegerType())) {
7361 if (IsRelational && !getLangOpts().CPlusPlus)
7362 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7363 } else if (IsRelational && !getLangOpts().CPlusPlus)
7364 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7365 else if (getLangOpts().CPlusPlus) {
7366 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7367 isError = true;
7368 } else
7369 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7370
7371 if (DiagID) {
7372 Diag(Loc, DiagID)
7373 << LHSType << RHSType << LHS.get()->getSourceRange()
7374 << RHS.get()->getSourceRange();
7375 if (isError)
7376 return QualType();
7377 }
7378
7379 if (LHSType->isIntegerType())
7380 LHS = ImpCastExprToType(LHS.take(), RHSType,
7381 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7382 else
7383 RHS = ImpCastExprToType(RHS.take(), LHSType,
7384 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7385 return ResultTy;
7386 }
7387
7388 // Handle block pointers.
7389 if (!IsRelational && RHSIsNull
7390 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
7391 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
7392 return ResultTy;
7393 }
7394 if (!IsRelational && LHSIsNull
7395 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
7396 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
7397 return ResultTy;
7398 }
7399
7400 return InvalidOperands(Loc, LHS, RHS);
7401 }
7402
7403
7404 // Return a signed type that is of identical size and number of elements.
7405 // For floating point vectors, return an integer type of identical size
7406 // and number of elements.
GetSignedVectorType(QualType V)7407 QualType Sema::GetSignedVectorType(QualType V) {
7408 const VectorType *VTy = V->getAs<VectorType>();
7409 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7410 if (TypeSize == Context.getTypeSize(Context.CharTy))
7411 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
7412 else if (TypeSize == Context.getTypeSize(Context.ShortTy))
7413 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
7414 else if (TypeSize == Context.getTypeSize(Context.IntTy))
7415 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7416 else if (TypeSize == Context.getTypeSize(Context.LongTy))
7417 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7418 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7419 "Unhandled vector element size in vector compare");
7420 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7421 }
7422
7423 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
7424 /// operates on extended vector types. Instead of producing an IntTy result,
7425 /// like a scalar comparison, a vector comparison produces a vector of integer
7426 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsRelational)7427 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
7428 SourceLocation Loc,
7429 bool IsRelational) {
7430 // Check to make sure we're operating on vectors of the same type and width,
7431 // Allowing one side to be a scalar of element type.
7432 QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
7433 if (vType.isNull())
7434 return vType;
7435
7436 QualType LHSType = LHS.get()->getType();
7437
7438 // If AltiVec, the comparison results in a numeric type, i.e.
7439 // bool for C++, int for C
7440 if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7441 return Context.getLogicalOperationType();
7442
7443 // For non-floating point types, check for self-comparisons of the form
7444 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
7445 // often indicate logic errors in the program.
7446 if (!LHSType->hasFloatingRepresentation()) {
7447 if (DeclRefExpr* DRL
7448 = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7449 if (DeclRefExpr* DRR
7450 = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7451 if (DRL->getDecl() == DRR->getDecl())
7452 DiagRuntimeBehavior(Loc, 0,
7453 PDiag(diag::warn_comparison_always)
7454 << 0 // self-
7455 << 2 // "a constant"
7456 );
7457 }
7458
7459 // Check for comparisons of floating point operands using != and ==.
7460 if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7461 assert (RHS.get()->getType()->hasFloatingRepresentation());
7462 CheckFloatComparison(Loc, LHS.get(), RHS.get());
7463 }
7464
7465 // Return a signed type for the vector.
7466 return GetSignedVectorType(LHSType);
7467 }
7468
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7469 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7470 SourceLocation Loc) {
7471 // Ensure that either both operands are of the same vector type, or
7472 // one operand is of a vector type and the other is of its element type.
7473 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7474 if (vType.isNull())
7475 return InvalidOperands(Loc, LHS, RHS);
7476 if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
7477 vType->hasFloatingRepresentation())
7478 return InvalidOperands(Loc, LHS, RHS);
7479
7480 return GetSignedVectorType(LHS.get()->getType());
7481 }
7482
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)7483 inline QualType Sema::CheckBitwiseOperands(
7484 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7485 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7486
7487 if (LHS.get()->getType()->isVectorType() ||
7488 RHS.get()->getType()->isVectorType()) {
7489 if (LHS.get()->getType()->hasIntegerRepresentation() &&
7490 RHS.get()->getType()->hasIntegerRepresentation())
7491 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7492
7493 return InvalidOperands(Loc, LHS, RHS);
7494 }
7495
7496 ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7497 QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7498 IsCompAssign);
7499 if (LHSResult.isInvalid() || RHSResult.isInvalid())
7500 return QualType();
7501 LHS = LHSResult.take();
7502 RHS = RHSResult.take();
7503
7504 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
7505 return compType;
7506 return InvalidOperands(Loc, LHS, RHS);
7507 }
7508
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc)7509 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7510 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7511
7512 // Check vector operands differently.
7513 if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7514 return CheckVectorLogicalOperands(LHS, RHS, Loc);
7515
7516 // Diagnose cases where the user write a logical and/or but probably meant a
7517 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
7518 // is a constant.
7519 if (LHS.get()->getType()->isIntegerType() &&
7520 !LHS.get()->getType()->isBooleanType() &&
7521 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7522 // Don't warn in macros or template instantiations.
7523 !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7524 // If the RHS can be constant folded, and if it constant folds to something
7525 // that isn't 0 or 1 (which indicate a potential logical operation that
7526 // happened to fold to true/false) then warn.
7527 // Parens on the RHS are ignored.
7528 llvm::APSInt Result;
7529 if (RHS.get()->EvaluateAsInt(Result, Context))
7530 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7531 (Result != 0 && Result != 1)) {
7532 Diag(Loc, diag::warn_logical_instead_of_bitwise)
7533 << RHS.get()->getSourceRange()
7534 << (Opc == BO_LAnd ? "&&" : "||");
7535 // Suggest replacing the logical operator with the bitwise version
7536 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7537 << (Opc == BO_LAnd ? "&" : "|")
7538 << FixItHint::CreateReplacement(SourceRange(
7539 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7540 getLangOpts())),
7541 Opc == BO_LAnd ? "&" : "|");
7542 if (Opc == BO_LAnd)
7543 // Suggest replacing "Foo() && kNonZero" with "Foo()"
7544 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7545 << FixItHint::CreateRemoval(
7546 SourceRange(
7547 Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7548 0, getSourceManager(),
7549 getLangOpts()),
7550 RHS.get()->getLocEnd()));
7551 }
7552 }
7553
7554 if (!Context.getLangOpts().CPlusPlus) {
7555 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
7556 // not operate on the built-in scalar and vector float types.
7557 if (Context.getLangOpts().OpenCL &&
7558 Context.getLangOpts().OpenCLVersion < 120) {
7559 if (LHS.get()->getType()->isFloatingType() ||
7560 RHS.get()->getType()->isFloatingType())
7561 return InvalidOperands(Loc, LHS, RHS);
7562 }
7563
7564 LHS = UsualUnaryConversions(LHS.take());
7565 if (LHS.isInvalid())
7566 return QualType();
7567
7568 RHS = UsualUnaryConversions(RHS.take());
7569 if (RHS.isInvalid())
7570 return QualType();
7571
7572 if (!LHS.get()->getType()->isScalarType() ||
7573 !RHS.get()->getType()->isScalarType())
7574 return InvalidOperands(Loc, LHS, RHS);
7575
7576 return Context.IntTy;
7577 }
7578
7579 // The following is safe because we only use this method for
7580 // non-overloadable operands.
7581
7582 // C++ [expr.log.and]p1
7583 // C++ [expr.log.or]p1
7584 // The operands are both contextually converted to type bool.
7585 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7586 if (LHSRes.isInvalid())
7587 return InvalidOperands(Loc, LHS, RHS);
7588 LHS = LHSRes;
7589
7590 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7591 if (RHSRes.isInvalid())
7592 return InvalidOperands(Loc, LHS, RHS);
7593 RHS = RHSRes;
7594
7595 // C++ [expr.log.and]p2
7596 // C++ [expr.log.or]p2
7597 // The result is a bool.
7598 return Context.BoolTy;
7599 }
7600
7601 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7602 /// is a read-only property; return true if so. A readonly property expression
7603 /// depends on various declarations and thus must be treated specially.
7604 ///
IsReadonlyProperty(Expr * E,Sema & S)7605 static bool IsReadonlyProperty(Expr *E, Sema &S) {
7606 const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7607 if (!PropExpr) return false;
7608 if (PropExpr->isImplicitProperty()) return false;
7609
7610 ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7611 QualType BaseType = PropExpr->isSuperReceiver() ?
7612 PropExpr->getSuperReceiverType() :
7613 PropExpr->getBase()->getType();
7614
7615 if (const ObjCObjectPointerType *OPT =
7616 BaseType->getAsObjCInterfacePointerType())
7617 if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7618 if (S.isPropertyReadonly(PDecl, IFace))
7619 return true;
7620 return false;
7621 }
7622
IsReadonlyMessage(Expr * E,Sema & S)7623 static bool IsReadonlyMessage(Expr *E, Sema &S) {
7624 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7625 if (!ME) return false;
7626 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7627 ObjCMessageExpr *Base =
7628 dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7629 if (!Base) return false;
7630 return Base->getMethodDecl() != 0;
7631 }
7632
7633 /// Is the given expression (which must be 'const') a reference to a
7634 /// variable which was originally non-const, but which has become
7635 /// 'const' due to being captured within a block?
7636 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)7637 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7638 assert(E->isLValue() && E->getType().isConstQualified());
7639 E = E->IgnoreParens();
7640
7641 // Must be a reference to a declaration from an enclosing scope.
7642 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7643 if (!DRE) return NCCK_None;
7644 if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7645
7646 // The declaration must be a variable which is not declared 'const'.
7647 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7648 if (!var) return NCCK_None;
7649 if (var->getType().isConstQualified()) return NCCK_None;
7650 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7651
7652 // Decide whether the first capture was for a block or a lambda.
7653 DeclContext *DC = S.CurContext;
7654 while (DC->getParent() != var->getDeclContext())
7655 DC = DC->getParent();
7656 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7657 }
7658
7659 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
7660 /// emit an error and return true. If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)7661 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7662 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7663 SourceLocation OrigLoc = Loc;
7664 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7665 &Loc);
7666 if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7667 IsLV = Expr::MLV_ReadonlyProperty;
7668 else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7669 IsLV = Expr::MLV_InvalidMessageExpression;
7670 if (IsLV == Expr::MLV_Valid)
7671 return false;
7672
7673 unsigned Diag = 0;
7674 bool NeedType = false;
7675 switch (IsLV) { // C99 6.5.16p2
7676 case Expr::MLV_ConstQualified:
7677 Diag = diag::err_typecheck_assign_const;
7678
7679 // Use a specialized diagnostic when we're assigning to an object
7680 // from an enclosing function or block.
7681 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7682 if (NCCK == NCCK_Block)
7683 Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7684 else
7685 Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7686 break;
7687 }
7688
7689 // In ARC, use some specialized diagnostics for occasions where we
7690 // infer 'const'. These are always pseudo-strong variables.
7691 if (S.getLangOpts().ObjCAutoRefCount) {
7692 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7693 if (declRef && isa<VarDecl>(declRef->getDecl())) {
7694 VarDecl *var = cast<VarDecl>(declRef->getDecl());
7695
7696 // Use the normal diagnostic if it's pseudo-__strong but the
7697 // user actually wrote 'const'.
7698 if (var->isARCPseudoStrong() &&
7699 (!var->getTypeSourceInfo() ||
7700 !var->getTypeSourceInfo()->getType().isConstQualified())) {
7701 // There are two pseudo-strong cases:
7702 // - self
7703 ObjCMethodDecl *method = S.getCurMethodDecl();
7704 if (method && var == method->getSelfDecl())
7705 Diag = method->isClassMethod()
7706 ? diag::err_typecheck_arc_assign_self_class_method
7707 : diag::err_typecheck_arc_assign_self;
7708
7709 // - fast enumeration variables
7710 else
7711 Diag = diag::err_typecheck_arr_assign_enumeration;
7712
7713 SourceRange Assign;
7714 if (Loc != OrigLoc)
7715 Assign = SourceRange(OrigLoc, OrigLoc);
7716 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7717 // We need to preserve the AST regardless, so migration tool
7718 // can do its job.
7719 return false;
7720 }
7721 }
7722 }
7723
7724 break;
7725 case Expr::MLV_ArrayType:
7726 case Expr::MLV_ArrayTemporary:
7727 Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7728 NeedType = true;
7729 break;
7730 case Expr::MLV_NotObjectType:
7731 Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7732 NeedType = true;
7733 break;
7734 case Expr::MLV_LValueCast:
7735 Diag = diag::err_typecheck_lvalue_casts_not_supported;
7736 break;
7737 case Expr::MLV_Valid:
7738 llvm_unreachable("did not take early return for MLV_Valid");
7739 case Expr::MLV_InvalidExpression:
7740 case Expr::MLV_MemberFunction:
7741 case Expr::MLV_ClassTemporary:
7742 Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7743 break;
7744 case Expr::MLV_IncompleteType:
7745 case Expr::MLV_IncompleteVoidType:
7746 return S.RequireCompleteType(Loc, E->getType(),
7747 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
7748 case Expr::MLV_DuplicateVectorComponents:
7749 Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7750 break;
7751 case Expr::MLV_ReadonlyProperty:
7752 case Expr::MLV_NoSetterProperty:
7753 llvm_unreachable("readonly properties should be processed differently");
7754 case Expr::MLV_InvalidMessageExpression:
7755 Diag = diag::error_readonly_message_assignment;
7756 break;
7757 case Expr::MLV_SubObjCPropertySetting:
7758 Diag = diag::error_no_subobject_property_setting;
7759 break;
7760 }
7761
7762 SourceRange Assign;
7763 if (Loc != OrigLoc)
7764 Assign = SourceRange(OrigLoc, OrigLoc);
7765 if (NeedType)
7766 S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7767 else
7768 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7769 return true;
7770 }
7771
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)7772 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
7773 SourceLocation Loc,
7774 Sema &Sema) {
7775 // C / C++ fields
7776 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
7777 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
7778 if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
7779 if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
7780 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
7781 }
7782
7783 // Objective-C instance variables
7784 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
7785 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
7786 if (OL && OR && OL->getDecl() == OR->getDecl()) {
7787 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
7788 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
7789 if (RL && RR && RL->getDecl() == RR->getDecl())
7790 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
7791 }
7792 }
7793
7794 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)7795 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7796 SourceLocation Loc,
7797 QualType CompoundType) {
7798 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7799
7800 // Verify that LHS is a modifiable lvalue, and emit error if not.
7801 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7802 return QualType();
7803
7804 QualType LHSType = LHSExpr->getType();
7805 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7806 CompoundType;
7807 AssignConvertType ConvTy;
7808 if (CompoundType.isNull()) {
7809 Expr *RHSCheck = RHS.get();
7810
7811 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
7812
7813 QualType LHSTy(LHSType);
7814 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7815 if (RHS.isInvalid())
7816 return QualType();
7817 // Special case of NSObject attributes on c-style pointer types.
7818 if (ConvTy == IncompatiblePointer &&
7819 ((Context.isObjCNSObjectType(LHSType) &&
7820 RHSType->isObjCObjectPointerType()) ||
7821 (Context.isObjCNSObjectType(RHSType) &&
7822 LHSType->isObjCObjectPointerType())))
7823 ConvTy = Compatible;
7824
7825 if (ConvTy == Compatible &&
7826 LHSType->isObjCObjectType())
7827 Diag(Loc, diag::err_objc_object_assignment)
7828 << LHSType;
7829
7830 // If the RHS is a unary plus or minus, check to see if they = and + are
7831 // right next to each other. If so, the user may have typo'd "x =+ 4"
7832 // instead of "x += 4".
7833 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7834 RHSCheck = ICE->getSubExpr();
7835 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7836 if ((UO->getOpcode() == UO_Plus ||
7837 UO->getOpcode() == UO_Minus) &&
7838 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7839 // Only if the two operators are exactly adjacent.
7840 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7841 // And there is a space or other character before the subexpr of the
7842 // unary +/-. We don't want to warn on "x=-1".
7843 Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7844 UO->getSubExpr()->getLocStart().isFileID()) {
7845 Diag(Loc, diag::warn_not_compound_assign)
7846 << (UO->getOpcode() == UO_Plus ? "+" : "-")
7847 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7848 }
7849 }
7850
7851 if (ConvTy == Compatible) {
7852 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
7853 // Warn about retain cycles where a block captures the LHS, but
7854 // not if the LHS is a simple variable into which the block is
7855 // being stored...unless that variable can be captured by reference!
7856 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
7857 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
7858 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
7859 checkRetainCycles(LHSExpr, RHS.get());
7860
7861 // It is safe to assign a weak reference into a strong variable.
7862 // Although this code can still have problems:
7863 // id x = self.weakProp;
7864 // id y = self.weakProp;
7865 // we do not warn to warn spuriously when 'x' and 'y' are on separate
7866 // paths through the function. This should be revisited if
7867 // -Wrepeated-use-of-weak is made flow-sensitive.
7868 DiagnosticsEngine::Level Level =
7869 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7870 RHS.get()->getLocStart());
7871 if (Level != DiagnosticsEngine::Ignored)
7872 getCurFunction()->markSafeWeakUse(RHS.get());
7873
7874 } else if (getLangOpts().ObjCAutoRefCount) {
7875 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7876 }
7877 }
7878 } else {
7879 // Compound assignment "x += y"
7880 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7881 }
7882
7883 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7884 RHS.get(), AA_Assigning))
7885 return QualType();
7886
7887 CheckForNullPointerDereference(*this, LHSExpr);
7888
7889 // C99 6.5.16p3: The type of an assignment expression is the type of the
7890 // left operand unless the left operand has qualified type, in which case
7891 // it is the unqualified version of the type of the left operand.
7892 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7893 // is converted to the type of the assignment expression (above).
7894 // C++ 5.17p1: the type of the assignment expression is that of its left
7895 // operand.
7896 return (getLangOpts().CPlusPlus
7897 ? LHSType : LHSType.getUnqualifiedType());
7898 }
7899
7900 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7901 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7902 SourceLocation Loc) {
7903 LHS = S.CheckPlaceholderExpr(LHS.take());
7904 RHS = S.CheckPlaceholderExpr(RHS.take());
7905 if (LHS.isInvalid() || RHS.isInvalid())
7906 return QualType();
7907
7908 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7909 // operands, but not unary promotions.
7910 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7911
7912 // So we treat the LHS as a ignored value, and in C++ we allow the
7913 // containing site to determine what should be done with the RHS.
7914 LHS = S.IgnoredValueConversions(LHS.take());
7915 if (LHS.isInvalid())
7916 return QualType();
7917
7918 S.DiagnoseUnusedExprResult(LHS.get());
7919
7920 if (!S.getLangOpts().CPlusPlus) {
7921 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7922 if (RHS.isInvalid())
7923 return QualType();
7924 if (!RHS.get()->getType()->isVoidType())
7925 S.RequireCompleteType(Loc, RHS.get()->getType(),
7926 diag::err_incomplete_type);
7927 }
7928
7929 return RHS.get()->getType();
7930 }
7931
7932 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7933 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)7934 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7935 ExprValueKind &VK,
7936 SourceLocation OpLoc,
7937 bool IsInc, bool IsPrefix) {
7938 if (Op->isTypeDependent())
7939 return S.Context.DependentTy;
7940
7941 QualType ResType = Op->getType();
7942 // Atomic types can be used for increment / decrement where the non-atomic
7943 // versions can, so ignore the _Atomic() specifier for the purpose of
7944 // checking.
7945 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7946 ResType = ResAtomicType->getValueType();
7947
7948 assert(!ResType.isNull() && "no type for increment/decrement expression");
7949
7950 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7951 // Decrement of bool is not allowed.
7952 if (!IsInc) {
7953 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7954 return QualType();
7955 }
7956 // Increment of bool sets it to true, but is deprecated.
7957 S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7958 } else if (ResType->isRealType()) {
7959 // OK!
7960 } else if (ResType->isPointerType()) {
7961 // C99 6.5.2.4p2, 6.5.6p2
7962 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7963 return QualType();
7964 } else if (ResType->isObjCObjectPointerType()) {
7965 // On modern runtimes, ObjC pointer arithmetic is forbidden.
7966 // Otherwise, we just need a complete type.
7967 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
7968 checkArithmeticOnObjCPointer(S, OpLoc, Op))
7969 return QualType();
7970 } else if (ResType->isAnyComplexType()) {
7971 // C99 does not support ++/-- on complex types, we allow as an extension.
7972 S.Diag(OpLoc, diag::ext_integer_increment_complex)
7973 << ResType << Op->getSourceRange();
7974 } else if (ResType->isPlaceholderType()) {
7975 ExprResult PR = S.CheckPlaceholderExpr(Op);
7976 if (PR.isInvalid()) return QualType();
7977 return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7978 IsInc, IsPrefix);
7979 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7980 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7981 } else {
7982 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7983 << ResType << int(IsInc) << Op->getSourceRange();
7984 return QualType();
7985 }
7986 // At this point, we know we have a real, complex or pointer type.
7987 // Now make sure the operand is a modifiable lvalue.
7988 if (CheckForModifiableLvalue(Op, OpLoc, S))
7989 return QualType();
7990 // In C++, a prefix increment is the same type as the operand. Otherwise
7991 // (in C or with postfix), the increment is the unqualified type of the
7992 // operand.
7993 if (IsPrefix && S.getLangOpts().CPlusPlus) {
7994 VK = VK_LValue;
7995 return ResType;
7996 } else {
7997 VK = VK_RValue;
7998 return ResType.getUnqualifiedType();
7999 }
8000 }
8001
8002
8003 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
8004 /// This routine allows us to typecheck complex/recursive expressions
8005 /// where the declaration is needed for type checking. We only need to
8006 /// handle cases when the expression references a function designator
8007 /// or is an lvalue. Here are some examples:
8008 /// - &(x) => x
8009 /// - &*****f => f for f a function designator.
8010 /// - &s.xx => s
8011 /// - &s.zz[1].yy -> s, if zz is an array
8012 /// - *(x + 1) -> x, if x is an array
8013 /// - &"123"[2] -> 0
8014 /// - & __real__ x -> x
getPrimaryDecl(Expr * E)8015 static ValueDecl *getPrimaryDecl(Expr *E) {
8016 switch (E->getStmtClass()) {
8017 case Stmt::DeclRefExprClass:
8018 return cast<DeclRefExpr>(E)->getDecl();
8019 case Stmt::MemberExprClass:
8020 // If this is an arrow operator, the address is an offset from
8021 // the base's value, so the object the base refers to is
8022 // irrelevant.
8023 if (cast<MemberExpr>(E)->isArrow())
8024 return 0;
8025 // Otherwise, the expression refers to a part of the base
8026 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
8027 case Stmt::ArraySubscriptExprClass: {
8028 // FIXME: This code shouldn't be necessary! We should catch the implicit
8029 // promotion of register arrays earlier.
8030 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
8031 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
8032 if (ICE->getSubExpr()->getType()->isArrayType())
8033 return getPrimaryDecl(ICE->getSubExpr());
8034 }
8035 return 0;
8036 }
8037 case Stmt::UnaryOperatorClass: {
8038 UnaryOperator *UO = cast<UnaryOperator>(E);
8039
8040 switch(UO->getOpcode()) {
8041 case UO_Real:
8042 case UO_Imag:
8043 case UO_Extension:
8044 return getPrimaryDecl(UO->getSubExpr());
8045 default:
8046 return 0;
8047 }
8048 }
8049 case Stmt::ParenExprClass:
8050 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
8051 case Stmt::ImplicitCastExprClass:
8052 // If the result of an implicit cast is an l-value, we care about
8053 // the sub-expression; otherwise, the result here doesn't matter.
8054 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
8055 default:
8056 return 0;
8057 }
8058 }
8059
8060 namespace {
8061 enum {
8062 AO_Bit_Field = 0,
8063 AO_Vector_Element = 1,
8064 AO_Property_Expansion = 2,
8065 AO_Register_Variable = 3,
8066 AO_No_Error = 4
8067 };
8068 }
8069 /// \brief Diagnose invalid operand for address of operations.
8070 ///
8071 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)8072 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
8073 Expr *E, unsigned Type) {
8074 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
8075 }
8076
8077 /// CheckAddressOfOperand - The operand of & must be either a function
8078 /// designator or an lvalue designating an object. If it is an lvalue, the
8079 /// object cannot be declared with storage class register or be a bit field.
8080 /// Note: The usual conversions are *not* applied to the operand of the &
8081 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
8082 /// In C++, the operand might be an overloaded function name, in which case
8083 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(Sema & S,ExprResult & OrigOp,SourceLocation OpLoc)8084 static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
8085 SourceLocation OpLoc) {
8086 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
8087 if (PTy->getKind() == BuiltinType::Overload) {
8088 if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
8089 assert(cast<UnaryOperator>(OrigOp.get()->IgnoreParens())->getOpcode()
8090 == UO_AddrOf);
8091 S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
8092 << OrigOp.get()->getSourceRange();
8093 return QualType();
8094 }
8095
8096 return S.Context.OverloadTy;
8097 }
8098
8099 if (PTy->getKind() == BuiltinType::UnknownAny)
8100 return S.Context.UnknownAnyTy;
8101
8102 if (PTy->getKind() == BuiltinType::BoundMember) {
8103 S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8104 << OrigOp.get()->getSourceRange();
8105 return QualType();
8106 }
8107
8108 OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
8109 if (OrigOp.isInvalid()) return QualType();
8110 }
8111
8112 if (OrigOp.get()->isTypeDependent())
8113 return S.Context.DependentTy;
8114
8115 assert(!OrigOp.get()->getType()->isPlaceholderType());
8116
8117 // Make sure to ignore parentheses in subsequent checks
8118 Expr *op = OrigOp.get()->IgnoreParens();
8119
8120 if (S.getLangOpts().C99) {
8121 // Implement C99-only parts of addressof rules.
8122 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
8123 if (uOp->getOpcode() == UO_Deref)
8124 // Per C99 6.5.3.2, the address of a deref always returns a valid result
8125 // (assuming the deref expression is valid).
8126 return uOp->getSubExpr()->getType();
8127 }
8128 // Technically, there should be a check for array subscript
8129 // expressions here, but the result of one is always an lvalue anyway.
8130 }
8131 ValueDecl *dcl = getPrimaryDecl(op);
8132 Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
8133 unsigned AddressOfError = AO_No_Error;
8134
8135 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
8136 bool sfinae = (bool)S.isSFINAEContext();
8137 S.Diag(OpLoc, S.isSFINAEContext() ? diag::err_typecheck_addrof_temporary
8138 : diag::ext_typecheck_addrof_temporary)
8139 << op->getType() << op->getSourceRange();
8140 if (sfinae)
8141 return QualType();
8142 } else if (isa<ObjCSelectorExpr>(op)) {
8143 return S.Context.getPointerType(op->getType());
8144 } else if (lval == Expr::LV_MemberFunction) {
8145 // If it's an instance method, make a member pointer.
8146 // The expression must have exactly the form &A::foo.
8147
8148 // If the underlying expression isn't a decl ref, give up.
8149 if (!isa<DeclRefExpr>(op)) {
8150 S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8151 << OrigOp.get()->getSourceRange();
8152 return QualType();
8153 }
8154 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
8155 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
8156
8157 // The id-expression was parenthesized.
8158 if (OrigOp.get() != DRE) {
8159 S.Diag(OpLoc, diag::err_parens_pointer_member_function)
8160 << OrigOp.get()->getSourceRange();
8161
8162 // The method was named without a qualifier.
8163 } else if (!DRE->getQualifier()) {
8164 if (MD->getParent()->getName().empty())
8165 S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8166 << op->getSourceRange();
8167 else {
8168 SmallString<32> Str;
8169 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
8170 S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8171 << op->getSourceRange()
8172 << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
8173 }
8174 }
8175
8176 return S.Context.getMemberPointerType(op->getType(),
8177 S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
8178 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
8179 // C99 6.5.3.2p1
8180 // The operand must be either an l-value or a function designator
8181 if (!op->getType()->isFunctionType()) {
8182 // Use a special diagnostic for loads from property references.
8183 if (isa<PseudoObjectExpr>(op)) {
8184 AddressOfError = AO_Property_Expansion;
8185 } else {
8186 S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8187 << op->getType() << op->getSourceRange();
8188 return QualType();
8189 }
8190 }
8191 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8192 // The operand cannot be a bit-field
8193 AddressOfError = AO_Bit_Field;
8194 } else if (op->getObjectKind() == OK_VectorComponent) {
8195 // The operand cannot be an element of a vector
8196 AddressOfError = AO_Vector_Element;
8197 } else if (dcl) { // C99 6.5.3.2p1
8198 // We have an lvalue with a decl. Make sure the decl is not declared
8199 // with the register storage-class specifier.
8200 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8201 // in C++ it is not error to take address of a register
8202 // variable (c++03 7.1.1P3)
8203 if (vd->getStorageClass() == SC_Register &&
8204 !S.getLangOpts().CPlusPlus) {
8205 AddressOfError = AO_Register_Variable;
8206 }
8207 } else if (isa<FunctionTemplateDecl>(dcl)) {
8208 return S.Context.OverloadTy;
8209 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8210 // Okay: we can take the address of a field.
8211 // Could be a pointer to member, though, if there is an explicit
8212 // scope qualifier for the class.
8213 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8214 DeclContext *Ctx = dcl->getDeclContext();
8215 if (Ctx && Ctx->isRecord()) {
8216 if (dcl->getType()->isReferenceType()) {
8217 S.Diag(OpLoc,
8218 diag::err_cannot_form_pointer_to_member_of_reference_type)
8219 << dcl->getDeclName() << dcl->getType();
8220 return QualType();
8221 }
8222
8223 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8224 Ctx = Ctx->getParent();
8225 return S.Context.getMemberPointerType(op->getType(),
8226 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8227 }
8228 }
8229 } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8230 llvm_unreachable("Unknown/unexpected decl type");
8231 }
8232
8233 if (AddressOfError != AO_No_Error) {
8234 diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
8235 return QualType();
8236 }
8237
8238 if (lval == Expr::LV_IncompleteVoidType) {
8239 // Taking the address of a void variable is technically illegal, but we
8240 // allow it in cases which are otherwise valid.
8241 // Example: "extern void x; void* y = &x;".
8242 S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8243 }
8244
8245 // If the operand has type "type", the result has type "pointer to type".
8246 if (op->getType()->isObjCObjectType())
8247 return S.Context.getObjCObjectPointerType(op->getType());
8248 return S.Context.getPointerType(op->getType());
8249 }
8250
8251 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)8252 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8253 SourceLocation OpLoc) {
8254 if (Op->isTypeDependent())
8255 return S.Context.DependentTy;
8256
8257 ExprResult ConvResult = S.UsualUnaryConversions(Op);
8258 if (ConvResult.isInvalid())
8259 return QualType();
8260 Op = ConvResult.take();
8261 QualType OpTy = Op->getType();
8262 QualType Result;
8263
8264 if (isa<CXXReinterpretCastExpr>(Op)) {
8265 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8266 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8267 Op->getSourceRange());
8268 }
8269
8270 // Note that per both C89 and C99, indirection is always legal, even if OpTy
8271 // is an incomplete type or void. It would be possible to warn about
8272 // dereferencing a void pointer, but it's completely well-defined, and such a
8273 // warning is unlikely to catch any mistakes.
8274 if (const PointerType *PT = OpTy->getAs<PointerType>())
8275 Result = PT->getPointeeType();
8276 else if (const ObjCObjectPointerType *OPT =
8277 OpTy->getAs<ObjCObjectPointerType>())
8278 Result = OPT->getPointeeType();
8279 else {
8280 ExprResult PR = S.CheckPlaceholderExpr(Op);
8281 if (PR.isInvalid()) return QualType();
8282 if (PR.take() != Op)
8283 return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8284 }
8285
8286 if (Result.isNull()) {
8287 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8288 << OpTy << Op->getSourceRange();
8289 return QualType();
8290 }
8291
8292 // Dereferences are usually l-values...
8293 VK = VK_LValue;
8294
8295 // ...except that certain expressions are never l-values in C.
8296 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8297 VK = VK_RValue;
8298
8299 return Result;
8300 }
8301
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)8302 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8303 tok::TokenKind Kind) {
8304 BinaryOperatorKind Opc;
8305 switch (Kind) {
8306 default: llvm_unreachable("Unknown binop!");
8307 case tok::periodstar: Opc = BO_PtrMemD; break;
8308 case tok::arrowstar: Opc = BO_PtrMemI; break;
8309 case tok::star: Opc = BO_Mul; break;
8310 case tok::slash: Opc = BO_Div; break;
8311 case tok::percent: Opc = BO_Rem; break;
8312 case tok::plus: Opc = BO_Add; break;
8313 case tok::minus: Opc = BO_Sub; break;
8314 case tok::lessless: Opc = BO_Shl; break;
8315 case tok::greatergreater: Opc = BO_Shr; break;
8316 case tok::lessequal: Opc = BO_LE; break;
8317 case tok::less: Opc = BO_LT; break;
8318 case tok::greaterequal: Opc = BO_GE; break;
8319 case tok::greater: Opc = BO_GT; break;
8320 case tok::exclaimequal: Opc = BO_NE; break;
8321 case tok::equalequal: Opc = BO_EQ; break;
8322 case tok::amp: Opc = BO_And; break;
8323 case tok::caret: Opc = BO_Xor; break;
8324 case tok::pipe: Opc = BO_Or; break;
8325 case tok::ampamp: Opc = BO_LAnd; break;
8326 case tok::pipepipe: Opc = BO_LOr; break;
8327 case tok::equal: Opc = BO_Assign; break;
8328 case tok::starequal: Opc = BO_MulAssign; break;
8329 case tok::slashequal: Opc = BO_DivAssign; break;
8330 case tok::percentequal: Opc = BO_RemAssign; break;
8331 case tok::plusequal: Opc = BO_AddAssign; break;
8332 case tok::minusequal: Opc = BO_SubAssign; break;
8333 case tok::lesslessequal: Opc = BO_ShlAssign; break;
8334 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
8335 case tok::ampequal: Opc = BO_AndAssign; break;
8336 case tok::caretequal: Opc = BO_XorAssign; break;
8337 case tok::pipeequal: Opc = BO_OrAssign; break;
8338 case tok::comma: Opc = BO_Comma; break;
8339 }
8340 return Opc;
8341 }
8342
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)8343 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8344 tok::TokenKind Kind) {
8345 UnaryOperatorKind Opc;
8346 switch (Kind) {
8347 default: llvm_unreachable("Unknown unary op!");
8348 case tok::plusplus: Opc = UO_PreInc; break;
8349 case tok::minusminus: Opc = UO_PreDec; break;
8350 case tok::amp: Opc = UO_AddrOf; break;
8351 case tok::star: Opc = UO_Deref; break;
8352 case tok::plus: Opc = UO_Plus; break;
8353 case tok::minus: Opc = UO_Minus; break;
8354 case tok::tilde: Opc = UO_Not; break;
8355 case tok::exclaim: Opc = UO_LNot; break;
8356 case tok::kw___real: Opc = UO_Real; break;
8357 case tok::kw___imag: Opc = UO_Imag; break;
8358 case tok::kw___extension__: Opc = UO_Extension; break;
8359 }
8360 return Opc;
8361 }
8362
8363 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8364 /// This warning is only emitted for builtin assignment operations. It is also
8365 /// suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc)8366 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8367 SourceLocation OpLoc) {
8368 if (!S.ActiveTemplateInstantiations.empty())
8369 return;
8370 if (OpLoc.isInvalid() || OpLoc.isMacroID())
8371 return;
8372 LHSExpr = LHSExpr->IgnoreParenImpCasts();
8373 RHSExpr = RHSExpr->IgnoreParenImpCasts();
8374 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8375 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8376 if (!LHSDeclRef || !RHSDeclRef ||
8377 LHSDeclRef->getLocation().isMacroID() ||
8378 RHSDeclRef->getLocation().isMacroID())
8379 return;
8380 const ValueDecl *LHSDecl =
8381 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8382 const ValueDecl *RHSDecl =
8383 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8384 if (LHSDecl != RHSDecl)
8385 return;
8386 if (LHSDecl->getType().isVolatileQualified())
8387 return;
8388 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
8389 if (RefTy->getPointeeType().isVolatileQualified())
8390 return;
8391
8392 S.Diag(OpLoc, diag::warn_self_assignment)
8393 << LHSDeclRef->getType()
8394 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8395 }
8396
8397 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
8398 /// operator @p Opc at location @c TokLoc. This routine only supports
8399 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8400 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8401 BinaryOperatorKind Opc,
8402 Expr *LHSExpr, Expr *RHSExpr) {
8403 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
8404 // The syntax only allows initializer lists on the RHS of assignment,
8405 // so we don't need to worry about accepting invalid code for
8406 // non-assignment operators.
8407 // C++11 5.17p9:
8408 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
8409 // of x = {} is x = T().
8410 InitializationKind Kind =
8411 InitializationKind::CreateDirectList(RHSExpr->getLocStart());
8412 InitializedEntity Entity =
8413 InitializedEntity::InitializeTemporary(LHSExpr->getType());
8414 InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
8415 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
8416 if (Init.isInvalid())
8417 return Init;
8418 RHSExpr = Init.take();
8419 }
8420
8421 ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
8422 QualType ResultTy; // Result type of the binary operator.
8423 // The following two variables are used for compound assignment operators
8424 QualType CompLHSTy; // Type of LHS after promotions for computation
8425 QualType CompResultTy; // Type of computation result
8426 ExprValueKind VK = VK_RValue;
8427 ExprObjectKind OK = OK_Ordinary;
8428
8429 switch (Opc) {
8430 case BO_Assign:
8431 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
8432 if (getLangOpts().CPlusPlus &&
8433 LHS.get()->getObjectKind() != OK_ObjCProperty) {
8434 VK = LHS.get()->getValueKind();
8435 OK = LHS.get()->getObjectKind();
8436 }
8437 if (!ResultTy.isNull())
8438 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
8439 break;
8440 case BO_PtrMemD:
8441 case BO_PtrMemI:
8442 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
8443 Opc == BO_PtrMemI);
8444 break;
8445 case BO_Mul:
8446 case BO_Div:
8447 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
8448 Opc == BO_Div);
8449 break;
8450 case BO_Rem:
8451 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
8452 break;
8453 case BO_Add:
8454 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
8455 break;
8456 case BO_Sub:
8457 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
8458 break;
8459 case BO_Shl:
8460 case BO_Shr:
8461 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
8462 break;
8463 case BO_LE:
8464 case BO_LT:
8465 case BO_GE:
8466 case BO_GT:
8467 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
8468 break;
8469 case BO_EQ:
8470 case BO_NE:
8471 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
8472 break;
8473 case BO_And:
8474 case BO_Xor:
8475 case BO_Or:
8476 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
8477 break;
8478 case BO_LAnd:
8479 case BO_LOr:
8480 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
8481 break;
8482 case BO_MulAssign:
8483 case BO_DivAssign:
8484 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
8485 Opc == BO_DivAssign);
8486 CompLHSTy = CompResultTy;
8487 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8488 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8489 break;
8490 case BO_RemAssign:
8491 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
8492 CompLHSTy = CompResultTy;
8493 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8494 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8495 break;
8496 case BO_AddAssign:
8497 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
8498 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8499 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8500 break;
8501 case BO_SubAssign:
8502 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
8503 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8504 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8505 break;
8506 case BO_ShlAssign:
8507 case BO_ShrAssign:
8508 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
8509 CompLHSTy = CompResultTy;
8510 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8511 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8512 break;
8513 case BO_AndAssign:
8514 case BO_XorAssign:
8515 case BO_OrAssign:
8516 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8517 CompLHSTy = CompResultTy;
8518 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8519 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8520 break;
8521 case BO_Comma:
8522 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8523 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
8524 VK = RHS.get()->getValueKind();
8525 OK = RHS.get()->getObjectKind();
8526 }
8527 break;
8528 }
8529 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8530 return ExprError();
8531
8532 // Check for array bounds violations for both sides of the BinaryOperator
8533 CheckArrayAccess(LHS.get());
8534 CheckArrayAccess(RHS.get());
8535
8536 if (CompResultTy.isNull())
8537 return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8538 ResultTy, VK, OK, OpLoc,
8539 FPFeatures.fp_contract));
8540 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8541 OK_ObjCProperty) {
8542 VK = VK_LValue;
8543 OK = LHS.get()->getObjectKind();
8544 }
8545 return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8546 ResultTy, VK, OK, CompLHSTy,
8547 CompResultTy, OpLoc,
8548 FPFeatures.fp_contract));
8549 }
8550
8551 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8552 /// operators are mixed in a way that suggests that the programmer forgot that
8553 /// comparison operators have higher precedence. The most typical example of
8554 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8555 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8556 SourceLocation OpLoc, Expr *LHSExpr,
8557 Expr *RHSExpr) {
8558 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
8559 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
8560
8561 // Check that one of the sides is a comparison operator.
8562 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
8563 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
8564 if (!isLeftComp && !isRightComp)
8565 return;
8566
8567 // Bitwise operations are sometimes used as eager logical ops.
8568 // Don't diagnose this.
8569 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
8570 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
8571 if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
8572 return;
8573
8574 SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8575 OpLoc)
8576 : SourceRange(OpLoc, RHSExpr->getLocEnd());
8577 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
8578 SourceRange ParensRange = isLeftComp ?
8579 SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
8580 : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocStart());
8581
8582 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8583 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
8584 SuggestParentheses(Self, OpLoc,
8585 Self.PDiag(diag::note_precedence_silence) << OpStr,
8586 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
8587 SuggestParentheses(Self, OpLoc,
8588 Self.PDiag(diag::note_precedence_bitwise_first)
8589 << BinaryOperator::getOpcodeStr(Opc),
8590 ParensRange);
8591 }
8592
8593 /// \brief It accepts a '&' expr that is inside a '|' one.
8594 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8595 /// in parentheses.
8596 static void
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8597 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8598 BinaryOperator *Bop) {
8599 assert(Bop->getOpcode() == BO_And);
8600 Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8601 << Bop->getSourceRange() << OpLoc;
8602 SuggestParentheses(Self, Bop->getOperatorLoc(),
8603 Self.PDiag(diag::note_precedence_silence)
8604 << Bop->getOpcodeStr(),
8605 Bop->getSourceRange());
8606 }
8607
8608 /// \brief It accepts a '&&' expr that is inside a '||' one.
8609 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8610 /// in parentheses.
8611 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8612 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8613 BinaryOperator *Bop) {
8614 assert(Bop->getOpcode() == BO_LAnd);
8615 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8616 << Bop->getSourceRange() << OpLoc;
8617 SuggestParentheses(Self, Bop->getOperatorLoc(),
8618 Self.PDiag(diag::note_precedence_silence)
8619 << Bop->getOpcodeStr(),
8620 Bop->getSourceRange());
8621 }
8622
8623 /// \brief Returns true if the given expression can be evaluated as a constant
8624 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)8625 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8626 bool Res;
8627 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8628 }
8629
8630 /// \brief Returns true if the given expression can be evaluated as a constant
8631 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)8632 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8633 bool Res;
8634 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8635 }
8636
8637 /// \brief Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8638 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8639 Expr *LHSExpr, Expr *RHSExpr) {
8640 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8641 if (Bop->getOpcode() == BO_LAnd) {
8642 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8643 if (EvaluatesAsFalse(S, RHSExpr))
8644 return;
8645 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8646 if (!EvaluatesAsTrue(S, Bop->getLHS()))
8647 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8648 } else if (Bop->getOpcode() == BO_LOr) {
8649 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8650 // If it's "a || b && 1 || c" we didn't warn earlier for
8651 // "a || b && 1", but warn now.
8652 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8653 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8654 }
8655 }
8656 }
8657 }
8658
8659 /// \brief Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8660 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8661 Expr *LHSExpr, Expr *RHSExpr) {
8662 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8663 if (Bop->getOpcode() == BO_LAnd) {
8664 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8665 if (EvaluatesAsFalse(S, LHSExpr))
8666 return;
8667 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8668 if (!EvaluatesAsTrue(S, Bop->getRHS()))
8669 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8670 }
8671 }
8672 }
8673
8674 /// \brief Look for '&' in the left or right hand of a '|' expr.
DiagnoseBitwiseAndInBitwiseOr(Sema & S,SourceLocation OpLoc,Expr * OrArg)8675 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8676 Expr *OrArg) {
8677 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8678 if (Bop->getOpcode() == BO_And)
8679 return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8680 }
8681 }
8682
DiagnoseAdditionInShift(Sema & S,SourceLocation OpLoc,Expr * SubExpr,StringRef Shift)8683 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
8684 Expr *SubExpr, StringRef Shift) {
8685 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
8686 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
8687 StringRef Op = Bop->getOpcodeStr();
8688 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
8689 << Bop->getSourceRange() << OpLoc << Shift << Op;
8690 SuggestParentheses(S, Bop->getOperatorLoc(),
8691 S.PDiag(diag::note_precedence_silence) << Op,
8692 Bop->getSourceRange());
8693 }
8694 }
8695 }
8696
8697 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8698 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8699 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8700 SourceLocation OpLoc, Expr *LHSExpr,
8701 Expr *RHSExpr){
8702 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8703 if (BinaryOperator::isBitwiseOp(Opc))
8704 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8705
8706 // Diagnose "arg1 & arg2 | arg3"
8707 if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8708 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8709 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8710 }
8711
8712 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8713 // We don't warn for 'assert(a || b && "bad")' since this is safe.
8714 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8715 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8716 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8717 }
8718
8719 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
8720 || Opc == BO_Shr) {
8721 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
8722 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
8723 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
8724 }
8725 }
8726
8727 // Binary Operators. 'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)8728 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8729 tok::TokenKind Kind,
8730 Expr *LHSExpr, Expr *RHSExpr) {
8731 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8732 assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8733 assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8734
8735 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8736 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8737
8738 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8739 }
8740
8741 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)8742 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8743 BinaryOperatorKind Opc,
8744 Expr *LHS, Expr *RHS) {
8745 // Find all of the overloaded operators visible from this
8746 // point. We perform both an operator-name lookup from the local
8747 // scope and an argument-dependent lookup based on the types of
8748 // the arguments.
8749 UnresolvedSet<16> Functions;
8750 OverloadedOperatorKind OverOp
8751 = BinaryOperator::getOverloadedOperator(Opc);
8752 if (Sc && OverOp != OO_None)
8753 S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8754 RHS->getType(), Functions);
8755
8756 // Build the (potentially-overloaded, potentially-dependent)
8757 // binary operation.
8758 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8759 }
8760
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8761 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8762 BinaryOperatorKind Opc,
8763 Expr *LHSExpr, Expr *RHSExpr) {
8764 // We want to end up calling one of checkPseudoObjectAssignment
8765 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8766 // both expressions are overloadable or either is type-dependent),
8767 // or CreateBuiltinBinOp (in any other case). We also want to get
8768 // any placeholder types out of the way.
8769
8770 // Handle pseudo-objects in the LHS.
8771 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8772 // Assignments with a pseudo-object l-value need special analysis.
8773 if (pty->getKind() == BuiltinType::PseudoObject &&
8774 BinaryOperator::isAssignmentOp(Opc))
8775 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8776
8777 // Don't resolve overloads if the other type is overloadable.
8778 if (pty->getKind() == BuiltinType::Overload) {
8779 // We can't actually test that if we still have a placeholder,
8780 // though. Fortunately, none of the exceptions we see in that
8781 // code below are valid when the LHS is an overload set. Note
8782 // that an overload set can be dependently-typed, but it never
8783 // instantiates to having an overloadable type.
8784 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8785 if (resolvedRHS.isInvalid()) return ExprError();
8786 RHSExpr = resolvedRHS.take();
8787
8788 if (RHSExpr->isTypeDependent() ||
8789 RHSExpr->getType()->isOverloadableType())
8790 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8791 }
8792
8793 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8794 if (LHS.isInvalid()) return ExprError();
8795 LHSExpr = LHS.take();
8796 }
8797
8798 // Handle pseudo-objects in the RHS.
8799 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8800 // An overload in the RHS can potentially be resolved by the type
8801 // being assigned to.
8802 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8803 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8804 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8805
8806 if (LHSExpr->getType()->isOverloadableType())
8807 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8808
8809 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8810 }
8811
8812 // Don't resolve overloads if the other type is overloadable.
8813 if (pty->getKind() == BuiltinType::Overload &&
8814 LHSExpr->getType()->isOverloadableType())
8815 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8816
8817 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8818 if (!resolvedRHS.isUsable()) return ExprError();
8819 RHSExpr = resolvedRHS.take();
8820 }
8821
8822 if (getLangOpts().CPlusPlus) {
8823 // If either expression is type-dependent, always build an
8824 // overloaded op.
8825 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8826 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8827
8828 // Otherwise, build an overloaded op if either expression has an
8829 // overloadable type.
8830 if (LHSExpr->getType()->isOverloadableType() ||
8831 RHSExpr->getType()->isOverloadableType())
8832 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8833 }
8834
8835 // Build a built-in binary operation.
8836 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8837 }
8838
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)8839 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8840 UnaryOperatorKind Opc,
8841 Expr *InputExpr) {
8842 ExprResult Input = Owned(InputExpr);
8843 ExprValueKind VK = VK_RValue;
8844 ExprObjectKind OK = OK_Ordinary;
8845 QualType resultType;
8846 switch (Opc) {
8847 case UO_PreInc:
8848 case UO_PreDec:
8849 case UO_PostInc:
8850 case UO_PostDec:
8851 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8852 Opc == UO_PreInc ||
8853 Opc == UO_PostInc,
8854 Opc == UO_PreInc ||
8855 Opc == UO_PreDec);
8856 break;
8857 case UO_AddrOf:
8858 resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8859 break;
8860 case UO_Deref: {
8861 Input = DefaultFunctionArrayLvalueConversion(Input.take());
8862 if (Input.isInvalid()) return ExprError();
8863 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8864 break;
8865 }
8866 case UO_Plus:
8867 case UO_Minus:
8868 Input = UsualUnaryConversions(Input.take());
8869 if (Input.isInvalid()) return ExprError();
8870 resultType = Input.get()->getType();
8871 if (resultType->isDependentType())
8872 break;
8873 if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8874 resultType->isVectorType())
8875 break;
8876 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8877 resultType->isEnumeralType())
8878 break;
8879 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8880 Opc == UO_Plus &&
8881 resultType->isPointerType())
8882 break;
8883
8884 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8885 << resultType << Input.get()->getSourceRange());
8886
8887 case UO_Not: // bitwise complement
8888 Input = UsualUnaryConversions(Input.take());
8889 if (Input.isInvalid())
8890 return ExprError();
8891 resultType = Input.get()->getType();
8892 if (resultType->isDependentType())
8893 break;
8894 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8895 if (resultType->isComplexType() || resultType->isComplexIntegerType())
8896 // C99 does not support '~' for complex conjugation.
8897 Diag(OpLoc, diag::ext_integer_complement_complex)
8898 << resultType << Input.get()->getSourceRange();
8899 else if (resultType->hasIntegerRepresentation())
8900 break;
8901 else if (resultType->isExtVectorType()) {
8902 if (Context.getLangOpts().OpenCL) {
8903 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
8904 // on vector float types.
8905 QualType T = resultType->getAs<ExtVectorType>()->getElementType();
8906 if (!T->isIntegerType())
8907 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8908 << resultType << Input.get()->getSourceRange());
8909 }
8910 break;
8911 } else {
8912 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8913 << resultType << Input.get()->getSourceRange());
8914 }
8915 break;
8916
8917 case UO_LNot: // logical negation
8918 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8919 Input = DefaultFunctionArrayLvalueConversion(Input.take());
8920 if (Input.isInvalid()) return ExprError();
8921 resultType = Input.get()->getType();
8922
8923 // Though we still have to promote half FP to float...
8924 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
8925 Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8926 resultType = Context.FloatTy;
8927 }
8928
8929 if (resultType->isDependentType())
8930 break;
8931 if (resultType->isScalarType()) {
8932 // C99 6.5.3.3p1: ok, fallthrough;
8933 if (Context.getLangOpts().CPlusPlus) {
8934 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8935 // operand contextually converted to bool.
8936 Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8937 ScalarTypeToBooleanCastKind(resultType));
8938 } else if (Context.getLangOpts().OpenCL &&
8939 Context.getLangOpts().OpenCLVersion < 120) {
8940 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
8941 // operate on scalar float types.
8942 if (!resultType->isIntegerType())
8943 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8944 << resultType << Input.get()->getSourceRange());
8945 }
8946 } else if (resultType->isExtVectorType()) {
8947 if (Context.getLangOpts().OpenCL &&
8948 Context.getLangOpts().OpenCLVersion < 120) {
8949 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
8950 // operate on vector float types.
8951 QualType T = resultType->getAs<ExtVectorType>()->getElementType();
8952 if (!T->isIntegerType())
8953 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8954 << resultType << Input.get()->getSourceRange());
8955 }
8956 // Vector logical not returns the signed variant of the operand type.
8957 resultType = GetSignedVectorType(resultType);
8958 break;
8959 } else {
8960 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8961 << resultType << Input.get()->getSourceRange());
8962 }
8963
8964 // LNot always has type int. C99 6.5.3.3p5.
8965 // In C++, it's bool. C++ 5.3.1p8
8966 resultType = Context.getLogicalOperationType();
8967 break;
8968 case UO_Real:
8969 case UO_Imag:
8970 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8971 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8972 // complex l-values to ordinary l-values and all other values to r-values.
8973 if (Input.isInvalid()) return ExprError();
8974 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8975 if (Input.get()->getValueKind() != VK_RValue &&
8976 Input.get()->getObjectKind() == OK_Ordinary)
8977 VK = Input.get()->getValueKind();
8978 } else if (!getLangOpts().CPlusPlus) {
8979 // In C, a volatile scalar is read by __imag. In C++, it is not.
8980 Input = DefaultLvalueConversion(Input.take());
8981 }
8982 break;
8983 case UO_Extension:
8984 resultType = Input.get()->getType();
8985 VK = Input.get()->getValueKind();
8986 OK = Input.get()->getObjectKind();
8987 break;
8988 }
8989 if (resultType.isNull() || Input.isInvalid())
8990 return ExprError();
8991
8992 // Check for array bounds violations in the operand of the UnaryOperator,
8993 // except for the '*' and '&' operators that have to be handled specially
8994 // by CheckArrayAccess (as there are special cases like &array[arraysize]
8995 // that are explicitly defined as valid by the standard).
8996 if (Opc != UO_AddrOf && Opc != UO_Deref)
8997 CheckArrayAccess(Input.get());
8998
8999 return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
9000 VK, OK, OpLoc));
9001 }
9002
9003 /// \brief Determine whether the given expression is a qualified member
9004 /// access expression, of a form that could be turned into a pointer to member
9005 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)9006 static bool isQualifiedMemberAccess(Expr *E) {
9007 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9008 if (!DRE->getQualifier())
9009 return false;
9010
9011 ValueDecl *VD = DRE->getDecl();
9012 if (!VD->isCXXClassMember())
9013 return false;
9014
9015 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
9016 return true;
9017 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
9018 return Method->isInstance();
9019
9020 return false;
9021 }
9022
9023 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9024 if (!ULE->getQualifier())
9025 return false;
9026
9027 for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
9028 DEnd = ULE->decls_end();
9029 D != DEnd; ++D) {
9030 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
9031 if (Method->isInstance())
9032 return true;
9033 } else {
9034 // Overload set does not contain methods.
9035 break;
9036 }
9037 }
9038
9039 return false;
9040 }
9041
9042 return false;
9043 }
9044
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)9045 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
9046 UnaryOperatorKind Opc, Expr *Input) {
9047 // First things first: handle placeholders so that the
9048 // overloaded-operator check considers the right type.
9049 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
9050 // Increment and decrement of pseudo-object references.
9051 if (pty->getKind() == BuiltinType::PseudoObject &&
9052 UnaryOperator::isIncrementDecrementOp(Opc))
9053 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
9054
9055 // extension is always a builtin operator.
9056 if (Opc == UO_Extension)
9057 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9058
9059 // & gets special logic for several kinds of placeholder.
9060 // The builtin code knows what to do.
9061 if (Opc == UO_AddrOf &&
9062 (pty->getKind() == BuiltinType::Overload ||
9063 pty->getKind() == BuiltinType::UnknownAny ||
9064 pty->getKind() == BuiltinType::BoundMember))
9065 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9066
9067 // Anything else needs to be handled now.
9068 ExprResult Result = CheckPlaceholderExpr(Input);
9069 if (Result.isInvalid()) return ExprError();
9070 Input = Result.take();
9071 }
9072
9073 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
9074 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
9075 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
9076 // Find all of the overloaded operators visible from this
9077 // point. We perform both an operator-name lookup from the local
9078 // scope and an argument-dependent lookup based on the types of
9079 // the arguments.
9080 UnresolvedSet<16> Functions;
9081 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
9082 if (S && OverOp != OO_None)
9083 LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
9084 Functions);
9085
9086 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
9087 }
9088
9089 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9090 }
9091
9092 // Unary Operators. 'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)9093 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
9094 tok::TokenKind Op, Expr *Input) {
9095 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
9096 }
9097
9098 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)9099 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
9100 LabelDecl *TheDecl) {
9101 TheDecl->setUsed();
9102 // Create the AST node. The address of a label always has type 'void*'.
9103 return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
9104 Context.getPointerType(Context.VoidTy)));
9105 }
9106
9107 /// Given the last statement in a statement-expression, check whether
9108 /// the result is a producing expression (like a call to an
9109 /// ns_returns_retained function) and, if so, rebuild it to hoist the
9110 /// release out of the full-expression. Otherwise, return null.
9111 /// Cannot fail.
maybeRebuildARCConsumingStmt(Stmt * Statement)9112 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
9113 // Should always be wrapped with one of these.
9114 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
9115 if (!cleanups) return 0;
9116
9117 ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
9118 if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
9119 return 0;
9120
9121 // Splice out the cast. This shouldn't modify any interesting
9122 // features of the statement.
9123 Expr *producer = cast->getSubExpr();
9124 assert(producer->getType() == cast->getType());
9125 assert(producer->getValueKind() == cast->getValueKind());
9126 cleanups->setSubExpr(producer);
9127 return cleanups;
9128 }
9129
ActOnStartStmtExpr()9130 void Sema::ActOnStartStmtExpr() {
9131 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
9132 }
9133
ActOnStmtExprError()9134 void Sema::ActOnStmtExprError() {
9135 // Note that function is also called by TreeTransform when leaving a
9136 // StmtExpr scope without rebuilding anything.
9137
9138 DiscardCleanupsInEvaluationContext();
9139 PopExpressionEvaluationContext();
9140 }
9141
9142 ExprResult
ActOnStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)9143 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
9144 SourceLocation RPLoc) { // "({..})"
9145 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
9146 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
9147
9148 if (hasAnyUnrecoverableErrorsInThisFunction())
9149 DiscardCleanupsInEvaluationContext();
9150 assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
9151 PopExpressionEvaluationContext();
9152
9153 bool isFileScope
9154 = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
9155 if (isFileScope)
9156 return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
9157
9158 // FIXME: there are a variety of strange constraints to enforce here, for
9159 // example, it is not possible to goto into a stmt expression apparently.
9160 // More semantic analysis is needed.
9161
9162 // If there are sub stmts in the compound stmt, take the type of the last one
9163 // as the type of the stmtexpr.
9164 QualType Ty = Context.VoidTy;
9165 bool StmtExprMayBindToTemp = false;
9166 if (!Compound->body_empty()) {
9167 Stmt *LastStmt = Compound->body_back();
9168 LabelStmt *LastLabelStmt = 0;
9169 // If LastStmt is a label, skip down through into the body.
9170 while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
9171 LastLabelStmt = Label;
9172 LastStmt = Label->getSubStmt();
9173 }
9174
9175 if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
9176 // Do function/array conversion on the last expression, but not
9177 // lvalue-to-rvalue. However, initialize an unqualified type.
9178 ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
9179 if (LastExpr.isInvalid())
9180 return ExprError();
9181 Ty = LastExpr.get()->getType().getUnqualifiedType();
9182
9183 if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
9184 // In ARC, if the final expression ends in a consume, splice
9185 // the consume out and bind it later. In the alternate case
9186 // (when dealing with a retainable type), the result
9187 // initialization will create a produce. In both cases the
9188 // result will be +1, and we'll need to balance that out with
9189 // a bind.
9190 if (Expr *rebuiltLastStmt
9191 = maybeRebuildARCConsumingStmt(LastExpr.get())) {
9192 LastExpr = rebuiltLastStmt;
9193 } else {
9194 LastExpr = PerformCopyInitialization(
9195 InitializedEntity::InitializeResult(LPLoc,
9196 Ty,
9197 false),
9198 SourceLocation(),
9199 LastExpr);
9200 }
9201
9202 if (LastExpr.isInvalid())
9203 return ExprError();
9204 if (LastExpr.get() != 0) {
9205 if (!LastLabelStmt)
9206 Compound->setLastStmt(LastExpr.take());
9207 else
9208 LastLabelStmt->setSubStmt(LastExpr.take());
9209 StmtExprMayBindToTemp = true;
9210 }
9211 }
9212 }
9213 }
9214
9215 // FIXME: Check that expression type is complete/non-abstract; statement
9216 // expressions are not lvalues.
9217 Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
9218 if (StmtExprMayBindToTemp)
9219 return MaybeBindToTemporary(ResStmtExpr);
9220 return Owned(ResStmtExpr);
9221 }
9222
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)9223 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
9224 TypeSourceInfo *TInfo,
9225 OffsetOfComponent *CompPtr,
9226 unsigned NumComponents,
9227 SourceLocation RParenLoc) {
9228 QualType ArgTy = TInfo->getType();
9229 bool Dependent = ArgTy->isDependentType();
9230 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9231
9232 // We must have at least one component that refers to the type, and the first
9233 // one is known to be a field designator. Verify that the ArgTy represents
9234 // a struct/union/class.
9235 if (!Dependent && !ArgTy->isRecordType())
9236 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9237 << ArgTy << TypeRange);
9238
9239 // Type must be complete per C99 7.17p3 because a declaring a variable
9240 // with an incomplete type would be ill-formed.
9241 if (!Dependent
9242 && RequireCompleteType(BuiltinLoc, ArgTy,
9243 diag::err_offsetof_incomplete_type, TypeRange))
9244 return ExprError();
9245
9246 // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9247 // GCC extension, diagnose them.
9248 // FIXME: This diagnostic isn't actually visible because the location is in
9249 // a system header!
9250 if (NumComponents != 1)
9251 Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9252 << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9253
9254 bool DidWarnAboutNonPOD = false;
9255 QualType CurrentType = ArgTy;
9256 typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9257 SmallVector<OffsetOfNode, 4> Comps;
9258 SmallVector<Expr*, 4> Exprs;
9259 for (unsigned i = 0; i != NumComponents; ++i) {
9260 const OffsetOfComponent &OC = CompPtr[i];
9261 if (OC.isBrackets) {
9262 // Offset of an array sub-field. TODO: Should we allow vector elements?
9263 if (!CurrentType->isDependentType()) {
9264 const ArrayType *AT = Context.getAsArrayType(CurrentType);
9265 if(!AT)
9266 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9267 << CurrentType);
9268 CurrentType = AT->getElementType();
9269 } else
9270 CurrentType = Context.DependentTy;
9271
9272 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9273 if (IdxRval.isInvalid())
9274 return ExprError();
9275 Expr *Idx = IdxRval.take();
9276
9277 // The expression must be an integral expression.
9278 // FIXME: An integral constant expression?
9279 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9280 !Idx->getType()->isIntegerType())
9281 return ExprError(Diag(Idx->getLocStart(),
9282 diag::err_typecheck_subscript_not_integer)
9283 << Idx->getSourceRange());
9284
9285 // Record this array index.
9286 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9287 Exprs.push_back(Idx);
9288 continue;
9289 }
9290
9291 // Offset of a field.
9292 if (CurrentType->isDependentType()) {
9293 // We have the offset of a field, but we can't look into the dependent
9294 // type. Just record the identifier of the field.
9295 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9296 CurrentType = Context.DependentTy;
9297 continue;
9298 }
9299
9300 // We need to have a complete type to look into.
9301 if (RequireCompleteType(OC.LocStart, CurrentType,
9302 diag::err_offsetof_incomplete_type))
9303 return ExprError();
9304
9305 // Look for the designated field.
9306 const RecordType *RC = CurrentType->getAs<RecordType>();
9307 if (!RC)
9308 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9309 << CurrentType);
9310 RecordDecl *RD = RC->getDecl();
9311
9312 // C++ [lib.support.types]p5:
9313 // The macro offsetof accepts a restricted set of type arguments in this
9314 // International Standard. type shall be a POD structure or a POD union
9315 // (clause 9).
9316 // C++11 [support.types]p4:
9317 // If type is not a standard-layout class (Clause 9), the results are
9318 // undefined.
9319 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9320 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
9321 unsigned DiagID =
9322 LangOpts.CPlusPlus11? diag::warn_offsetof_non_standardlayout_type
9323 : diag::warn_offsetof_non_pod_type;
9324
9325 if (!IsSafe && !DidWarnAboutNonPOD &&
9326 DiagRuntimeBehavior(BuiltinLoc, 0,
9327 PDiag(DiagID)
9328 << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9329 << CurrentType))
9330 DidWarnAboutNonPOD = true;
9331 }
9332
9333 // Look for the field.
9334 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9335 LookupQualifiedName(R, RD);
9336 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9337 IndirectFieldDecl *IndirectMemberDecl = 0;
9338 if (!MemberDecl) {
9339 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9340 MemberDecl = IndirectMemberDecl->getAnonField();
9341 }
9342
9343 if (!MemberDecl)
9344 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9345 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9346 OC.LocEnd));
9347
9348 // C99 7.17p3:
9349 // (If the specified member is a bit-field, the behavior is undefined.)
9350 //
9351 // We diagnose this as an error.
9352 if (MemberDecl->isBitField()) {
9353 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9354 << MemberDecl->getDeclName()
9355 << SourceRange(BuiltinLoc, RParenLoc);
9356 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9357 return ExprError();
9358 }
9359
9360 RecordDecl *Parent = MemberDecl->getParent();
9361 if (IndirectMemberDecl)
9362 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9363
9364 // If the member was found in a base class, introduce OffsetOfNodes for
9365 // the base class indirections.
9366 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9367 /*DetectVirtual=*/false);
9368 if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9369 CXXBasePath &Path = Paths.front();
9370 for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9371 B != BEnd; ++B)
9372 Comps.push_back(OffsetOfNode(B->Base));
9373 }
9374
9375 if (IndirectMemberDecl) {
9376 for (IndirectFieldDecl::chain_iterator FI =
9377 IndirectMemberDecl->chain_begin(),
9378 FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9379 assert(isa<FieldDecl>(*FI));
9380 Comps.push_back(OffsetOfNode(OC.LocStart,
9381 cast<FieldDecl>(*FI), OC.LocEnd));
9382 }
9383 } else
9384 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9385
9386 CurrentType = MemberDecl->getType().getNonReferenceType();
9387 }
9388
9389 return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9390 TInfo, Comps, Exprs, RParenLoc));
9391 }
9392
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)9393 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9394 SourceLocation BuiltinLoc,
9395 SourceLocation TypeLoc,
9396 ParsedType ParsedArgTy,
9397 OffsetOfComponent *CompPtr,
9398 unsigned NumComponents,
9399 SourceLocation RParenLoc) {
9400
9401 TypeSourceInfo *ArgTInfo;
9402 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
9403 if (ArgTy.isNull())
9404 return ExprError();
9405
9406 if (!ArgTInfo)
9407 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9408
9409 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9410 RParenLoc);
9411 }
9412
9413
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)9414 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9415 Expr *CondExpr,
9416 Expr *LHSExpr, Expr *RHSExpr,
9417 SourceLocation RPLoc) {
9418 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9419
9420 ExprValueKind VK = VK_RValue;
9421 ExprObjectKind OK = OK_Ordinary;
9422 QualType resType;
9423 bool ValueDependent = false;
9424 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9425 resType = Context.DependentTy;
9426 ValueDependent = true;
9427 } else {
9428 // The conditional expression is required to be a constant expression.
9429 llvm::APSInt condEval(32);
9430 ExprResult CondICE
9431 = VerifyIntegerConstantExpression(CondExpr, &condEval,
9432 diag::err_typecheck_choose_expr_requires_constant, false);
9433 if (CondICE.isInvalid())
9434 return ExprError();
9435 CondExpr = CondICE.take();
9436
9437 // If the condition is > zero, then the AST type is the same as the LSHExpr.
9438 Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
9439
9440 resType = ActiveExpr->getType();
9441 ValueDependent = ActiveExpr->isValueDependent();
9442 VK = ActiveExpr->getValueKind();
9443 OK = ActiveExpr->getObjectKind();
9444 }
9445
9446 return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9447 resType, VK, OK, RPLoc,
9448 resType->isDependentType(),
9449 ValueDependent));
9450 }
9451
9452 //===----------------------------------------------------------------------===//
9453 // Clang Extensions.
9454 //===----------------------------------------------------------------------===//
9455
9456 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)9457 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
9458 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9459 PushBlockScope(CurScope, Block);
9460 CurContext->addDecl(Block);
9461 if (CurScope)
9462 PushDeclContext(CurScope, Block);
9463 else
9464 CurContext = Block;
9465
9466 getCurBlock()->HasImplicitReturnType = true;
9467
9468 // Enter a new evaluation context to insulate the block from any
9469 // cleanups from the enclosing full-expression.
9470 PushExpressionEvaluationContext(PotentiallyEvaluated);
9471 }
9472
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)9473 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
9474 Scope *CurScope) {
9475 assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
9476 assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
9477 BlockScopeInfo *CurBlock = getCurBlock();
9478
9479 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
9480 QualType T = Sig->getType();
9481
9482 // FIXME: We should allow unexpanded parameter packs here, but that would,
9483 // in turn, make the block expression contain unexpanded parameter packs.
9484 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
9485 // Drop the parameters.
9486 FunctionProtoType::ExtProtoInfo EPI;
9487 EPI.HasTrailingReturn = false;
9488 EPI.TypeQuals |= DeclSpec::TQ_const;
9489 T = Context.getFunctionType(Context.DependentTy, ArrayRef<QualType>(), EPI);
9490 Sig = Context.getTrivialTypeSourceInfo(T);
9491 }
9492
9493 // GetTypeForDeclarator always produces a function type for a block
9494 // literal signature. Furthermore, it is always a FunctionProtoType
9495 // unless the function was written with a typedef.
9496 assert(T->isFunctionType() &&
9497 "GetTypeForDeclarator made a non-function block signature");
9498
9499 // Look for an explicit signature in that function type.
9500 FunctionProtoTypeLoc ExplicitSignature;
9501
9502 TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
9503 if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
9504
9505 // Check whether that explicit signature was synthesized by
9506 // GetTypeForDeclarator. If so, don't save that as part of the
9507 // written signature.
9508 if (ExplicitSignature.getLocalRangeBegin() ==
9509 ExplicitSignature.getLocalRangeEnd()) {
9510 // This would be much cheaper if we stored TypeLocs instead of
9511 // TypeSourceInfos.
9512 TypeLoc Result = ExplicitSignature.getResultLoc();
9513 unsigned Size = Result.getFullDataSize();
9514 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
9515 Sig->getTypeLoc().initializeFullCopy(Result, Size);
9516
9517 ExplicitSignature = FunctionProtoTypeLoc();
9518 }
9519 }
9520
9521 CurBlock->TheDecl->setSignatureAsWritten(Sig);
9522 CurBlock->FunctionType = T;
9523
9524 const FunctionType *Fn = T->getAs<FunctionType>();
9525 QualType RetTy = Fn->getResultType();
9526 bool isVariadic =
9527 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
9528
9529 CurBlock->TheDecl->setIsVariadic(isVariadic);
9530
9531 // Don't allow returning a objc interface by value.
9532 if (RetTy->isObjCObjectType()) {
9533 Diag(ParamInfo.getLocStart(),
9534 diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
9535 return;
9536 }
9537
9538 // Context.DependentTy is used as a placeholder for a missing block
9539 // return type. TODO: what should we do with declarators like:
9540 // ^ * { ... }
9541 // If the answer is "apply template argument deduction"....
9542 if (RetTy != Context.DependentTy) {
9543 CurBlock->ReturnType = RetTy;
9544 CurBlock->TheDecl->setBlockMissingReturnType(false);
9545 CurBlock->HasImplicitReturnType = false;
9546 }
9547
9548 // Push block parameters from the declarator if we had them.
9549 SmallVector<ParmVarDecl*, 8> Params;
9550 if (ExplicitSignature) {
9551 for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
9552 ParmVarDecl *Param = ExplicitSignature.getArg(I);
9553 if (Param->getIdentifier() == 0 &&
9554 !Param->isImplicit() &&
9555 !Param->isInvalidDecl() &&
9556 !getLangOpts().CPlusPlus)
9557 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9558 Params.push_back(Param);
9559 }
9560
9561 // Fake up parameter variables if we have a typedef, like
9562 // ^ fntype { ... }
9563 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
9564 for (FunctionProtoType::arg_type_iterator
9565 I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
9566 ParmVarDecl *Param =
9567 BuildParmVarDeclForTypedef(CurBlock->TheDecl,
9568 ParamInfo.getLocStart(),
9569 *I);
9570 Params.push_back(Param);
9571 }
9572 }
9573
9574 // Set the parameters on the block decl.
9575 if (!Params.empty()) {
9576 CurBlock->TheDecl->setParams(Params);
9577 CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9578 CurBlock->TheDecl->param_end(),
9579 /*CheckParameterNames=*/false);
9580 }
9581
9582 // Finally we can process decl attributes.
9583 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9584
9585 // Put the parameter variables in scope. We can bail out immediately
9586 // if we don't have any.
9587 if (Params.empty())
9588 return;
9589
9590 for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9591 E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9592 (*AI)->setOwningFunction(CurBlock->TheDecl);
9593
9594 // If this has an identifier, add it to the scope stack.
9595 if ((*AI)->getIdentifier()) {
9596 CheckShadow(CurBlock->TheScope, *AI);
9597
9598 PushOnScopeChains(*AI, CurBlock->TheScope);
9599 }
9600 }
9601 }
9602
9603 /// ActOnBlockError - If there is an error parsing a block, this callback
9604 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)9605 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9606 // Leave the expression-evaluation context.
9607 DiscardCleanupsInEvaluationContext();
9608 PopExpressionEvaluationContext();
9609
9610 // Pop off CurBlock, handle nested blocks.
9611 PopDeclContext();
9612 PopFunctionScopeInfo();
9613 }
9614
9615 /// ActOnBlockStmtExpr - This is called when the body of a block statement
9616 /// literal was successfully completed. ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)9617 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9618 Stmt *Body, Scope *CurScope) {
9619 // If blocks are disabled, emit an error.
9620 if (!LangOpts.Blocks)
9621 Diag(CaretLoc, diag::err_blocks_disable);
9622
9623 // Leave the expression-evaluation context.
9624 if (hasAnyUnrecoverableErrorsInThisFunction())
9625 DiscardCleanupsInEvaluationContext();
9626 assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9627 PopExpressionEvaluationContext();
9628
9629 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9630
9631 if (BSI->HasImplicitReturnType)
9632 deduceClosureReturnType(*BSI);
9633
9634 PopDeclContext();
9635
9636 QualType RetTy = Context.VoidTy;
9637 if (!BSI->ReturnType.isNull())
9638 RetTy = BSI->ReturnType;
9639
9640 bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9641 QualType BlockTy;
9642
9643 // Set the captured variables on the block.
9644 // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9645 SmallVector<BlockDecl::Capture, 4> Captures;
9646 for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9647 CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9648 if (Cap.isThisCapture())
9649 continue;
9650 BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9651 Cap.isNested(), Cap.getCopyExpr());
9652 Captures.push_back(NewCap);
9653 }
9654 BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9655 BSI->CXXThisCaptureIndex != 0);
9656
9657 // If the user wrote a function type in some form, try to use that.
9658 if (!BSI->FunctionType.isNull()) {
9659 const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9660
9661 FunctionType::ExtInfo Ext = FTy->getExtInfo();
9662 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9663
9664 // Turn protoless block types into nullary block types.
9665 if (isa<FunctionNoProtoType>(FTy)) {
9666 FunctionProtoType::ExtProtoInfo EPI;
9667 EPI.ExtInfo = Ext;
9668 BlockTy = Context.getFunctionType(RetTy, ArrayRef<QualType>(), EPI);
9669
9670 // Otherwise, if we don't need to change anything about the function type,
9671 // preserve its sugar structure.
9672 } else if (FTy->getResultType() == RetTy &&
9673 (!NoReturn || FTy->getNoReturnAttr())) {
9674 BlockTy = BSI->FunctionType;
9675
9676 // Otherwise, make the minimal modifications to the function type.
9677 } else {
9678 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9679 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9680 EPI.TypeQuals = 0; // FIXME: silently?
9681 EPI.ExtInfo = Ext;
9682 BlockTy =
9683 Context.getFunctionType(RetTy,
9684 ArrayRef<QualType>(FPT->arg_type_begin(),
9685 FPT->getNumArgs()),
9686 EPI);
9687 }
9688
9689 // If we don't have a function type, just build one from nothing.
9690 } else {
9691 FunctionProtoType::ExtProtoInfo EPI;
9692 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9693 BlockTy = Context.getFunctionType(RetTy, ArrayRef<QualType>(), EPI);
9694 }
9695
9696 DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9697 BSI->TheDecl->param_end());
9698 BlockTy = Context.getBlockPointerType(BlockTy);
9699
9700 // If needed, diagnose invalid gotos and switches in the block.
9701 if (getCurFunction()->NeedsScopeChecking() &&
9702 !hasAnyUnrecoverableErrorsInThisFunction() &&
9703 !PP.isCodeCompletionEnabled())
9704 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9705
9706 BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9707
9708 // Try to apply the named return value optimization. We have to check again
9709 // if we can do this, though, because blocks keep return statements around
9710 // to deduce an implicit return type.
9711 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
9712 !BSI->TheDecl->isDependentContext())
9713 computeNRVO(Body, getCurBlock());
9714
9715 BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9716 const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9717 PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9718
9719 // If the block isn't obviously global, i.e. it captures anything at
9720 // all, then we need to do a few things in the surrounding context:
9721 if (Result->getBlockDecl()->hasCaptures()) {
9722 // First, this expression has a new cleanup object.
9723 ExprCleanupObjects.push_back(Result->getBlockDecl());
9724 ExprNeedsCleanups = true;
9725
9726 // It also gets a branch-protected scope if any of the captured
9727 // variables needs destruction.
9728 for (BlockDecl::capture_const_iterator
9729 ci = Result->getBlockDecl()->capture_begin(),
9730 ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9731 const VarDecl *var = ci->getVariable();
9732 if (var->getType().isDestructedType() != QualType::DK_none) {
9733 getCurFunction()->setHasBranchProtectedScope();
9734 break;
9735 }
9736 }
9737 }
9738
9739 return Owned(Result);
9740 }
9741
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)9742 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9743 Expr *E, ParsedType Ty,
9744 SourceLocation RPLoc) {
9745 TypeSourceInfo *TInfo;
9746 GetTypeFromParser(Ty, &TInfo);
9747 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9748 }
9749
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)9750 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9751 Expr *E, TypeSourceInfo *TInfo,
9752 SourceLocation RPLoc) {
9753 Expr *OrigExpr = E;
9754
9755 // Get the va_list type
9756 QualType VaListType = Context.getBuiltinVaListType();
9757 if (VaListType->isArrayType()) {
9758 // Deal with implicit array decay; for example, on x86-64,
9759 // va_list is an array, but it's supposed to decay to
9760 // a pointer for va_arg.
9761 VaListType = Context.getArrayDecayedType(VaListType);
9762 // Make sure the input expression also decays appropriately.
9763 ExprResult Result = UsualUnaryConversions(E);
9764 if (Result.isInvalid())
9765 return ExprError();
9766 E = Result.take();
9767 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
9768 // If va_list is a record type and we are compiling in C++ mode,
9769 // check the argument using reference binding.
9770 InitializedEntity Entity
9771 = InitializedEntity::InitializeParameter(Context,
9772 Context.getLValueReferenceType(VaListType), false);
9773 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
9774 if (Init.isInvalid())
9775 return ExprError();
9776 E = Init.takeAs<Expr>();
9777 } else {
9778 // Otherwise, the va_list argument must be an l-value because
9779 // it is modified by va_arg.
9780 if (!E->isTypeDependent() &&
9781 CheckForModifiableLvalue(E, BuiltinLoc, *this))
9782 return ExprError();
9783 }
9784
9785 if (!E->isTypeDependent() &&
9786 !Context.hasSameType(VaListType, E->getType())) {
9787 return ExprError(Diag(E->getLocStart(),
9788 diag::err_first_argument_to_va_arg_not_of_type_va_list)
9789 << OrigExpr->getType() << E->getSourceRange());
9790 }
9791
9792 if (!TInfo->getType()->isDependentType()) {
9793 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9794 diag::err_second_parameter_to_va_arg_incomplete,
9795 TInfo->getTypeLoc()))
9796 return ExprError();
9797
9798 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9799 TInfo->getType(),
9800 diag::err_second_parameter_to_va_arg_abstract,
9801 TInfo->getTypeLoc()))
9802 return ExprError();
9803
9804 if (!TInfo->getType().isPODType(Context)) {
9805 Diag(TInfo->getTypeLoc().getBeginLoc(),
9806 TInfo->getType()->isObjCLifetimeType()
9807 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9808 : diag::warn_second_parameter_to_va_arg_not_pod)
9809 << TInfo->getType()
9810 << TInfo->getTypeLoc().getSourceRange();
9811 }
9812
9813 // Check for va_arg where arguments of the given type will be promoted
9814 // (i.e. this va_arg is guaranteed to have undefined behavior).
9815 QualType PromoteType;
9816 if (TInfo->getType()->isPromotableIntegerType()) {
9817 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9818 if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9819 PromoteType = QualType();
9820 }
9821 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9822 PromoteType = Context.DoubleTy;
9823 if (!PromoteType.isNull())
9824 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
9825 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
9826 << TInfo->getType()
9827 << PromoteType
9828 << TInfo->getTypeLoc().getSourceRange());
9829 }
9830
9831 QualType T = TInfo->getType().getNonLValueExprType(Context);
9832 return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9833 }
9834
ActOnGNUNullExpr(SourceLocation TokenLoc)9835 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9836 // The type of __null will be int or long, depending on the size of
9837 // pointers on the target.
9838 QualType Ty;
9839 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9840 if (pw == Context.getTargetInfo().getIntWidth())
9841 Ty = Context.IntTy;
9842 else if (pw == Context.getTargetInfo().getLongWidth())
9843 Ty = Context.LongTy;
9844 else if (pw == Context.getTargetInfo().getLongLongWidth())
9845 Ty = Context.LongLongTy;
9846 else {
9847 llvm_unreachable("I don't know size of pointer!");
9848 }
9849
9850 return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9851 }
9852
MakeObjCStringLiteralFixItHint(Sema & SemaRef,QualType DstType,Expr * SrcExpr,FixItHint & Hint)9853 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9854 Expr *SrcExpr, FixItHint &Hint) {
9855 if (!SemaRef.getLangOpts().ObjC1)
9856 return;
9857
9858 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9859 if (!PT)
9860 return;
9861
9862 // Check if the destination is of type 'id'.
9863 if (!PT->isObjCIdType()) {
9864 // Check if the destination is the 'NSString' interface.
9865 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9866 if (!ID || !ID->getIdentifier()->isStr("NSString"))
9867 return;
9868 }
9869
9870 // Ignore any parens, implicit casts (should only be
9871 // array-to-pointer decays), and not-so-opaque values. The last is
9872 // important for making this trigger for property assignments.
9873 SrcExpr = SrcExpr->IgnoreParenImpCasts();
9874 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9875 if (OV->getSourceExpr())
9876 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9877
9878 StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9879 if (!SL || !SL->isAscii())
9880 return;
9881
9882 Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9883 }
9884
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)9885 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9886 SourceLocation Loc,
9887 QualType DstType, QualType SrcType,
9888 Expr *SrcExpr, AssignmentAction Action,
9889 bool *Complained) {
9890 if (Complained)
9891 *Complained = false;
9892
9893 // Decode the result (notice that AST's are still created for extensions).
9894 bool CheckInferredResultType = false;
9895 bool isInvalid = false;
9896 unsigned DiagKind = 0;
9897 FixItHint Hint;
9898 ConversionFixItGenerator ConvHints;
9899 bool MayHaveConvFixit = false;
9900 bool MayHaveFunctionDiff = false;
9901
9902 switch (ConvTy) {
9903 case Compatible:
9904 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
9905 return false;
9906
9907 case PointerToInt:
9908 DiagKind = diag::ext_typecheck_convert_pointer_int;
9909 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9910 MayHaveConvFixit = true;
9911 break;
9912 case IntToPointer:
9913 DiagKind = diag::ext_typecheck_convert_int_pointer;
9914 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9915 MayHaveConvFixit = true;
9916 break;
9917 case IncompatiblePointer:
9918 MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9919 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9920 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9921 SrcType->isObjCObjectPointerType();
9922 if (Hint.isNull() && !CheckInferredResultType) {
9923 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9924 }
9925 MayHaveConvFixit = true;
9926 break;
9927 case IncompatiblePointerSign:
9928 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9929 break;
9930 case FunctionVoidPointer:
9931 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9932 break;
9933 case IncompatiblePointerDiscardsQualifiers: {
9934 // Perform array-to-pointer decay if necessary.
9935 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9936
9937 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9938 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9939 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9940 DiagKind = diag::err_typecheck_incompatible_address_space;
9941 break;
9942
9943
9944 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9945 DiagKind = diag::err_typecheck_incompatible_ownership;
9946 break;
9947 }
9948
9949 llvm_unreachable("unknown error case for discarding qualifiers!");
9950 // fallthrough
9951 }
9952 case CompatiblePointerDiscardsQualifiers:
9953 // If the qualifiers lost were because we were applying the
9954 // (deprecated) C++ conversion from a string literal to a char*
9955 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
9956 // Ideally, this check would be performed in
9957 // checkPointerTypesForAssignment. However, that would require a
9958 // bit of refactoring (so that the second argument is an
9959 // expression, rather than a type), which should be done as part
9960 // of a larger effort to fix checkPointerTypesForAssignment for
9961 // C++ semantics.
9962 if (getLangOpts().CPlusPlus &&
9963 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9964 return false;
9965 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9966 break;
9967 case IncompatibleNestedPointerQualifiers:
9968 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9969 break;
9970 case IntToBlockPointer:
9971 DiagKind = diag::err_int_to_block_pointer;
9972 break;
9973 case IncompatibleBlockPointer:
9974 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9975 break;
9976 case IncompatibleObjCQualifiedId:
9977 // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9978 // it can give a more specific diagnostic.
9979 DiagKind = diag::warn_incompatible_qualified_id;
9980 break;
9981 case IncompatibleVectors:
9982 DiagKind = diag::warn_incompatible_vectors;
9983 break;
9984 case IncompatibleObjCWeakRef:
9985 DiagKind = diag::err_arc_weak_unavailable_assign;
9986 break;
9987 case Incompatible:
9988 DiagKind = diag::err_typecheck_convert_incompatible;
9989 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9990 MayHaveConvFixit = true;
9991 isInvalid = true;
9992 MayHaveFunctionDiff = true;
9993 break;
9994 }
9995
9996 QualType FirstType, SecondType;
9997 switch (Action) {
9998 case AA_Assigning:
9999 case AA_Initializing:
10000 // The destination type comes first.
10001 FirstType = DstType;
10002 SecondType = SrcType;
10003 break;
10004
10005 case AA_Returning:
10006 case AA_Passing:
10007 case AA_Converting:
10008 case AA_Sending:
10009 case AA_Casting:
10010 // The source type comes first.
10011 FirstType = SrcType;
10012 SecondType = DstType;
10013 break;
10014 }
10015
10016 PartialDiagnostic FDiag = PDiag(DiagKind);
10017 FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
10018
10019 // If we can fix the conversion, suggest the FixIts.
10020 assert(ConvHints.isNull() || Hint.isNull());
10021 if (!ConvHints.isNull()) {
10022 for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
10023 HE = ConvHints.Hints.end(); HI != HE; ++HI)
10024 FDiag << *HI;
10025 } else {
10026 FDiag << Hint;
10027 }
10028 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
10029
10030 if (MayHaveFunctionDiff)
10031 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
10032
10033 Diag(Loc, FDiag);
10034
10035 if (SecondType == Context.OverloadTy)
10036 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
10037 FirstType);
10038
10039 if (CheckInferredResultType)
10040 EmitRelatedResultTypeNote(SrcExpr);
10041
10042 if (Complained)
10043 *Complained = true;
10044 return isInvalid;
10045 }
10046
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result)10047 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10048 llvm::APSInt *Result) {
10049 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
10050 public:
10051 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10052 S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
10053 }
10054 } Diagnoser;
10055
10056 return VerifyIntegerConstantExpression(E, Result, Diagnoser);
10057 }
10058
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,bool AllowFold)10059 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10060 llvm::APSInt *Result,
10061 unsigned DiagID,
10062 bool AllowFold) {
10063 class IDDiagnoser : public VerifyICEDiagnoser {
10064 unsigned DiagID;
10065
10066 public:
10067 IDDiagnoser(unsigned DiagID)
10068 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
10069
10070 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10071 S.Diag(Loc, DiagID) << SR;
10072 }
10073 } Diagnoser(DiagID);
10074
10075 return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
10076 }
10077
diagnoseFold(Sema & S,SourceLocation Loc,SourceRange SR)10078 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
10079 SourceRange SR) {
10080 S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
10081 }
10082
10083 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,bool AllowFold)10084 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
10085 VerifyICEDiagnoser &Diagnoser,
10086 bool AllowFold) {
10087 SourceLocation DiagLoc = E->getLocStart();
10088
10089 if (getLangOpts().CPlusPlus11) {
10090 // C++11 [expr.const]p5:
10091 // If an expression of literal class type is used in a context where an
10092 // integral constant expression is required, then that class type shall
10093 // have a single non-explicit conversion function to an integral or
10094 // unscoped enumeration type
10095 ExprResult Converted;
10096 if (!Diagnoser.Suppress) {
10097 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
10098 public:
10099 CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
10100
10101 virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
10102 QualType T) {
10103 return S.Diag(Loc, diag::err_ice_not_integral) << T;
10104 }
10105
10106 virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
10107 SourceLocation Loc,
10108 QualType T) {
10109 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
10110 }
10111
10112 virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
10113 SourceLocation Loc,
10114 QualType T,
10115 QualType ConvTy) {
10116 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
10117 }
10118
10119 virtual DiagnosticBuilder noteExplicitConv(Sema &S,
10120 CXXConversionDecl *Conv,
10121 QualType ConvTy) {
10122 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10123 << ConvTy->isEnumeralType() << ConvTy;
10124 }
10125
10126 virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
10127 QualType T) {
10128 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
10129 }
10130
10131 virtual DiagnosticBuilder noteAmbiguous(Sema &S,
10132 CXXConversionDecl *Conv,
10133 QualType ConvTy) {
10134 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10135 << ConvTy->isEnumeralType() << ConvTy;
10136 }
10137
10138 virtual DiagnosticBuilder diagnoseConversion(Sema &S,
10139 SourceLocation Loc,
10140 QualType T,
10141 QualType ConvTy) {
10142 return DiagnosticBuilder::getEmpty();
10143 }
10144 } ConvertDiagnoser;
10145
10146 Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
10147 ConvertDiagnoser,
10148 /*AllowScopedEnumerations*/ false);
10149 } else {
10150 // The caller wants to silently enquire whether this is an ICE. Don't
10151 // produce any diagnostics if it isn't.
10152 class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
10153 public:
10154 SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
10155
10156 virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
10157 QualType T) {
10158 return DiagnosticBuilder::getEmpty();
10159 }
10160
10161 virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
10162 SourceLocation Loc,
10163 QualType T) {
10164 return DiagnosticBuilder::getEmpty();
10165 }
10166
10167 virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
10168 SourceLocation Loc,
10169 QualType T,
10170 QualType ConvTy) {
10171 return DiagnosticBuilder::getEmpty();
10172 }
10173
10174 virtual DiagnosticBuilder noteExplicitConv(Sema &S,
10175 CXXConversionDecl *Conv,
10176 QualType ConvTy) {
10177 return DiagnosticBuilder::getEmpty();
10178 }
10179
10180 virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
10181 QualType T) {
10182 return DiagnosticBuilder::getEmpty();
10183 }
10184
10185 virtual DiagnosticBuilder noteAmbiguous(Sema &S,
10186 CXXConversionDecl *Conv,
10187 QualType ConvTy) {
10188 return DiagnosticBuilder::getEmpty();
10189 }
10190
10191 virtual DiagnosticBuilder diagnoseConversion(Sema &S,
10192 SourceLocation Loc,
10193 QualType T,
10194 QualType ConvTy) {
10195 return DiagnosticBuilder::getEmpty();
10196 }
10197 } ConvertDiagnoser;
10198
10199 Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
10200 ConvertDiagnoser, false);
10201 }
10202 if (Converted.isInvalid())
10203 return Converted;
10204 E = Converted.take();
10205 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
10206 return ExprError();
10207 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
10208 // An ICE must be of integral or unscoped enumeration type.
10209 if (!Diagnoser.Suppress)
10210 Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10211 return ExprError();
10212 }
10213
10214 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
10215 // in the non-ICE case.
10216 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
10217 if (Result)
10218 *Result = E->EvaluateKnownConstInt(Context);
10219 return Owned(E);
10220 }
10221
10222 Expr::EvalResult EvalResult;
10223 SmallVector<PartialDiagnosticAt, 8> Notes;
10224 EvalResult.Diag = &Notes;
10225
10226 // Try to evaluate the expression, and produce diagnostics explaining why it's
10227 // not a constant expression as a side-effect.
10228 bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
10229 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
10230
10231 // In C++11, we can rely on diagnostics being produced for any expression
10232 // which is not a constant expression. If no diagnostics were produced, then
10233 // this is a constant expression.
10234 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
10235 if (Result)
10236 *Result = EvalResult.Val.getInt();
10237 return Owned(E);
10238 }
10239
10240 // If our only note is the usual "invalid subexpression" note, just point
10241 // the caret at its location rather than producing an essentially
10242 // redundant note.
10243 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10244 diag::note_invalid_subexpr_in_const_expr) {
10245 DiagLoc = Notes[0].first;
10246 Notes.clear();
10247 }
10248
10249 if (!Folded || !AllowFold) {
10250 if (!Diagnoser.Suppress) {
10251 Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10252 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10253 Diag(Notes[I].first, Notes[I].second);
10254 }
10255
10256 return ExprError();
10257 }
10258
10259 Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10260 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10261 Diag(Notes[I].first, Notes[I].second);
10262
10263 if (Result)
10264 *Result = EvalResult.Val.getInt();
10265 return Owned(E);
10266 }
10267
10268 namespace {
10269 // Handle the case where we conclude a expression which we speculatively
10270 // considered to be unevaluated is actually evaluated.
10271 class TransformToPE : public TreeTransform<TransformToPE> {
10272 typedef TreeTransform<TransformToPE> BaseTransform;
10273
10274 public:
TransformToPE(Sema & SemaRef)10275 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10276
10277 // Make sure we redo semantic analysis
AlwaysRebuild()10278 bool AlwaysRebuild() { return true; }
10279
10280 // Make sure we handle LabelStmts correctly.
10281 // FIXME: This does the right thing, but maybe we need a more general
10282 // fix to TreeTransform?
TransformLabelStmt(LabelStmt * S)10283 StmtResult TransformLabelStmt(LabelStmt *S) {
10284 S->getDecl()->setStmt(0);
10285 return BaseTransform::TransformLabelStmt(S);
10286 }
10287
10288 // We need to special-case DeclRefExprs referring to FieldDecls which
10289 // are not part of a member pointer formation; normal TreeTransforming
10290 // doesn't catch this case because of the way we represent them in the AST.
10291 // FIXME: This is a bit ugly; is it really the best way to handle this
10292 // case?
10293 //
10294 // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)10295 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10296 if (isa<FieldDecl>(E->getDecl()) &&
10297 !SemaRef.isUnevaluatedContext())
10298 return SemaRef.Diag(E->getLocation(),
10299 diag::err_invalid_non_static_member_use)
10300 << E->getDecl() << E->getSourceRange();
10301
10302 return BaseTransform::TransformDeclRefExpr(E);
10303 }
10304
10305 // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)10306 ExprResult TransformUnaryOperator(UnaryOperator *E) {
10307 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10308 return E;
10309
10310 return BaseTransform::TransformUnaryOperator(E);
10311 }
10312
TransformLambdaExpr(LambdaExpr * E)10313 ExprResult TransformLambdaExpr(LambdaExpr *E) {
10314 // Lambdas never need to be transformed.
10315 return E;
10316 }
10317 };
10318 }
10319
TransformToPotentiallyEvaluated(Expr * E)10320 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
10321 assert(ExprEvalContexts.back().Context == Unevaluated &&
10322 "Should only transform unevaluated expressions");
10323 ExprEvalContexts.back().Context =
10324 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10325 if (ExprEvalContexts.back().Context == Unevaluated)
10326 return E;
10327 return TransformToPE(*this).TransformExpr(E);
10328 }
10329
10330 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,bool IsDecltype)10331 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10332 Decl *LambdaContextDecl,
10333 bool IsDecltype) {
10334 ExprEvalContexts.push_back(
10335 ExpressionEvaluationContextRecord(NewContext,
10336 ExprCleanupObjects.size(),
10337 ExprNeedsCleanups,
10338 LambdaContextDecl,
10339 IsDecltype));
10340 ExprNeedsCleanups = false;
10341 if (!MaybeODRUseExprs.empty())
10342 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
10343 }
10344
10345 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,ReuseLambdaContextDecl_t,bool IsDecltype)10346 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10347 ReuseLambdaContextDecl_t,
10348 bool IsDecltype) {
10349 Decl *LambdaContextDecl = ExprEvalContexts.back().LambdaContextDecl;
10350 PushExpressionEvaluationContext(NewContext, LambdaContextDecl, IsDecltype);
10351 }
10352
PopExpressionEvaluationContext()10353 void Sema::PopExpressionEvaluationContext() {
10354 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
10355
10356 if (!Rec.Lambdas.empty()) {
10357 if (Rec.Context == Unevaluated) {
10358 // C++11 [expr.prim.lambda]p2:
10359 // A lambda-expression shall not appear in an unevaluated operand
10360 // (Clause 5).
10361 for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
10362 Diag(Rec.Lambdas[I]->getLocStart(),
10363 diag::err_lambda_unevaluated_operand);
10364 } else {
10365 // Mark the capture expressions odr-used. This was deferred
10366 // during lambda expression creation.
10367 for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
10368 LambdaExpr *Lambda = Rec.Lambdas[I];
10369 for (LambdaExpr::capture_init_iterator
10370 C = Lambda->capture_init_begin(),
10371 CEnd = Lambda->capture_init_end();
10372 C != CEnd; ++C) {
10373 MarkDeclarationsReferencedInExpr(*C);
10374 }
10375 }
10376 }
10377 }
10378
10379 // When are coming out of an unevaluated context, clear out any
10380 // temporaries that we may have created as part of the evaluation of
10381 // the expression in that context: they aren't relevant because they
10382 // will never be constructed.
10383 if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
10384 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
10385 ExprCleanupObjects.end());
10386 ExprNeedsCleanups = Rec.ParentNeedsCleanups;
10387 CleanupVarDeclMarking();
10388 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
10389 // Otherwise, merge the contexts together.
10390 } else {
10391 ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
10392 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
10393 Rec.SavedMaybeODRUseExprs.end());
10394 }
10395
10396 // Pop the current expression evaluation context off the stack.
10397 ExprEvalContexts.pop_back();
10398 }
10399
DiscardCleanupsInEvaluationContext()10400 void Sema::DiscardCleanupsInEvaluationContext() {
10401 ExprCleanupObjects.erase(
10402 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
10403 ExprCleanupObjects.end());
10404 ExprNeedsCleanups = false;
10405 MaybeODRUseExprs.clear();
10406 }
10407
HandleExprEvaluationContextForTypeof(Expr * E)10408 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
10409 if (!E->getType()->isVariablyModifiedType())
10410 return E;
10411 return TransformToPotentiallyEvaluated(E);
10412 }
10413
IsPotentiallyEvaluatedContext(Sema & SemaRef)10414 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
10415 // Do not mark anything as "used" within a dependent context; wait for
10416 // an instantiation.
10417 if (SemaRef.CurContext->isDependentContext())
10418 return false;
10419
10420 switch (SemaRef.ExprEvalContexts.back().Context) {
10421 case Sema::Unevaluated:
10422 // We are in an expression that is not potentially evaluated; do nothing.
10423 // (Depending on how you read the standard, we actually do need to do
10424 // something here for null pointer constants, but the standard's
10425 // definition of a null pointer constant is completely crazy.)
10426 return false;
10427
10428 case Sema::ConstantEvaluated:
10429 case Sema::PotentiallyEvaluated:
10430 // We are in a potentially evaluated expression (or a constant-expression
10431 // in C++03); we need to do implicit template instantiation, implicitly
10432 // define class members, and mark most declarations as used.
10433 return true;
10434
10435 case Sema::PotentiallyEvaluatedIfUsed:
10436 // Referenced declarations will only be used if the construct in the
10437 // containing expression is used.
10438 return false;
10439 }
10440 llvm_unreachable("Invalid context");
10441 }
10442
10443 /// \brief Mark a function referenced, and check whether it is odr-used
10444 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func)10445 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
10446 assert(Func && "No function?");
10447
10448 Func->setReferenced();
10449
10450 // C++11 [basic.def.odr]p3:
10451 // A function whose name appears as a potentially-evaluated expression is
10452 // odr-used if it is the unique lookup result or the selected member of a
10453 // set of overloaded functions [...].
10454 //
10455 // We (incorrectly) mark overload resolution as an unevaluated context, so we
10456 // can just check that here. Skip the rest of this function if we've already
10457 // marked the function as used.
10458 if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
10459 // C++11 [temp.inst]p3:
10460 // Unless a function template specialization has been explicitly
10461 // instantiated or explicitly specialized, the function template
10462 // specialization is implicitly instantiated when the specialization is
10463 // referenced in a context that requires a function definition to exist.
10464 //
10465 // We consider constexpr function templates to be referenced in a context
10466 // that requires a definition to exist whenever they are referenced.
10467 //
10468 // FIXME: This instantiates constexpr functions too frequently. If this is
10469 // really an unevaluated context (and we're not just in the definition of a
10470 // function template or overload resolution or other cases which we
10471 // incorrectly consider to be unevaluated contexts), and we're not in a
10472 // subexpression which we actually need to evaluate (for instance, a
10473 // template argument, array bound or an expression in a braced-init-list),
10474 // we are not permitted to instantiate this constexpr function definition.
10475 //
10476 // FIXME: This also implicitly defines special members too frequently. They
10477 // are only supposed to be implicitly defined if they are odr-used, but they
10478 // are not odr-used from constant expressions in unevaluated contexts.
10479 // However, they cannot be referenced if they are deleted, and they are
10480 // deleted whenever the implicit definition of the special member would
10481 // fail.
10482 if (!Func->isConstexpr() || Func->getBody())
10483 return;
10484 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
10485 if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
10486 return;
10487 }
10488
10489 // Note that this declaration has been used.
10490 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
10491 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
10492 if (Constructor->isDefaultConstructor()) {
10493 if (Constructor->isTrivial())
10494 return;
10495 if (!Constructor->isUsed(false))
10496 DefineImplicitDefaultConstructor(Loc, Constructor);
10497 } else if (Constructor->isCopyConstructor()) {
10498 if (!Constructor->isUsed(false))
10499 DefineImplicitCopyConstructor(Loc, Constructor);
10500 } else if (Constructor->isMoveConstructor()) {
10501 if (!Constructor->isUsed(false))
10502 DefineImplicitMoveConstructor(Loc, Constructor);
10503 }
10504 } else if (Constructor->getInheritedConstructor()) {
10505 if (!Constructor->isUsed(false))
10506 DefineInheritingConstructor(Loc, Constructor);
10507 }
10508
10509 MarkVTableUsed(Loc, Constructor->getParent());
10510 } else if (CXXDestructorDecl *Destructor =
10511 dyn_cast<CXXDestructorDecl>(Func)) {
10512 if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
10513 !Destructor->isUsed(false))
10514 DefineImplicitDestructor(Loc, Destructor);
10515 if (Destructor->isVirtual())
10516 MarkVTableUsed(Loc, Destructor->getParent());
10517 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
10518 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
10519 MethodDecl->isOverloadedOperator() &&
10520 MethodDecl->getOverloadedOperator() == OO_Equal) {
10521 if (!MethodDecl->isUsed(false)) {
10522 if (MethodDecl->isCopyAssignmentOperator())
10523 DefineImplicitCopyAssignment(Loc, MethodDecl);
10524 else
10525 DefineImplicitMoveAssignment(Loc, MethodDecl);
10526 }
10527 } else if (isa<CXXConversionDecl>(MethodDecl) &&
10528 MethodDecl->getParent()->isLambda()) {
10529 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
10530 if (Conversion->isLambdaToBlockPointerConversion())
10531 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
10532 else
10533 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
10534 } else if (MethodDecl->isVirtual())
10535 MarkVTableUsed(Loc, MethodDecl->getParent());
10536 }
10537
10538 // Recursive functions should be marked when used from another function.
10539 // FIXME: Is this really right?
10540 if (CurContext == Func) return;
10541
10542 // Resolve the exception specification for any function which is
10543 // used: CodeGen will need it.
10544 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
10545 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
10546 ResolveExceptionSpec(Loc, FPT);
10547
10548 // Implicit instantiation of function templates and member functions of
10549 // class templates.
10550 if (Func->isImplicitlyInstantiable()) {
10551 bool AlreadyInstantiated = false;
10552 SourceLocation PointOfInstantiation = Loc;
10553 if (FunctionTemplateSpecializationInfo *SpecInfo
10554 = Func->getTemplateSpecializationInfo()) {
10555 if (SpecInfo->getPointOfInstantiation().isInvalid())
10556 SpecInfo->setPointOfInstantiation(Loc);
10557 else if (SpecInfo->getTemplateSpecializationKind()
10558 == TSK_ImplicitInstantiation) {
10559 AlreadyInstantiated = true;
10560 PointOfInstantiation = SpecInfo->getPointOfInstantiation();
10561 }
10562 } else if (MemberSpecializationInfo *MSInfo
10563 = Func->getMemberSpecializationInfo()) {
10564 if (MSInfo->getPointOfInstantiation().isInvalid())
10565 MSInfo->setPointOfInstantiation(Loc);
10566 else if (MSInfo->getTemplateSpecializationKind()
10567 == TSK_ImplicitInstantiation) {
10568 AlreadyInstantiated = true;
10569 PointOfInstantiation = MSInfo->getPointOfInstantiation();
10570 }
10571 }
10572
10573 if (!AlreadyInstantiated || Func->isConstexpr()) {
10574 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
10575 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
10576 PendingLocalImplicitInstantiations.push_back(
10577 std::make_pair(Func, PointOfInstantiation));
10578 else if (Func->isConstexpr())
10579 // Do not defer instantiations of constexpr functions, to avoid the
10580 // expression evaluator needing to call back into Sema if it sees a
10581 // call to such a function.
10582 InstantiateFunctionDefinition(PointOfInstantiation, Func);
10583 else {
10584 PendingInstantiations.push_back(std::make_pair(Func,
10585 PointOfInstantiation));
10586 // Notify the consumer that a function was implicitly instantiated.
10587 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
10588 }
10589 }
10590 } else {
10591 // Walk redefinitions, as some of them may be instantiable.
10592 for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
10593 e(Func->redecls_end()); i != e; ++i) {
10594 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
10595 MarkFunctionReferenced(Loc, *i);
10596 }
10597 }
10598
10599 // Keep track of used but undefined functions.
10600 if (!Func->isDefined()) {
10601 if (mightHaveNonExternalLinkage(Func))
10602 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
10603 else if (Func->getMostRecentDecl()->isInlined() &&
10604 (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
10605 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
10606 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
10607 }
10608
10609 // Normally the must current decl is marked used while processing the use and
10610 // any subsequent decls are marked used by decl merging. This fails with
10611 // template instantiation since marking can happen at the end of the file
10612 // and, because of the two phase lookup, this function is called with at
10613 // decl in the middle of a decl chain. We loop to maintain the invariant
10614 // that once a decl is used, all decls after it are also used.
10615 for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
10616 F->setUsed(true);
10617 if (F == Func)
10618 break;
10619 }
10620 }
10621
10622 static void
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,VarDecl * var,DeclContext * DC)10623 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
10624 VarDecl *var, DeclContext *DC) {
10625 DeclContext *VarDC = var->getDeclContext();
10626
10627 // If the parameter still belongs to the translation unit, then
10628 // we're actually just using one parameter in the declaration of
10629 // the next.
10630 if (isa<ParmVarDecl>(var) &&
10631 isa<TranslationUnitDecl>(VarDC))
10632 return;
10633
10634 // For C code, don't diagnose about capture if we're not actually in code
10635 // right now; it's impossible to write a non-constant expression outside of
10636 // function context, so we'll get other (more useful) diagnostics later.
10637 //
10638 // For C++, things get a bit more nasty... it would be nice to suppress this
10639 // diagnostic for certain cases like using a local variable in an array bound
10640 // for a member of a local class, but the correct predicate is not obvious.
10641 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
10642 return;
10643
10644 if (isa<CXXMethodDecl>(VarDC) &&
10645 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
10646 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
10647 << var->getIdentifier();
10648 } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
10649 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
10650 << var->getIdentifier() << fn->getDeclName();
10651 } else if (isa<BlockDecl>(VarDC)) {
10652 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
10653 << var->getIdentifier();
10654 } else {
10655 // FIXME: Is there any other context where a local variable can be
10656 // declared?
10657 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
10658 << var->getIdentifier();
10659 }
10660
10661 S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
10662 << var->getIdentifier();
10663
10664 // FIXME: Add additional diagnostic info about class etc. which prevents
10665 // capture.
10666 }
10667
10668 /// \brief Capture the given variable in the given lambda expression.
captureInLambda(Sema & S,LambdaScopeInfo * LSI,VarDecl * Var,QualType FieldType,QualType DeclRefType,SourceLocation Loc,bool RefersToEnclosingLocal)10669 static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
10670 VarDecl *Var, QualType FieldType,
10671 QualType DeclRefType,
10672 SourceLocation Loc,
10673 bool RefersToEnclosingLocal) {
10674 CXXRecordDecl *Lambda = LSI->Lambda;
10675
10676 // Build the non-static data member.
10677 FieldDecl *Field
10678 = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
10679 S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
10680 0, false, ICIS_NoInit);
10681 Field->setImplicit(true);
10682 Field->setAccess(AS_private);
10683 Lambda->addDecl(Field);
10684
10685 // C++11 [expr.prim.lambda]p21:
10686 // When the lambda-expression is evaluated, the entities that
10687 // are captured by copy are used to direct-initialize each
10688 // corresponding non-static data member of the resulting closure
10689 // object. (For array members, the array elements are
10690 // direct-initialized in increasing subscript order.) These
10691 // initializations are performed in the (unspecified) order in
10692 // which the non-static data members are declared.
10693
10694 // Introduce a new evaluation context for the initialization, so
10695 // that temporaries introduced as part of the capture are retained
10696 // to be re-"exported" from the lambda expression itself.
10697 S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
10698
10699 // C++ [expr.prim.labda]p12:
10700 // An entity captured by a lambda-expression is odr-used (3.2) in
10701 // the scope containing the lambda-expression.
10702 Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
10703 DeclRefType, VK_LValue, Loc);
10704 Var->setReferenced(true);
10705 Var->setUsed(true);
10706
10707 // When the field has array type, create index variables for each
10708 // dimension of the array. We use these index variables to subscript
10709 // the source array, and other clients (e.g., CodeGen) will perform
10710 // the necessary iteration with these index variables.
10711 SmallVector<VarDecl *, 4> IndexVariables;
10712 QualType BaseType = FieldType;
10713 QualType SizeType = S.Context.getSizeType();
10714 LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
10715 while (const ConstantArrayType *Array
10716 = S.Context.getAsConstantArrayType(BaseType)) {
10717 // Create the iteration variable for this array index.
10718 IdentifierInfo *IterationVarName = 0;
10719 {
10720 SmallString<8> Str;
10721 llvm::raw_svector_ostream OS(Str);
10722 OS << "__i" << IndexVariables.size();
10723 IterationVarName = &S.Context.Idents.get(OS.str());
10724 }
10725 VarDecl *IterationVar
10726 = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
10727 IterationVarName, SizeType,
10728 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
10729 SC_None, SC_None);
10730 IndexVariables.push_back(IterationVar);
10731 LSI->ArrayIndexVars.push_back(IterationVar);
10732
10733 // Create a reference to the iteration variable.
10734 ExprResult IterationVarRef
10735 = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
10736 assert(!IterationVarRef.isInvalid() &&
10737 "Reference to invented variable cannot fail!");
10738 IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
10739 assert(!IterationVarRef.isInvalid() &&
10740 "Conversion of invented variable cannot fail!");
10741
10742 // Subscript the array with this iteration variable.
10743 ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
10744 Ref, Loc, IterationVarRef.take(), Loc);
10745 if (Subscript.isInvalid()) {
10746 S.CleanupVarDeclMarking();
10747 S.DiscardCleanupsInEvaluationContext();
10748 S.PopExpressionEvaluationContext();
10749 return ExprError();
10750 }
10751
10752 Ref = Subscript.take();
10753 BaseType = Array->getElementType();
10754 }
10755
10756 // Construct the entity that we will be initializing. For an array, this
10757 // will be first element in the array, which may require several levels
10758 // of array-subscript entities.
10759 SmallVector<InitializedEntity, 4> Entities;
10760 Entities.reserve(1 + IndexVariables.size());
10761 Entities.push_back(
10762 InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
10763 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
10764 Entities.push_back(InitializedEntity::InitializeElement(S.Context,
10765 0,
10766 Entities.back()));
10767
10768 InitializationKind InitKind
10769 = InitializationKind::CreateDirect(Loc, Loc, Loc);
10770 InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
10771 ExprResult Result(true);
10772 if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
10773 Result = Init.Perform(S, Entities.back(), InitKind, Ref);
10774
10775 // If this initialization requires any cleanups (e.g., due to a
10776 // default argument to a copy constructor), note that for the
10777 // lambda.
10778 if (S.ExprNeedsCleanups)
10779 LSI->ExprNeedsCleanups = true;
10780
10781 // Exit the expression evaluation context used for the capture.
10782 S.CleanupVarDeclMarking();
10783 S.DiscardCleanupsInEvaluationContext();
10784 S.PopExpressionEvaluationContext();
10785 return Result;
10786 }
10787
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType)10788 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10789 TryCaptureKind Kind, SourceLocation EllipsisLoc,
10790 bool BuildAndDiagnose,
10791 QualType &CaptureType,
10792 QualType &DeclRefType) {
10793 bool Nested = false;
10794
10795 DeclContext *DC = CurContext;
10796 if (Var->getDeclContext() == DC) return true;
10797 if (!Var->hasLocalStorage()) return true;
10798
10799 bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10800
10801 // Walk up the stack to determine whether we can capture the variable,
10802 // performing the "simple" checks that don't depend on type. We stop when
10803 // we've either hit the declared scope of the variable or find an existing
10804 // capture of that variable.
10805 CaptureType = Var->getType();
10806 DeclRefType = CaptureType.getNonReferenceType();
10807 bool Explicit = (Kind != TryCapture_Implicit);
10808 unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10809 do {
10810 // Only block literals and lambda expressions can capture; other
10811 // scopes don't work.
10812 DeclContext *ParentDC;
10813 if (isa<BlockDecl>(DC))
10814 ParentDC = DC->getParent();
10815 else if (isa<CXXMethodDecl>(DC) &&
10816 cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10817 cast<CXXRecordDecl>(DC->getParent())->isLambda())
10818 ParentDC = DC->getParent()->getParent();
10819 else {
10820 if (BuildAndDiagnose)
10821 diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10822 return true;
10823 }
10824
10825 CapturingScopeInfo *CSI =
10826 cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10827
10828 // Check whether we've already captured it.
10829 if (CSI->CaptureMap.count(Var)) {
10830 // If we found a capture, any subcaptures are nested.
10831 Nested = true;
10832
10833 // Retrieve the capture type for this variable.
10834 CaptureType = CSI->getCapture(Var).getCaptureType();
10835
10836 // Compute the type of an expression that refers to this variable.
10837 DeclRefType = CaptureType.getNonReferenceType();
10838
10839 const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10840 if (Cap.isCopyCapture() &&
10841 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10842 DeclRefType.addConst();
10843 break;
10844 }
10845
10846 bool IsBlock = isa<BlockScopeInfo>(CSI);
10847 bool IsLambda = !IsBlock;
10848
10849 // Lambdas are not allowed to capture unnamed variables
10850 // (e.g. anonymous unions).
10851 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10852 // assuming that's the intent.
10853 if (IsLambda && !Var->getDeclName()) {
10854 if (BuildAndDiagnose) {
10855 Diag(Loc, diag::err_lambda_capture_anonymous_var);
10856 Diag(Var->getLocation(), diag::note_declared_at);
10857 }
10858 return true;
10859 }
10860
10861 // Prohibit variably-modified types; they're difficult to deal with.
10862 if (Var->getType()->isVariablyModifiedType()) {
10863 if (BuildAndDiagnose) {
10864 if (IsBlock)
10865 Diag(Loc, diag::err_ref_vm_type);
10866 else
10867 Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10868 Diag(Var->getLocation(), diag::note_previous_decl)
10869 << Var->getDeclName();
10870 }
10871 return true;
10872 }
10873 // Prohibit structs with flexible array members too.
10874 // We cannot capture what is in the tail end of the struct.
10875 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
10876 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
10877 if (BuildAndDiagnose) {
10878 if (IsBlock)
10879 Diag(Loc, diag::err_ref_flexarray_type);
10880 else
10881 Diag(Loc, diag::err_lambda_capture_flexarray_type)
10882 << Var->getDeclName();
10883 Diag(Var->getLocation(), diag::note_previous_decl)
10884 << Var->getDeclName();
10885 }
10886 return true;
10887 }
10888 }
10889 // Lambdas are not allowed to capture __block variables; they don't
10890 // support the expected semantics.
10891 if (IsLambda && HasBlocksAttr) {
10892 if (BuildAndDiagnose) {
10893 Diag(Loc, diag::err_lambda_capture_block)
10894 << Var->getDeclName();
10895 Diag(Var->getLocation(), diag::note_previous_decl)
10896 << Var->getDeclName();
10897 }
10898 return true;
10899 }
10900
10901 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10902 // No capture-default
10903 if (BuildAndDiagnose) {
10904 Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10905 Diag(Var->getLocation(), diag::note_previous_decl)
10906 << Var->getDeclName();
10907 Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10908 diag::note_lambda_decl);
10909 }
10910 return true;
10911 }
10912
10913 FunctionScopesIndex--;
10914 DC = ParentDC;
10915 Explicit = false;
10916 } while (!Var->getDeclContext()->Equals(DC));
10917
10918 // Walk back down the scope stack, computing the type of the capture at
10919 // each step, checking type-specific requirements, and adding captures if
10920 // requested.
10921 for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10922 ++I) {
10923 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10924
10925 // Compute the type of the capture and of a reference to the capture within
10926 // this scope.
10927 if (isa<BlockScopeInfo>(CSI)) {
10928 Expr *CopyExpr = 0;
10929 bool ByRef = false;
10930
10931 // Blocks are not allowed to capture arrays.
10932 if (CaptureType->isArrayType()) {
10933 if (BuildAndDiagnose) {
10934 Diag(Loc, diag::err_ref_array_type);
10935 Diag(Var->getLocation(), diag::note_previous_decl)
10936 << Var->getDeclName();
10937 }
10938 return true;
10939 }
10940
10941 // Forbid the block-capture of autoreleasing variables.
10942 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10943 if (BuildAndDiagnose) {
10944 Diag(Loc, diag::err_arc_autoreleasing_capture)
10945 << /*block*/ 0;
10946 Diag(Var->getLocation(), diag::note_previous_decl)
10947 << Var->getDeclName();
10948 }
10949 return true;
10950 }
10951
10952 if (HasBlocksAttr || CaptureType->isReferenceType()) {
10953 // Block capture by reference does not change the capture or
10954 // declaration reference types.
10955 ByRef = true;
10956 } else {
10957 // Block capture by copy introduces 'const'.
10958 CaptureType = CaptureType.getNonReferenceType().withConst();
10959 DeclRefType = CaptureType;
10960
10961 if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10962 if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10963 // The capture logic needs the destructor, so make sure we mark it.
10964 // Usually this is unnecessary because most local variables have
10965 // their destructors marked at declaration time, but parameters are
10966 // an exception because it's technically only the call site that
10967 // actually requires the destructor.
10968 if (isa<ParmVarDecl>(Var))
10969 FinalizeVarWithDestructor(Var, Record);
10970
10971 // According to the blocks spec, the capture of a variable from
10972 // the stack requires a const copy constructor. This is not true
10973 // of the copy/move done to move a __block variable to the heap.
10974 Expr *DeclRef = new (Context) DeclRefExpr(Var, Nested,
10975 DeclRefType.withConst(),
10976 VK_LValue, Loc);
10977
10978 ExprResult Result
10979 = PerformCopyInitialization(
10980 InitializedEntity::InitializeBlock(Var->getLocation(),
10981 CaptureType, false),
10982 Loc, Owned(DeclRef));
10983
10984 // Build a full-expression copy expression if initialization
10985 // succeeded and used a non-trivial constructor. Recover from
10986 // errors by pretending that the copy isn't necessary.
10987 if (!Result.isInvalid() &&
10988 !cast<CXXConstructExpr>(Result.get())->getConstructor()
10989 ->isTrivial()) {
10990 Result = MaybeCreateExprWithCleanups(Result);
10991 CopyExpr = Result.take();
10992 }
10993 }
10994 }
10995 }
10996
10997 // Actually capture the variable.
10998 if (BuildAndDiagnose)
10999 CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
11000 SourceLocation(), CaptureType, CopyExpr);
11001 Nested = true;
11002 continue;
11003 }
11004
11005 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
11006
11007 // Determine whether we are capturing by reference or by value.
11008 bool ByRef = false;
11009 if (I == N - 1 && Kind != TryCapture_Implicit) {
11010 ByRef = (Kind == TryCapture_ExplicitByRef);
11011 } else {
11012 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
11013 }
11014
11015 // Compute the type of the field that will capture this variable.
11016 if (ByRef) {
11017 // C++11 [expr.prim.lambda]p15:
11018 // An entity is captured by reference if it is implicitly or
11019 // explicitly captured but not captured by copy. It is
11020 // unspecified whether additional unnamed non-static data
11021 // members are declared in the closure type for entities
11022 // captured by reference.
11023 //
11024 // FIXME: It is not clear whether we want to build an lvalue reference
11025 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
11026 // to do the former, while EDG does the latter. Core issue 1249 will
11027 // clarify, but for now we follow GCC because it's a more permissive and
11028 // easily defensible position.
11029 CaptureType = Context.getLValueReferenceType(DeclRefType);
11030 } else {
11031 // C++11 [expr.prim.lambda]p14:
11032 // For each entity captured by copy, an unnamed non-static
11033 // data member is declared in the closure type. The
11034 // declaration order of these members is unspecified. The type
11035 // of such a data member is the type of the corresponding
11036 // captured entity if the entity is not a reference to an
11037 // object, or the referenced type otherwise. [Note: If the
11038 // captured entity is a reference to a function, the
11039 // corresponding data member is also a reference to a
11040 // function. - end note ]
11041 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
11042 if (!RefType->getPointeeType()->isFunctionType())
11043 CaptureType = RefType->getPointeeType();
11044 }
11045
11046 // Forbid the lambda copy-capture of autoreleasing variables.
11047 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11048 if (BuildAndDiagnose) {
11049 Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
11050 Diag(Var->getLocation(), diag::note_previous_decl)
11051 << Var->getDeclName();
11052 }
11053 return true;
11054 }
11055 }
11056
11057 // Capture this variable in the lambda.
11058 Expr *CopyExpr = 0;
11059 if (BuildAndDiagnose) {
11060 ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
11061 DeclRefType, Loc,
11062 Nested);
11063 if (!Result.isInvalid())
11064 CopyExpr = Result.take();
11065 }
11066
11067 // Compute the type of a reference to this captured variable.
11068 if (ByRef)
11069 DeclRefType = CaptureType.getNonReferenceType();
11070 else {
11071 // C++ [expr.prim.lambda]p5:
11072 // The closure type for a lambda-expression has a public inline
11073 // function call operator [...]. This function call operator is
11074 // declared const (9.3.1) if and only if the lambda-expression’s
11075 // parameter-declaration-clause is not followed by mutable.
11076 DeclRefType = CaptureType.getNonReferenceType();
11077 if (!LSI->Mutable && !CaptureType->isReferenceType())
11078 DeclRefType.addConst();
11079 }
11080
11081 // Add the capture.
11082 if (BuildAndDiagnose)
11083 CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
11084 EllipsisLoc, CaptureType, CopyExpr);
11085 Nested = true;
11086 }
11087
11088 return false;
11089 }
11090
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)11091 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
11092 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
11093 QualType CaptureType;
11094 QualType DeclRefType;
11095 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
11096 /*BuildAndDiagnose=*/true, CaptureType,
11097 DeclRefType);
11098 }
11099
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)11100 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
11101 QualType CaptureType;
11102 QualType DeclRefType;
11103
11104 // Determine whether we can capture this variable.
11105 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
11106 /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
11107 return QualType();
11108
11109 return DeclRefType;
11110 }
11111
MarkVarDeclODRUsed(Sema & SemaRef,VarDecl * Var,SourceLocation Loc)11112 static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
11113 SourceLocation Loc) {
11114 // Keep track of used but undefined variables.
11115 // FIXME: We shouldn't suppress this warning for static data members.
11116 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
11117 Var->getLinkage() != ExternalLinkage &&
11118 !(Var->isStaticDataMember() && Var->hasInit())) {
11119 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
11120 if (old.isInvalid()) old = Loc;
11121 }
11122
11123 SemaRef.tryCaptureVariable(Var, Loc);
11124
11125 Var->setUsed(true);
11126 }
11127
UpdateMarkingForLValueToRValue(Expr * E)11128 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
11129 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
11130 // an object that satisfies the requirements for appearing in a
11131 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
11132 // is immediately applied." This function handles the lvalue-to-rvalue
11133 // conversion part.
11134 MaybeODRUseExprs.erase(E->IgnoreParens());
11135 }
11136
ActOnConstantExpression(ExprResult Res)11137 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
11138 if (!Res.isUsable())
11139 return Res;
11140
11141 // If a constant-expression is a reference to a variable where we delay
11142 // deciding whether it is an odr-use, just assume we will apply the
11143 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
11144 // (a non-type template argument), we have special handling anyway.
11145 UpdateMarkingForLValueToRValue(Res.get());
11146 return Res;
11147 }
11148
CleanupVarDeclMarking()11149 void Sema::CleanupVarDeclMarking() {
11150 for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
11151 e = MaybeODRUseExprs.end();
11152 i != e; ++i) {
11153 VarDecl *Var;
11154 SourceLocation Loc;
11155 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
11156 Var = cast<VarDecl>(DRE->getDecl());
11157 Loc = DRE->getLocation();
11158 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
11159 Var = cast<VarDecl>(ME->getMemberDecl());
11160 Loc = ME->getMemberLoc();
11161 } else {
11162 llvm_unreachable("Unexpcted expression");
11163 }
11164
11165 MarkVarDeclODRUsed(*this, Var, Loc);
11166 }
11167
11168 MaybeODRUseExprs.clear();
11169 }
11170
11171 // Mark a VarDecl referenced, and perform the necessary handling to compute
11172 // odr-uses.
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E)11173 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
11174 VarDecl *Var, Expr *E) {
11175 Var->setReferenced();
11176
11177 if (!IsPotentiallyEvaluatedContext(SemaRef))
11178 return;
11179
11180 // Implicit instantiation of static data members of class templates.
11181 if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
11182 MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
11183 assert(MSInfo && "Missing member specialization information?");
11184 bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
11185 if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
11186 (!AlreadyInstantiated ||
11187 Var->isUsableInConstantExpressions(SemaRef.Context))) {
11188 if (!AlreadyInstantiated) {
11189 // This is a modification of an existing AST node. Notify listeners.
11190 if (ASTMutationListener *L = SemaRef.getASTMutationListener())
11191 L->StaticDataMemberInstantiated(Var);
11192 MSInfo->setPointOfInstantiation(Loc);
11193 }
11194 SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
11195 if (Var->isUsableInConstantExpressions(SemaRef.Context))
11196 // Do not defer instantiations of variables which could be used in a
11197 // constant expression.
11198 SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
11199 else
11200 SemaRef.PendingInstantiations.push_back(
11201 std::make_pair(Var, PointOfInstantiation));
11202 }
11203 }
11204
11205 // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
11206 // the requirements for appearing in a constant expression (5.19) and, if
11207 // it is an object, the lvalue-to-rvalue conversion (4.1)
11208 // is immediately applied." We check the first part here, and
11209 // Sema::UpdateMarkingForLValueToRValue deals with the second part.
11210 // Note that we use the C++11 definition everywhere because nothing in
11211 // C++03 depends on whether we get the C++03 version correct. The second
11212 // part does not apply to references, since they are not objects.
11213 const VarDecl *DefVD;
11214 if (E && !isa<ParmVarDecl>(Var) &&
11215 Var->isUsableInConstantExpressions(SemaRef.Context) &&
11216 Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE()) {
11217 if (!Var->getType()->isReferenceType())
11218 SemaRef.MaybeODRUseExprs.insert(E);
11219 } else
11220 MarkVarDeclODRUsed(SemaRef, Var, Loc);
11221 }
11222
11223 /// \brief Mark a variable referenced, and check whether it is odr-used
11224 /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
11225 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)11226 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
11227 DoMarkVarDeclReferenced(*this, Loc, Var, 0);
11228 }
11229
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E,bool OdrUse)11230 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
11231 Decl *D, Expr *E, bool OdrUse) {
11232 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
11233 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
11234 return;
11235 }
11236
11237 SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
11238
11239 // If this is a call to a method via a cast, also mark the method in the
11240 // derived class used in case codegen can devirtualize the call.
11241 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
11242 if (!ME)
11243 return;
11244 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
11245 if (!MD)
11246 return;
11247 const Expr *Base = ME->getBase();
11248 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
11249 if (!MostDerivedClassDecl)
11250 return;
11251 CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
11252 if (!DM || DM->isPure())
11253 return;
11254 SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
11255 }
11256
11257 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
MarkDeclRefReferenced(DeclRefExpr * E)11258 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
11259 // TODO: update this with DR# once a defect report is filed.
11260 // C++11 defect. The address of a pure member should not be an ODR use, even
11261 // if it's a qualified reference.
11262 bool OdrUse = true;
11263 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
11264 if (Method->isVirtual())
11265 OdrUse = false;
11266 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
11267 }
11268
11269 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)11270 void Sema::MarkMemberReferenced(MemberExpr *E) {
11271 // C++11 [basic.def.odr]p2:
11272 // A non-overloaded function whose name appears as a potentially-evaluated
11273 // expression or a member of a set of candidate functions, if selected by
11274 // overload resolution when referred to from a potentially-evaluated
11275 // expression, is odr-used, unless it is a pure virtual function and its
11276 // name is not explicitly qualified.
11277 bool OdrUse = true;
11278 if (!E->hasQualifier()) {
11279 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
11280 if (Method->isPure())
11281 OdrUse = false;
11282 }
11283 SourceLocation Loc = E->getMemberLoc().isValid() ?
11284 E->getMemberLoc() : E->getLocStart();
11285 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
11286 }
11287
11288 /// \brief Perform marking for a reference to an arbitrary declaration. It
11289 /// marks the declaration referenced, and performs odr-use checking for functions
11290 /// and variables. This method should not be used when building an normal
11291 /// expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D,bool OdrUse)11292 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
11293 if (OdrUse) {
11294 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
11295 MarkVariableReferenced(Loc, VD);
11296 return;
11297 }
11298 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
11299 MarkFunctionReferenced(Loc, FD);
11300 return;
11301 }
11302 }
11303 D->setReferenced();
11304 }
11305
11306 namespace {
11307 // Mark all of the declarations referenced
11308 // FIXME: Not fully implemented yet! We need to have a better understanding
11309 // of when we're entering
11310 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
11311 Sema &S;
11312 SourceLocation Loc;
11313
11314 public:
11315 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
11316
MarkReferencedDecls(Sema & S,SourceLocation Loc)11317 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
11318
11319 bool TraverseTemplateArgument(const TemplateArgument &Arg);
11320 bool TraverseRecordType(RecordType *T);
11321 };
11322 }
11323
TraverseTemplateArgument(const TemplateArgument & Arg)11324 bool MarkReferencedDecls::TraverseTemplateArgument(
11325 const TemplateArgument &Arg) {
11326 if (Arg.getKind() == TemplateArgument::Declaration) {
11327 if (Decl *D = Arg.getAsDecl())
11328 S.MarkAnyDeclReferenced(Loc, D, true);
11329 }
11330
11331 return Inherited::TraverseTemplateArgument(Arg);
11332 }
11333
TraverseRecordType(RecordType * T)11334 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
11335 if (ClassTemplateSpecializationDecl *Spec
11336 = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
11337 const TemplateArgumentList &Args = Spec->getTemplateArgs();
11338 return TraverseTemplateArguments(Args.data(), Args.size());
11339 }
11340
11341 return true;
11342 }
11343
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)11344 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
11345 MarkReferencedDecls Marker(*this, Loc);
11346 Marker.TraverseType(Context.getCanonicalType(T));
11347 }
11348
11349 namespace {
11350 /// \brief Helper class that marks all of the declarations referenced by
11351 /// potentially-evaluated subexpressions as "referenced".
11352 class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
11353 Sema &S;
11354 bool SkipLocalVariables;
11355
11356 public:
11357 typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
11358
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables)11359 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
11360 : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
11361
VisitDeclRefExpr(DeclRefExpr * E)11362 void VisitDeclRefExpr(DeclRefExpr *E) {
11363 // If we were asked not to visit local variables, don't.
11364 if (SkipLocalVariables) {
11365 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
11366 if (VD->hasLocalStorage())
11367 return;
11368 }
11369
11370 S.MarkDeclRefReferenced(E);
11371 }
11372
VisitMemberExpr(MemberExpr * E)11373 void VisitMemberExpr(MemberExpr *E) {
11374 S.MarkMemberReferenced(E);
11375 Inherited::VisitMemberExpr(E);
11376 }
11377
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)11378 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
11379 S.MarkFunctionReferenced(E->getLocStart(),
11380 const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
11381 Visit(E->getSubExpr());
11382 }
11383
VisitCXXNewExpr(CXXNewExpr * E)11384 void VisitCXXNewExpr(CXXNewExpr *E) {
11385 if (E->getOperatorNew())
11386 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
11387 if (E->getOperatorDelete())
11388 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11389 Inherited::VisitCXXNewExpr(E);
11390 }
11391
VisitCXXDeleteExpr(CXXDeleteExpr * E)11392 void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
11393 if (E->getOperatorDelete())
11394 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11395 QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
11396 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11397 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11398 S.MarkFunctionReferenced(E->getLocStart(),
11399 S.LookupDestructor(Record));
11400 }
11401
11402 Inherited::VisitCXXDeleteExpr(E);
11403 }
11404
VisitCXXConstructExpr(CXXConstructExpr * E)11405 void VisitCXXConstructExpr(CXXConstructExpr *E) {
11406 S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
11407 Inherited::VisitCXXConstructExpr(E);
11408 }
11409
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * E)11410 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11411 Visit(E->getExpr());
11412 }
11413
VisitImplicitCastExpr(ImplicitCastExpr * E)11414 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11415 Inherited::VisitImplicitCastExpr(E);
11416
11417 if (E->getCastKind() == CK_LValueToRValue)
11418 S.UpdateMarkingForLValueToRValue(E->getSubExpr());
11419 }
11420 };
11421 }
11422
11423 /// \brief Mark any declarations that appear within this expression or any
11424 /// potentially-evaluated subexpressions as "referenced".
11425 ///
11426 /// \param SkipLocalVariables If true, don't mark local variables as
11427 /// 'referenced'.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables)11428 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
11429 bool SkipLocalVariables) {
11430 EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
11431 }
11432
11433 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
11434 /// of the program being compiled.
11435 ///
11436 /// This routine emits the given diagnostic when the code currently being
11437 /// type-checked is "potentially evaluated", meaning that there is a
11438 /// possibility that the code will actually be executable. Code in sizeof()
11439 /// expressions, code used only during overload resolution, etc., are not
11440 /// potentially evaluated. This routine will suppress such diagnostics or,
11441 /// in the absolutely nutty case of potentially potentially evaluated
11442 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
11443 /// later.
11444 ///
11445 /// This routine should be used for all diagnostics that describe the run-time
11446 /// behavior of a program, such as passing a non-POD value through an ellipsis.
11447 /// Failure to do so will likely result in spurious diagnostics or failures
11448 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)11449 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
11450 const PartialDiagnostic &PD) {
11451 switch (ExprEvalContexts.back().Context) {
11452 case Unevaluated:
11453 // The argument will never be evaluated, so don't complain.
11454 break;
11455
11456 case ConstantEvaluated:
11457 // Relevant diagnostics should be produced by constant evaluation.
11458 break;
11459
11460 case PotentiallyEvaluated:
11461 case PotentiallyEvaluatedIfUsed:
11462 if (Statement && getCurFunctionOrMethodDecl()) {
11463 FunctionScopes.back()->PossiblyUnreachableDiags.
11464 push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
11465 }
11466 else
11467 Diag(Loc, PD);
11468
11469 return true;
11470 }
11471
11472 return false;
11473 }
11474
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)11475 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
11476 CallExpr *CE, FunctionDecl *FD) {
11477 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
11478 return false;
11479
11480 // If we're inside a decltype's expression, don't check for a valid return
11481 // type or construct temporaries until we know whether this is the last call.
11482 if (ExprEvalContexts.back().IsDecltype) {
11483 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
11484 return false;
11485 }
11486
11487 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
11488 FunctionDecl *FD;
11489 CallExpr *CE;
11490
11491 public:
11492 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
11493 : FD(FD), CE(CE) { }
11494
11495 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
11496 if (!FD) {
11497 S.Diag(Loc, diag::err_call_incomplete_return)
11498 << T << CE->getSourceRange();
11499 return;
11500 }
11501
11502 S.Diag(Loc, diag::err_call_function_incomplete_return)
11503 << CE->getSourceRange() << FD->getDeclName() << T;
11504 S.Diag(FD->getLocation(),
11505 diag::note_function_with_incomplete_return_type_declared_here)
11506 << FD->getDeclName();
11507 }
11508 } Diagnoser(FD, CE);
11509
11510 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
11511 return true;
11512
11513 return false;
11514 }
11515
11516 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
11517 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)11518 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
11519 SourceLocation Loc;
11520
11521 unsigned diagnostic = diag::warn_condition_is_assignment;
11522 bool IsOrAssign = false;
11523
11524 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
11525 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
11526 return;
11527
11528 IsOrAssign = Op->getOpcode() == BO_OrAssign;
11529
11530 // Greylist some idioms by putting them into a warning subcategory.
11531 if (ObjCMessageExpr *ME
11532 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
11533 Selector Sel = ME->getSelector();
11534
11535 // self = [<foo> init...]
11536 if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
11537 diagnostic = diag::warn_condition_is_idiomatic_assignment;
11538
11539 // <foo> = [<bar> nextObject]
11540 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
11541 diagnostic = diag::warn_condition_is_idiomatic_assignment;
11542 }
11543
11544 Loc = Op->getOperatorLoc();
11545 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
11546 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
11547 return;
11548
11549 IsOrAssign = Op->getOperator() == OO_PipeEqual;
11550 Loc = Op->getOperatorLoc();
11551 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
11552 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
11553 else {
11554 // Not an assignment.
11555 return;
11556 }
11557
11558 Diag(Loc, diagnostic) << E->getSourceRange();
11559
11560 SourceLocation Open = E->getLocStart();
11561 SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
11562 Diag(Loc, diag::note_condition_assign_silence)
11563 << FixItHint::CreateInsertion(Open, "(")
11564 << FixItHint::CreateInsertion(Close, ")");
11565
11566 if (IsOrAssign)
11567 Diag(Loc, diag::note_condition_or_assign_to_comparison)
11568 << FixItHint::CreateReplacement(Loc, "!=");
11569 else
11570 Diag(Loc, diag::note_condition_assign_to_comparison)
11571 << FixItHint::CreateReplacement(Loc, "==");
11572 }
11573
11574 /// \brief Redundant parentheses over an equality comparison can indicate
11575 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)11576 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
11577 // Don't warn if the parens came from a macro.
11578 SourceLocation parenLoc = ParenE->getLocStart();
11579 if (parenLoc.isInvalid() || parenLoc.isMacroID())
11580 return;
11581 // Don't warn for dependent expressions.
11582 if (ParenE->isTypeDependent())
11583 return;
11584
11585 Expr *E = ParenE->IgnoreParens();
11586
11587 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
11588 if (opE->getOpcode() == BO_EQ &&
11589 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
11590 == Expr::MLV_Valid) {
11591 SourceLocation Loc = opE->getOperatorLoc();
11592
11593 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
11594 SourceRange ParenERange = ParenE->getSourceRange();
11595 Diag(Loc, diag::note_equality_comparison_silence)
11596 << FixItHint::CreateRemoval(ParenERange.getBegin())
11597 << FixItHint::CreateRemoval(ParenERange.getEnd());
11598 Diag(Loc, diag::note_equality_comparison_to_assign)
11599 << FixItHint::CreateReplacement(Loc, "=");
11600 }
11601 }
11602
CheckBooleanCondition(Expr * E,SourceLocation Loc)11603 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
11604 DiagnoseAssignmentAsCondition(E);
11605 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
11606 DiagnoseEqualityWithExtraParens(parenE);
11607
11608 ExprResult result = CheckPlaceholderExpr(E);
11609 if (result.isInvalid()) return ExprError();
11610 E = result.take();
11611
11612 if (!E->isTypeDependent()) {
11613 if (getLangOpts().CPlusPlus)
11614 return CheckCXXBooleanCondition(E); // C++ 6.4p4
11615
11616 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
11617 if (ERes.isInvalid())
11618 return ExprError();
11619 E = ERes.take();
11620
11621 QualType T = E->getType();
11622 if (!T->isScalarType()) { // C99 6.8.4.1p1
11623 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
11624 << T << E->getSourceRange();
11625 return ExprError();
11626 }
11627 }
11628
11629 return Owned(E);
11630 }
11631
ActOnBooleanCondition(Scope * S,SourceLocation Loc,Expr * SubExpr)11632 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
11633 Expr *SubExpr) {
11634 if (!SubExpr)
11635 return ExprError();
11636
11637 return CheckBooleanCondition(SubExpr, Loc);
11638 }
11639
11640 namespace {
11641 /// A visitor for rebuilding a call to an __unknown_any expression
11642 /// to have an appropriate type.
11643 struct RebuildUnknownAnyFunction
11644 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
11645
11646 Sema &S;
11647
RebuildUnknownAnyFunction__anona8222b7c0711::RebuildUnknownAnyFunction11648 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
11649
VisitStmt__anona8222b7c0711::RebuildUnknownAnyFunction11650 ExprResult VisitStmt(Stmt *S) {
11651 llvm_unreachable("unexpected statement!");
11652 }
11653
VisitExpr__anona8222b7c0711::RebuildUnknownAnyFunction11654 ExprResult VisitExpr(Expr *E) {
11655 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
11656 << E->getSourceRange();
11657 return ExprError();
11658 }
11659
11660 /// Rebuild an expression which simply semantically wraps another
11661 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anona8222b7c0711::RebuildUnknownAnyFunction11662 template <class T> ExprResult rebuildSugarExpr(T *E) {
11663 ExprResult SubResult = Visit(E->getSubExpr());
11664 if (SubResult.isInvalid()) return ExprError();
11665
11666 Expr *SubExpr = SubResult.take();
11667 E->setSubExpr(SubExpr);
11668 E->setType(SubExpr->getType());
11669 E->setValueKind(SubExpr->getValueKind());
11670 assert(E->getObjectKind() == OK_Ordinary);
11671 return E;
11672 }
11673
VisitParenExpr__anona8222b7c0711::RebuildUnknownAnyFunction11674 ExprResult VisitParenExpr(ParenExpr *E) {
11675 return rebuildSugarExpr(E);
11676 }
11677
VisitUnaryExtension__anona8222b7c0711::RebuildUnknownAnyFunction11678 ExprResult VisitUnaryExtension(UnaryOperator *E) {
11679 return rebuildSugarExpr(E);
11680 }
11681
VisitUnaryAddrOf__anona8222b7c0711::RebuildUnknownAnyFunction11682 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11683 ExprResult SubResult = Visit(E->getSubExpr());
11684 if (SubResult.isInvalid()) return ExprError();
11685
11686 Expr *SubExpr = SubResult.take();
11687 E->setSubExpr(SubExpr);
11688 E->setType(S.Context.getPointerType(SubExpr->getType()));
11689 assert(E->getValueKind() == VK_RValue);
11690 assert(E->getObjectKind() == OK_Ordinary);
11691 return E;
11692 }
11693
resolveDecl__anona8222b7c0711::RebuildUnknownAnyFunction11694 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
11695 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
11696
11697 E->setType(VD->getType());
11698
11699 assert(E->getValueKind() == VK_RValue);
11700 if (S.getLangOpts().CPlusPlus &&
11701 !(isa<CXXMethodDecl>(VD) &&
11702 cast<CXXMethodDecl>(VD)->isInstance()))
11703 E->setValueKind(VK_LValue);
11704
11705 return E;
11706 }
11707
VisitMemberExpr__anona8222b7c0711::RebuildUnknownAnyFunction11708 ExprResult VisitMemberExpr(MemberExpr *E) {
11709 return resolveDecl(E, E->getMemberDecl());
11710 }
11711
VisitDeclRefExpr__anona8222b7c0711::RebuildUnknownAnyFunction11712 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11713 return resolveDecl(E, E->getDecl());
11714 }
11715 };
11716 }
11717
11718 /// Given a function expression of unknown-any type, try to rebuild it
11719 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)11720 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
11721 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
11722 if (Result.isInvalid()) return ExprError();
11723 return S.DefaultFunctionArrayConversion(Result.take());
11724 }
11725
11726 namespace {
11727 /// A visitor for rebuilding an expression of type __unknown_anytype
11728 /// into one which resolves the type directly on the referring
11729 /// expression. Strict preservation of the original source
11730 /// structure is not a goal.
11731 struct RebuildUnknownAnyExpr
11732 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
11733
11734 Sema &S;
11735
11736 /// The current destination type.
11737 QualType DestType;
11738
RebuildUnknownAnyExpr__anona8222b7c0811::RebuildUnknownAnyExpr11739 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
11740 : S(S), DestType(CastType) {}
11741
VisitStmt__anona8222b7c0811::RebuildUnknownAnyExpr11742 ExprResult VisitStmt(Stmt *S) {
11743 llvm_unreachable("unexpected statement!");
11744 }
11745
VisitExpr__anona8222b7c0811::RebuildUnknownAnyExpr11746 ExprResult VisitExpr(Expr *E) {
11747 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11748 << E->getSourceRange();
11749 return ExprError();
11750 }
11751
11752 ExprResult VisitCallExpr(CallExpr *E);
11753 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
11754
11755 /// Rebuild an expression which simply semantically wraps another
11756 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anona8222b7c0811::RebuildUnknownAnyExpr11757 template <class T> ExprResult rebuildSugarExpr(T *E) {
11758 ExprResult SubResult = Visit(E->getSubExpr());
11759 if (SubResult.isInvalid()) return ExprError();
11760 Expr *SubExpr = SubResult.take();
11761 E->setSubExpr(SubExpr);
11762 E->setType(SubExpr->getType());
11763 E->setValueKind(SubExpr->getValueKind());
11764 assert(E->getObjectKind() == OK_Ordinary);
11765 return E;
11766 }
11767
VisitParenExpr__anona8222b7c0811::RebuildUnknownAnyExpr11768 ExprResult VisitParenExpr(ParenExpr *E) {
11769 return rebuildSugarExpr(E);
11770 }
11771
VisitUnaryExtension__anona8222b7c0811::RebuildUnknownAnyExpr11772 ExprResult VisitUnaryExtension(UnaryOperator *E) {
11773 return rebuildSugarExpr(E);
11774 }
11775
VisitUnaryAddrOf__anona8222b7c0811::RebuildUnknownAnyExpr11776 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11777 const PointerType *Ptr = DestType->getAs<PointerType>();
11778 if (!Ptr) {
11779 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
11780 << E->getSourceRange();
11781 return ExprError();
11782 }
11783 assert(E->getValueKind() == VK_RValue);
11784 assert(E->getObjectKind() == OK_Ordinary);
11785 E->setType(DestType);
11786
11787 // Build the sub-expression as if it were an object of the pointee type.
11788 DestType = Ptr->getPointeeType();
11789 ExprResult SubResult = Visit(E->getSubExpr());
11790 if (SubResult.isInvalid()) return ExprError();
11791 E->setSubExpr(SubResult.take());
11792 return E;
11793 }
11794
11795 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
11796
11797 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
11798
VisitMemberExpr__anona8222b7c0811::RebuildUnknownAnyExpr11799 ExprResult VisitMemberExpr(MemberExpr *E) {
11800 return resolveDecl(E, E->getMemberDecl());
11801 }
11802
VisitDeclRefExpr__anona8222b7c0811::RebuildUnknownAnyExpr11803 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11804 return resolveDecl(E, E->getDecl());
11805 }
11806 };
11807 }
11808
11809 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)11810 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
11811 Expr *CalleeExpr = E->getCallee();
11812
11813 enum FnKind {
11814 FK_MemberFunction,
11815 FK_FunctionPointer,
11816 FK_BlockPointer
11817 };
11818
11819 FnKind Kind;
11820 QualType CalleeType = CalleeExpr->getType();
11821 if (CalleeType == S.Context.BoundMemberTy) {
11822 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
11823 Kind = FK_MemberFunction;
11824 CalleeType = Expr::findBoundMemberType(CalleeExpr);
11825 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
11826 CalleeType = Ptr->getPointeeType();
11827 Kind = FK_FunctionPointer;
11828 } else {
11829 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
11830 Kind = FK_BlockPointer;
11831 }
11832 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
11833
11834 // Verify that this is a legal result type of a function.
11835 if (DestType->isArrayType() || DestType->isFunctionType()) {
11836 unsigned diagID = diag::err_func_returning_array_function;
11837 if (Kind == FK_BlockPointer)
11838 diagID = diag::err_block_returning_array_function;
11839
11840 S.Diag(E->getExprLoc(), diagID)
11841 << DestType->isFunctionType() << DestType;
11842 return ExprError();
11843 }
11844
11845 // Otherwise, go ahead and set DestType as the call's result.
11846 E->setType(DestType.getNonLValueExprType(S.Context));
11847 E->setValueKind(Expr::getValueKindForType(DestType));
11848 assert(E->getObjectKind() == OK_Ordinary);
11849
11850 // Rebuild the function type, replacing the result type with DestType.
11851 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
11852 DestType =
11853 S.Context.getFunctionType(DestType,
11854 ArrayRef<QualType>(Proto->arg_type_begin(),
11855 Proto->getNumArgs()),
11856 Proto->getExtProtoInfo());
11857 else
11858 DestType = S.Context.getFunctionNoProtoType(DestType,
11859 FnType->getExtInfo());
11860
11861 // Rebuild the appropriate pointer-to-function type.
11862 switch (Kind) {
11863 case FK_MemberFunction:
11864 // Nothing to do.
11865 break;
11866
11867 case FK_FunctionPointer:
11868 DestType = S.Context.getPointerType(DestType);
11869 break;
11870
11871 case FK_BlockPointer:
11872 DestType = S.Context.getBlockPointerType(DestType);
11873 break;
11874 }
11875
11876 // Finally, we can recurse.
11877 ExprResult CalleeResult = Visit(CalleeExpr);
11878 if (!CalleeResult.isUsable()) return ExprError();
11879 E->setCallee(CalleeResult.take());
11880
11881 // Bind a temporary if necessary.
11882 return S.MaybeBindToTemporary(E);
11883 }
11884
VisitObjCMessageExpr(ObjCMessageExpr * E)11885 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11886 // Verify that this is a legal result type of a call.
11887 if (DestType->isArrayType() || DestType->isFunctionType()) {
11888 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11889 << DestType->isFunctionType() << DestType;
11890 return ExprError();
11891 }
11892
11893 // Rewrite the method result type if available.
11894 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11895 assert(Method->getResultType() == S.Context.UnknownAnyTy);
11896 Method->setResultType(DestType);
11897 }
11898
11899 // Change the type of the message.
11900 E->setType(DestType.getNonReferenceType());
11901 E->setValueKind(Expr::getValueKindForType(DestType));
11902
11903 return S.MaybeBindToTemporary(E);
11904 }
11905
VisitImplicitCastExpr(ImplicitCastExpr * E)11906 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11907 // The only case we should ever see here is a function-to-pointer decay.
11908 if (E->getCastKind() == CK_FunctionToPointerDecay) {
11909 assert(E->getValueKind() == VK_RValue);
11910 assert(E->getObjectKind() == OK_Ordinary);
11911
11912 E->setType(DestType);
11913
11914 // Rebuild the sub-expression as the pointee (function) type.
11915 DestType = DestType->castAs<PointerType>()->getPointeeType();
11916
11917 ExprResult Result = Visit(E->getSubExpr());
11918 if (!Result.isUsable()) return ExprError();
11919
11920 E->setSubExpr(Result.take());
11921 return S.Owned(E);
11922 } else if (E->getCastKind() == CK_LValueToRValue) {
11923 assert(E->getValueKind() == VK_RValue);
11924 assert(E->getObjectKind() == OK_Ordinary);
11925
11926 assert(isa<BlockPointerType>(E->getType()));
11927
11928 E->setType(DestType);
11929
11930 // The sub-expression has to be a lvalue reference, so rebuild it as such.
11931 DestType = S.Context.getLValueReferenceType(DestType);
11932
11933 ExprResult Result = Visit(E->getSubExpr());
11934 if (!Result.isUsable()) return ExprError();
11935
11936 E->setSubExpr(Result.take());
11937 return S.Owned(E);
11938 } else {
11939 llvm_unreachable("Unhandled cast type!");
11940 }
11941 }
11942
resolveDecl(Expr * E,ValueDecl * VD)11943 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11944 ExprValueKind ValueKind = VK_LValue;
11945 QualType Type = DestType;
11946
11947 // We know how to make this work for certain kinds of decls:
11948
11949 // - functions
11950 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11951 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11952 DestType = Ptr->getPointeeType();
11953 ExprResult Result = resolveDecl(E, VD);
11954 if (Result.isInvalid()) return ExprError();
11955 return S.ImpCastExprToType(Result.take(), Type,
11956 CK_FunctionToPointerDecay, VK_RValue);
11957 }
11958
11959 if (!Type->isFunctionType()) {
11960 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11961 << VD << E->getSourceRange();
11962 return ExprError();
11963 }
11964
11965 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11966 if (MD->isInstance()) {
11967 ValueKind = VK_RValue;
11968 Type = S.Context.BoundMemberTy;
11969 }
11970
11971 // Function references aren't l-values in C.
11972 if (!S.getLangOpts().CPlusPlus)
11973 ValueKind = VK_RValue;
11974
11975 // - variables
11976 } else if (isa<VarDecl>(VD)) {
11977 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11978 Type = RefTy->getPointeeType();
11979 } else if (Type->isFunctionType()) {
11980 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11981 << VD << E->getSourceRange();
11982 return ExprError();
11983 }
11984
11985 // - nothing else
11986 } else {
11987 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11988 << VD << E->getSourceRange();
11989 return ExprError();
11990 }
11991
11992 VD->setType(DestType);
11993 E->setType(Type);
11994 E->setValueKind(ValueKind);
11995 return S.Owned(E);
11996 }
11997
11998 /// Check a cast of an unknown-any type. We intentionally only
11999 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)12000 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
12001 Expr *CastExpr, CastKind &CastKind,
12002 ExprValueKind &VK, CXXCastPath &Path) {
12003 // Rewrite the casted expression from scratch.
12004 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
12005 if (!result.isUsable()) return ExprError();
12006
12007 CastExpr = result.take();
12008 VK = CastExpr->getValueKind();
12009 CastKind = CK_NoOp;
12010
12011 return CastExpr;
12012 }
12013
forceUnknownAnyToType(Expr * E,QualType ToType)12014 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
12015 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
12016 }
12017
checkUnknownAnyArg(SourceLocation callLoc,Expr * arg,QualType & paramType)12018 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
12019 Expr *arg, QualType ¶mType) {
12020 // If the syntactic form of the argument is not an explicit cast of
12021 // any sort, just do default argument promotion.
12022 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
12023 if (!castArg) {
12024 ExprResult result = DefaultArgumentPromotion(arg);
12025 if (result.isInvalid()) return ExprError();
12026 paramType = result.get()->getType();
12027 return result;
12028 }
12029
12030 // Otherwise, use the type that was written in the explicit cast.
12031 assert(!arg->hasPlaceholderType());
12032 paramType = castArg->getTypeAsWritten();
12033
12034 // Copy-initialize a parameter of that type.
12035 InitializedEntity entity =
12036 InitializedEntity::InitializeParameter(Context, paramType,
12037 /*consumed*/ false);
12038 return PerformCopyInitialization(entity, callLoc, Owned(arg));
12039 }
12040
diagnoseUnknownAnyExpr(Sema & S,Expr * E)12041 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
12042 Expr *orig = E;
12043 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
12044 while (true) {
12045 E = E->IgnoreParenImpCasts();
12046 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
12047 E = call->getCallee();
12048 diagID = diag::err_uncasted_call_of_unknown_any;
12049 } else {
12050 break;
12051 }
12052 }
12053
12054 SourceLocation loc;
12055 NamedDecl *d;
12056 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
12057 loc = ref->getLocation();
12058 d = ref->getDecl();
12059 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
12060 loc = mem->getMemberLoc();
12061 d = mem->getMemberDecl();
12062 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
12063 diagID = diag::err_uncasted_call_of_unknown_any;
12064 loc = msg->getSelectorStartLoc();
12065 d = msg->getMethodDecl();
12066 if (!d) {
12067 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
12068 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
12069 << orig->getSourceRange();
12070 return ExprError();
12071 }
12072 } else {
12073 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
12074 << E->getSourceRange();
12075 return ExprError();
12076 }
12077
12078 S.Diag(loc, diagID) << d << orig->getSourceRange();
12079
12080 // Never recoverable.
12081 return ExprError();
12082 }
12083
12084 /// Check for operands with placeholder types and complain if found.
12085 /// Returns true if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)12086 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
12087 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
12088 if (!placeholderType) return Owned(E);
12089
12090 switch (placeholderType->getKind()) {
12091
12092 // Overloaded expressions.
12093 case BuiltinType::Overload: {
12094 // Try to resolve a single function template specialization.
12095 // This is obligatory.
12096 ExprResult result = Owned(E);
12097 if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
12098 return result;
12099
12100 // If that failed, try to recover with a call.
12101 } else {
12102 tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
12103 /*complain*/ true);
12104 return result;
12105 }
12106 }
12107
12108 // Bound member functions.
12109 case BuiltinType::BoundMember: {
12110 ExprResult result = Owned(E);
12111 tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
12112 /*complain*/ true);
12113 return result;
12114 }
12115
12116 // ARC unbridged casts.
12117 case BuiltinType::ARCUnbridgedCast: {
12118 Expr *realCast = stripARCUnbridgedCast(E);
12119 diagnoseARCUnbridgedCast(realCast);
12120 return Owned(realCast);
12121 }
12122
12123 // Expressions of unknown type.
12124 case BuiltinType::UnknownAny:
12125 return diagnoseUnknownAnyExpr(*this, E);
12126
12127 // Pseudo-objects.
12128 case BuiltinType::PseudoObject:
12129 return checkPseudoObjectRValue(E);
12130
12131 case BuiltinType::BuiltinFn:
12132 Diag(E->getLocStart(), diag::err_builtin_fn_use);
12133 return ExprError();
12134
12135 // Everything else should be impossible.
12136 #define BUILTIN_TYPE(Id, SingletonId) \
12137 case BuiltinType::Id:
12138 #define PLACEHOLDER_TYPE(Id, SingletonId)
12139 #include "clang/AST/BuiltinTypes.def"
12140 break;
12141 }
12142
12143 llvm_unreachable("invalid placeholder type!");
12144 }
12145
CheckCaseExpression(Expr * E)12146 bool Sema::CheckCaseExpression(Expr *E) {
12147 if (E->isTypeDependent())
12148 return true;
12149 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
12150 return E->getType()->isIntegralOrEnumerationType();
12151 return false;
12152 }
12153
12154 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
12155 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)12156 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
12157 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
12158 "Unknown Objective-C Boolean value!");
12159 QualType BoolT = Context.ObjCBuiltinBoolTy;
12160 if (!Context.getBOOLDecl()) {
12161 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
12162 Sema::LookupOrdinaryName);
12163 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
12164 NamedDecl *ND = Result.getFoundDecl();
12165 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
12166 Context.setBOOLDecl(TD);
12167 }
12168 }
12169 if (Context.getBOOLDecl())
12170 BoolT = Context.getBOOLType();
12171 return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
12172 BoolT, OpLoc));
12173 }
12174