• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Sema/Initialization.h"
28 #include "clang/Sema/Lookup.h"
29 #include "clang/Sema/Scope.h"
30 #include "clang/Sema/ScopeInfo.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/ADT/SmallVector.h"
36 using namespace clang;
37 using namespace sema;
38 
ActOnExprStmt(ExprResult FE)39 StmtResult Sema::ActOnExprStmt(ExprResult FE) {
40   if (FE.isInvalid())
41     return StmtError();
42 
43   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
44                            /*DiscardedValue*/ true);
45   if (FE.isInvalid())
46     return StmtError();
47 
48   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
49   // void expression for its side effects.  Conversion to void allows any
50   // operand, even incomplete types.
51 
52   // Same thing in for stmt first clause (when expr) and third clause.
53   return Owned(static_cast<Stmt*>(FE.take()));
54 }
55 
56 
ActOnNullStmt(SourceLocation SemiLoc,bool HasLeadingEmptyMacro)57 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
58                                bool HasLeadingEmptyMacro) {
59   return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
60 }
61 
ActOnDeclStmt(DeclGroupPtrTy dg,SourceLocation StartLoc,SourceLocation EndLoc)62 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
63                                SourceLocation EndLoc) {
64   DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
65 
66   // If we have an invalid decl, just return an error.
67   if (DG.isNull()) return StmtError();
68 
69   return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
70 }
71 
ActOnForEachDeclStmt(DeclGroupPtrTy dg)72 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
73   DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
74 
75   // If we have an invalid decl, just return.
76   if (DG.isNull() || !DG.isSingleDecl()) return;
77   VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
78 
79   // suppress any potential 'unused variable' warning.
80   var->setUsed();
81 
82   // foreach variables are never actually initialized in the way that
83   // the parser came up with.
84   var->setInit(0);
85 
86   // In ARC, we don't need to retain the iteration variable of a fast
87   // enumeration loop.  Rather than actually trying to catch that
88   // during declaration processing, we remove the consequences here.
89   if (getLangOpts().ObjCAutoRefCount) {
90     QualType type = var->getType();
91 
92     // Only do this if we inferred the lifetime.  Inferred lifetime
93     // will show up as a local qualifier because explicit lifetime
94     // should have shown up as an AttributedType instead.
95     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
96       // Add 'const' and mark the variable as pseudo-strong.
97       var->setType(type.withConst());
98       var->setARCPseudoStrong(true);
99     }
100   }
101 }
102 
103 /// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
104 ///
105 /// Adding a cast to void (or other expression wrappers) will prevent the
106 /// warning from firing.
DiagnoseUnusedComparison(Sema & S,const Expr * E)107 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
108   SourceLocation Loc;
109   bool IsNotEqual, CanAssign;
110 
111   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
112     if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
113       return false;
114 
115     Loc = Op->getOperatorLoc();
116     IsNotEqual = Op->getOpcode() == BO_NE;
117     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
118   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
119     if (Op->getOperator() != OO_EqualEqual &&
120         Op->getOperator() != OO_ExclaimEqual)
121       return false;
122 
123     Loc = Op->getOperatorLoc();
124     IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
125     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
126   } else {
127     // Not a typo-prone comparison.
128     return false;
129   }
130 
131   // Suppress warnings when the operator, suspicious as it may be, comes from
132   // a macro expansion.
133   if (S.SourceMgr.isMacroBodyExpansion(Loc))
134     return false;
135 
136   S.Diag(Loc, diag::warn_unused_comparison)
137     << (unsigned)IsNotEqual << E->getSourceRange();
138 
139   // If the LHS is a plausible entity to assign to, provide a fixit hint to
140   // correct common typos.
141   if (CanAssign) {
142     if (IsNotEqual)
143       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
144         << FixItHint::CreateReplacement(Loc, "|=");
145     else
146       S.Diag(Loc, diag::note_equality_comparison_to_assign)
147         << FixItHint::CreateReplacement(Loc, "=");
148   }
149 
150   return true;
151 }
152 
DiagnoseUnusedExprResult(const Stmt * S)153 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
154   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
155     return DiagnoseUnusedExprResult(Label->getSubStmt());
156 
157   const Expr *E = dyn_cast_or_null<Expr>(S);
158   if (!E)
159     return;
160   SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
161   // In most cases, we don't want to warn if the expression is written in a
162   // macro body, or if the macro comes from a system header. If the offending
163   // expression is a call to a function with the warn_unused_result attribute,
164   // we warn no matter the location. Because of the order in which the various
165   // checks need to happen, we factor out the macro-related test here.
166   bool ShouldSuppress =
167       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
168       SourceMgr.isInSystemMacro(ExprLoc);
169 
170   const Expr *WarnExpr;
171   SourceLocation Loc;
172   SourceRange R1, R2;
173   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
174     return;
175 
176   // If this is a GNU statement expression expanded from a macro, it is probably
177   // unused because it is a function-like macro that can be used as either an
178   // expression or statement.  Don't warn, because it is almost certainly a
179   // false positive.
180   if (isa<StmtExpr>(E) && Loc.isMacroID())
181     return;
182 
183   // Okay, we have an unused result.  Depending on what the base expression is,
184   // we might want to make a more specific diagnostic.  Check for one of these
185   // cases now.
186   unsigned DiagID = diag::warn_unused_expr;
187   if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
188     E = Temps->getSubExpr();
189   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
190     E = TempExpr->getSubExpr();
191 
192   if (DiagnoseUnusedComparison(*this, E))
193     return;
194 
195   E = WarnExpr;
196   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
197     if (E->getType()->isVoidType())
198       return;
199 
200     // If the callee has attribute pure, const, or warn_unused_result, warn with
201     // a more specific message to make it clear what is happening. If the call
202     // is written in a macro body, only warn if it has the warn_unused_result
203     // attribute.
204     if (const Decl *FD = CE->getCalleeDecl()) {
205       if (FD->getAttr<WarnUnusedResultAttr>()) {
206         Diag(Loc, diag::warn_unused_result) << R1 << R2;
207         return;
208       }
209       if (ShouldSuppress)
210         return;
211       if (FD->getAttr<PureAttr>()) {
212         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
213         return;
214       }
215       if (FD->getAttr<ConstAttr>()) {
216         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
217         return;
218       }
219     }
220   } else if (ShouldSuppress)
221     return;
222 
223   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
224     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
225       Diag(Loc, diag::err_arc_unused_init_message) << R1;
226       return;
227     }
228     const ObjCMethodDecl *MD = ME->getMethodDecl();
229     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
230       Diag(Loc, diag::warn_unused_result) << R1 << R2;
231       return;
232     }
233   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
234     const Expr *Source = POE->getSyntacticForm();
235     if (isa<ObjCSubscriptRefExpr>(Source))
236       DiagID = diag::warn_unused_container_subscript_expr;
237     else
238       DiagID = diag::warn_unused_property_expr;
239   } else if (const CXXFunctionalCastExpr *FC
240                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
241     if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
242         isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
243       return;
244   }
245   // Diagnose "(void*) blah" as a typo for "(void) blah".
246   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
247     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
248     QualType T = TI->getType();
249 
250     // We really do want to use the non-canonical type here.
251     if (T == Context.VoidPtrTy) {
252       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
253 
254       Diag(Loc, diag::warn_unused_voidptr)
255         << FixItHint::CreateRemoval(TL.getStarLoc());
256       return;
257     }
258   }
259 
260   if (E->isGLValue() && E->getType().isVolatileQualified()) {
261     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
262     return;
263   }
264 
265   DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
266 }
267 
ActOnStartOfCompoundStmt()268 void Sema::ActOnStartOfCompoundStmt() {
269   PushCompoundScope();
270 }
271 
ActOnFinishOfCompoundStmt()272 void Sema::ActOnFinishOfCompoundStmt() {
273   PopCompoundScope();
274 }
275 
getCurCompoundScope() const276 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
277   return getCurFunction()->CompoundScopes.back();
278 }
279 
280 StmtResult
ActOnCompoundStmt(SourceLocation L,SourceLocation R,MultiStmtArg elts,bool isStmtExpr)281 Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
282                         MultiStmtArg elts, bool isStmtExpr) {
283   unsigned NumElts = elts.size();
284   Stmt **Elts = elts.data();
285   // If we're in C89 mode, check that we don't have any decls after stmts.  If
286   // so, emit an extension diagnostic.
287   if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
288     // Note that __extension__ can be around a decl.
289     unsigned i = 0;
290     // Skip over all declarations.
291     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
292       /*empty*/;
293 
294     // We found the end of the list or a statement.  Scan for another declstmt.
295     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
296       /*empty*/;
297 
298     if (i != NumElts) {
299       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
300       Diag(D->getLocation(), diag::ext_mixed_decls_code);
301     }
302   }
303   // Warn about unused expressions in statements.
304   for (unsigned i = 0; i != NumElts; ++i) {
305     // Ignore statements that are last in a statement expression.
306     if (isStmtExpr && i == NumElts - 1)
307       continue;
308 
309     DiagnoseUnusedExprResult(Elts[i]);
310   }
311 
312   // Check for suspicious empty body (null statement) in `for' and `while'
313   // statements.  Don't do anything for template instantiations, this just adds
314   // noise.
315   if (NumElts != 0 && !CurrentInstantiationScope &&
316       getCurCompoundScope().HasEmptyLoopBodies) {
317     for (unsigned i = 0; i != NumElts - 1; ++i)
318       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
319   }
320 
321   return Owned(new (Context) CompoundStmt(Context,
322                                           llvm::makeArrayRef(Elts, NumElts),
323                                           L, R));
324 }
325 
326 StmtResult
ActOnCaseStmt(SourceLocation CaseLoc,Expr * LHSVal,SourceLocation DotDotDotLoc,Expr * RHSVal,SourceLocation ColonLoc)327 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
328                     SourceLocation DotDotDotLoc, Expr *RHSVal,
329                     SourceLocation ColonLoc) {
330   assert((LHSVal != 0) && "missing expression in case statement");
331 
332   if (getCurFunction()->SwitchStack.empty()) {
333     Diag(CaseLoc, diag::err_case_not_in_switch);
334     return StmtError();
335   }
336 
337   if (!getLangOpts().CPlusPlus11) {
338     // C99 6.8.4.2p3: The expression shall be an integer constant.
339     // However, GCC allows any evaluatable integer expression.
340     if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
341       LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
342       if (!LHSVal)
343         return StmtError();
344     }
345 
346     // GCC extension: The expression shall be an integer constant.
347 
348     if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
349       RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
350       // Recover from an error by just forgetting about it.
351     }
352   }
353 
354   LHSVal = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
355                                getLangOpts().CPlusPlus11).take();
356   if (RHSVal)
357     RHSVal = ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
358                                  getLangOpts().CPlusPlus11).take();
359 
360   CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
361                                         ColonLoc);
362   getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
363   return Owned(CS);
364 }
365 
366 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
ActOnCaseStmtBody(Stmt * caseStmt,Stmt * SubStmt)367 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
368   DiagnoseUnusedExprResult(SubStmt);
369 
370   CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
371   CS->setSubStmt(SubStmt);
372 }
373 
374 StmtResult
ActOnDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt,Scope * CurScope)375 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
376                        Stmt *SubStmt, Scope *CurScope) {
377   DiagnoseUnusedExprResult(SubStmt);
378 
379   if (getCurFunction()->SwitchStack.empty()) {
380     Diag(DefaultLoc, diag::err_default_not_in_switch);
381     return Owned(SubStmt);
382   }
383 
384   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
385   getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
386   return Owned(DS);
387 }
388 
389 StmtResult
ActOnLabelStmt(SourceLocation IdentLoc,LabelDecl * TheDecl,SourceLocation ColonLoc,Stmt * SubStmt)390 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
391                      SourceLocation ColonLoc, Stmt *SubStmt) {
392   // If the label was multiply defined, reject it now.
393   if (TheDecl->getStmt()) {
394     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
395     Diag(TheDecl->getLocation(), diag::note_previous_definition);
396     return Owned(SubStmt);
397   }
398 
399   // Otherwise, things are good.  Fill in the declaration and return it.
400   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
401   TheDecl->setStmt(LS);
402   if (!TheDecl->isGnuLocal()) {
403     TheDecl->setLocStart(IdentLoc);
404     TheDecl->setLocation(IdentLoc);
405   }
406   return Owned(LS);
407 }
408 
ActOnAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)409 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
410                                      ArrayRef<const Attr*> Attrs,
411                                      Stmt *SubStmt) {
412   // Fill in the declaration and return it.
413   AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
414   return Owned(LS);
415 }
416 
417 StmtResult
ActOnIfStmt(SourceLocation IfLoc,FullExprArg CondVal,Decl * CondVar,Stmt * thenStmt,SourceLocation ElseLoc,Stmt * elseStmt)418 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
419                   Stmt *thenStmt, SourceLocation ElseLoc,
420                   Stmt *elseStmt) {
421   // If the condition was invalid, discard the if statement.  We could recover
422   // better by replacing it with a valid expr, but don't do that yet.
423   if (!CondVal.get() && !CondVar) {
424     getCurFunction()->setHasDroppedStmt();
425     return StmtError();
426   }
427 
428   ExprResult CondResult(CondVal.release());
429 
430   VarDecl *ConditionVar = 0;
431   if (CondVar) {
432     ConditionVar = cast<VarDecl>(CondVar);
433     CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
434     if (CondResult.isInvalid())
435       return StmtError();
436   }
437   Expr *ConditionExpr = CondResult.takeAs<Expr>();
438   if (!ConditionExpr)
439     return StmtError();
440 
441   DiagnoseUnusedExprResult(thenStmt);
442 
443   if (!elseStmt) {
444     DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
445                           diag::warn_empty_if_body);
446   }
447 
448   DiagnoseUnusedExprResult(elseStmt);
449 
450   return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
451                                     thenStmt, ElseLoc, elseStmt));
452 }
453 
454 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
455 /// the specified width and sign.  If an overflow occurs, detect it and emit
456 /// the specified diagnostic.
ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt & Val,unsigned NewWidth,bool NewSign,SourceLocation Loc,unsigned DiagID)457 void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
458                                               unsigned NewWidth, bool NewSign,
459                                               SourceLocation Loc,
460                                               unsigned DiagID) {
461   // Perform a conversion to the promoted condition type if needed.
462   if (NewWidth > Val.getBitWidth()) {
463     // If this is an extension, just do it.
464     Val = Val.extend(NewWidth);
465     Val.setIsSigned(NewSign);
466 
467     // If the input was signed and negative and the output is
468     // unsigned, don't bother to warn: this is implementation-defined
469     // behavior.
470     // FIXME: Introduce a second, default-ignored warning for this case?
471   } else if (NewWidth < Val.getBitWidth()) {
472     // If this is a truncation, check for overflow.
473     llvm::APSInt ConvVal(Val);
474     ConvVal = ConvVal.trunc(NewWidth);
475     ConvVal.setIsSigned(NewSign);
476     ConvVal = ConvVal.extend(Val.getBitWidth());
477     ConvVal.setIsSigned(Val.isSigned());
478     if (ConvVal != Val)
479       Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
480 
481     // Regardless of whether a diagnostic was emitted, really do the
482     // truncation.
483     Val = Val.trunc(NewWidth);
484     Val.setIsSigned(NewSign);
485   } else if (NewSign != Val.isSigned()) {
486     // Convert the sign to match the sign of the condition.  This can cause
487     // overflow as well: unsigned(INTMIN)
488     // We don't diagnose this overflow, because it is implementation-defined
489     // behavior.
490     // FIXME: Introduce a second, default-ignored warning for this case?
491     llvm::APSInt OldVal(Val);
492     Val.setIsSigned(NewSign);
493   }
494 }
495 
496 namespace {
497   struct CaseCompareFunctor {
operator ()__anon58f793e50111::CaseCompareFunctor498     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
499                     const llvm::APSInt &RHS) {
500       return LHS.first < RHS;
501     }
operator ()__anon58f793e50111::CaseCompareFunctor502     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
503                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
504       return LHS.first < RHS.first;
505     }
operator ()__anon58f793e50111::CaseCompareFunctor506     bool operator()(const llvm::APSInt &LHS,
507                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
508       return LHS < RHS.first;
509     }
510   };
511 }
512 
513 /// CmpCaseVals - Comparison predicate for sorting case values.
514 ///
CmpCaseVals(const std::pair<llvm::APSInt,CaseStmt * > & lhs,const std::pair<llvm::APSInt,CaseStmt * > & rhs)515 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
516                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
517   if (lhs.first < rhs.first)
518     return true;
519 
520   if (lhs.first == rhs.first &&
521       lhs.second->getCaseLoc().getRawEncoding()
522        < rhs.second->getCaseLoc().getRawEncoding())
523     return true;
524   return false;
525 }
526 
527 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
528 ///
CmpEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)529 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
530                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
531 {
532   return lhs.first < rhs.first;
533 }
534 
535 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
536 ///
EqEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)537 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
538                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
539 {
540   return lhs.first == rhs.first;
541 }
542 
543 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
544 /// potentially integral-promoted expression @p expr.
GetTypeBeforeIntegralPromotion(Expr * & expr)545 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
546   if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
547     expr = cleanups->getSubExpr();
548   while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
549     if (impcast->getCastKind() != CK_IntegralCast) break;
550     expr = impcast->getSubExpr();
551   }
552   return expr->getType();
553 }
554 
555 StmtResult
ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,Expr * Cond,Decl * CondVar)556 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
557                              Decl *CondVar) {
558   ExprResult CondResult;
559 
560   VarDecl *ConditionVar = 0;
561   if (CondVar) {
562     ConditionVar = cast<VarDecl>(CondVar);
563     CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
564     if (CondResult.isInvalid())
565       return StmtError();
566 
567     Cond = CondResult.release();
568   }
569 
570   if (!Cond)
571     return StmtError();
572 
573   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
574     Expr *Cond;
575 
576   public:
577     SwitchConvertDiagnoser(Expr *Cond)
578       : ICEConvertDiagnoser(false, true), Cond(Cond) { }
579 
580     virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
581                                              QualType T) {
582       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
583     }
584 
585     virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
586                                                  QualType T) {
587       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
588                << T << Cond->getSourceRange();
589     }
590 
591     virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
592                                                    QualType T,
593                                                    QualType ConvTy) {
594       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
595     }
596 
597     virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
598                                                QualType ConvTy) {
599       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
600         << ConvTy->isEnumeralType() << ConvTy;
601     }
602 
603     virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
604                                                 QualType T) {
605       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
606     }
607 
608     virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
609                                             QualType ConvTy) {
610       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
611       << ConvTy->isEnumeralType() << ConvTy;
612     }
613 
614     virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
615                                                  QualType T,
616                                                  QualType ConvTy) {
617       return DiagnosticBuilder::getEmpty();
618     }
619   } SwitchDiagnoser(Cond);
620 
621   CondResult
622     = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
623                                          /*AllowScopedEnumerations*/ true);
624   if (CondResult.isInvalid()) return StmtError();
625   Cond = CondResult.take();
626 
627   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
628   CondResult = UsualUnaryConversions(Cond);
629   if (CondResult.isInvalid()) return StmtError();
630   Cond = CondResult.take();
631 
632   if (!CondVar) {
633     CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
634     if (CondResult.isInvalid())
635       return StmtError();
636     Cond = CondResult.take();
637   }
638 
639   getCurFunction()->setHasBranchIntoScope();
640 
641   SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
642   getCurFunction()->SwitchStack.push_back(SS);
643   return Owned(SS);
644 }
645 
AdjustAPSInt(llvm::APSInt & Val,unsigned BitWidth,bool IsSigned)646 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
647   if (Val.getBitWidth() < BitWidth)
648     Val = Val.extend(BitWidth);
649   else if (Val.getBitWidth() > BitWidth)
650     Val = Val.trunc(BitWidth);
651   Val.setIsSigned(IsSigned);
652 }
653 
654 StmtResult
ActOnFinishSwitchStmt(SourceLocation SwitchLoc,Stmt * Switch,Stmt * BodyStmt)655 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
656                             Stmt *BodyStmt) {
657   SwitchStmt *SS = cast<SwitchStmt>(Switch);
658   assert(SS == getCurFunction()->SwitchStack.back() &&
659          "switch stack missing push/pop!");
660 
661   SS->setBody(BodyStmt, SwitchLoc);
662   getCurFunction()->SwitchStack.pop_back();
663 
664   Expr *CondExpr = SS->getCond();
665   if (!CondExpr) return StmtError();
666 
667   QualType CondType = CondExpr->getType();
668 
669   Expr *CondExprBeforePromotion = CondExpr;
670   QualType CondTypeBeforePromotion =
671       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
672 
673   // C++ 6.4.2.p2:
674   // Integral promotions are performed (on the switch condition).
675   //
676   // A case value unrepresentable by the original switch condition
677   // type (before the promotion) doesn't make sense, even when it can
678   // be represented by the promoted type.  Therefore we need to find
679   // the pre-promotion type of the switch condition.
680   if (!CondExpr->isTypeDependent()) {
681     // We have already converted the expression to an integral or enumeration
682     // type, when we started the switch statement. If we don't have an
683     // appropriate type now, just return an error.
684     if (!CondType->isIntegralOrEnumerationType())
685       return StmtError();
686 
687     if (CondExpr->isKnownToHaveBooleanValue()) {
688       // switch(bool_expr) {...} is often a programmer error, e.g.
689       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
690       // One can always use an if statement instead of switch(bool_expr).
691       Diag(SwitchLoc, diag::warn_bool_switch_condition)
692           << CondExpr->getSourceRange();
693     }
694   }
695 
696   // Get the bitwidth of the switched-on value before promotions.  We must
697   // convert the integer case values to this width before comparison.
698   bool HasDependentValue
699     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
700   unsigned CondWidth
701     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
702   bool CondIsSigned
703     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
704 
705   // Accumulate all of the case values in a vector so that we can sort them
706   // and detect duplicates.  This vector contains the APInt for the case after
707   // it has been converted to the condition type.
708   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
709   CaseValsTy CaseVals;
710 
711   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
712   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
713   CaseRangesTy CaseRanges;
714 
715   DefaultStmt *TheDefaultStmt = 0;
716 
717   bool CaseListIsErroneous = false;
718 
719   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
720        SC = SC->getNextSwitchCase()) {
721 
722     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
723       if (TheDefaultStmt) {
724         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
725         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
726 
727         // FIXME: Remove the default statement from the switch block so that
728         // we'll return a valid AST.  This requires recursing down the AST and
729         // finding it, not something we are set up to do right now.  For now,
730         // just lop the entire switch stmt out of the AST.
731         CaseListIsErroneous = true;
732       }
733       TheDefaultStmt = DS;
734 
735     } else {
736       CaseStmt *CS = cast<CaseStmt>(SC);
737 
738       Expr *Lo = CS->getLHS();
739 
740       if (Lo->isTypeDependent() || Lo->isValueDependent()) {
741         HasDependentValue = true;
742         break;
743       }
744 
745       llvm::APSInt LoVal;
746 
747       if (getLangOpts().CPlusPlus11) {
748         // C++11 [stmt.switch]p2: the constant-expression shall be a converted
749         // constant expression of the promoted type of the switch condition.
750         ExprResult ConvLo =
751           CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
752         if (ConvLo.isInvalid()) {
753           CaseListIsErroneous = true;
754           continue;
755         }
756         Lo = ConvLo.take();
757       } else {
758         // We already verified that the expression has a i-c-e value (C99
759         // 6.8.4.2p3) - get that value now.
760         LoVal = Lo->EvaluateKnownConstInt(Context);
761 
762         // If the LHS is not the same type as the condition, insert an implicit
763         // cast.
764         Lo = DefaultLvalueConversion(Lo).take();
765         Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
766       }
767 
768       // Convert the value to the same width/sign as the condition had prior to
769       // integral promotions.
770       //
771       // FIXME: This causes us to reject valid code:
772       //   switch ((char)c) { case 256: case 0: return 0; }
773       // Here we claim there is a duplicated condition value, but there is not.
774       ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
775                                          Lo->getLocStart(),
776                                          diag::warn_case_value_overflow);
777 
778       CS->setLHS(Lo);
779 
780       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
781       if (CS->getRHS()) {
782         if (CS->getRHS()->isTypeDependent() ||
783             CS->getRHS()->isValueDependent()) {
784           HasDependentValue = true;
785           break;
786         }
787         CaseRanges.push_back(std::make_pair(LoVal, CS));
788       } else
789         CaseVals.push_back(std::make_pair(LoVal, CS));
790     }
791   }
792 
793   if (!HasDependentValue) {
794     // If we don't have a default statement, check whether the
795     // condition is constant.
796     llvm::APSInt ConstantCondValue;
797     bool HasConstantCond = false;
798     if (!HasDependentValue && !TheDefaultStmt) {
799       HasConstantCond
800         = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
801                                                  Expr::SE_AllowSideEffects);
802       assert(!HasConstantCond ||
803              (ConstantCondValue.getBitWidth() == CondWidth &&
804               ConstantCondValue.isSigned() == CondIsSigned));
805     }
806     bool ShouldCheckConstantCond = HasConstantCond;
807 
808     // Sort all the scalar case values so we can easily detect duplicates.
809     std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
810 
811     if (!CaseVals.empty()) {
812       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
813         if (ShouldCheckConstantCond &&
814             CaseVals[i].first == ConstantCondValue)
815           ShouldCheckConstantCond = false;
816 
817         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
818           // If we have a duplicate, report it.
819           // First, determine if either case value has a name
820           StringRef PrevString, CurrString;
821           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
822           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
823           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
824             PrevString = DeclRef->getDecl()->getName();
825           }
826           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
827             CurrString = DeclRef->getDecl()->getName();
828           }
829           SmallString<16> CaseValStr;
830           CaseVals[i-1].first.toString(CaseValStr);
831 
832           if (PrevString == CurrString)
833             Diag(CaseVals[i].second->getLHS()->getLocStart(),
834                  diag::err_duplicate_case) <<
835                  (PrevString.empty() ? CaseValStr.str() : PrevString);
836           else
837             Diag(CaseVals[i].second->getLHS()->getLocStart(),
838                  diag::err_duplicate_case_differing_expr) <<
839                  (PrevString.empty() ? CaseValStr.str() : PrevString) <<
840                  (CurrString.empty() ? CaseValStr.str() : CurrString) <<
841                  CaseValStr;
842 
843           Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
844                diag::note_duplicate_case_prev);
845           // FIXME: We really want to remove the bogus case stmt from the
846           // substmt, but we have no way to do this right now.
847           CaseListIsErroneous = true;
848         }
849       }
850     }
851 
852     // Detect duplicate case ranges, which usually don't exist at all in
853     // the first place.
854     if (!CaseRanges.empty()) {
855       // Sort all the case ranges by their low value so we can easily detect
856       // overlaps between ranges.
857       std::stable_sort(CaseRanges.begin(), CaseRanges.end());
858 
859       // Scan the ranges, computing the high values and removing empty ranges.
860       std::vector<llvm::APSInt> HiVals;
861       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
862         llvm::APSInt &LoVal = CaseRanges[i].first;
863         CaseStmt *CR = CaseRanges[i].second;
864         Expr *Hi = CR->getRHS();
865         llvm::APSInt HiVal;
866 
867         if (getLangOpts().CPlusPlus11) {
868           // C++11 [stmt.switch]p2: the constant-expression shall be a converted
869           // constant expression of the promoted type of the switch condition.
870           ExprResult ConvHi =
871             CheckConvertedConstantExpression(Hi, CondType, HiVal,
872                                              CCEK_CaseValue);
873           if (ConvHi.isInvalid()) {
874             CaseListIsErroneous = true;
875             continue;
876           }
877           Hi = ConvHi.take();
878         } else {
879           HiVal = Hi->EvaluateKnownConstInt(Context);
880 
881           // If the RHS is not the same type as the condition, insert an
882           // implicit cast.
883           Hi = DefaultLvalueConversion(Hi).take();
884           Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
885         }
886 
887         // Convert the value to the same width/sign as the condition.
888         ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
889                                            Hi->getLocStart(),
890                                            diag::warn_case_value_overflow);
891 
892         CR->setRHS(Hi);
893 
894         // If the low value is bigger than the high value, the case is empty.
895         if (LoVal > HiVal) {
896           Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
897             << SourceRange(CR->getLHS()->getLocStart(),
898                            Hi->getLocEnd());
899           CaseRanges.erase(CaseRanges.begin()+i);
900           --i, --e;
901           continue;
902         }
903 
904         if (ShouldCheckConstantCond &&
905             LoVal <= ConstantCondValue &&
906             ConstantCondValue <= HiVal)
907           ShouldCheckConstantCond = false;
908 
909         HiVals.push_back(HiVal);
910       }
911 
912       // Rescan the ranges, looking for overlap with singleton values and other
913       // ranges.  Since the range list is sorted, we only need to compare case
914       // ranges with their neighbors.
915       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
916         llvm::APSInt &CRLo = CaseRanges[i].first;
917         llvm::APSInt &CRHi = HiVals[i];
918         CaseStmt *CR = CaseRanges[i].second;
919 
920         // Check to see whether the case range overlaps with any
921         // singleton cases.
922         CaseStmt *OverlapStmt = 0;
923         llvm::APSInt OverlapVal(32);
924 
925         // Find the smallest value >= the lower bound.  If I is in the
926         // case range, then we have overlap.
927         CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
928                                                   CaseVals.end(), CRLo,
929                                                   CaseCompareFunctor());
930         if (I != CaseVals.end() && I->first < CRHi) {
931           OverlapVal  = I->first;   // Found overlap with scalar.
932           OverlapStmt = I->second;
933         }
934 
935         // Find the smallest value bigger than the upper bound.
936         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
937         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
938           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
939           OverlapStmt = (I-1)->second;
940         }
941 
942         // Check to see if this case stmt overlaps with the subsequent
943         // case range.
944         if (i && CRLo <= HiVals[i-1]) {
945           OverlapVal  = HiVals[i-1];       // Found overlap with range.
946           OverlapStmt = CaseRanges[i-1].second;
947         }
948 
949         if (OverlapStmt) {
950           // If we have a duplicate, report it.
951           Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
952             << OverlapVal.toString(10);
953           Diag(OverlapStmt->getLHS()->getLocStart(),
954                diag::note_duplicate_case_prev);
955           // FIXME: We really want to remove the bogus case stmt from the
956           // substmt, but we have no way to do this right now.
957           CaseListIsErroneous = true;
958         }
959       }
960     }
961 
962     // Complain if we have a constant condition and we didn't find a match.
963     if (!CaseListIsErroneous && ShouldCheckConstantCond) {
964       // TODO: it would be nice if we printed enums as enums, chars as
965       // chars, etc.
966       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
967         << ConstantCondValue.toString(10)
968         << CondExpr->getSourceRange();
969     }
970 
971     // Check to see if switch is over an Enum and handles all of its
972     // values.  We only issue a warning if there is not 'default:', but
973     // we still do the analysis to preserve this information in the AST
974     // (which can be used by flow-based analyes).
975     //
976     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
977 
978     // If switch has default case, then ignore it.
979     if (!CaseListIsErroneous  && !HasConstantCond && ET) {
980       const EnumDecl *ED = ET->getDecl();
981       typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
982         EnumValsTy;
983       EnumValsTy EnumVals;
984 
985       // Gather all enum values, set their type and sort them,
986       // allowing easier comparison with CaseVals.
987       for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
988            EDI != ED->enumerator_end(); ++EDI) {
989         llvm::APSInt Val = EDI->getInitVal();
990         AdjustAPSInt(Val, CondWidth, CondIsSigned);
991         EnumVals.push_back(std::make_pair(Val, *EDI));
992       }
993       std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
994       EnumValsTy::iterator EIend =
995         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
996 
997       // See which case values aren't in enum.
998       EnumValsTy::const_iterator EI = EnumVals.begin();
999       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1000            CI != CaseVals.end(); CI++) {
1001         while (EI != EIend && EI->first < CI->first)
1002           EI++;
1003         if (EI == EIend || EI->first > CI->first)
1004           Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1005             << CondTypeBeforePromotion;
1006       }
1007       // See which of case ranges aren't in enum
1008       EI = EnumVals.begin();
1009       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1010            RI != CaseRanges.end() && EI != EIend; RI++) {
1011         while (EI != EIend && EI->first < RI->first)
1012           EI++;
1013 
1014         if (EI == EIend || EI->first != RI->first) {
1015           Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1016             << CondTypeBeforePromotion;
1017         }
1018 
1019         llvm::APSInt Hi =
1020           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1021         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1022         while (EI != EIend && EI->first < Hi)
1023           EI++;
1024         if (EI == EIend || EI->first != Hi)
1025           Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
1026             << CondTypeBeforePromotion;
1027       }
1028 
1029       // Check which enum vals aren't in switch
1030       CaseValsTy::const_iterator CI = CaseVals.begin();
1031       CaseRangesTy::const_iterator RI = CaseRanges.begin();
1032       bool hasCasesNotInSwitch = false;
1033 
1034       SmallVector<DeclarationName,8> UnhandledNames;
1035 
1036       for (EI = EnumVals.begin(); EI != EIend; EI++){
1037         // Drop unneeded case values
1038         llvm::APSInt CIVal;
1039         while (CI != CaseVals.end() && CI->first < EI->first)
1040           CI++;
1041 
1042         if (CI != CaseVals.end() && CI->first == EI->first)
1043           continue;
1044 
1045         // Drop unneeded case ranges
1046         for (; RI != CaseRanges.end(); RI++) {
1047           llvm::APSInt Hi =
1048             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1049           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1050           if (EI->first <= Hi)
1051             break;
1052         }
1053 
1054         if (RI == CaseRanges.end() || EI->first < RI->first) {
1055           hasCasesNotInSwitch = true;
1056           UnhandledNames.push_back(EI->second->getDeclName());
1057         }
1058       }
1059 
1060       if (TheDefaultStmt && UnhandledNames.empty())
1061         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1062 
1063       // Produce a nice diagnostic if multiple values aren't handled.
1064       switch (UnhandledNames.size()) {
1065       case 0: break;
1066       case 1:
1067         Diag(CondExpr->getExprLoc(), TheDefaultStmt
1068           ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1069           << UnhandledNames[0];
1070         break;
1071       case 2:
1072         Diag(CondExpr->getExprLoc(), TheDefaultStmt
1073           ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1074           << UnhandledNames[0] << UnhandledNames[1];
1075         break;
1076       case 3:
1077         Diag(CondExpr->getExprLoc(), TheDefaultStmt
1078           ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1079           << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1080         break;
1081       default:
1082         Diag(CondExpr->getExprLoc(), TheDefaultStmt
1083           ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1084           << (unsigned)UnhandledNames.size()
1085           << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1086         break;
1087       }
1088 
1089       if (!hasCasesNotInSwitch)
1090         SS->setAllEnumCasesCovered();
1091     }
1092   }
1093 
1094   DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1095                         diag::warn_empty_switch_body);
1096 
1097   // FIXME: If the case list was broken is some way, we don't have a good system
1098   // to patch it up.  Instead, just return the whole substmt as broken.
1099   if (CaseListIsErroneous)
1100     return StmtError();
1101 
1102   return Owned(SS);
1103 }
1104 
1105 void
DiagnoseAssignmentEnum(QualType DstType,QualType SrcType,Expr * SrcExpr)1106 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1107                              Expr *SrcExpr) {
1108   unsigned DIAG = diag::warn_not_in_enum_assignement;
1109   if (Diags.getDiagnosticLevel(DIAG, SrcExpr->getExprLoc())
1110       == DiagnosticsEngine::Ignored)
1111     return;
1112 
1113   if (const EnumType *ET = DstType->getAs<EnumType>())
1114     if (!Context.hasSameType(SrcType, DstType) &&
1115         SrcType->isIntegerType()) {
1116       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1117           SrcExpr->isIntegerConstantExpr(Context)) {
1118         // Get the bitwidth of the enum value before promotions.
1119         unsigned DstWith = Context.getIntWidth(DstType);
1120         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1121 
1122         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1123         const EnumDecl *ED = ET->getDecl();
1124         typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
1125         EnumValsTy;
1126         EnumValsTy EnumVals;
1127 
1128         // Gather all enum values, set their type and sort them,
1129         // allowing easier comparison with rhs constant.
1130         for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1131              EDI != ED->enumerator_end(); ++EDI) {
1132           llvm::APSInt Val = EDI->getInitVal();
1133           AdjustAPSInt(Val, DstWith, DstIsSigned);
1134           EnumVals.push_back(std::make_pair(Val, *EDI));
1135         }
1136         if (EnumVals.empty())
1137           return;
1138         std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1139         EnumValsTy::iterator EIend =
1140         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1141 
1142         // See which case values aren't in enum.
1143         EnumValsTy::const_iterator EI = EnumVals.begin();
1144         while (EI != EIend && EI->first < RhsVal)
1145           EI++;
1146         if (EI == EIend || EI->first != RhsVal) {
1147           Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignement)
1148           << DstType;
1149         }
1150       }
1151     }
1152 }
1153 
1154 StmtResult
ActOnWhileStmt(SourceLocation WhileLoc,FullExprArg Cond,Decl * CondVar,Stmt * Body)1155 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1156                      Decl *CondVar, Stmt *Body) {
1157   ExprResult CondResult(Cond.release());
1158 
1159   VarDecl *ConditionVar = 0;
1160   if (CondVar) {
1161     ConditionVar = cast<VarDecl>(CondVar);
1162     CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1163     if (CondResult.isInvalid())
1164       return StmtError();
1165   }
1166   Expr *ConditionExpr = CondResult.take();
1167   if (!ConditionExpr)
1168     return StmtError();
1169 
1170   DiagnoseUnusedExprResult(Body);
1171 
1172   if (isa<NullStmt>(Body))
1173     getCurCompoundScope().setHasEmptyLoopBodies();
1174 
1175   return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1176                                        Body, WhileLoc));
1177 }
1178 
1179 StmtResult
ActOnDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation CondLParen,Expr * Cond,SourceLocation CondRParen)1180 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1181                   SourceLocation WhileLoc, SourceLocation CondLParen,
1182                   Expr *Cond, SourceLocation CondRParen) {
1183   assert(Cond && "ActOnDoStmt(): missing expression");
1184 
1185   ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1186   if (CondResult.isInvalid())
1187     return StmtError();
1188   Cond = CondResult.take();
1189 
1190   CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1191   if (CondResult.isInvalid())
1192     return StmtError();
1193   Cond = CondResult.take();
1194 
1195   DiagnoseUnusedExprResult(Body);
1196 
1197   return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1198 }
1199 
1200 namespace {
1201   // This visitor will traverse a conditional statement and store all
1202   // the evaluated decls into a vector.  Simple is set to true if none
1203   // of the excluded constructs are used.
1204   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1205     llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1206     SmallVector<SourceRange, 10> &Ranges;
1207     bool Simple;
1208 public:
1209   typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1210 
DeclExtractor(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,SmallVector<SourceRange,10> & Ranges)1211   DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1212                 SmallVector<SourceRange, 10> &Ranges) :
1213       Inherited(S.Context),
1214       Decls(Decls),
1215       Ranges(Ranges),
1216       Simple(true) {}
1217 
isSimple()1218   bool isSimple() { return Simple; }
1219 
1220   // Replaces the method in EvaluatedExprVisitor.
VisitMemberExpr(MemberExpr * E)1221   void VisitMemberExpr(MemberExpr* E) {
1222     Simple = false;
1223   }
1224 
1225   // Any Stmt not whitelisted will cause the condition to be marked complex.
VisitStmt(Stmt * S)1226   void VisitStmt(Stmt *S) {
1227     Simple = false;
1228   }
1229 
VisitBinaryOperator(BinaryOperator * E)1230   void VisitBinaryOperator(BinaryOperator *E) {
1231     Visit(E->getLHS());
1232     Visit(E->getRHS());
1233   }
1234 
VisitCastExpr(CastExpr * E)1235   void VisitCastExpr(CastExpr *E) {
1236     Visit(E->getSubExpr());
1237   }
1238 
VisitUnaryOperator(UnaryOperator * E)1239   void VisitUnaryOperator(UnaryOperator *E) {
1240     // Skip checking conditionals with derefernces.
1241     if (E->getOpcode() == UO_Deref)
1242       Simple = false;
1243     else
1244       Visit(E->getSubExpr());
1245   }
1246 
VisitConditionalOperator(ConditionalOperator * E)1247   void VisitConditionalOperator(ConditionalOperator *E) {
1248     Visit(E->getCond());
1249     Visit(E->getTrueExpr());
1250     Visit(E->getFalseExpr());
1251   }
1252 
VisitParenExpr(ParenExpr * E)1253   void VisitParenExpr(ParenExpr *E) {
1254     Visit(E->getSubExpr());
1255   }
1256 
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)1257   void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1258     Visit(E->getOpaqueValue()->getSourceExpr());
1259     Visit(E->getFalseExpr());
1260   }
1261 
VisitIntegerLiteral(IntegerLiteral * E)1262   void VisitIntegerLiteral(IntegerLiteral *E) { }
VisitFloatingLiteral(FloatingLiteral * E)1263   void VisitFloatingLiteral(FloatingLiteral *E) { }
VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)1264   void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
VisitCharacterLiteral(CharacterLiteral * E)1265   void VisitCharacterLiteral(CharacterLiteral *E) { }
VisitGNUNullExpr(GNUNullExpr * E)1266   void VisitGNUNullExpr(GNUNullExpr *E) { }
VisitImaginaryLiteral(ImaginaryLiteral * E)1267   void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1268 
VisitDeclRefExpr(DeclRefExpr * E)1269   void VisitDeclRefExpr(DeclRefExpr *E) {
1270     VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1271     if (!VD) return;
1272 
1273     Ranges.push_back(E->getSourceRange());
1274 
1275     Decls.insert(VD);
1276   }
1277 
1278   }; // end class DeclExtractor
1279 
1280   // DeclMatcher checks to see if the decls are used in a non-evauluated
1281   // context.
1282   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1283     llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1284     bool FoundDecl;
1285 
1286 public:
1287   typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1288 
DeclMatcher(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,Stmt * Statement)1289   DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1290       Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1291     if (!Statement) return;
1292 
1293     Visit(Statement);
1294   }
1295 
VisitReturnStmt(ReturnStmt * S)1296   void VisitReturnStmt(ReturnStmt *S) {
1297     FoundDecl = true;
1298   }
1299 
VisitBreakStmt(BreakStmt * S)1300   void VisitBreakStmt(BreakStmt *S) {
1301     FoundDecl = true;
1302   }
1303 
VisitGotoStmt(GotoStmt * S)1304   void VisitGotoStmt(GotoStmt *S) {
1305     FoundDecl = true;
1306   }
1307 
VisitCastExpr(CastExpr * E)1308   void VisitCastExpr(CastExpr *E) {
1309     if (E->getCastKind() == CK_LValueToRValue)
1310       CheckLValueToRValueCast(E->getSubExpr());
1311     else
1312       Visit(E->getSubExpr());
1313   }
1314 
CheckLValueToRValueCast(Expr * E)1315   void CheckLValueToRValueCast(Expr *E) {
1316     E = E->IgnoreParenImpCasts();
1317 
1318     if (isa<DeclRefExpr>(E)) {
1319       return;
1320     }
1321 
1322     if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1323       Visit(CO->getCond());
1324       CheckLValueToRValueCast(CO->getTrueExpr());
1325       CheckLValueToRValueCast(CO->getFalseExpr());
1326       return;
1327     }
1328 
1329     if (BinaryConditionalOperator *BCO =
1330             dyn_cast<BinaryConditionalOperator>(E)) {
1331       CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1332       CheckLValueToRValueCast(BCO->getFalseExpr());
1333       return;
1334     }
1335 
1336     Visit(E);
1337   }
1338 
VisitDeclRefExpr(DeclRefExpr * E)1339   void VisitDeclRefExpr(DeclRefExpr *E) {
1340     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1341       if (Decls.count(VD))
1342         FoundDecl = true;
1343   }
1344 
FoundDeclInUse()1345   bool FoundDeclInUse() { return FoundDecl; }
1346 
1347   };  // end class DeclMatcher
1348 
CheckForLoopConditionalStatement(Sema & S,Expr * Second,Expr * Third,Stmt * Body)1349   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1350                                         Expr *Third, Stmt *Body) {
1351     // Condition is empty
1352     if (!Second) return;
1353 
1354     if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1355                                    Second->getLocStart())
1356         == DiagnosticsEngine::Ignored)
1357       return;
1358 
1359     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1360     llvm::SmallPtrSet<VarDecl*, 8> Decls;
1361     SmallVector<SourceRange, 10> Ranges;
1362     DeclExtractor DE(S, Decls, Ranges);
1363     DE.Visit(Second);
1364 
1365     // Don't analyze complex conditionals.
1366     if (!DE.isSimple()) return;
1367 
1368     // No decls found.
1369     if (Decls.size() == 0) return;
1370 
1371     // Don't warn on volatile, static, or global variables.
1372     for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1373                                                   E = Decls.end();
1374          I != E; ++I)
1375       if ((*I)->getType().isVolatileQualified() ||
1376           (*I)->hasGlobalStorage()) return;
1377 
1378     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1379         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1380         DeclMatcher(S, Decls, Body).FoundDeclInUse())
1381       return;
1382 
1383     // Load decl names into diagnostic.
1384     if (Decls.size() > 4)
1385       PDiag << 0;
1386     else {
1387       PDiag << Decls.size();
1388       for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1389                                                     E = Decls.end();
1390            I != E; ++I)
1391         PDiag << (*I)->getDeclName();
1392     }
1393 
1394     // Load SourceRanges into diagnostic if there is room.
1395     // Otherwise, load the SourceRange of the conditional expression.
1396     if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1397       for (SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1398                                                   E = Ranges.end();
1399            I != E; ++I)
1400         PDiag << *I;
1401     else
1402       PDiag << Second->getSourceRange();
1403 
1404     S.Diag(Ranges.begin()->getBegin(), PDiag);
1405   }
1406 
1407 } // end namespace
1408 
1409 StmtResult
ActOnForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,FullExprArg second,Decl * secondVar,FullExprArg third,SourceLocation RParenLoc,Stmt * Body)1410 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1411                    Stmt *First, FullExprArg second, Decl *secondVar,
1412                    FullExprArg third,
1413                    SourceLocation RParenLoc, Stmt *Body) {
1414   if (!getLangOpts().CPlusPlus) {
1415     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1416       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1417       // declare identifiers for objects having storage class 'auto' or
1418       // 'register'.
1419       for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1420            DI!=DE; ++DI) {
1421         VarDecl *VD = dyn_cast<VarDecl>(*DI);
1422         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1423           VD = 0;
1424         if (VD == 0)
1425           Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1426         // FIXME: mark decl erroneous!
1427       }
1428     }
1429   }
1430 
1431   CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1432 
1433   ExprResult SecondResult(second.release());
1434   VarDecl *ConditionVar = 0;
1435   if (secondVar) {
1436     ConditionVar = cast<VarDecl>(secondVar);
1437     SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1438     if (SecondResult.isInvalid())
1439       return StmtError();
1440   }
1441 
1442   Expr *Third  = third.release().takeAs<Expr>();
1443 
1444   DiagnoseUnusedExprResult(First);
1445   DiagnoseUnusedExprResult(Third);
1446   DiagnoseUnusedExprResult(Body);
1447 
1448   if (isa<NullStmt>(Body))
1449     getCurCompoundScope().setHasEmptyLoopBodies();
1450 
1451   return Owned(new (Context) ForStmt(Context, First,
1452                                      SecondResult.take(), ConditionVar,
1453                                      Third, Body, ForLoc, LParenLoc,
1454                                      RParenLoc));
1455 }
1456 
1457 /// In an Objective C collection iteration statement:
1458 ///   for (x in y)
1459 /// x can be an arbitrary l-value expression.  Bind it up as a
1460 /// full-expression.
ActOnForEachLValueExpr(Expr * E)1461 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1462   // Reduce placeholder expressions here.  Note that this rejects the
1463   // use of pseudo-object l-values in this position.
1464   ExprResult result = CheckPlaceholderExpr(E);
1465   if (result.isInvalid()) return StmtError();
1466   E = result.take();
1467 
1468   ExprResult FullExpr = ActOnFinishFullExpr(E);
1469   if (FullExpr.isInvalid())
1470     return StmtError();
1471   return StmtResult(static_cast<Stmt*>(FullExpr.take()));
1472 }
1473 
1474 ExprResult
CheckObjCForCollectionOperand(SourceLocation forLoc,Expr * collection)1475 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1476   if (!collection)
1477     return ExprError();
1478 
1479   // Bail out early if we've got a type-dependent expression.
1480   if (collection->isTypeDependent()) return Owned(collection);
1481 
1482   // Perform normal l-value conversion.
1483   ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1484   if (result.isInvalid())
1485     return ExprError();
1486   collection = result.take();
1487 
1488   // The operand needs to have object-pointer type.
1489   // TODO: should we do a contextual conversion?
1490   const ObjCObjectPointerType *pointerType =
1491     collection->getType()->getAs<ObjCObjectPointerType>();
1492   if (!pointerType)
1493     return Diag(forLoc, diag::err_collection_expr_type)
1494              << collection->getType() << collection->getSourceRange();
1495 
1496   // Check that the operand provides
1497   //   - countByEnumeratingWithState:objects:count:
1498   const ObjCObjectType *objectType = pointerType->getObjectType();
1499   ObjCInterfaceDecl *iface = objectType->getInterface();
1500 
1501   // If we have a forward-declared type, we can't do this check.
1502   // Under ARC, it is an error not to have a forward-declared class.
1503   if (iface &&
1504       RequireCompleteType(forLoc, QualType(objectType, 0),
1505                           getLangOpts().ObjCAutoRefCount
1506                             ? diag::err_arc_collection_forward
1507                             : 0,
1508                           collection)) {
1509     // Otherwise, if we have any useful type information, check that
1510     // the type declares the appropriate method.
1511   } else if (iface || !objectType->qual_empty()) {
1512     IdentifierInfo *selectorIdents[] = {
1513       &Context.Idents.get("countByEnumeratingWithState"),
1514       &Context.Idents.get("objects"),
1515       &Context.Idents.get("count")
1516     };
1517     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1518 
1519     ObjCMethodDecl *method = 0;
1520 
1521     // If there's an interface, look in both the public and private APIs.
1522     if (iface) {
1523       method = iface->lookupInstanceMethod(selector);
1524       if (!method) method = iface->lookupPrivateMethod(selector);
1525     }
1526 
1527     // Also check protocol qualifiers.
1528     if (!method)
1529       method = LookupMethodInQualifiedType(selector, pointerType,
1530                                            /*instance*/ true);
1531 
1532     // If we didn't find it anywhere, give up.
1533     if (!method) {
1534       Diag(forLoc, diag::warn_collection_expr_type)
1535         << collection->getType() << selector << collection->getSourceRange();
1536     }
1537 
1538     // TODO: check for an incompatible signature?
1539   }
1540 
1541   // Wrap up any cleanups in the expression.
1542   return Owned(collection);
1543 }
1544 
1545 StmtResult
ActOnObjCForCollectionStmt(SourceLocation ForLoc,Stmt * First,Expr * collection,SourceLocation RParenLoc)1546 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1547                                  Stmt *First, Expr *collection,
1548                                  SourceLocation RParenLoc) {
1549 
1550   ExprResult CollectionExprResult =
1551     CheckObjCForCollectionOperand(ForLoc, collection);
1552 
1553   if (First) {
1554     QualType FirstType;
1555     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1556       if (!DS->isSingleDecl())
1557         return StmtError(Diag((*DS->decl_begin())->getLocation(),
1558                          diag::err_toomany_element_decls));
1559 
1560       VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1561       FirstType = D->getType();
1562       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1563       // declare identifiers for objects having storage class 'auto' or
1564       // 'register'.
1565       if (!D->hasLocalStorage())
1566         return StmtError(Diag(D->getLocation(),
1567                               diag::err_non_variable_decl_in_for));
1568     } else {
1569       Expr *FirstE = cast<Expr>(First);
1570       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1571         return StmtError(Diag(First->getLocStart(),
1572                    diag::err_selector_element_not_lvalue)
1573           << First->getSourceRange());
1574 
1575       FirstType = static_cast<Expr*>(First)->getType();
1576     }
1577     if (!FirstType->isDependentType() &&
1578         !FirstType->isObjCObjectPointerType() &&
1579         !FirstType->isBlockPointerType())
1580         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1581                            << FirstType << First->getSourceRange());
1582   }
1583 
1584   if (CollectionExprResult.isInvalid())
1585     return StmtError();
1586 
1587   CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.take());
1588   if (CollectionExprResult.isInvalid())
1589     return StmtError();
1590 
1591   return Owned(new (Context) ObjCForCollectionStmt(First,
1592                                                    CollectionExprResult.take(), 0,
1593                                                    ForLoc, RParenLoc));
1594 }
1595 
1596 /// Finish building a variable declaration for a for-range statement.
1597 /// \return true if an error occurs.
FinishForRangeVarDecl(Sema & SemaRef,VarDecl * Decl,Expr * Init,SourceLocation Loc,int diag)1598 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1599                                   SourceLocation Loc, int diag) {
1600   // Deduce the type for the iterator variable now rather than leaving it to
1601   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1602   TypeSourceInfo *InitTSI = 0;
1603   if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1604       SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1605           Sema::DAR_Failed)
1606     SemaRef.Diag(Loc, diag) << Init->getType();
1607   if (!InitTSI) {
1608     Decl->setInvalidDecl();
1609     return true;
1610   }
1611   Decl->setTypeSourceInfo(InitTSI);
1612   Decl->setType(InitTSI->getType());
1613 
1614   // In ARC, infer lifetime.
1615   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1616   // we're doing the equivalent of fast iteration.
1617   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1618       SemaRef.inferObjCARCLifetime(Decl))
1619     Decl->setInvalidDecl();
1620 
1621   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1622                                /*TypeMayContainAuto=*/false);
1623   SemaRef.FinalizeDeclaration(Decl);
1624   SemaRef.CurContext->addHiddenDecl(Decl);
1625   return false;
1626 }
1627 
1628 namespace {
1629 
1630 /// Produce a note indicating which begin/end function was implicitly called
1631 /// by a C++11 for-range statement. This is often not obvious from the code,
1632 /// nor from the diagnostics produced when analysing the implicit expressions
1633 /// required in a for-range statement.
NoteForRangeBeginEndFunction(Sema & SemaRef,Expr * E,Sema::BeginEndFunction BEF)1634 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1635                                   Sema::BeginEndFunction BEF) {
1636   CallExpr *CE = dyn_cast<CallExpr>(E);
1637   if (!CE)
1638     return;
1639   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1640   if (!D)
1641     return;
1642   SourceLocation Loc = D->getLocation();
1643 
1644   std::string Description;
1645   bool IsTemplate = false;
1646   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1647     Description = SemaRef.getTemplateArgumentBindingsText(
1648       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1649     IsTemplate = true;
1650   }
1651 
1652   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1653     << BEF << IsTemplate << Description << E->getType();
1654 }
1655 
1656 /// Build a variable declaration for a for-range statement.
BuildForRangeVarDecl(Sema & SemaRef,SourceLocation Loc,QualType Type,const char * Name)1657 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1658                               QualType Type, const char *Name) {
1659   DeclContext *DC = SemaRef.CurContext;
1660   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1661   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1662   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1663                                   TInfo, SC_Auto, SC_None);
1664   Decl->setImplicit();
1665   return Decl;
1666 }
1667 
1668 }
1669 
ObjCEnumerationCollection(Expr * Collection)1670 static bool ObjCEnumerationCollection(Expr *Collection) {
1671   return !Collection->isTypeDependent()
1672           && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1673 }
1674 
1675 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1676 ///
1677 /// C++11 [stmt.ranged]:
1678 ///   A range-based for statement is equivalent to
1679 ///
1680 ///   {
1681 ///     auto && __range = range-init;
1682 ///     for ( auto __begin = begin-expr,
1683 ///           __end = end-expr;
1684 ///           __begin != __end;
1685 ///           ++__begin ) {
1686 ///       for-range-declaration = *__begin;
1687 ///       statement
1688 ///     }
1689 ///   }
1690 ///
1691 /// The body of the loop is not available yet, since it cannot be analysed until
1692 /// we have determined the type of the for-range-declaration.
1693 StmtResult
ActOnCXXForRangeStmt(SourceLocation ForLoc,Stmt * First,SourceLocation ColonLoc,Expr * Range,SourceLocation RParenLoc,BuildForRangeKind Kind)1694 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
1695                            Stmt *First, SourceLocation ColonLoc, Expr *Range,
1696                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
1697   if (!First || !Range)
1698     return StmtError();
1699 
1700   if (ObjCEnumerationCollection(Range))
1701     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1702 
1703   DeclStmt *DS = dyn_cast<DeclStmt>(First);
1704   assert(DS && "first part of for range not a decl stmt");
1705 
1706   if (!DS->isSingleDecl()) {
1707     Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1708     return StmtError();
1709   }
1710   if (DS->getSingleDecl()->isInvalidDecl())
1711     return StmtError();
1712 
1713   if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1714     return StmtError();
1715 
1716   // Build  auto && __range = range-init
1717   SourceLocation RangeLoc = Range->getLocStart();
1718   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1719                                            Context.getAutoRRefDeductType(),
1720                                            "__range");
1721   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1722                             diag::err_for_range_deduction_failure))
1723     return StmtError();
1724 
1725   // Claim the type doesn't contain auto: we've already done the checking.
1726   DeclGroupPtrTy RangeGroup =
1727     BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1728   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1729   if (RangeDecl.isInvalid())
1730     return StmtError();
1731 
1732   return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1733                               /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1734                               RParenLoc, Kind);
1735 }
1736 
1737 /// \brief Create the initialization, compare, and increment steps for
1738 /// the range-based for loop expression.
1739 /// This function does not handle array-based for loops,
1740 /// which are created in Sema::BuildCXXForRangeStmt.
1741 ///
1742 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
1743 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
1744 /// CandidateSet and BEF are set and some non-success value is returned on
1745 /// failure.
BuildNonArrayForRange(Sema & SemaRef,Scope * S,Expr * BeginRange,Expr * EndRange,QualType RangeType,VarDecl * BeginVar,VarDecl * EndVar,SourceLocation ColonLoc,OverloadCandidateSet * CandidateSet,ExprResult * BeginExpr,ExprResult * EndExpr,Sema::BeginEndFunction * BEF)1746 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
1747                                             Expr *BeginRange, Expr *EndRange,
1748                                             QualType RangeType,
1749                                             VarDecl *BeginVar,
1750                                             VarDecl *EndVar,
1751                                             SourceLocation ColonLoc,
1752                                             OverloadCandidateSet *CandidateSet,
1753                                             ExprResult *BeginExpr,
1754                                             ExprResult *EndExpr,
1755                                             Sema::BeginEndFunction *BEF) {
1756   DeclarationNameInfo BeginNameInfo(
1757       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
1758   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
1759                                   ColonLoc);
1760 
1761   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
1762                                  Sema::LookupMemberName);
1763   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
1764 
1765   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1766     // - if _RangeT is a class type, the unqualified-ids begin and end are
1767     //   looked up in the scope of class _RangeT as if by class member access
1768     //   lookup (3.4.5), and if either (or both) finds at least one
1769     //   declaration, begin-expr and end-expr are __range.begin() and
1770     //   __range.end(), respectively;
1771     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
1772     SemaRef.LookupQualifiedName(EndMemberLookup, D);
1773 
1774     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1775       SourceLocation RangeLoc = BeginVar->getLocation();
1776       *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
1777 
1778       SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
1779           << RangeLoc << BeginRange->getType() << *BEF;
1780       return Sema::FRS_DiagnosticIssued;
1781     }
1782   } else {
1783     // - otherwise, begin-expr and end-expr are begin(__range) and
1784     //   end(__range), respectively, where begin and end are looked up with
1785     //   argument-dependent lookup (3.4.2). For the purposes of this name
1786     //   lookup, namespace std is an associated namespace.
1787 
1788   }
1789 
1790   *BEF = Sema::BEF_begin;
1791   Sema::ForRangeStatus RangeStatus =
1792       SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
1793                                         Sema::BEF_begin, BeginNameInfo,
1794                                         BeginMemberLookup, CandidateSet,
1795                                         BeginRange, BeginExpr);
1796 
1797   if (RangeStatus != Sema::FRS_Success)
1798     return RangeStatus;
1799   if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
1800                             diag::err_for_range_iter_deduction_failure)) {
1801     NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
1802     return Sema::FRS_DiagnosticIssued;
1803   }
1804 
1805   *BEF = Sema::BEF_end;
1806   RangeStatus =
1807       SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
1808                                         Sema::BEF_end, EndNameInfo,
1809                                         EndMemberLookup, CandidateSet,
1810                                         EndRange, EndExpr);
1811   if (RangeStatus != Sema::FRS_Success)
1812     return RangeStatus;
1813   if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
1814                             diag::err_for_range_iter_deduction_failure)) {
1815     NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
1816     return Sema::FRS_DiagnosticIssued;
1817   }
1818   return Sema::FRS_Success;
1819 }
1820 
1821 /// Speculatively attempt to dereference an invalid range expression.
1822 /// If the attempt fails, this function will return a valid, null StmtResult
1823 /// and emit no diagnostics.
RebuildForRangeWithDereference(Sema & SemaRef,Scope * S,SourceLocation ForLoc,Stmt * LoopVarDecl,SourceLocation ColonLoc,Expr * Range,SourceLocation RangeLoc,SourceLocation RParenLoc)1824 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
1825                                                  SourceLocation ForLoc,
1826                                                  Stmt *LoopVarDecl,
1827                                                  SourceLocation ColonLoc,
1828                                                  Expr *Range,
1829                                                  SourceLocation RangeLoc,
1830                                                  SourceLocation RParenLoc) {
1831   // Determine whether we can rebuild the for-range statement with a
1832   // dereferenced range expression.
1833   ExprResult AdjustedRange;
1834   {
1835     Sema::SFINAETrap Trap(SemaRef);
1836 
1837     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
1838     if (AdjustedRange.isInvalid())
1839       return StmtResult();
1840 
1841     StmtResult SR =
1842       SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1843                                    AdjustedRange.get(), RParenLoc,
1844                                    Sema::BFRK_Check);
1845     if (SR.isInvalid())
1846       return StmtResult();
1847   }
1848 
1849   // The attempt to dereference worked well enough that it could produce a valid
1850   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
1851   // case there are any other (non-fatal) problems with it.
1852   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
1853     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
1854   return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1855                                       AdjustedRange.get(), RParenLoc,
1856                                       Sema::BFRK_Rebuild);
1857 }
1858 
1859 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
1860 StmtResult
BuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation ColonLoc,Stmt * RangeDecl,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVarDecl,SourceLocation RParenLoc,BuildForRangeKind Kind)1861 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1862                            Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1863                            Expr *Inc, Stmt *LoopVarDecl,
1864                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
1865   Scope *S = getCurScope();
1866 
1867   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1868   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1869   QualType RangeVarType = RangeVar->getType();
1870 
1871   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1872   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1873 
1874   StmtResult BeginEndDecl = BeginEnd;
1875   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1876 
1877   if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1878     SourceLocation RangeLoc = RangeVar->getLocation();
1879 
1880     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1881 
1882     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1883                                                 VK_LValue, ColonLoc);
1884     if (BeginRangeRef.isInvalid())
1885       return StmtError();
1886 
1887     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1888                                               VK_LValue, ColonLoc);
1889     if (EndRangeRef.isInvalid())
1890       return StmtError();
1891 
1892     QualType AutoType = Context.getAutoDeductType();
1893     Expr *Range = RangeVar->getInit();
1894     if (!Range)
1895       return StmtError();
1896     QualType RangeType = Range->getType();
1897 
1898     if (RequireCompleteType(RangeLoc, RangeType,
1899                             diag::err_for_range_incomplete_type))
1900       return StmtError();
1901 
1902     // Build auto __begin = begin-expr, __end = end-expr.
1903     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1904                                              "__begin");
1905     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1906                                            "__end");
1907 
1908     // Build begin-expr and end-expr and attach to __begin and __end variables.
1909     ExprResult BeginExpr, EndExpr;
1910     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1911       // - if _RangeT is an array type, begin-expr and end-expr are __range and
1912       //   __range + __bound, respectively, where __bound is the array bound. If
1913       //   _RangeT is an array of unknown size or an array of incomplete type,
1914       //   the program is ill-formed;
1915 
1916       // begin-expr is __range.
1917       BeginExpr = BeginRangeRef;
1918       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1919                                 diag::err_for_range_iter_deduction_failure)) {
1920         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1921         return StmtError();
1922       }
1923 
1924       // Find the array bound.
1925       ExprResult BoundExpr;
1926       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1927         BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1928                                                  Context.getPointerDiffType(),
1929                                                  RangeLoc));
1930       else if (const VariableArrayType *VAT =
1931                dyn_cast<VariableArrayType>(UnqAT))
1932         BoundExpr = VAT->getSizeExpr();
1933       else {
1934         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1935         // UnqAT is not incomplete and Range is not type-dependent.
1936         llvm_unreachable("Unexpected array type in for-range");
1937       }
1938 
1939       // end-expr is __range + __bound.
1940       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1941                            BoundExpr.get());
1942       if (EndExpr.isInvalid())
1943         return StmtError();
1944       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1945                                 diag::err_for_range_iter_deduction_failure)) {
1946         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1947         return StmtError();
1948       }
1949     } else {
1950       OverloadCandidateSet CandidateSet(RangeLoc);
1951       Sema::BeginEndFunction BEFFailure;
1952       ForRangeStatus RangeStatus =
1953           BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
1954                                 EndRangeRef.get(), RangeType,
1955                                 BeginVar, EndVar, ColonLoc, &CandidateSet,
1956                                 &BeginExpr, &EndExpr, &BEFFailure);
1957 
1958       // If building the range failed, try dereferencing the range expression
1959       // unless a diagnostic was issued or the end function is problematic.
1960       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
1961           BEFFailure == BEF_begin) {
1962         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
1963                                                        LoopVarDecl, ColonLoc,
1964                                                        Range, RangeLoc,
1965                                                        RParenLoc);
1966         if (SR.isInvalid() || SR.isUsable())
1967           return SR;
1968       }
1969 
1970       // Otherwise, emit diagnostics if we haven't already.
1971       if (RangeStatus == FRS_NoViableFunction) {
1972         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
1973         Diag(Range->getLocStart(), diag::err_for_range_invalid)
1974             << RangeLoc << Range->getType() << BEFFailure;
1975         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
1976       }
1977       // Return an error if no fix was discovered.
1978       if (RangeStatus != FRS_Success)
1979         return StmtError();
1980     }
1981 
1982     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
1983            "invalid range expression in for loop");
1984 
1985     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
1986     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1987     if (!Context.hasSameType(BeginType, EndType)) {
1988       Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1989         << BeginType << EndType;
1990       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1991       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1992     }
1993 
1994     Decl *BeginEndDecls[] = { BeginVar, EndVar };
1995     // Claim the type doesn't contain auto: we've already done the checking.
1996     DeclGroupPtrTy BeginEndGroup =
1997       BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1998     BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1999 
2000     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2001     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2002                                            VK_LValue, ColonLoc);
2003     if (BeginRef.isInvalid())
2004       return StmtError();
2005 
2006     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2007                                          VK_LValue, ColonLoc);
2008     if (EndRef.isInvalid())
2009       return StmtError();
2010 
2011     // Build and check __begin != __end expression.
2012     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2013                            BeginRef.get(), EndRef.get());
2014     NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2015     NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2016     if (NotEqExpr.isInvalid()) {
2017       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2018         << RangeLoc << 0 << BeginRangeRef.get()->getType();
2019       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2020       if (!Context.hasSameType(BeginType, EndType))
2021         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2022       return StmtError();
2023     }
2024 
2025     // Build and check ++__begin expression.
2026     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2027                                 VK_LValue, ColonLoc);
2028     if (BeginRef.isInvalid())
2029       return StmtError();
2030 
2031     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2032     IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2033     if (IncrExpr.isInvalid()) {
2034       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2035         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2036       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2037       return StmtError();
2038     }
2039 
2040     // Build and check *__begin  expression.
2041     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2042                                 VK_LValue, ColonLoc);
2043     if (BeginRef.isInvalid())
2044       return StmtError();
2045 
2046     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2047     if (DerefExpr.isInvalid()) {
2048       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2049         << RangeLoc << 1 << BeginRangeRef.get()->getType();
2050       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2051       return StmtError();
2052     }
2053 
2054     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2055     // trying to determine whether this would be a valid range.
2056     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2057       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2058                            /*TypeMayContainAuto=*/true);
2059       if (LoopVar->isInvalidDecl())
2060         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2061     }
2062   } else {
2063     // The range is implicitly used as a placeholder when it is dependent.
2064     RangeVar->setUsed();
2065   }
2066 
2067   // Don't bother to actually allocate the result if we're just trying to
2068   // determine whether it would be valid.
2069   if (Kind == BFRK_Check)
2070     return StmtResult();
2071 
2072   return Owned(new (Context) CXXForRangeStmt(RangeDS,
2073                                      cast_or_null<DeclStmt>(BeginEndDecl.get()),
2074                                              NotEqExpr.take(), IncrExpr.take(),
2075                                              LoopVarDS, /*Body=*/0, ForLoc,
2076                                              ColonLoc, RParenLoc));
2077 }
2078 
2079 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2080 /// statement.
FinishObjCForCollectionStmt(Stmt * S,Stmt * B)2081 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2082   if (!S || !B)
2083     return StmtError();
2084   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2085 
2086   ForStmt->setBody(B);
2087   return S;
2088 }
2089 
2090 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2091 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2092 /// body cannot be performed until after the type of the range variable is
2093 /// determined.
FinishCXXForRangeStmt(Stmt * S,Stmt * B)2094 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2095   if (!S || !B)
2096     return StmtError();
2097 
2098   if (isa<ObjCForCollectionStmt>(S))
2099     return FinishObjCForCollectionStmt(S, B);
2100 
2101   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2102   ForStmt->setBody(B);
2103 
2104   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2105                         diag::warn_empty_range_based_for_body);
2106 
2107   return S;
2108 }
2109 
ActOnGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * TheDecl)2110 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2111                                SourceLocation LabelLoc,
2112                                LabelDecl *TheDecl) {
2113   getCurFunction()->setHasBranchIntoScope();
2114   TheDecl->setUsed();
2115   return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
2116 }
2117 
2118 StmtResult
ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * E)2119 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2120                             Expr *E) {
2121   // Convert operand to void*
2122   if (!E->isTypeDependent()) {
2123     QualType ETy = E->getType();
2124     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2125     ExprResult ExprRes = Owned(E);
2126     AssignConvertType ConvTy =
2127       CheckSingleAssignmentConstraints(DestTy, ExprRes);
2128     if (ExprRes.isInvalid())
2129       return StmtError();
2130     E = ExprRes.take();
2131     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2132       return StmtError();
2133   }
2134 
2135   ExprResult ExprRes = ActOnFinishFullExpr(E);
2136   if (ExprRes.isInvalid())
2137     return StmtError();
2138   E = ExprRes.take();
2139 
2140   getCurFunction()->setHasIndirectGoto();
2141 
2142   return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
2143 }
2144 
2145 StmtResult
ActOnContinueStmt(SourceLocation ContinueLoc,Scope * CurScope)2146 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2147   Scope *S = CurScope->getContinueParent();
2148   if (!S) {
2149     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2150     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2151   }
2152 
2153   return Owned(new (Context) ContinueStmt(ContinueLoc));
2154 }
2155 
2156 StmtResult
ActOnBreakStmt(SourceLocation BreakLoc,Scope * CurScope)2157 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2158   Scope *S = CurScope->getBreakParent();
2159   if (!S) {
2160     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2161     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2162   }
2163 
2164   return Owned(new (Context) BreakStmt(BreakLoc));
2165 }
2166 
2167 /// \brief Determine whether the given expression is a candidate for
2168 /// copy elision in either a return statement or a throw expression.
2169 ///
2170 /// \param ReturnType If we're determining the copy elision candidate for
2171 /// a return statement, this is the return type of the function. If we're
2172 /// determining the copy elision candidate for a throw expression, this will
2173 /// be a NULL type.
2174 ///
2175 /// \param E The expression being returned from the function or block, or
2176 /// being thrown.
2177 ///
2178 /// \param AllowFunctionParameter Whether we allow function parameters to
2179 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2180 /// we re-use this logic to determine whether we should try to move as part of
2181 /// a return or throw (which does allow function parameters).
2182 ///
2183 /// \returns The NRVO candidate variable, if the return statement may use the
2184 /// NRVO, or NULL if there is no such candidate.
getCopyElisionCandidate(QualType ReturnType,Expr * E,bool AllowFunctionParameter)2185 const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2186                                              Expr *E,
2187                                              bool AllowFunctionParameter) {
2188   QualType ExprType = E->getType();
2189   // - in a return statement in a function with ...
2190   // ... a class return type ...
2191   if (!ReturnType.isNull()) {
2192     if (!ReturnType->isRecordType())
2193       return 0;
2194     // ... the same cv-unqualified type as the function return type ...
2195     if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2196       return 0;
2197   }
2198 
2199   // ... the expression is the name of a non-volatile automatic object
2200   // (other than a function or catch-clause parameter)) ...
2201   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2202   if (!DR || DR->refersToEnclosingLocal())
2203     return 0;
2204   const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2205   if (!VD)
2206     return 0;
2207 
2208   // ...object (other than a function or catch-clause parameter)...
2209   if (VD->getKind() != Decl::Var &&
2210       !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2211     return 0;
2212   if (VD->isExceptionVariable()) return 0;
2213 
2214   // ...automatic...
2215   if (!VD->hasLocalStorage()) return 0;
2216 
2217   // ...non-volatile...
2218   if (VD->getType().isVolatileQualified()) return 0;
2219   if (VD->getType()->isReferenceType()) return 0;
2220 
2221   // __block variables can't be allocated in a way that permits NRVO.
2222   if (VD->hasAttr<BlocksAttr>()) return 0;
2223 
2224   // Variables with higher required alignment than their type's ABI
2225   // alignment cannot use NRVO.
2226   if (VD->hasAttr<AlignedAttr>() &&
2227       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2228     return 0;
2229 
2230   return VD;
2231 }
2232 
2233 /// \brief Perform the initialization of a potentially-movable value, which
2234 /// is the result of return value.
2235 ///
2236 /// This routine implements C++0x [class.copy]p33, which attempts to treat
2237 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2238 /// then falls back to treating them as lvalues if that failed.
2239 ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity & Entity,const VarDecl * NRVOCandidate,QualType ResultType,Expr * Value,bool AllowNRVO)2240 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2241                                       const VarDecl *NRVOCandidate,
2242                                       QualType ResultType,
2243                                       Expr *Value,
2244                                       bool AllowNRVO) {
2245   // C++0x [class.copy]p33:
2246   //   When the criteria for elision of a copy operation are met or would
2247   //   be met save for the fact that the source object is a function
2248   //   parameter, and the object to be copied is designated by an lvalue,
2249   //   overload resolution to select the constructor for the copy is first
2250   //   performed as if the object were designated by an rvalue.
2251   ExprResult Res = ExprError();
2252   if (AllowNRVO &&
2253       (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2254     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2255                               Value->getType(), CK_NoOp, Value, VK_XValue);
2256 
2257     Expr *InitExpr = &AsRvalue;
2258     InitializationKind Kind
2259       = InitializationKind::CreateCopy(Value->getLocStart(),
2260                                        Value->getLocStart());
2261     InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2262 
2263     //   [...] If overload resolution fails, or if the type of the first
2264     //   parameter of the selected constructor is not an rvalue reference
2265     //   to the object's type (possibly cv-qualified), overload resolution
2266     //   is performed again, considering the object as an lvalue.
2267     if (Seq) {
2268       for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2269            StepEnd = Seq.step_end();
2270            Step != StepEnd; ++Step) {
2271         if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2272           continue;
2273 
2274         CXXConstructorDecl *Constructor
2275         = cast<CXXConstructorDecl>(Step->Function.Function);
2276 
2277         const RValueReferenceType *RRefType
2278           = Constructor->getParamDecl(0)->getType()
2279                                                  ->getAs<RValueReferenceType>();
2280 
2281         // If we don't meet the criteria, break out now.
2282         if (!RRefType ||
2283             !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2284                             Context.getTypeDeclType(Constructor->getParent())))
2285           break;
2286 
2287         // Promote "AsRvalue" to the heap, since we now need this
2288         // expression node to persist.
2289         Value = ImplicitCastExpr::Create(Context, Value->getType(),
2290                                          CK_NoOp, Value, 0, VK_XValue);
2291 
2292         // Complete type-checking the initialization of the return type
2293         // using the constructor we found.
2294         Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2295       }
2296     }
2297   }
2298 
2299   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2300   // above, or overload resolution failed. Either way, we need to try
2301   // (again) now with the return value expression as written.
2302   if (Res.isInvalid())
2303     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2304 
2305   return Res;
2306 }
2307 
2308 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2309 /// for capturing scopes.
2310 ///
2311 StmtResult
ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2312 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2313   // If this is the first return we've seen, infer the return type.
2314   // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2315   // rules which allows multiple return statements.
2316   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2317   QualType FnRetType = CurCap->ReturnType;
2318 
2319   // For blocks/lambdas with implicit return types, we check each return
2320   // statement individually, and deduce the common return type when the block
2321   // or lambda is completed.
2322   if (CurCap->HasImplicitReturnType) {
2323     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2324       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2325       if (Result.isInvalid())
2326         return StmtError();
2327       RetValExp = Result.take();
2328 
2329       if (!RetValExp->isTypeDependent())
2330         FnRetType = RetValExp->getType();
2331       else
2332         FnRetType = CurCap->ReturnType = Context.DependentTy;
2333     } else {
2334       if (RetValExp) {
2335         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2336         // initializer list, because it is not an expression (even
2337         // though we represent it as one). We still deduce 'void'.
2338         Diag(ReturnLoc, diag::err_lambda_return_init_list)
2339           << RetValExp->getSourceRange();
2340       }
2341 
2342       FnRetType = Context.VoidTy;
2343     }
2344 
2345     // Although we'll properly infer the type of the block once it's completed,
2346     // make sure we provide a return type now for better error recovery.
2347     if (CurCap->ReturnType.isNull())
2348       CurCap->ReturnType = FnRetType;
2349   }
2350   assert(!FnRetType.isNull());
2351 
2352   if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2353     if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2354       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2355       return StmtError();
2356     }
2357   } else {
2358     LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2359     if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2360       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2361       return StmtError();
2362     }
2363   }
2364 
2365   // Otherwise, verify that this result type matches the previous one.  We are
2366   // pickier with blocks than for normal functions because we don't have GCC
2367   // compatibility to worry about here.
2368   const VarDecl *NRVOCandidate = 0;
2369   if (FnRetType->isDependentType()) {
2370     // Delay processing for now.  TODO: there are lots of dependent
2371     // types we can conclusively prove aren't void.
2372   } else if (FnRetType->isVoidType()) {
2373     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2374         !(getLangOpts().CPlusPlus &&
2375           (RetValExp->isTypeDependent() ||
2376            RetValExp->getType()->isVoidType()))) {
2377       if (!getLangOpts().CPlusPlus &&
2378           RetValExp->getType()->isVoidType())
2379         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2380       else {
2381         Diag(ReturnLoc, diag::err_return_block_has_expr);
2382         RetValExp = 0;
2383       }
2384     }
2385   } else if (!RetValExp) {
2386     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2387   } else if (!RetValExp->isTypeDependent()) {
2388     // we have a non-void block with an expression, continue checking
2389 
2390     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2391     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2392     // function return.
2393 
2394     // In C++ the return statement is handled via a copy initialization.
2395     // the C version of which boils down to CheckSingleAssignmentConstraints.
2396     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2397     InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2398                                                                    FnRetType,
2399                                                           NRVOCandidate != 0);
2400     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2401                                                      FnRetType, RetValExp);
2402     if (Res.isInvalid()) {
2403       // FIXME: Cleanup temporaries here, anyway?
2404       return StmtError();
2405     }
2406     RetValExp = Res.take();
2407     CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2408   }
2409 
2410   if (RetValExp) {
2411     ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2412     if (ER.isInvalid())
2413       return StmtError();
2414     RetValExp = ER.take();
2415   }
2416   ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2417                                                 NRVOCandidate);
2418 
2419   // If we need to check for the named return value optimization,
2420   // or if we need to infer the return type,
2421   // save the return statement in our scope for later processing.
2422   if (CurCap->HasImplicitReturnType ||
2423       (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2424        !CurContext->isDependentContext()))
2425     FunctionScopes.back()->Returns.push_back(Result);
2426 
2427   return Owned(Result);
2428 }
2429 
2430 StmtResult
ActOnReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2431 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2432   // Check for unexpanded parameter packs.
2433   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2434     return StmtError();
2435 
2436   if (isa<CapturingScopeInfo>(getCurFunction()))
2437     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2438 
2439   QualType FnRetType;
2440   QualType RelatedRetType;
2441   if (const FunctionDecl *FD = getCurFunctionDecl()) {
2442     FnRetType = FD->getResultType();
2443     if (FD->isNoReturn())
2444       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2445         << FD->getDeclName();
2446   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2447     FnRetType = MD->getResultType();
2448     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2449       // In the implementation of a method with a related return type, the
2450       // type used to type-check the validity of return statements within the
2451       // method body is a pointer to the type of the class being implemented.
2452       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2453       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2454     }
2455   } else // If we don't have a function/method context, bail.
2456     return StmtError();
2457 
2458   ReturnStmt *Result = 0;
2459   if (FnRetType->isVoidType()) {
2460     if (RetValExp) {
2461       if (isa<InitListExpr>(RetValExp)) {
2462         // We simply never allow init lists as the return value of void
2463         // functions. This is compatible because this was never allowed before,
2464         // so there's no legacy code to deal with.
2465         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2466         int FunctionKind = 0;
2467         if (isa<ObjCMethodDecl>(CurDecl))
2468           FunctionKind = 1;
2469         else if (isa<CXXConstructorDecl>(CurDecl))
2470           FunctionKind = 2;
2471         else if (isa<CXXDestructorDecl>(CurDecl))
2472           FunctionKind = 3;
2473 
2474         Diag(ReturnLoc, diag::err_return_init_list)
2475           << CurDecl->getDeclName() << FunctionKind
2476           << RetValExp->getSourceRange();
2477 
2478         // Drop the expression.
2479         RetValExp = 0;
2480       } else if (!RetValExp->isTypeDependent()) {
2481         // C99 6.8.6.4p1 (ext_ since GCC warns)
2482         unsigned D = diag::ext_return_has_expr;
2483         if (RetValExp->getType()->isVoidType())
2484           D = diag::ext_return_has_void_expr;
2485         else {
2486           ExprResult Result = Owned(RetValExp);
2487           Result = IgnoredValueConversions(Result.take());
2488           if (Result.isInvalid())
2489             return StmtError();
2490           RetValExp = Result.take();
2491           RetValExp = ImpCastExprToType(RetValExp,
2492                                         Context.VoidTy, CK_ToVoid).take();
2493         }
2494 
2495         // return (some void expression); is legal in C++.
2496         if (D != diag::ext_return_has_void_expr ||
2497             !getLangOpts().CPlusPlus) {
2498           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2499 
2500           int FunctionKind = 0;
2501           if (isa<ObjCMethodDecl>(CurDecl))
2502             FunctionKind = 1;
2503           else if (isa<CXXConstructorDecl>(CurDecl))
2504             FunctionKind = 2;
2505           else if (isa<CXXDestructorDecl>(CurDecl))
2506             FunctionKind = 3;
2507 
2508           Diag(ReturnLoc, D)
2509             << CurDecl->getDeclName() << FunctionKind
2510             << RetValExp->getSourceRange();
2511         }
2512       }
2513 
2514       if (RetValExp) {
2515         ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2516         if (ER.isInvalid())
2517           return StmtError();
2518         RetValExp = ER.take();
2519       }
2520     }
2521 
2522     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2523   } else if (!RetValExp && !FnRetType->isDependentType()) {
2524     unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2525     // C99 6.8.6.4p1 (ext_ since GCC warns)
2526     if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2527 
2528     if (FunctionDecl *FD = getCurFunctionDecl())
2529       Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2530     else
2531       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2532     Result = new (Context) ReturnStmt(ReturnLoc);
2533   } else {
2534     assert(RetValExp || FnRetType->isDependentType());
2535     const VarDecl *NRVOCandidate = 0;
2536     if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2537       // we have a non-void function with an expression, continue checking
2538 
2539       if (!RelatedRetType.isNull()) {
2540         // If we have a related result type, perform an extra conversion here.
2541         // FIXME: The diagnostics here don't really describe what is happening.
2542         InitializedEntity Entity =
2543             InitializedEntity::InitializeTemporary(RelatedRetType);
2544 
2545         ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2546                                                    RetValExp);
2547         if (Res.isInvalid()) {
2548           // FIXME: Cleanup temporaries here, anyway?
2549           return StmtError();
2550         }
2551         RetValExp = Res.takeAs<Expr>();
2552       }
2553 
2554       // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2555       // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2556       // function return.
2557 
2558       // In C++ the return statement is handled via a copy initialization,
2559       // the C version of which boils down to CheckSingleAssignmentConstraints.
2560       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2561       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2562                                                                      FnRetType,
2563                                                             NRVOCandidate != 0);
2564       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2565                                                        FnRetType, RetValExp);
2566       if (Res.isInvalid()) {
2567         // FIXME: Cleanup temporaries here, anyway?
2568         return StmtError();
2569       }
2570 
2571       RetValExp = Res.takeAs<Expr>();
2572       if (RetValExp)
2573         CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2574     }
2575 
2576     if (RetValExp) {
2577       ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2578       if (ER.isInvalid())
2579         return StmtError();
2580       RetValExp = ER.take();
2581     }
2582     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2583   }
2584 
2585   // If we need to check for the named return value optimization, save the
2586   // return statement in our scope for later processing.
2587   if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2588       !CurContext->isDependentContext())
2589     FunctionScopes.back()->Returns.push_back(Result);
2590 
2591   return Owned(Result);
2592 }
2593 
2594 StmtResult
ActOnObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParen,Decl * Parm,Stmt * Body)2595 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2596                            SourceLocation RParen, Decl *Parm,
2597                            Stmt *Body) {
2598   VarDecl *Var = cast_or_null<VarDecl>(Parm);
2599   if (Var && Var->isInvalidDecl())
2600     return StmtError();
2601 
2602   return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2603 }
2604 
2605 StmtResult
ActOnObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)2606 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2607   return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2608 }
2609 
2610 StmtResult
ActOnObjCAtTryStmt(SourceLocation AtLoc,Stmt * Try,MultiStmtArg CatchStmts,Stmt * Finally)2611 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2612                          MultiStmtArg CatchStmts, Stmt *Finally) {
2613   if (!getLangOpts().ObjCExceptions)
2614     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2615 
2616   getCurFunction()->setHasBranchProtectedScope();
2617   unsigned NumCatchStmts = CatchStmts.size();
2618   return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2619                                      CatchStmts.data(),
2620                                      NumCatchStmts,
2621                                      Finally));
2622 }
2623 
BuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw)2624 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2625   if (Throw) {
2626     ExprResult Result = DefaultLvalueConversion(Throw);
2627     if (Result.isInvalid())
2628       return StmtError();
2629 
2630     Result = ActOnFinishFullExpr(Result.take());
2631     if (Result.isInvalid())
2632       return StmtError();
2633     Throw = Result.take();
2634 
2635     QualType ThrowType = Throw->getType();
2636     // Make sure the expression type is an ObjC pointer or "void *".
2637     if (!ThrowType->isDependentType() &&
2638         !ThrowType->isObjCObjectPointerType()) {
2639       const PointerType *PT = ThrowType->getAs<PointerType>();
2640       if (!PT || !PT->getPointeeType()->isVoidType())
2641         return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2642                          << Throw->getType() << Throw->getSourceRange());
2643     }
2644   }
2645 
2646   return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2647 }
2648 
2649 StmtResult
ActOnObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw,Scope * CurScope)2650 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2651                            Scope *CurScope) {
2652   if (!getLangOpts().ObjCExceptions)
2653     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2654 
2655   if (!Throw) {
2656     // @throw without an expression designates a rethrow (which much occur
2657     // in the context of an @catch clause).
2658     Scope *AtCatchParent = CurScope;
2659     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2660       AtCatchParent = AtCatchParent->getParent();
2661     if (!AtCatchParent)
2662       return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2663   }
2664   return BuildObjCAtThrowStmt(AtLoc, Throw);
2665 }
2666 
2667 ExprResult
ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * operand)2668 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2669   ExprResult result = DefaultLvalueConversion(operand);
2670   if (result.isInvalid())
2671     return ExprError();
2672   operand = result.take();
2673 
2674   // Make sure the expression type is an ObjC pointer or "void *".
2675   QualType type = operand->getType();
2676   if (!type->isDependentType() &&
2677       !type->isObjCObjectPointerType()) {
2678     const PointerType *pointerType = type->getAs<PointerType>();
2679     if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2680       return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2681                << type << operand->getSourceRange();
2682   }
2683 
2684   // The operand to @synchronized is a full-expression.
2685   return ActOnFinishFullExpr(operand);
2686 }
2687 
2688 StmtResult
ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * SyncExpr,Stmt * SyncBody)2689 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2690                                   Stmt *SyncBody) {
2691   // We can't jump into or indirect-jump out of a @synchronized block.
2692   getCurFunction()->setHasBranchProtectedScope();
2693   return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2694 }
2695 
2696 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2697 /// and creates a proper catch handler from them.
2698 StmtResult
ActOnCXXCatchBlock(SourceLocation CatchLoc,Decl * ExDecl,Stmt * HandlerBlock)2699 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2700                          Stmt *HandlerBlock) {
2701   // There's nothing to test that ActOnExceptionDecl didn't already test.
2702   return Owned(new (Context) CXXCatchStmt(CatchLoc,
2703                                           cast_or_null<VarDecl>(ExDecl),
2704                                           HandlerBlock));
2705 }
2706 
2707 StmtResult
ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)2708 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2709   getCurFunction()->setHasBranchProtectedScope();
2710   return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2711 }
2712 
2713 namespace {
2714 
2715 class TypeWithHandler {
2716   QualType t;
2717   CXXCatchStmt *stmt;
2718 public:
TypeWithHandler(const QualType & type,CXXCatchStmt * statement)2719   TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2720   : t(type), stmt(statement) {}
2721 
2722   // An arbitrary order is fine as long as it places identical
2723   // types next to each other.
operator <(const TypeWithHandler & y) const2724   bool operator<(const TypeWithHandler &y) const {
2725     if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2726       return true;
2727     if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2728       return false;
2729     else
2730       return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2731   }
2732 
operator ==(const TypeWithHandler & other) const2733   bool operator==(const TypeWithHandler& other) const {
2734     return t == other.t;
2735   }
2736 
getCatchStmt() const2737   CXXCatchStmt *getCatchStmt() const { return stmt; }
getTypeSpecStartLoc() const2738   SourceLocation getTypeSpecStartLoc() const {
2739     return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2740   }
2741 };
2742 
2743 }
2744 
2745 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2746 /// handlers and creates a try statement from them.
2747 StmtResult
ActOnCXXTryBlock(SourceLocation TryLoc,Stmt * TryBlock,MultiStmtArg RawHandlers)2748 Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2749                        MultiStmtArg RawHandlers) {
2750   // Don't report an error if 'try' is used in system headers.
2751   if (!getLangOpts().CXXExceptions &&
2752       !getSourceManager().isInSystemHeader(TryLoc))
2753       Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2754 
2755   unsigned NumHandlers = RawHandlers.size();
2756   assert(NumHandlers > 0 &&
2757          "The parser shouldn't call this if there are no handlers.");
2758   Stmt **Handlers = RawHandlers.data();
2759 
2760   SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2761 
2762   for (unsigned i = 0; i < NumHandlers; ++i) {
2763     CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2764     if (!Handler->getExceptionDecl()) {
2765       if (i < NumHandlers - 1)
2766         return StmtError(Diag(Handler->getLocStart(),
2767                               diag::err_early_catch_all));
2768 
2769       continue;
2770     }
2771 
2772     const QualType CaughtType = Handler->getCaughtType();
2773     const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2774     TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2775   }
2776 
2777   // Detect handlers for the same type as an earlier one.
2778   if (NumHandlers > 1) {
2779     llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2780 
2781     TypeWithHandler prev = TypesWithHandlers[0];
2782     for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2783       TypeWithHandler curr = TypesWithHandlers[i];
2784 
2785       if (curr == prev) {
2786         Diag(curr.getTypeSpecStartLoc(),
2787              diag::warn_exception_caught_by_earlier_handler)
2788           << curr.getCatchStmt()->getCaughtType().getAsString();
2789         Diag(prev.getTypeSpecStartLoc(),
2790              diag::note_previous_exception_handler)
2791           << prev.getCatchStmt()->getCaughtType().getAsString();
2792       }
2793 
2794       prev = curr;
2795     }
2796   }
2797 
2798   getCurFunction()->setHasBranchProtectedScope();
2799 
2800   // FIXME: We should detect handlers that cannot catch anything because an
2801   // earlier handler catches a superclass. Need to find a method that is not
2802   // quadratic for this.
2803   // Neither of these are explicitly forbidden, but every compiler detects them
2804   // and warns.
2805 
2806   return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2807                                   llvm::makeArrayRef(Handlers, NumHandlers)));
2808 }
2809 
2810 StmtResult
ActOnSEHTryBlock(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)2811 Sema::ActOnSEHTryBlock(bool IsCXXTry,
2812                        SourceLocation TryLoc,
2813                        Stmt *TryBlock,
2814                        Stmt *Handler) {
2815   assert(TryBlock && Handler);
2816 
2817   getCurFunction()->setHasBranchProtectedScope();
2818 
2819   return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2820 }
2821 
2822 StmtResult
ActOnSEHExceptBlock(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)2823 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2824                           Expr *FilterExpr,
2825                           Stmt *Block) {
2826   assert(FilterExpr && Block);
2827 
2828   if(!FilterExpr->getType()->isIntegerType()) {
2829     return StmtError(Diag(FilterExpr->getExprLoc(),
2830                      diag::err_filter_expression_integral)
2831                      << FilterExpr->getType());
2832   }
2833 
2834   return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2835 }
2836 
2837 StmtResult
ActOnSEHFinallyBlock(SourceLocation Loc,Stmt * Block)2838 Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2839                            Stmt *Block) {
2840   assert(Block);
2841   return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2842 }
2843 
BuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)2844 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2845                                             bool IsIfExists,
2846                                             NestedNameSpecifierLoc QualifierLoc,
2847                                             DeclarationNameInfo NameInfo,
2848                                             Stmt *Nested)
2849 {
2850   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2851                                              QualifierLoc, NameInfo,
2852                                              cast<CompoundStmt>(Nested));
2853 }
2854 
2855 
ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name,Stmt * Nested)2856 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2857                                             bool IsIfExists,
2858                                             CXXScopeSpec &SS,
2859                                             UnqualifiedId &Name,
2860                                             Stmt *Nested) {
2861   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2862                                     SS.getWithLocInContext(Context),
2863                                     GetNameFromUnqualifiedId(Name),
2864                                     Nested);
2865 }
2866