1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Sema/Initialization.h"
28 #include "clang/Sema/Lookup.h"
29 #include "clang/Sema/Scope.h"
30 #include "clang/Sema/ScopeInfo.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/ADT/SmallVector.h"
36 using namespace clang;
37 using namespace sema;
38
ActOnExprStmt(ExprResult FE)39 StmtResult Sema::ActOnExprStmt(ExprResult FE) {
40 if (FE.isInvalid())
41 return StmtError();
42
43 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
44 /*DiscardedValue*/ true);
45 if (FE.isInvalid())
46 return StmtError();
47
48 // C99 6.8.3p2: The expression in an expression statement is evaluated as a
49 // void expression for its side effects. Conversion to void allows any
50 // operand, even incomplete types.
51
52 // Same thing in for stmt first clause (when expr) and third clause.
53 return Owned(static_cast<Stmt*>(FE.take()));
54 }
55
56
ActOnNullStmt(SourceLocation SemiLoc,bool HasLeadingEmptyMacro)57 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
58 bool HasLeadingEmptyMacro) {
59 return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
60 }
61
ActOnDeclStmt(DeclGroupPtrTy dg,SourceLocation StartLoc,SourceLocation EndLoc)62 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
63 SourceLocation EndLoc) {
64 DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
65
66 // If we have an invalid decl, just return an error.
67 if (DG.isNull()) return StmtError();
68
69 return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
70 }
71
ActOnForEachDeclStmt(DeclGroupPtrTy dg)72 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
73 DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
74
75 // If we have an invalid decl, just return.
76 if (DG.isNull() || !DG.isSingleDecl()) return;
77 VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
78
79 // suppress any potential 'unused variable' warning.
80 var->setUsed();
81
82 // foreach variables are never actually initialized in the way that
83 // the parser came up with.
84 var->setInit(0);
85
86 // In ARC, we don't need to retain the iteration variable of a fast
87 // enumeration loop. Rather than actually trying to catch that
88 // during declaration processing, we remove the consequences here.
89 if (getLangOpts().ObjCAutoRefCount) {
90 QualType type = var->getType();
91
92 // Only do this if we inferred the lifetime. Inferred lifetime
93 // will show up as a local qualifier because explicit lifetime
94 // should have shown up as an AttributedType instead.
95 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
96 // Add 'const' and mark the variable as pseudo-strong.
97 var->setType(type.withConst());
98 var->setARCPseudoStrong(true);
99 }
100 }
101 }
102
103 /// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
104 ///
105 /// Adding a cast to void (or other expression wrappers) will prevent the
106 /// warning from firing.
DiagnoseUnusedComparison(Sema & S,const Expr * E)107 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
108 SourceLocation Loc;
109 bool IsNotEqual, CanAssign;
110
111 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
112 if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
113 return false;
114
115 Loc = Op->getOperatorLoc();
116 IsNotEqual = Op->getOpcode() == BO_NE;
117 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
118 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
119 if (Op->getOperator() != OO_EqualEqual &&
120 Op->getOperator() != OO_ExclaimEqual)
121 return false;
122
123 Loc = Op->getOperatorLoc();
124 IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
125 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
126 } else {
127 // Not a typo-prone comparison.
128 return false;
129 }
130
131 // Suppress warnings when the operator, suspicious as it may be, comes from
132 // a macro expansion.
133 if (S.SourceMgr.isMacroBodyExpansion(Loc))
134 return false;
135
136 S.Diag(Loc, diag::warn_unused_comparison)
137 << (unsigned)IsNotEqual << E->getSourceRange();
138
139 // If the LHS is a plausible entity to assign to, provide a fixit hint to
140 // correct common typos.
141 if (CanAssign) {
142 if (IsNotEqual)
143 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
144 << FixItHint::CreateReplacement(Loc, "|=");
145 else
146 S.Diag(Loc, diag::note_equality_comparison_to_assign)
147 << FixItHint::CreateReplacement(Loc, "=");
148 }
149
150 return true;
151 }
152
DiagnoseUnusedExprResult(const Stmt * S)153 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
154 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
155 return DiagnoseUnusedExprResult(Label->getSubStmt());
156
157 const Expr *E = dyn_cast_or_null<Expr>(S);
158 if (!E)
159 return;
160 SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
161 // In most cases, we don't want to warn if the expression is written in a
162 // macro body, or if the macro comes from a system header. If the offending
163 // expression is a call to a function with the warn_unused_result attribute,
164 // we warn no matter the location. Because of the order in which the various
165 // checks need to happen, we factor out the macro-related test here.
166 bool ShouldSuppress =
167 SourceMgr.isMacroBodyExpansion(ExprLoc) ||
168 SourceMgr.isInSystemMacro(ExprLoc);
169
170 const Expr *WarnExpr;
171 SourceLocation Loc;
172 SourceRange R1, R2;
173 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
174 return;
175
176 // If this is a GNU statement expression expanded from a macro, it is probably
177 // unused because it is a function-like macro that can be used as either an
178 // expression or statement. Don't warn, because it is almost certainly a
179 // false positive.
180 if (isa<StmtExpr>(E) && Loc.isMacroID())
181 return;
182
183 // Okay, we have an unused result. Depending on what the base expression is,
184 // we might want to make a more specific diagnostic. Check for one of these
185 // cases now.
186 unsigned DiagID = diag::warn_unused_expr;
187 if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
188 E = Temps->getSubExpr();
189 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
190 E = TempExpr->getSubExpr();
191
192 if (DiagnoseUnusedComparison(*this, E))
193 return;
194
195 E = WarnExpr;
196 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
197 if (E->getType()->isVoidType())
198 return;
199
200 // If the callee has attribute pure, const, or warn_unused_result, warn with
201 // a more specific message to make it clear what is happening. If the call
202 // is written in a macro body, only warn if it has the warn_unused_result
203 // attribute.
204 if (const Decl *FD = CE->getCalleeDecl()) {
205 if (FD->getAttr<WarnUnusedResultAttr>()) {
206 Diag(Loc, diag::warn_unused_result) << R1 << R2;
207 return;
208 }
209 if (ShouldSuppress)
210 return;
211 if (FD->getAttr<PureAttr>()) {
212 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
213 return;
214 }
215 if (FD->getAttr<ConstAttr>()) {
216 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
217 return;
218 }
219 }
220 } else if (ShouldSuppress)
221 return;
222
223 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
224 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
225 Diag(Loc, diag::err_arc_unused_init_message) << R1;
226 return;
227 }
228 const ObjCMethodDecl *MD = ME->getMethodDecl();
229 if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
230 Diag(Loc, diag::warn_unused_result) << R1 << R2;
231 return;
232 }
233 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
234 const Expr *Source = POE->getSyntacticForm();
235 if (isa<ObjCSubscriptRefExpr>(Source))
236 DiagID = diag::warn_unused_container_subscript_expr;
237 else
238 DiagID = diag::warn_unused_property_expr;
239 } else if (const CXXFunctionalCastExpr *FC
240 = dyn_cast<CXXFunctionalCastExpr>(E)) {
241 if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
242 isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
243 return;
244 }
245 // Diagnose "(void*) blah" as a typo for "(void) blah".
246 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
247 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
248 QualType T = TI->getType();
249
250 // We really do want to use the non-canonical type here.
251 if (T == Context.VoidPtrTy) {
252 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
253
254 Diag(Loc, diag::warn_unused_voidptr)
255 << FixItHint::CreateRemoval(TL.getStarLoc());
256 return;
257 }
258 }
259
260 if (E->isGLValue() && E->getType().isVolatileQualified()) {
261 Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
262 return;
263 }
264
265 DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
266 }
267
ActOnStartOfCompoundStmt()268 void Sema::ActOnStartOfCompoundStmt() {
269 PushCompoundScope();
270 }
271
ActOnFinishOfCompoundStmt()272 void Sema::ActOnFinishOfCompoundStmt() {
273 PopCompoundScope();
274 }
275
getCurCompoundScope() const276 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
277 return getCurFunction()->CompoundScopes.back();
278 }
279
280 StmtResult
ActOnCompoundStmt(SourceLocation L,SourceLocation R,MultiStmtArg elts,bool isStmtExpr)281 Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
282 MultiStmtArg elts, bool isStmtExpr) {
283 unsigned NumElts = elts.size();
284 Stmt **Elts = elts.data();
285 // If we're in C89 mode, check that we don't have any decls after stmts. If
286 // so, emit an extension diagnostic.
287 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
288 // Note that __extension__ can be around a decl.
289 unsigned i = 0;
290 // Skip over all declarations.
291 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
292 /*empty*/;
293
294 // We found the end of the list or a statement. Scan for another declstmt.
295 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
296 /*empty*/;
297
298 if (i != NumElts) {
299 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
300 Diag(D->getLocation(), diag::ext_mixed_decls_code);
301 }
302 }
303 // Warn about unused expressions in statements.
304 for (unsigned i = 0; i != NumElts; ++i) {
305 // Ignore statements that are last in a statement expression.
306 if (isStmtExpr && i == NumElts - 1)
307 continue;
308
309 DiagnoseUnusedExprResult(Elts[i]);
310 }
311
312 // Check for suspicious empty body (null statement) in `for' and `while'
313 // statements. Don't do anything for template instantiations, this just adds
314 // noise.
315 if (NumElts != 0 && !CurrentInstantiationScope &&
316 getCurCompoundScope().HasEmptyLoopBodies) {
317 for (unsigned i = 0; i != NumElts - 1; ++i)
318 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
319 }
320
321 return Owned(new (Context) CompoundStmt(Context,
322 llvm::makeArrayRef(Elts, NumElts),
323 L, R));
324 }
325
326 StmtResult
ActOnCaseStmt(SourceLocation CaseLoc,Expr * LHSVal,SourceLocation DotDotDotLoc,Expr * RHSVal,SourceLocation ColonLoc)327 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
328 SourceLocation DotDotDotLoc, Expr *RHSVal,
329 SourceLocation ColonLoc) {
330 assert((LHSVal != 0) && "missing expression in case statement");
331
332 if (getCurFunction()->SwitchStack.empty()) {
333 Diag(CaseLoc, diag::err_case_not_in_switch);
334 return StmtError();
335 }
336
337 if (!getLangOpts().CPlusPlus11) {
338 // C99 6.8.4.2p3: The expression shall be an integer constant.
339 // However, GCC allows any evaluatable integer expression.
340 if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
341 LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
342 if (!LHSVal)
343 return StmtError();
344 }
345
346 // GCC extension: The expression shall be an integer constant.
347
348 if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
349 RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
350 // Recover from an error by just forgetting about it.
351 }
352 }
353
354 LHSVal = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
355 getLangOpts().CPlusPlus11).take();
356 if (RHSVal)
357 RHSVal = ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
358 getLangOpts().CPlusPlus11).take();
359
360 CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
361 ColonLoc);
362 getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
363 return Owned(CS);
364 }
365
366 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
ActOnCaseStmtBody(Stmt * caseStmt,Stmt * SubStmt)367 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
368 DiagnoseUnusedExprResult(SubStmt);
369
370 CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
371 CS->setSubStmt(SubStmt);
372 }
373
374 StmtResult
ActOnDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt,Scope * CurScope)375 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
376 Stmt *SubStmt, Scope *CurScope) {
377 DiagnoseUnusedExprResult(SubStmt);
378
379 if (getCurFunction()->SwitchStack.empty()) {
380 Diag(DefaultLoc, diag::err_default_not_in_switch);
381 return Owned(SubStmt);
382 }
383
384 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
385 getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
386 return Owned(DS);
387 }
388
389 StmtResult
ActOnLabelStmt(SourceLocation IdentLoc,LabelDecl * TheDecl,SourceLocation ColonLoc,Stmt * SubStmt)390 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
391 SourceLocation ColonLoc, Stmt *SubStmt) {
392 // If the label was multiply defined, reject it now.
393 if (TheDecl->getStmt()) {
394 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
395 Diag(TheDecl->getLocation(), diag::note_previous_definition);
396 return Owned(SubStmt);
397 }
398
399 // Otherwise, things are good. Fill in the declaration and return it.
400 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
401 TheDecl->setStmt(LS);
402 if (!TheDecl->isGnuLocal()) {
403 TheDecl->setLocStart(IdentLoc);
404 TheDecl->setLocation(IdentLoc);
405 }
406 return Owned(LS);
407 }
408
ActOnAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)409 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
410 ArrayRef<const Attr*> Attrs,
411 Stmt *SubStmt) {
412 // Fill in the declaration and return it.
413 AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
414 return Owned(LS);
415 }
416
417 StmtResult
ActOnIfStmt(SourceLocation IfLoc,FullExprArg CondVal,Decl * CondVar,Stmt * thenStmt,SourceLocation ElseLoc,Stmt * elseStmt)418 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
419 Stmt *thenStmt, SourceLocation ElseLoc,
420 Stmt *elseStmt) {
421 // If the condition was invalid, discard the if statement. We could recover
422 // better by replacing it with a valid expr, but don't do that yet.
423 if (!CondVal.get() && !CondVar) {
424 getCurFunction()->setHasDroppedStmt();
425 return StmtError();
426 }
427
428 ExprResult CondResult(CondVal.release());
429
430 VarDecl *ConditionVar = 0;
431 if (CondVar) {
432 ConditionVar = cast<VarDecl>(CondVar);
433 CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
434 if (CondResult.isInvalid())
435 return StmtError();
436 }
437 Expr *ConditionExpr = CondResult.takeAs<Expr>();
438 if (!ConditionExpr)
439 return StmtError();
440
441 DiagnoseUnusedExprResult(thenStmt);
442
443 if (!elseStmt) {
444 DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
445 diag::warn_empty_if_body);
446 }
447
448 DiagnoseUnusedExprResult(elseStmt);
449
450 return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
451 thenStmt, ElseLoc, elseStmt));
452 }
453
454 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
455 /// the specified width and sign. If an overflow occurs, detect it and emit
456 /// the specified diagnostic.
ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt & Val,unsigned NewWidth,bool NewSign,SourceLocation Loc,unsigned DiagID)457 void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
458 unsigned NewWidth, bool NewSign,
459 SourceLocation Loc,
460 unsigned DiagID) {
461 // Perform a conversion to the promoted condition type if needed.
462 if (NewWidth > Val.getBitWidth()) {
463 // If this is an extension, just do it.
464 Val = Val.extend(NewWidth);
465 Val.setIsSigned(NewSign);
466
467 // If the input was signed and negative and the output is
468 // unsigned, don't bother to warn: this is implementation-defined
469 // behavior.
470 // FIXME: Introduce a second, default-ignored warning for this case?
471 } else if (NewWidth < Val.getBitWidth()) {
472 // If this is a truncation, check for overflow.
473 llvm::APSInt ConvVal(Val);
474 ConvVal = ConvVal.trunc(NewWidth);
475 ConvVal.setIsSigned(NewSign);
476 ConvVal = ConvVal.extend(Val.getBitWidth());
477 ConvVal.setIsSigned(Val.isSigned());
478 if (ConvVal != Val)
479 Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
480
481 // Regardless of whether a diagnostic was emitted, really do the
482 // truncation.
483 Val = Val.trunc(NewWidth);
484 Val.setIsSigned(NewSign);
485 } else if (NewSign != Val.isSigned()) {
486 // Convert the sign to match the sign of the condition. This can cause
487 // overflow as well: unsigned(INTMIN)
488 // We don't diagnose this overflow, because it is implementation-defined
489 // behavior.
490 // FIXME: Introduce a second, default-ignored warning for this case?
491 llvm::APSInt OldVal(Val);
492 Val.setIsSigned(NewSign);
493 }
494 }
495
496 namespace {
497 struct CaseCompareFunctor {
operator ()__anon58f793e50111::CaseCompareFunctor498 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
499 const llvm::APSInt &RHS) {
500 return LHS.first < RHS;
501 }
operator ()__anon58f793e50111::CaseCompareFunctor502 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
503 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
504 return LHS.first < RHS.first;
505 }
operator ()__anon58f793e50111::CaseCompareFunctor506 bool operator()(const llvm::APSInt &LHS,
507 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
508 return LHS < RHS.first;
509 }
510 };
511 }
512
513 /// CmpCaseVals - Comparison predicate for sorting case values.
514 ///
CmpCaseVals(const std::pair<llvm::APSInt,CaseStmt * > & lhs,const std::pair<llvm::APSInt,CaseStmt * > & rhs)515 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
516 const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
517 if (lhs.first < rhs.first)
518 return true;
519
520 if (lhs.first == rhs.first &&
521 lhs.second->getCaseLoc().getRawEncoding()
522 < rhs.second->getCaseLoc().getRawEncoding())
523 return true;
524 return false;
525 }
526
527 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
528 ///
CmpEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)529 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
530 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
531 {
532 return lhs.first < rhs.first;
533 }
534
535 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
536 ///
EqEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)537 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
538 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
539 {
540 return lhs.first == rhs.first;
541 }
542
543 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
544 /// potentially integral-promoted expression @p expr.
GetTypeBeforeIntegralPromotion(Expr * & expr)545 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
546 if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
547 expr = cleanups->getSubExpr();
548 while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
549 if (impcast->getCastKind() != CK_IntegralCast) break;
550 expr = impcast->getSubExpr();
551 }
552 return expr->getType();
553 }
554
555 StmtResult
ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,Expr * Cond,Decl * CondVar)556 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
557 Decl *CondVar) {
558 ExprResult CondResult;
559
560 VarDecl *ConditionVar = 0;
561 if (CondVar) {
562 ConditionVar = cast<VarDecl>(CondVar);
563 CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
564 if (CondResult.isInvalid())
565 return StmtError();
566
567 Cond = CondResult.release();
568 }
569
570 if (!Cond)
571 return StmtError();
572
573 class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
574 Expr *Cond;
575
576 public:
577 SwitchConvertDiagnoser(Expr *Cond)
578 : ICEConvertDiagnoser(false, true), Cond(Cond) { }
579
580 virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
581 QualType T) {
582 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
583 }
584
585 virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
586 QualType T) {
587 return S.Diag(Loc, diag::err_switch_incomplete_class_type)
588 << T << Cond->getSourceRange();
589 }
590
591 virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
592 QualType T,
593 QualType ConvTy) {
594 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
595 }
596
597 virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
598 QualType ConvTy) {
599 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
600 << ConvTy->isEnumeralType() << ConvTy;
601 }
602
603 virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
604 QualType T) {
605 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
606 }
607
608 virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
609 QualType ConvTy) {
610 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
611 << ConvTy->isEnumeralType() << ConvTy;
612 }
613
614 virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
615 QualType T,
616 QualType ConvTy) {
617 return DiagnosticBuilder::getEmpty();
618 }
619 } SwitchDiagnoser(Cond);
620
621 CondResult
622 = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
623 /*AllowScopedEnumerations*/ true);
624 if (CondResult.isInvalid()) return StmtError();
625 Cond = CondResult.take();
626
627 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
628 CondResult = UsualUnaryConversions(Cond);
629 if (CondResult.isInvalid()) return StmtError();
630 Cond = CondResult.take();
631
632 if (!CondVar) {
633 CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
634 if (CondResult.isInvalid())
635 return StmtError();
636 Cond = CondResult.take();
637 }
638
639 getCurFunction()->setHasBranchIntoScope();
640
641 SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
642 getCurFunction()->SwitchStack.push_back(SS);
643 return Owned(SS);
644 }
645
AdjustAPSInt(llvm::APSInt & Val,unsigned BitWidth,bool IsSigned)646 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
647 if (Val.getBitWidth() < BitWidth)
648 Val = Val.extend(BitWidth);
649 else if (Val.getBitWidth() > BitWidth)
650 Val = Val.trunc(BitWidth);
651 Val.setIsSigned(IsSigned);
652 }
653
654 StmtResult
ActOnFinishSwitchStmt(SourceLocation SwitchLoc,Stmt * Switch,Stmt * BodyStmt)655 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
656 Stmt *BodyStmt) {
657 SwitchStmt *SS = cast<SwitchStmt>(Switch);
658 assert(SS == getCurFunction()->SwitchStack.back() &&
659 "switch stack missing push/pop!");
660
661 SS->setBody(BodyStmt, SwitchLoc);
662 getCurFunction()->SwitchStack.pop_back();
663
664 Expr *CondExpr = SS->getCond();
665 if (!CondExpr) return StmtError();
666
667 QualType CondType = CondExpr->getType();
668
669 Expr *CondExprBeforePromotion = CondExpr;
670 QualType CondTypeBeforePromotion =
671 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
672
673 // C++ 6.4.2.p2:
674 // Integral promotions are performed (on the switch condition).
675 //
676 // A case value unrepresentable by the original switch condition
677 // type (before the promotion) doesn't make sense, even when it can
678 // be represented by the promoted type. Therefore we need to find
679 // the pre-promotion type of the switch condition.
680 if (!CondExpr->isTypeDependent()) {
681 // We have already converted the expression to an integral or enumeration
682 // type, when we started the switch statement. If we don't have an
683 // appropriate type now, just return an error.
684 if (!CondType->isIntegralOrEnumerationType())
685 return StmtError();
686
687 if (CondExpr->isKnownToHaveBooleanValue()) {
688 // switch(bool_expr) {...} is often a programmer error, e.g.
689 // switch(n && mask) { ... } // Doh - should be "n & mask".
690 // One can always use an if statement instead of switch(bool_expr).
691 Diag(SwitchLoc, diag::warn_bool_switch_condition)
692 << CondExpr->getSourceRange();
693 }
694 }
695
696 // Get the bitwidth of the switched-on value before promotions. We must
697 // convert the integer case values to this width before comparison.
698 bool HasDependentValue
699 = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
700 unsigned CondWidth
701 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
702 bool CondIsSigned
703 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
704
705 // Accumulate all of the case values in a vector so that we can sort them
706 // and detect duplicates. This vector contains the APInt for the case after
707 // it has been converted to the condition type.
708 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
709 CaseValsTy CaseVals;
710
711 // Keep track of any GNU case ranges we see. The APSInt is the low value.
712 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
713 CaseRangesTy CaseRanges;
714
715 DefaultStmt *TheDefaultStmt = 0;
716
717 bool CaseListIsErroneous = false;
718
719 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
720 SC = SC->getNextSwitchCase()) {
721
722 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
723 if (TheDefaultStmt) {
724 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
725 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
726
727 // FIXME: Remove the default statement from the switch block so that
728 // we'll return a valid AST. This requires recursing down the AST and
729 // finding it, not something we are set up to do right now. For now,
730 // just lop the entire switch stmt out of the AST.
731 CaseListIsErroneous = true;
732 }
733 TheDefaultStmt = DS;
734
735 } else {
736 CaseStmt *CS = cast<CaseStmt>(SC);
737
738 Expr *Lo = CS->getLHS();
739
740 if (Lo->isTypeDependent() || Lo->isValueDependent()) {
741 HasDependentValue = true;
742 break;
743 }
744
745 llvm::APSInt LoVal;
746
747 if (getLangOpts().CPlusPlus11) {
748 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
749 // constant expression of the promoted type of the switch condition.
750 ExprResult ConvLo =
751 CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
752 if (ConvLo.isInvalid()) {
753 CaseListIsErroneous = true;
754 continue;
755 }
756 Lo = ConvLo.take();
757 } else {
758 // We already verified that the expression has a i-c-e value (C99
759 // 6.8.4.2p3) - get that value now.
760 LoVal = Lo->EvaluateKnownConstInt(Context);
761
762 // If the LHS is not the same type as the condition, insert an implicit
763 // cast.
764 Lo = DefaultLvalueConversion(Lo).take();
765 Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
766 }
767
768 // Convert the value to the same width/sign as the condition had prior to
769 // integral promotions.
770 //
771 // FIXME: This causes us to reject valid code:
772 // switch ((char)c) { case 256: case 0: return 0; }
773 // Here we claim there is a duplicated condition value, but there is not.
774 ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
775 Lo->getLocStart(),
776 diag::warn_case_value_overflow);
777
778 CS->setLHS(Lo);
779
780 // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
781 if (CS->getRHS()) {
782 if (CS->getRHS()->isTypeDependent() ||
783 CS->getRHS()->isValueDependent()) {
784 HasDependentValue = true;
785 break;
786 }
787 CaseRanges.push_back(std::make_pair(LoVal, CS));
788 } else
789 CaseVals.push_back(std::make_pair(LoVal, CS));
790 }
791 }
792
793 if (!HasDependentValue) {
794 // If we don't have a default statement, check whether the
795 // condition is constant.
796 llvm::APSInt ConstantCondValue;
797 bool HasConstantCond = false;
798 if (!HasDependentValue && !TheDefaultStmt) {
799 HasConstantCond
800 = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
801 Expr::SE_AllowSideEffects);
802 assert(!HasConstantCond ||
803 (ConstantCondValue.getBitWidth() == CondWidth &&
804 ConstantCondValue.isSigned() == CondIsSigned));
805 }
806 bool ShouldCheckConstantCond = HasConstantCond;
807
808 // Sort all the scalar case values so we can easily detect duplicates.
809 std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
810
811 if (!CaseVals.empty()) {
812 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
813 if (ShouldCheckConstantCond &&
814 CaseVals[i].first == ConstantCondValue)
815 ShouldCheckConstantCond = false;
816
817 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
818 // If we have a duplicate, report it.
819 // First, determine if either case value has a name
820 StringRef PrevString, CurrString;
821 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
822 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
823 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
824 PrevString = DeclRef->getDecl()->getName();
825 }
826 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
827 CurrString = DeclRef->getDecl()->getName();
828 }
829 SmallString<16> CaseValStr;
830 CaseVals[i-1].first.toString(CaseValStr);
831
832 if (PrevString == CurrString)
833 Diag(CaseVals[i].second->getLHS()->getLocStart(),
834 diag::err_duplicate_case) <<
835 (PrevString.empty() ? CaseValStr.str() : PrevString);
836 else
837 Diag(CaseVals[i].second->getLHS()->getLocStart(),
838 diag::err_duplicate_case_differing_expr) <<
839 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
840 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
841 CaseValStr;
842
843 Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
844 diag::note_duplicate_case_prev);
845 // FIXME: We really want to remove the bogus case stmt from the
846 // substmt, but we have no way to do this right now.
847 CaseListIsErroneous = true;
848 }
849 }
850 }
851
852 // Detect duplicate case ranges, which usually don't exist at all in
853 // the first place.
854 if (!CaseRanges.empty()) {
855 // Sort all the case ranges by their low value so we can easily detect
856 // overlaps between ranges.
857 std::stable_sort(CaseRanges.begin(), CaseRanges.end());
858
859 // Scan the ranges, computing the high values and removing empty ranges.
860 std::vector<llvm::APSInt> HiVals;
861 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
862 llvm::APSInt &LoVal = CaseRanges[i].first;
863 CaseStmt *CR = CaseRanges[i].second;
864 Expr *Hi = CR->getRHS();
865 llvm::APSInt HiVal;
866
867 if (getLangOpts().CPlusPlus11) {
868 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
869 // constant expression of the promoted type of the switch condition.
870 ExprResult ConvHi =
871 CheckConvertedConstantExpression(Hi, CondType, HiVal,
872 CCEK_CaseValue);
873 if (ConvHi.isInvalid()) {
874 CaseListIsErroneous = true;
875 continue;
876 }
877 Hi = ConvHi.take();
878 } else {
879 HiVal = Hi->EvaluateKnownConstInt(Context);
880
881 // If the RHS is not the same type as the condition, insert an
882 // implicit cast.
883 Hi = DefaultLvalueConversion(Hi).take();
884 Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
885 }
886
887 // Convert the value to the same width/sign as the condition.
888 ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
889 Hi->getLocStart(),
890 diag::warn_case_value_overflow);
891
892 CR->setRHS(Hi);
893
894 // If the low value is bigger than the high value, the case is empty.
895 if (LoVal > HiVal) {
896 Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
897 << SourceRange(CR->getLHS()->getLocStart(),
898 Hi->getLocEnd());
899 CaseRanges.erase(CaseRanges.begin()+i);
900 --i, --e;
901 continue;
902 }
903
904 if (ShouldCheckConstantCond &&
905 LoVal <= ConstantCondValue &&
906 ConstantCondValue <= HiVal)
907 ShouldCheckConstantCond = false;
908
909 HiVals.push_back(HiVal);
910 }
911
912 // Rescan the ranges, looking for overlap with singleton values and other
913 // ranges. Since the range list is sorted, we only need to compare case
914 // ranges with their neighbors.
915 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
916 llvm::APSInt &CRLo = CaseRanges[i].first;
917 llvm::APSInt &CRHi = HiVals[i];
918 CaseStmt *CR = CaseRanges[i].second;
919
920 // Check to see whether the case range overlaps with any
921 // singleton cases.
922 CaseStmt *OverlapStmt = 0;
923 llvm::APSInt OverlapVal(32);
924
925 // Find the smallest value >= the lower bound. If I is in the
926 // case range, then we have overlap.
927 CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
928 CaseVals.end(), CRLo,
929 CaseCompareFunctor());
930 if (I != CaseVals.end() && I->first < CRHi) {
931 OverlapVal = I->first; // Found overlap with scalar.
932 OverlapStmt = I->second;
933 }
934
935 // Find the smallest value bigger than the upper bound.
936 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
937 if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
938 OverlapVal = (I-1)->first; // Found overlap with scalar.
939 OverlapStmt = (I-1)->second;
940 }
941
942 // Check to see if this case stmt overlaps with the subsequent
943 // case range.
944 if (i && CRLo <= HiVals[i-1]) {
945 OverlapVal = HiVals[i-1]; // Found overlap with range.
946 OverlapStmt = CaseRanges[i-1].second;
947 }
948
949 if (OverlapStmt) {
950 // If we have a duplicate, report it.
951 Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
952 << OverlapVal.toString(10);
953 Diag(OverlapStmt->getLHS()->getLocStart(),
954 diag::note_duplicate_case_prev);
955 // FIXME: We really want to remove the bogus case stmt from the
956 // substmt, but we have no way to do this right now.
957 CaseListIsErroneous = true;
958 }
959 }
960 }
961
962 // Complain if we have a constant condition and we didn't find a match.
963 if (!CaseListIsErroneous && ShouldCheckConstantCond) {
964 // TODO: it would be nice if we printed enums as enums, chars as
965 // chars, etc.
966 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
967 << ConstantCondValue.toString(10)
968 << CondExpr->getSourceRange();
969 }
970
971 // Check to see if switch is over an Enum and handles all of its
972 // values. We only issue a warning if there is not 'default:', but
973 // we still do the analysis to preserve this information in the AST
974 // (which can be used by flow-based analyes).
975 //
976 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
977
978 // If switch has default case, then ignore it.
979 if (!CaseListIsErroneous && !HasConstantCond && ET) {
980 const EnumDecl *ED = ET->getDecl();
981 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
982 EnumValsTy;
983 EnumValsTy EnumVals;
984
985 // Gather all enum values, set their type and sort them,
986 // allowing easier comparison with CaseVals.
987 for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
988 EDI != ED->enumerator_end(); ++EDI) {
989 llvm::APSInt Val = EDI->getInitVal();
990 AdjustAPSInt(Val, CondWidth, CondIsSigned);
991 EnumVals.push_back(std::make_pair(Val, *EDI));
992 }
993 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
994 EnumValsTy::iterator EIend =
995 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
996
997 // See which case values aren't in enum.
998 EnumValsTy::const_iterator EI = EnumVals.begin();
999 for (CaseValsTy::const_iterator CI = CaseVals.begin();
1000 CI != CaseVals.end(); CI++) {
1001 while (EI != EIend && EI->first < CI->first)
1002 EI++;
1003 if (EI == EIend || EI->first > CI->first)
1004 Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1005 << CondTypeBeforePromotion;
1006 }
1007 // See which of case ranges aren't in enum
1008 EI = EnumVals.begin();
1009 for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1010 RI != CaseRanges.end() && EI != EIend; RI++) {
1011 while (EI != EIend && EI->first < RI->first)
1012 EI++;
1013
1014 if (EI == EIend || EI->first != RI->first) {
1015 Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1016 << CondTypeBeforePromotion;
1017 }
1018
1019 llvm::APSInt Hi =
1020 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1021 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1022 while (EI != EIend && EI->first < Hi)
1023 EI++;
1024 if (EI == EIend || EI->first != Hi)
1025 Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
1026 << CondTypeBeforePromotion;
1027 }
1028
1029 // Check which enum vals aren't in switch
1030 CaseValsTy::const_iterator CI = CaseVals.begin();
1031 CaseRangesTy::const_iterator RI = CaseRanges.begin();
1032 bool hasCasesNotInSwitch = false;
1033
1034 SmallVector<DeclarationName,8> UnhandledNames;
1035
1036 for (EI = EnumVals.begin(); EI != EIend; EI++){
1037 // Drop unneeded case values
1038 llvm::APSInt CIVal;
1039 while (CI != CaseVals.end() && CI->first < EI->first)
1040 CI++;
1041
1042 if (CI != CaseVals.end() && CI->first == EI->first)
1043 continue;
1044
1045 // Drop unneeded case ranges
1046 for (; RI != CaseRanges.end(); RI++) {
1047 llvm::APSInt Hi =
1048 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1049 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1050 if (EI->first <= Hi)
1051 break;
1052 }
1053
1054 if (RI == CaseRanges.end() || EI->first < RI->first) {
1055 hasCasesNotInSwitch = true;
1056 UnhandledNames.push_back(EI->second->getDeclName());
1057 }
1058 }
1059
1060 if (TheDefaultStmt && UnhandledNames.empty())
1061 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1062
1063 // Produce a nice diagnostic if multiple values aren't handled.
1064 switch (UnhandledNames.size()) {
1065 case 0: break;
1066 case 1:
1067 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1068 ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1069 << UnhandledNames[0];
1070 break;
1071 case 2:
1072 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1073 ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1074 << UnhandledNames[0] << UnhandledNames[1];
1075 break;
1076 case 3:
1077 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1078 ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1079 << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1080 break;
1081 default:
1082 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1083 ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1084 << (unsigned)UnhandledNames.size()
1085 << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1086 break;
1087 }
1088
1089 if (!hasCasesNotInSwitch)
1090 SS->setAllEnumCasesCovered();
1091 }
1092 }
1093
1094 DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1095 diag::warn_empty_switch_body);
1096
1097 // FIXME: If the case list was broken is some way, we don't have a good system
1098 // to patch it up. Instead, just return the whole substmt as broken.
1099 if (CaseListIsErroneous)
1100 return StmtError();
1101
1102 return Owned(SS);
1103 }
1104
1105 void
DiagnoseAssignmentEnum(QualType DstType,QualType SrcType,Expr * SrcExpr)1106 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1107 Expr *SrcExpr) {
1108 unsigned DIAG = diag::warn_not_in_enum_assignement;
1109 if (Diags.getDiagnosticLevel(DIAG, SrcExpr->getExprLoc())
1110 == DiagnosticsEngine::Ignored)
1111 return;
1112
1113 if (const EnumType *ET = DstType->getAs<EnumType>())
1114 if (!Context.hasSameType(SrcType, DstType) &&
1115 SrcType->isIntegerType()) {
1116 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1117 SrcExpr->isIntegerConstantExpr(Context)) {
1118 // Get the bitwidth of the enum value before promotions.
1119 unsigned DstWith = Context.getIntWidth(DstType);
1120 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1121
1122 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1123 const EnumDecl *ED = ET->getDecl();
1124 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
1125 EnumValsTy;
1126 EnumValsTy EnumVals;
1127
1128 // Gather all enum values, set their type and sort them,
1129 // allowing easier comparison with rhs constant.
1130 for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1131 EDI != ED->enumerator_end(); ++EDI) {
1132 llvm::APSInt Val = EDI->getInitVal();
1133 AdjustAPSInt(Val, DstWith, DstIsSigned);
1134 EnumVals.push_back(std::make_pair(Val, *EDI));
1135 }
1136 if (EnumVals.empty())
1137 return;
1138 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1139 EnumValsTy::iterator EIend =
1140 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1141
1142 // See which case values aren't in enum.
1143 EnumValsTy::const_iterator EI = EnumVals.begin();
1144 while (EI != EIend && EI->first < RhsVal)
1145 EI++;
1146 if (EI == EIend || EI->first != RhsVal) {
1147 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignement)
1148 << DstType;
1149 }
1150 }
1151 }
1152 }
1153
1154 StmtResult
ActOnWhileStmt(SourceLocation WhileLoc,FullExprArg Cond,Decl * CondVar,Stmt * Body)1155 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1156 Decl *CondVar, Stmt *Body) {
1157 ExprResult CondResult(Cond.release());
1158
1159 VarDecl *ConditionVar = 0;
1160 if (CondVar) {
1161 ConditionVar = cast<VarDecl>(CondVar);
1162 CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1163 if (CondResult.isInvalid())
1164 return StmtError();
1165 }
1166 Expr *ConditionExpr = CondResult.take();
1167 if (!ConditionExpr)
1168 return StmtError();
1169
1170 DiagnoseUnusedExprResult(Body);
1171
1172 if (isa<NullStmt>(Body))
1173 getCurCompoundScope().setHasEmptyLoopBodies();
1174
1175 return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1176 Body, WhileLoc));
1177 }
1178
1179 StmtResult
ActOnDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation CondLParen,Expr * Cond,SourceLocation CondRParen)1180 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1181 SourceLocation WhileLoc, SourceLocation CondLParen,
1182 Expr *Cond, SourceLocation CondRParen) {
1183 assert(Cond && "ActOnDoStmt(): missing expression");
1184
1185 ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1186 if (CondResult.isInvalid())
1187 return StmtError();
1188 Cond = CondResult.take();
1189
1190 CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1191 if (CondResult.isInvalid())
1192 return StmtError();
1193 Cond = CondResult.take();
1194
1195 DiagnoseUnusedExprResult(Body);
1196
1197 return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1198 }
1199
1200 namespace {
1201 // This visitor will traverse a conditional statement and store all
1202 // the evaluated decls into a vector. Simple is set to true if none
1203 // of the excluded constructs are used.
1204 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1205 llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1206 SmallVector<SourceRange, 10> &Ranges;
1207 bool Simple;
1208 public:
1209 typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1210
DeclExtractor(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,SmallVector<SourceRange,10> & Ranges)1211 DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1212 SmallVector<SourceRange, 10> &Ranges) :
1213 Inherited(S.Context),
1214 Decls(Decls),
1215 Ranges(Ranges),
1216 Simple(true) {}
1217
isSimple()1218 bool isSimple() { return Simple; }
1219
1220 // Replaces the method in EvaluatedExprVisitor.
VisitMemberExpr(MemberExpr * E)1221 void VisitMemberExpr(MemberExpr* E) {
1222 Simple = false;
1223 }
1224
1225 // Any Stmt not whitelisted will cause the condition to be marked complex.
VisitStmt(Stmt * S)1226 void VisitStmt(Stmt *S) {
1227 Simple = false;
1228 }
1229
VisitBinaryOperator(BinaryOperator * E)1230 void VisitBinaryOperator(BinaryOperator *E) {
1231 Visit(E->getLHS());
1232 Visit(E->getRHS());
1233 }
1234
VisitCastExpr(CastExpr * E)1235 void VisitCastExpr(CastExpr *E) {
1236 Visit(E->getSubExpr());
1237 }
1238
VisitUnaryOperator(UnaryOperator * E)1239 void VisitUnaryOperator(UnaryOperator *E) {
1240 // Skip checking conditionals with derefernces.
1241 if (E->getOpcode() == UO_Deref)
1242 Simple = false;
1243 else
1244 Visit(E->getSubExpr());
1245 }
1246
VisitConditionalOperator(ConditionalOperator * E)1247 void VisitConditionalOperator(ConditionalOperator *E) {
1248 Visit(E->getCond());
1249 Visit(E->getTrueExpr());
1250 Visit(E->getFalseExpr());
1251 }
1252
VisitParenExpr(ParenExpr * E)1253 void VisitParenExpr(ParenExpr *E) {
1254 Visit(E->getSubExpr());
1255 }
1256
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)1257 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1258 Visit(E->getOpaqueValue()->getSourceExpr());
1259 Visit(E->getFalseExpr());
1260 }
1261
VisitIntegerLiteral(IntegerLiteral * E)1262 void VisitIntegerLiteral(IntegerLiteral *E) { }
VisitFloatingLiteral(FloatingLiteral * E)1263 void VisitFloatingLiteral(FloatingLiteral *E) { }
VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)1264 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
VisitCharacterLiteral(CharacterLiteral * E)1265 void VisitCharacterLiteral(CharacterLiteral *E) { }
VisitGNUNullExpr(GNUNullExpr * E)1266 void VisitGNUNullExpr(GNUNullExpr *E) { }
VisitImaginaryLiteral(ImaginaryLiteral * E)1267 void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1268
VisitDeclRefExpr(DeclRefExpr * E)1269 void VisitDeclRefExpr(DeclRefExpr *E) {
1270 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1271 if (!VD) return;
1272
1273 Ranges.push_back(E->getSourceRange());
1274
1275 Decls.insert(VD);
1276 }
1277
1278 }; // end class DeclExtractor
1279
1280 // DeclMatcher checks to see if the decls are used in a non-evauluated
1281 // context.
1282 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1283 llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1284 bool FoundDecl;
1285
1286 public:
1287 typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1288
DeclMatcher(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,Stmt * Statement)1289 DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1290 Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1291 if (!Statement) return;
1292
1293 Visit(Statement);
1294 }
1295
VisitReturnStmt(ReturnStmt * S)1296 void VisitReturnStmt(ReturnStmt *S) {
1297 FoundDecl = true;
1298 }
1299
VisitBreakStmt(BreakStmt * S)1300 void VisitBreakStmt(BreakStmt *S) {
1301 FoundDecl = true;
1302 }
1303
VisitGotoStmt(GotoStmt * S)1304 void VisitGotoStmt(GotoStmt *S) {
1305 FoundDecl = true;
1306 }
1307
VisitCastExpr(CastExpr * E)1308 void VisitCastExpr(CastExpr *E) {
1309 if (E->getCastKind() == CK_LValueToRValue)
1310 CheckLValueToRValueCast(E->getSubExpr());
1311 else
1312 Visit(E->getSubExpr());
1313 }
1314
CheckLValueToRValueCast(Expr * E)1315 void CheckLValueToRValueCast(Expr *E) {
1316 E = E->IgnoreParenImpCasts();
1317
1318 if (isa<DeclRefExpr>(E)) {
1319 return;
1320 }
1321
1322 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1323 Visit(CO->getCond());
1324 CheckLValueToRValueCast(CO->getTrueExpr());
1325 CheckLValueToRValueCast(CO->getFalseExpr());
1326 return;
1327 }
1328
1329 if (BinaryConditionalOperator *BCO =
1330 dyn_cast<BinaryConditionalOperator>(E)) {
1331 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1332 CheckLValueToRValueCast(BCO->getFalseExpr());
1333 return;
1334 }
1335
1336 Visit(E);
1337 }
1338
VisitDeclRefExpr(DeclRefExpr * E)1339 void VisitDeclRefExpr(DeclRefExpr *E) {
1340 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1341 if (Decls.count(VD))
1342 FoundDecl = true;
1343 }
1344
FoundDeclInUse()1345 bool FoundDeclInUse() { return FoundDecl; }
1346
1347 }; // end class DeclMatcher
1348
CheckForLoopConditionalStatement(Sema & S,Expr * Second,Expr * Third,Stmt * Body)1349 void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1350 Expr *Third, Stmt *Body) {
1351 // Condition is empty
1352 if (!Second) return;
1353
1354 if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1355 Second->getLocStart())
1356 == DiagnosticsEngine::Ignored)
1357 return;
1358
1359 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1360 llvm::SmallPtrSet<VarDecl*, 8> Decls;
1361 SmallVector<SourceRange, 10> Ranges;
1362 DeclExtractor DE(S, Decls, Ranges);
1363 DE.Visit(Second);
1364
1365 // Don't analyze complex conditionals.
1366 if (!DE.isSimple()) return;
1367
1368 // No decls found.
1369 if (Decls.size() == 0) return;
1370
1371 // Don't warn on volatile, static, or global variables.
1372 for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1373 E = Decls.end();
1374 I != E; ++I)
1375 if ((*I)->getType().isVolatileQualified() ||
1376 (*I)->hasGlobalStorage()) return;
1377
1378 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1379 DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1380 DeclMatcher(S, Decls, Body).FoundDeclInUse())
1381 return;
1382
1383 // Load decl names into diagnostic.
1384 if (Decls.size() > 4)
1385 PDiag << 0;
1386 else {
1387 PDiag << Decls.size();
1388 for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1389 E = Decls.end();
1390 I != E; ++I)
1391 PDiag << (*I)->getDeclName();
1392 }
1393
1394 // Load SourceRanges into diagnostic if there is room.
1395 // Otherwise, load the SourceRange of the conditional expression.
1396 if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1397 for (SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1398 E = Ranges.end();
1399 I != E; ++I)
1400 PDiag << *I;
1401 else
1402 PDiag << Second->getSourceRange();
1403
1404 S.Diag(Ranges.begin()->getBegin(), PDiag);
1405 }
1406
1407 } // end namespace
1408
1409 StmtResult
ActOnForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,FullExprArg second,Decl * secondVar,FullExprArg third,SourceLocation RParenLoc,Stmt * Body)1410 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1411 Stmt *First, FullExprArg second, Decl *secondVar,
1412 FullExprArg third,
1413 SourceLocation RParenLoc, Stmt *Body) {
1414 if (!getLangOpts().CPlusPlus) {
1415 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1416 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1417 // declare identifiers for objects having storage class 'auto' or
1418 // 'register'.
1419 for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1420 DI!=DE; ++DI) {
1421 VarDecl *VD = dyn_cast<VarDecl>(*DI);
1422 if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1423 VD = 0;
1424 if (VD == 0)
1425 Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1426 // FIXME: mark decl erroneous!
1427 }
1428 }
1429 }
1430
1431 CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1432
1433 ExprResult SecondResult(second.release());
1434 VarDecl *ConditionVar = 0;
1435 if (secondVar) {
1436 ConditionVar = cast<VarDecl>(secondVar);
1437 SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1438 if (SecondResult.isInvalid())
1439 return StmtError();
1440 }
1441
1442 Expr *Third = third.release().takeAs<Expr>();
1443
1444 DiagnoseUnusedExprResult(First);
1445 DiagnoseUnusedExprResult(Third);
1446 DiagnoseUnusedExprResult(Body);
1447
1448 if (isa<NullStmt>(Body))
1449 getCurCompoundScope().setHasEmptyLoopBodies();
1450
1451 return Owned(new (Context) ForStmt(Context, First,
1452 SecondResult.take(), ConditionVar,
1453 Third, Body, ForLoc, LParenLoc,
1454 RParenLoc));
1455 }
1456
1457 /// In an Objective C collection iteration statement:
1458 /// for (x in y)
1459 /// x can be an arbitrary l-value expression. Bind it up as a
1460 /// full-expression.
ActOnForEachLValueExpr(Expr * E)1461 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1462 // Reduce placeholder expressions here. Note that this rejects the
1463 // use of pseudo-object l-values in this position.
1464 ExprResult result = CheckPlaceholderExpr(E);
1465 if (result.isInvalid()) return StmtError();
1466 E = result.take();
1467
1468 ExprResult FullExpr = ActOnFinishFullExpr(E);
1469 if (FullExpr.isInvalid())
1470 return StmtError();
1471 return StmtResult(static_cast<Stmt*>(FullExpr.take()));
1472 }
1473
1474 ExprResult
CheckObjCForCollectionOperand(SourceLocation forLoc,Expr * collection)1475 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1476 if (!collection)
1477 return ExprError();
1478
1479 // Bail out early if we've got a type-dependent expression.
1480 if (collection->isTypeDependent()) return Owned(collection);
1481
1482 // Perform normal l-value conversion.
1483 ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1484 if (result.isInvalid())
1485 return ExprError();
1486 collection = result.take();
1487
1488 // The operand needs to have object-pointer type.
1489 // TODO: should we do a contextual conversion?
1490 const ObjCObjectPointerType *pointerType =
1491 collection->getType()->getAs<ObjCObjectPointerType>();
1492 if (!pointerType)
1493 return Diag(forLoc, diag::err_collection_expr_type)
1494 << collection->getType() << collection->getSourceRange();
1495
1496 // Check that the operand provides
1497 // - countByEnumeratingWithState:objects:count:
1498 const ObjCObjectType *objectType = pointerType->getObjectType();
1499 ObjCInterfaceDecl *iface = objectType->getInterface();
1500
1501 // If we have a forward-declared type, we can't do this check.
1502 // Under ARC, it is an error not to have a forward-declared class.
1503 if (iface &&
1504 RequireCompleteType(forLoc, QualType(objectType, 0),
1505 getLangOpts().ObjCAutoRefCount
1506 ? diag::err_arc_collection_forward
1507 : 0,
1508 collection)) {
1509 // Otherwise, if we have any useful type information, check that
1510 // the type declares the appropriate method.
1511 } else if (iface || !objectType->qual_empty()) {
1512 IdentifierInfo *selectorIdents[] = {
1513 &Context.Idents.get("countByEnumeratingWithState"),
1514 &Context.Idents.get("objects"),
1515 &Context.Idents.get("count")
1516 };
1517 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1518
1519 ObjCMethodDecl *method = 0;
1520
1521 // If there's an interface, look in both the public and private APIs.
1522 if (iface) {
1523 method = iface->lookupInstanceMethod(selector);
1524 if (!method) method = iface->lookupPrivateMethod(selector);
1525 }
1526
1527 // Also check protocol qualifiers.
1528 if (!method)
1529 method = LookupMethodInQualifiedType(selector, pointerType,
1530 /*instance*/ true);
1531
1532 // If we didn't find it anywhere, give up.
1533 if (!method) {
1534 Diag(forLoc, diag::warn_collection_expr_type)
1535 << collection->getType() << selector << collection->getSourceRange();
1536 }
1537
1538 // TODO: check for an incompatible signature?
1539 }
1540
1541 // Wrap up any cleanups in the expression.
1542 return Owned(collection);
1543 }
1544
1545 StmtResult
ActOnObjCForCollectionStmt(SourceLocation ForLoc,Stmt * First,Expr * collection,SourceLocation RParenLoc)1546 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1547 Stmt *First, Expr *collection,
1548 SourceLocation RParenLoc) {
1549
1550 ExprResult CollectionExprResult =
1551 CheckObjCForCollectionOperand(ForLoc, collection);
1552
1553 if (First) {
1554 QualType FirstType;
1555 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1556 if (!DS->isSingleDecl())
1557 return StmtError(Diag((*DS->decl_begin())->getLocation(),
1558 diag::err_toomany_element_decls));
1559
1560 VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1561 FirstType = D->getType();
1562 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1563 // declare identifiers for objects having storage class 'auto' or
1564 // 'register'.
1565 if (!D->hasLocalStorage())
1566 return StmtError(Diag(D->getLocation(),
1567 diag::err_non_variable_decl_in_for));
1568 } else {
1569 Expr *FirstE = cast<Expr>(First);
1570 if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1571 return StmtError(Diag(First->getLocStart(),
1572 diag::err_selector_element_not_lvalue)
1573 << First->getSourceRange());
1574
1575 FirstType = static_cast<Expr*>(First)->getType();
1576 }
1577 if (!FirstType->isDependentType() &&
1578 !FirstType->isObjCObjectPointerType() &&
1579 !FirstType->isBlockPointerType())
1580 return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1581 << FirstType << First->getSourceRange());
1582 }
1583
1584 if (CollectionExprResult.isInvalid())
1585 return StmtError();
1586
1587 CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.take());
1588 if (CollectionExprResult.isInvalid())
1589 return StmtError();
1590
1591 return Owned(new (Context) ObjCForCollectionStmt(First,
1592 CollectionExprResult.take(), 0,
1593 ForLoc, RParenLoc));
1594 }
1595
1596 /// Finish building a variable declaration for a for-range statement.
1597 /// \return true if an error occurs.
FinishForRangeVarDecl(Sema & SemaRef,VarDecl * Decl,Expr * Init,SourceLocation Loc,int diag)1598 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1599 SourceLocation Loc, int diag) {
1600 // Deduce the type for the iterator variable now rather than leaving it to
1601 // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1602 TypeSourceInfo *InitTSI = 0;
1603 if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1604 SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1605 Sema::DAR_Failed)
1606 SemaRef.Diag(Loc, diag) << Init->getType();
1607 if (!InitTSI) {
1608 Decl->setInvalidDecl();
1609 return true;
1610 }
1611 Decl->setTypeSourceInfo(InitTSI);
1612 Decl->setType(InitTSI->getType());
1613
1614 // In ARC, infer lifetime.
1615 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1616 // we're doing the equivalent of fast iteration.
1617 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1618 SemaRef.inferObjCARCLifetime(Decl))
1619 Decl->setInvalidDecl();
1620
1621 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1622 /*TypeMayContainAuto=*/false);
1623 SemaRef.FinalizeDeclaration(Decl);
1624 SemaRef.CurContext->addHiddenDecl(Decl);
1625 return false;
1626 }
1627
1628 namespace {
1629
1630 /// Produce a note indicating which begin/end function was implicitly called
1631 /// by a C++11 for-range statement. This is often not obvious from the code,
1632 /// nor from the diagnostics produced when analysing the implicit expressions
1633 /// required in a for-range statement.
NoteForRangeBeginEndFunction(Sema & SemaRef,Expr * E,Sema::BeginEndFunction BEF)1634 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1635 Sema::BeginEndFunction BEF) {
1636 CallExpr *CE = dyn_cast<CallExpr>(E);
1637 if (!CE)
1638 return;
1639 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1640 if (!D)
1641 return;
1642 SourceLocation Loc = D->getLocation();
1643
1644 std::string Description;
1645 bool IsTemplate = false;
1646 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1647 Description = SemaRef.getTemplateArgumentBindingsText(
1648 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1649 IsTemplate = true;
1650 }
1651
1652 SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1653 << BEF << IsTemplate << Description << E->getType();
1654 }
1655
1656 /// Build a variable declaration for a for-range statement.
BuildForRangeVarDecl(Sema & SemaRef,SourceLocation Loc,QualType Type,const char * Name)1657 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1658 QualType Type, const char *Name) {
1659 DeclContext *DC = SemaRef.CurContext;
1660 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1661 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1662 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1663 TInfo, SC_Auto, SC_None);
1664 Decl->setImplicit();
1665 return Decl;
1666 }
1667
1668 }
1669
ObjCEnumerationCollection(Expr * Collection)1670 static bool ObjCEnumerationCollection(Expr *Collection) {
1671 return !Collection->isTypeDependent()
1672 && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1673 }
1674
1675 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1676 ///
1677 /// C++11 [stmt.ranged]:
1678 /// A range-based for statement is equivalent to
1679 ///
1680 /// {
1681 /// auto && __range = range-init;
1682 /// for ( auto __begin = begin-expr,
1683 /// __end = end-expr;
1684 /// __begin != __end;
1685 /// ++__begin ) {
1686 /// for-range-declaration = *__begin;
1687 /// statement
1688 /// }
1689 /// }
1690 ///
1691 /// The body of the loop is not available yet, since it cannot be analysed until
1692 /// we have determined the type of the for-range-declaration.
1693 StmtResult
ActOnCXXForRangeStmt(SourceLocation ForLoc,Stmt * First,SourceLocation ColonLoc,Expr * Range,SourceLocation RParenLoc,BuildForRangeKind Kind)1694 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
1695 Stmt *First, SourceLocation ColonLoc, Expr *Range,
1696 SourceLocation RParenLoc, BuildForRangeKind Kind) {
1697 if (!First || !Range)
1698 return StmtError();
1699
1700 if (ObjCEnumerationCollection(Range))
1701 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1702
1703 DeclStmt *DS = dyn_cast<DeclStmt>(First);
1704 assert(DS && "first part of for range not a decl stmt");
1705
1706 if (!DS->isSingleDecl()) {
1707 Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1708 return StmtError();
1709 }
1710 if (DS->getSingleDecl()->isInvalidDecl())
1711 return StmtError();
1712
1713 if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1714 return StmtError();
1715
1716 // Build auto && __range = range-init
1717 SourceLocation RangeLoc = Range->getLocStart();
1718 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1719 Context.getAutoRRefDeductType(),
1720 "__range");
1721 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1722 diag::err_for_range_deduction_failure))
1723 return StmtError();
1724
1725 // Claim the type doesn't contain auto: we've already done the checking.
1726 DeclGroupPtrTy RangeGroup =
1727 BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1728 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1729 if (RangeDecl.isInvalid())
1730 return StmtError();
1731
1732 return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1733 /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1734 RParenLoc, Kind);
1735 }
1736
1737 /// \brief Create the initialization, compare, and increment steps for
1738 /// the range-based for loop expression.
1739 /// This function does not handle array-based for loops,
1740 /// which are created in Sema::BuildCXXForRangeStmt.
1741 ///
1742 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
1743 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
1744 /// CandidateSet and BEF are set and some non-success value is returned on
1745 /// failure.
BuildNonArrayForRange(Sema & SemaRef,Scope * S,Expr * BeginRange,Expr * EndRange,QualType RangeType,VarDecl * BeginVar,VarDecl * EndVar,SourceLocation ColonLoc,OverloadCandidateSet * CandidateSet,ExprResult * BeginExpr,ExprResult * EndExpr,Sema::BeginEndFunction * BEF)1746 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
1747 Expr *BeginRange, Expr *EndRange,
1748 QualType RangeType,
1749 VarDecl *BeginVar,
1750 VarDecl *EndVar,
1751 SourceLocation ColonLoc,
1752 OverloadCandidateSet *CandidateSet,
1753 ExprResult *BeginExpr,
1754 ExprResult *EndExpr,
1755 Sema::BeginEndFunction *BEF) {
1756 DeclarationNameInfo BeginNameInfo(
1757 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
1758 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
1759 ColonLoc);
1760
1761 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
1762 Sema::LookupMemberName);
1763 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
1764
1765 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1766 // - if _RangeT is a class type, the unqualified-ids begin and end are
1767 // looked up in the scope of class _RangeT as if by class member access
1768 // lookup (3.4.5), and if either (or both) finds at least one
1769 // declaration, begin-expr and end-expr are __range.begin() and
1770 // __range.end(), respectively;
1771 SemaRef.LookupQualifiedName(BeginMemberLookup, D);
1772 SemaRef.LookupQualifiedName(EndMemberLookup, D);
1773
1774 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1775 SourceLocation RangeLoc = BeginVar->getLocation();
1776 *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
1777
1778 SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
1779 << RangeLoc << BeginRange->getType() << *BEF;
1780 return Sema::FRS_DiagnosticIssued;
1781 }
1782 } else {
1783 // - otherwise, begin-expr and end-expr are begin(__range) and
1784 // end(__range), respectively, where begin and end are looked up with
1785 // argument-dependent lookup (3.4.2). For the purposes of this name
1786 // lookup, namespace std is an associated namespace.
1787
1788 }
1789
1790 *BEF = Sema::BEF_begin;
1791 Sema::ForRangeStatus RangeStatus =
1792 SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
1793 Sema::BEF_begin, BeginNameInfo,
1794 BeginMemberLookup, CandidateSet,
1795 BeginRange, BeginExpr);
1796
1797 if (RangeStatus != Sema::FRS_Success)
1798 return RangeStatus;
1799 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
1800 diag::err_for_range_iter_deduction_failure)) {
1801 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
1802 return Sema::FRS_DiagnosticIssued;
1803 }
1804
1805 *BEF = Sema::BEF_end;
1806 RangeStatus =
1807 SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
1808 Sema::BEF_end, EndNameInfo,
1809 EndMemberLookup, CandidateSet,
1810 EndRange, EndExpr);
1811 if (RangeStatus != Sema::FRS_Success)
1812 return RangeStatus;
1813 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
1814 diag::err_for_range_iter_deduction_failure)) {
1815 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
1816 return Sema::FRS_DiagnosticIssued;
1817 }
1818 return Sema::FRS_Success;
1819 }
1820
1821 /// Speculatively attempt to dereference an invalid range expression.
1822 /// If the attempt fails, this function will return a valid, null StmtResult
1823 /// and emit no diagnostics.
RebuildForRangeWithDereference(Sema & SemaRef,Scope * S,SourceLocation ForLoc,Stmt * LoopVarDecl,SourceLocation ColonLoc,Expr * Range,SourceLocation RangeLoc,SourceLocation RParenLoc)1824 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
1825 SourceLocation ForLoc,
1826 Stmt *LoopVarDecl,
1827 SourceLocation ColonLoc,
1828 Expr *Range,
1829 SourceLocation RangeLoc,
1830 SourceLocation RParenLoc) {
1831 // Determine whether we can rebuild the for-range statement with a
1832 // dereferenced range expression.
1833 ExprResult AdjustedRange;
1834 {
1835 Sema::SFINAETrap Trap(SemaRef);
1836
1837 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
1838 if (AdjustedRange.isInvalid())
1839 return StmtResult();
1840
1841 StmtResult SR =
1842 SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1843 AdjustedRange.get(), RParenLoc,
1844 Sema::BFRK_Check);
1845 if (SR.isInvalid())
1846 return StmtResult();
1847 }
1848
1849 // The attempt to dereference worked well enough that it could produce a valid
1850 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
1851 // case there are any other (non-fatal) problems with it.
1852 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
1853 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
1854 return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1855 AdjustedRange.get(), RParenLoc,
1856 Sema::BFRK_Rebuild);
1857 }
1858
1859 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
1860 StmtResult
BuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation ColonLoc,Stmt * RangeDecl,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVarDecl,SourceLocation RParenLoc,BuildForRangeKind Kind)1861 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1862 Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1863 Expr *Inc, Stmt *LoopVarDecl,
1864 SourceLocation RParenLoc, BuildForRangeKind Kind) {
1865 Scope *S = getCurScope();
1866
1867 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1868 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1869 QualType RangeVarType = RangeVar->getType();
1870
1871 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1872 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1873
1874 StmtResult BeginEndDecl = BeginEnd;
1875 ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1876
1877 if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1878 SourceLocation RangeLoc = RangeVar->getLocation();
1879
1880 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1881
1882 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1883 VK_LValue, ColonLoc);
1884 if (BeginRangeRef.isInvalid())
1885 return StmtError();
1886
1887 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1888 VK_LValue, ColonLoc);
1889 if (EndRangeRef.isInvalid())
1890 return StmtError();
1891
1892 QualType AutoType = Context.getAutoDeductType();
1893 Expr *Range = RangeVar->getInit();
1894 if (!Range)
1895 return StmtError();
1896 QualType RangeType = Range->getType();
1897
1898 if (RequireCompleteType(RangeLoc, RangeType,
1899 diag::err_for_range_incomplete_type))
1900 return StmtError();
1901
1902 // Build auto __begin = begin-expr, __end = end-expr.
1903 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1904 "__begin");
1905 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1906 "__end");
1907
1908 // Build begin-expr and end-expr and attach to __begin and __end variables.
1909 ExprResult BeginExpr, EndExpr;
1910 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1911 // - if _RangeT is an array type, begin-expr and end-expr are __range and
1912 // __range + __bound, respectively, where __bound is the array bound. If
1913 // _RangeT is an array of unknown size or an array of incomplete type,
1914 // the program is ill-formed;
1915
1916 // begin-expr is __range.
1917 BeginExpr = BeginRangeRef;
1918 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1919 diag::err_for_range_iter_deduction_failure)) {
1920 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1921 return StmtError();
1922 }
1923
1924 // Find the array bound.
1925 ExprResult BoundExpr;
1926 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1927 BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1928 Context.getPointerDiffType(),
1929 RangeLoc));
1930 else if (const VariableArrayType *VAT =
1931 dyn_cast<VariableArrayType>(UnqAT))
1932 BoundExpr = VAT->getSizeExpr();
1933 else {
1934 // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1935 // UnqAT is not incomplete and Range is not type-dependent.
1936 llvm_unreachable("Unexpected array type in for-range");
1937 }
1938
1939 // end-expr is __range + __bound.
1940 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1941 BoundExpr.get());
1942 if (EndExpr.isInvalid())
1943 return StmtError();
1944 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1945 diag::err_for_range_iter_deduction_failure)) {
1946 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1947 return StmtError();
1948 }
1949 } else {
1950 OverloadCandidateSet CandidateSet(RangeLoc);
1951 Sema::BeginEndFunction BEFFailure;
1952 ForRangeStatus RangeStatus =
1953 BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
1954 EndRangeRef.get(), RangeType,
1955 BeginVar, EndVar, ColonLoc, &CandidateSet,
1956 &BeginExpr, &EndExpr, &BEFFailure);
1957
1958 // If building the range failed, try dereferencing the range expression
1959 // unless a diagnostic was issued or the end function is problematic.
1960 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
1961 BEFFailure == BEF_begin) {
1962 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
1963 LoopVarDecl, ColonLoc,
1964 Range, RangeLoc,
1965 RParenLoc);
1966 if (SR.isInvalid() || SR.isUsable())
1967 return SR;
1968 }
1969
1970 // Otherwise, emit diagnostics if we haven't already.
1971 if (RangeStatus == FRS_NoViableFunction) {
1972 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
1973 Diag(Range->getLocStart(), diag::err_for_range_invalid)
1974 << RangeLoc << Range->getType() << BEFFailure;
1975 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
1976 }
1977 // Return an error if no fix was discovered.
1978 if (RangeStatus != FRS_Success)
1979 return StmtError();
1980 }
1981
1982 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
1983 "invalid range expression in for loop");
1984
1985 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
1986 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1987 if (!Context.hasSameType(BeginType, EndType)) {
1988 Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1989 << BeginType << EndType;
1990 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1991 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1992 }
1993
1994 Decl *BeginEndDecls[] = { BeginVar, EndVar };
1995 // Claim the type doesn't contain auto: we've already done the checking.
1996 DeclGroupPtrTy BeginEndGroup =
1997 BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1998 BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1999
2000 const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2001 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2002 VK_LValue, ColonLoc);
2003 if (BeginRef.isInvalid())
2004 return StmtError();
2005
2006 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2007 VK_LValue, ColonLoc);
2008 if (EndRef.isInvalid())
2009 return StmtError();
2010
2011 // Build and check __begin != __end expression.
2012 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2013 BeginRef.get(), EndRef.get());
2014 NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2015 NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2016 if (NotEqExpr.isInvalid()) {
2017 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2018 << RangeLoc << 0 << BeginRangeRef.get()->getType();
2019 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2020 if (!Context.hasSameType(BeginType, EndType))
2021 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2022 return StmtError();
2023 }
2024
2025 // Build and check ++__begin expression.
2026 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2027 VK_LValue, ColonLoc);
2028 if (BeginRef.isInvalid())
2029 return StmtError();
2030
2031 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2032 IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2033 if (IncrExpr.isInvalid()) {
2034 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2035 << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2036 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2037 return StmtError();
2038 }
2039
2040 // Build and check *__begin expression.
2041 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2042 VK_LValue, ColonLoc);
2043 if (BeginRef.isInvalid())
2044 return StmtError();
2045
2046 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2047 if (DerefExpr.isInvalid()) {
2048 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2049 << RangeLoc << 1 << BeginRangeRef.get()->getType();
2050 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2051 return StmtError();
2052 }
2053
2054 // Attach *__begin as initializer for VD. Don't touch it if we're just
2055 // trying to determine whether this would be a valid range.
2056 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2057 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2058 /*TypeMayContainAuto=*/true);
2059 if (LoopVar->isInvalidDecl())
2060 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2061 }
2062 } else {
2063 // The range is implicitly used as a placeholder when it is dependent.
2064 RangeVar->setUsed();
2065 }
2066
2067 // Don't bother to actually allocate the result if we're just trying to
2068 // determine whether it would be valid.
2069 if (Kind == BFRK_Check)
2070 return StmtResult();
2071
2072 return Owned(new (Context) CXXForRangeStmt(RangeDS,
2073 cast_or_null<DeclStmt>(BeginEndDecl.get()),
2074 NotEqExpr.take(), IncrExpr.take(),
2075 LoopVarDS, /*Body=*/0, ForLoc,
2076 ColonLoc, RParenLoc));
2077 }
2078
2079 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2080 /// statement.
FinishObjCForCollectionStmt(Stmt * S,Stmt * B)2081 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2082 if (!S || !B)
2083 return StmtError();
2084 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2085
2086 ForStmt->setBody(B);
2087 return S;
2088 }
2089
2090 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2091 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2092 /// body cannot be performed until after the type of the range variable is
2093 /// determined.
FinishCXXForRangeStmt(Stmt * S,Stmt * B)2094 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2095 if (!S || !B)
2096 return StmtError();
2097
2098 if (isa<ObjCForCollectionStmt>(S))
2099 return FinishObjCForCollectionStmt(S, B);
2100
2101 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2102 ForStmt->setBody(B);
2103
2104 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2105 diag::warn_empty_range_based_for_body);
2106
2107 return S;
2108 }
2109
ActOnGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * TheDecl)2110 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2111 SourceLocation LabelLoc,
2112 LabelDecl *TheDecl) {
2113 getCurFunction()->setHasBranchIntoScope();
2114 TheDecl->setUsed();
2115 return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
2116 }
2117
2118 StmtResult
ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * E)2119 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2120 Expr *E) {
2121 // Convert operand to void*
2122 if (!E->isTypeDependent()) {
2123 QualType ETy = E->getType();
2124 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2125 ExprResult ExprRes = Owned(E);
2126 AssignConvertType ConvTy =
2127 CheckSingleAssignmentConstraints(DestTy, ExprRes);
2128 if (ExprRes.isInvalid())
2129 return StmtError();
2130 E = ExprRes.take();
2131 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2132 return StmtError();
2133 }
2134
2135 ExprResult ExprRes = ActOnFinishFullExpr(E);
2136 if (ExprRes.isInvalid())
2137 return StmtError();
2138 E = ExprRes.take();
2139
2140 getCurFunction()->setHasIndirectGoto();
2141
2142 return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
2143 }
2144
2145 StmtResult
ActOnContinueStmt(SourceLocation ContinueLoc,Scope * CurScope)2146 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2147 Scope *S = CurScope->getContinueParent();
2148 if (!S) {
2149 // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2150 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2151 }
2152
2153 return Owned(new (Context) ContinueStmt(ContinueLoc));
2154 }
2155
2156 StmtResult
ActOnBreakStmt(SourceLocation BreakLoc,Scope * CurScope)2157 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2158 Scope *S = CurScope->getBreakParent();
2159 if (!S) {
2160 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2161 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2162 }
2163
2164 return Owned(new (Context) BreakStmt(BreakLoc));
2165 }
2166
2167 /// \brief Determine whether the given expression is a candidate for
2168 /// copy elision in either a return statement or a throw expression.
2169 ///
2170 /// \param ReturnType If we're determining the copy elision candidate for
2171 /// a return statement, this is the return type of the function. If we're
2172 /// determining the copy elision candidate for a throw expression, this will
2173 /// be a NULL type.
2174 ///
2175 /// \param E The expression being returned from the function or block, or
2176 /// being thrown.
2177 ///
2178 /// \param AllowFunctionParameter Whether we allow function parameters to
2179 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2180 /// we re-use this logic to determine whether we should try to move as part of
2181 /// a return or throw (which does allow function parameters).
2182 ///
2183 /// \returns The NRVO candidate variable, if the return statement may use the
2184 /// NRVO, or NULL if there is no such candidate.
getCopyElisionCandidate(QualType ReturnType,Expr * E,bool AllowFunctionParameter)2185 const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2186 Expr *E,
2187 bool AllowFunctionParameter) {
2188 QualType ExprType = E->getType();
2189 // - in a return statement in a function with ...
2190 // ... a class return type ...
2191 if (!ReturnType.isNull()) {
2192 if (!ReturnType->isRecordType())
2193 return 0;
2194 // ... the same cv-unqualified type as the function return type ...
2195 if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2196 return 0;
2197 }
2198
2199 // ... the expression is the name of a non-volatile automatic object
2200 // (other than a function or catch-clause parameter)) ...
2201 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2202 if (!DR || DR->refersToEnclosingLocal())
2203 return 0;
2204 const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2205 if (!VD)
2206 return 0;
2207
2208 // ...object (other than a function or catch-clause parameter)...
2209 if (VD->getKind() != Decl::Var &&
2210 !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2211 return 0;
2212 if (VD->isExceptionVariable()) return 0;
2213
2214 // ...automatic...
2215 if (!VD->hasLocalStorage()) return 0;
2216
2217 // ...non-volatile...
2218 if (VD->getType().isVolatileQualified()) return 0;
2219 if (VD->getType()->isReferenceType()) return 0;
2220
2221 // __block variables can't be allocated in a way that permits NRVO.
2222 if (VD->hasAttr<BlocksAttr>()) return 0;
2223
2224 // Variables with higher required alignment than their type's ABI
2225 // alignment cannot use NRVO.
2226 if (VD->hasAttr<AlignedAttr>() &&
2227 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2228 return 0;
2229
2230 return VD;
2231 }
2232
2233 /// \brief Perform the initialization of a potentially-movable value, which
2234 /// is the result of return value.
2235 ///
2236 /// This routine implements C++0x [class.copy]p33, which attempts to treat
2237 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2238 /// then falls back to treating them as lvalues if that failed.
2239 ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity & Entity,const VarDecl * NRVOCandidate,QualType ResultType,Expr * Value,bool AllowNRVO)2240 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2241 const VarDecl *NRVOCandidate,
2242 QualType ResultType,
2243 Expr *Value,
2244 bool AllowNRVO) {
2245 // C++0x [class.copy]p33:
2246 // When the criteria for elision of a copy operation are met or would
2247 // be met save for the fact that the source object is a function
2248 // parameter, and the object to be copied is designated by an lvalue,
2249 // overload resolution to select the constructor for the copy is first
2250 // performed as if the object were designated by an rvalue.
2251 ExprResult Res = ExprError();
2252 if (AllowNRVO &&
2253 (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2254 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2255 Value->getType(), CK_NoOp, Value, VK_XValue);
2256
2257 Expr *InitExpr = &AsRvalue;
2258 InitializationKind Kind
2259 = InitializationKind::CreateCopy(Value->getLocStart(),
2260 Value->getLocStart());
2261 InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2262
2263 // [...] If overload resolution fails, or if the type of the first
2264 // parameter of the selected constructor is not an rvalue reference
2265 // to the object's type (possibly cv-qualified), overload resolution
2266 // is performed again, considering the object as an lvalue.
2267 if (Seq) {
2268 for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2269 StepEnd = Seq.step_end();
2270 Step != StepEnd; ++Step) {
2271 if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2272 continue;
2273
2274 CXXConstructorDecl *Constructor
2275 = cast<CXXConstructorDecl>(Step->Function.Function);
2276
2277 const RValueReferenceType *RRefType
2278 = Constructor->getParamDecl(0)->getType()
2279 ->getAs<RValueReferenceType>();
2280
2281 // If we don't meet the criteria, break out now.
2282 if (!RRefType ||
2283 !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2284 Context.getTypeDeclType(Constructor->getParent())))
2285 break;
2286
2287 // Promote "AsRvalue" to the heap, since we now need this
2288 // expression node to persist.
2289 Value = ImplicitCastExpr::Create(Context, Value->getType(),
2290 CK_NoOp, Value, 0, VK_XValue);
2291
2292 // Complete type-checking the initialization of the return type
2293 // using the constructor we found.
2294 Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2295 }
2296 }
2297 }
2298
2299 // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2300 // above, or overload resolution failed. Either way, we need to try
2301 // (again) now with the return value expression as written.
2302 if (Res.isInvalid())
2303 Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2304
2305 return Res;
2306 }
2307
2308 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2309 /// for capturing scopes.
2310 ///
2311 StmtResult
ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2312 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2313 // If this is the first return we've seen, infer the return type.
2314 // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2315 // rules which allows multiple return statements.
2316 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2317 QualType FnRetType = CurCap->ReturnType;
2318
2319 // For blocks/lambdas with implicit return types, we check each return
2320 // statement individually, and deduce the common return type when the block
2321 // or lambda is completed.
2322 if (CurCap->HasImplicitReturnType) {
2323 if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2324 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2325 if (Result.isInvalid())
2326 return StmtError();
2327 RetValExp = Result.take();
2328
2329 if (!RetValExp->isTypeDependent())
2330 FnRetType = RetValExp->getType();
2331 else
2332 FnRetType = CurCap->ReturnType = Context.DependentTy;
2333 } else {
2334 if (RetValExp) {
2335 // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2336 // initializer list, because it is not an expression (even
2337 // though we represent it as one). We still deduce 'void'.
2338 Diag(ReturnLoc, diag::err_lambda_return_init_list)
2339 << RetValExp->getSourceRange();
2340 }
2341
2342 FnRetType = Context.VoidTy;
2343 }
2344
2345 // Although we'll properly infer the type of the block once it's completed,
2346 // make sure we provide a return type now for better error recovery.
2347 if (CurCap->ReturnType.isNull())
2348 CurCap->ReturnType = FnRetType;
2349 }
2350 assert(!FnRetType.isNull());
2351
2352 if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2353 if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2354 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2355 return StmtError();
2356 }
2357 } else {
2358 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2359 if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2360 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2361 return StmtError();
2362 }
2363 }
2364
2365 // Otherwise, verify that this result type matches the previous one. We are
2366 // pickier with blocks than for normal functions because we don't have GCC
2367 // compatibility to worry about here.
2368 const VarDecl *NRVOCandidate = 0;
2369 if (FnRetType->isDependentType()) {
2370 // Delay processing for now. TODO: there are lots of dependent
2371 // types we can conclusively prove aren't void.
2372 } else if (FnRetType->isVoidType()) {
2373 if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2374 !(getLangOpts().CPlusPlus &&
2375 (RetValExp->isTypeDependent() ||
2376 RetValExp->getType()->isVoidType()))) {
2377 if (!getLangOpts().CPlusPlus &&
2378 RetValExp->getType()->isVoidType())
2379 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2380 else {
2381 Diag(ReturnLoc, diag::err_return_block_has_expr);
2382 RetValExp = 0;
2383 }
2384 }
2385 } else if (!RetValExp) {
2386 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2387 } else if (!RetValExp->isTypeDependent()) {
2388 // we have a non-void block with an expression, continue checking
2389
2390 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2391 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2392 // function return.
2393
2394 // In C++ the return statement is handled via a copy initialization.
2395 // the C version of which boils down to CheckSingleAssignmentConstraints.
2396 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2397 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2398 FnRetType,
2399 NRVOCandidate != 0);
2400 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2401 FnRetType, RetValExp);
2402 if (Res.isInvalid()) {
2403 // FIXME: Cleanup temporaries here, anyway?
2404 return StmtError();
2405 }
2406 RetValExp = Res.take();
2407 CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2408 }
2409
2410 if (RetValExp) {
2411 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2412 if (ER.isInvalid())
2413 return StmtError();
2414 RetValExp = ER.take();
2415 }
2416 ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2417 NRVOCandidate);
2418
2419 // If we need to check for the named return value optimization,
2420 // or if we need to infer the return type,
2421 // save the return statement in our scope for later processing.
2422 if (CurCap->HasImplicitReturnType ||
2423 (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2424 !CurContext->isDependentContext()))
2425 FunctionScopes.back()->Returns.push_back(Result);
2426
2427 return Owned(Result);
2428 }
2429
2430 StmtResult
ActOnReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2431 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2432 // Check for unexpanded parameter packs.
2433 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2434 return StmtError();
2435
2436 if (isa<CapturingScopeInfo>(getCurFunction()))
2437 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2438
2439 QualType FnRetType;
2440 QualType RelatedRetType;
2441 if (const FunctionDecl *FD = getCurFunctionDecl()) {
2442 FnRetType = FD->getResultType();
2443 if (FD->isNoReturn())
2444 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2445 << FD->getDeclName();
2446 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2447 FnRetType = MD->getResultType();
2448 if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2449 // In the implementation of a method with a related return type, the
2450 // type used to type-check the validity of return statements within the
2451 // method body is a pointer to the type of the class being implemented.
2452 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2453 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2454 }
2455 } else // If we don't have a function/method context, bail.
2456 return StmtError();
2457
2458 ReturnStmt *Result = 0;
2459 if (FnRetType->isVoidType()) {
2460 if (RetValExp) {
2461 if (isa<InitListExpr>(RetValExp)) {
2462 // We simply never allow init lists as the return value of void
2463 // functions. This is compatible because this was never allowed before,
2464 // so there's no legacy code to deal with.
2465 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2466 int FunctionKind = 0;
2467 if (isa<ObjCMethodDecl>(CurDecl))
2468 FunctionKind = 1;
2469 else if (isa<CXXConstructorDecl>(CurDecl))
2470 FunctionKind = 2;
2471 else if (isa<CXXDestructorDecl>(CurDecl))
2472 FunctionKind = 3;
2473
2474 Diag(ReturnLoc, diag::err_return_init_list)
2475 << CurDecl->getDeclName() << FunctionKind
2476 << RetValExp->getSourceRange();
2477
2478 // Drop the expression.
2479 RetValExp = 0;
2480 } else if (!RetValExp->isTypeDependent()) {
2481 // C99 6.8.6.4p1 (ext_ since GCC warns)
2482 unsigned D = diag::ext_return_has_expr;
2483 if (RetValExp->getType()->isVoidType())
2484 D = diag::ext_return_has_void_expr;
2485 else {
2486 ExprResult Result = Owned(RetValExp);
2487 Result = IgnoredValueConversions(Result.take());
2488 if (Result.isInvalid())
2489 return StmtError();
2490 RetValExp = Result.take();
2491 RetValExp = ImpCastExprToType(RetValExp,
2492 Context.VoidTy, CK_ToVoid).take();
2493 }
2494
2495 // return (some void expression); is legal in C++.
2496 if (D != diag::ext_return_has_void_expr ||
2497 !getLangOpts().CPlusPlus) {
2498 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2499
2500 int FunctionKind = 0;
2501 if (isa<ObjCMethodDecl>(CurDecl))
2502 FunctionKind = 1;
2503 else if (isa<CXXConstructorDecl>(CurDecl))
2504 FunctionKind = 2;
2505 else if (isa<CXXDestructorDecl>(CurDecl))
2506 FunctionKind = 3;
2507
2508 Diag(ReturnLoc, D)
2509 << CurDecl->getDeclName() << FunctionKind
2510 << RetValExp->getSourceRange();
2511 }
2512 }
2513
2514 if (RetValExp) {
2515 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2516 if (ER.isInvalid())
2517 return StmtError();
2518 RetValExp = ER.take();
2519 }
2520 }
2521
2522 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2523 } else if (!RetValExp && !FnRetType->isDependentType()) {
2524 unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4
2525 // C99 6.8.6.4p1 (ext_ since GCC warns)
2526 if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2527
2528 if (FunctionDecl *FD = getCurFunctionDecl())
2529 Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2530 else
2531 Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2532 Result = new (Context) ReturnStmt(ReturnLoc);
2533 } else {
2534 assert(RetValExp || FnRetType->isDependentType());
2535 const VarDecl *NRVOCandidate = 0;
2536 if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2537 // we have a non-void function with an expression, continue checking
2538
2539 if (!RelatedRetType.isNull()) {
2540 // If we have a related result type, perform an extra conversion here.
2541 // FIXME: The diagnostics here don't really describe what is happening.
2542 InitializedEntity Entity =
2543 InitializedEntity::InitializeTemporary(RelatedRetType);
2544
2545 ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2546 RetValExp);
2547 if (Res.isInvalid()) {
2548 // FIXME: Cleanup temporaries here, anyway?
2549 return StmtError();
2550 }
2551 RetValExp = Res.takeAs<Expr>();
2552 }
2553
2554 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2555 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2556 // function return.
2557
2558 // In C++ the return statement is handled via a copy initialization,
2559 // the C version of which boils down to CheckSingleAssignmentConstraints.
2560 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2561 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2562 FnRetType,
2563 NRVOCandidate != 0);
2564 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2565 FnRetType, RetValExp);
2566 if (Res.isInvalid()) {
2567 // FIXME: Cleanup temporaries here, anyway?
2568 return StmtError();
2569 }
2570
2571 RetValExp = Res.takeAs<Expr>();
2572 if (RetValExp)
2573 CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2574 }
2575
2576 if (RetValExp) {
2577 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2578 if (ER.isInvalid())
2579 return StmtError();
2580 RetValExp = ER.take();
2581 }
2582 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2583 }
2584
2585 // If we need to check for the named return value optimization, save the
2586 // return statement in our scope for later processing.
2587 if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2588 !CurContext->isDependentContext())
2589 FunctionScopes.back()->Returns.push_back(Result);
2590
2591 return Owned(Result);
2592 }
2593
2594 StmtResult
ActOnObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParen,Decl * Parm,Stmt * Body)2595 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2596 SourceLocation RParen, Decl *Parm,
2597 Stmt *Body) {
2598 VarDecl *Var = cast_or_null<VarDecl>(Parm);
2599 if (Var && Var->isInvalidDecl())
2600 return StmtError();
2601
2602 return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2603 }
2604
2605 StmtResult
ActOnObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)2606 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2607 return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2608 }
2609
2610 StmtResult
ActOnObjCAtTryStmt(SourceLocation AtLoc,Stmt * Try,MultiStmtArg CatchStmts,Stmt * Finally)2611 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2612 MultiStmtArg CatchStmts, Stmt *Finally) {
2613 if (!getLangOpts().ObjCExceptions)
2614 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2615
2616 getCurFunction()->setHasBranchProtectedScope();
2617 unsigned NumCatchStmts = CatchStmts.size();
2618 return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2619 CatchStmts.data(),
2620 NumCatchStmts,
2621 Finally));
2622 }
2623
BuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw)2624 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2625 if (Throw) {
2626 ExprResult Result = DefaultLvalueConversion(Throw);
2627 if (Result.isInvalid())
2628 return StmtError();
2629
2630 Result = ActOnFinishFullExpr(Result.take());
2631 if (Result.isInvalid())
2632 return StmtError();
2633 Throw = Result.take();
2634
2635 QualType ThrowType = Throw->getType();
2636 // Make sure the expression type is an ObjC pointer or "void *".
2637 if (!ThrowType->isDependentType() &&
2638 !ThrowType->isObjCObjectPointerType()) {
2639 const PointerType *PT = ThrowType->getAs<PointerType>();
2640 if (!PT || !PT->getPointeeType()->isVoidType())
2641 return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2642 << Throw->getType() << Throw->getSourceRange());
2643 }
2644 }
2645
2646 return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2647 }
2648
2649 StmtResult
ActOnObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw,Scope * CurScope)2650 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2651 Scope *CurScope) {
2652 if (!getLangOpts().ObjCExceptions)
2653 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2654
2655 if (!Throw) {
2656 // @throw without an expression designates a rethrow (which much occur
2657 // in the context of an @catch clause).
2658 Scope *AtCatchParent = CurScope;
2659 while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2660 AtCatchParent = AtCatchParent->getParent();
2661 if (!AtCatchParent)
2662 return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2663 }
2664 return BuildObjCAtThrowStmt(AtLoc, Throw);
2665 }
2666
2667 ExprResult
ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * operand)2668 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2669 ExprResult result = DefaultLvalueConversion(operand);
2670 if (result.isInvalid())
2671 return ExprError();
2672 operand = result.take();
2673
2674 // Make sure the expression type is an ObjC pointer or "void *".
2675 QualType type = operand->getType();
2676 if (!type->isDependentType() &&
2677 !type->isObjCObjectPointerType()) {
2678 const PointerType *pointerType = type->getAs<PointerType>();
2679 if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2680 return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2681 << type << operand->getSourceRange();
2682 }
2683
2684 // The operand to @synchronized is a full-expression.
2685 return ActOnFinishFullExpr(operand);
2686 }
2687
2688 StmtResult
ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * SyncExpr,Stmt * SyncBody)2689 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2690 Stmt *SyncBody) {
2691 // We can't jump into or indirect-jump out of a @synchronized block.
2692 getCurFunction()->setHasBranchProtectedScope();
2693 return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2694 }
2695
2696 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2697 /// and creates a proper catch handler from them.
2698 StmtResult
ActOnCXXCatchBlock(SourceLocation CatchLoc,Decl * ExDecl,Stmt * HandlerBlock)2699 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2700 Stmt *HandlerBlock) {
2701 // There's nothing to test that ActOnExceptionDecl didn't already test.
2702 return Owned(new (Context) CXXCatchStmt(CatchLoc,
2703 cast_or_null<VarDecl>(ExDecl),
2704 HandlerBlock));
2705 }
2706
2707 StmtResult
ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)2708 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2709 getCurFunction()->setHasBranchProtectedScope();
2710 return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2711 }
2712
2713 namespace {
2714
2715 class TypeWithHandler {
2716 QualType t;
2717 CXXCatchStmt *stmt;
2718 public:
TypeWithHandler(const QualType & type,CXXCatchStmt * statement)2719 TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2720 : t(type), stmt(statement) {}
2721
2722 // An arbitrary order is fine as long as it places identical
2723 // types next to each other.
operator <(const TypeWithHandler & y) const2724 bool operator<(const TypeWithHandler &y) const {
2725 if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2726 return true;
2727 if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2728 return false;
2729 else
2730 return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2731 }
2732
operator ==(const TypeWithHandler & other) const2733 bool operator==(const TypeWithHandler& other) const {
2734 return t == other.t;
2735 }
2736
getCatchStmt() const2737 CXXCatchStmt *getCatchStmt() const { return stmt; }
getTypeSpecStartLoc() const2738 SourceLocation getTypeSpecStartLoc() const {
2739 return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2740 }
2741 };
2742
2743 }
2744
2745 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2746 /// handlers and creates a try statement from them.
2747 StmtResult
ActOnCXXTryBlock(SourceLocation TryLoc,Stmt * TryBlock,MultiStmtArg RawHandlers)2748 Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2749 MultiStmtArg RawHandlers) {
2750 // Don't report an error if 'try' is used in system headers.
2751 if (!getLangOpts().CXXExceptions &&
2752 !getSourceManager().isInSystemHeader(TryLoc))
2753 Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2754
2755 unsigned NumHandlers = RawHandlers.size();
2756 assert(NumHandlers > 0 &&
2757 "The parser shouldn't call this if there are no handlers.");
2758 Stmt **Handlers = RawHandlers.data();
2759
2760 SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2761
2762 for (unsigned i = 0; i < NumHandlers; ++i) {
2763 CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2764 if (!Handler->getExceptionDecl()) {
2765 if (i < NumHandlers - 1)
2766 return StmtError(Diag(Handler->getLocStart(),
2767 diag::err_early_catch_all));
2768
2769 continue;
2770 }
2771
2772 const QualType CaughtType = Handler->getCaughtType();
2773 const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2774 TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2775 }
2776
2777 // Detect handlers for the same type as an earlier one.
2778 if (NumHandlers > 1) {
2779 llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2780
2781 TypeWithHandler prev = TypesWithHandlers[0];
2782 for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2783 TypeWithHandler curr = TypesWithHandlers[i];
2784
2785 if (curr == prev) {
2786 Diag(curr.getTypeSpecStartLoc(),
2787 diag::warn_exception_caught_by_earlier_handler)
2788 << curr.getCatchStmt()->getCaughtType().getAsString();
2789 Diag(prev.getTypeSpecStartLoc(),
2790 diag::note_previous_exception_handler)
2791 << prev.getCatchStmt()->getCaughtType().getAsString();
2792 }
2793
2794 prev = curr;
2795 }
2796 }
2797
2798 getCurFunction()->setHasBranchProtectedScope();
2799
2800 // FIXME: We should detect handlers that cannot catch anything because an
2801 // earlier handler catches a superclass. Need to find a method that is not
2802 // quadratic for this.
2803 // Neither of these are explicitly forbidden, but every compiler detects them
2804 // and warns.
2805
2806 return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2807 llvm::makeArrayRef(Handlers, NumHandlers)));
2808 }
2809
2810 StmtResult
ActOnSEHTryBlock(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)2811 Sema::ActOnSEHTryBlock(bool IsCXXTry,
2812 SourceLocation TryLoc,
2813 Stmt *TryBlock,
2814 Stmt *Handler) {
2815 assert(TryBlock && Handler);
2816
2817 getCurFunction()->setHasBranchProtectedScope();
2818
2819 return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2820 }
2821
2822 StmtResult
ActOnSEHExceptBlock(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)2823 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2824 Expr *FilterExpr,
2825 Stmt *Block) {
2826 assert(FilterExpr && Block);
2827
2828 if(!FilterExpr->getType()->isIntegerType()) {
2829 return StmtError(Diag(FilterExpr->getExprLoc(),
2830 diag::err_filter_expression_integral)
2831 << FilterExpr->getType());
2832 }
2833
2834 return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2835 }
2836
2837 StmtResult
ActOnSEHFinallyBlock(SourceLocation Loc,Stmt * Block)2838 Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2839 Stmt *Block) {
2840 assert(Block);
2841 return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2842 }
2843
BuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)2844 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2845 bool IsIfExists,
2846 NestedNameSpecifierLoc QualifierLoc,
2847 DeclarationNameInfo NameInfo,
2848 Stmt *Nested)
2849 {
2850 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2851 QualifierLoc, NameInfo,
2852 cast<CompoundStmt>(Nested));
2853 }
2854
2855
ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name,Stmt * Nested)2856 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2857 bool IsIfExists,
2858 CXXScopeSpec &SS,
2859 UnqualifiedId &Name,
2860 Stmt *Nested) {
2861 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2862 SS.getWithLocInContext(Context),
2863 GetNameFromUnqualifiedId(Name),
2864 Nested);
2865 }
2866