• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/CommentDiagnostic.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31 #include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32 #include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33 #include "clang/Parse/ParseDiagnostic.h"
34 #include "clang/Sema/CXXFieldCollector.h"
35 #include "clang/Sema/DeclSpec.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Sema/Initialization.h"
38 #include "clang/Sema/Lookup.h"
39 #include "clang/Sema/ParsedTemplate.h"
40 #include "clang/Sema/Scope.h"
41 #include "clang/Sema/ScopeInfo.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/Triple.h"
44 #include <algorithm>
45 #include <cstring>
46 #include <functional>
47 using namespace clang;
48 using namespace sema;
49 
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)50 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51   if (OwnedType) {
52     Decl *Group[2] = { OwnedType, Ptr };
53     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54   }
55 
56   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57 }
58 
59 namespace {
60 
61 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62  public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false)63   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65     WantExpressionKeywords = false;
66     WantCXXNamedCasts = false;
67     WantRemainingKeywords = false;
68   }
69 
ValidateCandidate(const TypoCorrection & candidate)70   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71     if (NamedDecl *ND = candidate.getCorrectionDecl())
72       return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73           (AllowInvalidDecl || !ND->isInvalidDecl());
74     else
75       return !WantClassName && candidate.isKeyword();
76   }
77 
78  private:
79   bool AllowInvalidDecl;
80   bool WantClassName;
81 };
82 
83 }
84 
85 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const86 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87   switch (Kind) {
88   // FIXME: Take into account the current language when deciding whether a
89   // token kind is a valid type specifier
90   case tok::kw_short:
91   case tok::kw_long:
92   case tok::kw___int64:
93   case tok::kw___int128:
94   case tok::kw_signed:
95   case tok::kw_unsigned:
96   case tok::kw_void:
97   case tok::kw_char:
98   case tok::kw_int:
99   case tok::kw_half:
100   case tok::kw_float:
101   case tok::kw_double:
102   case tok::kw_wchar_t:
103   case tok::kw_bool:
104   case tok::kw___underlying_type:
105     return true;
106 
107   case tok::annot_typename:
108   case tok::kw_char16_t:
109   case tok::kw_char32_t:
110   case tok::kw_typeof:
111   case tok::kw_decltype:
112     return getLangOpts().CPlusPlus;
113 
114   default:
115     break;
116   }
117 
118   return false;
119 }
120 
121 /// \brief If the identifier refers to a type name within this scope,
122 /// return the declaration of that type.
123 ///
124 /// This routine performs ordinary name lookup of the identifier II
125 /// within the given scope, with optional C++ scope specifier SS, to
126 /// determine whether the name refers to a type. If so, returns an
127 /// opaque pointer (actually a QualType) corresponding to that
128 /// type. Otherwise, returns NULL.
129 ///
130 /// If name lookup results in an ambiguity, this routine will complain
131 /// and then return NULL.
getTypeName(IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)132 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                              Scope *S, CXXScopeSpec *SS,
134                              bool isClassName, bool HasTrailingDot,
135                              ParsedType ObjectTypePtr,
136                              bool IsCtorOrDtorName,
137                              bool WantNontrivialTypeSourceInfo,
138                              IdentifierInfo **CorrectedII) {
139   // Determine where we will perform name lookup.
140   DeclContext *LookupCtx = 0;
141   if (ObjectTypePtr) {
142     QualType ObjectType = ObjectTypePtr.get();
143     if (ObjectType->isRecordType())
144       LookupCtx = computeDeclContext(ObjectType);
145   } else if (SS && SS->isNotEmpty()) {
146     LookupCtx = computeDeclContext(*SS, false);
147 
148     if (!LookupCtx) {
149       if (isDependentScopeSpecifier(*SS)) {
150         // C++ [temp.res]p3:
151         //   A qualified-id that refers to a type and in which the
152         //   nested-name-specifier depends on a template-parameter (14.6.2)
153         //   shall be prefixed by the keyword typename to indicate that the
154         //   qualified-id denotes a type, forming an
155         //   elaborated-type-specifier (7.1.5.3).
156         //
157         // We therefore do not perform any name lookup if the result would
158         // refer to a member of an unknown specialization.
159         if (!isClassName && !IsCtorOrDtorName)
160           return ParsedType();
161 
162         // We know from the grammar that this name refers to a type,
163         // so build a dependent node to describe the type.
164         if (WantNontrivialTypeSourceInfo)
165           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166 
167         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168         QualType T =
169           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                             II, NameLoc);
171 
172           return ParsedType::make(T);
173       }
174 
175       return ParsedType();
176     }
177 
178     if (!LookupCtx->isDependentContext() &&
179         RequireCompleteDeclContext(*SS, LookupCtx))
180       return ParsedType();
181   }
182 
183   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184   // lookup for class-names.
185   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                       LookupOrdinaryName;
187   LookupResult Result(*this, &II, NameLoc, Kind);
188   if (LookupCtx) {
189     // Perform "qualified" name lookup into the declaration context we
190     // computed, which is either the type of the base of a member access
191     // expression or the declaration context associated with a prior
192     // nested-name-specifier.
193     LookupQualifiedName(Result, LookupCtx);
194 
195     if (ObjectTypePtr && Result.empty()) {
196       // C++ [basic.lookup.classref]p3:
197       //   If the unqualified-id is ~type-name, the type-name is looked up
198       //   in the context of the entire postfix-expression. If the type T of
199       //   the object expression is of a class type C, the type-name is also
200       //   looked up in the scope of class C. At least one of the lookups shall
201       //   find a name that refers to (possibly cv-qualified) T.
202       LookupName(Result, S);
203     }
204   } else {
205     // Perform unqualified name lookup.
206     LookupName(Result, S);
207   }
208 
209   NamedDecl *IIDecl = 0;
210   switch (Result.getResultKind()) {
211   case LookupResult::NotFound:
212   case LookupResult::NotFoundInCurrentInstantiation:
213     if (CorrectedII) {
214       TypeNameValidatorCCC Validator(true, isClassName);
215       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                               Kind, S, SS, Validator);
217       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218       TemplateTy Template;
219       bool MemberOfUnknownSpecialization;
220       UnqualifiedId TemplateName;
221       TemplateName.setIdentifier(NewII, NameLoc);
222       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223       CXXScopeSpec NewSS, *NewSSPtr = SS;
224       if (SS && NNS) {
225         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226         NewSSPtr = &NewSS;
227       }
228       if (Correction && (NNS || NewII != &II) &&
229           // Ignore a correction to a template type as the to-be-corrected
230           // identifier is not a template (typo correction for template names
231           // is handled elsewhere).
232           !(getLangOpts().CPlusPlus && NewSSPtr &&
233             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                            false, Template, MemberOfUnknownSpecialization))) {
235         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                     isClassName, HasTrailingDot, ObjectTypePtr,
237                                     IsCtorOrDtorName,
238                                     WantNontrivialTypeSourceInfo);
239         if (Ty) {
240           std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241           std::string CorrectedQuotedStr(
242               Correction.getQuoted(getLangOpts()));
243           Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244               << Result.getLookupName() << CorrectedQuotedStr << isClassName
245               << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                               CorrectedStr);
247           if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248             Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249               << CorrectedQuotedStr;
250 
251           if (SS && NNS)
252             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253           *CorrectedII = NewII;
254           return Ty;
255         }
256       }
257     }
258     // If typo correction failed or was not performed, fall through
259   case LookupResult::FoundOverloaded:
260   case LookupResult::FoundUnresolvedValue:
261     Result.suppressDiagnostics();
262     return ParsedType();
263 
264   case LookupResult::Ambiguous:
265     // Recover from type-hiding ambiguities by hiding the type.  We'll
266     // do the lookup again when looking for an object, and we can
267     // diagnose the error then.  If we don't do this, then the error
268     // about hiding the type will be immediately followed by an error
269     // that only makes sense if the identifier was treated like a type.
270     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271       Result.suppressDiagnostics();
272       return ParsedType();
273     }
274 
275     // Look to see if we have a type anywhere in the list of results.
276     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277          Res != ResEnd; ++Res) {
278       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279         if (!IIDecl ||
280             (*Res)->getLocation().getRawEncoding() <
281               IIDecl->getLocation().getRawEncoding())
282           IIDecl = *Res;
283       }
284     }
285 
286     if (!IIDecl) {
287       // None of the entities we found is a type, so there is no way
288       // to even assume that the result is a type. In this case, don't
289       // complain about the ambiguity. The parser will either try to
290       // perform this lookup again (e.g., as an object name), which
291       // will produce the ambiguity, or will complain that it expected
292       // a type name.
293       Result.suppressDiagnostics();
294       return ParsedType();
295     }
296 
297     // We found a type within the ambiguous lookup; diagnose the
298     // ambiguity and then return that type. This might be the right
299     // answer, or it might not be, but it suppresses any attempt to
300     // perform the name lookup again.
301     break;
302 
303   case LookupResult::Found:
304     IIDecl = Result.getFoundDecl();
305     break;
306   }
307 
308   assert(IIDecl && "Didn't find decl");
309 
310   QualType T;
311   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312     DiagnoseUseOfDecl(IIDecl, NameLoc);
313 
314     if (T.isNull())
315       T = Context.getTypeDeclType(TD);
316 
317     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318     // constructor or destructor name (in such a case, the scope specifier
319     // will be attached to the enclosing Expr or Decl node).
320     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321       if (WantNontrivialTypeSourceInfo) {
322         // Construct a type with type-source information.
323         TypeLocBuilder Builder;
324         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325 
326         T = getElaboratedType(ETK_None, *SS, T);
327         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328         ElabTL.setElaboratedKeywordLoc(SourceLocation());
329         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331       } else {
332         T = getElaboratedType(ETK_None, *SS, T);
333       }
334     }
335   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337     if (!HasTrailingDot)
338       T = Context.getObjCInterfaceType(IDecl);
339   }
340 
341   if (T.isNull()) {
342     // If it's not plausibly a type, suppress diagnostics.
343     Result.suppressDiagnostics();
344     return ParsedType();
345   }
346   return ParsedType::make(T);
347 }
348 
349 /// isTagName() - This method is called *for error recovery purposes only*
350 /// to determine if the specified name is a valid tag name ("struct foo").  If
351 /// so, this returns the TST for the tag corresponding to it (TST_enum,
352 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)354 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355   // Do a tag name lookup in this scope.
356   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357   LookupName(R, S, false);
358   R.suppressDiagnostics();
359   if (R.getResultKind() == LookupResult::Found)
360     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361       switch (TD->getTagKind()) {
362       case TTK_Struct: return DeclSpec::TST_struct;
363       case TTK_Interface: return DeclSpec::TST_interface;
364       case TTK_Union:  return DeclSpec::TST_union;
365       case TTK_Class:  return DeclSpec::TST_class;
366       case TTK_Enum:   return DeclSpec::TST_enum;
367       }
368     }
369 
370   return DeclSpec::TST_unspecified;
371 }
372 
373 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
375 /// then downgrade the missing typename error to a warning.
376 /// This is needed for MSVC compatibility; Example:
377 /// @code
378 /// template<class T> class A {
379 /// public:
380 ///   typedef int TYPE;
381 /// };
382 /// template<class T> class B : public A<T> {
383 /// public:
384 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385 /// };
386 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)387 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388   if (CurContext->isRecord()) {
389     const Type *Ty = SS->getScopeRep()->getAsType();
390 
391     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395         return true;
396     return S->isFunctionPrototypeScope();
397   }
398   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399 }
400 
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType)401 bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                    SourceLocation IILoc,
403                                    Scope *S,
404                                    CXXScopeSpec *SS,
405                                    ParsedType &SuggestedType) {
406   // We don't have anything to suggest (yet).
407   SuggestedType = ParsedType();
408 
409   // There may have been a typo in the name of the type. Look up typo
410   // results, in case we have something that we can suggest.
411   TypeNameValidatorCCC Validator(false);
412   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                              LookupOrdinaryName, S, SS,
414                                              Validator)) {
415     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417 
418     if (Corrected.isKeyword()) {
419       // We corrected to a keyword.
420       IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421       if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422         CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423       Diag(IILoc, diag::err_unknown_typename_suggest)
424         << II << CorrectedQuotedStr
425         << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426       II = NewII;
427     } else {
428       NamedDecl *Result = Corrected.getCorrectionDecl();
429       // We found a similarly-named type or interface; suggest that.
430       if (!SS || !SS->isSet())
431         Diag(IILoc, diag::err_unknown_typename_suggest)
432           << II << CorrectedQuotedStr
433           << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434       else if (DeclContext *DC = computeDeclContext(*SS, false))
435         Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436           << II << DC << CorrectedQuotedStr << SS->getRange()
437           << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                           CorrectedStr);
439       else
440         llvm_unreachable("could not have corrected a typo here");
441 
442       Diag(Result->getLocation(), diag::note_previous_decl)
443         << CorrectedQuotedStr;
444 
445       SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                   false, false, ParsedType(),
447                                   /*IsCtorOrDtorName=*/false,
448                                   /*NonTrivialTypeSourceInfo=*/true);
449     }
450     return true;
451   }
452 
453   if (getLangOpts().CPlusPlus) {
454     // See if II is a class template that the user forgot to pass arguments to.
455     UnqualifiedId Name;
456     Name.setIdentifier(II, IILoc);
457     CXXScopeSpec EmptySS;
458     TemplateTy TemplateResult;
459     bool MemberOfUnknownSpecialization;
460     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                        Name, ParsedType(), true, TemplateResult,
462                        MemberOfUnknownSpecialization) == TNK_Type_template) {
463       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464       Diag(IILoc, diag::err_template_missing_args) << TplName;
465       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467           << TplDecl->getTemplateParameters()->getSourceRange();
468       }
469       return true;
470     }
471   }
472 
473   // FIXME: Should we move the logic that tries to recover from a missing tag
474   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475 
476   if (!SS || (!SS->isSet() && !SS->isInvalid()))
477     Diag(IILoc, diag::err_unknown_typename) << II;
478   else if (DeclContext *DC = computeDeclContext(*SS, false))
479     Diag(IILoc, diag::err_typename_nested_not_found)
480       << II << DC << SS->getRange();
481   else if (isDependentScopeSpecifier(*SS)) {
482     unsigned DiagID = diag::err_typename_missing;
483     if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484       DiagID = diag::warn_typename_missing;
485 
486     Diag(SS->getRange().getBegin(), DiagID)
487       << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488       << SourceRange(SS->getRange().getBegin(), IILoc)
489       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490     SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                       *SS, *II, IILoc).get();
492   } else {
493     assert(SS && SS->isInvalid() &&
494            "Invalid scope specifier has already been diagnosed");
495   }
496 
497   return true;
498 }
499 
500 /// \brief Determine whether the given result set contains either a type name
501 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)502 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                        NextToken.is(tok::less);
505 
506   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508       return true;
509 
510     if (CheckTemplate && isa<TemplateDecl>(*I))
511       return true;
512   }
513 
514   return false;
515 }
516 
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)517 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                     Scope *S, CXXScopeSpec &SS,
519                                     IdentifierInfo *&Name,
520                                     SourceLocation NameLoc) {
521   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522   SemaRef.LookupParsedName(R, S, &SS);
523   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524     const char *TagName = 0;
525     const char *FixItTagName = 0;
526     switch (Tag->getTagKind()) {
527       case TTK_Class:
528         TagName = "class";
529         FixItTagName = "class ";
530         break;
531 
532       case TTK_Enum:
533         TagName = "enum";
534         FixItTagName = "enum ";
535         break;
536 
537       case TTK_Struct:
538         TagName = "struct";
539         FixItTagName = "struct ";
540         break;
541 
542       case TTK_Interface:
543         TagName = "__interface";
544         FixItTagName = "__interface ";
545         break;
546 
547       case TTK_Union:
548         TagName = "union";
549         FixItTagName = "union ";
550         break;
551     }
552 
553     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556 
557     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558          I != IEnd; ++I)
559       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560         << Name << TagName;
561 
562     // Replace lookup results with just the tag decl.
563     Result.clear(Sema::LookupTagName);
564     SemaRef.LookupParsedName(Result, S, &SS);
565     return true;
566   }
567 
568   return false;
569 }
570 
571 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)572 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                   QualType T, SourceLocation NameLoc) {
574   ASTContext &Context = S.Context;
575 
576   TypeLocBuilder Builder;
577   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578 
579   T = S.getElaboratedType(ETK_None, SS, T);
580   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581   ElabTL.setElaboratedKeywordLoc(SourceLocation());
582   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584 }
585 
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)586 Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                             CXXScopeSpec &SS,
588                                             IdentifierInfo *&Name,
589                                             SourceLocation NameLoc,
590                                             const Token &NextToken,
591                                             bool IsAddressOfOperand,
592                                             CorrectionCandidateCallback *CCC) {
593   DeclarationNameInfo NameInfo(Name, NameLoc);
594   ObjCMethodDecl *CurMethod = getCurMethodDecl();
595 
596   if (NextToken.is(tok::coloncolon)) {
597     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                 QualType(), false, SS, 0, false);
599 
600   }
601 
602   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603   LookupParsedName(Result, S, &SS, !CurMethod);
604 
605   // Perform lookup for Objective-C instance variables (including automatically
606   // synthesized instance variables), if we're in an Objective-C method.
607   // FIXME: This lookup really, really needs to be folded in to the normal
608   // unqualified lookup mechanism.
609   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611     if (E.get() || E.isInvalid())
612       return E;
613   }
614 
615   bool SecondTry = false;
616   bool IsFilteredTemplateName = false;
617 
618 Corrected:
619   switch (Result.getResultKind()) {
620   case LookupResult::NotFound:
621     // If an unqualified-id is followed by a '(', then we have a function
622     // call.
623     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624       // In C++, this is an ADL-only call.
625       // FIXME: Reference?
626       if (getLangOpts().CPlusPlus)
627         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628 
629       // C90 6.3.2.2:
630       //   If the expression that precedes the parenthesized argument list in a
631       //   function call consists solely of an identifier, and if no
632       //   declaration is visible for this identifier, the identifier is
633       //   implicitly declared exactly as if, in the innermost block containing
634       //   the function call, the declaration
635       //
636       //     extern int identifier ();
637       //
638       //   appeared.
639       //
640       // We also allow this in C99 as an extension.
641       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642         Result.addDecl(D);
643         Result.resolveKind();
644         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645       }
646     }
647 
648     // In C, we first see whether there is a tag type by the same name, in
649     // which case it's likely that the user just forget to write "enum",
650     // "struct", or "union".
651     if (!getLangOpts().CPlusPlus && !SecondTry &&
652         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653       break;
654     }
655 
656     // Perform typo correction to determine if there is another name that is
657     // close to this name.
658     if (!SecondTry && CCC) {
659       SecondTry = true;
660       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                  Result.getLookupKind(), S,
662                                                  &SS, *CCC)) {
663         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664         unsigned QualifiedDiag = diag::err_no_member_suggest;
665         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667 
668         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669         NamedDecl *UnderlyingFirstDecl
670           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673           UnqualifiedDiag = diag::err_no_template_suggest;
674           QualifiedDiag = diag::err_no_member_template_suggest;
675         } else if (UnderlyingFirstDecl &&
676                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679            UnqualifiedDiag = diag::err_unknown_typename_suggest;
680            QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681          }
682 
683         if (SS.isEmpty())
684           Diag(NameLoc, UnqualifiedDiag)
685             << Name << CorrectedQuotedStr
686             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687         else // FIXME: is this even reachable? Test it.
688           Diag(NameLoc, QualifiedDiag)
689             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690             << SS.getRange()
691             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                             CorrectedStr);
693 
694         // Update the name, so that the caller has the new name.
695         Name = Corrected.getCorrectionAsIdentifierInfo();
696 
697         // Typo correction corrected to a keyword.
698         if (Corrected.isKeyword())
699           return Corrected.getCorrectionAsIdentifierInfo();
700 
701         // Also update the LookupResult...
702         // FIXME: This should probably go away at some point
703         Result.clear();
704         Result.setLookupName(Corrected.getCorrection());
705         if (FirstDecl) {
706           Result.addDecl(FirstDecl);
707           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708             << CorrectedQuotedStr;
709         }
710 
711         // If we found an Objective-C instance variable, let
712         // LookupInObjCMethod build the appropriate expression to
713         // reference the ivar.
714         // FIXME: This is a gross hack.
715         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716           Result.clear();
717           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718           return E;
719         }
720 
721         goto Corrected;
722       }
723     }
724 
725     // We failed to correct; just fall through and let the parser deal with it.
726     Result.suppressDiagnostics();
727     return NameClassification::Unknown();
728 
729   case LookupResult::NotFoundInCurrentInstantiation: {
730     // We performed name lookup into the current instantiation, and there were
731     // dependent bases, so we treat this result the same way as any other
732     // dependent nested-name-specifier.
733 
734     // C++ [temp.res]p2:
735     //   A name used in a template declaration or definition and that is
736     //   dependent on a template-parameter is assumed not to name a type
737     //   unless the applicable name lookup finds a type name or the name is
738     //   qualified by the keyword typename.
739     //
740     // FIXME: If the next token is '<', we might want to ask the parser to
741     // perform some heroics to see if we actually have a
742     // template-argument-list, which would indicate a missing 'template'
743     // keyword here.
744     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                       NameInfo, IsAddressOfOperand,
746                                       /*TemplateArgs=*/0);
747   }
748 
749   case LookupResult::Found:
750   case LookupResult::FoundOverloaded:
751   case LookupResult::FoundUnresolvedValue:
752     break;
753 
754   case LookupResult::Ambiguous:
755     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756         hasAnyAcceptableTemplateNames(Result)) {
757       // C++ [temp.local]p3:
758       //   A lookup that finds an injected-class-name (10.2) can result in an
759       //   ambiguity in certain cases (for example, if it is found in more than
760       //   one base class). If all of the injected-class-names that are found
761       //   refer to specializations of the same class template, and if the name
762       //   is followed by a template-argument-list, the reference refers to the
763       //   class template itself and not a specialization thereof, and is not
764       //   ambiguous.
765       //
766       // This filtering can make an ambiguous result into an unambiguous one,
767       // so try again after filtering out template names.
768       FilterAcceptableTemplateNames(Result);
769       if (!Result.isAmbiguous()) {
770         IsFilteredTemplateName = true;
771         break;
772       }
773     }
774 
775     // Diagnose the ambiguity and return an error.
776     return NameClassification::Error();
777   }
778 
779   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781     // C++ [temp.names]p3:
782     //   After name lookup (3.4) finds that a name is a template-name or that
783     //   an operator-function-id or a literal- operator-id refers to a set of
784     //   overloaded functions any member of which is a function template if
785     //   this is followed by a <, the < is always taken as the delimiter of a
786     //   template-argument-list and never as the less-than operator.
787     if (!IsFilteredTemplateName)
788       FilterAcceptableTemplateNames(Result);
789 
790     if (!Result.empty()) {
791       bool IsFunctionTemplate;
792       TemplateName Template;
793       if (Result.end() - Result.begin() > 1) {
794         IsFunctionTemplate = true;
795         Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                      Result.end());
797       } else {
798         TemplateDecl *TD
799           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801 
802         if (SS.isSet() && !SS.isInvalid())
803           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                     /*TemplateKeyword=*/false,
805                                                       TD);
806         else
807           Template = TemplateName(TD);
808       }
809 
810       if (IsFunctionTemplate) {
811         // Function templates always go through overload resolution, at which
812         // point we'll perform the various checks (e.g., accessibility) we need
813         // to based on which function we selected.
814         Result.suppressDiagnostics();
815 
816         return NameClassification::FunctionTemplate(Template);
817       }
818 
819       return NameClassification::TypeTemplate(Template);
820     }
821   }
822 
823   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825     DiagnoseUseOfDecl(Type, NameLoc);
826     QualType T = Context.getTypeDeclType(Type);
827     if (SS.isNotEmpty())
828       return buildNestedType(*this, SS, T, NameLoc);
829     return ParsedType::make(T);
830   }
831 
832   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833   if (!Class) {
834     // FIXME: It's unfortunate that we don't have a Type node for handling this.
835     if (ObjCCompatibleAliasDecl *Alias
836                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837       Class = Alias->getClassInterface();
838   }
839 
840   if (Class) {
841     DiagnoseUseOfDecl(Class, NameLoc);
842 
843     if (NextToken.is(tok::period)) {
844       // Interface. <something> is parsed as a property reference expression.
845       // Just return "unknown" as a fall-through for now.
846       Result.suppressDiagnostics();
847       return NameClassification::Unknown();
848     }
849 
850     QualType T = Context.getObjCInterfaceType(Class);
851     return ParsedType::make(T);
852   }
853 
854   // We can have a type template here if we're classifying a template argument.
855   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856     return NameClassification::TypeTemplate(
857         TemplateName(cast<TemplateDecl>(FirstDecl)));
858 
859   // Check for a tag type hidden by a non-type decl in a few cases where it
860   // seems likely a type is wanted instead of the non-type that was found.
861   if (!getLangOpts().ObjC1) {
862     bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863     if ((NextToken.is(tok::identifier) ||
864          (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866       TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867       DiagnoseUseOfDecl(Type, NameLoc);
868       QualType T = Context.getTypeDeclType(Type);
869       if (SS.isNotEmpty())
870         return buildNestedType(*this, SS, T, NameLoc);
871       return ParsedType::make(T);
872     }
873   }
874 
875   if (FirstDecl->isCXXClassMember())
876     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877 
878   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879   return BuildDeclarationNameExpr(SS, Result, ADL);
880 }
881 
882 // Determines the context to return to after temporarily entering a
883 // context.  This depends in an unnecessarily complicated way on the
884 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)885 DeclContext *Sema::getContainingDC(DeclContext *DC) {
886 
887   // Functions defined inline within classes aren't parsed until we've
888   // finished parsing the top-level class, so the top-level class is
889   // the context we'll need to return to.
890   if (isa<FunctionDecl>(DC)) {
891     DC = DC->getLexicalParent();
892 
893     // A function not defined within a class will always return to its
894     // lexical context.
895     if (!isa<CXXRecordDecl>(DC))
896       return DC;
897 
898     // A C++ inline method/friend is parsed *after* the topmost class
899     // it was declared in is fully parsed ("complete");  the topmost
900     // class is the context we need to return to.
901     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902       DC = RD;
903 
904     // Return the declaration context of the topmost class the inline method is
905     // declared in.
906     return DC;
907   }
908 
909   return DC->getLexicalParent();
910 }
911 
PushDeclContext(Scope * S,DeclContext * DC)912 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913   assert(getContainingDC(DC) == CurContext &&
914       "The next DeclContext should be lexically contained in the current one.");
915   CurContext = DC;
916   S->setEntity(DC);
917 }
918 
PopDeclContext()919 void Sema::PopDeclContext() {
920   assert(CurContext && "DeclContext imbalance!");
921 
922   CurContext = getContainingDC(CurContext);
923   assert(CurContext && "Popped translation unit!");
924 }
925 
926 /// EnterDeclaratorContext - Used when we must lookup names in the context
927 /// of a declarator's nested name specifier.
928 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)929 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930   // C++0x [basic.lookup.unqual]p13:
931   //   A name used in the definition of a static data member of class
932   //   X (after the qualified-id of the static member) is looked up as
933   //   if the name was used in a member function of X.
934   // C++0x [basic.lookup.unqual]p14:
935   //   If a variable member of a namespace is defined outside of the
936   //   scope of its namespace then any name used in the definition of
937   //   the variable member (after the declarator-id) is looked up as
938   //   if the definition of the variable member occurred in its
939   //   namespace.
940   // Both of these imply that we should push a scope whose context
941   // is the semantic context of the declaration.  We can't use
942   // PushDeclContext here because that context is not necessarily
943   // lexically contained in the current context.  Fortunately,
944   // the containing scope should have the appropriate information.
945 
946   assert(!S->getEntity() && "scope already has entity");
947 
948 #ifndef NDEBUG
949   Scope *Ancestor = S->getParent();
950   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952 #endif
953 
954   CurContext = DC;
955   S->setEntity(DC);
956 }
957 
ExitDeclaratorContext(Scope * S)958 void Sema::ExitDeclaratorContext(Scope *S) {
959   assert(S->getEntity() == CurContext && "Context imbalance!");
960 
961   // Switch back to the lexical context.  The safety of this is
962   // enforced by an assert in EnterDeclaratorContext.
963   Scope *Ancestor = S->getParent();
964   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965   CurContext = (DeclContext*) Ancestor->getEntity();
966 
967   // We don't need to do anything with the scope, which is going to
968   // disappear.
969 }
970 
971 
ActOnReenterFunctionContext(Scope * S,Decl * D)972 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974   if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975     // We assume that the caller has already called
976     // ActOnReenterTemplateScope
977     FD = TFD->getTemplatedDecl();
978   }
979   if (!FD)
980     return;
981 
982   // Same implementation as PushDeclContext, but enters the context
983   // from the lexical parent, rather than the top-level class.
984   assert(CurContext == FD->getLexicalParent() &&
985     "The next DeclContext should be lexically contained in the current one.");
986   CurContext = FD;
987   S->setEntity(CurContext);
988 
989   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990     ParmVarDecl *Param = FD->getParamDecl(P);
991     // If the parameter has an identifier, then add it to the scope
992     if (Param->getIdentifier()) {
993       S->AddDecl(Param);
994       IdResolver.AddDecl(Param);
995     }
996   }
997 }
998 
999 
ActOnExitFunctionContext()1000 void Sema::ActOnExitFunctionContext() {
1001   // Same implementation as PopDeclContext, but returns to the lexical parent,
1002   // rather than the top-level class.
1003   assert(CurContext && "DeclContext imbalance!");
1004   CurContext = CurContext->getLexicalParent();
1005   assert(CurContext && "Popped translation unit!");
1006 }
1007 
1008 
1009 /// \brief Determine whether we allow overloading of the function
1010 /// PrevDecl with another declaration.
1011 ///
1012 /// This routine determines whether overloading is possible, not
1013 /// whether some new function is actually an overload. It will return
1014 /// true in C++ (where we can always provide overloads) or, as an
1015 /// extension, in C when the previous function is already an
1016 /// overloaded function declaration or has the "overloadable"
1017 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1018 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                        ASTContext &Context) {
1020   if (Context.getLangOpts().CPlusPlus)
1021     return true;
1022 
1023   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024     return true;
1025 
1026   return (Previous.getResultKind() == LookupResult::Found
1027           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028 }
1029 
1030 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1031 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032   // Move up the scope chain until we find the nearest enclosing
1033   // non-transparent context. The declaration will be introduced into this
1034   // scope.
1035   while (S->getEntity() &&
1036          ((DeclContext *)S->getEntity())->isTransparentContext())
1037     S = S->getParent();
1038 
1039   // Add scoped declarations into their context, so that they can be
1040   // found later. Declarations without a context won't be inserted
1041   // into any context.
1042   if (AddToContext)
1043     CurContext->addDecl(D);
1044 
1045   // Out-of-line definitions shouldn't be pushed into scope in C++.
1046   // Out-of-line variable and function definitions shouldn't even in C.
1047   if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048       D->isOutOfLine() &&
1049       !D->getDeclContext()->getRedeclContext()->Equals(
1050         D->getLexicalDeclContext()->getRedeclContext()))
1051     return;
1052 
1053   // Template instantiations should also not be pushed into scope.
1054   if (isa<FunctionDecl>(D) &&
1055       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056     return;
1057 
1058   // If this replaces anything in the current scope,
1059   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                                IEnd = IdResolver.end();
1061   for (; I != IEnd; ++I) {
1062     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063       S->RemoveDecl(*I);
1064       IdResolver.RemoveDecl(*I);
1065 
1066       // Should only need to replace one decl.
1067       break;
1068     }
1069   }
1070 
1071   S->AddDecl(D);
1072 
1073   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074     // Implicitly-generated labels may end up getting generated in an order that
1075     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076     // the label at the appropriate place in the identifier chain.
1077     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079       if (IDC == CurContext) {
1080         if (!S->isDeclScope(*I))
1081           continue;
1082       } else if (IDC->Encloses(CurContext))
1083         break;
1084     }
1085 
1086     IdResolver.InsertDeclAfter(I, D);
1087   } else {
1088     IdResolver.AddDecl(D);
1089   }
1090 }
1091 
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1092 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094     TUScope->AddDecl(D);
1095 }
1096 
isDeclInScope(NamedDecl * & D,DeclContext * Ctx,Scope * S,bool ExplicitInstantiationOrSpecialization)1097 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                          bool ExplicitInstantiationOrSpecialization) {
1099   return IdResolver.isDeclInScope(D, Ctx, S,
1100                                   ExplicitInstantiationOrSpecialization);
1101 }
1102 
getScopeForDeclContext(Scope * S,DeclContext * DC)1103 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104   DeclContext *TargetDC = DC->getPrimaryContext();
1105   do {
1106     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107       if (ScopeDC->getPrimaryContext() == TargetDC)
1108         return S;
1109   } while ((S = S->getParent()));
1110 
1111   return 0;
1112 }
1113 
1114 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                             DeclContext*,
1116                                             ASTContext&);
1117 
1118 /// Filters out lookup results that don't fall within the given scope
1119 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool ExplicitInstantiationOrSpecialization)1120 void Sema::FilterLookupForScope(LookupResult &R,
1121                                 DeclContext *Ctx, Scope *S,
1122                                 bool ConsiderLinkage,
1123                                 bool ExplicitInstantiationOrSpecialization) {
1124   LookupResult::Filter F = R.makeFilter();
1125   while (F.hasNext()) {
1126     NamedDecl *D = F.next();
1127 
1128     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129       continue;
1130 
1131     if (ConsiderLinkage &&
1132         isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133       continue;
1134 
1135     F.erase();
1136   }
1137 
1138   F.done();
1139 }
1140 
isUsingDecl(NamedDecl * D)1141 static bool isUsingDecl(NamedDecl *D) {
1142   return isa<UsingShadowDecl>(D) ||
1143          isa<UnresolvedUsingTypenameDecl>(D) ||
1144          isa<UnresolvedUsingValueDecl>(D);
1145 }
1146 
1147 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1148 static void RemoveUsingDecls(LookupResult &R) {
1149   LookupResult::Filter F = R.makeFilter();
1150   while (F.hasNext())
1151     if (isUsingDecl(F.next()))
1152       F.erase();
1153 
1154   F.done();
1155 }
1156 
1157 /// \brief Check for this common pattern:
1158 /// @code
1159 /// class S {
1160 ///   S(const S&); // DO NOT IMPLEMENT
1161 ///   void operator=(const S&); // DO NOT IMPLEMENT
1162 /// };
1163 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1164 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165   // FIXME: Should check for private access too but access is set after we get
1166   // the decl here.
1167   if (D->doesThisDeclarationHaveABody())
1168     return false;
1169 
1170   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171     return CD->isCopyConstructor();
1172   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173     return Method->isCopyAssignmentOperator();
1174   return false;
1175 }
1176 
1177 // We need this to handle
1178 //
1179 // typedef struct {
1180 //   void *foo() { return 0; }
1181 // } A;
1182 //
1183 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1184 // for example. If 'A', foo will have external linkage. If we have '*A',
1185 // foo will have no linkage. Since we can't know untill we get to the end
1186 // of the typedef, this function finds out if D might have non external linkage.
1187 // Callers should verify at the end of the TU if it D has external linkage or
1188 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1189 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1190   const DeclContext *DC = D->getDeclContext();
1191   while (!DC->isTranslationUnit()) {
1192     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1193       if (!RD->hasNameForLinkage())
1194         return true;
1195     }
1196     DC = DC->getParent();
1197   }
1198 
1199   return !D->hasExternalLinkage();
1200 }
1201 
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1202 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1203   assert(D);
1204 
1205   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1206     return false;
1207 
1208   // Ignore class templates.
1209   if (D->getDeclContext()->isDependentContext() ||
1210       D->getLexicalDeclContext()->isDependentContext())
1211     return false;
1212 
1213   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1214     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1215       return false;
1216 
1217     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1218       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1219         return false;
1220     } else {
1221       // 'static inline' functions are used in headers; don't warn.
1222       if (FD->getStorageClass() == SC_Static &&
1223           FD->isInlineSpecified())
1224         return false;
1225     }
1226 
1227     if (FD->doesThisDeclarationHaveABody() &&
1228         Context.DeclMustBeEmitted(FD))
1229       return false;
1230   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1231     // Don't warn on variables of const-qualified or reference type, since their
1232     // values can be used even if though they're not odr-used, and because const
1233     // qualified variables can appear in headers in contexts where they're not
1234     // intended to be used.
1235     // FIXME: Use more principled rules for these exemptions.
1236     if (!VD->isFileVarDecl() ||
1237         VD->getType().isConstQualified() ||
1238         VD->getType()->isReferenceType() ||
1239         Context.DeclMustBeEmitted(VD))
1240       return false;
1241 
1242     if (VD->isStaticDataMember() &&
1243         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1244       return false;
1245 
1246   } else {
1247     return false;
1248   }
1249 
1250   // Only warn for unused decls internal to the translation unit.
1251   return mightHaveNonExternalLinkage(D);
1252 }
1253 
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1254 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1255   if (!D)
1256     return;
1257 
1258   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1259     const FunctionDecl *First = FD->getFirstDeclaration();
1260     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1261       return; // First should already be in the vector.
1262   }
1263 
1264   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1265     const VarDecl *First = VD->getFirstDeclaration();
1266     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1267       return; // First should already be in the vector.
1268   }
1269 
1270   if (ShouldWarnIfUnusedFileScopedDecl(D))
1271     UnusedFileScopedDecls.push_back(D);
1272 }
1273 
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1274 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1275   if (D->isInvalidDecl())
1276     return false;
1277 
1278   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1279     return false;
1280 
1281   if (isa<LabelDecl>(D))
1282     return true;
1283 
1284   // White-list anything that isn't a local variable.
1285   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1286       !D->getDeclContext()->isFunctionOrMethod())
1287     return false;
1288 
1289   // Types of valid local variables should be complete, so this should succeed.
1290   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1291 
1292     // White-list anything with an __attribute__((unused)) type.
1293     QualType Ty = VD->getType();
1294 
1295     // Only look at the outermost level of typedef.
1296     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1297       if (TT->getDecl()->hasAttr<UnusedAttr>())
1298         return false;
1299     }
1300 
1301     // If we failed to complete the type for some reason, or if the type is
1302     // dependent, don't diagnose the variable.
1303     if (Ty->isIncompleteType() || Ty->isDependentType())
1304       return false;
1305 
1306     if (const TagType *TT = Ty->getAs<TagType>()) {
1307       const TagDecl *Tag = TT->getDecl();
1308       if (Tag->hasAttr<UnusedAttr>())
1309         return false;
1310 
1311       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1312         if (!RD->hasTrivialDestructor())
1313           return false;
1314 
1315         if (const Expr *Init = VD->getInit()) {
1316           if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1317             Init = Cleanups->getSubExpr();
1318           const CXXConstructExpr *Construct =
1319             dyn_cast<CXXConstructExpr>(Init);
1320           if (Construct && !Construct->isElidable()) {
1321             CXXConstructorDecl *CD = Construct->getConstructor();
1322             if (!CD->isTrivial())
1323               return false;
1324           }
1325         }
1326       }
1327     }
1328 
1329     // TODO: __attribute__((unused)) templates?
1330   }
1331 
1332   return true;
1333 }
1334 
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1335 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1336                                      FixItHint &Hint) {
1337   if (isa<LabelDecl>(D)) {
1338     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1339                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1340     if (AfterColon.isInvalid())
1341       return;
1342     Hint = FixItHint::CreateRemoval(CharSourceRange::
1343                                     getCharRange(D->getLocStart(), AfterColon));
1344   }
1345   return;
1346 }
1347 
1348 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1349 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1350 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1351   FixItHint Hint;
1352   if (!ShouldDiagnoseUnusedDecl(D))
1353     return;
1354 
1355   GenerateFixForUnusedDecl(D, Context, Hint);
1356 
1357   unsigned DiagID;
1358   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1359     DiagID = diag::warn_unused_exception_param;
1360   else if (isa<LabelDecl>(D))
1361     DiagID = diag::warn_unused_label;
1362   else
1363     DiagID = diag::warn_unused_variable;
1364 
1365   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1366 }
1367 
CheckPoppedLabel(LabelDecl * L,Sema & S)1368 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1369   // Verify that we have no forward references left.  If so, there was a goto
1370   // or address of a label taken, but no definition of it.  Label fwd
1371   // definitions are indicated with a null substmt.
1372   if (L->getStmt() == 0)
1373     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1374 }
1375 
ActOnPopScope(SourceLocation Loc,Scope * S)1376 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1377   if (S->decl_empty()) return;
1378   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1379          "Scope shouldn't contain decls!");
1380 
1381   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1382        I != E; ++I) {
1383     Decl *TmpD = (*I);
1384     assert(TmpD && "This decl didn't get pushed??");
1385 
1386     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1387     NamedDecl *D = cast<NamedDecl>(TmpD);
1388 
1389     if (!D->getDeclName()) continue;
1390 
1391     // Diagnose unused variables in this scope.
1392     if (!S->hasErrorOccurred())
1393       DiagnoseUnusedDecl(D);
1394 
1395     // If this was a forward reference to a label, verify it was defined.
1396     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1397       CheckPoppedLabel(LD, *this);
1398 
1399     // Remove this name from our lexical scope.
1400     IdResolver.RemoveDecl(D);
1401   }
1402 }
1403 
ActOnStartFunctionDeclarator()1404 void Sema::ActOnStartFunctionDeclarator() {
1405   ++InFunctionDeclarator;
1406 }
1407 
ActOnEndFunctionDeclarator()1408 void Sema::ActOnEndFunctionDeclarator() {
1409   assert(InFunctionDeclarator);
1410   --InFunctionDeclarator;
1411 }
1412 
1413 /// \brief Look for an Objective-C class in the translation unit.
1414 ///
1415 /// \param Id The name of the Objective-C class we're looking for. If
1416 /// typo-correction fixes this name, the Id will be updated
1417 /// to the fixed name.
1418 ///
1419 /// \param IdLoc The location of the name in the translation unit.
1420 ///
1421 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1422 /// if there is no class with the given name.
1423 ///
1424 /// \returns The declaration of the named Objective-C class, or NULL if the
1425 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1426 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1427                                               SourceLocation IdLoc,
1428                                               bool DoTypoCorrection) {
1429   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1430   // creation from this context.
1431   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1432 
1433   if (!IDecl && DoTypoCorrection) {
1434     // Perform typo correction at the given location, but only if we
1435     // find an Objective-C class name.
1436     DeclFilterCCC<ObjCInterfaceDecl> Validator;
1437     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1438                                        LookupOrdinaryName, TUScope, NULL,
1439                                        Validator)) {
1440       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1441       Diag(IdLoc, diag::err_undef_interface_suggest)
1442         << Id << IDecl->getDeclName()
1443         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1444       Diag(IDecl->getLocation(), diag::note_previous_decl)
1445         << IDecl->getDeclName();
1446 
1447       Id = IDecl->getIdentifier();
1448     }
1449   }
1450   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1451   // This routine must always return a class definition, if any.
1452   if (Def && Def->getDefinition())
1453       Def = Def->getDefinition();
1454   return Def;
1455 }
1456 
1457 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1458 /// from S, where a non-field would be declared. This routine copes
1459 /// with the difference between C and C++ scoping rules in structs and
1460 /// unions. For example, the following code is well-formed in C but
1461 /// ill-formed in C++:
1462 /// @code
1463 /// struct S6 {
1464 ///   enum { BAR } e;
1465 /// };
1466 ///
1467 /// void test_S6() {
1468 ///   struct S6 a;
1469 ///   a.e = BAR;
1470 /// }
1471 /// @endcode
1472 /// For the declaration of BAR, this routine will return a different
1473 /// scope. The scope S will be the scope of the unnamed enumeration
1474 /// within S6. In C++, this routine will return the scope associated
1475 /// with S6, because the enumeration's scope is a transparent
1476 /// context but structures can contain non-field names. In C, this
1477 /// routine will return the translation unit scope, since the
1478 /// enumeration's scope is a transparent context and structures cannot
1479 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1480 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1481   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1482          (S->getEntity() &&
1483           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1484          (S->isClassScope() && !getLangOpts().CPlusPlus))
1485     S = S->getParent();
1486   return S;
1487 }
1488 
1489 /// \brief Looks up the declaration of "struct objc_super" and
1490 /// saves it for later use in building builtin declaration of
1491 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1492 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1493 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1494                                         IdentifierInfo *II) {
1495   if (!II->isStr("objc_msgSendSuper"))
1496     return;
1497   ASTContext &Context = ThisSema.Context;
1498 
1499   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1500                       SourceLocation(), Sema::LookupTagName);
1501   ThisSema.LookupName(Result, S);
1502   if (Result.getResultKind() == LookupResult::Found)
1503     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1504       Context.setObjCSuperType(Context.getTagDeclType(TD));
1505 }
1506 
1507 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1508 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1509 /// if we're creating this built-in in anticipation of redeclaring the
1510 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned bid,Scope * S,bool ForRedeclaration,SourceLocation Loc)1511 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1512                                      Scope *S, bool ForRedeclaration,
1513                                      SourceLocation Loc) {
1514   LookupPredefedObjCSuperType(*this, S, II);
1515 
1516   Builtin::ID BID = (Builtin::ID)bid;
1517 
1518   ASTContext::GetBuiltinTypeError Error;
1519   QualType R = Context.GetBuiltinType(BID, Error);
1520   switch (Error) {
1521   case ASTContext::GE_None:
1522     // Okay
1523     break;
1524 
1525   case ASTContext::GE_Missing_stdio:
1526     if (ForRedeclaration)
1527       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1528         << Context.BuiltinInfo.GetName(BID);
1529     return 0;
1530 
1531   case ASTContext::GE_Missing_setjmp:
1532     if (ForRedeclaration)
1533       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1534         << Context.BuiltinInfo.GetName(BID);
1535     return 0;
1536 
1537   case ASTContext::GE_Missing_ucontext:
1538     if (ForRedeclaration)
1539       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1540         << Context.BuiltinInfo.GetName(BID);
1541     return 0;
1542   }
1543 
1544   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1545     Diag(Loc, diag::ext_implicit_lib_function_decl)
1546       << Context.BuiltinInfo.GetName(BID)
1547       << R;
1548     if (Context.BuiltinInfo.getHeaderName(BID) &&
1549         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1550           != DiagnosticsEngine::Ignored)
1551       Diag(Loc, diag::note_please_include_header)
1552         << Context.BuiltinInfo.getHeaderName(BID)
1553         << Context.BuiltinInfo.GetName(BID);
1554   }
1555 
1556   FunctionDecl *New = FunctionDecl::Create(Context,
1557                                            Context.getTranslationUnitDecl(),
1558                                            Loc, Loc, II, R, /*TInfo=*/0,
1559                                            SC_Extern,
1560                                            SC_None, false,
1561                                            /*hasPrototype=*/true);
1562   New->setImplicit();
1563 
1564   // Create Decl objects for each parameter, adding them to the
1565   // FunctionDecl.
1566   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1567     SmallVector<ParmVarDecl*, 16> Params;
1568     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1569       ParmVarDecl *parm =
1570         ParmVarDecl::Create(Context, New, SourceLocation(),
1571                             SourceLocation(), 0,
1572                             FT->getArgType(i), /*TInfo=*/0,
1573                             SC_None, SC_None, 0);
1574       parm->setScopeInfo(0, i);
1575       Params.push_back(parm);
1576     }
1577     New->setParams(Params);
1578   }
1579 
1580   AddKnownFunctionAttributes(New);
1581 
1582   // TUScope is the translation-unit scope to insert this function into.
1583   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1584   // relate Scopes to DeclContexts, and probably eliminate CurContext
1585   // entirely, but we're not there yet.
1586   DeclContext *SavedContext = CurContext;
1587   CurContext = Context.getTranslationUnitDecl();
1588   PushOnScopeChains(New, TUScope);
1589   CurContext = SavedContext;
1590   return New;
1591 }
1592 
1593 /// \brief Filter out any previous declarations that the given declaration
1594 /// should not consider because they are not permitted to conflict, e.g.,
1595 /// because they come from hidden sub-modules and do not refer to the same
1596 /// entity.
filterNonConflictingPreviousDecls(ASTContext & context,NamedDecl * decl,LookupResult & previous)1597 static void filterNonConflictingPreviousDecls(ASTContext &context,
1598                                               NamedDecl *decl,
1599                                               LookupResult &previous){
1600   // This is only interesting when modules are enabled.
1601   if (!context.getLangOpts().Modules)
1602     return;
1603 
1604   // Empty sets are uninteresting.
1605   if (previous.empty())
1606     return;
1607 
1608   // If this declaration has external
1609   bool hasExternalLinkage = decl->hasExternalLinkage();
1610 
1611   LookupResult::Filter filter = previous.makeFilter();
1612   while (filter.hasNext()) {
1613     NamedDecl *old = filter.next();
1614 
1615     // Non-hidden declarations are never ignored.
1616     if (!old->isHidden())
1617       continue;
1618 
1619     // If either has no-external linkage, ignore the old declaration.
1620     if (!hasExternalLinkage || old->getLinkage() != ExternalLinkage)
1621       filter.erase();
1622   }
1623 
1624   filter.done();
1625 }
1626 
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1627 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1628   QualType OldType;
1629   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1630     OldType = OldTypedef->getUnderlyingType();
1631   else
1632     OldType = Context.getTypeDeclType(Old);
1633   QualType NewType = New->getUnderlyingType();
1634 
1635   if (NewType->isVariablyModifiedType()) {
1636     // Must not redefine a typedef with a variably-modified type.
1637     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1638     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1639       << Kind << NewType;
1640     if (Old->getLocation().isValid())
1641       Diag(Old->getLocation(), diag::note_previous_definition);
1642     New->setInvalidDecl();
1643     return true;
1644   }
1645 
1646   if (OldType != NewType &&
1647       !OldType->isDependentType() &&
1648       !NewType->isDependentType() &&
1649       !Context.hasSameType(OldType, NewType)) {
1650     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1651     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1652       << Kind << NewType << OldType;
1653     if (Old->getLocation().isValid())
1654       Diag(Old->getLocation(), diag::note_previous_definition);
1655     New->setInvalidDecl();
1656     return true;
1657   }
1658   return false;
1659 }
1660 
1661 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1662 /// same name and scope as a previous declaration 'Old'.  Figure out
1663 /// how to resolve this situation, merging decls or emitting
1664 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1665 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1666 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1667   // If the new decl is known invalid already, don't bother doing any
1668   // merging checks.
1669   if (New->isInvalidDecl()) return;
1670 
1671   // Allow multiple definitions for ObjC built-in typedefs.
1672   // FIXME: Verify the underlying types are equivalent!
1673   if (getLangOpts().ObjC1) {
1674     const IdentifierInfo *TypeID = New->getIdentifier();
1675     switch (TypeID->getLength()) {
1676     default: break;
1677     case 2:
1678       {
1679         if (!TypeID->isStr("id"))
1680           break;
1681         QualType T = New->getUnderlyingType();
1682         if (!T->isPointerType())
1683           break;
1684         if (!T->isVoidPointerType()) {
1685           QualType PT = T->getAs<PointerType>()->getPointeeType();
1686           if (!PT->isStructureType())
1687             break;
1688         }
1689         Context.setObjCIdRedefinitionType(T);
1690         // Install the built-in type for 'id', ignoring the current definition.
1691         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1692         return;
1693       }
1694     case 5:
1695       if (!TypeID->isStr("Class"))
1696         break;
1697       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1698       // Install the built-in type for 'Class', ignoring the current definition.
1699       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1700       return;
1701     case 3:
1702       if (!TypeID->isStr("SEL"))
1703         break;
1704       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1705       // Install the built-in type for 'SEL', ignoring the current definition.
1706       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1707       return;
1708     }
1709     // Fall through - the typedef name was not a builtin type.
1710   }
1711 
1712   // Verify the old decl was also a type.
1713   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1714   if (!Old) {
1715     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1716       << New->getDeclName();
1717 
1718     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1719     if (OldD->getLocation().isValid())
1720       Diag(OldD->getLocation(), diag::note_previous_definition);
1721 
1722     return New->setInvalidDecl();
1723   }
1724 
1725   // If the old declaration is invalid, just give up here.
1726   if (Old->isInvalidDecl())
1727     return New->setInvalidDecl();
1728 
1729   // If the typedef types are not identical, reject them in all languages and
1730   // with any extensions enabled.
1731   if (isIncompatibleTypedef(Old, New))
1732     return;
1733 
1734   // The types match.  Link up the redeclaration chain if the old
1735   // declaration was a typedef.
1736   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1737     New->setPreviousDeclaration(Typedef);
1738 
1739   if (getLangOpts().MicrosoftExt)
1740     return;
1741 
1742   if (getLangOpts().CPlusPlus) {
1743     // C++ [dcl.typedef]p2:
1744     //   In a given non-class scope, a typedef specifier can be used to
1745     //   redefine the name of any type declared in that scope to refer
1746     //   to the type to which it already refers.
1747     if (!isa<CXXRecordDecl>(CurContext))
1748       return;
1749 
1750     // C++0x [dcl.typedef]p4:
1751     //   In a given class scope, a typedef specifier can be used to redefine
1752     //   any class-name declared in that scope that is not also a typedef-name
1753     //   to refer to the type to which it already refers.
1754     //
1755     // This wording came in via DR424, which was a correction to the
1756     // wording in DR56, which accidentally banned code like:
1757     //
1758     //   struct S {
1759     //     typedef struct A { } A;
1760     //   };
1761     //
1762     // in the C++03 standard. We implement the C++0x semantics, which
1763     // allow the above but disallow
1764     //
1765     //   struct S {
1766     //     typedef int I;
1767     //     typedef int I;
1768     //   };
1769     //
1770     // since that was the intent of DR56.
1771     if (!isa<TypedefNameDecl>(Old))
1772       return;
1773 
1774     Diag(New->getLocation(), diag::err_redefinition)
1775       << New->getDeclName();
1776     Diag(Old->getLocation(), diag::note_previous_definition);
1777     return New->setInvalidDecl();
1778   }
1779 
1780   // Modules always permit redefinition of typedefs, as does C11.
1781   if (getLangOpts().Modules || getLangOpts().C11)
1782     return;
1783 
1784   // If we have a redefinition of a typedef in C, emit a warning.  This warning
1785   // is normally mapped to an error, but can be controlled with
1786   // -Wtypedef-redefinition.  If either the original or the redefinition is
1787   // in a system header, don't emit this for compatibility with GCC.
1788   if (getDiagnostics().getSuppressSystemWarnings() &&
1789       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1790        Context.getSourceManager().isInSystemHeader(New->getLocation())))
1791     return;
1792 
1793   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1794     << New->getDeclName();
1795   Diag(Old->getLocation(), diag::note_previous_definition);
1796   return;
1797 }
1798 
1799 /// DeclhasAttr - returns true if decl Declaration already has the target
1800 /// attribute.
1801 static bool
DeclHasAttr(const Decl * D,const Attr * A)1802 DeclHasAttr(const Decl *D, const Attr *A) {
1803   // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1804   // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1805   // responsible for making sure they are consistent.
1806   const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1807   if (AA)
1808     return false;
1809 
1810   // The following thread safety attributes can also be duplicated.
1811   switch (A->getKind()) {
1812     case attr::ExclusiveLocksRequired:
1813     case attr::SharedLocksRequired:
1814     case attr::LocksExcluded:
1815     case attr::ExclusiveLockFunction:
1816     case attr::SharedLockFunction:
1817     case attr::UnlockFunction:
1818     case attr::ExclusiveTrylockFunction:
1819     case attr::SharedTrylockFunction:
1820     case attr::GuardedBy:
1821     case attr::PtGuardedBy:
1822     case attr::AcquiredBefore:
1823     case attr::AcquiredAfter:
1824       return false;
1825     default:
1826       ;
1827   }
1828 
1829   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1830   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1831   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1832     if ((*i)->getKind() == A->getKind()) {
1833       if (Ann) {
1834         if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1835           return true;
1836         continue;
1837       }
1838       // FIXME: Don't hardcode this check
1839       if (OA && isa<OwnershipAttr>(*i))
1840         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1841       return true;
1842     }
1843 
1844   return false;
1845 }
1846 
isAttributeTargetADefinition(Decl * D)1847 static bool isAttributeTargetADefinition(Decl *D) {
1848   if (VarDecl *VD = dyn_cast<VarDecl>(D))
1849     return VD->isThisDeclarationADefinition();
1850   if (TagDecl *TD = dyn_cast<TagDecl>(D))
1851     return TD->isCompleteDefinition() || TD->isBeingDefined();
1852   return true;
1853 }
1854 
1855 /// Merge alignment attributes from \p Old to \p New, taking into account the
1856 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1857 ///
1858 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)1859 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1860   // Look for alignas attributes on Old, and pick out whichever attribute
1861   // specifies the strictest alignment requirement.
1862   AlignedAttr *OldAlignasAttr = 0;
1863   AlignedAttr *OldStrictestAlignAttr = 0;
1864   unsigned OldAlign = 0;
1865   for (specific_attr_iterator<AlignedAttr>
1866          I = Old->specific_attr_begin<AlignedAttr>(),
1867          E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1868     // FIXME: We have no way of representing inherited dependent alignments
1869     // in a case like:
1870     //   template<int A, int B> struct alignas(A) X;
1871     //   template<int A, int B> struct alignas(B) X {};
1872     // For now, we just ignore any alignas attributes which are not on the
1873     // definition in such a case.
1874     if (I->isAlignmentDependent())
1875       return false;
1876 
1877     if (I->isAlignas())
1878       OldAlignasAttr = *I;
1879 
1880     unsigned Align = I->getAlignment(S.Context);
1881     if (Align > OldAlign) {
1882       OldAlign = Align;
1883       OldStrictestAlignAttr = *I;
1884     }
1885   }
1886 
1887   // Look for alignas attributes on New.
1888   AlignedAttr *NewAlignasAttr = 0;
1889   unsigned NewAlign = 0;
1890   for (specific_attr_iterator<AlignedAttr>
1891          I = New->specific_attr_begin<AlignedAttr>(),
1892          E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1893     if (I->isAlignmentDependent())
1894       return false;
1895 
1896     if (I->isAlignas())
1897       NewAlignasAttr = *I;
1898 
1899     unsigned Align = I->getAlignment(S.Context);
1900     if (Align > NewAlign)
1901       NewAlign = Align;
1902   }
1903 
1904   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1905     // Both declarations have 'alignas' attributes. We require them to match.
1906     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1907     // fall short. (If two declarations both have alignas, they must both match
1908     // every definition, and so must match each other if there is a definition.)
1909 
1910     // If either declaration only contains 'alignas(0)' specifiers, then it
1911     // specifies the natural alignment for the type.
1912     if (OldAlign == 0 || NewAlign == 0) {
1913       QualType Ty;
1914       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1915         Ty = VD->getType();
1916       else
1917         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1918 
1919       if (OldAlign == 0)
1920         OldAlign = S.Context.getTypeAlign(Ty);
1921       if (NewAlign == 0)
1922         NewAlign = S.Context.getTypeAlign(Ty);
1923     }
1924 
1925     if (OldAlign != NewAlign) {
1926       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1927         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1928         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1929       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1930     }
1931   }
1932 
1933   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1934     // C++11 [dcl.align]p6:
1935     //   if any declaration of an entity has an alignment-specifier,
1936     //   every defining declaration of that entity shall specify an
1937     //   equivalent alignment.
1938     // C11 6.7.5/7:
1939     //   If the definition of an object does not have an alignment
1940     //   specifier, any other declaration of that object shall also
1941     //   have no alignment specifier.
1942     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1943       << OldAlignasAttr->isC11();
1944     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1945       << OldAlignasAttr->isC11();
1946   }
1947 
1948   bool AnyAdded = false;
1949 
1950   // Ensure we have an attribute representing the strictest alignment.
1951   if (OldAlign > NewAlign) {
1952     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1953     Clone->setInherited(true);
1954     New->addAttr(Clone);
1955     AnyAdded = true;
1956   }
1957 
1958   // Ensure we have an alignas attribute if the old declaration had one.
1959   if (OldAlignasAttr && !NewAlignasAttr &&
1960       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1961     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1962     Clone->setInherited(true);
1963     New->addAttr(Clone);
1964     AnyAdded = true;
1965   }
1966 
1967   return AnyAdded;
1968 }
1969 
mergeDeclAttribute(Sema & S,NamedDecl * D,InheritableAttr * Attr,bool Override)1970 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1971                                bool Override) {
1972   InheritableAttr *NewAttr = NULL;
1973   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1974   if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1975     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1976                                       AA->getIntroduced(), AA->getDeprecated(),
1977                                       AA->getObsoleted(), AA->getUnavailable(),
1978                                       AA->getMessage(), Override,
1979                                       AttrSpellingListIndex);
1980   else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1981     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1982                                     AttrSpellingListIndex);
1983   else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1984     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1985                                         AttrSpellingListIndex);
1986   else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1987     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1988                                    AttrSpellingListIndex);
1989   else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1990     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1991                                    AttrSpellingListIndex);
1992   else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1993     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1994                                 FA->getFormatIdx(), FA->getFirstArg(),
1995                                 AttrSpellingListIndex);
1996   else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1997     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1998                                  AttrSpellingListIndex);
1999   else if (isa<AlignedAttr>(Attr))
2000     // AlignedAttrs are handled separately, because we need to handle all
2001     // such attributes on a declaration at the same time.
2002     NewAttr = 0;
2003   else if (!DeclHasAttr(D, Attr))
2004     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2005 
2006   if (NewAttr) {
2007     NewAttr->setInherited(true);
2008     D->addAttr(NewAttr);
2009     return true;
2010   }
2011 
2012   return false;
2013 }
2014 
getDefinition(const Decl * D)2015 static const Decl *getDefinition(const Decl *D) {
2016   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2017     return TD->getDefinition();
2018   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2019     return VD->getDefinition();
2020   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2021     const FunctionDecl* Def;
2022     if (FD->hasBody(Def))
2023       return Def;
2024   }
2025   return NULL;
2026 }
2027 
hasAttribute(const Decl * D,attr::Kind Kind)2028 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2029   for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2030        I != E; ++I) {
2031     Attr *Attribute = *I;
2032     if (Attribute->getKind() == Kind)
2033       return true;
2034   }
2035   return false;
2036 }
2037 
2038 /// checkNewAttributesAfterDef - If we already have a definition, check that
2039 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2040 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2041   if (!New->hasAttrs())
2042     return;
2043 
2044   const Decl *Def = getDefinition(Old);
2045   if (!Def || Def == New)
2046     return;
2047 
2048   AttrVec &NewAttributes = New->getAttrs();
2049   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2050     const Attr *NewAttribute = NewAttributes[I];
2051     if (hasAttribute(Def, NewAttribute->getKind())) {
2052       ++I;
2053       continue; // regular attr merging will take care of validating this.
2054     }
2055 
2056     if (isa<C11NoReturnAttr>(NewAttribute)) {
2057       // C's _Noreturn is allowed to be added to a function after it is defined.
2058       ++I;
2059       continue;
2060     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2061       if (AA->isAlignas()) {
2062         // C++11 [dcl.align]p6:
2063         //   if any declaration of an entity has an alignment-specifier,
2064         //   every defining declaration of that entity shall specify an
2065         //   equivalent alignment.
2066         // C11 6.7.5/7:
2067         //   If the definition of an object does not have an alignment
2068         //   specifier, any other declaration of that object shall also
2069         //   have no alignment specifier.
2070         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2071           << AA->isC11();
2072         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2073           << AA->isC11();
2074         NewAttributes.erase(NewAttributes.begin() + I);
2075         --E;
2076         continue;
2077       }
2078     }
2079 
2080     S.Diag(NewAttribute->getLocation(),
2081            diag::warn_attribute_precede_definition);
2082     S.Diag(Def->getLocation(), diag::note_previous_definition);
2083     NewAttributes.erase(NewAttributes.begin() + I);
2084     --E;
2085   }
2086 }
2087 
2088 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2089 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2090                                AvailabilityMergeKind AMK) {
2091   if (!Old->hasAttrs() && !New->hasAttrs())
2092     return;
2093 
2094   // attributes declared post-definition are currently ignored
2095   checkNewAttributesAfterDef(*this, New, Old);
2096 
2097   if (!Old->hasAttrs())
2098     return;
2099 
2100   bool foundAny = New->hasAttrs();
2101 
2102   // Ensure that any moving of objects within the allocated map is done before
2103   // we process them.
2104   if (!foundAny) New->setAttrs(AttrVec());
2105 
2106   for (specific_attr_iterator<InheritableAttr>
2107          i = Old->specific_attr_begin<InheritableAttr>(),
2108          e = Old->specific_attr_end<InheritableAttr>();
2109        i != e; ++i) {
2110     bool Override = false;
2111     // Ignore deprecated/unavailable/availability attributes if requested.
2112     if (isa<DeprecatedAttr>(*i) ||
2113         isa<UnavailableAttr>(*i) ||
2114         isa<AvailabilityAttr>(*i)) {
2115       switch (AMK) {
2116       case AMK_None:
2117         continue;
2118 
2119       case AMK_Redeclaration:
2120         break;
2121 
2122       case AMK_Override:
2123         Override = true;
2124         break;
2125       }
2126     }
2127 
2128     if (mergeDeclAttribute(*this, New, *i, Override))
2129       foundAny = true;
2130   }
2131 
2132   if (mergeAlignedAttrs(*this, New, Old))
2133     foundAny = true;
2134 
2135   if (!foundAny) New->dropAttrs();
2136 }
2137 
2138 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2139 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2140 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2141                                      const ParmVarDecl *oldDecl,
2142                                      Sema &S) {
2143   // C++11 [dcl.attr.depend]p2:
2144   //   The first declaration of a function shall specify the
2145   //   carries_dependency attribute for its declarator-id if any declaration
2146   //   of the function specifies the carries_dependency attribute.
2147   if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2148       !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2149     S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2150            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2151     // Find the first declaration of the parameter.
2152     // FIXME: Should we build redeclaration chains for function parameters?
2153     const FunctionDecl *FirstFD =
2154       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2155     const ParmVarDecl *FirstVD =
2156       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2157     S.Diag(FirstVD->getLocation(),
2158            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2159   }
2160 
2161   if (!oldDecl->hasAttrs())
2162     return;
2163 
2164   bool foundAny = newDecl->hasAttrs();
2165 
2166   // Ensure that any moving of objects within the allocated map is
2167   // done before we process them.
2168   if (!foundAny) newDecl->setAttrs(AttrVec());
2169 
2170   for (specific_attr_iterator<InheritableParamAttr>
2171        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2172        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2173     if (!DeclHasAttr(newDecl, *i)) {
2174       InheritableAttr *newAttr =
2175         cast<InheritableParamAttr>((*i)->clone(S.Context));
2176       newAttr->setInherited(true);
2177       newDecl->addAttr(newAttr);
2178       foundAny = true;
2179     }
2180   }
2181 
2182   if (!foundAny) newDecl->dropAttrs();
2183 }
2184 
2185 namespace {
2186 
2187 /// Used in MergeFunctionDecl to keep track of function parameters in
2188 /// C.
2189 struct GNUCompatibleParamWarning {
2190   ParmVarDecl *OldParm;
2191   ParmVarDecl *NewParm;
2192   QualType PromotedType;
2193 };
2194 
2195 }
2196 
2197 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2198 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2199   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2200     if (Ctor->isDefaultConstructor())
2201       return Sema::CXXDefaultConstructor;
2202 
2203     if (Ctor->isCopyConstructor())
2204       return Sema::CXXCopyConstructor;
2205 
2206     if (Ctor->isMoveConstructor())
2207       return Sema::CXXMoveConstructor;
2208   } else if (isa<CXXDestructorDecl>(MD)) {
2209     return Sema::CXXDestructor;
2210   } else if (MD->isCopyAssignmentOperator()) {
2211     return Sema::CXXCopyAssignment;
2212   } else if (MD->isMoveAssignmentOperator()) {
2213     return Sema::CXXMoveAssignment;
2214   }
2215 
2216   return Sema::CXXInvalid;
2217 }
2218 
2219 /// canRedefineFunction - checks if a function can be redefined. Currently,
2220 /// only extern inline functions can be redefined, and even then only in
2221 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2222 static bool canRedefineFunction(const FunctionDecl *FD,
2223                                 const LangOptions& LangOpts) {
2224   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2225           !LangOpts.CPlusPlus &&
2226           FD->isInlineSpecified() &&
2227           FD->getStorageClass() == SC_Extern);
2228 }
2229 
2230 /// Is the given calling convention the ABI default for the given
2231 /// declaration?
isABIDefaultCC(Sema & S,CallingConv CC,FunctionDecl * D)2232 static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2233   CallingConv ABIDefaultCC;
2234   if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2235     ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2236   } else {
2237     // Free C function or a static method.
2238     ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2239   }
2240   return ABIDefaultCC == CC;
2241 }
2242 
2243 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2244 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2245   const DeclContext *DC = Old->getDeclContext();
2246   if (DC->isRecord())
2247     return false;
2248 
2249   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2250   if (OldLinkage == CXXLanguageLinkage &&
2251       New->getDeclContext()->isExternCContext())
2252     return true;
2253   if (OldLinkage == CLanguageLinkage &&
2254       New->getDeclContext()->isExternCXXContext())
2255     return true;
2256   return false;
2257 }
2258 
2259 /// MergeFunctionDecl - We just parsed a function 'New' from
2260 /// declarator D which has the same name and scope as a previous
2261 /// declaration 'Old'.  Figure out how to resolve this situation,
2262 /// merging decls or emitting diagnostics as appropriate.
2263 ///
2264 /// In C++, New and Old must be declarations that are not
2265 /// overloaded. Use IsOverload to determine whether New and Old are
2266 /// overloaded, and to select the Old declaration that New should be
2267 /// merged with.
2268 ///
2269 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,Decl * OldD,Scope * S)2270 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2271   // Verify the old decl was also a function.
2272   FunctionDecl *Old = 0;
2273   if (FunctionTemplateDecl *OldFunctionTemplate
2274         = dyn_cast<FunctionTemplateDecl>(OldD))
2275     Old = OldFunctionTemplate->getTemplatedDecl();
2276   else
2277     Old = dyn_cast<FunctionDecl>(OldD);
2278   if (!Old) {
2279     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2280       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2281       Diag(Shadow->getTargetDecl()->getLocation(),
2282            diag::note_using_decl_target);
2283       Diag(Shadow->getUsingDecl()->getLocation(),
2284            diag::note_using_decl) << 0;
2285       return true;
2286     }
2287 
2288     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2289       << New->getDeclName();
2290     Diag(OldD->getLocation(), diag::note_previous_definition);
2291     return true;
2292   }
2293 
2294   // Determine whether the previous declaration was a definition,
2295   // implicit declaration, or a declaration.
2296   diag::kind PrevDiag;
2297   if (Old->isThisDeclarationADefinition())
2298     PrevDiag = diag::note_previous_definition;
2299   else if (Old->isImplicit())
2300     PrevDiag = diag::note_previous_implicit_declaration;
2301   else
2302     PrevDiag = diag::note_previous_declaration;
2303 
2304   QualType OldQType = Context.getCanonicalType(Old->getType());
2305   QualType NewQType = Context.getCanonicalType(New->getType());
2306 
2307   // Don't complain about this if we're in GNU89 mode and the old function
2308   // is an extern inline function.
2309   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2310       New->getStorageClass() == SC_Static &&
2311       Old->getStorageClass() != SC_Static &&
2312       !canRedefineFunction(Old, getLangOpts())) {
2313     if (getLangOpts().MicrosoftExt) {
2314       Diag(New->getLocation(), diag::warn_static_non_static) << New;
2315       Diag(Old->getLocation(), PrevDiag);
2316     } else {
2317       Diag(New->getLocation(), diag::err_static_non_static) << New;
2318       Diag(Old->getLocation(), PrevDiag);
2319       return true;
2320     }
2321   }
2322 
2323   // If a function is first declared with a calling convention, but is
2324   // later declared or defined without one, the second decl assumes the
2325   // calling convention of the first.
2326   //
2327   // It's OK if a function is first declared without a calling convention,
2328   // but is later declared or defined with the default calling convention.
2329   //
2330   // For the new decl, we have to look at the NON-canonical type to tell the
2331   // difference between a function that really doesn't have a calling
2332   // convention and one that is declared cdecl. That's because in
2333   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2334   // because it is the default calling convention.
2335   //
2336   // Note also that we DO NOT return at this point, because we still have
2337   // other tests to run.
2338   const FunctionType *OldType = cast<FunctionType>(OldQType);
2339   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2340   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2341   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2342   bool RequiresAdjustment = false;
2343   if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2344     // Fast path: nothing to do.
2345 
2346   // Inherit the CC from the previous declaration if it was specified
2347   // there but not here.
2348   } else if (NewTypeInfo.getCC() == CC_Default) {
2349     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2350     RequiresAdjustment = true;
2351 
2352   // Don't complain about mismatches when the default CC is
2353   // effectively the same as the explict one. Only Old decl contains correct
2354   // information about storage class of CXXMethod.
2355   } else if (OldTypeInfo.getCC() == CC_Default &&
2356              isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2357     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2358     RequiresAdjustment = true;
2359 
2360   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2361                                      NewTypeInfo.getCC())) {
2362     // Calling conventions really aren't compatible, so complain.
2363     Diag(New->getLocation(), diag::err_cconv_change)
2364       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2365       << (OldTypeInfo.getCC() == CC_Default)
2366       << (OldTypeInfo.getCC() == CC_Default ? "" :
2367           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2368     Diag(Old->getLocation(), diag::note_previous_declaration);
2369     return true;
2370   }
2371 
2372   // FIXME: diagnose the other way around?
2373   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2374     NewTypeInfo = NewTypeInfo.withNoReturn(true);
2375     RequiresAdjustment = true;
2376   }
2377 
2378   // Merge regparm attribute.
2379   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2380       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2381     if (NewTypeInfo.getHasRegParm()) {
2382       Diag(New->getLocation(), diag::err_regparm_mismatch)
2383         << NewType->getRegParmType()
2384         << OldType->getRegParmType();
2385       Diag(Old->getLocation(), diag::note_previous_declaration);
2386       return true;
2387     }
2388 
2389     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2390     RequiresAdjustment = true;
2391   }
2392 
2393   // Merge ns_returns_retained attribute.
2394   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2395     if (NewTypeInfo.getProducesResult()) {
2396       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2397       Diag(Old->getLocation(), diag::note_previous_declaration);
2398       return true;
2399     }
2400 
2401     NewTypeInfo = NewTypeInfo.withProducesResult(true);
2402     RequiresAdjustment = true;
2403   }
2404 
2405   if (RequiresAdjustment) {
2406     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2407     New->setType(QualType(NewType, 0));
2408     NewQType = Context.getCanonicalType(New->getType());
2409   }
2410 
2411   // If this redeclaration makes the function inline, we may need to add it to
2412   // UndefinedButUsed.
2413   if (!Old->isInlined() && New->isInlined() &&
2414       !New->hasAttr<GNUInlineAttr>() &&
2415       (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2416       Old->isUsed(false) &&
2417       !Old->isDefined() && !New->isThisDeclarationADefinition())
2418     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2419                                            SourceLocation()));
2420 
2421   // If this redeclaration makes it newly gnu_inline, we don't want to warn
2422   // about it.
2423   if (New->hasAttr<GNUInlineAttr>() &&
2424       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2425     UndefinedButUsed.erase(Old->getCanonicalDecl());
2426   }
2427 
2428   if (getLangOpts().CPlusPlus) {
2429     // (C++98 13.1p2):
2430     //   Certain function declarations cannot be overloaded:
2431     //     -- Function declarations that differ only in the return type
2432     //        cannot be overloaded.
2433     QualType OldReturnType = OldType->getResultType();
2434     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2435     QualType ResQT;
2436     if (OldReturnType != NewReturnType) {
2437       if (NewReturnType->isObjCObjectPointerType()
2438           && OldReturnType->isObjCObjectPointerType())
2439         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2440       if (ResQT.isNull()) {
2441         if (New->isCXXClassMember() && New->isOutOfLine())
2442           Diag(New->getLocation(),
2443                diag::err_member_def_does_not_match_ret_type) << New;
2444         else
2445           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2446         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2447         return true;
2448       }
2449       else
2450         NewQType = ResQT;
2451     }
2452 
2453     const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2454     CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2455     if (OldMethod && NewMethod) {
2456       // Preserve triviality.
2457       NewMethod->setTrivial(OldMethod->isTrivial());
2458 
2459       // MSVC allows explicit template specialization at class scope:
2460       // 2 CXMethodDecls referring to the same function will be injected.
2461       // We don't want a redeclartion error.
2462       bool IsClassScopeExplicitSpecialization =
2463                               OldMethod->isFunctionTemplateSpecialization() &&
2464                               NewMethod->isFunctionTemplateSpecialization();
2465       bool isFriend = NewMethod->getFriendObjectKind();
2466 
2467       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2468           !IsClassScopeExplicitSpecialization) {
2469         //    -- Member function declarations with the same name and the
2470         //       same parameter types cannot be overloaded if any of them
2471         //       is a static member function declaration.
2472         if (OldMethod->isStatic() || NewMethod->isStatic()) {
2473           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2474           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2475           return true;
2476         }
2477 
2478         // C++ [class.mem]p1:
2479         //   [...] A member shall not be declared twice in the
2480         //   member-specification, except that a nested class or member
2481         //   class template can be declared and then later defined.
2482         if (ActiveTemplateInstantiations.empty()) {
2483           unsigned NewDiag;
2484           if (isa<CXXConstructorDecl>(OldMethod))
2485             NewDiag = diag::err_constructor_redeclared;
2486           else if (isa<CXXDestructorDecl>(NewMethod))
2487             NewDiag = diag::err_destructor_redeclared;
2488           else if (isa<CXXConversionDecl>(NewMethod))
2489             NewDiag = diag::err_conv_function_redeclared;
2490           else
2491             NewDiag = diag::err_member_redeclared;
2492 
2493           Diag(New->getLocation(), NewDiag);
2494         } else {
2495           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2496             << New << New->getType();
2497         }
2498         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2499 
2500       // Complain if this is an explicit declaration of a special
2501       // member that was initially declared implicitly.
2502       //
2503       // As an exception, it's okay to befriend such methods in order
2504       // to permit the implicit constructor/destructor/operator calls.
2505       } else if (OldMethod->isImplicit()) {
2506         if (isFriend) {
2507           NewMethod->setImplicit();
2508         } else {
2509           Diag(NewMethod->getLocation(),
2510                diag::err_definition_of_implicitly_declared_member)
2511             << New << getSpecialMember(OldMethod);
2512           return true;
2513         }
2514       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2515         Diag(NewMethod->getLocation(),
2516              diag::err_definition_of_explicitly_defaulted_member)
2517           << getSpecialMember(OldMethod);
2518         return true;
2519       }
2520     }
2521 
2522     // C++11 [dcl.attr.noreturn]p1:
2523     //   The first declaration of a function shall specify the noreturn
2524     //   attribute if any declaration of that function specifies the noreturn
2525     //   attribute.
2526     if (New->hasAttr<CXX11NoReturnAttr>() &&
2527         !Old->hasAttr<CXX11NoReturnAttr>()) {
2528       Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2529            diag::err_noreturn_missing_on_first_decl);
2530       Diag(Old->getFirstDeclaration()->getLocation(),
2531            diag::note_noreturn_missing_first_decl);
2532     }
2533 
2534     // C++11 [dcl.attr.depend]p2:
2535     //   The first declaration of a function shall specify the
2536     //   carries_dependency attribute for its declarator-id if any declaration
2537     //   of the function specifies the carries_dependency attribute.
2538     if (New->hasAttr<CarriesDependencyAttr>() &&
2539         !Old->hasAttr<CarriesDependencyAttr>()) {
2540       Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2541            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2542       Diag(Old->getFirstDeclaration()->getLocation(),
2543            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2544     }
2545 
2546     // (C++98 8.3.5p3):
2547     //   All declarations for a function shall agree exactly in both the
2548     //   return type and the parameter-type-list.
2549     // We also want to respect all the extended bits except noreturn.
2550 
2551     // noreturn should now match unless the old type info didn't have it.
2552     QualType OldQTypeForComparison = OldQType;
2553     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2554       assert(OldQType == QualType(OldType, 0));
2555       const FunctionType *OldTypeForComparison
2556         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2557       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2558       assert(OldQTypeForComparison.isCanonical());
2559     }
2560 
2561     if (haveIncompatibleLanguageLinkages(Old, New)) {
2562       Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2563       Diag(Old->getLocation(), PrevDiag);
2564       return true;
2565     }
2566 
2567     if (OldQTypeForComparison == NewQType)
2568       return MergeCompatibleFunctionDecls(New, Old, S);
2569 
2570     // Fall through for conflicting redeclarations and redefinitions.
2571   }
2572 
2573   // C: Function types need to be compatible, not identical. This handles
2574   // duplicate function decls like "void f(int); void f(enum X);" properly.
2575   if (!getLangOpts().CPlusPlus &&
2576       Context.typesAreCompatible(OldQType, NewQType)) {
2577     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2578     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2579     const FunctionProtoType *OldProto = 0;
2580     if (isa<FunctionNoProtoType>(NewFuncType) &&
2581         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2582       // The old declaration provided a function prototype, but the
2583       // new declaration does not. Merge in the prototype.
2584       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2585       SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2586                                                  OldProto->arg_type_end());
2587       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2588                                          ParamTypes,
2589                                          OldProto->getExtProtoInfo());
2590       New->setType(NewQType);
2591       New->setHasInheritedPrototype();
2592 
2593       // Synthesize a parameter for each argument type.
2594       SmallVector<ParmVarDecl*, 16> Params;
2595       for (FunctionProtoType::arg_type_iterator
2596              ParamType = OldProto->arg_type_begin(),
2597              ParamEnd = OldProto->arg_type_end();
2598            ParamType != ParamEnd; ++ParamType) {
2599         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2600                                                  SourceLocation(),
2601                                                  SourceLocation(), 0,
2602                                                  *ParamType, /*TInfo=*/0,
2603                                                  SC_None, SC_None,
2604                                                  0);
2605         Param->setScopeInfo(0, Params.size());
2606         Param->setImplicit();
2607         Params.push_back(Param);
2608       }
2609 
2610       New->setParams(Params);
2611     }
2612 
2613     return MergeCompatibleFunctionDecls(New, Old, S);
2614   }
2615 
2616   // GNU C permits a K&R definition to follow a prototype declaration
2617   // if the declared types of the parameters in the K&R definition
2618   // match the types in the prototype declaration, even when the
2619   // promoted types of the parameters from the K&R definition differ
2620   // from the types in the prototype. GCC then keeps the types from
2621   // the prototype.
2622   //
2623   // If a variadic prototype is followed by a non-variadic K&R definition,
2624   // the K&R definition becomes variadic.  This is sort of an edge case, but
2625   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2626   // C99 6.9.1p8.
2627   if (!getLangOpts().CPlusPlus &&
2628       Old->hasPrototype() && !New->hasPrototype() &&
2629       New->getType()->getAs<FunctionProtoType>() &&
2630       Old->getNumParams() == New->getNumParams()) {
2631     SmallVector<QualType, 16> ArgTypes;
2632     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2633     const FunctionProtoType *OldProto
2634       = Old->getType()->getAs<FunctionProtoType>();
2635     const FunctionProtoType *NewProto
2636       = New->getType()->getAs<FunctionProtoType>();
2637 
2638     // Determine whether this is the GNU C extension.
2639     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2640                                                NewProto->getResultType());
2641     bool LooseCompatible = !MergedReturn.isNull();
2642     for (unsigned Idx = 0, End = Old->getNumParams();
2643          LooseCompatible && Idx != End; ++Idx) {
2644       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2645       ParmVarDecl *NewParm = New->getParamDecl(Idx);
2646       if (Context.typesAreCompatible(OldParm->getType(),
2647                                      NewProto->getArgType(Idx))) {
2648         ArgTypes.push_back(NewParm->getType());
2649       } else if (Context.typesAreCompatible(OldParm->getType(),
2650                                             NewParm->getType(),
2651                                             /*CompareUnqualified=*/true)) {
2652         GNUCompatibleParamWarning Warn
2653           = { OldParm, NewParm, NewProto->getArgType(Idx) };
2654         Warnings.push_back(Warn);
2655         ArgTypes.push_back(NewParm->getType());
2656       } else
2657         LooseCompatible = false;
2658     }
2659 
2660     if (LooseCompatible) {
2661       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2662         Diag(Warnings[Warn].NewParm->getLocation(),
2663              diag::ext_param_promoted_not_compatible_with_prototype)
2664           << Warnings[Warn].PromotedType
2665           << Warnings[Warn].OldParm->getType();
2666         if (Warnings[Warn].OldParm->getLocation().isValid())
2667           Diag(Warnings[Warn].OldParm->getLocation(),
2668                diag::note_previous_declaration);
2669       }
2670 
2671       New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2672                                            OldProto->getExtProtoInfo()));
2673       return MergeCompatibleFunctionDecls(New, Old, S);
2674     }
2675 
2676     // Fall through to diagnose conflicting types.
2677   }
2678 
2679   // A function that has already been declared has been redeclared or defined
2680   // with a different type- show appropriate diagnostic
2681   if (unsigned BuiltinID = Old->getBuiltinID()) {
2682     // The user has declared a builtin function with an incompatible
2683     // signature.
2684     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2685       // The function the user is redeclaring is a library-defined
2686       // function like 'malloc' or 'printf'. Warn about the
2687       // redeclaration, then pretend that we don't know about this
2688       // library built-in.
2689       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2690       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2691         << Old << Old->getType();
2692       New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2693       Old->setInvalidDecl();
2694       return false;
2695     }
2696 
2697     PrevDiag = diag::note_previous_builtin_declaration;
2698   }
2699 
2700   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2701   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2702   return true;
2703 }
2704 
2705 /// \brief Completes the merge of two function declarations that are
2706 /// known to be compatible.
2707 ///
2708 /// This routine handles the merging of attributes and other
2709 /// properties of function declarations form the old declaration to
2710 /// the new declaration, once we know that New is in fact a
2711 /// redeclaration of Old.
2712 ///
2713 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S)2714 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2715                                         Scope *S) {
2716   // Merge the attributes
2717   mergeDeclAttributes(New, Old);
2718 
2719   // Merge the storage class.
2720   if (Old->getStorageClass() != SC_Extern &&
2721       Old->getStorageClass() != SC_None)
2722     New->setStorageClass(Old->getStorageClass());
2723 
2724   // Merge "pure" flag.
2725   if (Old->isPure())
2726     New->setPure();
2727 
2728   // Merge "used" flag.
2729   if (Old->isUsed(false))
2730     New->setUsed();
2731 
2732   // Merge attributes from the parameters.  These can mismatch with K&R
2733   // declarations.
2734   if (New->getNumParams() == Old->getNumParams())
2735     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2736       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2737                                *this);
2738 
2739   if (getLangOpts().CPlusPlus)
2740     return MergeCXXFunctionDecl(New, Old, S);
2741 
2742   // Merge the function types so the we get the composite types for the return
2743   // and argument types.
2744   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2745   if (!Merged.isNull())
2746     New->setType(Merged);
2747 
2748   return false;
2749 }
2750 
2751 
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)2752 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2753                                 ObjCMethodDecl *oldMethod) {
2754 
2755   // Merge the attributes, including deprecated/unavailable
2756   mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2757 
2758   // Merge attributes from the parameters.
2759   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2760                                        oe = oldMethod->param_end();
2761   for (ObjCMethodDecl::param_iterator
2762          ni = newMethod->param_begin(), ne = newMethod->param_end();
2763        ni != ne && oi != oe; ++ni, ++oi)
2764     mergeParamDeclAttributes(*ni, *oi, *this);
2765 
2766   CheckObjCMethodOverride(newMethod, oldMethod);
2767 }
2768 
2769 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2770 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2771 /// emitting diagnostics as appropriate.
2772 ///
2773 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2774 /// to here in AddInitializerToDecl. We can't check them before the initializer
2775 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old)2776 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2777   if (New->isInvalidDecl() || Old->isInvalidDecl())
2778     return;
2779 
2780   QualType MergedT;
2781   if (getLangOpts().CPlusPlus) {
2782     AutoType *AT = New->getType()->getContainedAutoType();
2783     if (AT && !AT->isDeduced()) {
2784       // We don't know what the new type is until the initializer is attached.
2785       return;
2786     } else if (Context.hasSameType(New->getType(), Old->getType())) {
2787       // These could still be something that needs exception specs checked.
2788       return MergeVarDeclExceptionSpecs(New, Old);
2789     }
2790     // C++ [basic.link]p10:
2791     //   [...] the types specified by all declarations referring to a given
2792     //   object or function shall be identical, except that declarations for an
2793     //   array object can specify array types that differ by the presence or
2794     //   absence of a major array bound (8.3.4).
2795     else if (Old->getType()->isIncompleteArrayType() &&
2796              New->getType()->isArrayType()) {
2797       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2798       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2799       if (Context.hasSameType(OldArray->getElementType(),
2800                               NewArray->getElementType()))
2801         MergedT = New->getType();
2802     } else if (Old->getType()->isArrayType() &&
2803              New->getType()->isIncompleteArrayType()) {
2804       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2805       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2806       if (Context.hasSameType(OldArray->getElementType(),
2807                               NewArray->getElementType()))
2808         MergedT = Old->getType();
2809     } else if (New->getType()->isObjCObjectPointerType()
2810                && Old->getType()->isObjCObjectPointerType()) {
2811         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2812                                                         Old->getType());
2813     }
2814   } else {
2815     MergedT = Context.mergeTypes(New->getType(), Old->getType());
2816   }
2817   if (MergedT.isNull()) {
2818     Diag(New->getLocation(), diag::err_redefinition_different_type)
2819       << New->getDeclName() << New->getType() << Old->getType();
2820     Diag(Old->getLocation(), diag::note_previous_definition);
2821     return New->setInvalidDecl();
2822   }
2823   New->setType(MergedT);
2824 }
2825 
2826 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
2827 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2828 /// situation, merging decls or emitting diagnostics as appropriate.
2829 ///
2830 /// Tentative definition rules (C99 6.9.2p2) are checked by
2831 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2832 /// definitions here, since the initializer hasn't been attached.
2833 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)2834 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2835   // If the new decl is already invalid, don't do any other checking.
2836   if (New->isInvalidDecl())
2837     return;
2838 
2839   // Verify the old decl was also a variable.
2840   VarDecl *Old = 0;
2841   if (!Previous.isSingleResult() ||
2842       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2843     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2844       << New->getDeclName();
2845     Diag(Previous.getRepresentativeDecl()->getLocation(),
2846          diag::note_previous_definition);
2847     return New->setInvalidDecl();
2848   }
2849 
2850   // C++ [class.mem]p1:
2851   //   A member shall not be declared twice in the member-specification [...]
2852   //
2853   // Here, we need only consider static data members.
2854   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2855     Diag(New->getLocation(), diag::err_duplicate_member)
2856       << New->getIdentifier();
2857     Diag(Old->getLocation(), diag::note_previous_declaration);
2858     New->setInvalidDecl();
2859   }
2860 
2861   mergeDeclAttributes(New, Old);
2862   // Warn if an already-declared variable is made a weak_import in a subsequent
2863   // declaration
2864   if (New->getAttr<WeakImportAttr>() &&
2865       Old->getStorageClass() == SC_None &&
2866       !Old->getAttr<WeakImportAttr>()) {
2867     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2868     Diag(Old->getLocation(), diag::note_previous_definition);
2869     // Remove weak_import attribute on new declaration.
2870     New->dropAttr<WeakImportAttr>();
2871   }
2872 
2873   // Merge the types.
2874   MergeVarDeclTypes(New, Old);
2875   if (New->isInvalidDecl())
2876     return;
2877 
2878   // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2879   if (New->getStorageClass() == SC_Static &&
2880       (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2881     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2882     Diag(Old->getLocation(), diag::note_previous_definition);
2883     return New->setInvalidDecl();
2884   }
2885   // C99 6.2.2p4:
2886   //   For an identifier declared with the storage-class specifier
2887   //   extern in a scope in which a prior declaration of that
2888   //   identifier is visible,23) if the prior declaration specifies
2889   //   internal or external linkage, the linkage of the identifier at
2890   //   the later declaration is the same as the linkage specified at
2891   //   the prior declaration. If no prior declaration is visible, or
2892   //   if the prior declaration specifies no linkage, then the
2893   //   identifier has external linkage.
2894   if (New->hasExternalStorage() && Old->hasLinkage())
2895     /* Okay */;
2896   else if (New->getStorageClass() != SC_Static &&
2897            Old->getStorageClass() == SC_Static) {
2898     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2899     Diag(Old->getLocation(), diag::note_previous_definition);
2900     return New->setInvalidDecl();
2901   }
2902 
2903   // Check if extern is followed by non-extern and vice-versa.
2904   if (New->hasExternalStorage() &&
2905       !Old->hasLinkage() && Old->isLocalVarDecl()) {
2906     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2907     Diag(Old->getLocation(), diag::note_previous_definition);
2908     return New->setInvalidDecl();
2909   }
2910   if (Old->hasExternalStorage() &&
2911       New->isLocalVarDecl() && !New->hasLinkage()) {
2912     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2913     Diag(Old->getLocation(), diag::note_previous_definition);
2914     return New->setInvalidDecl();
2915   }
2916 
2917   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2918 
2919   // FIXME: The test for external storage here seems wrong? We still
2920   // need to check for mismatches.
2921   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2922       // Don't complain about out-of-line definitions of static members.
2923       !(Old->getLexicalDeclContext()->isRecord() &&
2924         !New->getLexicalDeclContext()->isRecord())) {
2925     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2926     Diag(Old->getLocation(), diag::note_previous_definition);
2927     return New->setInvalidDecl();
2928   }
2929 
2930   if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2931     Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2932     Diag(Old->getLocation(), diag::note_previous_definition);
2933   } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2934     Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2935     Diag(Old->getLocation(), diag::note_previous_definition);
2936   }
2937 
2938   // C++ doesn't have tentative definitions, so go right ahead and check here.
2939   const VarDecl *Def;
2940   if (getLangOpts().CPlusPlus &&
2941       New->isThisDeclarationADefinition() == VarDecl::Definition &&
2942       (Def = Old->getDefinition())) {
2943     Diag(New->getLocation(), diag::err_redefinition)
2944       << New->getDeclName();
2945     Diag(Def->getLocation(), diag::note_previous_definition);
2946     New->setInvalidDecl();
2947     return;
2948   }
2949 
2950   if (haveIncompatibleLanguageLinkages(Old, New)) {
2951     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2952     Diag(Old->getLocation(), diag::note_previous_definition);
2953     New->setInvalidDecl();
2954     return;
2955   }
2956 
2957   // c99 6.2.2 P4.
2958   // For an identifier declared with the storage-class specifier extern in a
2959   // scope in which a prior declaration of that identifier is visible, if
2960   // the prior declaration specifies internal or external linkage, the linkage
2961   // of the identifier at the later declaration is the same as the linkage
2962   // specified at the prior declaration.
2963   // FIXME. revisit this code.
2964   if (New->hasExternalStorage() &&
2965       Old->getLinkage() == InternalLinkage)
2966     New->setStorageClass(Old->getStorageClass());
2967 
2968   // Merge "used" flag.
2969   if (Old->isUsed(false))
2970     New->setUsed();
2971 
2972   // Keep a chain of previous declarations.
2973   New->setPreviousDeclaration(Old);
2974 
2975   // Inherit access appropriately.
2976   New->setAccess(Old->getAccess());
2977 }
2978 
2979 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2980 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)2981 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2982                                        DeclSpec &DS) {
2983   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2984 }
2985 
2986 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2987 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
2988 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation)2989 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2990                                        DeclSpec &DS,
2991                                        MultiTemplateParamsArg TemplateParams,
2992                                        bool IsExplicitInstantiation) {
2993   Decl *TagD = 0;
2994   TagDecl *Tag = 0;
2995   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2996       DS.getTypeSpecType() == DeclSpec::TST_struct ||
2997       DS.getTypeSpecType() == DeclSpec::TST_interface ||
2998       DS.getTypeSpecType() == DeclSpec::TST_union ||
2999       DS.getTypeSpecType() == DeclSpec::TST_enum) {
3000     TagD = DS.getRepAsDecl();
3001 
3002     if (!TagD) // We probably had an error
3003       return 0;
3004 
3005     // Note that the above type specs guarantee that the
3006     // type rep is a Decl, whereas in many of the others
3007     // it's a Type.
3008     if (isa<TagDecl>(TagD))
3009       Tag = cast<TagDecl>(TagD);
3010     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3011       Tag = CTD->getTemplatedDecl();
3012   }
3013 
3014   if (Tag) {
3015     getASTContext().addUnnamedTag(Tag);
3016     Tag->setFreeStanding();
3017     if (Tag->isInvalidDecl())
3018       return Tag;
3019   }
3020 
3021   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3022     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3023     // or incomplete types shall not be restrict-qualified."
3024     if (TypeQuals & DeclSpec::TQ_restrict)
3025       Diag(DS.getRestrictSpecLoc(),
3026            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3027            << DS.getSourceRange();
3028   }
3029 
3030   if (DS.isConstexprSpecified()) {
3031     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3032     // and definitions of functions and variables.
3033     if (Tag)
3034       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3035         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3036             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3037             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3038             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3039     else
3040       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3041     // Don't emit warnings after this error.
3042     return TagD;
3043   }
3044 
3045   DiagnoseFunctionSpecifiers(DS);
3046 
3047   if (DS.isFriendSpecified()) {
3048     // If we're dealing with a decl but not a TagDecl, assume that
3049     // whatever routines created it handled the friendship aspect.
3050     if (TagD && !Tag)
3051       return 0;
3052     return ActOnFriendTypeDecl(S, DS, TemplateParams);
3053   }
3054 
3055   CXXScopeSpec &SS = DS.getTypeSpecScope();
3056   bool IsExplicitSpecialization =
3057     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3058   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3059       !IsExplicitInstantiation && !IsExplicitSpecialization) {
3060     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3061     // nested-name-specifier unless it is an explicit instantiation
3062     // or an explicit specialization.
3063     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3064     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3065       << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3066           DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3067           DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3068           DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3069       << SS.getRange();
3070     return 0;
3071   }
3072 
3073   // Track whether this decl-specifier declares anything.
3074   bool DeclaresAnything = true;
3075 
3076   // Handle anonymous struct definitions.
3077   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3078     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3079         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3080       if (getLangOpts().CPlusPlus ||
3081           Record->getDeclContext()->isRecord())
3082         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3083 
3084       DeclaresAnything = false;
3085     }
3086   }
3087 
3088   // Check for Microsoft C extension: anonymous struct member.
3089   if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3090       CurContext->isRecord() &&
3091       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3092     // Handle 2 kinds of anonymous struct:
3093     //   struct STRUCT;
3094     // and
3095     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3096     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3097     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3098         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3099          DS.getRepAsType().get()->isStructureType())) {
3100       Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3101         << DS.getSourceRange();
3102       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3103     }
3104   }
3105 
3106   // Skip all the checks below if we have a type error.
3107   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3108       (TagD && TagD->isInvalidDecl()))
3109     return TagD;
3110 
3111   if (getLangOpts().CPlusPlus &&
3112       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3113     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3114       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3115           !Enum->getIdentifier() && !Enum->isInvalidDecl())
3116         DeclaresAnything = false;
3117 
3118   if (!DS.isMissingDeclaratorOk()) {
3119     // Customize diagnostic for a typedef missing a name.
3120     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3121       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3122         << DS.getSourceRange();
3123     else
3124       DeclaresAnything = false;
3125   }
3126 
3127   if (DS.isModulePrivateSpecified() &&
3128       Tag && Tag->getDeclContext()->isFunctionOrMethod())
3129     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3130       << Tag->getTagKind()
3131       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3132 
3133   ActOnDocumentableDecl(TagD);
3134 
3135   // C 6.7/2:
3136   //   A declaration [...] shall declare at least a declarator [...], a tag,
3137   //   or the members of an enumeration.
3138   // C++ [dcl.dcl]p3:
3139   //   [If there are no declarators], and except for the declaration of an
3140   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3141   //   names into the program, or shall redeclare a name introduced by a
3142   //   previous declaration.
3143   if (!DeclaresAnything) {
3144     // In C, we allow this as a (popular) extension / bug. Don't bother
3145     // producing further diagnostics for redundant qualifiers after this.
3146     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3147     return TagD;
3148   }
3149 
3150   // C++ [dcl.stc]p1:
3151   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3152   //   init-declarator-list of the declaration shall not be empty.
3153   // C++ [dcl.fct.spec]p1:
3154   //   If a cv-qualifier appears in a decl-specifier-seq, the
3155   //   init-declarator-list of the declaration shall not be empty.
3156   //
3157   // Spurious qualifiers here appear to be valid in C.
3158   unsigned DiagID = diag::warn_standalone_specifier;
3159   if (getLangOpts().CPlusPlus)
3160     DiagID = diag::ext_standalone_specifier;
3161 
3162   // Note that a linkage-specification sets a storage class, but
3163   // 'extern "C" struct foo;' is actually valid and not theoretically
3164   // useless.
3165   if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3166     if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3167       Diag(DS.getStorageClassSpecLoc(), DiagID)
3168         << DeclSpec::getSpecifierName(SCS);
3169 
3170   if (DS.isThreadSpecified())
3171     Diag(DS.getThreadSpecLoc(), DiagID) << "__thread";
3172   if (DS.getTypeQualifiers()) {
3173     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3174       Diag(DS.getConstSpecLoc(), DiagID) << "const";
3175     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3176       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3177     // Restrict is covered above.
3178   }
3179 
3180   // Warn about ignored type attributes, for example:
3181   // __attribute__((aligned)) struct A;
3182   // Attributes should be placed after tag to apply to type declaration.
3183   if (!DS.getAttributes().empty()) {
3184     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3185     if (TypeSpecType == DeclSpec::TST_class ||
3186         TypeSpecType == DeclSpec::TST_struct ||
3187         TypeSpecType == DeclSpec::TST_interface ||
3188         TypeSpecType == DeclSpec::TST_union ||
3189         TypeSpecType == DeclSpec::TST_enum) {
3190       AttributeList* attrs = DS.getAttributes().getList();
3191       while (attrs) {
3192         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3193         << attrs->getName()
3194         << (TypeSpecType == DeclSpec::TST_class ? 0 :
3195             TypeSpecType == DeclSpec::TST_struct ? 1 :
3196             TypeSpecType == DeclSpec::TST_union ? 2 :
3197             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3198         attrs = attrs->getNext();
3199       }
3200     }
3201   }
3202 
3203   return TagD;
3204 }
3205 
3206 /// We are trying to inject an anonymous member into the given scope;
3207 /// check if there's an existing declaration that can't be overloaded.
3208 ///
3209 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)3210 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3211                                          Scope *S,
3212                                          DeclContext *Owner,
3213                                          DeclarationName Name,
3214                                          SourceLocation NameLoc,
3215                                          unsigned diagnostic) {
3216   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3217                  Sema::ForRedeclaration);
3218   if (!SemaRef.LookupName(R, S)) return false;
3219 
3220   if (R.getAsSingle<TagDecl>())
3221     return false;
3222 
3223   // Pick a representative declaration.
3224   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3225   assert(PrevDecl && "Expected a non-null Decl");
3226 
3227   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3228     return false;
3229 
3230   SemaRef.Diag(NameLoc, diagnostic) << Name;
3231   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3232 
3233   return true;
3234 }
3235 
3236 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3237 /// anonymous struct or union AnonRecord into the owning context Owner
3238 /// and scope S. This routine will be invoked just after we realize
3239 /// that an unnamed union or struct is actually an anonymous union or
3240 /// struct, e.g.,
3241 ///
3242 /// @code
3243 /// union {
3244 ///   int i;
3245 ///   float f;
3246 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3247 ///    // f into the surrounding scope.x
3248 /// @endcode
3249 ///
3250 /// This routine is recursive, injecting the names of nested anonymous
3251 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVector<NamedDecl *,2> & Chaining,bool MSAnonStruct)3252 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3253                                                 DeclContext *Owner,
3254                                                 RecordDecl *AnonRecord,
3255                                                 AccessSpecifier AS,
3256                               SmallVector<NamedDecl*, 2> &Chaining,
3257                                                       bool MSAnonStruct) {
3258   unsigned diagKind
3259     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3260                             : diag::err_anonymous_struct_member_redecl;
3261 
3262   bool Invalid = false;
3263 
3264   // Look every FieldDecl and IndirectFieldDecl with a name.
3265   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3266                                DEnd = AnonRecord->decls_end();
3267        D != DEnd; ++D) {
3268     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3269         cast<NamedDecl>(*D)->getDeclName()) {
3270       ValueDecl *VD = cast<ValueDecl>(*D);
3271       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3272                                        VD->getLocation(), diagKind)) {
3273         // C++ [class.union]p2:
3274         //   The names of the members of an anonymous union shall be
3275         //   distinct from the names of any other entity in the
3276         //   scope in which the anonymous union is declared.
3277         Invalid = true;
3278       } else {
3279         // C++ [class.union]p2:
3280         //   For the purpose of name lookup, after the anonymous union
3281         //   definition, the members of the anonymous union are
3282         //   considered to have been defined in the scope in which the
3283         //   anonymous union is declared.
3284         unsigned OldChainingSize = Chaining.size();
3285         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3286           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3287                PE = IF->chain_end(); PI != PE; ++PI)
3288             Chaining.push_back(*PI);
3289         else
3290           Chaining.push_back(VD);
3291 
3292         assert(Chaining.size() >= 2);
3293         NamedDecl **NamedChain =
3294           new (SemaRef.Context)NamedDecl*[Chaining.size()];
3295         for (unsigned i = 0; i < Chaining.size(); i++)
3296           NamedChain[i] = Chaining[i];
3297 
3298         IndirectFieldDecl* IndirectField =
3299           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3300                                     VD->getIdentifier(), VD->getType(),
3301                                     NamedChain, Chaining.size());
3302 
3303         IndirectField->setAccess(AS);
3304         IndirectField->setImplicit();
3305         SemaRef.PushOnScopeChains(IndirectField, S);
3306 
3307         // That includes picking up the appropriate access specifier.
3308         if (AS != AS_none) IndirectField->setAccess(AS);
3309 
3310         Chaining.resize(OldChainingSize);
3311       }
3312     }
3313   }
3314 
3315   return Invalid;
3316 }
3317 
3318 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3319 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
3320 /// illegal input values are mapped to SC_None.
3321 static StorageClass
StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec)3322 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3323   switch (StorageClassSpec) {
3324   case DeclSpec::SCS_unspecified:    return SC_None;
3325   case DeclSpec::SCS_extern:         return SC_Extern;
3326   case DeclSpec::SCS_static:         return SC_Static;
3327   case DeclSpec::SCS_auto:           return SC_Auto;
3328   case DeclSpec::SCS_register:       return SC_Register;
3329   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3330     // Illegal SCSs map to None: error reporting is up to the caller.
3331   case DeclSpec::SCS_mutable:        // Fall through.
3332   case DeclSpec::SCS_typedef:        return SC_None;
3333   }
3334   llvm_unreachable("unknown storage class specifier");
3335 }
3336 
3337 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
3338 /// a StorageClass. Any error reporting is up to the caller:
3339 /// illegal input values are mapped to SC_None.
3340 static StorageClass
StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec)3341 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3342   switch (StorageClassSpec) {
3343   case DeclSpec::SCS_unspecified:    return SC_None;
3344   case DeclSpec::SCS_extern:         return SC_Extern;
3345   case DeclSpec::SCS_static:         return SC_Static;
3346   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3347     // Illegal SCSs map to None: error reporting is up to the caller.
3348   case DeclSpec::SCS_auto:           // Fall through.
3349   case DeclSpec::SCS_mutable:        // Fall through.
3350   case DeclSpec::SCS_register:       // Fall through.
3351   case DeclSpec::SCS_typedef:        return SC_None;
3352   }
3353   llvm_unreachable("unknown storage class specifier");
3354 }
3355 
3356 /// BuildAnonymousStructOrUnion - Handle the declaration of an
3357 /// anonymous structure or union. Anonymous unions are a C++ feature
3358 /// (C++ [class.union]) and a C11 feature; anonymous structures
3359 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record)3360 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3361                                              AccessSpecifier AS,
3362                                              RecordDecl *Record) {
3363   DeclContext *Owner = Record->getDeclContext();
3364 
3365   // Diagnose whether this anonymous struct/union is an extension.
3366   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3367     Diag(Record->getLocation(), diag::ext_anonymous_union);
3368   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3369     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3370   else if (!Record->isUnion() && !getLangOpts().C11)
3371     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3372 
3373   // C and C++ require different kinds of checks for anonymous
3374   // structs/unions.
3375   bool Invalid = false;
3376   if (getLangOpts().CPlusPlus) {
3377     const char* PrevSpec = 0;
3378     unsigned DiagID;
3379     if (Record->isUnion()) {
3380       // C++ [class.union]p6:
3381       //   Anonymous unions declared in a named namespace or in the
3382       //   global namespace shall be declared static.
3383       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3384           (isa<TranslationUnitDecl>(Owner) ||
3385            (isa<NamespaceDecl>(Owner) &&
3386             cast<NamespaceDecl>(Owner)->getDeclName()))) {
3387         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3388           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3389 
3390         // Recover by adding 'static'.
3391         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3392                                PrevSpec, DiagID);
3393       }
3394       // C++ [class.union]p6:
3395       //   A storage class is not allowed in a declaration of an
3396       //   anonymous union in a class scope.
3397       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3398                isa<RecordDecl>(Owner)) {
3399         Diag(DS.getStorageClassSpecLoc(),
3400              diag::err_anonymous_union_with_storage_spec)
3401           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3402 
3403         // Recover by removing the storage specifier.
3404         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3405                                SourceLocation(),
3406                                PrevSpec, DiagID);
3407       }
3408     }
3409 
3410     // Ignore const/volatile/restrict qualifiers.
3411     if (DS.getTypeQualifiers()) {
3412       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3413         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3414           << Record->isUnion() << 0
3415           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3416       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3417         Diag(DS.getVolatileSpecLoc(),
3418              diag::ext_anonymous_struct_union_qualified)
3419           << Record->isUnion() << 1
3420           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3421       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3422         Diag(DS.getRestrictSpecLoc(),
3423              diag::ext_anonymous_struct_union_qualified)
3424           << Record->isUnion() << 2
3425           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3426 
3427       DS.ClearTypeQualifiers();
3428     }
3429 
3430     // C++ [class.union]p2:
3431     //   The member-specification of an anonymous union shall only
3432     //   define non-static data members. [Note: nested types and
3433     //   functions cannot be declared within an anonymous union. ]
3434     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3435                                  MemEnd = Record->decls_end();
3436          Mem != MemEnd; ++Mem) {
3437       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3438         // C++ [class.union]p3:
3439         //   An anonymous union shall not have private or protected
3440         //   members (clause 11).
3441         assert(FD->getAccess() != AS_none);
3442         if (FD->getAccess() != AS_public) {
3443           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3444             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3445           Invalid = true;
3446         }
3447 
3448         // C++ [class.union]p1
3449         //   An object of a class with a non-trivial constructor, a non-trivial
3450         //   copy constructor, a non-trivial destructor, or a non-trivial copy
3451         //   assignment operator cannot be a member of a union, nor can an
3452         //   array of such objects.
3453         if (CheckNontrivialField(FD))
3454           Invalid = true;
3455       } else if ((*Mem)->isImplicit()) {
3456         // Any implicit members are fine.
3457       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3458         // This is a type that showed up in an
3459         // elaborated-type-specifier inside the anonymous struct or
3460         // union, but which actually declares a type outside of the
3461         // anonymous struct or union. It's okay.
3462       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3463         if (!MemRecord->isAnonymousStructOrUnion() &&
3464             MemRecord->getDeclName()) {
3465           // Visual C++ allows type definition in anonymous struct or union.
3466           if (getLangOpts().MicrosoftExt)
3467             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3468               << (int)Record->isUnion();
3469           else {
3470             // This is a nested type declaration.
3471             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3472               << (int)Record->isUnion();
3473             Invalid = true;
3474           }
3475         } else {
3476           // This is an anonymous type definition within another anonymous type.
3477           // This is a popular extension, provided by Plan9, MSVC and GCC, but
3478           // not part of standard C++.
3479           Diag(MemRecord->getLocation(),
3480                diag::ext_anonymous_record_with_anonymous_type)
3481             << (int)Record->isUnion();
3482         }
3483       } else if (isa<AccessSpecDecl>(*Mem)) {
3484         // Any access specifier is fine.
3485       } else {
3486         // We have something that isn't a non-static data
3487         // member. Complain about it.
3488         unsigned DK = diag::err_anonymous_record_bad_member;
3489         if (isa<TypeDecl>(*Mem))
3490           DK = diag::err_anonymous_record_with_type;
3491         else if (isa<FunctionDecl>(*Mem))
3492           DK = diag::err_anonymous_record_with_function;
3493         else if (isa<VarDecl>(*Mem))
3494           DK = diag::err_anonymous_record_with_static;
3495 
3496         // Visual C++ allows type definition in anonymous struct or union.
3497         if (getLangOpts().MicrosoftExt &&
3498             DK == diag::err_anonymous_record_with_type)
3499           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3500             << (int)Record->isUnion();
3501         else {
3502           Diag((*Mem)->getLocation(), DK)
3503               << (int)Record->isUnion();
3504           Invalid = true;
3505         }
3506       }
3507     }
3508   }
3509 
3510   if (!Record->isUnion() && !Owner->isRecord()) {
3511     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3512       << (int)getLangOpts().CPlusPlus;
3513     Invalid = true;
3514   }
3515 
3516   // Mock up a declarator.
3517   Declarator Dc(DS, Declarator::MemberContext);
3518   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3519   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3520 
3521   // Create a declaration for this anonymous struct/union.
3522   NamedDecl *Anon = 0;
3523   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3524     Anon = FieldDecl::Create(Context, OwningClass,
3525                              DS.getLocStart(),
3526                              Record->getLocation(),
3527                              /*IdentifierInfo=*/0,
3528                              Context.getTypeDeclType(Record),
3529                              TInfo,
3530                              /*BitWidth=*/0, /*Mutable=*/false,
3531                              /*InitStyle=*/ICIS_NoInit);
3532     Anon->setAccess(AS);
3533     if (getLangOpts().CPlusPlus)
3534       FieldCollector->Add(cast<FieldDecl>(Anon));
3535   } else {
3536     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3537     assert(SCSpec != DeclSpec::SCS_typedef &&
3538            "Parser allowed 'typedef' as storage class VarDecl.");
3539     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3540     if (SCSpec == DeclSpec::SCS_mutable) {
3541       // mutable can only appear on non-static class members, so it's always
3542       // an error here
3543       Diag(Record->getLocation(), diag::err_mutable_nonmember);
3544       Invalid = true;
3545       SC = SC_None;
3546     }
3547     SCSpec = DS.getStorageClassSpecAsWritten();
3548     VarDecl::StorageClass SCAsWritten
3549       = StorageClassSpecToVarDeclStorageClass(SCSpec);
3550 
3551     Anon = VarDecl::Create(Context, Owner,
3552                            DS.getLocStart(),
3553                            Record->getLocation(), /*IdentifierInfo=*/0,
3554                            Context.getTypeDeclType(Record),
3555                            TInfo, SC, SCAsWritten);
3556 
3557     // Default-initialize the implicit variable. This initialization will be
3558     // trivial in almost all cases, except if a union member has an in-class
3559     // initializer:
3560     //   union { int n = 0; };
3561     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3562   }
3563   Anon->setImplicit();
3564 
3565   // Add the anonymous struct/union object to the current
3566   // context. We'll be referencing this object when we refer to one of
3567   // its members.
3568   Owner->addDecl(Anon);
3569 
3570   // Inject the members of the anonymous struct/union into the owning
3571   // context and into the identifier resolver chain for name lookup
3572   // purposes.
3573   SmallVector<NamedDecl*, 2> Chain;
3574   Chain.push_back(Anon);
3575 
3576   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3577                                           Chain, false))
3578     Invalid = true;
3579 
3580   // Mark this as an anonymous struct/union type. Note that we do not
3581   // do this until after we have already checked and injected the
3582   // members of this anonymous struct/union type, because otherwise
3583   // the members could be injected twice: once by DeclContext when it
3584   // builds its lookup table, and once by
3585   // InjectAnonymousStructOrUnionMembers.
3586   Record->setAnonymousStructOrUnion(true);
3587 
3588   if (Invalid)
3589     Anon->setInvalidDecl();
3590 
3591   return Anon;
3592 }
3593 
3594 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3595 /// Microsoft C anonymous structure.
3596 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3597 /// Example:
3598 ///
3599 /// struct A { int a; };
3600 /// struct B { struct A; int b; };
3601 ///
3602 /// void foo() {
3603 ///   B var;
3604 ///   var.a = 3;
3605 /// }
3606 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)3607 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3608                                            RecordDecl *Record) {
3609 
3610   // If there is no Record, get the record via the typedef.
3611   if (!Record)
3612     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3613 
3614   // Mock up a declarator.
3615   Declarator Dc(DS, Declarator::TypeNameContext);
3616   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3617   assert(TInfo && "couldn't build declarator info for anonymous struct");
3618 
3619   // Create a declaration for this anonymous struct.
3620   NamedDecl* Anon = FieldDecl::Create(Context,
3621                              cast<RecordDecl>(CurContext),
3622                              DS.getLocStart(),
3623                              DS.getLocStart(),
3624                              /*IdentifierInfo=*/0,
3625                              Context.getTypeDeclType(Record),
3626                              TInfo,
3627                              /*BitWidth=*/0, /*Mutable=*/false,
3628                              /*InitStyle=*/ICIS_NoInit);
3629   Anon->setImplicit();
3630 
3631   // Add the anonymous struct object to the current context.
3632   CurContext->addDecl(Anon);
3633 
3634   // Inject the members of the anonymous struct into the current
3635   // context and into the identifier resolver chain for name lookup
3636   // purposes.
3637   SmallVector<NamedDecl*, 2> Chain;
3638   Chain.push_back(Anon);
3639 
3640   RecordDecl *RecordDef = Record->getDefinition();
3641   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3642                                                         RecordDef, AS_none,
3643                                                         Chain, true))
3644     Anon->setInvalidDecl();
3645 
3646   return Anon;
3647 }
3648 
3649 /// GetNameForDeclarator - Determine the full declaration name for the
3650 /// given Declarator.
GetNameForDeclarator(Declarator & D)3651 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3652   return GetNameFromUnqualifiedId(D.getName());
3653 }
3654 
3655 /// \brief Retrieves the declaration name from a parsed unqualified-id.
3656 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)3657 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3658   DeclarationNameInfo NameInfo;
3659   NameInfo.setLoc(Name.StartLocation);
3660 
3661   switch (Name.getKind()) {
3662 
3663   case UnqualifiedId::IK_ImplicitSelfParam:
3664   case UnqualifiedId::IK_Identifier:
3665     NameInfo.setName(Name.Identifier);
3666     NameInfo.setLoc(Name.StartLocation);
3667     return NameInfo;
3668 
3669   case UnqualifiedId::IK_OperatorFunctionId:
3670     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3671                                            Name.OperatorFunctionId.Operator));
3672     NameInfo.setLoc(Name.StartLocation);
3673     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3674       = Name.OperatorFunctionId.SymbolLocations[0];
3675     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3676       = Name.EndLocation.getRawEncoding();
3677     return NameInfo;
3678 
3679   case UnqualifiedId::IK_LiteralOperatorId:
3680     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3681                                                            Name.Identifier));
3682     NameInfo.setLoc(Name.StartLocation);
3683     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3684     return NameInfo;
3685 
3686   case UnqualifiedId::IK_ConversionFunctionId: {
3687     TypeSourceInfo *TInfo;
3688     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3689     if (Ty.isNull())
3690       return DeclarationNameInfo();
3691     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3692                                                Context.getCanonicalType(Ty)));
3693     NameInfo.setLoc(Name.StartLocation);
3694     NameInfo.setNamedTypeInfo(TInfo);
3695     return NameInfo;
3696   }
3697 
3698   case UnqualifiedId::IK_ConstructorName: {
3699     TypeSourceInfo *TInfo;
3700     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3701     if (Ty.isNull())
3702       return DeclarationNameInfo();
3703     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3704                                               Context.getCanonicalType(Ty)));
3705     NameInfo.setLoc(Name.StartLocation);
3706     NameInfo.setNamedTypeInfo(TInfo);
3707     return NameInfo;
3708   }
3709 
3710   case UnqualifiedId::IK_ConstructorTemplateId: {
3711     // In well-formed code, we can only have a constructor
3712     // template-id that refers to the current context, so go there
3713     // to find the actual type being constructed.
3714     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3715     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3716       return DeclarationNameInfo();
3717 
3718     // Determine the type of the class being constructed.
3719     QualType CurClassType = Context.getTypeDeclType(CurClass);
3720 
3721     // FIXME: Check two things: that the template-id names the same type as
3722     // CurClassType, and that the template-id does not occur when the name
3723     // was qualified.
3724 
3725     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3726                                     Context.getCanonicalType(CurClassType)));
3727     NameInfo.setLoc(Name.StartLocation);
3728     // FIXME: should we retrieve TypeSourceInfo?
3729     NameInfo.setNamedTypeInfo(0);
3730     return NameInfo;
3731   }
3732 
3733   case UnqualifiedId::IK_DestructorName: {
3734     TypeSourceInfo *TInfo;
3735     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3736     if (Ty.isNull())
3737       return DeclarationNameInfo();
3738     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3739                                               Context.getCanonicalType(Ty)));
3740     NameInfo.setLoc(Name.StartLocation);
3741     NameInfo.setNamedTypeInfo(TInfo);
3742     return NameInfo;
3743   }
3744 
3745   case UnqualifiedId::IK_TemplateId: {
3746     TemplateName TName = Name.TemplateId->Template.get();
3747     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3748     return Context.getNameForTemplate(TName, TNameLoc);
3749   }
3750 
3751   } // switch (Name.getKind())
3752 
3753   llvm_unreachable("Unknown name kind");
3754 }
3755 
getCoreType(QualType Ty)3756 static QualType getCoreType(QualType Ty) {
3757   do {
3758     if (Ty->isPointerType() || Ty->isReferenceType())
3759       Ty = Ty->getPointeeType();
3760     else if (Ty->isArrayType())
3761       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3762     else
3763       return Ty.withoutLocalFastQualifiers();
3764   } while (true);
3765 }
3766 
3767 /// hasSimilarParameters - Determine whether the C++ functions Declaration
3768 /// and Definition have "nearly" matching parameters. This heuristic is
3769 /// used to improve diagnostics in the case where an out-of-line function
3770 /// definition doesn't match any declaration within the class or namespace.
3771 /// Also sets Params to the list of indices to the parameters that differ
3772 /// between the declaration and the definition. If hasSimilarParameters
3773 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)3774 static bool hasSimilarParameters(ASTContext &Context,
3775                                      FunctionDecl *Declaration,
3776                                      FunctionDecl *Definition,
3777                                      SmallVectorImpl<unsigned> &Params) {
3778   Params.clear();
3779   if (Declaration->param_size() != Definition->param_size())
3780     return false;
3781   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3782     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3783     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3784 
3785     // The parameter types are identical
3786     if (Context.hasSameType(DefParamTy, DeclParamTy))
3787       continue;
3788 
3789     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3790     QualType DefParamBaseTy = getCoreType(DefParamTy);
3791     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3792     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3793 
3794     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3795         (DeclTyName && DeclTyName == DefTyName))
3796       Params.push_back(Idx);
3797     else  // The two parameters aren't even close
3798       return false;
3799   }
3800 
3801   return true;
3802 }
3803 
3804 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3805 /// declarator needs to be rebuilt in the current instantiation.
3806 /// Any bits of declarator which appear before the name are valid for
3807 /// consideration here.  That's specifically the type in the decl spec
3808 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)3809 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3810                                                     DeclarationName Name) {
3811   // The types we specifically need to rebuild are:
3812   //   - typenames, typeofs, and decltypes
3813   //   - types which will become injected class names
3814   // Of course, we also need to rebuild any type referencing such a
3815   // type.  It's safest to just say "dependent", but we call out a
3816   // few cases here.
3817 
3818   DeclSpec &DS = D.getMutableDeclSpec();
3819   switch (DS.getTypeSpecType()) {
3820   case DeclSpec::TST_typename:
3821   case DeclSpec::TST_typeofType:
3822   case DeclSpec::TST_underlyingType:
3823   case DeclSpec::TST_atomic: {
3824     // Grab the type from the parser.
3825     TypeSourceInfo *TSI = 0;
3826     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3827     if (T.isNull() || !T->isDependentType()) break;
3828 
3829     // Make sure there's a type source info.  This isn't really much
3830     // of a waste; most dependent types should have type source info
3831     // attached already.
3832     if (!TSI)
3833       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3834 
3835     // Rebuild the type in the current instantiation.
3836     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3837     if (!TSI) return true;
3838 
3839     // Store the new type back in the decl spec.
3840     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3841     DS.UpdateTypeRep(LocType);
3842     break;
3843   }
3844 
3845   case DeclSpec::TST_decltype:
3846   case DeclSpec::TST_typeofExpr: {
3847     Expr *E = DS.getRepAsExpr();
3848     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3849     if (Result.isInvalid()) return true;
3850     DS.UpdateExprRep(Result.get());
3851     break;
3852   }
3853 
3854   default:
3855     // Nothing to do for these decl specs.
3856     break;
3857   }
3858 
3859   // It doesn't matter what order we do this in.
3860   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3861     DeclaratorChunk &Chunk = D.getTypeObject(I);
3862 
3863     // The only type information in the declarator which can come
3864     // before the declaration name is the base type of a member
3865     // pointer.
3866     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3867       continue;
3868 
3869     // Rebuild the scope specifier in-place.
3870     CXXScopeSpec &SS = Chunk.Mem.Scope();
3871     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3872       return true;
3873   }
3874 
3875   return false;
3876 }
3877 
ActOnDeclarator(Scope * S,Declarator & D)3878 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3879   D.setFunctionDefinitionKind(FDK_Declaration);
3880   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3881 
3882   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3883       Dcl && Dcl->getDeclContext()->isFileContext())
3884     Dcl->setTopLevelDeclInObjCContainer();
3885 
3886   return Dcl;
3887 }
3888 
3889 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3890 ///   If T is the name of a class, then each of the following shall have a
3891 ///   name different from T:
3892 ///     - every static data member of class T;
3893 ///     - every member function of class T
3894 ///     - every member of class T that is itself a type;
3895 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)3896 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3897                                    DeclarationNameInfo NameInfo) {
3898   DeclarationName Name = NameInfo.getName();
3899 
3900   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3901     if (Record->getIdentifier() && Record->getDeclName() == Name) {
3902       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3903       return true;
3904     }
3905 
3906   return false;
3907 }
3908 
3909 /// \brief Diagnose a declaration whose declarator-id has the given
3910 /// nested-name-specifier.
3911 ///
3912 /// \param SS The nested-name-specifier of the declarator-id.
3913 ///
3914 /// \param DC The declaration context to which the nested-name-specifier
3915 /// resolves.
3916 ///
3917 /// \param Name The name of the entity being declared.
3918 ///
3919 /// \param Loc The location of the name of the entity being declared.
3920 ///
3921 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)3922 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3923                                         DeclarationName Name,
3924                                       SourceLocation Loc) {
3925   DeclContext *Cur = CurContext;
3926   while (isa<LinkageSpecDecl>(Cur))
3927     Cur = Cur->getParent();
3928 
3929   // C++ [dcl.meaning]p1:
3930   //   A declarator-id shall not be qualified except for the definition
3931   //   of a member function (9.3) or static data member (9.4) outside of
3932   //   its class, the definition or explicit instantiation of a function
3933   //   or variable member of a namespace outside of its namespace, or the
3934   //   definition of an explicit specialization outside of its namespace,
3935   //   or the declaration of a friend function that is a member of
3936   //   another class or namespace (11.3). [...]
3937 
3938   // The user provided a superfluous scope specifier that refers back to the
3939   // class or namespaces in which the entity is already declared.
3940   //
3941   // class X {
3942   //   void X::f();
3943   // };
3944   if (Cur->Equals(DC)) {
3945     Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3946                                    : diag::err_member_extra_qualification)
3947       << Name << FixItHint::CreateRemoval(SS.getRange());
3948     SS.clear();
3949     return false;
3950   }
3951 
3952   // Check whether the qualifying scope encloses the scope of the original
3953   // declaration.
3954   if (!Cur->Encloses(DC)) {
3955     if (Cur->isRecord())
3956       Diag(Loc, diag::err_member_qualification)
3957         << Name << SS.getRange();
3958     else if (isa<TranslationUnitDecl>(DC))
3959       Diag(Loc, diag::err_invalid_declarator_global_scope)
3960         << Name << SS.getRange();
3961     else if (isa<FunctionDecl>(Cur))
3962       Diag(Loc, diag::err_invalid_declarator_in_function)
3963         << Name << SS.getRange();
3964     else
3965       Diag(Loc, diag::err_invalid_declarator_scope)
3966       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3967 
3968     return true;
3969   }
3970 
3971   if (Cur->isRecord()) {
3972     // Cannot qualify members within a class.
3973     Diag(Loc, diag::err_member_qualification)
3974       << Name << SS.getRange();
3975     SS.clear();
3976 
3977     // C++ constructors and destructors with incorrect scopes can break
3978     // our AST invariants by having the wrong underlying types. If
3979     // that's the case, then drop this declaration entirely.
3980     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3981          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3982         !Context.hasSameType(Name.getCXXNameType(),
3983                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3984       return true;
3985 
3986     return false;
3987   }
3988 
3989   // C++11 [dcl.meaning]p1:
3990   //   [...] "The nested-name-specifier of the qualified declarator-id shall
3991   //   not begin with a decltype-specifer"
3992   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3993   while (SpecLoc.getPrefix())
3994     SpecLoc = SpecLoc.getPrefix();
3995   if (dyn_cast_or_null<DecltypeType>(
3996         SpecLoc.getNestedNameSpecifier()->getAsType()))
3997     Diag(Loc, diag::err_decltype_in_declarator)
3998       << SpecLoc.getTypeLoc().getSourceRange();
3999 
4000   return false;
4001 }
4002 
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)4003 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4004                                   MultiTemplateParamsArg TemplateParamLists) {
4005   // TODO: consider using NameInfo for diagnostic.
4006   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4007   DeclarationName Name = NameInfo.getName();
4008 
4009   // All of these full declarators require an identifier.  If it doesn't have
4010   // one, the ParsedFreeStandingDeclSpec action should be used.
4011   if (!Name) {
4012     if (!D.isInvalidType())  // Reject this if we think it is valid.
4013       Diag(D.getDeclSpec().getLocStart(),
4014            diag::err_declarator_need_ident)
4015         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4016     return 0;
4017   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4018     return 0;
4019 
4020   // The scope passed in may not be a decl scope.  Zip up the scope tree until
4021   // we find one that is.
4022   while ((S->getFlags() & Scope::DeclScope) == 0 ||
4023          (S->getFlags() & Scope::TemplateParamScope) != 0)
4024     S = S->getParent();
4025 
4026   DeclContext *DC = CurContext;
4027   if (D.getCXXScopeSpec().isInvalid())
4028     D.setInvalidType();
4029   else if (D.getCXXScopeSpec().isSet()) {
4030     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4031                                         UPPC_DeclarationQualifier))
4032       return 0;
4033 
4034     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4035     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4036     if (!DC) {
4037       // If we could not compute the declaration context, it's because the
4038       // declaration context is dependent but does not refer to a class,
4039       // class template, or class template partial specialization. Complain
4040       // and return early, to avoid the coming semantic disaster.
4041       Diag(D.getIdentifierLoc(),
4042            diag::err_template_qualified_declarator_no_match)
4043         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4044         << D.getCXXScopeSpec().getRange();
4045       return 0;
4046     }
4047     bool IsDependentContext = DC->isDependentContext();
4048 
4049     if (!IsDependentContext &&
4050         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4051       return 0;
4052 
4053     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4054       Diag(D.getIdentifierLoc(),
4055            diag::err_member_def_undefined_record)
4056         << Name << DC << D.getCXXScopeSpec().getRange();
4057       D.setInvalidType();
4058     } else if (!D.getDeclSpec().isFriendSpecified()) {
4059       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4060                                       Name, D.getIdentifierLoc())) {
4061         if (DC->isRecord())
4062           return 0;
4063 
4064         D.setInvalidType();
4065       }
4066     }
4067 
4068     // Check whether we need to rebuild the type of the given
4069     // declaration in the current instantiation.
4070     if (EnteringContext && IsDependentContext &&
4071         TemplateParamLists.size() != 0) {
4072       ContextRAII SavedContext(*this, DC);
4073       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4074         D.setInvalidType();
4075     }
4076   }
4077 
4078   if (DiagnoseClassNameShadow(DC, NameInfo))
4079     // If this is a typedef, we'll end up spewing multiple diagnostics.
4080     // Just return early; it's safer.
4081     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4082       return 0;
4083 
4084   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4085   QualType R = TInfo->getType();
4086 
4087   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4088                                       UPPC_DeclarationType))
4089     D.setInvalidType();
4090 
4091   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4092                         ForRedeclaration);
4093 
4094   // See if this is a redefinition of a variable in the same scope.
4095   if (!D.getCXXScopeSpec().isSet()) {
4096     bool IsLinkageLookup = false;
4097 
4098     // If the declaration we're planning to build will be a function
4099     // or object with linkage, then look for another declaration with
4100     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4101     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4102       /* Do nothing*/;
4103     else if (R->isFunctionType()) {
4104       if (CurContext->isFunctionOrMethod() ||
4105           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4106         IsLinkageLookup = true;
4107     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4108       IsLinkageLookup = true;
4109     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4110              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4111       IsLinkageLookup = true;
4112 
4113     if (IsLinkageLookup)
4114       Previous.clear(LookupRedeclarationWithLinkage);
4115 
4116     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4117   } else { // Something like "int foo::x;"
4118     LookupQualifiedName(Previous, DC);
4119 
4120     // C++ [dcl.meaning]p1:
4121     //   When the declarator-id is qualified, the declaration shall refer to a
4122     //  previously declared member of the class or namespace to which the
4123     //  qualifier refers (or, in the case of a namespace, of an element of the
4124     //  inline namespace set of that namespace (7.3.1)) or to a specialization
4125     //  thereof; [...]
4126     //
4127     // Note that we already checked the context above, and that we do not have
4128     // enough information to make sure that Previous contains the declaration
4129     // we want to match. For example, given:
4130     //
4131     //   class X {
4132     //     void f();
4133     //     void f(float);
4134     //   };
4135     //
4136     //   void X::f(int) { } // ill-formed
4137     //
4138     // In this case, Previous will point to the overload set
4139     // containing the two f's declared in X, but neither of them
4140     // matches.
4141 
4142     // C++ [dcl.meaning]p1:
4143     //   [...] the member shall not merely have been introduced by a
4144     //   using-declaration in the scope of the class or namespace nominated by
4145     //   the nested-name-specifier of the declarator-id.
4146     RemoveUsingDecls(Previous);
4147   }
4148 
4149   if (Previous.isSingleResult() &&
4150       Previous.getFoundDecl()->isTemplateParameter()) {
4151     // Maybe we will complain about the shadowed template parameter.
4152     if (!D.isInvalidType())
4153       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4154                                       Previous.getFoundDecl());
4155 
4156     // Just pretend that we didn't see the previous declaration.
4157     Previous.clear();
4158   }
4159 
4160   // In C++, the previous declaration we find might be a tag type
4161   // (class or enum). In this case, the new declaration will hide the
4162   // tag type. Note that this does does not apply if we're declaring a
4163   // typedef (C++ [dcl.typedef]p4).
4164   if (Previous.isSingleTagDecl() &&
4165       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4166     Previous.clear();
4167 
4168   // Check that there are no default arguments other than in the parameters
4169   // of a function declaration (C++ only).
4170   if (getLangOpts().CPlusPlus)
4171     CheckExtraCXXDefaultArguments(D);
4172 
4173   NamedDecl *New;
4174 
4175   bool AddToScope = true;
4176   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4177     if (TemplateParamLists.size()) {
4178       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4179       return 0;
4180     }
4181 
4182     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4183   } else if (R->isFunctionType()) {
4184     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4185                                   TemplateParamLists,
4186                                   AddToScope);
4187   } else {
4188     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4189                                   TemplateParamLists);
4190   }
4191 
4192   if (New == 0)
4193     return 0;
4194 
4195   // If this has an identifier and is not an invalid redeclaration or
4196   // function template specialization, add it to the scope stack.
4197   if (New->getDeclName() && AddToScope &&
4198        !(D.isRedeclaration() && New->isInvalidDecl()))
4199     PushOnScopeChains(New, S);
4200 
4201   return New;
4202 }
4203 
4204 /// Helper method to turn variable array types into constant array
4205 /// types in certain situations which would otherwise be errors (for
4206 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4207 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4208                                                     ASTContext &Context,
4209                                                     bool &SizeIsNegative,
4210                                                     llvm::APSInt &Oversized) {
4211   // This method tries to turn a variable array into a constant
4212   // array even when the size isn't an ICE.  This is necessary
4213   // for compatibility with code that depends on gcc's buggy
4214   // constant expression folding, like struct {char x[(int)(char*)2];}
4215   SizeIsNegative = false;
4216   Oversized = 0;
4217 
4218   if (T->isDependentType())
4219     return QualType();
4220 
4221   QualifierCollector Qs;
4222   const Type *Ty = Qs.strip(T);
4223 
4224   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4225     QualType Pointee = PTy->getPointeeType();
4226     QualType FixedType =
4227         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4228                                             Oversized);
4229     if (FixedType.isNull()) return FixedType;
4230     FixedType = Context.getPointerType(FixedType);
4231     return Qs.apply(Context, FixedType);
4232   }
4233   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4234     QualType Inner = PTy->getInnerType();
4235     QualType FixedType =
4236         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4237                                             Oversized);
4238     if (FixedType.isNull()) return FixedType;
4239     FixedType = Context.getParenType(FixedType);
4240     return Qs.apply(Context, FixedType);
4241   }
4242 
4243   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4244   if (!VLATy)
4245     return QualType();
4246   // FIXME: We should probably handle this case
4247   if (VLATy->getElementType()->isVariablyModifiedType())
4248     return QualType();
4249 
4250   llvm::APSInt Res;
4251   if (!VLATy->getSizeExpr() ||
4252       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4253     return QualType();
4254 
4255   // Check whether the array size is negative.
4256   if (Res.isSigned() && Res.isNegative()) {
4257     SizeIsNegative = true;
4258     return QualType();
4259   }
4260 
4261   // Check whether the array is too large to be addressed.
4262   unsigned ActiveSizeBits
4263     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4264                                               Res);
4265   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4266     Oversized = Res;
4267     return QualType();
4268   }
4269 
4270   return Context.getConstantArrayType(VLATy->getElementType(),
4271                                       Res, ArrayType::Normal, 0);
4272 }
4273 
4274 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)4275 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4276   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4277     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4278     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4279                                       DstPTL.getPointeeLoc());
4280     DstPTL.setStarLoc(SrcPTL.getStarLoc());
4281     return;
4282   }
4283   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4284     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4285     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4286                                       DstPTL.getInnerLoc());
4287     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4288     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4289     return;
4290   }
4291   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4292   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4293   TypeLoc SrcElemTL = SrcATL.getElementLoc();
4294   TypeLoc DstElemTL = DstATL.getElementLoc();
4295   DstElemTL.initializeFullCopy(SrcElemTL);
4296   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4297   DstATL.setSizeExpr(SrcATL.getSizeExpr());
4298   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4299 }
4300 
4301 /// Helper method to turn variable array types into constant array
4302 /// types in certain situations which would otherwise be errors (for
4303 /// GCC compatibility).
4304 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4305 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4306                                               ASTContext &Context,
4307                                               bool &SizeIsNegative,
4308                                               llvm::APSInt &Oversized) {
4309   QualType FixedTy
4310     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4311                                           SizeIsNegative, Oversized);
4312   if (FixedTy.isNull())
4313     return 0;
4314   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4315   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4316                                     FixedTInfo->getTypeLoc());
4317   return FixedTInfo;
4318 }
4319 
4320 /// \brief Register the given locally-scoped extern "C" declaration so
4321 /// that it can be found later for redeclarations
4322 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,const LookupResult & Previous,Scope * S)4323 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4324                                        const LookupResult &Previous,
4325                                        Scope *S) {
4326   assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4327          "Decl is not a locally-scoped decl!");
4328   // Note that we have a locally-scoped external with this name.
4329   LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4330 
4331   if (!Previous.isSingleResult())
4332     return;
4333 
4334   NamedDecl *PrevDecl = Previous.getFoundDecl();
4335 
4336   // If there was a previous declaration of this entity, it may be in
4337   // our identifier chain. Update the identifier chain with the new
4338   // declaration.
4339   if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4340     // The previous declaration was found on the identifer resolver
4341     // chain, so remove it from its scope.
4342 
4343     if (S->isDeclScope(PrevDecl)) {
4344       // Special case for redeclarations in the SAME scope.
4345       // Because this declaration is going to be added to the identifier chain
4346       // later, we should temporarily take it OFF the chain.
4347       IdResolver.RemoveDecl(ND);
4348 
4349     } else {
4350       // Find the scope for the original declaration.
4351       while (S && !S->isDeclScope(PrevDecl))
4352         S = S->getParent();
4353     }
4354 
4355     if (S)
4356       S->RemoveDecl(PrevDecl);
4357   }
4358 }
4359 
4360 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
findLocallyScopedExternCDecl(DeclarationName Name)4361 Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4362   if (ExternalSource) {
4363     // Load locally-scoped external decls from the external source.
4364     SmallVector<NamedDecl *, 4> Decls;
4365     ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4366     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4367       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4368         = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4369       if (Pos == LocallyScopedExternCDecls.end())
4370         LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4371     }
4372   }
4373 
4374   return LocallyScopedExternCDecls.find(Name);
4375 }
4376 
4377 /// \brief Diagnose function specifiers on a declaration of an identifier that
4378 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)4379 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4380   // FIXME: We should probably indicate the identifier in question to avoid
4381   // confusion for constructs like "inline int a(), b;"
4382   if (DS.isInlineSpecified())
4383     Diag(DS.getInlineSpecLoc(),
4384          diag::err_inline_non_function);
4385 
4386   if (DS.isVirtualSpecified())
4387     Diag(DS.getVirtualSpecLoc(),
4388          diag::err_virtual_non_function);
4389 
4390   if (DS.isExplicitSpecified())
4391     Diag(DS.getExplicitSpecLoc(),
4392          diag::err_explicit_non_function);
4393 
4394   if (DS.isNoreturnSpecified())
4395     Diag(DS.getNoreturnSpecLoc(),
4396          diag::err_noreturn_non_function);
4397 }
4398 
4399 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)4400 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4401                              TypeSourceInfo *TInfo, LookupResult &Previous) {
4402   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4403   if (D.getCXXScopeSpec().isSet()) {
4404     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4405       << D.getCXXScopeSpec().getRange();
4406     D.setInvalidType();
4407     // Pretend we didn't see the scope specifier.
4408     DC = CurContext;
4409     Previous.clear();
4410   }
4411 
4412   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4413 
4414   if (D.getDeclSpec().isThreadSpecified())
4415     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4416   if (D.getDeclSpec().isConstexprSpecified())
4417     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4418       << 1;
4419 
4420   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4421     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4422       << D.getName().getSourceRange();
4423     return 0;
4424   }
4425 
4426   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4427   if (!NewTD) return 0;
4428 
4429   // Handle attributes prior to checking for duplicates in MergeVarDecl
4430   ProcessDeclAttributes(S, NewTD, D);
4431 
4432   CheckTypedefForVariablyModifiedType(S, NewTD);
4433 
4434   bool Redeclaration = D.isRedeclaration();
4435   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4436   D.setRedeclaration(Redeclaration);
4437   return ND;
4438 }
4439 
4440 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)4441 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4442   // C99 6.7.7p2: If a typedef name specifies a variably modified type
4443   // then it shall have block scope.
4444   // Note that variably modified types must be fixed before merging the decl so
4445   // that redeclarations will match.
4446   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4447   QualType T = TInfo->getType();
4448   if (T->isVariablyModifiedType()) {
4449     getCurFunction()->setHasBranchProtectedScope();
4450 
4451     if (S->getFnParent() == 0) {
4452       bool SizeIsNegative;
4453       llvm::APSInt Oversized;
4454       TypeSourceInfo *FixedTInfo =
4455         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4456                                                       SizeIsNegative,
4457                                                       Oversized);
4458       if (FixedTInfo) {
4459         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4460         NewTD->setTypeSourceInfo(FixedTInfo);
4461       } else {
4462         if (SizeIsNegative)
4463           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4464         else if (T->isVariableArrayType())
4465           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4466         else if (Oversized.getBoolValue())
4467           Diag(NewTD->getLocation(), diag::err_array_too_large)
4468             << Oversized.toString(10);
4469         else
4470           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4471         NewTD->setInvalidDecl();
4472       }
4473     }
4474   }
4475 }
4476 
4477 
4478 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4479 /// declares a typedef-name, either using the 'typedef' type specifier or via
4480 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4481 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)4482 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4483                            LookupResult &Previous, bool &Redeclaration) {
4484   // Merge the decl with the existing one if appropriate. If the decl is
4485   // in an outer scope, it isn't the same thing.
4486   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4487                        /*ExplicitInstantiationOrSpecialization=*/false);
4488   filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4489   if (!Previous.empty()) {
4490     Redeclaration = true;
4491     MergeTypedefNameDecl(NewTD, Previous);
4492   }
4493 
4494   // If this is the C FILE type, notify the AST context.
4495   if (IdentifierInfo *II = NewTD->getIdentifier())
4496     if (!NewTD->isInvalidDecl() &&
4497         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4498       if (II->isStr("FILE"))
4499         Context.setFILEDecl(NewTD);
4500       else if (II->isStr("jmp_buf"))
4501         Context.setjmp_bufDecl(NewTD);
4502       else if (II->isStr("sigjmp_buf"))
4503         Context.setsigjmp_bufDecl(NewTD);
4504       else if (II->isStr("ucontext_t"))
4505         Context.setucontext_tDecl(NewTD);
4506     }
4507 
4508   return NewTD;
4509 }
4510 
4511 /// \brief Determines whether the given declaration is an out-of-scope
4512 /// previous declaration.
4513 ///
4514 /// This routine should be invoked when name lookup has found a
4515 /// previous declaration (PrevDecl) that is not in the scope where a
4516 /// new declaration by the same name is being introduced. If the new
4517 /// declaration occurs in a local scope, previous declarations with
4518 /// linkage may still be considered previous declarations (C99
4519 /// 6.2.2p4-5, C++ [basic.link]p6).
4520 ///
4521 /// \param PrevDecl the previous declaration found by name
4522 /// lookup
4523 ///
4524 /// \param DC the context in which the new declaration is being
4525 /// declared.
4526 ///
4527 /// \returns true if PrevDecl is an out-of-scope previous declaration
4528 /// for a new delcaration with the same name.
4529 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)4530 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4531                                 ASTContext &Context) {
4532   if (!PrevDecl)
4533     return false;
4534 
4535   if (!PrevDecl->hasLinkage())
4536     return false;
4537 
4538   if (Context.getLangOpts().CPlusPlus) {
4539     // C++ [basic.link]p6:
4540     //   If there is a visible declaration of an entity with linkage
4541     //   having the same name and type, ignoring entities declared
4542     //   outside the innermost enclosing namespace scope, the block
4543     //   scope declaration declares that same entity and receives the
4544     //   linkage of the previous declaration.
4545     DeclContext *OuterContext = DC->getRedeclContext();
4546     if (!OuterContext->isFunctionOrMethod())
4547       // This rule only applies to block-scope declarations.
4548       return false;
4549 
4550     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4551     if (PrevOuterContext->isRecord())
4552       // We found a member function: ignore it.
4553       return false;
4554 
4555     // Find the innermost enclosing namespace for the new and
4556     // previous declarations.
4557     OuterContext = OuterContext->getEnclosingNamespaceContext();
4558     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4559 
4560     // The previous declaration is in a different namespace, so it
4561     // isn't the same function.
4562     if (!OuterContext->Equals(PrevOuterContext))
4563       return false;
4564   }
4565 
4566   return true;
4567 }
4568 
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)4569 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4570   CXXScopeSpec &SS = D.getCXXScopeSpec();
4571   if (!SS.isSet()) return;
4572   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4573 }
4574 
inferObjCARCLifetime(ValueDecl * decl)4575 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4576   QualType type = decl->getType();
4577   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4578   if (lifetime == Qualifiers::OCL_Autoreleasing) {
4579     // Various kinds of declaration aren't allowed to be __autoreleasing.
4580     unsigned kind = -1U;
4581     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4582       if (var->hasAttr<BlocksAttr>())
4583         kind = 0; // __block
4584       else if (!var->hasLocalStorage())
4585         kind = 1; // global
4586     } else if (isa<ObjCIvarDecl>(decl)) {
4587       kind = 3; // ivar
4588     } else if (isa<FieldDecl>(decl)) {
4589       kind = 2; // field
4590     }
4591 
4592     if (kind != -1U) {
4593       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4594         << kind;
4595     }
4596   } else if (lifetime == Qualifiers::OCL_None) {
4597     // Try to infer lifetime.
4598     if (!type->isObjCLifetimeType())
4599       return false;
4600 
4601     lifetime = type->getObjCARCImplicitLifetime();
4602     type = Context.getLifetimeQualifiedType(type, lifetime);
4603     decl->setType(type);
4604   }
4605 
4606   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4607     // Thread-local variables cannot have lifetime.
4608     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4609         var->isThreadSpecified()) {
4610       Diag(var->getLocation(), diag::err_arc_thread_ownership)
4611         << var->getType();
4612       return true;
4613     }
4614   }
4615 
4616   return false;
4617 }
4618 
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)4619 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4620   // 'weak' only applies to declarations with external linkage.
4621   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4622     if (ND.getLinkage() != ExternalLinkage) {
4623       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4624       ND.dropAttr<WeakAttr>();
4625     }
4626   }
4627   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4628     if (ND.hasExternalLinkage()) {
4629       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4630       ND.dropAttr<WeakRefAttr>();
4631     }
4632   }
4633 }
4634 
shouldConsiderLinkage(const VarDecl * VD)4635 static bool shouldConsiderLinkage(const VarDecl *VD) {
4636   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4637   if (DC->isFunctionOrMethod())
4638     return VD->hasExternalStorageAsWritten();
4639   if (DC->isFileContext())
4640     return true;
4641   if (DC->isRecord())
4642     return false;
4643   llvm_unreachable("Unexpected context");
4644 }
4645 
shouldConsiderLinkage(const FunctionDecl * FD)4646 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4647   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4648   if (DC->isFileContext() || DC->isFunctionOrMethod())
4649     return true;
4650   if (DC->isRecord())
4651     return false;
4652   llvm_unreachable("Unexpected context");
4653 }
4654 
4655 NamedDecl*
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists)4656 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4657                               TypeSourceInfo *TInfo, LookupResult &Previous,
4658                               MultiTemplateParamsArg TemplateParamLists) {
4659   QualType R = TInfo->getType();
4660   DeclarationName Name = GetNameForDeclarator(D).getName();
4661 
4662   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4663   assert(SCSpec != DeclSpec::SCS_typedef &&
4664          "Parser allowed 'typedef' as storage class VarDecl.");
4665   VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4666 
4667   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16)
4668   {
4669     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4670     // half array type (unless the cl_khr_fp16 extension is enabled).
4671     if (Context.getBaseElementType(R)->isHalfType()) {
4672       Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4673       D.setInvalidType();
4674     }
4675   }
4676 
4677   if (SCSpec == DeclSpec::SCS_mutable) {
4678     // mutable can only appear on non-static class members, so it's always
4679     // an error here
4680     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4681     D.setInvalidType();
4682     SC = SC_None;
4683   }
4684   SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4685   VarDecl::StorageClass SCAsWritten
4686     = StorageClassSpecToVarDeclStorageClass(SCSpec);
4687 
4688   IdentifierInfo *II = Name.getAsIdentifierInfo();
4689   if (!II) {
4690     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4691       << Name;
4692     return 0;
4693   }
4694 
4695   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4696 
4697   if (!DC->isRecord() && S->getFnParent() == 0) {
4698     // C99 6.9p2: The storage-class specifiers auto and register shall not
4699     // appear in the declaration specifiers in an external declaration.
4700     if (SC == SC_Auto || SC == SC_Register) {
4701 
4702       // If this is a register variable with an asm label specified, then this
4703       // is a GNU extension.
4704       if (SC == SC_Register && D.getAsmLabel())
4705         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4706       else
4707         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4708       D.setInvalidType();
4709     }
4710   }
4711 
4712   if (getLangOpts().OpenCL) {
4713     // Set up the special work-group-local storage class for variables in the
4714     // OpenCL __local address space.
4715     if (R.getAddressSpace() == LangAS::opencl_local) {
4716       SC = SC_OpenCLWorkGroupLocal;
4717       SCAsWritten = SC_OpenCLWorkGroupLocal;
4718     }
4719 
4720     // OpenCL v1.2 s6.9.b p4:
4721     // The sampler type cannot be used with the __local and __global address
4722     // space qualifiers.
4723     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4724       R.getAddressSpace() == LangAS::opencl_global)) {
4725       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4726     }
4727 
4728     // OpenCL 1.2 spec, p6.9 r:
4729     // The event type cannot be used to declare a program scope variable.
4730     // The event type cannot be used with the __local, __constant and __global
4731     // address space qualifiers.
4732     if (R->isEventT()) {
4733       if (S->getParent() == 0) {
4734         Diag(D.getLocStart(), diag::err_event_t_global_var);
4735         D.setInvalidType();
4736       }
4737 
4738       if (R.getAddressSpace()) {
4739         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4740         D.setInvalidType();
4741       }
4742     }
4743   }
4744 
4745   bool isExplicitSpecialization = false;
4746   VarDecl *NewVD;
4747   if (!getLangOpts().CPlusPlus) {
4748     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4749                             D.getIdentifierLoc(), II,
4750                             R, TInfo, SC, SCAsWritten);
4751 
4752     if (D.isInvalidType())
4753       NewVD->setInvalidDecl();
4754   } else {
4755     if (DC->isRecord() && !CurContext->isRecord()) {
4756       // This is an out-of-line definition of a static data member.
4757       if (SC == SC_Static) {
4758         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4759              diag::err_static_out_of_line)
4760           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4761       } else if (SC == SC_None)
4762         SC = SC_Static;
4763     }
4764     if (SC == SC_Static && CurContext->isRecord()) {
4765       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4766         if (RD->isLocalClass())
4767           Diag(D.getIdentifierLoc(),
4768                diag::err_static_data_member_not_allowed_in_local_class)
4769             << Name << RD->getDeclName();
4770 
4771         // C++98 [class.union]p1: If a union contains a static data member,
4772         // the program is ill-formed. C++11 drops this restriction.
4773         if (RD->isUnion())
4774           Diag(D.getIdentifierLoc(),
4775                getLangOpts().CPlusPlus11
4776                  ? diag::warn_cxx98_compat_static_data_member_in_union
4777                  : diag::ext_static_data_member_in_union) << Name;
4778         // We conservatively disallow static data members in anonymous structs.
4779         else if (!RD->getDeclName())
4780           Diag(D.getIdentifierLoc(),
4781                diag::err_static_data_member_not_allowed_in_anon_struct)
4782             << Name << RD->isUnion();
4783       }
4784     }
4785 
4786     // Match up the template parameter lists with the scope specifier, then
4787     // determine whether we have a template or a template specialization.
4788     isExplicitSpecialization = false;
4789     bool Invalid = false;
4790     if (TemplateParameterList *TemplateParams
4791         = MatchTemplateParametersToScopeSpecifier(
4792                                   D.getDeclSpec().getLocStart(),
4793                                                   D.getIdentifierLoc(),
4794                                                   D.getCXXScopeSpec(),
4795                                                   TemplateParamLists.data(),
4796                                                   TemplateParamLists.size(),
4797                                                   /*never a friend*/ false,
4798                                                   isExplicitSpecialization,
4799                                                   Invalid)) {
4800       if (TemplateParams->size() > 0) {
4801         // There is no such thing as a variable template.
4802         Diag(D.getIdentifierLoc(), diag::err_template_variable)
4803           << II
4804           << SourceRange(TemplateParams->getTemplateLoc(),
4805                          TemplateParams->getRAngleLoc());
4806         return 0;
4807       } else {
4808         // There is an extraneous 'template<>' for this variable. Complain
4809         // about it, but allow the declaration of the variable.
4810         Diag(TemplateParams->getTemplateLoc(),
4811              diag::err_template_variable_noparams)
4812           << II
4813           << SourceRange(TemplateParams->getTemplateLoc(),
4814                          TemplateParams->getRAngleLoc());
4815       }
4816     }
4817 
4818     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4819                             D.getIdentifierLoc(), II,
4820                             R, TInfo, SC, SCAsWritten);
4821 
4822     // If this decl has an auto type in need of deduction, make a note of the
4823     // Decl so we can diagnose uses of it in its own initializer.
4824     if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4825         R->getContainedAutoType())
4826       ParsingInitForAutoVars.insert(NewVD);
4827 
4828     if (D.isInvalidType() || Invalid)
4829       NewVD->setInvalidDecl();
4830 
4831     SetNestedNameSpecifier(NewVD, D);
4832 
4833     if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4834       NewVD->setTemplateParameterListsInfo(Context,
4835                                            TemplateParamLists.size(),
4836                                            TemplateParamLists.data());
4837     }
4838 
4839     if (D.getDeclSpec().isConstexprSpecified())
4840       NewVD->setConstexpr(true);
4841   }
4842 
4843   // Set the lexical context. If the declarator has a C++ scope specifier, the
4844   // lexical context will be different from the semantic context.
4845   NewVD->setLexicalDeclContext(CurContext);
4846 
4847   if (D.getDeclSpec().isThreadSpecified()) {
4848     if (NewVD->hasLocalStorage())
4849       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4850     else if (!Context.getTargetInfo().isTLSSupported())
4851       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4852     else
4853       NewVD->setThreadSpecified(true);
4854   }
4855 
4856   if (D.getDeclSpec().isModulePrivateSpecified()) {
4857     if (isExplicitSpecialization)
4858       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4859         << 2
4860         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4861     else if (NewVD->hasLocalStorage())
4862       Diag(NewVD->getLocation(), diag::err_module_private_local)
4863         << 0 << NewVD->getDeclName()
4864         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4865         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4866     else
4867       NewVD->setModulePrivate();
4868   }
4869 
4870   // Handle attributes prior to checking for duplicates in MergeVarDecl
4871   ProcessDeclAttributes(S, NewVD, D);
4872 
4873   if (NewVD->hasAttrs())
4874     CheckAlignasUnderalignment(NewVD);
4875 
4876   if (getLangOpts().CUDA) {
4877     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4878     // storage [duration]."
4879     if (SC == SC_None && S->getFnParent() != 0 &&
4880         (NewVD->hasAttr<CUDASharedAttr>() ||
4881          NewVD->hasAttr<CUDAConstantAttr>())) {
4882       NewVD->setStorageClass(SC_Static);
4883       NewVD->setStorageClassAsWritten(SC_Static);
4884     }
4885   }
4886 
4887   // In auto-retain/release, infer strong retension for variables of
4888   // retainable type.
4889   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4890     NewVD->setInvalidDecl();
4891 
4892   // Handle GNU asm-label extension (encoded as an attribute).
4893   if (Expr *E = (Expr*)D.getAsmLabel()) {
4894     // The parser guarantees this is a string.
4895     StringLiteral *SE = cast<StringLiteral>(E);
4896     StringRef Label = SE->getString();
4897     if (S->getFnParent() != 0) {
4898       switch (SC) {
4899       case SC_None:
4900       case SC_Auto:
4901         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4902         break;
4903       case SC_Register:
4904         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4905           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4906         break;
4907       case SC_Static:
4908       case SC_Extern:
4909       case SC_PrivateExtern:
4910       case SC_OpenCLWorkGroupLocal:
4911         break;
4912       }
4913     }
4914 
4915     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4916                                                 Context, Label));
4917   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4918     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4919       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4920     if (I != ExtnameUndeclaredIdentifiers.end()) {
4921       NewVD->addAttr(I->second);
4922       ExtnameUndeclaredIdentifiers.erase(I);
4923     }
4924   }
4925 
4926   // Diagnose shadowed variables before filtering for scope.
4927   if (!D.getCXXScopeSpec().isSet())
4928     CheckShadow(S, NewVD, Previous);
4929 
4930   // Don't consider existing declarations that are in a different
4931   // scope and are out-of-semantic-context declarations (if the new
4932   // declaration has linkage).
4933   FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
4934                        isExplicitSpecialization);
4935 
4936   if (!getLangOpts().CPlusPlus) {
4937     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4938   } else {
4939     // Merge the decl with the existing one if appropriate.
4940     if (!Previous.empty()) {
4941       if (Previous.isSingleResult() &&
4942           isa<FieldDecl>(Previous.getFoundDecl()) &&
4943           D.getCXXScopeSpec().isSet()) {
4944         // The user tried to define a non-static data member
4945         // out-of-line (C++ [dcl.meaning]p1).
4946         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4947           << D.getCXXScopeSpec().getRange();
4948         Previous.clear();
4949         NewVD->setInvalidDecl();
4950       }
4951     } else if (D.getCXXScopeSpec().isSet()) {
4952       // No previous declaration in the qualifying scope.
4953       Diag(D.getIdentifierLoc(), diag::err_no_member)
4954         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4955         << D.getCXXScopeSpec().getRange();
4956       NewVD->setInvalidDecl();
4957     }
4958 
4959     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4960 
4961     // This is an explicit specialization of a static data member. Check it.
4962     if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4963         CheckMemberSpecialization(NewVD, Previous))
4964       NewVD->setInvalidDecl();
4965   }
4966 
4967   ProcessPragmaWeak(S, NewVD);
4968   checkAttributesAfterMerging(*this, *NewVD);
4969 
4970   // If this is a locally-scoped extern C variable, update the map of
4971   // such variables.
4972   if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4973       !NewVD->isInvalidDecl())
4974     RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4975 
4976   return NewVD;
4977 }
4978 
4979 /// \brief Diagnose variable or built-in function shadowing.  Implements
4980 /// -Wshadow.
4981 ///
4982 /// This method is called whenever a VarDecl is added to a "useful"
4983 /// scope.
4984 ///
4985 /// \param S the scope in which the shadowing name is being declared
4986 /// \param R the lookup of the name
4987 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)4988 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4989   // Return if warning is ignored.
4990   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4991         DiagnosticsEngine::Ignored)
4992     return;
4993 
4994   // Don't diagnose declarations at file scope.
4995   if (D->hasGlobalStorage())
4996     return;
4997 
4998   DeclContext *NewDC = D->getDeclContext();
4999 
5000   // Only diagnose if we're shadowing an unambiguous field or variable.
5001   if (R.getResultKind() != LookupResult::Found)
5002     return;
5003 
5004   NamedDecl* ShadowedDecl = R.getFoundDecl();
5005   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5006     return;
5007 
5008   // Fields are not shadowed by variables in C++ static methods.
5009   if (isa<FieldDecl>(ShadowedDecl))
5010     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5011       if (MD->isStatic())
5012         return;
5013 
5014   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5015     if (shadowedVar->isExternC()) {
5016       // For shadowing external vars, make sure that we point to the global
5017       // declaration, not a locally scoped extern declaration.
5018       for (VarDecl::redecl_iterator
5019              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5020            I != E; ++I)
5021         if (I->isFileVarDecl()) {
5022           ShadowedDecl = *I;
5023           break;
5024         }
5025     }
5026 
5027   DeclContext *OldDC = ShadowedDecl->getDeclContext();
5028 
5029   // Only warn about certain kinds of shadowing for class members.
5030   if (NewDC && NewDC->isRecord()) {
5031     // In particular, don't warn about shadowing non-class members.
5032     if (!OldDC->isRecord())
5033       return;
5034 
5035     // TODO: should we warn about static data members shadowing
5036     // static data members from base classes?
5037 
5038     // TODO: don't diagnose for inaccessible shadowed members.
5039     // This is hard to do perfectly because we might friend the
5040     // shadowing context, but that's just a false negative.
5041   }
5042 
5043   // Determine what kind of declaration we're shadowing.
5044   unsigned Kind;
5045   if (isa<RecordDecl>(OldDC)) {
5046     if (isa<FieldDecl>(ShadowedDecl))
5047       Kind = 3; // field
5048     else
5049       Kind = 2; // static data member
5050   } else if (OldDC->isFileContext())
5051     Kind = 1; // global
5052   else
5053     Kind = 0; // local
5054 
5055   DeclarationName Name = R.getLookupName();
5056 
5057   // Emit warning and note.
5058   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5059   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5060 }
5061 
5062 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)5063 void Sema::CheckShadow(Scope *S, VarDecl *D) {
5064   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5065         DiagnosticsEngine::Ignored)
5066     return;
5067 
5068   LookupResult R(*this, D->getDeclName(), D->getLocation(),
5069                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5070   LookupName(R, S);
5071   CheckShadow(S, D, R);
5072 }
5073 
5074 template<typename T>
mayConflictWithNonVisibleExternC(const T * ND)5075 static bool mayConflictWithNonVisibleExternC(const T *ND) {
5076   const DeclContext *DC = ND->getDeclContext();
5077   if (DC->getRedeclContext()->isTranslationUnit())
5078     return true;
5079 
5080   // We know that is the first decl we see, other than function local
5081   // extern C ones. If this is C++ and the decl is not in a extern C context
5082   // it cannot have C language linkage. Avoid calling isExternC in that case.
5083   // We need to this because of code like
5084   //
5085   // namespace { struct bar {}; }
5086   // auto foo = bar();
5087   //
5088   // This code runs before the init of foo is set, and therefore before
5089   // the type of foo is known. Not knowing the type we cannot know its linkage
5090   // unless it is in an extern C block.
5091   if (!DC->isExternCContext()) {
5092     const ASTContext &Context = ND->getASTContext();
5093     if (Context.getLangOpts().CPlusPlus)
5094       return false;
5095   }
5096 
5097   return ND->isExternC();
5098 }
5099 
5100 /// \brief Perform semantic checking on a newly-created variable
5101 /// declaration.
5102 ///
5103 /// This routine performs all of the type-checking required for a
5104 /// variable declaration once it has been built. It is used both to
5105 /// check variables after they have been parsed and their declarators
5106 /// have been translated into a declaration, and to check variables
5107 /// that have been instantiated from a template.
5108 ///
5109 /// Sets NewVD->isInvalidDecl() if an error was encountered.
5110 ///
5111 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)5112 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5113                                     LookupResult &Previous) {
5114   // If the decl is already known invalid, don't check it.
5115   if (NewVD->isInvalidDecl())
5116     return false;
5117 
5118   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5119   QualType T = TInfo->getType();
5120 
5121   if (T->isObjCObjectType()) {
5122     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5123       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5124     T = Context.getObjCObjectPointerType(T);
5125     NewVD->setType(T);
5126   }
5127 
5128   // Emit an error if an address space was applied to decl with local storage.
5129   // This includes arrays of objects with address space qualifiers, but not
5130   // automatic variables that point to other address spaces.
5131   // ISO/IEC TR 18037 S5.1.2
5132   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5133     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5134     NewVD->setInvalidDecl();
5135     return false;
5136   }
5137 
5138   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5139   // scope.
5140   if ((getLangOpts().OpenCLVersion >= 120)
5141       && NewVD->isStaticLocal()) {
5142     Diag(NewVD->getLocation(), diag::err_static_function_scope);
5143     NewVD->setInvalidDecl();
5144     return false;
5145   }
5146 
5147   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5148       && !NewVD->hasAttr<BlocksAttr>()) {
5149     if (getLangOpts().getGC() != LangOptions::NonGC)
5150       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5151     else {
5152       assert(!getLangOpts().ObjCAutoRefCount);
5153       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5154     }
5155   }
5156 
5157   bool isVM = T->isVariablyModifiedType();
5158   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5159       NewVD->hasAttr<BlocksAttr>())
5160     getCurFunction()->setHasBranchProtectedScope();
5161 
5162   if ((isVM && NewVD->hasLinkage()) ||
5163       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5164     bool SizeIsNegative;
5165     llvm::APSInt Oversized;
5166     TypeSourceInfo *FixedTInfo =
5167       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5168                                                     SizeIsNegative, Oversized);
5169     if (FixedTInfo == 0 && T->isVariableArrayType()) {
5170       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5171       // FIXME: This won't give the correct result for
5172       // int a[10][n];
5173       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5174 
5175       if (NewVD->isFileVarDecl())
5176         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5177         << SizeRange;
5178       else if (NewVD->getStorageClass() == SC_Static)
5179         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5180         << SizeRange;
5181       else
5182         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5183         << SizeRange;
5184       NewVD->setInvalidDecl();
5185       return false;
5186     }
5187 
5188     if (FixedTInfo == 0) {
5189       if (NewVD->isFileVarDecl())
5190         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5191       else
5192         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5193       NewVD->setInvalidDecl();
5194       return false;
5195     }
5196 
5197     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5198     NewVD->setType(FixedTInfo->getType());
5199     NewVD->setTypeSourceInfo(FixedTInfo);
5200   }
5201 
5202   if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5203     // Since we did not find anything by this name, look for a non-visible
5204     // extern "C" declaration with the same name.
5205     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5206       = findLocallyScopedExternCDecl(NewVD->getDeclName());
5207     if (Pos != LocallyScopedExternCDecls.end())
5208       Previous.addDecl(Pos->second);
5209   }
5210 
5211   // Filter out any non-conflicting previous declarations.
5212   filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5213 
5214   if (T->isVoidType() && !NewVD->hasExternalStorage()) {
5215     Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5216       << T;
5217     NewVD->setInvalidDecl();
5218     return false;
5219   }
5220 
5221   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5222     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5223     NewVD->setInvalidDecl();
5224     return false;
5225   }
5226 
5227   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5228     Diag(NewVD->getLocation(), diag::err_block_on_vm);
5229     NewVD->setInvalidDecl();
5230     return false;
5231   }
5232 
5233   if (NewVD->isConstexpr() && !T->isDependentType() &&
5234       RequireLiteralType(NewVD->getLocation(), T,
5235                          diag::err_constexpr_var_non_literal)) {
5236     NewVD->setInvalidDecl();
5237     return false;
5238   }
5239 
5240   if (!Previous.empty()) {
5241     MergeVarDecl(NewVD, Previous);
5242     return true;
5243   }
5244   return false;
5245 }
5246 
5247 /// \brief Data used with FindOverriddenMethod
5248 struct FindOverriddenMethodData {
5249   Sema *S;
5250   CXXMethodDecl *Method;
5251 };
5252 
5253 /// \brief Member lookup function that determines whether a given C++
5254 /// method overrides a method in a base class, to be used with
5255 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)5256 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5257                                  CXXBasePath &Path,
5258                                  void *UserData) {
5259   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5260 
5261   FindOverriddenMethodData *Data
5262     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5263 
5264   DeclarationName Name = Data->Method->getDeclName();
5265 
5266   // FIXME: Do we care about other names here too?
5267   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5268     // We really want to find the base class destructor here.
5269     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5270     CanQualType CT = Data->S->Context.getCanonicalType(T);
5271 
5272     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5273   }
5274 
5275   for (Path.Decls = BaseRecord->lookup(Name);
5276        !Path.Decls.empty();
5277        Path.Decls = Path.Decls.slice(1)) {
5278     NamedDecl *D = Path.Decls.front();
5279     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5280       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5281         return true;
5282     }
5283   }
5284 
5285   return false;
5286 }
5287 
5288 namespace {
5289   enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5290 }
5291 /// \brief Report an error regarding overriding, along with any relevant
5292 /// overriden methods.
5293 ///
5294 /// \param DiagID the primary error to report.
5295 /// \param MD the overriding method.
5296 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)5297 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5298                             OverrideErrorKind OEK = OEK_All) {
5299   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5300   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5301                                       E = MD->end_overridden_methods();
5302        I != E; ++I) {
5303     // This check (& the OEK parameter) could be replaced by a predicate, but
5304     // without lambdas that would be overkill. This is still nicer than writing
5305     // out the diag loop 3 times.
5306     if ((OEK == OEK_All) ||
5307         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5308         (OEK == OEK_Deleted && (*I)->isDeleted()))
5309       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5310   }
5311 }
5312 
5313 /// AddOverriddenMethods - See if a method overrides any in the base classes,
5314 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)5315 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5316   // Look for virtual methods in base classes that this method might override.
5317   CXXBasePaths Paths;
5318   FindOverriddenMethodData Data;
5319   Data.Method = MD;
5320   Data.S = this;
5321   bool hasDeletedOverridenMethods = false;
5322   bool hasNonDeletedOverridenMethods = false;
5323   bool AddedAny = false;
5324   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5325     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5326          E = Paths.found_decls_end(); I != E; ++I) {
5327       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5328         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5329         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5330             !CheckOverridingFunctionAttributes(MD, OldMD) &&
5331             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5332             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5333           hasDeletedOverridenMethods |= OldMD->isDeleted();
5334           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5335           AddedAny = true;
5336         }
5337       }
5338     }
5339   }
5340 
5341   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5342     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5343   }
5344   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5345     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5346   }
5347 
5348   return AddedAny;
5349 }
5350 
5351 namespace {
5352   // Struct for holding all of the extra arguments needed by
5353   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5354   struct ActOnFDArgs {
5355     Scope *S;
5356     Declarator &D;
5357     MultiTemplateParamsArg TemplateParamLists;
5358     bool AddToScope;
5359   };
5360 }
5361 
5362 namespace {
5363 
5364 // Callback to only accept typo corrections that have a non-zero edit distance.
5365 // Also only accept corrections that have the same parent decl.
5366 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5367  public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)5368   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5369                             CXXRecordDecl *Parent)
5370       : Context(Context), OriginalFD(TypoFD),
5371         ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5372 
ValidateCandidate(const TypoCorrection & candidate)5373   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5374     if (candidate.getEditDistance() == 0)
5375       return false;
5376 
5377     SmallVector<unsigned, 1> MismatchedParams;
5378     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5379                                           CDeclEnd = candidate.end();
5380          CDecl != CDeclEnd; ++CDecl) {
5381       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5382 
5383       if (FD && !FD->hasBody() &&
5384           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5385         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5386           CXXRecordDecl *Parent = MD->getParent();
5387           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5388             return true;
5389         } else if (!ExpectedParent) {
5390           return true;
5391         }
5392       }
5393     }
5394 
5395     return false;
5396   }
5397 
5398  private:
5399   ASTContext &Context;
5400   FunctionDecl *OriginalFD;
5401   CXXRecordDecl *ExpectedParent;
5402 };
5403 
5404 }
5405 
5406 /// \brief Generate diagnostics for an invalid function redeclaration.
5407 ///
5408 /// This routine handles generating the diagnostic messages for an invalid
5409 /// function redeclaration, including finding possible similar declarations
5410 /// or performing typo correction if there are no previous declarations with
5411 /// the same name.
5412 ///
5413 /// Returns a NamedDecl iff typo correction was performed and substituting in
5414 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs)5415 static NamedDecl* DiagnoseInvalidRedeclaration(
5416     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5417     ActOnFDArgs &ExtraArgs) {
5418   NamedDecl *Result = NULL;
5419   DeclarationName Name = NewFD->getDeclName();
5420   DeclContext *NewDC = NewFD->getDeclContext();
5421   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5422                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5423   SmallVector<unsigned, 1> MismatchedParams;
5424   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5425   TypoCorrection Correction;
5426   bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5427                        ExtraArgs.D.getDeclSpec().isFriendSpecified());
5428   unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5429                                   : diag::err_member_def_does_not_match;
5430 
5431   NewFD->setInvalidDecl();
5432   SemaRef.LookupQualifiedName(Prev, NewDC);
5433   assert(!Prev.isAmbiguous() &&
5434          "Cannot have an ambiguity in previous-declaration lookup");
5435   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5436   DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5437                                       MD ? MD->getParent() : 0);
5438   if (!Prev.empty()) {
5439     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5440          Func != FuncEnd; ++Func) {
5441       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5442       if (FD &&
5443           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5444         // Add 1 to the index so that 0 can mean the mismatch didn't
5445         // involve a parameter
5446         unsigned ParamNum =
5447             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5448         NearMatches.push_back(std::make_pair(FD, ParamNum));
5449       }
5450     }
5451   // If the qualified name lookup yielded nothing, try typo correction
5452   } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5453                                          Prev.getLookupKind(), 0, 0,
5454                                          Validator, NewDC))) {
5455     // Trap errors.
5456     Sema::SFINAETrap Trap(SemaRef);
5457 
5458     // Set up everything for the call to ActOnFunctionDeclarator
5459     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5460                               ExtraArgs.D.getIdentifierLoc());
5461     Previous.clear();
5462     Previous.setLookupName(Correction.getCorrection());
5463     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5464                                     CDeclEnd = Correction.end();
5465          CDecl != CDeclEnd; ++CDecl) {
5466       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5467       if (FD && !FD->hasBody() &&
5468           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5469         Previous.addDecl(FD);
5470       }
5471     }
5472     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5473     // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5474     // pieces need to verify the typo-corrected C++ declaraction and hopefully
5475     // eliminate the need for the parameter pack ExtraArgs.
5476     Result = SemaRef.ActOnFunctionDeclarator(
5477         ExtraArgs.S, ExtraArgs.D,
5478         Correction.getCorrectionDecl()->getDeclContext(),
5479         NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5480         ExtraArgs.AddToScope);
5481     if (Trap.hasErrorOccurred()) {
5482       // Pretend the typo correction never occurred
5483       ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5484                                 ExtraArgs.D.getIdentifierLoc());
5485       ExtraArgs.D.setRedeclaration(wasRedeclaration);
5486       Previous.clear();
5487       Previous.setLookupName(Name);
5488       Result = NULL;
5489     } else {
5490       for (LookupResult::iterator Func = Previous.begin(),
5491                                FuncEnd = Previous.end();
5492            Func != FuncEnd; ++Func) {
5493         if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5494           NearMatches.push_back(std::make_pair(FD, 0));
5495       }
5496     }
5497     if (NearMatches.empty()) {
5498       // Ignore the correction if it didn't yield any close FunctionDecl matches
5499       Correction = TypoCorrection();
5500     } else {
5501       DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5502                              : diag::err_member_def_does_not_match_suggest;
5503     }
5504   }
5505 
5506   if (Correction) {
5507     // FIXME: use Correction.getCorrectionRange() instead of computing the range
5508     // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5509     // turn causes the correction to fully qualify the name. If we fix
5510     // CorrectTypo to minimally qualify then this change should be good.
5511     SourceRange FixItLoc(NewFD->getLocation());
5512     CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5513     if (Correction.getCorrectionSpecifier() && SS.isValid())
5514       FixItLoc.setBegin(SS.getBeginLoc());
5515     SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5516         << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5517         << FixItHint::CreateReplacement(
5518             FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5519   } else {
5520     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5521         << Name << NewDC << NewFD->getLocation();
5522   }
5523 
5524   bool NewFDisConst = false;
5525   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5526     NewFDisConst = NewMD->isConst();
5527 
5528   for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5529        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5530        NearMatch != NearMatchEnd; ++NearMatch) {
5531     FunctionDecl *FD = NearMatch->first;
5532     bool FDisConst = false;
5533     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5534       FDisConst = MD->isConst();
5535 
5536     if (unsigned Idx = NearMatch->second) {
5537       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5538       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5539       if (Loc.isInvalid()) Loc = FD->getLocation();
5540       SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5541           << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5542     } else if (Correction) {
5543       SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5544           << Correction.getQuoted(SemaRef.getLangOpts());
5545     } else if (FDisConst != NewFDisConst) {
5546       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5547           << NewFDisConst << FD->getSourceRange().getEnd();
5548     } else
5549       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5550   }
5551   return Result;
5552 }
5553 
getFunctionStorageClass(Sema & SemaRef,Declarator & D)5554 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5555                                                           Declarator &D) {
5556   switch (D.getDeclSpec().getStorageClassSpec()) {
5557   default: llvm_unreachable("Unknown storage class!");
5558   case DeclSpec::SCS_auto:
5559   case DeclSpec::SCS_register:
5560   case DeclSpec::SCS_mutable:
5561     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5562                  diag::err_typecheck_sclass_func);
5563     D.setInvalidType();
5564     break;
5565   case DeclSpec::SCS_unspecified: break;
5566   case DeclSpec::SCS_extern: return SC_Extern;
5567   case DeclSpec::SCS_static: {
5568     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5569       // C99 6.7.1p5:
5570       //   The declaration of an identifier for a function that has
5571       //   block scope shall have no explicit storage-class specifier
5572       //   other than extern
5573       // See also (C++ [dcl.stc]p4).
5574       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5575                    diag::err_static_block_func);
5576       break;
5577     } else
5578       return SC_Static;
5579   }
5580   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5581   }
5582 
5583   // No explicit storage class has already been returned
5584   return SC_None;
5585 }
5586 
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,FunctionDecl::StorageClass SC,bool & IsVirtualOkay)5587 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5588                                            DeclContext *DC, QualType &R,
5589                                            TypeSourceInfo *TInfo,
5590                                            FunctionDecl::StorageClass SC,
5591                                            bool &IsVirtualOkay) {
5592   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5593   DeclarationName Name = NameInfo.getName();
5594 
5595   FunctionDecl *NewFD = 0;
5596   bool isInline = D.getDeclSpec().isInlineSpecified();
5597   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5598   FunctionDecl::StorageClass SCAsWritten
5599     = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5600 
5601   if (!SemaRef.getLangOpts().CPlusPlus) {
5602     // Determine whether the function was written with a
5603     // prototype. This true when:
5604     //   - there is a prototype in the declarator, or
5605     //   - the type R of the function is some kind of typedef or other reference
5606     //     to a type name (which eventually refers to a function type).
5607     bool HasPrototype =
5608       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5609       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5610 
5611     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5612                                  D.getLocStart(), NameInfo, R,
5613                                  TInfo, SC, SCAsWritten, isInline,
5614                                  HasPrototype);
5615     if (D.isInvalidType())
5616       NewFD->setInvalidDecl();
5617 
5618     // Set the lexical context.
5619     NewFD->setLexicalDeclContext(SemaRef.CurContext);
5620 
5621     return NewFD;
5622   }
5623 
5624   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5625   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5626 
5627   // Check that the return type is not an abstract class type.
5628   // For record types, this is done by the AbstractClassUsageDiagnoser once
5629   // the class has been completely parsed.
5630   if (!DC->isRecord() &&
5631       SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5632                                      R->getAs<FunctionType>()->getResultType(),
5633                                      diag::err_abstract_type_in_decl,
5634                                      SemaRef.AbstractReturnType))
5635     D.setInvalidType();
5636 
5637   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5638     // This is a C++ constructor declaration.
5639     assert(DC->isRecord() &&
5640            "Constructors can only be declared in a member context");
5641 
5642     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5643     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5644                                       D.getLocStart(), NameInfo,
5645                                       R, TInfo, isExplicit, isInline,
5646                                       /*isImplicitlyDeclared=*/false,
5647                                       isConstexpr);
5648 
5649   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5650     // This is a C++ destructor declaration.
5651     if (DC->isRecord()) {
5652       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5653       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5654       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5655                                         SemaRef.Context, Record,
5656                                         D.getLocStart(),
5657                                         NameInfo, R, TInfo, isInline,
5658                                         /*isImplicitlyDeclared=*/false);
5659 
5660       // If the class is complete, then we now create the implicit exception
5661       // specification. If the class is incomplete or dependent, we can't do
5662       // it yet.
5663       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5664           Record->getDefinition() && !Record->isBeingDefined() &&
5665           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5666         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5667       }
5668 
5669       IsVirtualOkay = true;
5670       return NewDD;
5671 
5672     } else {
5673       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5674       D.setInvalidType();
5675 
5676       // Create a FunctionDecl to satisfy the function definition parsing
5677       // code path.
5678       return FunctionDecl::Create(SemaRef.Context, DC,
5679                                   D.getLocStart(),
5680                                   D.getIdentifierLoc(), Name, R, TInfo,
5681                                   SC, SCAsWritten, isInline,
5682                                   /*hasPrototype=*/true, isConstexpr);
5683     }
5684 
5685   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5686     if (!DC->isRecord()) {
5687       SemaRef.Diag(D.getIdentifierLoc(),
5688            diag::err_conv_function_not_member);
5689       return 0;
5690     }
5691 
5692     SemaRef.CheckConversionDeclarator(D, R, SC);
5693     IsVirtualOkay = true;
5694     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5695                                      D.getLocStart(), NameInfo,
5696                                      R, TInfo, isInline, isExplicit,
5697                                      isConstexpr, SourceLocation());
5698 
5699   } else if (DC->isRecord()) {
5700     // If the name of the function is the same as the name of the record,
5701     // then this must be an invalid constructor that has a return type.
5702     // (The parser checks for a return type and makes the declarator a
5703     // constructor if it has no return type).
5704     if (Name.getAsIdentifierInfo() &&
5705         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5706       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5707         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5708         << SourceRange(D.getIdentifierLoc());
5709       return 0;
5710     }
5711 
5712     bool isStatic = SC == SC_Static;
5713 
5714     // [class.free]p1:
5715     // Any allocation function for a class T is a static member
5716     // (even if not explicitly declared static).
5717     if (Name.getCXXOverloadedOperator() == OO_New ||
5718         Name.getCXXOverloadedOperator() == OO_Array_New)
5719       isStatic = true;
5720 
5721     // [class.free]p6 Any deallocation function for a class X is a static member
5722     // (even if not explicitly declared static).
5723     if (Name.getCXXOverloadedOperator() == OO_Delete ||
5724         Name.getCXXOverloadedOperator() == OO_Array_Delete)
5725       isStatic = true;
5726 
5727     IsVirtualOkay = !isStatic;
5728 
5729     // This is a C++ method declaration.
5730     return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5731                                  D.getLocStart(), NameInfo, R,
5732                                  TInfo, isStatic, SCAsWritten, isInline,
5733                                  isConstexpr, SourceLocation());
5734 
5735   } else {
5736     // Determine whether the function was written with a
5737     // prototype. This true when:
5738     //   - we're in C++ (where every function has a prototype),
5739     return FunctionDecl::Create(SemaRef.Context, DC,
5740                                 D.getLocStart(),
5741                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5742                                 true/*HasPrototype*/, isConstexpr);
5743   }
5744 }
5745 
checkVoidParamDecl(ParmVarDecl * Param)5746 void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5747   // In C++, the empty parameter-type-list must be spelled "void"; a
5748   // typedef of void is not permitted.
5749   if (getLangOpts().CPlusPlus &&
5750       Param->getType().getUnqualifiedType() != Context.VoidTy) {
5751     bool IsTypeAlias = false;
5752     if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5753       IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5754     else if (const TemplateSpecializationType *TST =
5755                Param->getType()->getAs<TemplateSpecializationType>())
5756       IsTypeAlias = TST->isTypeAlias();
5757     Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5758       << IsTypeAlias;
5759   }
5760 }
5761 
5762 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)5763 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5764                               TypeSourceInfo *TInfo, LookupResult &Previous,
5765                               MultiTemplateParamsArg TemplateParamLists,
5766                               bool &AddToScope) {
5767   QualType R = TInfo->getType();
5768 
5769   assert(R.getTypePtr()->isFunctionType());
5770 
5771   // TODO: consider using NameInfo for diagnostic.
5772   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5773   DeclarationName Name = NameInfo.getName();
5774   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5775 
5776   if (D.getDeclSpec().isThreadSpecified())
5777     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5778 
5779   // Do not allow returning a objc interface by-value.
5780   if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5781     Diag(D.getIdentifierLoc(),
5782          diag::err_object_cannot_be_passed_returned_by_value) << 0
5783     << R->getAs<FunctionType>()->getResultType()
5784     << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5785 
5786     QualType T = R->getAs<FunctionType>()->getResultType();
5787     T = Context.getObjCObjectPointerType(T);
5788     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5789       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5790       R = Context.getFunctionType(T,
5791                                   ArrayRef<QualType>(FPT->arg_type_begin(),
5792                                                      FPT->getNumArgs()),
5793                                   EPI);
5794     }
5795     else if (isa<FunctionNoProtoType>(R))
5796       R = Context.getFunctionNoProtoType(T);
5797   }
5798 
5799   bool isFriend = false;
5800   FunctionTemplateDecl *FunctionTemplate = 0;
5801   bool isExplicitSpecialization = false;
5802   bool isFunctionTemplateSpecialization = false;
5803 
5804   bool isDependentClassScopeExplicitSpecialization = false;
5805   bool HasExplicitTemplateArgs = false;
5806   TemplateArgumentListInfo TemplateArgs;
5807 
5808   bool isVirtualOkay = false;
5809 
5810   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5811                                               isVirtualOkay);
5812   if (!NewFD) return 0;
5813 
5814   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5815     NewFD->setTopLevelDeclInObjCContainer();
5816 
5817   if (getLangOpts().CPlusPlus) {
5818     bool isInline = D.getDeclSpec().isInlineSpecified();
5819     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5820     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5821     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5822     isFriend = D.getDeclSpec().isFriendSpecified();
5823     if (isFriend && !isInline && D.isFunctionDefinition()) {
5824       // C++ [class.friend]p5
5825       //   A function can be defined in a friend declaration of a
5826       //   class . . . . Such a function is implicitly inline.
5827       NewFD->setImplicitlyInline();
5828     }
5829 
5830     // If this is a method defined in an __interface, and is not a constructor
5831     // or an overloaded operator, then set the pure flag (isVirtual will already
5832     // return true).
5833     if (const CXXRecordDecl *Parent =
5834           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5835       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5836         NewFD->setPure(true);
5837     }
5838 
5839     SetNestedNameSpecifier(NewFD, D);
5840     isExplicitSpecialization = false;
5841     isFunctionTemplateSpecialization = false;
5842     if (D.isInvalidType())
5843       NewFD->setInvalidDecl();
5844 
5845     // Set the lexical context. If the declarator has a C++
5846     // scope specifier, or is the object of a friend declaration, the
5847     // lexical context will be different from the semantic context.
5848     NewFD->setLexicalDeclContext(CurContext);
5849 
5850     // Match up the template parameter lists with the scope specifier, then
5851     // determine whether we have a template or a template specialization.
5852     bool Invalid = false;
5853     if (TemplateParameterList *TemplateParams
5854           = MatchTemplateParametersToScopeSpecifier(
5855                                   D.getDeclSpec().getLocStart(),
5856                                   D.getIdentifierLoc(),
5857                                   D.getCXXScopeSpec(),
5858                                   TemplateParamLists.data(),
5859                                   TemplateParamLists.size(),
5860                                   isFriend,
5861                                   isExplicitSpecialization,
5862                                   Invalid)) {
5863       if (TemplateParams->size() > 0) {
5864         // This is a function template
5865 
5866         // Check that we can declare a template here.
5867         if (CheckTemplateDeclScope(S, TemplateParams))
5868           return 0;
5869 
5870         // A destructor cannot be a template.
5871         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5872           Diag(NewFD->getLocation(), diag::err_destructor_template);
5873           return 0;
5874         }
5875 
5876         // If we're adding a template to a dependent context, we may need to
5877         // rebuilding some of the types used within the template parameter list,
5878         // now that we know what the current instantiation is.
5879         if (DC->isDependentContext()) {
5880           ContextRAII SavedContext(*this, DC);
5881           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5882             Invalid = true;
5883         }
5884 
5885 
5886         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5887                                                         NewFD->getLocation(),
5888                                                         Name, TemplateParams,
5889                                                         NewFD);
5890         FunctionTemplate->setLexicalDeclContext(CurContext);
5891         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5892 
5893         // For source fidelity, store the other template param lists.
5894         if (TemplateParamLists.size() > 1) {
5895           NewFD->setTemplateParameterListsInfo(Context,
5896                                                TemplateParamLists.size() - 1,
5897                                                TemplateParamLists.data());
5898         }
5899       } else {
5900         // This is a function template specialization.
5901         isFunctionTemplateSpecialization = true;
5902         // For source fidelity, store all the template param lists.
5903         NewFD->setTemplateParameterListsInfo(Context,
5904                                              TemplateParamLists.size(),
5905                                              TemplateParamLists.data());
5906 
5907         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5908         if (isFriend) {
5909           // We want to remove the "template<>", found here.
5910           SourceRange RemoveRange = TemplateParams->getSourceRange();
5911 
5912           // If we remove the template<> and the name is not a
5913           // template-id, we're actually silently creating a problem:
5914           // the friend declaration will refer to an untemplated decl,
5915           // and clearly the user wants a template specialization.  So
5916           // we need to insert '<>' after the name.
5917           SourceLocation InsertLoc;
5918           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5919             InsertLoc = D.getName().getSourceRange().getEnd();
5920             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5921           }
5922 
5923           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5924             << Name << RemoveRange
5925             << FixItHint::CreateRemoval(RemoveRange)
5926             << FixItHint::CreateInsertion(InsertLoc, "<>");
5927         }
5928       }
5929     }
5930     else {
5931       // All template param lists were matched against the scope specifier:
5932       // this is NOT (an explicit specialization of) a template.
5933       if (TemplateParamLists.size() > 0)
5934         // For source fidelity, store all the template param lists.
5935         NewFD->setTemplateParameterListsInfo(Context,
5936                                              TemplateParamLists.size(),
5937                                              TemplateParamLists.data());
5938     }
5939 
5940     if (Invalid) {
5941       NewFD->setInvalidDecl();
5942       if (FunctionTemplate)
5943         FunctionTemplate->setInvalidDecl();
5944     }
5945 
5946     // C++ [dcl.fct.spec]p5:
5947     //   The virtual specifier shall only be used in declarations of
5948     //   nonstatic class member functions that appear within a
5949     //   member-specification of a class declaration; see 10.3.
5950     //
5951     if (isVirtual && !NewFD->isInvalidDecl()) {
5952       if (!isVirtualOkay) {
5953         Diag(D.getDeclSpec().getVirtualSpecLoc(),
5954              diag::err_virtual_non_function);
5955       } else if (!CurContext->isRecord()) {
5956         // 'virtual' was specified outside of the class.
5957         Diag(D.getDeclSpec().getVirtualSpecLoc(),
5958              diag::err_virtual_out_of_class)
5959           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5960       } else if (NewFD->getDescribedFunctionTemplate()) {
5961         // C++ [temp.mem]p3:
5962         //  A member function template shall not be virtual.
5963         Diag(D.getDeclSpec().getVirtualSpecLoc(),
5964              diag::err_virtual_member_function_template)
5965           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5966       } else {
5967         // Okay: Add virtual to the method.
5968         NewFD->setVirtualAsWritten(true);
5969       }
5970     }
5971 
5972     // C++ [dcl.fct.spec]p3:
5973     //  The inline specifier shall not appear on a block scope function
5974     //  declaration.
5975     if (isInline && !NewFD->isInvalidDecl()) {
5976       if (CurContext->isFunctionOrMethod()) {
5977         // 'inline' is not allowed on block scope function declaration.
5978         Diag(D.getDeclSpec().getInlineSpecLoc(),
5979              diag::err_inline_declaration_block_scope) << Name
5980           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5981       }
5982     }
5983 
5984     // C++ [dcl.fct.spec]p6:
5985     //  The explicit specifier shall be used only in the declaration of a
5986     //  constructor or conversion function within its class definition;
5987     //  see 12.3.1 and 12.3.2.
5988     if (isExplicit && !NewFD->isInvalidDecl()) {
5989       if (!CurContext->isRecord()) {
5990         // 'explicit' was specified outside of the class.
5991         Diag(D.getDeclSpec().getExplicitSpecLoc(),
5992              diag::err_explicit_out_of_class)
5993           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5994       } else if (!isa<CXXConstructorDecl>(NewFD) &&
5995                  !isa<CXXConversionDecl>(NewFD)) {
5996         // 'explicit' was specified on a function that wasn't a constructor
5997         // or conversion function.
5998         Diag(D.getDeclSpec().getExplicitSpecLoc(),
5999              diag::err_explicit_non_ctor_or_conv_function)
6000           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6001       }
6002     }
6003 
6004     if (isConstexpr) {
6005       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6006       // are implicitly inline.
6007       NewFD->setImplicitlyInline();
6008 
6009       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6010       // be either constructors or to return a literal type. Therefore,
6011       // destructors cannot be declared constexpr.
6012       if (isa<CXXDestructorDecl>(NewFD))
6013         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6014     }
6015 
6016     // If __module_private__ was specified, mark the function accordingly.
6017     if (D.getDeclSpec().isModulePrivateSpecified()) {
6018       if (isFunctionTemplateSpecialization) {
6019         SourceLocation ModulePrivateLoc
6020           = D.getDeclSpec().getModulePrivateSpecLoc();
6021         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6022           << 0
6023           << FixItHint::CreateRemoval(ModulePrivateLoc);
6024       } else {
6025         NewFD->setModulePrivate();
6026         if (FunctionTemplate)
6027           FunctionTemplate->setModulePrivate();
6028       }
6029     }
6030 
6031     if (isFriend) {
6032       // For now, claim that the objects have no previous declaration.
6033       if (FunctionTemplate) {
6034         FunctionTemplate->setObjectOfFriendDecl(false);
6035         FunctionTemplate->setAccess(AS_public);
6036       }
6037       NewFD->setObjectOfFriendDecl(false);
6038       NewFD->setAccess(AS_public);
6039     }
6040 
6041     // If a function is defined as defaulted or deleted, mark it as such now.
6042     switch (D.getFunctionDefinitionKind()) {
6043       case FDK_Declaration:
6044       case FDK_Definition:
6045         break;
6046 
6047       case FDK_Defaulted:
6048         NewFD->setDefaulted();
6049         break;
6050 
6051       case FDK_Deleted:
6052         NewFD->setDeletedAsWritten();
6053         break;
6054     }
6055 
6056     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6057         D.isFunctionDefinition()) {
6058       // C++ [class.mfct]p2:
6059       //   A member function may be defined (8.4) in its class definition, in
6060       //   which case it is an inline member function (7.1.2)
6061       NewFD->setImplicitlyInline();
6062     }
6063 
6064     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6065         !CurContext->isRecord()) {
6066       // C++ [class.static]p1:
6067       //   A data or function member of a class may be declared static
6068       //   in a class definition, in which case it is a static member of
6069       //   the class.
6070 
6071       // Complain about the 'static' specifier if it's on an out-of-line
6072       // member function definition.
6073       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6074            diag::err_static_out_of_line)
6075         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6076     }
6077 
6078     // C++11 [except.spec]p15:
6079     //   A deallocation function with no exception-specification is treated
6080     //   as if it were specified with noexcept(true).
6081     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6082     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6083          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6084         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6085       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6086       EPI.ExceptionSpecType = EST_BasicNoexcept;
6087       NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6088                                       ArrayRef<QualType>(FPT->arg_type_begin(),
6089                                                          FPT->getNumArgs()),
6090                                              EPI));
6091     }
6092   }
6093 
6094   // Filter out previous declarations that don't match the scope.
6095   FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6096                        isExplicitSpecialization ||
6097                        isFunctionTemplateSpecialization);
6098 
6099   // Handle GNU asm-label extension (encoded as an attribute).
6100   if (Expr *E = (Expr*) D.getAsmLabel()) {
6101     // The parser guarantees this is a string.
6102     StringLiteral *SE = cast<StringLiteral>(E);
6103     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6104                                                 SE->getString()));
6105   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6106     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6107       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6108     if (I != ExtnameUndeclaredIdentifiers.end()) {
6109       NewFD->addAttr(I->second);
6110       ExtnameUndeclaredIdentifiers.erase(I);
6111     }
6112   }
6113 
6114   // Copy the parameter declarations from the declarator D to the function
6115   // declaration NewFD, if they are available.  First scavenge them into Params.
6116   SmallVector<ParmVarDecl*, 16> Params;
6117   if (D.isFunctionDeclarator()) {
6118     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6119 
6120     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6121     // function that takes no arguments, not a function that takes a
6122     // single void argument.
6123     // We let through "const void" here because Sema::GetTypeForDeclarator
6124     // already checks for that case.
6125     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6126         FTI.ArgInfo[0].Param &&
6127         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6128       // Empty arg list, don't push any params.
6129       checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6130     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6131       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6132         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6133         assert(Param->getDeclContext() != NewFD && "Was set before ?");
6134         Param->setDeclContext(NewFD);
6135         Params.push_back(Param);
6136 
6137         if (Param->isInvalidDecl())
6138           NewFD->setInvalidDecl();
6139       }
6140     }
6141 
6142   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6143     // When we're declaring a function with a typedef, typeof, etc as in the
6144     // following example, we'll need to synthesize (unnamed)
6145     // parameters for use in the declaration.
6146     //
6147     // @code
6148     // typedef void fn(int);
6149     // fn f;
6150     // @endcode
6151 
6152     // Synthesize a parameter for each argument type.
6153     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6154          AE = FT->arg_type_end(); AI != AE; ++AI) {
6155       ParmVarDecl *Param =
6156         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6157       Param->setScopeInfo(0, Params.size());
6158       Params.push_back(Param);
6159     }
6160   } else {
6161     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6162            "Should not need args for typedef of non-prototype fn");
6163   }
6164 
6165   // Finally, we know we have the right number of parameters, install them.
6166   NewFD->setParams(Params);
6167 
6168   // Find all anonymous symbols defined during the declaration of this function
6169   // and add to NewFD. This lets us track decls such 'enum Y' in:
6170   //
6171   //   void f(enum Y {AA} x) {}
6172   //
6173   // which would otherwise incorrectly end up in the translation unit scope.
6174   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6175   DeclsInPrototypeScope.clear();
6176 
6177   if (D.getDeclSpec().isNoreturnSpecified())
6178     NewFD->addAttr(
6179         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6180                                        Context));
6181 
6182   // Process the non-inheritable attributes on this declaration.
6183   ProcessDeclAttributes(S, NewFD, D,
6184                         /*NonInheritable=*/true, /*Inheritable=*/false);
6185 
6186   // Functions returning a variably modified type violate C99 6.7.5.2p2
6187   // because all functions have linkage.
6188   if (!NewFD->isInvalidDecl() &&
6189       NewFD->getResultType()->isVariablyModifiedType()) {
6190     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6191     NewFD->setInvalidDecl();
6192   }
6193 
6194   // Handle attributes.
6195   ProcessDeclAttributes(S, NewFD, D,
6196                         /*NonInheritable=*/false, /*Inheritable=*/true);
6197 
6198   QualType RetType = NewFD->getResultType();
6199   const CXXRecordDecl *Ret = RetType->isRecordType() ?
6200       RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6201   if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6202       Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6203     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6204     if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6205       NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6206                                                         Context));
6207     }
6208   }
6209 
6210   if (!getLangOpts().CPlusPlus) {
6211     // Perform semantic checking on the function declaration.
6212     bool isExplicitSpecialization=false;
6213     if (!NewFD->isInvalidDecl()) {
6214       if (NewFD->isMain())
6215         CheckMain(NewFD, D.getDeclSpec());
6216       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6217                                                   isExplicitSpecialization));
6218     }
6219     // Make graceful recovery from an invalid redeclaration.
6220     else if (!Previous.empty())
6221            D.setRedeclaration(true);
6222     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6223             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6224            "previous declaration set still overloaded");
6225   } else {
6226     // If the declarator is a template-id, translate the parser's template
6227     // argument list into our AST format.
6228     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6229       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6230       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6231       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6232       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6233                                          TemplateId->NumArgs);
6234       translateTemplateArguments(TemplateArgsPtr,
6235                                  TemplateArgs);
6236 
6237       HasExplicitTemplateArgs = true;
6238 
6239       if (NewFD->isInvalidDecl()) {
6240         HasExplicitTemplateArgs = false;
6241       } else if (FunctionTemplate) {
6242         // Function template with explicit template arguments.
6243         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6244           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6245 
6246         HasExplicitTemplateArgs = false;
6247       } else if (!isFunctionTemplateSpecialization &&
6248                  !D.getDeclSpec().isFriendSpecified()) {
6249         // We have encountered something that the user meant to be a
6250         // specialization (because it has explicitly-specified template
6251         // arguments) but that was not introduced with a "template<>" (or had
6252         // too few of them).
6253         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6254           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6255           << FixItHint::CreateInsertion(
6256                                     D.getDeclSpec().getLocStart(),
6257                                         "template<> ");
6258         isFunctionTemplateSpecialization = true;
6259       } else {
6260         // "friend void foo<>(int);" is an implicit specialization decl.
6261         isFunctionTemplateSpecialization = true;
6262       }
6263     } else if (isFriend && isFunctionTemplateSpecialization) {
6264       // This combination is only possible in a recovery case;  the user
6265       // wrote something like:
6266       //   template <> friend void foo(int);
6267       // which we're recovering from as if the user had written:
6268       //   friend void foo<>(int);
6269       // Go ahead and fake up a template id.
6270       HasExplicitTemplateArgs = true;
6271         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6272       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6273     }
6274 
6275     // If it's a friend (and only if it's a friend), it's possible
6276     // that either the specialized function type or the specialized
6277     // template is dependent, and therefore matching will fail.  In
6278     // this case, don't check the specialization yet.
6279     bool InstantiationDependent = false;
6280     if (isFunctionTemplateSpecialization && isFriend &&
6281         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6282          TemplateSpecializationType::anyDependentTemplateArguments(
6283             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6284             InstantiationDependent))) {
6285       assert(HasExplicitTemplateArgs &&
6286              "friend function specialization without template args");
6287       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6288                                                        Previous))
6289         NewFD->setInvalidDecl();
6290     } else if (isFunctionTemplateSpecialization) {
6291       if (CurContext->isDependentContext() && CurContext->isRecord()
6292           && !isFriend) {
6293         isDependentClassScopeExplicitSpecialization = true;
6294         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6295           diag::ext_function_specialization_in_class :
6296           diag::err_function_specialization_in_class)
6297           << NewFD->getDeclName();
6298       } else if (CheckFunctionTemplateSpecialization(NewFD,
6299                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6300                                                      Previous))
6301         NewFD->setInvalidDecl();
6302 
6303       // C++ [dcl.stc]p1:
6304       //   A storage-class-specifier shall not be specified in an explicit
6305       //   specialization (14.7.3)
6306       if (SC != SC_None) {
6307         if (SC != NewFD->getStorageClass())
6308           Diag(NewFD->getLocation(),
6309                diag::err_explicit_specialization_inconsistent_storage_class)
6310             << SC
6311             << FixItHint::CreateRemoval(
6312                                       D.getDeclSpec().getStorageClassSpecLoc());
6313 
6314         else
6315           Diag(NewFD->getLocation(),
6316                diag::ext_explicit_specialization_storage_class)
6317             << FixItHint::CreateRemoval(
6318                                       D.getDeclSpec().getStorageClassSpecLoc());
6319       }
6320 
6321     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6322       if (CheckMemberSpecialization(NewFD, Previous))
6323           NewFD->setInvalidDecl();
6324     }
6325 
6326     // Perform semantic checking on the function declaration.
6327     if (!isDependentClassScopeExplicitSpecialization) {
6328       if (NewFD->isInvalidDecl()) {
6329         // If this is a class member, mark the class invalid immediately.
6330         // This avoids some consistency errors later.
6331         if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6332           methodDecl->getParent()->setInvalidDecl();
6333       } else {
6334         if (NewFD->isMain())
6335           CheckMain(NewFD, D.getDeclSpec());
6336         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6337                                                     isExplicitSpecialization));
6338       }
6339     }
6340 
6341     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6342             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6343            "previous declaration set still overloaded");
6344 
6345     NamedDecl *PrincipalDecl = (FunctionTemplate
6346                                 ? cast<NamedDecl>(FunctionTemplate)
6347                                 : NewFD);
6348 
6349     if (isFriend && D.isRedeclaration()) {
6350       AccessSpecifier Access = AS_public;
6351       if (!NewFD->isInvalidDecl())
6352         Access = NewFD->getPreviousDecl()->getAccess();
6353 
6354       NewFD->setAccess(Access);
6355       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6356 
6357       PrincipalDecl->setObjectOfFriendDecl(true);
6358     }
6359 
6360     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6361         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6362       PrincipalDecl->setNonMemberOperator();
6363 
6364     // If we have a function template, check the template parameter
6365     // list. This will check and merge default template arguments.
6366     if (FunctionTemplate) {
6367       FunctionTemplateDecl *PrevTemplate =
6368                                      FunctionTemplate->getPreviousDecl();
6369       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6370                        PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6371                             D.getDeclSpec().isFriendSpecified()
6372                               ? (D.isFunctionDefinition()
6373                                    ? TPC_FriendFunctionTemplateDefinition
6374                                    : TPC_FriendFunctionTemplate)
6375                               : (D.getCXXScopeSpec().isSet() &&
6376                                  DC && DC->isRecord() &&
6377                                  DC->isDependentContext())
6378                                   ? TPC_ClassTemplateMember
6379                                   : TPC_FunctionTemplate);
6380     }
6381 
6382     if (NewFD->isInvalidDecl()) {
6383       // Ignore all the rest of this.
6384     } else if (!D.isRedeclaration()) {
6385       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6386                                        AddToScope };
6387       // Fake up an access specifier if it's supposed to be a class member.
6388       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6389         NewFD->setAccess(AS_public);
6390 
6391       // Qualified decls generally require a previous declaration.
6392       if (D.getCXXScopeSpec().isSet()) {
6393         // ...with the major exception of templated-scope or
6394         // dependent-scope friend declarations.
6395 
6396         // TODO: we currently also suppress this check in dependent
6397         // contexts because (1) the parameter depth will be off when
6398         // matching friend templates and (2) we might actually be
6399         // selecting a friend based on a dependent factor.  But there
6400         // are situations where these conditions don't apply and we
6401         // can actually do this check immediately.
6402         if (isFriend &&
6403             (TemplateParamLists.size() ||
6404              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6405              CurContext->isDependentContext())) {
6406           // ignore these
6407         } else {
6408           // The user tried to provide an out-of-line definition for a
6409           // function that is a member of a class or namespace, but there
6410           // was no such member function declared (C++ [class.mfct]p2,
6411           // C++ [namespace.memdef]p2). For example:
6412           //
6413           // class X {
6414           //   void f() const;
6415           // };
6416           //
6417           // void X::f() { } // ill-formed
6418           //
6419           // Complain about this problem, and attempt to suggest close
6420           // matches (e.g., those that differ only in cv-qualifiers and
6421           // whether the parameter types are references).
6422 
6423           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6424                                                                NewFD,
6425                                                                ExtraArgs)) {
6426             AddToScope = ExtraArgs.AddToScope;
6427             return Result;
6428           }
6429         }
6430 
6431         // Unqualified local friend declarations are required to resolve
6432         // to something.
6433       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6434         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6435                                                              NewFD,
6436                                                              ExtraArgs)) {
6437           AddToScope = ExtraArgs.AddToScope;
6438           return Result;
6439         }
6440       }
6441 
6442     } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6443                !isFriend && !isFunctionTemplateSpecialization &&
6444                !isExplicitSpecialization) {
6445       // An out-of-line member function declaration must also be a
6446       // definition (C++ [dcl.meaning]p1).
6447       // Note that this is not the case for explicit specializations of
6448       // function templates or member functions of class templates, per
6449       // C++ [temp.expl.spec]p2. We also allow these declarations as an
6450       // extension for compatibility with old SWIG code which likes to
6451       // generate them.
6452       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6453         << D.getCXXScopeSpec().getRange();
6454     }
6455   }
6456 
6457   ProcessPragmaWeak(S, NewFD);
6458   checkAttributesAfterMerging(*this, *NewFD);
6459 
6460   AddKnownFunctionAttributes(NewFD);
6461 
6462   if (NewFD->hasAttr<OverloadableAttr>() &&
6463       !NewFD->getType()->getAs<FunctionProtoType>()) {
6464     Diag(NewFD->getLocation(),
6465          diag::err_attribute_overloadable_no_prototype)
6466       << NewFD;
6467 
6468     // Turn this into a variadic function with no parameters.
6469     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6470     FunctionProtoType::ExtProtoInfo EPI;
6471     EPI.Variadic = true;
6472     EPI.ExtInfo = FT->getExtInfo();
6473 
6474     QualType R = Context.getFunctionType(FT->getResultType(),
6475                                          ArrayRef<QualType>(),
6476                                          EPI);
6477     NewFD->setType(R);
6478   }
6479 
6480   // If there's a #pragma GCC visibility in scope, and this isn't a class
6481   // member, set the visibility of this function.
6482   if (!DC->isRecord() && NewFD->hasExternalLinkage())
6483     AddPushedVisibilityAttribute(NewFD);
6484 
6485   // If there's a #pragma clang arc_cf_code_audited in scope, consider
6486   // marking the function.
6487   AddCFAuditedAttribute(NewFD);
6488 
6489   // If this is a locally-scoped extern C function, update the
6490   // map of such names.
6491   if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6492       && !NewFD->isInvalidDecl())
6493     RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6494 
6495   // Set this FunctionDecl's range up to the right paren.
6496   NewFD->setRangeEnd(D.getSourceRange().getEnd());
6497 
6498   if (getLangOpts().CPlusPlus) {
6499     if (FunctionTemplate) {
6500       if (NewFD->isInvalidDecl())
6501         FunctionTemplate->setInvalidDecl();
6502       return FunctionTemplate;
6503     }
6504   }
6505 
6506   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6507     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6508     if ((getLangOpts().OpenCLVersion >= 120)
6509         && (SC == SC_Static)) {
6510       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6511       D.setInvalidType();
6512     }
6513 
6514     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6515     if (!NewFD->getResultType()->isVoidType()) {
6516       Diag(D.getIdentifierLoc(),
6517            diag::err_expected_kernel_void_return_type);
6518       D.setInvalidType();
6519     }
6520 
6521     for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6522          PE = NewFD->param_end(); PI != PE; ++PI) {
6523       ParmVarDecl *Param = *PI;
6524       QualType PT = Param->getType();
6525 
6526       // OpenCL v1.2 s6.9.a:
6527       // A kernel function argument cannot be declared as a
6528       // pointer to a pointer type.
6529       if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6530         Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6531         D.setInvalidType();
6532       }
6533 
6534       // OpenCL v1.2 s6.8 n:
6535       // A kernel function argument cannot be declared
6536       // of event_t type.
6537       if (PT->isEventT()) {
6538         Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6539         D.setInvalidType();
6540       }
6541     }
6542   }
6543 
6544   MarkUnusedFileScopedDecl(NewFD);
6545 
6546   if (getLangOpts().CUDA)
6547     if (IdentifierInfo *II = NewFD->getIdentifier())
6548       if (!NewFD->isInvalidDecl() &&
6549           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6550         if (II->isStr("cudaConfigureCall")) {
6551           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6552             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6553 
6554           Context.setcudaConfigureCallDecl(NewFD);
6555         }
6556       }
6557 
6558   // Here we have an function template explicit specialization at class scope.
6559   // The actually specialization will be postponed to template instatiation
6560   // time via the ClassScopeFunctionSpecializationDecl node.
6561   if (isDependentClassScopeExplicitSpecialization) {
6562     ClassScopeFunctionSpecializationDecl *NewSpec =
6563                          ClassScopeFunctionSpecializationDecl::Create(
6564                                 Context, CurContext, SourceLocation(),
6565                                 cast<CXXMethodDecl>(NewFD),
6566                                 HasExplicitTemplateArgs, TemplateArgs);
6567     CurContext->addDecl(NewSpec);
6568     AddToScope = false;
6569   }
6570 
6571   return NewFD;
6572 }
6573 
6574 /// \brief Perform semantic checking of a new function declaration.
6575 ///
6576 /// Performs semantic analysis of the new function declaration
6577 /// NewFD. This routine performs all semantic checking that does not
6578 /// require the actual declarator involved in the declaration, and is
6579 /// used both for the declaration of functions as they are parsed
6580 /// (called via ActOnDeclarator) and for the declaration of functions
6581 /// that have been instantiated via C++ template instantiation (called
6582 /// via InstantiateDecl).
6583 ///
6584 /// \param IsExplicitSpecialization whether this new function declaration is
6585 /// an explicit specialization of the previous declaration.
6586 ///
6587 /// This sets NewFD->isInvalidDecl() to true if there was an error.
6588 ///
6589 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)6590 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6591                                     LookupResult &Previous,
6592                                     bool IsExplicitSpecialization) {
6593   assert(!NewFD->getResultType()->isVariablyModifiedType()
6594          && "Variably modified return types are not handled here");
6595 
6596   // Check for a previous declaration of this name.
6597   if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6598     // Since we did not find anything by this name, look for a non-visible
6599     // extern "C" declaration with the same name.
6600     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6601       = findLocallyScopedExternCDecl(NewFD->getDeclName());
6602     if (Pos != LocallyScopedExternCDecls.end())
6603       Previous.addDecl(Pos->second);
6604   }
6605 
6606   // Filter out any non-conflicting previous declarations.
6607   filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6608 
6609   bool Redeclaration = false;
6610   NamedDecl *OldDecl = 0;
6611 
6612   // Merge or overload the declaration with an existing declaration of
6613   // the same name, if appropriate.
6614   if (!Previous.empty()) {
6615     // Determine whether NewFD is an overload of PrevDecl or
6616     // a declaration that requires merging. If it's an overload,
6617     // there's no more work to do here; we'll just add the new
6618     // function to the scope.
6619     if (!AllowOverloadingOfFunction(Previous, Context)) {
6620       Redeclaration = true;
6621       OldDecl = Previous.getFoundDecl();
6622     } else {
6623       switch (CheckOverload(S, NewFD, Previous, OldDecl,
6624                             /*NewIsUsingDecl*/ false)) {
6625       case Ovl_Match:
6626         Redeclaration = true;
6627         break;
6628 
6629       case Ovl_NonFunction:
6630         Redeclaration = true;
6631         break;
6632 
6633       case Ovl_Overload:
6634         Redeclaration = false;
6635         break;
6636       }
6637 
6638       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6639         // If a function name is overloadable in C, then every function
6640         // with that name must be marked "overloadable".
6641         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6642           << Redeclaration << NewFD;
6643         NamedDecl *OverloadedDecl = 0;
6644         if (Redeclaration)
6645           OverloadedDecl = OldDecl;
6646         else if (!Previous.empty())
6647           OverloadedDecl = Previous.getRepresentativeDecl();
6648         if (OverloadedDecl)
6649           Diag(OverloadedDecl->getLocation(),
6650                diag::note_attribute_overloadable_prev_overload);
6651         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6652                                                         Context));
6653       }
6654     }
6655   }
6656 
6657   // C++11 [dcl.constexpr]p8:
6658   //   A constexpr specifier for a non-static member function that is not
6659   //   a constructor declares that member function to be const.
6660   //
6661   // This needs to be delayed until we know whether this is an out-of-line
6662   // definition of a static member function.
6663   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6664   if (MD && MD->isConstexpr() && !MD->isStatic() &&
6665       !isa<CXXConstructorDecl>(MD) &&
6666       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6667     CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6668     if (FunctionTemplateDecl *OldTD =
6669           dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6670       OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6671     if (!OldMD || !OldMD->isStatic()) {
6672       const FunctionProtoType *FPT =
6673         MD->getType()->castAs<FunctionProtoType>();
6674       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6675       EPI.TypeQuals |= Qualifiers::Const;
6676       MD->setType(Context.getFunctionType(FPT->getResultType(),
6677                                       ArrayRef<QualType>(FPT->arg_type_begin(),
6678                                                          FPT->getNumArgs()),
6679                                           EPI));
6680     }
6681   }
6682 
6683   if (Redeclaration) {
6684     // NewFD and OldDecl represent declarations that need to be
6685     // merged.
6686     if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6687       NewFD->setInvalidDecl();
6688       return Redeclaration;
6689     }
6690 
6691     Previous.clear();
6692     Previous.addDecl(OldDecl);
6693 
6694     if (FunctionTemplateDecl *OldTemplateDecl
6695                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6696       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6697       FunctionTemplateDecl *NewTemplateDecl
6698         = NewFD->getDescribedFunctionTemplate();
6699       assert(NewTemplateDecl && "Template/non-template mismatch");
6700       if (CXXMethodDecl *Method
6701             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6702         Method->setAccess(OldTemplateDecl->getAccess());
6703         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6704       }
6705 
6706       // If this is an explicit specialization of a member that is a function
6707       // template, mark it as a member specialization.
6708       if (IsExplicitSpecialization &&
6709           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6710         NewTemplateDecl->setMemberSpecialization();
6711         assert(OldTemplateDecl->isMemberSpecialization());
6712       }
6713 
6714     } else {
6715       // This needs to happen first so that 'inline' propagates.
6716       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6717 
6718       if (isa<CXXMethodDecl>(NewFD)) {
6719         // A valid redeclaration of a C++ method must be out-of-line,
6720         // but (unfortunately) it's not necessarily a definition
6721         // because of templates, which means that the previous
6722         // declaration is not necessarily from the class definition.
6723 
6724         // For just setting the access, that doesn't matter.
6725         CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6726         NewFD->setAccess(oldMethod->getAccess());
6727 
6728         // Update the key-function state if necessary for this ABI.
6729         if (NewFD->isInlined() &&
6730             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6731           // setNonKeyFunction needs to work with the original
6732           // declaration from the class definition, and isVirtual() is
6733           // just faster in that case, so map back to that now.
6734           oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6735           if (oldMethod->isVirtual()) {
6736             Context.setNonKeyFunction(oldMethod);
6737           }
6738         }
6739       }
6740     }
6741   }
6742 
6743   // Semantic checking for this function declaration (in isolation).
6744   if (getLangOpts().CPlusPlus) {
6745     // C++-specific checks.
6746     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6747       CheckConstructor(Constructor);
6748     } else if (CXXDestructorDecl *Destructor =
6749                 dyn_cast<CXXDestructorDecl>(NewFD)) {
6750       CXXRecordDecl *Record = Destructor->getParent();
6751       QualType ClassType = Context.getTypeDeclType(Record);
6752 
6753       // FIXME: Shouldn't we be able to perform this check even when the class
6754       // type is dependent? Both gcc and edg can handle that.
6755       if (!ClassType->isDependentType()) {
6756         DeclarationName Name
6757           = Context.DeclarationNames.getCXXDestructorName(
6758                                         Context.getCanonicalType(ClassType));
6759         if (NewFD->getDeclName() != Name) {
6760           Diag(NewFD->getLocation(), diag::err_destructor_name);
6761           NewFD->setInvalidDecl();
6762           return Redeclaration;
6763         }
6764       }
6765     } else if (CXXConversionDecl *Conversion
6766                = dyn_cast<CXXConversionDecl>(NewFD)) {
6767       ActOnConversionDeclarator(Conversion);
6768     }
6769 
6770     // Find any virtual functions that this function overrides.
6771     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6772       if (!Method->isFunctionTemplateSpecialization() &&
6773           !Method->getDescribedFunctionTemplate() &&
6774           Method->isCanonicalDecl()) {
6775         if (AddOverriddenMethods(Method->getParent(), Method)) {
6776           // If the function was marked as "static", we have a problem.
6777           if (NewFD->getStorageClass() == SC_Static) {
6778             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6779           }
6780         }
6781       }
6782 
6783       if (Method->isStatic())
6784         checkThisInStaticMemberFunctionType(Method);
6785     }
6786 
6787     // Extra checking for C++ overloaded operators (C++ [over.oper]).
6788     if (NewFD->isOverloadedOperator() &&
6789         CheckOverloadedOperatorDeclaration(NewFD)) {
6790       NewFD->setInvalidDecl();
6791       return Redeclaration;
6792     }
6793 
6794     // Extra checking for C++0x literal operators (C++0x [over.literal]).
6795     if (NewFD->getLiteralIdentifier() &&
6796         CheckLiteralOperatorDeclaration(NewFD)) {
6797       NewFD->setInvalidDecl();
6798       return Redeclaration;
6799     }
6800 
6801     // In C++, check default arguments now that we have merged decls. Unless
6802     // the lexical context is the class, because in this case this is done
6803     // during delayed parsing anyway.
6804     if (!CurContext->isRecord())
6805       CheckCXXDefaultArguments(NewFD);
6806 
6807     // If this function declares a builtin function, check the type of this
6808     // declaration against the expected type for the builtin.
6809     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6810       ASTContext::GetBuiltinTypeError Error;
6811       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6812       QualType T = Context.GetBuiltinType(BuiltinID, Error);
6813       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6814         // The type of this function differs from the type of the builtin,
6815         // so forget about the builtin entirely.
6816         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6817       }
6818     }
6819 
6820     // If this function is declared as being extern "C", then check to see if
6821     // the function returns a UDT (class, struct, or union type) that is not C
6822     // compatible, and if it does, warn the user.
6823     // But, issue any diagnostic on the first declaration only.
6824     if (NewFD->isExternC() && Previous.empty()) {
6825       QualType R = NewFD->getResultType();
6826       if (R->isIncompleteType() && !R->isVoidType())
6827         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6828             << NewFD << R;
6829       else if (!R.isPODType(Context) && !R->isVoidType() &&
6830                !R->isObjCObjectPointerType())
6831         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6832     }
6833   }
6834   return Redeclaration;
6835 }
6836 
getResultSourceRange(const FunctionDecl * FD)6837 static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6838   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6839   if (!TSI)
6840     return SourceRange();
6841 
6842   TypeLoc TL = TSI->getTypeLoc();
6843   FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
6844   if (!FunctionTL)
6845     return SourceRange();
6846 
6847   TypeLoc ResultTL = FunctionTL.getResultLoc();
6848   if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
6849     return ResultTL.getSourceRange();
6850 
6851   return SourceRange();
6852 }
6853 
CheckMain(FunctionDecl * FD,const DeclSpec & DS)6854 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6855   // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6856   //   static or constexpr is ill-formed.
6857   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6858   //   appear in a declaration of main.
6859   // static main is not an error under C99, but we should warn about it.
6860   // We accept _Noreturn main as an extension.
6861   if (FD->getStorageClass() == SC_Static)
6862     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6863          ? diag::err_static_main : diag::warn_static_main)
6864       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6865   if (FD->isInlineSpecified())
6866     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6867       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6868   if (DS.isNoreturnSpecified()) {
6869     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6870     SourceRange NoreturnRange(NoreturnLoc,
6871                               PP.getLocForEndOfToken(NoreturnLoc));
6872     Diag(NoreturnLoc, diag::ext_noreturn_main);
6873     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6874       << FixItHint::CreateRemoval(NoreturnRange);
6875   }
6876   if (FD->isConstexpr()) {
6877     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6878       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6879     FD->setConstexpr(false);
6880   }
6881 
6882   QualType T = FD->getType();
6883   assert(T->isFunctionType() && "function decl is not of function type");
6884   const FunctionType* FT = T->castAs<FunctionType>();
6885 
6886   // All the standards say that main() should should return 'int'.
6887   if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6888     // In C and C++, main magically returns 0 if you fall off the end;
6889     // set the flag which tells us that.
6890     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6891     FD->setHasImplicitReturnZero(true);
6892 
6893   // In C with GNU extensions we allow main() to have non-integer return
6894   // type, but we should warn about the extension, and we disable the
6895   // implicit-return-zero rule.
6896   } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6897     Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6898 
6899     SourceRange ResultRange = getResultSourceRange(FD);
6900     if (ResultRange.isValid())
6901       Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6902           << FixItHint::CreateReplacement(ResultRange, "int");
6903 
6904   // Otherwise, this is just a flat-out error.
6905   } else {
6906     SourceRange ResultRange = getResultSourceRange(FD);
6907     if (ResultRange.isValid())
6908       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6909           << FixItHint::CreateReplacement(ResultRange, "int");
6910     else
6911       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6912 
6913     FD->setInvalidDecl(true);
6914   }
6915 
6916   // Treat protoless main() as nullary.
6917   if (isa<FunctionNoProtoType>(FT)) return;
6918 
6919   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6920   unsigned nparams = FTP->getNumArgs();
6921   assert(FD->getNumParams() == nparams);
6922 
6923   bool HasExtraParameters = (nparams > 3);
6924 
6925   // Darwin passes an undocumented fourth argument of type char**.  If
6926   // other platforms start sprouting these, the logic below will start
6927   // getting shifty.
6928   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6929     HasExtraParameters = false;
6930 
6931   if (HasExtraParameters) {
6932     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6933     FD->setInvalidDecl(true);
6934     nparams = 3;
6935   }
6936 
6937   // FIXME: a lot of the following diagnostics would be improved
6938   // if we had some location information about types.
6939 
6940   QualType CharPP =
6941     Context.getPointerType(Context.getPointerType(Context.CharTy));
6942   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6943 
6944   for (unsigned i = 0; i < nparams; ++i) {
6945     QualType AT = FTP->getArgType(i);
6946 
6947     bool mismatch = true;
6948 
6949     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6950       mismatch = false;
6951     else if (Expected[i] == CharPP) {
6952       // As an extension, the following forms are okay:
6953       //   char const **
6954       //   char const * const *
6955       //   char * const *
6956 
6957       QualifierCollector qs;
6958       const PointerType* PT;
6959       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6960           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6961           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
6962                               Context.CharTy)) {
6963         qs.removeConst();
6964         mismatch = !qs.empty();
6965       }
6966     }
6967 
6968     if (mismatch) {
6969       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6970       // TODO: suggest replacing given type with expected type
6971       FD->setInvalidDecl(true);
6972     }
6973   }
6974 
6975   if (nparams == 1 && !FD->isInvalidDecl()) {
6976     Diag(FD->getLocation(), diag::warn_main_one_arg);
6977   }
6978 
6979   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6980     Diag(FD->getLocation(), diag::err_main_template_decl);
6981     FD->setInvalidDecl();
6982   }
6983 }
6984 
CheckForConstantInitializer(Expr * Init,QualType DclT)6985 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6986   // FIXME: Need strict checking.  In C89, we need to check for
6987   // any assignment, increment, decrement, function-calls, or
6988   // commas outside of a sizeof.  In C99, it's the same list,
6989   // except that the aforementioned are allowed in unevaluated
6990   // expressions.  Everything else falls under the
6991   // "may accept other forms of constant expressions" exception.
6992   // (We never end up here for C++, so the constant expression
6993   // rules there don't matter.)
6994   if (Init->isConstantInitializer(Context, false))
6995     return false;
6996   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6997     << Init->getSourceRange();
6998   return true;
6999 }
7000 
7001 namespace {
7002   // Visits an initialization expression to see if OrigDecl is evaluated in
7003   // its own initialization and throws a warning if it does.
7004   class SelfReferenceChecker
7005       : public EvaluatedExprVisitor<SelfReferenceChecker> {
7006     Sema &S;
7007     Decl *OrigDecl;
7008     bool isRecordType;
7009     bool isPODType;
7010     bool isReferenceType;
7011 
7012   public:
7013     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7014 
SelfReferenceChecker(Sema & S,Decl * OrigDecl)7015     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7016                                                     S(S), OrigDecl(OrigDecl) {
7017       isPODType = false;
7018       isRecordType = false;
7019       isReferenceType = false;
7020       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7021         isPODType = VD->getType().isPODType(S.Context);
7022         isRecordType = VD->getType()->isRecordType();
7023         isReferenceType = VD->getType()->isReferenceType();
7024       }
7025     }
7026 
7027     // For most expressions, the cast is directly above the DeclRefExpr.
7028     // For conditional operators, the cast can be outside the conditional
7029     // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)7030     void HandleValue(Expr *E) {
7031       if (isReferenceType)
7032         return;
7033       E = E->IgnoreParenImpCasts();
7034       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7035         HandleDeclRefExpr(DRE);
7036         return;
7037       }
7038 
7039       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7040         HandleValue(CO->getTrueExpr());
7041         HandleValue(CO->getFalseExpr());
7042         return;
7043       }
7044 
7045       if (isa<MemberExpr>(E)) {
7046         Expr *Base = E->IgnoreParenImpCasts();
7047         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7048           // Check for static member variables and don't warn on them.
7049           if (!isa<FieldDecl>(ME->getMemberDecl()))
7050             return;
7051           Base = ME->getBase()->IgnoreParenImpCasts();
7052         }
7053         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7054           HandleDeclRefExpr(DRE);
7055         return;
7056       }
7057     }
7058 
7059     // Reference types are handled here since all uses of references are
7060     // bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)7061     void VisitDeclRefExpr(DeclRefExpr *E) {
7062       if (isReferenceType)
7063         HandleDeclRefExpr(E);
7064     }
7065 
VisitImplicitCastExpr(ImplicitCastExpr * E)7066     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7067       if (E->getCastKind() == CK_LValueToRValue ||
7068           (isRecordType && E->getCastKind() == CK_NoOp))
7069         HandleValue(E->getSubExpr());
7070 
7071       Inherited::VisitImplicitCastExpr(E);
7072     }
7073 
VisitMemberExpr(MemberExpr * E)7074     void VisitMemberExpr(MemberExpr *E) {
7075       // Don't warn on arrays since they can be treated as pointers.
7076       if (E->getType()->canDecayToPointerType()) return;
7077 
7078       // Warn when a non-static method call is followed by non-static member
7079       // field accesses, which is followed by a DeclRefExpr.
7080       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7081       bool Warn = (MD && !MD->isStatic());
7082       Expr *Base = E->getBase()->IgnoreParenImpCasts();
7083       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7084         if (!isa<FieldDecl>(ME->getMemberDecl()))
7085           Warn = false;
7086         Base = ME->getBase()->IgnoreParenImpCasts();
7087       }
7088 
7089       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7090         if (Warn)
7091           HandleDeclRefExpr(DRE);
7092         return;
7093       }
7094 
7095       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7096       // Visit that expression.
7097       Visit(Base);
7098     }
7099 
VisitUnaryOperator(UnaryOperator * E)7100     void VisitUnaryOperator(UnaryOperator *E) {
7101       // For POD record types, addresses of its own members are well-defined.
7102       if (E->getOpcode() == UO_AddrOf && isRecordType &&
7103           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7104         if (!isPODType)
7105           HandleValue(E->getSubExpr());
7106         return;
7107       }
7108       Inherited::VisitUnaryOperator(E);
7109     }
7110 
VisitObjCMessageExpr(ObjCMessageExpr * E)7111     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7112 
HandleDeclRefExpr(DeclRefExpr * DRE)7113     void HandleDeclRefExpr(DeclRefExpr *DRE) {
7114       Decl* ReferenceDecl = DRE->getDecl();
7115       if (OrigDecl != ReferenceDecl) return;
7116       unsigned diag;
7117       if (isReferenceType) {
7118         diag = diag::warn_uninit_self_reference_in_reference_init;
7119       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7120         diag = diag::warn_static_self_reference_in_init;
7121       } else {
7122         diag = diag::warn_uninit_self_reference_in_init;
7123       }
7124 
7125       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7126                             S.PDiag(diag)
7127                               << DRE->getNameInfo().getName()
7128                               << OrigDecl->getLocation()
7129                               << DRE->getSourceRange());
7130     }
7131   };
7132 
7133   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)7134   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7135                                  bool DirectInit) {
7136     // Parameters arguments are occassionially constructed with itself,
7137     // for instance, in recursive functions.  Skip them.
7138     if (isa<ParmVarDecl>(OrigDecl))
7139       return;
7140 
7141     E = E->IgnoreParens();
7142 
7143     // Skip checking T a = a where T is not a record or reference type.
7144     // Doing so is a way to silence uninitialized warnings.
7145     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7146       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7147         if (ICE->getCastKind() == CK_LValueToRValue)
7148           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7149             if (DRE->getDecl() == OrigDecl)
7150               return;
7151 
7152     SelfReferenceChecker(S, OrigDecl).Visit(E);
7153   }
7154 }
7155 
7156 /// AddInitializerToDecl - Adds the initializer Init to the
7157 /// declaration dcl. If DirectInit is true, this is C++ direct
7158 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)7159 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7160                                 bool DirectInit, bool TypeMayContainAuto) {
7161   // If there is no declaration, there was an error parsing it.  Just ignore
7162   // the initializer.
7163   if (RealDecl == 0 || RealDecl->isInvalidDecl())
7164     return;
7165 
7166   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7167     // With declarators parsed the way they are, the parser cannot
7168     // distinguish between a normal initializer and a pure-specifier.
7169     // Thus this grotesque test.
7170     IntegerLiteral *IL;
7171     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7172         Context.getCanonicalType(IL->getType()) == Context.IntTy)
7173       CheckPureMethod(Method, Init->getSourceRange());
7174     else {
7175       Diag(Method->getLocation(), diag::err_member_function_initialization)
7176         << Method->getDeclName() << Init->getSourceRange();
7177       Method->setInvalidDecl();
7178     }
7179     return;
7180   }
7181 
7182   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7183   if (!VDecl) {
7184     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7185     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7186     RealDecl->setInvalidDecl();
7187     return;
7188   }
7189 
7190   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7191 
7192   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7193   AutoType *Auto = 0;
7194   if (TypeMayContainAuto &&
7195       (Auto = VDecl->getType()->getContainedAutoType()) &&
7196       !Auto->isDeduced()) {
7197     Expr *DeduceInit = Init;
7198     // Initializer could be a C++ direct-initializer. Deduction only works if it
7199     // contains exactly one expression.
7200     if (CXXDirectInit) {
7201       if (CXXDirectInit->getNumExprs() == 0) {
7202         // It isn't possible to write this directly, but it is possible to
7203         // end up in this situation with "auto x(some_pack...);"
7204         Diag(CXXDirectInit->getLocStart(),
7205              diag::err_auto_var_init_no_expression)
7206           << VDecl->getDeclName() << VDecl->getType()
7207           << VDecl->getSourceRange();
7208         RealDecl->setInvalidDecl();
7209         return;
7210       } else if (CXXDirectInit->getNumExprs() > 1) {
7211         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7212              diag::err_auto_var_init_multiple_expressions)
7213           << VDecl->getDeclName() << VDecl->getType()
7214           << VDecl->getSourceRange();
7215         RealDecl->setInvalidDecl();
7216         return;
7217       } else {
7218         DeduceInit = CXXDirectInit->getExpr(0);
7219       }
7220     }
7221 
7222     // Expressions default to 'id' when we're in a debugger.
7223     bool DefaultedToAuto = false;
7224     if (getLangOpts().DebuggerCastResultToId &&
7225         Init->getType() == Context.UnknownAnyTy) {
7226       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7227       if (Result.isInvalid()) {
7228         VDecl->setInvalidDecl();
7229         return;
7230       }
7231       Init = Result.take();
7232       DefaultedToAuto = true;
7233     }
7234 
7235     TypeSourceInfo *DeducedType = 0;
7236     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7237             DAR_Failed)
7238       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7239     if (!DeducedType) {
7240       RealDecl->setInvalidDecl();
7241       return;
7242     }
7243     VDecl->setTypeSourceInfo(DeducedType);
7244     VDecl->setType(DeducedType->getType());
7245     assert(VDecl->isLinkageValid());
7246 
7247     // In ARC, infer lifetime.
7248     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7249       VDecl->setInvalidDecl();
7250 
7251     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7252     // 'id' instead of a specific object type prevents most of our usual checks.
7253     // We only want to warn outside of template instantiations, though:
7254     // inside a template, the 'id' could have come from a parameter.
7255     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7256         DeducedType->getType()->isObjCIdType()) {
7257       SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
7258       Diag(Loc, diag::warn_auto_var_is_id)
7259         << VDecl->getDeclName() << DeduceInit->getSourceRange();
7260     }
7261 
7262     // If this is a redeclaration, check that the type we just deduced matches
7263     // the previously declared type.
7264     if (VarDecl *Old = VDecl->getPreviousDecl())
7265       MergeVarDeclTypes(VDecl, Old);
7266   }
7267 
7268   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7269     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7270     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7271     VDecl->setInvalidDecl();
7272     return;
7273   }
7274 
7275   if (!VDecl->getType()->isDependentType()) {
7276     // A definition must end up with a complete type, which means it must be
7277     // complete with the restriction that an array type might be completed by
7278     // the initializer; note that later code assumes this restriction.
7279     QualType BaseDeclType = VDecl->getType();
7280     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7281       BaseDeclType = Array->getElementType();
7282     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7283                             diag::err_typecheck_decl_incomplete_type)) {
7284       RealDecl->setInvalidDecl();
7285       return;
7286     }
7287 
7288     // The variable can not have an abstract class type.
7289     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7290                                diag::err_abstract_type_in_decl,
7291                                AbstractVariableType))
7292       VDecl->setInvalidDecl();
7293   }
7294 
7295   const VarDecl *Def;
7296   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7297     Diag(VDecl->getLocation(), diag::err_redefinition)
7298       << VDecl->getDeclName();
7299     Diag(Def->getLocation(), diag::note_previous_definition);
7300     VDecl->setInvalidDecl();
7301     return;
7302   }
7303 
7304   const VarDecl* PrevInit = 0;
7305   if (getLangOpts().CPlusPlus) {
7306     // C++ [class.static.data]p4
7307     //   If a static data member is of const integral or const
7308     //   enumeration type, its declaration in the class definition can
7309     //   specify a constant-initializer which shall be an integral
7310     //   constant expression (5.19). In that case, the member can appear
7311     //   in integral constant expressions. The member shall still be
7312     //   defined in a namespace scope if it is used in the program and the
7313     //   namespace scope definition shall not contain an initializer.
7314     //
7315     // We already performed a redefinition check above, but for static
7316     // data members we also need to check whether there was an in-class
7317     // declaration with an initializer.
7318     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7319       Diag(VDecl->getLocation(), diag::err_redefinition)
7320         << VDecl->getDeclName();
7321       Diag(PrevInit->getLocation(), diag::note_previous_definition);
7322       return;
7323     }
7324 
7325     if (VDecl->hasLocalStorage())
7326       getCurFunction()->setHasBranchProtectedScope();
7327 
7328     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7329       VDecl->setInvalidDecl();
7330       return;
7331     }
7332   }
7333 
7334   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7335   // a kernel function cannot be initialized."
7336   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7337     Diag(VDecl->getLocation(), diag::err_local_cant_init);
7338     VDecl->setInvalidDecl();
7339     return;
7340   }
7341 
7342   // Get the decls type and save a reference for later, since
7343   // CheckInitializerTypes may change it.
7344   QualType DclT = VDecl->getType(), SavT = DclT;
7345 
7346   // Expressions default to 'id' when we're in a debugger
7347   // and we are assigning it to a variable of Objective-C pointer type.
7348   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7349       Init->getType() == Context.UnknownAnyTy) {
7350     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7351     if (Result.isInvalid()) {
7352       VDecl->setInvalidDecl();
7353       return;
7354     }
7355     Init = Result.take();
7356   }
7357 
7358   // Perform the initialization.
7359   if (!VDecl->isInvalidDecl()) {
7360     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7361     InitializationKind Kind
7362       = DirectInit ?
7363           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7364                                                            Init->getLocStart(),
7365                                                            Init->getLocEnd())
7366                         : InitializationKind::CreateDirectList(
7367                                                           VDecl->getLocation())
7368                    : InitializationKind::CreateCopy(VDecl->getLocation(),
7369                                                     Init->getLocStart());
7370 
7371     Expr **Args = &Init;
7372     unsigned NumArgs = 1;
7373     if (CXXDirectInit) {
7374       Args = CXXDirectInit->getExprs();
7375       NumArgs = CXXDirectInit->getNumExprs();
7376     }
7377     InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7378     ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7379                                         MultiExprArg(Args, NumArgs), &DclT);
7380     if (Result.isInvalid()) {
7381       VDecl->setInvalidDecl();
7382       return;
7383     }
7384 
7385     Init = Result.takeAs<Expr>();
7386   }
7387 
7388   // Check for self-references within variable initializers.
7389   // Variables declared within a function/method body (except for references)
7390   // are handled by a dataflow analysis.
7391   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7392       VDecl->getType()->isReferenceType()) {
7393     CheckSelfReference(*this, RealDecl, Init, DirectInit);
7394   }
7395 
7396   // If the type changed, it means we had an incomplete type that was
7397   // completed by the initializer. For example:
7398   //   int ary[] = { 1, 3, 5 };
7399   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7400   if (!VDecl->isInvalidDecl() && (DclT != SavT))
7401     VDecl->setType(DclT);
7402 
7403   if (!VDecl->isInvalidDecl()) {
7404     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7405 
7406     if (VDecl->hasAttr<BlocksAttr>())
7407       checkRetainCycles(VDecl, Init);
7408 
7409     // It is safe to assign a weak reference into a strong variable.
7410     // Although this code can still have problems:
7411     //   id x = self.weakProp;
7412     //   id y = self.weakProp;
7413     // we do not warn to warn spuriously when 'x' and 'y' are on separate
7414     // paths through the function. This should be revisited if
7415     // -Wrepeated-use-of-weak is made flow-sensitive.
7416     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7417       DiagnosticsEngine::Level Level =
7418         Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7419                                  Init->getLocStart());
7420       if (Level != DiagnosticsEngine::Ignored)
7421         getCurFunction()->markSafeWeakUse(Init);
7422     }
7423   }
7424 
7425   // The initialization is usually a full-expression.
7426   //
7427   // FIXME: If this is a braced initialization of an aggregate, it is not
7428   // an expression, and each individual field initializer is a separate
7429   // full-expression. For instance, in:
7430   //
7431   //   struct Temp { ~Temp(); };
7432   //   struct S { S(Temp); };
7433   //   struct T { S a, b; } t = { Temp(), Temp() }
7434   //
7435   // we should destroy the first Temp before constructing the second.
7436   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7437                                           false,
7438                                           VDecl->isConstexpr());
7439   if (Result.isInvalid()) {
7440     VDecl->setInvalidDecl();
7441     return;
7442   }
7443   Init = Result.take();
7444 
7445   // Attach the initializer to the decl.
7446   VDecl->setInit(Init);
7447 
7448   if (VDecl->isLocalVarDecl()) {
7449     // C99 6.7.8p4: All the expressions in an initializer for an object that has
7450     // static storage duration shall be constant expressions or string literals.
7451     // C++ does not have this restriction.
7452     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7453         VDecl->getStorageClass() == SC_Static)
7454       CheckForConstantInitializer(Init, DclT);
7455   } else if (VDecl->isStaticDataMember() &&
7456              VDecl->getLexicalDeclContext()->isRecord()) {
7457     // This is an in-class initialization for a static data member, e.g.,
7458     //
7459     // struct S {
7460     //   static const int value = 17;
7461     // };
7462 
7463     // C++ [class.mem]p4:
7464     //   A member-declarator can contain a constant-initializer only
7465     //   if it declares a static member (9.4) of const integral or
7466     //   const enumeration type, see 9.4.2.
7467     //
7468     // C++11 [class.static.data]p3:
7469     //   If a non-volatile const static data member is of integral or
7470     //   enumeration type, its declaration in the class definition can
7471     //   specify a brace-or-equal-initializer in which every initalizer-clause
7472     //   that is an assignment-expression is a constant expression. A static
7473     //   data member of literal type can be declared in the class definition
7474     //   with the constexpr specifier; if so, its declaration shall specify a
7475     //   brace-or-equal-initializer in which every initializer-clause that is
7476     //   an assignment-expression is a constant expression.
7477 
7478     // Do nothing on dependent types.
7479     if (DclT->isDependentType()) {
7480 
7481     // Allow any 'static constexpr' members, whether or not they are of literal
7482     // type. We separately check that every constexpr variable is of literal
7483     // type.
7484     } else if (VDecl->isConstexpr()) {
7485 
7486     // Require constness.
7487     } else if (!DclT.isConstQualified()) {
7488       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7489         << Init->getSourceRange();
7490       VDecl->setInvalidDecl();
7491 
7492     // We allow integer constant expressions in all cases.
7493     } else if (DclT->isIntegralOrEnumerationType()) {
7494       // Check whether the expression is a constant expression.
7495       SourceLocation Loc;
7496       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7497         // In C++11, a non-constexpr const static data member with an
7498         // in-class initializer cannot be volatile.
7499         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7500       else if (Init->isValueDependent())
7501         ; // Nothing to check.
7502       else if (Init->isIntegerConstantExpr(Context, &Loc))
7503         ; // Ok, it's an ICE!
7504       else if (Init->isEvaluatable(Context)) {
7505         // If we can constant fold the initializer through heroics, accept it,
7506         // but report this as a use of an extension for -pedantic.
7507         Diag(Loc, diag::ext_in_class_initializer_non_constant)
7508           << Init->getSourceRange();
7509       } else {
7510         // Otherwise, this is some crazy unknown case.  Report the issue at the
7511         // location provided by the isIntegerConstantExpr failed check.
7512         Diag(Loc, diag::err_in_class_initializer_non_constant)
7513           << Init->getSourceRange();
7514         VDecl->setInvalidDecl();
7515       }
7516 
7517     // We allow foldable floating-point constants as an extension.
7518     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7519       // In C++98, this is a GNU extension. In C++11, it is not, but we support
7520       // it anyway and provide a fixit to add the 'constexpr'.
7521       if (getLangOpts().CPlusPlus11) {
7522         Diag(VDecl->getLocation(),
7523              diag::ext_in_class_initializer_float_type_cxx11)
7524             << DclT << Init->getSourceRange();
7525         Diag(VDecl->getLocStart(),
7526              diag::note_in_class_initializer_float_type_cxx11)
7527             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7528       } else {
7529         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7530           << DclT << Init->getSourceRange();
7531 
7532         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7533           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7534             << Init->getSourceRange();
7535           VDecl->setInvalidDecl();
7536         }
7537       }
7538 
7539     // Suggest adding 'constexpr' in C++11 for literal types.
7540     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7541       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7542         << DclT << Init->getSourceRange()
7543         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7544       VDecl->setConstexpr(true);
7545 
7546     } else {
7547       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7548         << DclT << Init->getSourceRange();
7549       VDecl->setInvalidDecl();
7550     }
7551   } else if (VDecl->isFileVarDecl()) {
7552     if (VDecl->getStorageClassAsWritten() == SC_Extern &&
7553         (!getLangOpts().CPlusPlus ||
7554          !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
7555       Diag(VDecl->getLocation(), diag::warn_extern_init);
7556 
7557     // C99 6.7.8p4. All file scoped initializers need to be constant.
7558     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7559       CheckForConstantInitializer(Init, DclT);
7560   }
7561 
7562   // We will represent direct-initialization similarly to copy-initialization:
7563   //    int x(1);  -as-> int x = 1;
7564   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7565   //
7566   // Clients that want to distinguish between the two forms, can check for
7567   // direct initializer using VarDecl::getInitStyle().
7568   // A major benefit is that clients that don't particularly care about which
7569   // exactly form was it (like the CodeGen) can handle both cases without
7570   // special case code.
7571 
7572   // C++ 8.5p11:
7573   // The form of initialization (using parentheses or '=') is generally
7574   // insignificant, but does matter when the entity being initialized has a
7575   // class type.
7576   if (CXXDirectInit) {
7577     assert(DirectInit && "Call-style initializer must be direct init.");
7578     VDecl->setInitStyle(VarDecl::CallInit);
7579   } else if (DirectInit) {
7580     // This must be list-initialization. No other way is direct-initialization.
7581     VDecl->setInitStyle(VarDecl::ListInit);
7582   }
7583 
7584   CheckCompleteVariableDeclaration(VDecl);
7585 }
7586 
7587 /// ActOnInitializerError - Given that there was an error parsing an
7588 /// initializer for the given declaration, try to return to some form
7589 /// of sanity.
ActOnInitializerError(Decl * D)7590 void Sema::ActOnInitializerError(Decl *D) {
7591   // Our main concern here is re-establishing invariants like "a
7592   // variable's type is either dependent or complete".
7593   if (!D || D->isInvalidDecl()) return;
7594 
7595   VarDecl *VD = dyn_cast<VarDecl>(D);
7596   if (!VD) return;
7597 
7598   // Auto types are meaningless if we can't make sense of the initializer.
7599   if (ParsingInitForAutoVars.count(D)) {
7600     D->setInvalidDecl();
7601     return;
7602   }
7603 
7604   QualType Ty = VD->getType();
7605   if (Ty->isDependentType()) return;
7606 
7607   // Require a complete type.
7608   if (RequireCompleteType(VD->getLocation(),
7609                           Context.getBaseElementType(Ty),
7610                           diag::err_typecheck_decl_incomplete_type)) {
7611     VD->setInvalidDecl();
7612     return;
7613   }
7614 
7615   // Require an abstract type.
7616   if (RequireNonAbstractType(VD->getLocation(), Ty,
7617                              diag::err_abstract_type_in_decl,
7618                              AbstractVariableType)) {
7619     VD->setInvalidDecl();
7620     return;
7621   }
7622 
7623   // Don't bother complaining about constructors or destructors,
7624   // though.
7625 }
7626 
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)7627 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7628                                   bool TypeMayContainAuto) {
7629   // If there is no declaration, there was an error parsing it. Just ignore it.
7630   if (RealDecl == 0)
7631     return;
7632 
7633   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7634     QualType Type = Var->getType();
7635 
7636     // C++11 [dcl.spec.auto]p3
7637     if (TypeMayContainAuto && Type->getContainedAutoType()) {
7638       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7639         << Var->getDeclName() << Type;
7640       Var->setInvalidDecl();
7641       return;
7642     }
7643 
7644     // C++11 [class.static.data]p3: A static data member can be declared with
7645     // the constexpr specifier; if so, its declaration shall specify
7646     // a brace-or-equal-initializer.
7647     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7648     // the definition of a variable [...] or the declaration of a static data
7649     // member.
7650     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7651       if (Var->isStaticDataMember())
7652         Diag(Var->getLocation(),
7653              diag::err_constexpr_static_mem_var_requires_init)
7654           << Var->getDeclName();
7655       else
7656         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7657       Var->setInvalidDecl();
7658       return;
7659     }
7660 
7661     switch (Var->isThisDeclarationADefinition()) {
7662     case VarDecl::Definition:
7663       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7664         break;
7665 
7666       // We have an out-of-line definition of a static data member
7667       // that has an in-class initializer, so we type-check this like
7668       // a declaration.
7669       //
7670       // Fall through
7671 
7672     case VarDecl::DeclarationOnly:
7673       // It's only a declaration.
7674 
7675       // Block scope. C99 6.7p7: If an identifier for an object is
7676       // declared with no linkage (C99 6.2.2p6), the type for the
7677       // object shall be complete.
7678       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7679           !Var->getLinkage() && !Var->isInvalidDecl() &&
7680           RequireCompleteType(Var->getLocation(), Type,
7681                               diag::err_typecheck_decl_incomplete_type))
7682         Var->setInvalidDecl();
7683 
7684       // Make sure that the type is not abstract.
7685       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7686           RequireNonAbstractType(Var->getLocation(), Type,
7687                                  diag::err_abstract_type_in_decl,
7688                                  AbstractVariableType))
7689         Var->setInvalidDecl();
7690       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7691           Var->getStorageClass() == SC_PrivateExtern) {
7692         Diag(Var->getLocation(), diag::warn_private_extern);
7693         Diag(Var->getLocation(), diag::note_private_extern);
7694       }
7695 
7696       return;
7697 
7698     case VarDecl::TentativeDefinition:
7699       // File scope. C99 6.9.2p2: A declaration of an identifier for an
7700       // object that has file scope without an initializer, and without a
7701       // storage-class specifier or with the storage-class specifier "static",
7702       // constitutes a tentative definition. Note: A tentative definition with
7703       // external linkage is valid (C99 6.2.2p5).
7704       if (!Var->isInvalidDecl()) {
7705         if (const IncompleteArrayType *ArrayT
7706                                     = Context.getAsIncompleteArrayType(Type)) {
7707           if (RequireCompleteType(Var->getLocation(),
7708                                   ArrayT->getElementType(),
7709                                   diag::err_illegal_decl_array_incomplete_type))
7710             Var->setInvalidDecl();
7711         } else if (Var->getStorageClass() == SC_Static) {
7712           // C99 6.9.2p3: If the declaration of an identifier for an object is
7713           // a tentative definition and has internal linkage (C99 6.2.2p3), the
7714           // declared type shall not be an incomplete type.
7715           // NOTE: code such as the following
7716           //     static struct s;
7717           //     struct s { int a; };
7718           // is accepted by gcc. Hence here we issue a warning instead of
7719           // an error and we do not invalidate the static declaration.
7720           // NOTE: to avoid multiple warnings, only check the first declaration.
7721           if (Var->getPreviousDecl() == 0)
7722             RequireCompleteType(Var->getLocation(), Type,
7723                                 diag::ext_typecheck_decl_incomplete_type);
7724         }
7725       }
7726 
7727       // Record the tentative definition; we're done.
7728       if (!Var->isInvalidDecl())
7729         TentativeDefinitions.push_back(Var);
7730       return;
7731     }
7732 
7733     // Provide a specific diagnostic for uninitialized variable
7734     // definitions with incomplete array type.
7735     if (Type->isIncompleteArrayType()) {
7736       Diag(Var->getLocation(),
7737            diag::err_typecheck_incomplete_array_needs_initializer);
7738       Var->setInvalidDecl();
7739       return;
7740     }
7741 
7742     // Provide a specific diagnostic for uninitialized variable
7743     // definitions with reference type.
7744     if (Type->isReferenceType()) {
7745       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7746         << Var->getDeclName()
7747         << SourceRange(Var->getLocation(), Var->getLocation());
7748       Var->setInvalidDecl();
7749       return;
7750     }
7751 
7752     // Do not attempt to type-check the default initializer for a
7753     // variable with dependent type.
7754     if (Type->isDependentType())
7755       return;
7756 
7757     if (Var->isInvalidDecl())
7758       return;
7759 
7760     if (RequireCompleteType(Var->getLocation(),
7761                             Context.getBaseElementType(Type),
7762                             diag::err_typecheck_decl_incomplete_type)) {
7763       Var->setInvalidDecl();
7764       return;
7765     }
7766 
7767     // The variable can not have an abstract class type.
7768     if (RequireNonAbstractType(Var->getLocation(), Type,
7769                                diag::err_abstract_type_in_decl,
7770                                AbstractVariableType)) {
7771       Var->setInvalidDecl();
7772       return;
7773     }
7774 
7775     // Check for jumps past the implicit initializer.  C++0x
7776     // clarifies that this applies to a "variable with automatic
7777     // storage duration", not a "local variable".
7778     // C++11 [stmt.dcl]p3
7779     //   A program that jumps from a point where a variable with automatic
7780     //   storage duration is not in scope to a point where it is in scope is
7781     //   ill-formed unless the variable has scalar type, class type with a
7782     //   trivial default constructor and a trivial destructor, a cv-qualified
7783     //   version of one of these types, or an array of one of the preceding
7784     //   types and is declared without an initializer.
7785     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7786       if (const RecordType *Record
7787             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7788         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7789         // Mark the function for further checking even if the looser rules of
7790         // C++11 do not require such checks, so that we can diagnose
7791         // incompatibilities with C++98.
7792         if (!CXXRecord->isPOD())
7793           getCurFunction()->setHasBranchProtectedScope();
7794       }
7795     }
7796 
7797     // C++03 [dcl.init]p9:
7798     //   If no initializer is specified for an object, and the
7799     //   object is of (possibly cv-qualified) non-POD class type (or
7800     //   array thereof), the object shall be default-initialized; if
7801     //   the object is of const-qualified type, the underlying class
7802     //   type shall have a user-declared default
7803     //   constructor. Otherwise, if no initializer is specified for
7804     //   a non- static object, the object and its subobjects, if
7805     //   any, have an indeterminate initial value); if the object
7806     //   or any of its subobjects are of const-qualified type, the
7807     //   program is ill-formed.
7808     // C++0x [dcl.init]p11:
7809     //   If no initializer is specified for an object, the object is
7810     //   default-initialized; [...].
7811     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7812     InitializationKind Kind
7813       = InitializationKind::CreateDefault(Var->getLocation());
7814 
7815     InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7816     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7817     if (Init.isInvalid())
7818       Var->setInvalidDecl();
7819     else if (Init.get()) {
7820       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7821       // This is important for template substitution.
7822       Var->setInitStyle(VarDecl::CallInit);
7823     }
7824 
7825     CheckCompleteVariableDeclaration(Var);
7826   }
7827 }
7828 
ActOnCXXForRangeDecl(Decl * D)7829 void Sema::ActOnCXXForRangeDecl(Decl *D) {
7830   VarDecl *VD = dyn_cast<VarDecl>(D);
7831   if (!VD) {
7832     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7833     D->setInvalidDecl();
7834     return;
7835   }
7836 
7837   VD->setCXXForRangeDecl(true);
7838 
7839   // for-range-declaration cannot be given a storage class specifier.
7840   int Error = -1;
7841   switch (VD->getStorageClassAsWritten()) {
7842   case SC_None:
7843     break;
7844   case SC_Extern:
7845     Error = 0;
7846     break;
7847   case SC_Static:
7848     Error = 1;
7849     break;
7850   case SC_PrivateExtern:
7851     Error = 2;
7852     break;
7853   case SC_Auto:
7854     Error = 3;
7855     break;
7856   case SC_Register:
7857     Error = 4;
7858     break;
7859   case SC_OpenCLWorkGroupLocal:
7860     llvm_unreachable("Unexpected storage class");
7861   }
7862   if (VD->isConstexpr())
7863     Error = 5;
7864   if (Error != -1) {
7865     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7866       << VD->getDeclName() << Error;
7867     D->setInvalidDecl();
7868   }
7869 }
7870 
CheckCompleteVariableDeclaration(VarDecl * var)7871 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7872   if (var->isInvalidDecl()) return;
7873 
7874   // In ARC, don't allow jumps past the implicit initialization of a
7875   // local retaining variable.
7876   if (getLangOpts().ObjCAutoRefCount &&
7877       var->hasLocalStorage()) {
7878     switch (var->getType().getObjCLifetime()) {
7879     case Qualifiers::OCL_None:
7880     case Qualifiers::OCL_ExplicitNone:
7881     case Qualifiers::OCL_Autoreleasing:
7882       break;
7883 
7884     case Qualifiers::OCL_Weak:
7885     case Qualifiers::OCL_Strong:
7886       getCurFunction()->setHasBranchProtectedScope();
7887       break;
7888     }
7889   }
7890 
7891   if (var->isThisDeclarationADefinition() &&
7892       var->hasExternalLinkage() &&
7893       getDiagnostics().getDiagnosticLevel(
7894                        diag::warn_missing_variable_declarations,
7895                        var->getLocation())) {
7896     // Find a previous declaration that's not a definition.
7897     VarDecl *prev = var->getPreviousDecl();
7898     while (prev && prev->isThisDeclarationADefinition())
7899       prev = prev->getPreviousDecl();
7900 
7901     if (!prev)
7902       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7903   }
7904 
7905   // All the following checks are C++ only.
7906   if (!getLangOpts().CPlusPlus) return;
7907 
7908   QualType type = var->getType();
7909   if (type->isDependentType()) return;
7910 
7911   // __block variables might require us to capture a copy-initializer.
7912   if (var->hasAttr<BlocksAttr>()) {
7913     // It's currently invalid to ever have a __block variable with an
7914     // array type; should we diagnose that here?
7915 
7916     // Regardless, we don't want to ignore array nesting when
7917     // constructing this copy.
7918     if (type->isStructureOrClassType()) {
7919       SourceLocation poi = var->getLocation();
7920       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7921       ExprResult result
7922         = PerformMoveOrCopyInitialization(
7923             InitializedEntity::InitializeBlock(poi, type, false),
7924             var, var->getType(), varRef, /*AllowNRVO=*/true);
7925       if (!result.isInvalid()) {
7926         result = MaybeCreateExprWithCleanups(result);
7927         Expr *init = result.takeAs<Expr>();
7928         Context.setBlockVarCopyInits(var, init);
7929       }
7930     }
7931   }
7932 
7933   Expr *Init = var->getInit();
7934   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7935   QualType baseType = Context.getBaseElementType(type);
7936 
7937   if (!var->getDeclContext()->isDependentContext() &&
7938       Init && !Init->isValueDependent()) {
7939     if (IsGlobal && !var->isConstexpr() &&
7940         getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7941                                             var->getLocation())
7942           != DiagnosticsEngine::Ignored &&
7943         !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7944       Diag(var->getLocation(), diag::warn_global_constructor)
7945         << Init->getSourceRange();
7946 
7947     if (var->isConstexpr()) {
7948       SmallVector<PartialDiagnosticAt, 8> Notes;
7949       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7950         SourceLocation DiagLoc = var->getLocation();
7951         // If the note doesn't add any useful information other than a source
7952         // location, fold it into the primary diagnostic.
7953         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7954               diag::note_invalid_subexpr_in_const_expr) {
7955           DiagLoc = Notes[0].first;
7956           Notes.clear();
7957         }
7958         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7959           << var << Init->getSourceRange();
7960         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7961           Diag(Notes[I].first, Notes[I].second);
7962       }
7963     } else if (var->isUsableInConstantExpressions(Context)) {
7964       // Check whether the initializer of a const variable of integral or
7965       // enumeration type is an ICE now, since we can't tell whether it was
7966       // initialized by a constant expression if we check later.
7967       var->checkInitIsICE();
7968     }
7969   }
7970 
7971   // Require the destructor.
7972   if (const RecordType *recordType = baseType->getAs<RecordType>())
7973     FinalizeVarWithDestructor(var, recordType);
7974 }
7975 
7976 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7977 /// any semantic actions necessary after any initializer has been attached.
7978 void
FinalizeDeclaration(Decl * ThisDecl)7979 Sema::FinalizeDeclaration(Decl *ThisDecl) {
7980   // Note that we are no longer parsing the initializer for this declaration.
7981   ParsingInitForAutoVars.erase(ThisDecl);
7982 
7983   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7984   if (!VD)
7985     return;
7986 
7987   const DeclContext *DC = VD->getDeclContext();
7988   // If there's a #pragma GCC visibility in scope, and this isn't a class
7989   // member, set the visibility of this variable.
7990   if (!DC->isRecord() && VD->hasExternalLinkage())
7991     AddPushedVisibilityAttribute(VD);
7992 
7993   if (VD->isFileVarDecl())
7994     MarkUnusedFileScopedDecl(VD);
7995 
7996   // Now we have parsed the initializer and can update the table of magic
7997   // tag values.
7998   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7999       !VD->getType()->isIntegralOrEnumerationType())
8000     return;
8001 
8002   for (specific_attr_iterator<TypeTagForDatatypeAttr>
8003          I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8004          E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8005        I != E; ++I) {
8006     const Expr *MagicValueExpr = VD->getInit();
8007     if (!MagicValueExpr) {
8008       continue;
8009     }
8010     llvm::APSInt MagicValueInt;
8011     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8012       Diag(I->getRange().getBegin(),
8013            diag::err_type_tag_for_datatype_not_ice)
8014         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8015       continue;
8016     }
8017     if (MagicValueInt.getActiveBits() > 64) {
8018       Diag(I->getRange().getBegin(),
8019            diag::err_type_tag_for_datatype_too_large)
8020         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8021       continue;
8022     }
8023     uint64_t MagicValue = MagicValueInt.getZExtValue();
8024     RegisterTypeTagForDatatype(I->getArgumentKind(),
8025                                MagicValue,
8026                                I->getMatchingCType(),
8027                                I->getLayoutCompatible(),
8028                                I->getMustBeNull());
8029   }
8030 }
8031 
8032 Sema::DeclGroupPtrTy
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,Decl ** Group,unsigned NumDecls)8033 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8034                               Decl **Group, unsigned NumDecls) {
8035   SmallVector<Decl*, 8> Decls;
8036 
8037   if (DS.isTypeSpecOwned())
8038     Decls.push_back(DS.getRepAsDecl());
8039 
8040   for (unsigned i = 0; i != NumDecls; ++i)
8041     if (Decl *D = Group[i])
8042       Decls.push_back(D);
8043 
8044   if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8045     if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8046       getASTContext().addUnnamedTag(Tag);
8047 
8048   return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8049                               DS.getTypeSpecType() == DeclSpec::TST_auto);
8050 }
8051 
8052 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
8053 /// group, performing any necessary semantic checking.
8054 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(Decl ** Group,unsigned NumDecls,bool TypeMayContainAuto)8055 Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8056                            bool TypeMayContainAuto) {
8057   // C++0x [dcl.spec.auto]p7:
8058   //   If the type deduced for the template parameter U is not the same in each
8059   //   deduction, the program is ill-formed.
8060   // FIXME: When initializer-list support is added, a distinction is needed
8061   // between the deduced type U and the deduced type which 'auto' stands for.
8062   //   auto a = 0, b = { 1, 2, 3 };
8063   // is legal because the deduced type U is 'int' in both cases.
8064   if (TypeMayContainAuto && NumDecls > 1) {
8065     QualType Deduced;
8066     CanQualType DeducedCanon;
8067     VarDecl *DeducedDecl = 0;
8068     for (unsigned i = 0; i != NumDecls; ++i) {
8069       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8070         AutoType *AT = D->getType()->getContainedAutoType();
8071         // Don't reissue diagnostics when instantiating a template.
8072         if (AT && D->isInvalidDecl())
8073           break;
8074         if (AT && AT->isDeduced()) {
8075           QualType U = AT->getDeducedType();
8076           CanQualType UCanon = Context.getCanonicalType(U);
8077           if (Deduced.isNull()) {
8078             Deduced = U;
8079             DeducedCanon = UCanon;
8080             DeducedDecl = D;
8081           } else if (DeducedCanon != UCanon) {
8082             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8083                  diag::err_auto_different_deductions)
8084               << Deduced << DeducedDecl->getDeclName()
8085               << U << D->getDeclName()
8086               << DeducedDecl->getInit()->getSourceRange()
8087               << D->getInit()->getSourceRange();
8088             D->setInvalidDecl();
8089             break;
8090           }
8091         }
8092       }
8093     }
8094   }
8095 
8096   ActOnDocumentableDecls(Group, NumDecls);
8097 
8098   return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8099 }
8100 
ActOnDocumentableDecl(Decl * D)8101 void Sema::ActOnDocumentableDecl(Decl *D) {
8102   ActOnDocumentableDecls(&D, 1);
8103 }
8104 
ActOnDocumentableDecls(Decl ** Group,unsigned NumDecls)8105 void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8106   // Don't parse the comment if Doxygen diagnostics are ignored.
8107   if (NumDecls == 0 || !Group[0])
8108    return;
8109 
8110   if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8111                                Group[0]->getLocation())
8112         == DiagnosticsEngine::Ignored)
8113     return;
8114 
8115   if (NumDecls >= 2) {
8116     // This is a decl group.  Normally it will contain only declarations
8117     // procuded from declarator list.  But in case we have any definitions or
8118     // additional declaration references:
8119     //   'typedef struct S {} S;'
8120     //   'typedef struct S *S;'
8121     //   'struct S *pS;'
8122     // FinalizeDeclaratorGroup adds these as separate declarations.
8123     Decl *MaybeTagDecl = Group[0];
8124     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8125       Group++;
8126       NumDecls--;
8127     }
8128   }
8129 
8130   // See if there are any new comments that are not attached to a decl.
8131   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8132   if (!Comments.empty() &&
8133       !Comments.back()->isAttached()) {
8134     // There is at least one comment that not attached to a decl.
8135     // Maybe it should be attached to one of these decls?
8136     //
8137     // Note that this way we pick up not only comments that precede the
8138     // declaration, but also comments that *follow* the declaration -- thanks to
8139     // the lookahead in the lexer: we've consumed the semicolon and looked
8140     // ahead through comments.
8141     for (unsigned i = 0; i != NumDecls; ++i)
8142       Context.getCommentForDecl(Group[i], &PP);
8143   }
8144 }
8145 
8146 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8147 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)8148 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8149   const DeclSpec &DS = D.getDeclSpec();
8150 
8151   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8152   // C++03 [dcl.stc]p2 also permits 'auto'.
8153   VarDecl::StorageClass StorageClass = SC_None;
8154   VarDecl::StorageClass StorageClassAsWritten = SC_None;
8155   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8156     StorageClass = SC_Register;
8157     StorageClassAsWritten = SC_Register;
8158   } else if (getLangOpts().CPlusPlus &&
8159              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8160     StorageClass = SC_Auto;
8161     StorageClassAsWritten = SC_Auto;
8162   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8163     Diag(DS.getStorageClassSpecLoc(),
8164          diag::err_invalid_storage_class_in_func_decl);
8165     D.getMutableDeclSpec().ClearStorageClassSpecs();
8166   }
8167 
8168   if (D.getDeclSpec().isThreadSpecified())
8169     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8170   if (D.getDeclSpec().isConstexprSpecified())
8171     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8172       << 0;
8173 
8174   DiagnoseFunctionSpecifiers(D.getDeclSpec());
8175 
8176   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8177   QualType parmDeclType = TInfo->getType();
8178 
8179   if (getLangOpts().CPlusPlus) {
8180     // Check that there are no default arguments inside the type of this
8181     // parameter.
8182     CheckExtraCXXDefaultArguments(D);
8183 
8184     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8185     if (D.getCXXScopeSpec().isSet()) {
8186       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8187         << D.getCXXScopeSpec().getRange();
8188       D.getCXXScopeSpec().clear();
8189     }
8190   }
8191 
8192   // Ensure we have a valid name
8193   IdentifierInfo *II = 0;
8194   if (D.hasName()) {
8195     II = D.getIdentifier();
8196     if (!II) {
8197       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8198         << GetNameForDeclarator(D).getName().getAsString();
8199       D.setInvalidType(true);
8200     }
8201   }
8202 
8203   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8204   if (II) {
8205     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8206                    ForRedeclaration);
8207     LookupName(R, S);
8208     if (R.isSingleResult()) {
8209       NamedDecl *PrevDecl = R.getFoundDecl();
8210       if (PrevDecl->isTemplateParameter()) {
8211         // Maybe we will complain about the shadowed template parameter.
8212         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8213         // Just pretend that we didn't see the previous declaration.
8214         PrevDecl = 0;
8215       } else if (S->isDeclScope(PrevDecl)) {
8216         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8217         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8218 
8219         // Recover by removing the name
8220         II = 0;
8221         D.SetIdentifier(0, D.getIdentifierLoc());
8222         D.setInvalidType(true);
8223       }
8224     }
8225   }
8226 
8227   // Temporarily put parameter variables in the translation unit, not
8228   // the enclosing context.  This prevents them from accidentally
8229   // looking like class members in C++.
8230   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8231                                     D.getLocStart(),
8232                                     D.getIdentifierLoc(), II,
8233                                     parmDeclType, TInfo,
8234                                     StorageClass, StorageClassAsWritten);
8235 
8236   if (D.isInvalidType())
8237     New->setInvalidDecl();
8238 
8239   assert(S->isFunctionPrototypeScope());
8240   assert(S->getFunctionPrototypeDepth() >= 1);
8241   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8242                     S->getNextFunctionPrototypeIndex());
8243 
8244   // Add the parameter declaration into this scope.
8245   S->AddDecl(New);
8246   if (II)
8247     IdResolver.AddDecl(New);
8248 
8249   ProcessDeclAttributes(S, New, D);
8250 
8251   if (D.getDeclSpec().isModulePrivateSpecified())
8252     Diag(New->getLocation(), diag::err_module_private_local)
8253       << 1 << New->getDeclName()
8254       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8255       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8256 
8257   if (New->hasAttr<BlocksAttr>()) {
8258     Diag(New->getLocation(), diag::err_block_on_nonlocal);
8259   }
8260   return New;
8261 }
8262 
8263 /// \brief Synthesizes a variable for a parameter arising from a
8264 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)8265 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8266                                               SourceLocation Loc,
8267                                               QualType T) {
8268   /* FIXME: setting StartLoc == Loc.
8269      Would it be worth to modify callers so as to provide proper source
8270      location for the unnamed parameters, embedding the parameter's type? */
8271   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8272                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
8273                                            SC_None, SC_None, 0);
8274   Param->setImplicit();
8275   return Param;
8276 }
8277 
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)8278 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8279                                     ParmVarDecl * const *ParamEnd) {
8280   // Don't diagnose unused-parameter errors in template instantiations; we
8281   // will already have done so in the template itself.
8282   if (!ActiveTemplateInstantiations.empty())
8283     return;
8284 
8285   for (; Param != ParamEnd; ++Param) {
8286     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8287         !(*Param)->hasAttr<UnusedAttr>()) {
8288       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8289         << (*Param)->getDeclName();
8290     }
8291   }
8292 }
8293 
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)8294 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8295                                                   ParmVarDecl * const *ParamEnd,
8296                                                   QualType ReturnTy,
8297                                                   NamedDecl *D) {
8298   if (LangOpts.NumLargeByValueCopy == 0) // No check.
8299     return;
8300 
8301   // Warn if the return value is pass-by-value and larger than the specified
8302   // threshold.
8303   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8304     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8305     if (Size > LangOpts.NumLargeByValueCopy)
8306       Diag(D->getLocation(), diag::warn_return_value_size)
8307           << D->getDeclName() << Size;
8308   }
8309 
8310   // Warn if any parameter is pass-by-value and larger than the specified
8311   // threshold.
8312   for (; Param != ParamEnd; ++Param) {
8313     QualType T = (*Param)->getType();
8314     if (T->isDependentType() || !T.isPODType(Context))
8315       continue;
8316     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8317     if (Size > LangOpts.NumLargeByValueCopy)
8318       Diag((*Param)->getLocation(), diag::warn_parameter_size)
8319           << (*Param)->getDeclName() << Size;
8320   }
8321 }
8322 
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,VarDecl::StorageClass StorageClass,VarDecl::StorageClass StorageClassAsWritten)8323 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8324                                   SourceLocation NameLoc, IdentifierInfo *Name,
8325                                   QualType T, TypeSourceInfo *TSInfo,
8326                                   VarDecl::StorageClass StorageClass,
8327                                   VarDecl::StorageClass StorageClassAsWritten) {
8328   // In ARC, infer a lifetime qualifier for appropriate parameter types.
8329   if (getLangOpts().ObjCAutoRefCount &&
8330       T.getObjCLifetime() == Qualifiers::OCL_None &&
8331       T->isObjCLifetimeType()) {
8332 
8333     Qualifiers::ObjCLifetime lifetime;
8334 
8335     // Special cases for arrays:
8336     //   - if it's const, use __unsafe_unretained
8337     //   - otherwise, it's an error
8338     if (T->isArrayType()) {
8339       if (!T.isConstQualified()) {
8340         DelayedDiagnostics.add(
8341             sema::DelayedDiagnostic::makeForbiddenType(
8342             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8343       }
8344       lifetime = Qualifiers::OCL_ExplicitNone;
8345     } else {
8346       lifetime = T->getObjCARCImplicitLifetime();
8347     }
8348     T = Context.getLifetimeQualifiedType(T, lifetime);
8349   }
8350 
8351   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8352                                          Context.getAdjustedParameterType(T),
8353                                          TSInfo,
8354                                          StorageClass, StorageClassAsWritten,
8355                                          0);
8356 
8357   // Parameters can not be abstract class types.
8358   // For record types, this is done by the AbstractClassUsageDiagnoser once
8359   // the class has been completely parsed.
8360   if (!CurContext->isRecord() &&
8361       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8362                              AbstractParamType))
8363     New->setInvalidDecl();
8364 
8365   // Parameter declarators cannot be interface types. All ObjC objects are
8366   // passed by reference.
8367   if (T->isObjCObjectType()) {
8368     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8369     Diag(NameLoc,
8370          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8371       << FixItHint::CreateInsertion(TypeEndLoc, "*");
8372     T = Context.getObjCObjectPointerType(T);
8373     New->setType(T);
8374   }
8375 
8376   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8377   // duration shall not be qualified by an address-space qualifier."
8378   // Since all parameters have automatic store duration, they can not have
8379   // an address space.
8380   if (T.getAddressSpace() != 0) {
8381     Diag(NameLoc, diag::err_arg_with_address_space);
8382     New->setInvalidDecl();
8383   }
8384 
8385   return New;
8386 }
8387 
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)8388 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8389                                            SourceLocation LocAfterDecls) {
8390   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8391 
8392   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8393   // for a K&R function.
8394   if (!FTI.hasPrototype) {
8395     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8396       --i;
8397       if (FTI.ArgInfo[i].Param == 0) {
8398         SmallString<256> Code;
8399         llvm::raw_svector_ostream(Code) << "  int "
8400                                         << FTI.ArgInfo[i].Ident->getName()
8401                                         << ";\n";
8402         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8403           << FTI.ArgInfo[i].Ident
8404           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8405 
8406         // Implicitly declare the argument as type 'int' for lack of a better
8407         // type.
8408         AttributeFactory attrs;
8409         DeclSpec DS(attrs);
8410         const char* PrevSpec; // unused
8411         unsigned DiagID; // unused
8412         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8413                            PrevSpec, DiagID);
8414         // Use the identifier location for the type source range.
8415         DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8416         DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8417         Declarator ParamD(DS, Declarator::KNRTypeListContext);
8418         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8419         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8420       }
8421     }
8422   }
8423 }
8424 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)8425 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8426   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8427   assert(D.isFunctionDeclarator() && "Not a function declarator!");
8428   Scope *ParentScope = FnBodyScope->getParent();
8429 
8430   D.setFunctionDefinitionKind(FDK_Definition);
8431   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8432   return ActOnStartOfFunctionDef(FnBodyScope, DP);
8433 }
8434 
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)8435 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8436                              const FunctionDecl*& PossibleZeroParamPrototype) {
8437   // Don't warn about invalid declarations.
8438   if (FD->isInvalidDecl())
8439     return false;
8440 
8441   // Or declarations that aren't global.
8442   if (!FD->isGlobal())
8443     return false;
8444 
8445   // Don't warn about C++ member functions.
8446   if (isa<CXXMethodDecl>(FD))
8447     return false;
8448 
8449   // Don't warn about 'main'.
8450   if (FD->isMain())
8451     return false;
8452 
8453   // Don't warn about inline functions.
8454   if (FD->isInlined())
8455     return false;
8456 
8457   // Don't warn about function templates.
8458   if (FD->getDescribedFunctionTemplate())
8459     return false;
8460 
8461   // Don't warn about function template specializations.
8462   if (FD->isFunctionTemplateSpecialization())
8463     return false;
8464 
8465   // Don't warn for OpenCL kernels.
8466   if (FD->hasAttr<OpenCLKernelAttr>())
8467     return false;
8468 
8469   bool MissingPrototype = true;
8470   for (const FunctionDecl *Prev = FD->getPreviousDecl();
8471        Prev; Prev = Prev->getPreviousDecl()) {
8472     // Ignore any declarations that occur in function or method
8473     // scope, because they aren't visible from the header.
8474     if (Prev->getDeclContext()->isFunctionOrMethod())
8475       continue;
8476 
8477     MissingPrototype = !Prev->getType()->isFunctionProtoType();
8478     if (FD->getNumParams() == 0)
8479       PossibleZeroParamPrototype = Prev;
8480     break;
8481   }
8482 
8483   return MissingPrototype;
8484 }
8485 
CheckForFunctionRedefinition(FunctionDecl * FD)8486 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8487   // Don't complain if we're in GNU89 mode and the previous definition
8488   // was an extern inline function.
8489   const FunctionDecl *Definition;
8490   if (FD->isDefined(Definition) &&
8491       !canRedefineFunction(Definition, getLangOpts())) {
8492     if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8493         Definition->getStorageClass() == SC_Extern)
8494       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8495         << FD->getDeclName() << getLangOpts().CPlusPlus;
8496     else
8497       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8498     Diag(Definition->getLocation(), diag::note_previous_definition);
8499     FD->setInvalidDecl();
8500   }
8501 }
8502 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)8503 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8504   // Clear the last template instantiation error context.
8505   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8506 
8507   if (!D)
8508     return D;
8509   FunctionDecl *FD = 0;
8510 
8511   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8512     FD = FunTmpl->getTemplatedDecl();
8513   else
8514     FD = cast<FunctionDecl>(D);
8515 
8516   // Enter a new function scope
8517   PushFunctionScope();
8518 
8519   // See if this is a redefinition.
8520   if (!FD->isLateTemplateParsed())
8521     CheckForFunctionRedefinition(FD);
8522 
8523   // Builtin functions cannot be defined.
8524   if (unsigned BuiltinID = FD->getBuiltinID()) {
8525     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8526       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8527       FD->setInvalidDecl();
8528     }
8529   }
8530 
8531   // The return type of a function definition must be complete
8532   // (C99 6.9.1p3, C++ [dcl.fct]p6).
8533   QualType ResultType = FD->getResultType();
8534   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8535       !FD->isInvalidDecl() &&
8536       RequireCompleteType(FD->getLocation(), ResultType,
8537                           diag::err_func_def_incomplete_result))
8538     FD->setInvalidDecl();
8539 
8540   // GNU warning -Wmissing-prototypes:
8541   //   Warn if a global function is defined without a previous
8542   //   prototype declaration. This warning is issued even if the
8543   //   definition itself provides a prototype. The aim is to detect
8544   //   global functions that fail to be declared in header files.
8545   const FunctionDecl *PossibleZeroParamPrototype = 0;
8546   if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8547     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8548 
8549     if (PossibleZeroParamPrototype) {
8550       // We found a declaration that is not a prototype,
8551       // but that could be a zero-parameter prototype
8552       TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8553       TypeLoc TL = TI->getTypeLoc();
8554       if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8555         Diag(PossibleZeroParamPrototype->getLocation(),
8556              diag::note_declaration_not_a_prototype)
8557           << PossibleZeroParamPrototype
8558           << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8559     }
8560   }
8561 
8562   if (FnBodyScope)
8563     PushDeclContext(FnBodyScope, FD);
8564 
8565   // Check the validity of our function parameters
8566   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8567                            /*CheckParameterNames=*/true);
8568 
8569   // Introduce our parameters into the function scope
8570   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8571     ParmVarDecl *Param = FD->getParamDecl(p);
8572     Param->setOwningFunction(FD);
8573 
8574     // If this has an identifier, add it to the scope stack.
8575     if (Param->getIdentifier() && FnBodyScope) {
8576       CheckShadow(FnBodyScope, Param);
8577 
8578       PushOnScopeChains(Param, FnBodyScope);
8579     }
8580   }
8581 
8582   // If we had any tags defined in the function prototype,
8583   // introduce them into the function scope.
8584   if (FnBodyScope) {
8585     for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8586            E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8587       NamedDecl *D = *I;
8588 
8589       // Some of these decls (like enums) may have been pinned to the translation unit
8590       // for lack of a real context earlier. If so, remove from the translation unit
8591       // and reattach to the current context.
8592       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8593         // Is the decl actually in the context?
8594         for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8595                DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8596           if (*DI == D) {
8597             Context.getTranslationUnitDecl()->removeDecl(D);
8598             break;
8599           }
8600         }
8601         // Either way, reassign the lexical decl context to our FunctionDecl.
8602         D->setLexicalDeclContext(CurContext);
8603       }
8604 
8605       // If the decl has a non-null name, make accessible in the current scope.
8606       if (!D->getName().empty())
8607         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8608 
8609       // Similarly, dive into enums and fish their constants out, making them
8610       // accessible in this scope.
8611       if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8612         for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8613                EE = ED->enumerator_end(); EI != EE; ++EI)
8614           PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8615       }
8616     }
8617   }
8618 
8619   // Ensure that the function's exception specification is instantiated.
8620   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8621     ResolveExceptionSpec(D->getLocation(), FPT);
8622 
8623   // Checking attributes of current function definition
8624   // dllimport attribute.
8625   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8626   if (DA && (!FD->getAttr<DLLExportAttr>())) {
8627     // dllimport attribute cannot be directly applied to definition.
8628     // Microsoft accepts dllimport for functions defined within class scope.
8629     if (!DA->isInherited() &&
8630         !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8631       Diag(FD->getLocation(),
8632            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8633         << "dllimport";
8634       FD->setInvalidDecl();
8635       return D;
8636     }
8637 
8638     // Visual C++ appears to not think this is an issue, so only issue
8639     // a warning when Microsoft extensions are disabled.
8640     if (!LangOpts.MicrosoftExt) {
8641       // If a symbol previously declared dllimport is later defined, the
8642       // attribute is ignored in subsequent references, and a warning is
8643       // emitted.
8644       Diag(FD->getLocation(),
8645            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8646         << FD->getName() << "dllimport";
8647     }
8648   }
8649   // We want to attach documentation to original Decl (which might be
8650   // a function template).
8651   ActOnDocumentableDecl(D);
8652   return D;
8653 }
8654 
8655 /// \brief Given the set of return statements within a function body,
8656 /// compute the variables that are subject to the named return value
8657 /// optimization.
8658 ///
8659 /// Each of the variables that is subject to the named return value
8660 /// optimization will be marked as NRVO variables in the AST, and any
8661 /// return statement that has a marked NRVO variable as its NRVO candidate can
8662 /// use the named return value optimization.
8663 ///
8664 /// This function applies a very simplistic algorithm for NRVO: if every return
8665 /// statement in the function has the same NRVO candidate, that candidate is
8666 /// the NRVO variable.
8667 ///
8668 /// FIXME: Employ a smarter algorithm that accounts for multiple return
8669 /// statements and the lifetimes of the NRVO candidates. We should be able to
8670 /// find a maximal set of NRVO variables.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)8671 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8672   ReturnStmt **Returns = Scope->Returns.data();
8673 
8674   const VarDecl *NRVOCandidate = 0;
8675   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8676     if (!Returns[I]->getNRVOCandidate())
8677       return;
8678 
8679     if (!NRVOCandidate)
8680       NRVOCandidate = Returns[I]->getNRVOCandidate();
8681     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8682       return;
8683   }
8684 
8685   if (NRVOCandidate)
8686     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8687 }
8688 
canSkipFunctionBody(Decl * D)8689 bool Sema::canSkipFunctionBody(Decl *D) {
8690   if (!Consumer.shouldSkipFunctionBody(D))
8691     return false;
8692 
8693   if (isa<ObjCMethodDecl>(D))
8694     return true;
8695 
8696   FunctionDecl *FD = 0;
8697   if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8698     FD = FTD->getTemplatedDecl();
8699   else
8700     FD = cast<FunctionDecl>(D);
8701 
8702   // We cannot skip the body of a function (or function template) which is
8703   // constexpr, since we may need to evaluate its body in order to parse the
8704   // rest of the file.
8705   return !FD->isConstexpr();
8706 }
8707 
ActOnSkippedFunctionBody(Decl * Decl)8708 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8709   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8710     FD->setHasSkippedBody();
8711   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8712     MD->setHasSkippedBody();
8713   return ActOnFinishFunctionBody(Decl, 0);
8714 }
8715 
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)8716 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8717   return ActOnFinishFunctionBody(D, BodyArg, false);
8718 }
8719 
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)8720 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8721                                     bool IsInstantiation) {
8722   FunctionDecl *FD = 0;
8723   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8724   if (FunTmpl)
8725     FD = FunTmpl->getTemplatedDecl();
8726   else
8727     FD = dyn_cast_or_null<FunctionDecl>(dcl);
8728 
8729   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8730   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8731 
8732   if (FD) {
8733     FD->setBody(Body);
8734 
8735     // The only way to be included in UndefinedButUsed is if there is an
8736     // ODR use before the definition. Avoid the expensive map lookup if this
8737     // is the first declaration.
8738     if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8739       if (FD->getLinkage() != ExternalLinkage)
8740         UndefinedButUsed.erase(FD);
8741       else if (FD->isInlined() &&
8742                (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8743                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8744         UndefinedButUsed.erase(FD);
8745     }
8746 
8747     // If the function implicitly returns zero (like 'main') or is naked,
8748     // don't complain about missing return statements.
8749     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8750       WP.disableCheckFallThrough();
8751 
8752     // MSVC permits the use of pure specifier (=0) on function definition,
8753     // defined at class scope, warn about this non standard construct.
8754     if (getLangOpts().MicrosoftExt && FD->isPure())
8755       Diag(FD->getLocation(), diag::warn_pure_function_definition);
8756 
8757     if (!FD->isInvalidDecl()) {
8758       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8759       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8760                                              FD->getResultType(), FD);
8761 
8762       // If this is a constructor, we need a vtable.
8763       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8764         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8765 
8766       // Try to apply the named return value optimization. We have to check
8767       // if we can do this here because lambdas keep return statements around
8768       // to deduce an implicit return type.
8769       if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8770           !FD->isDependentContext())
8771         computeNRVO(Body, getCurFunction());
8772     }
8773 
8774     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8775            "Function parsing confused");
8776   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8777     assert(MD == getCurMethodDecl() && "Method parsing confused");
8778     MD->setBody(Body);
8779     if (!MD->isInvalidDecl()) {
8780       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8781       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8782                                              MD->getResultType(), MD);
8783 
8784       if (Body)
8785         computeNRVO(Body, getCurFunction());
8786     }
8787     if (getCurFunction()->ObjCShouldCallSuper) {
8788       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8789         << MD->getSelector().getAsString();
8790       getCurFunction()->ObjCShouldCallSuper = false;
8791     }
8792   } else {
8793     return 0;
8794   }
8795 
8796   assert(!getCurFunction()->ObjCShouldCallSuper &&
8797          "This should only be set for ObjC methods, which should have been "
8798          "handled in the block above.");
8799 
8800   // Verify and clean out per-function state.
8801   if (Body) {
8802     // C++ constructors that have function-try-blocks can't have return
8803     // statements in the handlers of that block. (C++ [except.handle]p14)
8804     // Verify this.
8805     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8806       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8807 
8808     // Verify that gotos and switch cases don't jump into scopes illegally.
8809     if (getCurFunction()->NeedsScopeChecking() &&
8810         !dcl->isInvalidDecl() &&
8811         !hasAnyUnrecoverableErrorsInThisFunction() &&
8812         !PP.isCodeCompletionEnabled())
8813       DiagnoseInvalidJumps(Body);
8814 
8815     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8816       if (!Destructor->getParent()->isDependentType())
8817         CheckDestructor(Destructor);
8818 
8819       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8820                                              Destructor->getParent());
8821     }
8822 
8823     // If any errors have occurred, clear out any temporaries that may have
8824     // been leftover. This ensures that these temporaries won't be picked up for
8825     // deletion in some later function.
8826     if (PP.getDiagnostics().hasErrorOccurred() ||
8827         PP.getDiagnostics().getSuppressAllDiagnostics()) {
8828       DiscardCleanupsInEvaluationContext();
8829     }
8830     if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8831         !isa<FunctionTemplateDecl>(dcl)) {
8832       // Since the body is valid, issue any analysis-based warnings that are
8833       // enabled.
8834       ActivePolicy = &WP;
8835     }
8836 
8837     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8838         (!CheckConstexprFunctionDecl(FD) ||
8839          !CheckConstexprFunctionBody(FD, Body)))
8840       FD->setInvalidDecl();
8841 
8842     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8843     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8844     assert(MaybeODRUseExprs.empty() &&
8845            "Leftover expressions for odr-use checking");
8846   }
8847 
8848   if (!IsInstantiation)
8849     PopDeclContext();
8850 
8851   PopFunctionScopeInfo(ActivePolicy, dcl);
8852 
8853   // If any errors have occurred, clear out any temporaries that may have
8854   // been leftover. This ensures that these temporaries won't be picked up for
8855   // deletion in some later function.
8856   if (getDiagnostics().hasErrorOccurred()) {
8857     DiscardCleanupsInEvaluationContext();
8858   }
8859 
8860   return dcl;
8861 }
8862 
8863 
8864 /// When we finish delayed parsing of an attribute, we must attach it to the
8865 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)8866 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8867                                        ParsedAttributes &Attrs) {
8868   // Always attach attributes to the underlying decl.
8869   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8870     D = TD->getTemplatedDecl();
8871   ProcessDeclAttributeList(S, D, Attrs.getList());
8872 
8873   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8874     if (Method->isStatic())
8875       checkThisInStaticMemberFunctionAttributes(Method);
8876 }
8877 
8878 
8879 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8880 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)8881 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8882                                           IdentifierInfo &II, Scope *S) {
8883   // Before we produce a declaration for an implicitly defined
8884   // function, see whether there was a locally-scoped declaration of
8885   // this name as a function or variable. If so, use that
8886   // (non-visible) declaration, and complain about it.
8887   llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8888     = findLocallyScopedExternCDecl(&II);
8889   if (Pos != LocallyScopedExternCDecls.end()) {
8890     Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8891     Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8892     return Pos->second;
8893   }
8894 
8895   // Extension in C99.  Legal in C90, but warn about it.
8896   unsigned diag_id;
8897   if (II.getName().startswith("__builtin_"))
8898     diag_id = diag::warn_builtin_unknown;
8899   else if (getLangOpts().C99)
8900     diag_id = diag::ext_implicit_function_decl;
8901   else
8902     diag_id = diag::warn_implicit_function_decl;
8903   Diag(Loc, diag_id) << &II;
8904 
8905   // Because typo correction is expensive, only do it if the implicit
8906   // function declaration is going to be treated as an error.
8907   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8908     TypoCorrection Corrected;
8909     DeclFilterCCC<FunctionDecl> Validator;
8910     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8911                                       LookupOrdinaryName, S, 0, Validator))) {
8912       std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8913       std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8914       FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8915 
8916       Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8917           << FixItHint::CreateReplacement(Loc, CorrectedStr);
8918 
8919       if (Func->getLocation().isValid()
8920           && !II.getName().startswith("__builtin_"))
8921         Diag(Func->getLocation(), diag::note_previous_decl)
8922             << CorrectedQuotedStr;
8923     }
8924   }
8925 
8926   // Set a Declarator for the implicit definition: int foo();
8927   const char *Dummy;
8928   AttributeFactory attrFactory;
8929   DeclSpec DS(attrFactory);
8930   unsigned DiagID;
8931   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8932   (void)Error; // Silence warning.
8933   assert(!Error && "Error setting up implicit decl!");
8934   SourceLocation NoLoc;
8935   Declarator D(DS, Declarator::BlockContext);
8936   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8937                                              /*IsAmbiguous=*/false,
8938                                              /*RParenLoc=*/NoLoc,
8939                                              /*ArgInfo=*/0,
8940                                              /*NumArgs=*/0,
8941                                              /*EllipsisLoc=*/NoLoc,
8942                                              /*RParenLoc=*/NoLoc,
8943                                              /*TypeQuals=*/0,
8944                                              /*RefQualifierIsLvalueRef=*/true,
8945                                              /*RefQualifierLoc=*/NoLoc,
8946                                              /*ConstQualifierLoc=*/NoLoc,
8947                                              /*VolatileQualifierLoc=*/NoLoc,
8948                                              /*MutableLoc=*/NoLoc,
8949                                              EST_None,
8950                                              /*ESpecLoc=*/NoLoc,
8951                                              /*Exceptions=*/0,
8952                                              /*ExceptionRanges=*/0,
8953                                              /*NumExceptions=*/0,
8954                                              /*NoexceptExpr=*/0,
8955                                              Loc, Loc, D),
8956                 DS.getAttributes(),
8957                 SourceLocation());
8958   D.SetIdentifier(&II, Loc);
8959 
8960   // Insert this function into translation-unit scope.
8961 
8962   DeclContext *PrevDC = CurContext;
8963   CurContext = Context.getTranslationUnitDecl();
8964 
8965   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8966   FD->setImplicit();
8967 
8968   CurContext = PrevDC;
8969 
8970   AddKnownFunctionAttributes(FD);
8971 
8972   return FD;
8973 }
8974 
8975 /// \brief Adds any function attributes that we know a priori based on
8976 /// the declaration of this function.
8977 ///
8978 /// These attributes can apply both to implicitly-declared builtins
8979 /// (like __builtin___printf_chk) or to library-declared functions
8980 /// like NSLog or printf.
8981 ///
8982 /// We need to check for duplicate attributes both here and where user-written
8983 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)8984 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8985   if (FD->isInvalidDecl())
8986     return;
8987 
8988   // If this is a built-in function, map its builtin attributes to
8989   // actual attributes.
8990   if (unsigned BuiltinID = FD->getBuiltinID()) {
8991     // Handle printf-formatting attributes.
8992     unsigned FormatIdx;
8993     bool HasVAListArg;
8994     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8995       if (!FD->getAttr<FormatAttr>()) {
8996         const char *fmt = "printf";
8997         unsigned int NumParams = FD->getNumParams();
8998         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8999             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9000           fmt = "NSString";
9001         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9002                                                fmt, FormatIdx+1,
9003                                                HasVAListArg ? 0 : FormatIdx+2));
9004       }
9005     }
9006     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9007                                              HasVAListArg)) {
9008      if (!FD->getAttr<FormatAttr>())
9009        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9010                                               "scanf", FormatIdx+1,
9011                                               HasVAListArg ? 0 : FormatIdx+2));
9012     }
9013 
9014     // Mark const if we don't care about errno and that is the only
9015     // thing preventing the function from being const. This allows
9016     // IRgen to use LLVM intrinsics for such functions.
9017     if (!getLangOpts().MathErrno &&
9018         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9019       if (!FD->getAttr<ConstAttr>())
9020         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9021     }
9022 
9023     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9024         !FD->getAttr<ReturnsTwiceAttr>())
9025       FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9026     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9027       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9028     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9029       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9030   }
9031 
9032   IdentifierInfo *Name = FD->getIdentifier();
9033   if (!Name)
9034     return;
9035   if ((!getLangOpts().CPlusPlus &&
9036        FD->getDeclContext()->isTranslationUnit()) ||
9037       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9038        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9039        LinkageSpecDecl::lang_c)) {
9040     // Okay: this could be a libc/libm/Objective-C function we know
9041     // about.
9042   } else
9043     return;
9044 
9045   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9046     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9047     // target-specific builtins, perhaps?
9048     if (!FD->getAttr<FormatAttr>())
9049       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9050                                              "printf", 2,
9051                                              Name->isStr("vasprintf") ? 0 : 3));
9052   }
9053 
9054   if (Name->isStr("__CFStringMakeConstantString")) {
9055     // We already have a __builtin___CFStringMakeConstantString,
9056     // but builds that use -fno-constant-cfstrings don't go through that.
9057     if (!FD->getAttr<FormatArgAttr>())
9058       FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9059   }
9060 }
9061 
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)9062 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9063                                     TypeSourceInfo *TInfo) {
9064   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9065   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9066 
9067   if (!TInfo) {
9068     assert(D.isInvalidType() && "no declarator info for valid type");
9069     TInfo = Context.getTrivialTypeSourceInfo(T);
9070   }
9071 
9072   // Scope manipulation handled by caller.
9073   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9074                                            D.getLocStart(),
9075                                            D.getIdentifierLoc(),
9076                                            D.getIdentifier(),
9077                                            TInfo);
9078 
9079   // Bail out immediately if we have an invalid declaration.
9080   if (D.isInvalidType()) {
9081     NewTD->setInvalidDecl();
9082     return NewTD;
9083   }
9084 
9085   if (D.getDeclSpec().isModulePrivateSpecified()) {
9086     if (CurContext->isFunctionOrMethod())
9087       Diag(NewTD->getLocation(), diag::err_module_private_local)
9088         << 2 << NewTD->getDeclName()
9089         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9090         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9091     else
9092       NewTD->setModulePrivate();
9093   }
9094 
9095   // C++ [dcl.typedef]p8:
9096   //   If the typedef declaration defines an unnamed class (or
9097   //   enum), the first typedef-name declared by the declaration
9098   //   to be that class type (or enum type) is used to denote the
9099   //   class type (or enum type) for linkage purposes only.
9100   // We need to check whether the type was declared in the declaration.
9101   switch (D.getDeclSpec().getTypeSpecType()) {
9102   case TST_enum:
9103   case TST_struct:
9104   case TST_interface:
9105   case TST_union:
9106   case TST_class: {
9107     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9108 
9109     // Do nothing if the tag is not anonymous or already has an
9110     // associated typedef (from an earlier typedef in this decl group).
9111     if (tagFromDeclSpec->getIdentifier()) break;
9112     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9113 
9114     // A well-formed anonymous tag must always be a TUK_Definition.
9115     assert(tagFromDeclSpec->isThisDeclarationADefinition());
9116 
9117     // The type must match the tag exactly;  no qualifiers allowed.
9118     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9119       break;
9120 
9121     // Otherwise, set this is the anon-decl typedef for the tag.
9122     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9123     break;
9124   }
9125 
9126   default:
9127     break;
9128   }
9129 
9130   return NewTD;
9131 }
9132 
9133 
9134 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)9135 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9136   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9137   QualType T = TI->getType();
9138 
9139   if (T->isDependentType())
9140     return false;
9141 
9142   if (const BuiltinType *BT = T->getAs<BuiltinType>())
9143     if (BT->isInteger())
9144       return false;
9145 
9146   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9147   return true;
9148 }
9149 
9150 /// Check whether this is a valid redeclaration of a previous enumeration.
9151 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)9152 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9153                                   QualType EnumUnderlyingTy,
9154                                   const EnumDecl *Prev) {
9155   bool IsFixed = !EnumUnderlyingTy.isNull();
9156 
9157   if (IsScoped != Prev->isScoped()) {
9158     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9159       << Prev->isScoped();
9160     Diag(Prev->getLocation(), diag::note_previous_use);
9161     return true;
9162   }
9163 
9164   if (IsFixed && Prev->isFixed()) {
9165     if (!EnumUnderlyingTy->isDependentType() &&
9166         !Prev->getIntegerType()->isDependentType() &&
9167         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9168                                         Prev->getIntegerType())) {
9169       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9170         << EnumUnderlyingTy << Prev->getIntegerType();
9171       Diag(Prev->getLocation(), diag::note_previous_use);
9172       return true;
9173     }
9174   } else if (IsFixed != Prev->isFixed()) {
9175     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9176       << Prev->isFixed();
9177     Diag(Prev->getLocation(), diag::note_previous_use);
9178     return true;
9179   }
9180 
9181   return false;
9182 }
9183 
9184 /// \brief Get diagnostic %select index for tag kind for
9185 /// redeclaration diagnostic message.
9186 /// WARNING: Indexes apply to particular diagnostics only!
9187 ///
9188 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)9189 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9190   switch (Tag) {
9191   case TTK_Struct: return 0;
9192   case TTK_Interface: return 1;
9193   case TTK_Class:  return 2;
9194   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9195   }
9196 }
9197 
9198 /// \brief Determine if tag kind is a class-key compatible with
9199 /// class for redeclaration (class, struct, or __interface).
9200 ///
9201 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)9202 static bool isClassCompatTagKind(TagTypeKind Tag)
9203 {
9204   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9205 }
9206 
9207 /// \brief Determine whether a tag with a given kind is acceptable
9208 /// as a redeclaration of the given tag declaration.
9209 ///
9210 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)9211 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9212                                         TagTypeKind NewTag, bool isDefinition,
9213                                         SourceLocation NewTagLoc,
9214                                         const IdentifierInfo &Name) {
9215   // C++ [dcl.type.elab]p3:
9216   //   The class-key or enum keyword present in the
9217   //   elaborated-type-specifier shall agree in kind with the
9218   //   declaration to which the name in the elaborated-type-specifier
9219   //   refers. This rule also applies to the form of
9220   //   elaborated-type-specifier that declares a class-name or
9221   //   friend class since it can be construed as referring to the
9222   //   definition of the class. Thus, in any
9223   //   elaborated-type-specifier, the enum keyword shall be used to
9224   //   refer to an enumeration (7.2), the union class-key shall be
9225   //   used to refer to a union (clause 9), and either the class or
9226   //   struct class-key shall be used to refer to a class (clause 9)
9227   //   declared using the class or struct class-key.
9228   TagTypeKind OldTag = Previous->getTagKind();
9229   if (!isDefinition || !isClassCompatTagKind(NewTag))
9230     if (OldTag == NewTag)
9231       return true;
9232 
9233   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9234     // Warn about the struct/class tag mismatch.
9235     bool isTemplate = false;
9236     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9237       isTemplate = Record->getDescribedClassTemplate();
9238 
9239     if (!ActiveTemplateInstantiations.empty()) {
9240       // In a template instantiation, do not offer fix-its for tag mismatches
9241       // since they usually mess up the template instead of fixing the problem.
9242       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9243         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9244         << getRedeclDiagFromTagKind(OldTag);
9245       return true;
9246     }
9247 
9248     if (isDefinition) {
9249       // On definitions, check previous tags and issue a fix-it for each
9250       // one that doesn't match the current tag.
9251       if (Previous->getDefinition()) {
9252         // Don't suggest fix-its for redefinitions.
9253         return true;
9254       }
9255 
9256       bool previousMismatch = false;
9257       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9258            E(Previous->redecls_end()); I != E; ++I) {
9259         if (I->getTagKind() != NewTag) {
9260           if (!previousMismatch) {
9261             previousMismatch = true;
9262             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9263               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9264               << getRedeclDiagFromTagKind(I->getTagKind());
9265           }
9266           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9267             << getRedeclDiagFromTagKind(NewTag)
9268             << FixItHint::CreateReplacement(I->getInnerLocStart(),
9269                  TypeWithKeyword::getTagTypeKindName(NewTag));
9270         }
9271       }
9272       return true;
9273     }
9274 
9275     // Check for a previous definition.  If current tag and definition
9276     // are same type, do nothing.  If no definition, but disagree with
9277     // with previous tag type, give a warning, but no fix-it.
9278     const TagDecl *Redecl = Previous->getDefinition() ?
9279                             Previous->getDefinition() : Previous;
9280     if (Redecl->getTagKind() == NewTag) {
9281       return true;
9282     }
9283 
9284     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9285       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9286       << getRedeclDiagFromTagKind(OldTag);
9287     Diag(Redecl->getLocation(), diag::note_previous_use);
9288 
9289     // If there is a previous defintion, suggest a fix-it.
9290     if (Previous->getDefinition()) {
9291         Diag(NewTagLoc, diag::note_struct_class_suggestion)
9292           << getRedeclDiagFromTagKind(Redecl->getTagKind())
9293           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9294                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9295     }
9296 
9297     return true;
9298   }
9299   return false;
9300 }
9301 
9302 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9303 /// former case, Name will be non-null.  In the later case, Name will be null.
9304 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9305 /// reference/declaration/definition of a tag.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType)9306 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9307                      SourceLocation KWLoc, CXXScopeSpec &SS,
9308                      IdentifierInfo *Name, SourceLocation NameLoc,
9309                      AttributeList *Attr, AccessSpecifier AS,
9310                      SourceLocation ModulePrivateLoc,
9311                      MultiTemplateParamsArg TemplateParameterLists,
9312                      bool &OwnedDecl, bool &IsDependent,
9313                      SourceLocation ScopedEnumKWLoc,
9314                      bool ScopedEnumUsesClassTag,
9315                      TypeResult UnderlyingType) {
9316   // If this is not a definition, it must have a name.
9317   IdentifierInfo *OrigName = Name;
9318   assert((Name != 0 || TUK == TUK_Definition) &&
9319          "Nameless record must be a definition!");
9320   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9321 
9322   OwnedDecl = false;
9323   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9324   bool ScopedEnum = ScopedEnumKWLoc.isValid();
9325 
9326   // FIXME: Check explicit specializations more carefully.
9327   bool isExplicitSpecialization = false;
9328   bool Invalid = false;
9329 
9330   // We only need to do this matching if we have template parameters
9331   // or a scope specifier, which also conveniently avoids this work
9332   // for non-C++ cases.
9333   if (TemplateParameterLists.size() > 0 ||
9334       (SS.isNotEmpty() && TUK != TUK_Reference)) {
9335     if (TemplateParameterList *TemplateParams
9336           = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9337                                                 TemplateParameterLists.data(),
9338                                                 TemplateParameterLists.size(),
9339                                                     TUK == TUK_Friend,
9340                                                     isExplicitSpecialization,
9341                                                     Invalid)) {
9342       if (TemplateParams->size() > 0) {
9343         // This is a declaration or definition of a class template (which may
9344         // be a member of another template).
9345 
9346         if (Invalid)
9347           return 0;
9348 
9349         OwnedDecl = false;
9350         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9351                                                SS, Name, NameLoc, Attr,
9352                                                TemplateParams, AS,
9353                                                ModulePrivateLoc,
9354                                                TemplateParameterLists.size()-1,
9355                                                TemplateParameterLists.data());
9356         return Result.get();
9357       } else {
9358         // The "template<>" header is extraneous.
9359         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9360           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9361         isExplicitSpecialization = true;
9362       }
9363     }
9364   }
9365 
9366   // Figure out the underlying type if this a enum declaration. We need to do
9367   // this early, because it's needed to detect if this is an incompatible
9368   // redeclaration.
9369   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9370 
9371   if (Kind == TTK_Enum) {
9372     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9373       // No underlying type explicitly specified, or we failed to parse the
9374       // type, default to int.
9375       EnumUnderlying = Context.IntTy.getTypePtr();
9376     else if (UnderlyingType.get()) {
9377       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9378       // integral type; any cv-qualification is ignored.
9379       TypeSourceInfo *TI = 0;
9380       GetTypeFromParser(UnderlyingType.get(), &TI);
9381       EnumUnderlying = TI;
9382 
9383       if (CheckEnumUnderlyingType(TI))
9384         // Recover by falling back to int.
9385         EnumUnderlying = Context.IntTy.getTypePtr();
9386 
9387       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9388                                           UPPC_FixedUnderlyingType))
9389         EnumUnderlying = Context.IntTy.getTypePtr();
9390 
9391     } else if (getLangOpts().MicrosoftMode)
9392       // Microsoft enums are always of int type.
9393       EnumUnderlying = Context.IntTy.getTypePtr();
9394   }
9395 
9396   DeclContext *SearchDC = CurContext;
9397   DeclContext *DC = CurContext;
9398   bool isStdBadAlloc = false;
9399 
9400   RedeclarationKind Redecl = ForRedeclaration;
9401   if (TUK == TUK_Friend || TUK == TUK_Reference)
9402     Redecl = NotForRedeclaration;
9403 
9404   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9405 
9406   if (Name && SS.isNotEmpty()) {
9407     // We have a nested-name tag ('struct foo::bar').
9408 
9409     // Check for invalid 'foo::'.
9410     if (SS.isInvalid()) {
9411       Name = 0;
9412       goto CreateNewDecl;
9413     }
9414 
9415     // If this is a friend or a reference to a class in a dependent
9416     // context, don't try to make a decl for it.
9417     if (TUK == TUK_Friend || TUK == TUK_Reference) {
9418       DC = computeDeclContext(SS, false);
9419       if (!DC) {
9420         IsDependent = true;
9421         return 0;
9422       }
9423     } else {
9424       DC = computeDeclContext(SS, true);
9425       if (!DC) {
9426         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9427           << SS.getRange();
9428         return 0;
9429       }
9430     }
9431 
9432     if (RequireCompleteDeclContext(SS, DC))
9433       return 0;
9434 
9435     SearchDC = DC;
9436     // Look-up name inside 'foo::'.
9437     LookupQualifiedName(Previous, DC);
9438 
9439     if (Previous.isAmbiguous())
9440       return 0;
9441 
9442     if (Previous.empty()) {
9443       // Name lookup did not find anything. However, if the
9444       // nested-name-specifier refers to the current instantiation,
9445       // and that current instantiation has any dependent base
9446       // classes, we might find something at instantiation time: treat
9447       // this as a dependent elaborated-type-specifier.
9448       // But this only makes any sense for reference-like lookups.
9449       if (Previous.wasNotFoundInCurrentInstantiation() &&
9450           (TUK == TUK_Reference || TUK == TUK_Friend)) {
9451         IsDependent = true;
9452         return 0;
9453       }
9454 
9455       // A tag 'foo::bar' must already exist.
9456       Diag(NameLoc, diag::err_not_tag_in_scope)
9457         << Kind << Name << DC << SS.getRange();
9458       Name = 0;
9459       Invalid = true;
9460       goto CreateNewDecl;
9461     }
9462   } else if (Name) {
9463     // If this is a named struct, check to see if there was a previous forward
9464     // declaration or definition.
9465     // FIXME: We're looking into outer scopes here, even when we
9466     // shouldn't be. Doing so can result in ambiguities that we
9467     // shouldn't be diagnosing.
9468     LookupName(Previous, S);
9469 
9470     if (Previous.isAmbiguous() &&
9471         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9472       LookupResult::Filter F = Previous.makeFilter();
9473       while (F.hasNext()) {
9474         NamedDecl *ND = F.next();
9475         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9476           F.erase();
9477       }
9478       F.done();
9479     }
9480 
9481     // Note:  there used to be some attempt at recovery here.
9482     if (Previous.isAmbiguous())
9483       return 0;
9484 
9485     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9486       // FIXME: This makes sure that we ignore the contexts associated
9487       // with C structs, unions, and enums when looking for a matching
9488       // tag declaration or definition. See the similar lookup tweak
9489       // in Sema::LookupName; is there a better way to deal with this?
9490       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9491         SearchDC = SearchDC->getParent();
9492     }
9493   } else if (S->isFunctionPrototypeScope()) {
9494     // If this is an enum declaration in function prototype scope, set its
9495     // initial context to the translation unit.
9496     // FIXME: [citation needed]
9497     SearchDC = Context.getTranslationUnitDecl();
9498   }
9499 
9500   if (Previous.isSingleResult() &&
9501       Previous.getFoundDecl()->isTemplateParameter()) {
9502     // Maybe we will complain about the shadowed template parameter.
9503     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9504     // Just pretend that we didn't see the previous declaration.
9505     Previous.clear();
9506   }
9507 
9508   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9509       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9510     // This is a declaration of or a reference to "std::bad_alloc".
9511     isStdBadAlloc = true;
9512 
9513     if (Previous.empty() && StdBadAlloc) {
9514       // std::bad_alloc has been implicitly declared (but made invisible to
9515       // name lookup). Fill in this implicit declaration as the previous
9516       // declaration, so that the declarations get chained appropriately.
9517       Previous.addDecl(getStdBadAlloc());
9518     }
9519   }
9520 
9521   // If we didn't find a previous declaration, and this is a reference
9522   // (or friend reference), move to the correct scope.  In C++, we
9523   // also need to do a redeclaration lookup there, just in case
9524   // there's a shadow friend decl.
9525   if (Name && Previous.empty() &&
9526       (TUK == TUK_Reference || TUK == TUK_Friend)) {
9527     if (Invalid) goto CreateNewDecl;
9528     assert(SS.isEmpty());
9529 
9530     if (TUK == TUK_Reference) {
9531       // C++ [basic.scope.pdecl]p5:
9532       //   -- for an elaborated-type-specifier of the form
9533       //
9534       //          class-key identifier
9535       //
9536       //      if the elaborated-type-specifier is used in the
9537       //      decl-specifier-seq or parameter-declaration-clause of a
9538       //      function defined in namespace scope, the identifier is
9539       //      declared as a class-name in the namespace that contains
9540       //      the declaration; otherwise, except as a friend
9541       //      declaration, the identifier is declared in the smallest
9542       //      non-class, non-function-prototype scope that contains the
9543       //      declaration.
9544       //
9545       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9546       // C structs and unions.
9547       //
9548       // It is an error in C++ to declare (rather than define) an enum
9549       // type, including via an elaborated type specifier.  We'll
9550       // diagnose that later; for now, declare the enum in the same
9551       // scope as we would have picked for any other tag type.
9552       //
9553       // GNU C also supports this behavior as part of its incomplete
9554       // enum types extension, while GNU C++ does not.
9555       //
9556       // Find the context where we'll be declaring the tag.
9557       // FIXME: We would like to maintain the current DeclContext as the
9558       // lexical context,
9559       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9560         SearchDC = SearchDC->getParent();
9561 
9562       // Find the scope where we'll be declaring the tag.
9563       while (S->isClassScope() ||
9564              (getLangOpts().CPlusPlus &&
9565               S->isFunctionPrototypeScope()) ||
9566              ((S->getFlags() & Scope::DeclScope) == 0) ||
9567              (S->getEntity() &&
9568               ((DeclContext *)S->getEntity())->isTransparentContext()))
9569         S = S->getParent();
9570     } else {
9571       assert(TUK == TUK_Friend);
9572       // C++ [namespace.memdef]p3:
9573       //   If a friend declaration in a non-local class first declares a
9574       //   class or function, the friend class or function is a member of
9575       //   the innermost enclosing namespace.
9576       SearchDC = SearchDC->getEnclosingNamespaceContext();
9577     }
9578 
9579     // In C++, we need to do a redeclaration lookup to properly
9580     // diagnose some problems.
9581     if (getLangOpts().CPlusPlus) {
9582       Previous.setRedeclarationKind(ForRedeclaration);
9583       LookupQualifiedName(Previous, SearchDC);
9584     }
9585   }
9586 
9587   if (!Previous.empty()) {
9588     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9589 
9590     // It's okay to have a tag decl in the same scope as a typedef
9591     // which hides a tag decl in the same scope.  Finding this
9592     // insanity with a redeclaration lookup can only actually happen
9593     // in C++.
9594     //
9595     // This is also okay for elaborated-type-specifiers, which is
9596     // technically forbidden by the current standard but which is
9597     // okay according to the likely resolution of an open issue;
9598     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9599     if (getLangOpts().CPlusPlus) {
9600       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9601         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9602           TagDecl *Tag = TT->getDecl();
9603           if (Tag->getDeclName() == Name &&
9604               Tag->getDeclContext()->getRedeclContext()
9605                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
9606             PrevDecl = Tag;
9607             Previous.clear();
9608             Previous.addDecl(Tag);
9609             Previous.resolveKind();
9610           }
9611         }
9612       }
9613     }
9614 
9615     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9616       // If this is a use of a previous tag, or if the tag is already declared
9617       // in the same scope (so that the definition/declaration completes or
9618       // rementions the tag), reuse the decl.
9619       if (TUK == TUK_Reference || TUK == TUK_Friend ||
9620           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9621         // Make sure that this wasn't declared as an enum and now used as a
9622         // struct or something similar.
9623         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9624                                           TUK == TUK_Definition, KWLoc,
9625                                           *Name)) {
9626           bool SafeToContinue
9627             = (PrevTagDecl->getTagKind() != TTK_Enum &&
9628                Kind != TTK_Enum);
9629           if (SafeToContinue)
9630             Diag(KWLoc, diag::err_use_with_wrong_tag)
9631               << Name
9632               << FixItHint::CreateReplacement(SourceRange(KWLoc),
9633                                               PrevTagDecl->getKindName());
9634           else
9635             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9636           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9637 
9638           if (SafeToContinue)
9639             Kind = PrevTagDecl->getTagKind();
9640           else {
9641             // Recover by making this an anonymous redefinition.
9642             Name = 0;
9643             Previous.clear();
9644             Invalid = true;
9645           }
9646         }
9647 
9648         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9649           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9650 
9651           // If this is an elaborated-type-specifier for a scoped enumeration,
9652           // the 'class' keyword is not necessary and not permitted.
9653           if (TUK == TUK_Reference || TUK == TUK_Friend) {
9654             if (ScopedEnum)
9655               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9656                 << PrevEnum->isScoped()
9657                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9658             return PrevTagDecl;
9659           }
9660 
9661           QualType EnumUnderlyingTy;
9662           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9663             EnumUnderlyingTy = TI->getType();
9664           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9665             EnumUnderlyingTy = QualType(T, 0);
9666 
9667           // All conflicts with previous declarations are recovered by
9668           // returning the previous declaration, unless this is a definition,
9669           // in which case we want the caller to bail out.
9670           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9671                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
9672             return TUK == TUK_Declaration ? PrevTagDecl : 0;
9673         }
9674 
9675         if (!Invalid) {
9676           // If this is a use, just return the declaration we found.
9677 
9678           // FIXME: In the future, return a variant or some other clue
9679           // for the consumer of this Decl to know it doesn't own it.
9680           // For our current ASTs this shouldn't be a problem, but will
9681           // need to be changed with DeclGroups.
9682           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9683                getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9684             return PrevTagDecl;
9685 
9686           // Diagnose attempts to redefine a tag.
9687           if (TUK == TUK_Definition) {
9688             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9689               // If we're defining a specialization and the previous definition
9690               // is from an implicit instantiation, don't emit an error
9691               // here; we'll catch this in the general case below.
9692               bool IsExplicitSpecializationAfterInstantiation = false;
9693               if (isExplicitSpecialization) {
9694                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9695                   IsExplicitSpecializationAfterInstantiation =
9696                     RD->getTemplateSpecializationKind() !=
9697                     TSK_ExplicitSpecialization;
9698                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9699                   IsExplicitSpecializationAfterInstantiation =
9700                     ED->getTemplateSpecializationKind() !=
9701                     TSK_ExplicitSpecialization;
9702               }
9703 
9704               if (!IsExplicitSpecializationAfterInstantiation) {
9705                 // A redeclaration in function prototype scope in C isn't
9706                 // visible elsewhere, so merely issue a warning.
9707                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9708                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9709                 else
9710                   Diag(NameLoc, diag::err_redefinition) << Name;
9711                 Diag(Def->getLocation(), diag::note_previous_definition);
9712                 // If this is a redefinition, recover by making this
9713                 // struct be anonymous, which will make any later
9714                 // references get the previous definition.
9715                 Name = 0;
9716                 Previous.clear();
9717                 Invalid = true;
9718               }
9719             } else {
9720               // If the type is currently being defined, complain
9721               // about a nested redefinition.
9722               const TagType *Tag
9723                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9724               if (Tag->isBeingDefined()) {
9725                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
9726                 Diag(PrevTagDecl->getLocation(),
9727                      diag::note_previous_definition);
9728                 Name = 0;
9729                 Previous.clear();
9730                 Invalid = true;
9731               }
9732             }
9733 
9734             // Okay, this is definition of a previously declared or referenced
9735             // tag PrevDecl. We're going to create a new Decl for it.
9736           }
9737         }
9738         // If we get here we have (another) forward declaration or we
9739         // have a definition.  Just create a new decl.
9740 
9741       } else {
9742         // If we get here, this is a definition of a new tag type in a nested
9743         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9744         // new decl/type.  We set PrevDecl to NULL so that the entities
9745         // have distinct types.
9746         Previous.clear();
9747       }
9748       // If we get here, we're going to create a new Decl. If PrevDecl
9749       // is non-NULL, it's a definition of the tag declared by
9750       // PrevDecl. If it's NULL, we have a new definition.
9751 
9752 
9753     // Otherwise, PrevDecl is not a tag, but was found with tag
9754     // lookup.  This is only actually possible in C++, where a few
9755     // things like templates still live in the tag namespace.
9756     } else {
9757       // Use a better diagnostic if an elaborated-type-specifier
9758       // found the wrong kind of type on the first
9759       // (non-redeclaration) lookup.
9760       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9761           !Previous.isForRedeclaration()) {
9762         unsigned Kind = 0;
9763         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9764         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9765         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9766         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9767         Diag(PrevDecl->getLocation(), diag::note_declared_at);
9768         Invalid = true;
9769 
9770       // Otherwise, only diagnose if the declaration is in scope.
9771       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9772                                 isExplicitSpecialization)) {
9773         // do nothing
9774 
9775       // Diagnose implicit declarations introduced by elaborated types.
9776       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9777         unsigned Kind = 0;
9778         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9779         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9780         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9781         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9782         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9783         Invalid = true;
9784 
9785       // Otherwise it's a declaration.  Call out a particularly common
9786       // case here.
9787       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9788         unsigned Kind = 0;
9789         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9790         Diag(NameLoc, diag::err_tag_definition_of_typedef)
9791           << Name << Kind << TND->getUnderlyingType();
9792         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9793         Invalid = true;
9794 
9795       // Otherwise, diagnose.
9796       } else {
9797         // The tag name clashes with something else in the target scope,
9798         // issue an error and recover by making this tag be anonymous.
9799         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9800         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9801         Name = 0;
9802         Invalid = true;
9803       }
9804 
9805       // The existing declaration isn't relevant to us; we're in a
9806       // new scope, so clear out the previous declaration.
9807       Previous.clear();
9808     }
9809   }
9810 
9811 CreateNewDecl:
9812 
9813   TagDecl *PrevDecl = 0;
9814   if (Previous.isSingleResult())
9815     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9816 
9817   // If there is an identifier, use the location of the identifier as the
9818   // location of the decl, otherwise use the location of the struct/union
9819   // keyword.
9820   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9821 
9822   // Otherwise, create a new declaration. If there is a previous
9823   // declaration of the same entity, the two will be linked via
9824   // PrevDecl.
9825   TagDecl *New;
9826 
9827   bool IsForwardReference = false;
9828   if (Kind == TTK_Enum) {
9829     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9830     // enum X { A, B, C } D;    D should chain to X.
9831     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9832                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9833                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9834     // If this is an undefined enum, warn.
9835     if (TUK != TUK_Definition && !Invalid) {
9836       TagDecl *Def;
9837       if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9838         // C++0x: 7.2p2: opaque-enum-declaration.
9839         // Conflicts are diagnosed above. Do nothing.
9840       }
9841       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9842         Diag(Loc, diag::ext_forward_ref_enum_def)
9843           << New;
9844         Diag(Def->getLocation(), diag::note_previous_definition);
9845       } else {
9846         unsigned DiagID = diag::ext_forward_ref_enum;
9847         if (getLangOpts().MicrosoftMode)
9848           DiagID = diag::ext_ms_forward_ref_enum;
9849         else if (getLangOpts().CPlusPlus)
9850           DiagID = diag::err_forward_ref_enum;
9851         Diag(Loc, DiagID);
9852 
9853         // If this is a forward-declared reference to an enumeration, make a
9854         // note of it; we won't actually be introducing the declaration into
9855         // the declaration context.
9856         if (TUK == TUK_Reference)
9857           IsForwardReference = true;
9858       }
9859     }
9860 
9861     if (EnumUnderlying) {
9862       EnumDecl *ED = cast<EnumDecl>(New);
9863       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9864         ED->setIntegerTypeSourceInfo(TI);
9865       else
9866         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9867       ED->setPromotionType(ED->getIntegerType());
9868     }
9869 
9870   } else {
9871     // struct/union/class
9872 
9873     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9874     // struct X { int A; } D;    D should chain to X.
9875     if (getLangOpts().CPlusPlus) {
9876       // FIXME: Look for a way to use RecordDecl for simple structs.
9877       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9878                                   cast_or_null<CXXRecordDecl>(PrevDecl));
9879 
9880       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9881         StdBadAlloc = cast<CXXRecordDecl>(New);
9882     } else
9883       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9884                                cast_or_null<RecordDecl>(PrevDecl));
9885   }
9886 
9887   // Maybe add qualifier info.
9888   if (SS.isNotEmpty()) {
9889     if (SS.isSet()) {
9890       // If this is either a declaration or a definition, check the
9891       // nested-name-specifier against the current context. We don't do this
9892       // for explicit specializations, because they have similar checking
9893       // (with more specific diagnostics) in the call to
9894       // CheckMemberSpecialization, below.
9895       if (!isExplicitSpecialization &&
9896           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9897           diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9898         Invalid = true;
9899 
9900       New->setQualifierInfo(SS.getWithLocInContext(Context));
9901       if (TemplateParameterLists.size() > 0) {
9902         New->setTemplateParameterListsInfo(Context,
9903                                            TemplateParameterLists.size(),
9904                                            TemplateParameterLists.data());
9905       }
9906     }
9907     else
9908       Invalid = true;
9909   }
9910 
9911   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9912     // Add alignment attributes if necessary; these attributes are checked when
9913     // the ASTContext lays out the structure.
9914     //
9915     // It is important for implementing the correct semantics that this
9916     // happen here (in act on tag decl). The #pragma pack stack is
9917     // maintained as a result of parser callbacks which can occur at
9918     // many points during the parsing of a struct declaration (because
9919     // the #pragma tokens are effectively skipped over during the
9920     // parsing of the struct).
9921     if (TUK == TUK_Definition) {
9922       AddAlignmentAttributesForRecord(RD);
9923       AddMsStructLayoutForRecord(RD);
9924     }
9925   }
9926 
9927   if (ModulePrivateLoc.isValid()) {
9928     if (isExplicitSpecialization)
9929       Diag(New->getLocation(), diag::err_module_private_specialization)
9930         << 2
9931         << FixItHint::CreateRemoval(ModulePrivateLoc);
9932     // __module_private__ does not apply to local classes. However, we only
9933     // diagnose this as an error when the declaration specifiers are
9934     // freestanding. Here, we just ignore the __module_private__.
9935     else if (!SearchDC->isFunctionOrMethod())
9936       New->setModulePrivate();
9937   }
9938 
9939   // If this is a specialization of a member class (of a class template),
9940   // check the specialization.
9941   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9942     Invalid = true;
9943 
9944   if (Invalid)
9945     New->setInvalidDecl();
9946 
9947   if (Attr)
9948     ProcessDeclAttributeList(S, New, Attr);
9949 
9950   // If we're declaring or defining a tag in function prototype scope
9951   // in C, note that this type can only be used within the function.
9952   if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9953     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9954 
9955   // Set the lexical context. If the tag has a C++ scope specifier, the
9956   // lexical context will be different from the semantic context.
9957   New->setLexicalDeclContext(CurContext);
9958 
9959   // Mark this as a friend decl if applicable.
9960   // In Microsoft mode, a friend declaration also acts as a forward
9961   // declaration so we always pass true to setObjectOfFriendDecl to make
9962   // the tag name visible.
9963   if (TUK == TUK_Friend)
9964     New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9965                                getLangOpts().MicrosoftExt);
9966 
9967   // Set the access specifier.
9968   if (!Invalid && SearchDC->isRecord())
9969     SetMemberAccessSpecifier(New, PrevDecl, AS);
9970 
9971   if (TUK == TUK_Definition)
9972     New->startDefinition();
9973 
9974   // If this has an identifier, add it to the scope stack.
9975   if (TUK == TUK_Friend) {
9976     // We might be replacing an existing declaration in the lookup tables;
9977     // if so, borrow its access specifier.
9978     if (PrevDecl)
9979       New->setAccess(PrevDecl->getAccess());
9980 
9981     DeclContext *DC = New->getDeclContext()->getRedeclContext();
9982     DC->makeDeclVisibleInContext(New);
9983     if (Name) // can be null along some error paths
9984       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9985         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9986   } else if (Name) {
9987     S = getNonFieldDeclScope(S);
9988     PushOnScopeChains(New, S, !IsForwardReference);
9989     if (IsForwardReference)
9990       SearchDC->makeDeclVisibleInContext(New);
9991 
9992   } else {
9993     CurContext->addDecl(New);
9994   }
9995 
9996   // If this is the C FILE type, notify the AST context.
9997   if (IdentifierInfo *II = New->getIdentifier())
9998     if (!New->isInvalidDecl() &&
9999         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10000         II->isStr("FILE"))
10001       Context.setFILEDecl(New);
10002 
10003   // If we were in function prototype scope (and not in C++ mode), add this
10004   // tag to the list of decls to inject into the function definition scope.
10005   if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10006       InFunctionDeclarator && Name)
10007     DeclsInPrototypeScope.push_back(New);
10008 
10009   if (PrevDecl)
10010     mergeDeclAttributes(New, PrevDecl);
10011 
10012   // If there's a #pragma GCC visibility in scope, set the visibility of this
10013   // record.
10014   AddPushedVisibilityAttribute(New);
10015 
10016   OwnedDecl = true;
10017   // In C++, don't return an invalid declaration. We can't recover well from
10018   // the cases where we make the type anonymous.
10019   return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10020 }
10021 
ActOnTagStartDefinition(Scope * S,Decl * TagD)10022 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10023   AdjustDeclIfTemplate(TagD);
10024   TagDecl *Tag = cast<TagDecl>(TagD);
10025 
10026   // Enter the tag context.
10027   PushDeclContext(S, Tag);
10028 
10029   ActOnDocumentableDecl(TagD);
10030 
10031   // If there's a #pragma GCC visibility in scope, set the visibility of this
10032   // record.
10033   AddPushedVisibilityAttribute(Tag);
10034 }
10035 
ActOnObjCContainerStartDefinition(Decl * IDecl)10036 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10037   assert(isa<ObjCContainerDecl>(IDecl) &&
10038          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10039   DeclContext *OCD = cast<DeclContext>(IDecl);
10040   assert(getContainingDC(OCD) == CurContext &&
10041       "The next DeclContext should be lexically contained in the current one.");
10042   CurContext = OCD;
10043   return IDecl;
10044 }
10045 
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,SourceLocation LBraceLoc)10046 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10047                                            SourceLocation FinalLoc,
10048                                            SourceLocation LBraceLoc) {
10049   AdjustDeclIfTemplate(TagD);
10050   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10051 
10052   FieldCollector->StartClass();
10053 
10054   if (!Record->getIdentifier())
10055     return;
10056 
10057   if (FinalLoc.isValid())
10058     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10059 
10060   // C++ [class]p2:
10061   //   [...] The class-name is also inserted into the scope of the
10062   //   class itself; this is known as the injected-class-name. For
10063   //   purposes of access checking, the injected-class-name is treated
10064   //   as if it were a public member name.
10065   CXXRecordDecl *InjectedClassName
10066     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10067                             Record->getLocStart(), Record->getLocation(),
10068                             Record->getIdentifier(),
10069                             /*PrevDecl=*/0,
10070                             /*DelayTypeCreation=*/true);
10071   Context.getTypeDeclType(InjectedClassName, Record);
10072   InjectedClassName->setImplicit();
10073   InjectedClassName->setAccess(AS_public);
10074   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10075       InjectedClassName->setDescribedClassTemplate(Template);
10076   PushOnScopeChains(InjectedClassName, S);
10077   assert(InjectedClassName->isInjectedClassName() &&
10078          "Broken injected-class-name");
10079 }
10080 
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)10081 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10082                                     SourceLocation RBraceLoc) {
10083   AdjustDeclIfTemplate(TagD);
10084   TagDecl *Tag = cast<TagDecl>(TagD);
10085   Tag->setRBraceLoc(RBraceLoc);
10086 
10087   // Make sure we "complete" the definition even it is invalid.
10088   if (Tag->isBeingDefined()) {
10089     assert(Tag->isInvalidDecl() && "We should already have completed it");
10090     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10091       RD->completeDefinition();
10092   }
10093 
10094   if (isa<CXXRecordDecl>(Tag))
10095     FieldCollector->FinishClass();
10096 
10097   // Exit this scope of this tag's definition.
10098   PopDeclContext();
10099 
10100   if (getCurLexicalContext()->isObjCContainer() &&
10101       Tag->getDeclContext()->isFileContext())
10102     Tag->setTopLevelDeclInObjCContainer();
10103 
10104   // Notify the consumer that we've defined a tag.
10105   Consumer.HandleTagDeclDefinition(Tag);
10106 }
10107 
ActOnObjCContainerFinishDefinition()10108 void Sema::ActOnObjCContainerFinishDefinition() {
10109   // Exit this scope of this interface definition.
10110   PopDeclContext();
10111 }
10112 
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)10113 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10114   assert(DC == CurContext && "Mismatch of container contexts");
10115   OriginalLexicalContext = DC;
10116   ActOnObjCContainerFinishDefinition();
10117 }
10118 
ActOnObjCReenterContainerContext(DeclContext * DC)10119 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10120   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10121   OriginalLexicalContext = 0;
10122 }
10123 
ActOnTagDefinitionError(Scope * S,Decl * TagD)10124 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10125   AdjustDeclIfTemplate(TagD);
10126   TagDecl *Tag = cast<TagDecl>(TagD);
10127   Tag->setInvalidDecl();
10128 
10129   // Make sure we "complete" the definition even it is invalid.
10130   if (Tag->isBeingDefined()) {
10131     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10132       RD->completeDefinition();
10133   }
10134 
10135   // We're undoing ActOnTagStartDefinition here, not
10136   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10137   // the FieldCollector.
10138 
10139   PopDeclContext();
10140 }
10141 
10142 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,Expr * BitWidth,bool * ZeroWidth)10143 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10144                                 IdentifierInfo *FieldName,
10145                                 QualType FieldTy, Expr *BitWidth,
10146                                 bool *ZeroWidth) {
10147   // Default to true; that shouldn't confuse checks for emptiness
10148   if (ZeroWidth)
10149     *ZeroWidth = true;
10150 
10151   // C99 6.7.2.1p4 - verify the field type.
10152   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10153   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10154     // Handle incomplete types with specific error.
10155     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10156       return ExprError();
10157     if (FieldName)
10158       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10159         << FieldName << FieldTy << BitWidth->getSourceRange();
10160     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10161       << FieldTy << BitWidth->getSourceRange();
10162   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10163                                              UPPC_BitFieldWidth))
10164     return ExprError();
10165 
10166   // If the bit-width is type- or value-dependent, don't try to check
10167   // it now.
10168   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10169     return Owned(BitWidth);
10170 
10171   llvm::APSInt Value;
10172   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10173   if (ICE.isInvalid())
10174     return ICE;
10175   BitWidth = ICE.take();
10176 
10177   if (Value != 0 && ZeroWidth)
10178     *ZeroWidth = false;
10179 
10180   // Zero-width bitfield is ok for anonymous field.
10181   if (Value == 0 && FieldName)
10182     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10183 
10184   if (Value.isSigned() && Value.isNegative()) {
10185     if (FieldName)
10186       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10187                << FieldName << Value.toString(10);
10188     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10189       << Value.toString(10);
10190   }
10191 
10192   if (!FieldTy->isDependentType()) {
10193     uint64_t TypeSize = Context.getTypeSize(FieldTy);
10194     if (Value.getZExtValue() > TypeSize) {
10195       if (!getLangOpts().CPlusPlus) {
10196         if (FieldName)
10197           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10198             << FieldName << (unsigned)Value.getZExtValue()
10199             << (unsigned)TypeSize;
10200 
10201         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10202           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10203       }
10204 
10205       if (FieldName)
10206         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10207           << FieldName << (unsigned)Value.getZExtValue()
10208           << (unsigned)TypeSize;
10209       else
10210         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10211           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10212     }
10213   }
10214 
10215   return Owned(BitWidth);
10216 }
10217 
10218 /// ActOnField - Each field of a C struct/union is passed into this in order
10219 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)10220 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10221                        Declarator &D, Expr *BitfieldWidth) {
10222   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10223                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10224                                /*InitStyle=*/ICIS_NoInit, AS_public);
10225   return Res;
10226 }
10227 
10228 /// HandleField - Analyze a field of a C struct or a C++ data member.
10229 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)10230 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10231                              SourceLocation DeclStart,
10232                              Declarator &D, Expr *BitWidth,
10233                              InClassInitStyle InitStyle,
10234                              AccessSpecifier AS) {
10235   IdentifierInfo *II = D.getIdentifier();
10236   SourceLocation Loc = DeclStart;
10237   if (II) Loc = D.getIdentifierLoc();
10238 
10239   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10240   QualType T = TInfo->getType();
10241   if (getLangOpts().CPlusPlus) {
10242     CheckExtraCXXDefaultArguments(D);
10243 
10244     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10245                                         UPPC_DataMemberType)) {
10246       D.setInvalidType();
10247       T = Context.IntTy;
10248       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10249     }
10250   }
10251 
10252   // TR 18037 does not allow fields to be declared with address spaces.
10253   if (T.getQualifiers().hasAddressSpace()) {
10254     Diag(Loc, diag::err_field_with_address_space);
10255     D.setInvalidType();
10256   }
10257 
10258   // OpenCL 1.2 spec, s6.9 r:
10259   // The event type cannot be used to declare a structure or union field.
10260   if (LangOpts.OpenCL && T->isEventT()) {
10261     Diag(Loc, diag::err_event_t_struct_field);
10262     D.setInvalidType();
10263   }
10264 
10265   DiagnoseFunctionSpecifiers(D.getDeclSpec());
10266 
10267   if (D.getDeclSpec().isThreadSpecified())
10268     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
10269 
10270   // Check to see if this name was declared as a member previously
10271   NamedDecl *PrevDecl = 0;
10272   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10273   LookupName(Previous, S);
10274   switch (Previous.getResultKind()) {
10275     case LookupResult::Found:
10276     case LookupResult::FoundUnresolvedValue:
10277       PrevDecl = Previous.getAsSingle<NamedDecl>();
10278       break;
10279 
10280     case LookupResult::FoundOverloaded:
10281       PrevDecl = Previous.getRepresentativeDecl();
10282       break;
10283 
10284     case LookupResult::NotFound:
10285     case LookupResult::NotFoundInCurrentInstantiation:
10286     case LookupResult::Ambiguous:
10287       break;
10288   }
10289   Previous.suppressDiagnostics();
10290 
10291   if (PrevDecl && PrevDecl->isTemplateParameter()) {
10292     // Maybe we will complain about the shadowed template parameter.
10293     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10294     // Just pretend that we didn't see the previous declaration.
10295     PrevDecl = 0;
10296   }
10297 
10298   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10299     PrevDecl = 0;
10300 
10301   bool Mutable
10302     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10303   SourceLocation TSSL = D.getLocStart();
10304   FieldDecl *NewFD
10305     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10306                      TSSL, AS, PrevDecl, &D);
10307 
10308   if (NewFD->isInvalidDecl())
10309     Record->setInvalidDecl();
10310 
10311   if (D.getDeclSpec().isModulePrivateSpecified())
10312     NewFD->setModulePrivate();
10313 
10314   if (NewFD->isInvalidDecl() && PrevDecl) {
10315     // Don't introduce NewFD into scope; there's already something
10316     // with the same name in the same scope.
10317   } else if (II) {
10318     PushOnScopeChains(NewFD, S);
10319   } else
10320     Record->addDecl(NewFD);
10321 
10322   return NewFD;
10323 }
10324 
10325 /// \brief Build a new FieldDecl and check its well-formedness.
10326 ///
10327 /// This routine builds a new FieldDecl given the fields name, type,
10328 /// record, etc. \p PrevDecl should refer to any previous declaration
10329 /// with the same name and in the same scope as the field to be
10330 /// created.
10331 ///
10332 /// \returns a new FieldDecl.
10333 ///
10334 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)10335 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10336                                 TypeSourceInfo *TInfo,
10337                                 RecordDecl *Record, SourceLocation Loc,
10338                                 bool Mutable, Expr *BitWidth,
10339                                 InClassInitStyle InitStyle,
10340                                 SourceLocation TSSL,
10341                                 AccessSpecifier AS, NamedDecl *PrevDecl,
10342                                 Declarator *D) {
10343   IdentifierInfo *II = Name.getAsIdentifierInfo();
10344   bool InvalidDecl = false;
10345   if (D) InvalidDecl = D->isInvalidType();
10346 
10347   // If we receive a broken type, recover by assuming 'int' and
10348   // marking this declaration as invalid.
10349   if (T.isNull()) {
10350     InvalidDecl = true;
10351     T = Context.IntTy;
10352   }
10353 
10354   QualType EltTy = Context.getBaseElementType(T);
10355   if (!EltTy->isDependentType()) {
10356     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10357       // Fields of incomplete type force their record to be invalid.
10358       Record->setInvalidDecl();
10359       InvalidDecl = true;
10360     } else {
10361       NamedDecl *Def;
10362       EltTy->isIncompleteType(&Def);
10363       if (Def && Def->isInvalidDecl()) {
10364         Record->setInvalidDecl();
10365         InvalidDecl = true;
10366       }
10367     }
10368   }
10369 
10370   // OpenCL v1.2 s6.9.c: bitfields are not supported.
10371   if (BitWidth && getLangOpts().OpenCL) {
10372     Diag(Loc, diag::err_opencl_bitfields);
10373     InvalidDecl = true;
10374   }
10375 
10376   // C99 6.7.2.1p8: A member of a structure or union may have any type other
10377   // than a variably modified type.
10378   if (!InvalidDecl && T->isVariablyModifiedType()) {
10379     bool SizeIsNegative;
10380     llvm::APSInt Oversized;
10381 
10382     TypeSourceInfo *FixedTInfo =
10383       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10384                                                     SizeIsNegative,
10385                                                     Oversized);
10386     if (FixedTInfo) {
10387       Diag(Loc, diag::warn_illegal_constant_array_size);
10388       TInfo = FixedTInfo;
10389       T = FixedTInfo->getType();
10390     } else {
10391       if (SizeIsNegative)
10392         Diag(Loc, diag::err_typecheck_negative_array_size);
10393       else if (Oversized.getBoolValue())
10394         Diag(Loc, diag::err_array_too_large)
10395           << Oversized.toString(10);
10396       else
10397         Diag(Loc, diag::err_typecheck_field_variable_size);
10398       InvalidDecl = true;
10399     }
10400   }
10401 
10402   // Fields can not have abstract class types
10403   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10404                                              diag::err_abstract_type_in_decl,
10405                                              AbstractFieldType))
10406     InvalidDecl = true;
10407 
10408   bool ZeroWidth = false;
10409   // If this is declared as a bit-field, check the bit-field.
10410   if (!InvalidDecl && BitWidth) {
10411     BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10412     if (!BitWidth) {
10413       InvalidDecl = true;
10414       BitWidth = 0;
10415       ZeroWidth = false;
10416     }
10417   }
10418 
10419   // Check that 'mutable' is consistent with the type of the declaration.
10420   if (!InvalidDecl && Mutable) {
10421     unsigned DiagID = 0;
10422     if (T->isReferenceType())
10423       DiagID = diag::err_mutable_reference;
10424     else if (T.isConstQualified())
10425       DiagID = diag::err_mutable_const;
10426 
10427     if (DiagID) {
10428       SourceLocation ErrLoc = Loc;
10429       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10430         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10431       Diag(ErrLoc, DiagID);
10432       Mutable = false;
10433       InvalidDecl = true;
10434     }
10435   }
10436 
10437   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10438                                        BitWidth, Mutable, InitStyle);
10439   if (InvalidDecl)
10440     NewFD->setInvalidDecl();
10441 
10442   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10443     Diag(Loc, diag::err_duplicate_member) << II;
10444     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10445     NewFD->setInvalidDecl();
10446   }
10447 
10448   if (!InvalidDecl && getLangOpts().CPlusPlus) {
10449     if (Record->isUnion()) {
10450       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10451         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10452         if (RDecl->getDefinition()) {
10453           // C++ [class.union]p1: An object of a class with a non-trivial
10454           // constructor, a non-trivial copy constructor, a non-trivial
10455           // destructor, or a non-trivial copy assignment operator
10456           // cannot be a member of a union, nor can an array of such
10457           // objects.
10458           if (CheckNontrivialField(NewFD))
10459             NewFD->setInvalidDecl();
10460         }
10461       }
10462 
10463       // C++ [class.union]p1: If a union contains a member of reference type,
10464       // the program is ill-formed.
10465       if (EltTy->isReferenceType()) {
10466         Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10467           << NewFD->getDeclName() << EltTy;
10468         NewFD->setInvalidDecl();
10469       }
10470     }
10471   }
10472 
10473   // FIXME: We need to pass in the attributes given an AST
10474   // representation, not a parser representation.
10475   if (D) {
10476     // FIXME: What to pass instead of TUScope?
10477     ProcessDeclAttributes(TUScope, NewFD, *D);
10478 
10479     if (NewFD->hasAttrs())
10480       CheckAlignasUnderalignment(NewFD);
10481   }
10482 
10483   // In auto-retain/release, infer strong retension for fields of
10484   // retainable type.
10485   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10486     NewFD->setInvalidDecl();
10487 
10488   if (T.isObjCGCWeak())
10489     Diag(Loc, diag::warn_attribute_weak_on_field);
10490 
10491   NewFD->setAccess(AS);
10492   return NewFD;
10493 }
10494 
CheckNontrivialField(FieldDecl * FD)10495 bool Sema::CheckNontrivialField(FieldDecl *FD) {
10496   assert(FD);
10497   assert(getLangOpts().CPlusPlus && "valid check only for C++");
10498 
10499   if (FD->isInvalidDecl())
10500     return true;
10501 
10502   QualType EltTy = Context.getBaseElementType(FD->getType());
10503   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10504     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10505     if (RDecl->getDefinition()) {
10506       // We check for copy constructors before constructors
10507       // because otherwise we'll never get complaints about
10508       // copy constructors.
10509 
10510       CXXSpecialMember member = CXXInvalid;
10511       // We're required to check for any non-trivial constructors. Since the
10512       // implicit default constructor is suppressed if there are any
10513       // user-declared constructors, we just need to check that there is a
10514       // trivial default constructor and a trivial copy constructor. (We don't
10515       // worry about move constructors here, since this is a C++98 check.)
10516       if (RDecl->hasNonTrivialCopyConstructor())
10517         member = CXXCopyConstructor;
10518       else if (!RDecl->hasTrivialDefaultConstructor())
10519         member = CXXDefaultConstructor;
10520       else if (RDecl->hasNonTrivialCopyAssignment())
10521         member = CXXCopyAssignment;
10522       else if (RDecl->hasNonTrivialDestructor())
10523         member = CXXDestructor;
10524 
10525       if (member != CXXInvalid) {
10526         if (!getLangOpts().CPlusPlus11 &&
10527             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10528           // Objective-C++ ARC: it is an error to have a non-trivial field of
10529           // a union. However, system headers in Objective-C programs
10530           // occasionally have Objective-C lifetime objects within unions,
10531           // and rather than cause the program to fail, we make those
10532           // members unavailable.
10533           SourceLocation Loc = FD->getLocation();
10534           if (getSourceManager().isInSystemHeader(Loc)) {
10535             if (!FD->hasAttr<UnavailableAttr>())
10536               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10537                                   "this system field has retaining ownership"));
10538             return false;
10539           }
10540         }
10541 
10542         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10543                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10544                diag::err_illegal_union_or_anon_struct_member)
10545           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10546         DiagnoseNontrivial(RDecl, member);
10547         return !getLangOpts().CPlusPlus11;
10548       }
10549     }
10550   }
10551 
10552   return false;
10553 }
10554 
10555 /// TranslateIvarVisibility - Translate visibility from a token ID to an
10556 ///  AST enum value.
10557 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)10558 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10559   switch (ivarVisibility) {
10560   default: llvm_unreachable("Unknown visitibility kind");
10561   case tok::objc_private: return ObjCIvarDecl::Private;
10562   case tok::objc_public: return ObjCIvarDecl::Public;
10563   case tok::objc_protected: return ObjCIvarDecl::Protected;
10564   case tok::objc_package: return ObjCIvarDecl::Package;
10565   }
10566 }
10567 
10568 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
10569 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)10570 Decl *Sema::ActOnIvar(Scope *S,
10571                                 SourceLocation DeclStart,
10572                                 Declarator &D, Expr *BitfieldWidth,
10573                                 tok::ObjCKeywordKind Visibility) {
10574 
10575   IdentifierInfo *II = D.getIdentifier();
10576   Expr *BitWidth = (Expr*)BitfieldWidth;
10577   SourceLocation Loc = DeclStart;
10578   if (II) Loc = D.getIdentifierLoc();
10579 
10580   // FIXME: Unnamed fields can be handled in various different ways, for
10581   // example, unnamed unions inject all members into the struct namespace!
10582 
10583   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10584   QualType T = TInfo->getType();
10585 
10586   if (BitWidth) {
10587     // 6.7.2.1p3, 6.7.2.1p4
10588     BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10589     if (!BitWidth)
10590       D.setInvalidType();
10591   } else {
10592     // Not a bitfield.
10593 
10594     // validate II.
10595 
10596   }
10597   if (T->isReferenceType()) {
10598     Diag(Loc, diag::err_ivar_reference_type);
10599     D.setInvalidType();
10600   }
10601   // C99 6.7.2.1p8: A member of a structure or union may have any type other
10602   // than a variably modified type.
10603   else if (T->isVariablyModifiedType()) {
10604     Diag(Loc, diag::err_typecheck_ivar_variable_size);
10605     D.setInvalidType();
10606   }
10607 
10608   // Get the visibility (access control) for this ivar.
10609   ObjCIvarDecl::AccessControl ac =
10610     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10611                                         : ObjCIvarDecl::None;
10612   // Must set ivar's DeclContext to its enclosing interface.
10613   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10614   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10615     return 0;
10616   ObjCContainerDecl *EnclosingContext;
10617   if (ObjCImplementationDecl *IMPDecl =
10618       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10619     if (LangOpts.ObjCRuntime.isFragile()) {
10620     // Case of ivar declared in an implementation. Context is that of its class.
10621       EnclosingContext = IMPDecl->getClassInterface();
10622       assert(EnclosingContext && "Implementation has no class interface!");
10623     }
10624     else
10625       EnclosingContext = EnclosingDecl;
10626   } else {
10627     if (ObjCCategoryDecl *CDecl =
10628         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10629       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10630         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10631         return 0;
10632       }
10633     }
10634     EnclosingContext = EnclosingDecl;
10635   }
10636 
10637   // Construct the decl.
10638   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10639                                              DeclStart, Loc, II, T,
10640                                              TInfo, ac, (Expr *)BitfieldWidth);
10641 
10642   if (II) {
10643     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10644                                            ForRedeclaration);
10645     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10646         && !isa<TagDecl>(PrevDecl)) {
10647       Diag(Loc, diag::err_duplicate_member) << II;
10648       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10649       NewID->setInvalidDecl();
10650     }
10651   }
10652 
10653   // Process attributes attached to the ivar.
10654   ProcessDeclAttributes(S, NewID, D);
10655 
10656   if (D.isInvalidType())
10657     NewID->setInvalidDecl();
10658 
10659   // In ARC, infer 'retaining' for ivars of retainable type.
10660   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10661     NewID->setInvalidDecl();
10662 
10663   if (D.getDeclSpec().isModulePrivateSpecified())
10664     NewID->setModulePrivate();
10665 
10666   if (II) {
10667     // FIXME: When interfaces are DeclContexts, we'll need to add
10668     // these to the interface.
10669     S->AddDecl(NewID);
10670     IdResolver.AddDecl(NewID);
10671   }
10672 
10673   if (LangOpts.ObjCRuntime.isNonFragile() &&
10674       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10675     Diag(Loc, diag::warn_ivars_in_interface);
10676 
10677   return NewID;
10678 }
10679 
10680 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10681 /// class and class extensions. For every class @interface and class
10682 /// extension @interface, if the last ivar is a bitfield of any type,
10683 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)10684 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10685                              SmallVectorImpl<Decl *> &AllIvarDecls) {
10686   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10687     return;
10688 
10689   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10690   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10691 
10692   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10693     return;
10694   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10695   if (!ID) {
10696     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10697       if (!CD->IsClassExtension())
10698         return;
10699     }
10700     // No need to add this to end of @implementation.
10701     else
10702       return;
10703   }
10704   // All conditions are met. Add a new bitfield to the tail end of ivars.
10705   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10706   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10707 
10708   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10709                               DeclLoc, DeclLoc, 0,
10710                               Context.CharTy,
10711                               Context.getTrivialTypeSourceInfo(Context.CharTy,
10712                                                                DeclLoc),
10713                               ObjCIvarDecl::Private, BW,
10714                               true);
10715   AllIvarDecls.push_back(Ivar);
10716 }
10717 
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,llvm::ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)10718 void Sema::ActOnFields(Scope* S,
10719                        SourceLocation RecLoc, Decl *EnclosingDecl,
10720                        llvm::ArrayRef<Decl *> Fields,
10721                        SourceLocation LBrac, SourceLocation RBrac,
10722                        AttributeList *Attr) {
10723   assert(EnclosingDecl && "missing record or interface decl");
10724 
10725   // If this is an Objective-C @implementation or category and we have
10726   // new fields here we should reset the layout of the interface since
10727   // it will now change.
10728   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10729     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10730     switch (DC->getKind()) {
10731     default: break;
10732     case Decl::ObjCCategory:
10733       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10734       break;
10735     case Decl::ObjCImplementation:
10736       Context.
10737         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10738       break;
10739     }
10740   }
10741 
10742   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10743 
10744   // Start counting up the number of named members; make sure to include
10745   // members of anonymous structs and unions in the total.
10746   unsigned NumNamedMembers = 0;
10747   if (Record) {
10748     for (RecordDecl::decl_iterator i = Record->decls_begin(),
10749                                    e = Record->decls_end(); i != e; i++) {
10750       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10751         if (IFD->getDeclName())
10752           ++NumNamedMembers;
10753     }
10754   }
10755 
10756   // Verify that all the fields are okay.
10757   SmallVector<FieldDecl*, 32> RecFields;
10758 
10759   bool ARCErrReported = false;
10760   for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10761        i != end; ++i) {
10762     FieldDecl *FD = cast<FieldDecl>(*i);
10763 
10764     // Get the type for the field.
10765     const Type *FDTy = FD->getType().getTypePtr();
10766 
10767     if (!FD->isAnonymousStructOrUnion()) {
10768       // Remember all fields written by the user.
10769       RecFields.push_back(FD);
10770     }
10771 
10772     // If the field is already invalid for some reason, don't emit more
10773     // diagnostics about it.
10774     if (FD->isInvalidDecl()) {
10775       EnclosingDecl->setInvalidDecl();
10776       continue;
10777     }
10778 
10779     // C99 6.7.2.1p2:
10780     //   A structure or union shall not contain a member with
10781     //   incomplete or function type (hence, a structure shall not
10782     //   contain an instance of itself, but may contain a pointer to
10783     //   an instance of itself), except that the last member of a
10784     //   structure with more than one named member may have incomplete
10785     //   array type; such a structure (and any union containing,
10786     //   possibly recursively, a member that is such a structure)
10787     //   shall not be a member of a structure or an element of an
10788     //   array.
10789     if (FDTy->isFunctionType()) {
10790       // Field declared as a function.
10791       Diag(FD->getLocation(), diag::err_field_declared_as_function)
10792         << FD->getDeclName();
10793       FD->setInvalidDecl();
10794       EnclosingDecl->setInvalidDecl();
10795       continue;
10796     } else if (FDTy->isIncompleteArrayType() && Record &&
10797                ((i + 1 == Fields.end() && !Record->isUnion()) ||
10798                 ((getLangOpts().MicrosoftExt ||
10799                   getLangOpts().CPlusPlus) &&
10800                  (i + 1 == Fields.end() || Record->isUnion())))) {
10801       // Flexible array member.
10802       // Microsoft and g++ is more permissive regarding flexible array.
10803       // It will accept flexible array in union and also
10804       // as the sole element of a struct/class.
10805       if (getLangOpts().MicrosoftExt) {
10806         if (Record->isUnion())
10807           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10808             << FD->getDeclName();
10809         else if (Fields.size() == 1)
10810           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10811             << FD->getDeclName() << Record->getTagKind();
10812       } else if (getLangOpts().CPlusPlus) {
10813         if (Record->isUnion())
10814           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10815             << FD->getDeclName();
10816         else if (Fields.size() == 1)
10817           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10818             << FD->getDeclName() << Record->getTagKind();
10819       } else if (!getLangOpts().C99) {
10820       if (Record->isUnion())
10821         Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10822           << FD->getDeclName();
10823       else
10824         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10825           << FD->getDeclName() << Record->getTagKind();
10826       } else if (NumNamedMembers < 1) {
10827         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10828           << FD->getDeclName();
10829         FD->setInvalidDecl();
10830         EnclosingDecl->setInvalidDecl();
10831         continue;
10832       }
10833       if (!FD->getType()->isDependentType() &&
10834           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10835         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10836           << FD->getDeclName() << FD->getType();
10837         FD->setInvalidDecl();
10838         EnclosingDecl->setInvalidDecl();
10839         continue;
10840       }
10841       // Okay, we have a legal flexible array member at the end of the struct.
10842       if (Record)
10843         Record->setHasFlexibleArrayMember(true);
10844     } else if (!FDTy->isDependentType() &&
10845                RequireCompleteType(FD->getLocation(), FD->getType(),
10846                                    diag::err_field_incomplete)) {
10847       // Incomplete type
10848       FD->setInvalidDecl();
10849       EnclosingDecl->setInvalidDecl();
10850       continue;
10851     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10852       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10853         // If this is a member of a union, then entire union becomes "flexible".
10854         if (Record && Record->isUnion()) {
10855           Record->setHasFlexibleArrayMember(true);
10856         } else {
10857           // If this is a struct/class and this is not the last element, reject
10858           // it.  Note that GCC supports variable sized arrays in the middle of
10859           // structures.
10860           if (i + 1 != Fields.end())
10861             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10862               << FD->getDeclName() << FD->getType();
10863           else {
10864             // We support flexible arrays at the end of structs in
10865             // other structs as an extension.
10866             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10867               << FD->getDeclName();
10868             if (Record)
10869               Record->setHasFlexibleArrayMember(true);
10870           }
10871         }
10872       }
10873       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10874           RequireNonAbstractType(FD->getLocation(), FD->getType(),
10875                                  diag::err_abstract_type_in_decl,
10876                                  AbstractIvarType)) {
10877         // Ivars can not have abstract class types
10878         FD->setInvalidDecl();
10879       }
10880       if (Record && FDTTy->getDecl()->hasObjectMember())
10881         Record->setHasObjectMember(true);
10882       if (Record && FDTTy->getDecl()->hasVolatileMember())
10883         Record->setHasVolatileMember(true);
10884     } else if (FDTy->isObjCObjectType()) {
10885       /// A field cannot be an Objective-c object
10886       Diag(FD->getLocation(), diag::err_statically_allocated_object)
10887         << FixItHint::CreateInsertion(FD->getLocation(), "*");
10888       QualType T = Context.getObjCObjectPointerType(FD->getType());
10889       FD->setType(T);
10890     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
10891                (!getLangOpts().CPlusPlus || Record->isUnion())) {
10892       // It's an error in ARC if a field has lifetime.
10893       // We don't want to report this in a system header, though,
10894       // so we just make the field unavailable.
10895       // FIXME: that's really not sufficient; we need to make the type
10896       // itself invalid to, say, initialize or copy.
10897       QualType T = FD->getType();
10898       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10899       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10900         SourceLocation loc = FD->getLocation();
10901         if (getSourceManager().isInSystemHeader(loc)) {
10902           if (!FD->hasAttr<UnavailableAttr>()) {
10903             FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10904                               "this system field has retaining ownership"));
10905           }
10906         } else {
10907           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
10908             << T->isBlockPointerType() << Record->getTagKind();
10909         }
10910         ARCErrReported = true;
10911       }
10912     } else if (getLangOpts().ObjC1 &&
10913                getLangOpts().getGC() != LangOptions::NonGC &&
10914                Record && !Record->hasObjectMember()) {
10915       if (FD->getType()->isObjCObjectPointerType() ||
10916           FD->getType().isObjCGCStrong())
10917         Record->setHasObjectMember(true);
10918       else if (Context.getAsArrayType(FD->getType())) {
10919         QualType BaseType = Context.getBaseElementType(FD->getType());
10920         if (BaseType->isRecordType() &&
10921             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10922           Record->setHasObjectMember(true);
10923         else if (BaseType->isObjCObjectPointerType() ||
10924                  BaseType.isObjCGCStrong())
10925                Record->setHasObjectMember(true);
10926       }
10927     }
10928     if (Record && FD->getType().isVolatileQualified())
10929       Record->setHasVolatileMember(true);
10930     // Keep track of the number of named members.
10931     if (FD->getIdentifier())
10932       ++NumNamedMembers;
10933   }
10934 
10935   // Okay, we successfully defined 'Record'.
10936   if (Record) {
10937     bool Completed = false;
10938     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10939       if (!CXXRecord->isInvalidDecl()) {
10940         // Set access bits correctly on the directly-declared conversions.
10941         for (CXXRecordDecl::conversion_iterator
10942                I = CXXRecord->conversion_begin(),
10943                E = CXXRecord->conversion_end(); I != E; ++I)
10944           I.setAccess((*I)->getAccess());
10945 
10946         if (!CXXRecord->isDependentType()) {
10947           // Adjust user-defined destructor exception spec.
10948           if (getLangOpts().CPlusPlus11 &&
10949               CXXRecord->hasUserDeclaredDestructor())
10950             AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10951 
10952           // Add any implicitly-declared members to this class.
10953           AddImplicitlyDeclaredMembersToClass(CXXRecord);
10954 
10955           // If we have virtual base classes, we may end up finding multiple
10956           // final overriders for a given virtual function. Check for this
10957           // problem now.
10958           if (CXXRecord->getNumVBases()) {
10959             CXXFinalOverriderMap FinalOverriders;
10960             CXXRecord->getFinalOverriders(FinalOverriders);
10961 
10962             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10963                                              MEnd = FinalOverriders.end();
10964                  M != MEnd; ++M) {
10965               for (OverridingMethods::iterator SO = M->second.begin(),
10966                                             SOEnd = M->second.end();
10967                    SO != SOEnd; ++SO) {
10968                 assert(SO->second.size() > 0 &&
10969                        "Virtual function without overridding functions?");
10970                 if (SO->second.size() == 1)
10971                   continue;
10972 
10973                 // C++ [class.virtual]p2:
10974                 //   In a derived class, if a virtual member function of a base
10975                 //   class subobject has more than one final overrider the
10976                 //   program is ill-formed.
10977                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10978                   << (const NamedDecl *)M->first << Record;
10979                 Diag(M->first->getLocation(),
10980                      diag::note_overridden_virtual_function);
10981                 for (OverridingMethods::overriding_iterator
10982                           OM = SO->second.begin(),
10983                        OMEnd = SO->second.end();
10984                      OM != OMEnd; ++OM)
10985                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
10986                     << (const NamedDecl *)M->first << OM->Method->getParent();
10987 
10988                 Record->setInvalidDecl();
10989               }
10990             }
10991             CXXRecord->completeDefinition(&FinalOverriders);
10992             Completed = true;
10993           }
10994         }
10995       }
10996     }
10997 
10998     if (!Completed)
10999       Record->completeDefinition();
11000 
11001     if (Record->hasAttrs())
11002       CheckAlignasUnderalignment(Record);
11003   } else {
11004     ObjCIvarDecl **ClsFields =
11005       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11006     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11007       ID->setEndOfDefinitionLoc(RBrac);
11008       // Add ivar's to class's DeclContext.
11009       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11010         ClsFields[i]->setLexicalDeclContext(ID);
11011         ID->addDecl(ClsFields[i]);
11012       }
11013       // Must enforce the rule that ivars in the base classes may not be
11014       // duplicates.
11015       if (ID->getSuperClass())
11016         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11017     } else if (ObjCImplementationDecl *IMPDecl =
11018                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11019       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11020       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11021         // Ivar declared in @implementation never belongs to the implementation.
11022         // Only it is in implementation's lexical context.
11023         ClsFields[I]->setLexicalDeclContext(IMPDecl);
11024       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11025       IMPDecl->setIvarLBraceLoc(LBrac);
11026       IMPDecl->setIvarRBraceLoc(RBrac);
11027     } else if (ObjCCategoryDecl *CDecl =
11028                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11029       // case of ivars in class extension; all other cases have been
11030       // reported as errors elsewhere.
11031       // FIXME. Class extension does not have a LocEnd field.
11032       // CDecl->setLocEnd(RBrac);
11033       // Add ivar's to class extension's DeclContext.
11034       // Diagnose redeclaration of private ivars.
11035       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11036       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11037         if (IDecl) {
11038           if (const ObjCIvarDecl *ClsIvar =
11039               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11040             Diag(ClsFields[i]->getLocation(),
11041                  diag::err_duplicate_ivar_declaration);
11042             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11043             continue;
11044           }
11045           for (ObjCInterfaceDecl::known_extensions_iterator
11046                  Ext = IDecl->known_extensions_begin(),
11047                  ExtEnd = IDecl->known_extensions_end();
11048                Ext != ExtEnd; ++Ext) {
11049             if (const ObjCIvarDecl *ClsExtIvar
11050                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11051               Diag(ClsFields[i]->getLocation(),
11052                    diag::err_duplicate_ivar_declaration);
11053               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11054               continue;
11055             }
11056           }
11057         }
11058         ClsFields[i]->setLexicalDeclContext(CDecl);
11059         CDecl->addDecl(ClsFields[i]);
11060       }
11061       CDecl->setIvarLBraceLoc(LBrac);
11062       CDecl->setIvarRBraceLoc(RBrac);
11063     }
11064   }
11065 
11066   if (Attr)
11067     ProcessDeclAttributeList(S, Record, Attr);
11068 }
11069 
11070 /// \brief Determine whether the given integral value is representable within
11071 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)11072 static bool isRepresentableIntegerValue(ASTContext &Context,
11073                                         llvm::APSInt &Value,
11074                                         QualType T) {
11075   assert(T->isIntegralType(Context) && "Integral type required!");
11076   unsigned BitWidth = Context.getIntWidth(T);
11077 
11078   if (Value.isUnsigned() || Value.isNonNegative()) {
11079     if (T->isSignedIntegerOrEnumerationType())
11080       --BitWidth;
11081     return Value.getActiveBits() <= BitWidth;
11082   }
11083   return Value.getMinSignedBits() <= BitWidth;
11084 }
11085 
11086 // \brief Given an integral type, return the next larger integral type
11087 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)11088 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11089   // FIXME: Int128/UInt128 support, which also needs to be introduced into
11090   // enum checking below.
11091   assert(T->isIntegralType(Context) && "Integral type required!");
11092   const unsigned NumTypes = 4;
11093   QualType SignedIntegralTypes[NumTypes] = {
11094     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11095   };
11096   QualType UnsignedIntegralTypes[NumTypes] = {
11097     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11098     Context.UnsignedLongLongTy
11099   };
11100 
11101   unsigned BitWidth = Context.getTypeSize(T);
11102   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11103                                                         : UnsignedIntegralTypes;
11104   for (unsigned I = 0; I != NumTypes; ++I)
11105     if (Context.getTypeSize(Types[I]) > BitWidth)
11106       return Types[I];
11107 
11108   return QualType();
11109 }
11110 
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)11111 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11112                                           EnumConstantDecl *LastEnumConst,
11113                                           SourceLocation IdLoc,
11114                                           IdentifierInfo *Id,
11115                                           Expr *Val) {
11116   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11117   llvm::APSInt EnumVal(IntWidth);
11118   QualType EltTy;
11119 
11120   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11121     Val = 0;
11122 
11123   if (Val)
11124     Val = DefaultLvalueConversion(Val).take();
11125 
11126   if (Val) {
11127     if (Enum->isDependentType() || Val->isTypeDependent())
11128       EltTy = Context.DependentTy;
11129     else {
11130       SourceLocation ExpLoc;
11131       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11132           !getLangOpts().MicrosoftMode) {
11133         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11134         // constant-expression in the enumerator-definition shall be a converted
11135         // constant expression of the underlying type.
11136         EltTy = Enum->getIntegerType();
11137         ExprResult Converted =
11138           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11139                                            CCEK_Enumerator);
11140         if (Converted.isInvalid())
11141           Val = 0;
11142         else
11143           Val = Converted.take();
11144       } else if (!Val->isValueDependent() &&
11145                  !(Val = VerifyIntegerConstantExpression(Val,
11146                                                          &EnumVal).take())) {
11147         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11148       } else {
11149         if (Enum->isFixed()) {
11150           EltTy = Enum->getIntegerType();
11151 
11152           // In Obj-C and Microsoft mode, require the enumeration value to be
11153           // representable in the underlying type of the enumeration. In C++11,
11154           // we perform a non-narrowing conversion as part of converted constant
11155           // expression checking.
11156           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11157             if (getLangOpts().MicrosoftMode) {
11158               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11159               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11160             } else
11161               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11162           } else
11163             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11164         } else if (getLangOpts().CPlusPlus) {
11165           // C++11 [dcl.enum]p5:
11166           //   If the underlying type is not fixed, the type of each enumerator
11167           //   is the type of its initializing value:
11168           //     - If an initializer is specified for an enumerator, the
11169           //       initializing value has the same type as the expression.
11170           EltTy = Val->getType();
11171         } else {
11172           // C99 6.7.2.2p2:
11173           //   The expression that defines the value of an enumeration constant
11174           //   shall be an integer constant expression that has a value
11175           //   representable as an int.
11176 
11177           // Complain if the value is not representable in an int.
11178           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11179             Diag(IdLoc, diag::ext_enum_value_not_int)
11180               << EnumVal.toString(10) << Val->getSourceRange()
11181               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11182           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11183             // Force the type of the expression to 'int'.
11184             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11185           }
11186           EltTy = Val->getType();
11187         }
11188       }
11189     }
11190   }
11191 
11192   if (!Val) {
11193     if (Enum->isDependentType())
11194       EltTy = Context.DependentTy;
11195     else if (!LastEnumConst) {
11196       // C++0x [dcl.enum]p5:
11197       //   If the underlying type is not fixed, the type of each enumerator
11198       //   is the type of its initializing value:
11199       //     - If no initializer is specified for the first enumerator, the
11200       //       initializing value has an unspecified integral type.
11201       //
11202       // GCC uses 'int' for its unspecified integral type, as does
11203       // C99 6.7.2.2p3.
11204       if (Enum->isFixed()) {
11205         EltTy = Enum->getIntegerType();
11206       }
11207       else {
11208         EltTy = Context.IntTy;
11209       }
11210     } else {
11211       // Assign the last value + 1.
11212       EnumVal = LastEnumConst->getInitVal();
11213       ++EnumVal;
11214       EltTy = LastEnumConst->getType();
11215 
11216       // Check for overflow on increment.
11217       if (EnumVal < LastEnumConst->getInitVal()) {
11218         // C++0x [dcl.enum]p5:
11219         //   If the underlying type is not fixed, the type of each enumerator
11220         //   is the type of its initializing value:
11221         //
11222         //     - Otherwise the type of the initializing value is the same as
11223         //       the type of the initializing value of the preceding enumerator
11224         //       unless the incremented value is not representable in that type,
11225         //       in which case the type is an unspecified integral type
11226         //       sufficient to contain the incremented value. If no such type
11227         //       exists, the program is ill-formed.
11228         QualType T = getNextLargerIntegralType(Context, EltTy);
11229         if (T.isNull() || Enum->isFixed()) {
11230           // There is no integral type larger enough to represent this
11231           // value. Complain, then allow the value to wrap around.
11232           EnumVal = LastEnumConst->getInitVal();
11233           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11234           ++EnumVal;
11235           if (Enum->isFixed())
11236             // When the underlying type is fixed, this is ill-formed.
11237             Diag(IdLoc, diag::err_enumerator_wrapped)
11238               << EnumVal.toString(10)
11239               << EltTy;
11240           else
11241             Diag(IdLoc, diag::warn_enumerator_too_large)
11242               << EnumVal.toString(10);
11243         } else {
11244           EltTy = T;
11245         }
11246 
11247         // Retrieve the last enumerator's value, extent that type to the
11248         // type that is supposed to be large enough to represent the incremented
11249         // value, then increment.
11250         EnumVal = LastEnumConst->getInitVal();
11251         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11252         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11253         ++EnumVal;
11254 
11255         // If we're not in C++, diagnose the overflow of enumerator values,
11256         // which in C99 means that the enumerator value is not representable in
11257         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11258         // permits enumerator values that are representable in some larger
11259         // integral type.
11260         if (!getLangOpts().CPlusPlus && !T.isNull())
11261           Diag(IdLoc, diag::warn_enum_value_overflow);
11262       } else if (!getLangOpts().CPlusPlus &&
11263                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11264         // Enforce C99 6.7.2.2p2 even when we compute the next value.
11265         Diag(IdLoc, diag::ext_enum_value_not_int)
11266           << EnumVal.toString(10) << 1;
11267       }
11268     }
11269   }
11270 
11271   if (!EltTy->isDependentType()) {
11272     // Make the enumerator value match the signedness and size of the
11273     // enumerator's type.
11274     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11275     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11276   }
11277 
11278   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11279                                   Val, EnumVal);
11280 }
11281 
11282 
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)11283 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11284                               SourceLocation IdLoc, IdentifierInfo *Id,
11285                               AttributeList *Attr,
11286                               SourceLocation EqualLoc, Expr *Val) {
11287   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11288   EnumConstantDecl *LastEnumConst =
11289     cast_or_null<EnumConstantDecl>(lastEnumConst);
11290 
11291   // The scope passed in may not be a decl scope.  Zip up the scope tree until
11292   // we find one that is.
11293   S = getNonFieldDeclScope(S);
11294 
11295   // Verify that there isn't already something declared with this name in this
11296   // scope.
11297   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11298                                          ForRedeclaration);
11299   if (PrevDecl && PrevDecl->isTemplateParameter()) {
11300     // Maybe we will complain about the shadowed template parameter.
11301     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11302     // Just pretend that we didn't see the previous declaration.
11303     PrevDecl = 0;
11304   }
11305 
11306   if (PrevDecl) {
11307     // When in C++, we may get a TagDecl with the same name; in this case the
11308     // enum constant will 'hide' the tag.
11309     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11310            "Received TagDecl when not in C++!");
11311     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11312       if (isa<EnumConstantDecl>(PrevDecl))
11313         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11314       else
11315         Diag(IdLoc, diag::err_redefinition) << Id;
11316       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11317       return 0;
11318     }
11319   }
11320 
11321   // C++ [class.mem]p15:
11322   // If T is the name of a class, then each of the following shall have a name
11323   // different from T:
11324   // - every enumerator of every member of class T that is an unscoped
11325   // enumerated type
11326   if (CXXRecordDecl *Record
11327                       = dyn_cast<CXXRecordDecl>(
11328                              TheEnumDecl->getDeclContext()->getRedeclContext()))
11329     if (!TheEnumDecl->isScoped() &&
11330         Record->getIdentifier() && Record->getIdentifier() == Id)
11331       Diag(IdLoc, diag::err_member_name_of_class) << Id;
11332 
11333   EnumConstantDecl *New =
11334     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11335 
11336   if (New) {
11337     // Process attributes.
11338     if (Attr) ProcessDeclAttributeList(S, New, Attr);
11339 
11340     // Register this decl in the current scope stack.
11341     New->setAccess(TheEnumDecl->getAccess());
11342     PushOnScopeChains(New, S);
11343   }
11344 
11345   ActOnDocumentableDecl(New);
11346 
11347   return New;
11348 }
11349 
11350 // Returns true when the enum initial expression does not trigger the
11351 // duplicate enum warning.  A few common cases are exempted as follows:
11352 // Element2 = Element1
11353 // Element2 = Element1 + 1
11354 // Element2 = Element1 - 1
11355 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)11356 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11357   Expr *InitExpr = ECD->getInitExpr();
11358   if (!InitExpr)
11359     return true;
11360   InitExpr = InitExpr->IgnoreImpCasts();
11361 
11362   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11363     if (!BO->isAdditiveOp())
11364       return true;
11365     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11366     if (!IL)
11367       return true;
11368     if (IL->getValue() != 1)
11369       return true;
11370 
11371     InitExpr = BO->getLHS();
11372   }
11373 
11374   // This checks if the elements are from the same enum.
11375   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11376   if (!DRE)
11377     return true;
11378 
11379   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11380   if (!EnumConstant)
11381     return true;
11382 
11383   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11384       Enum)
11385     return true;
11386 
11387   return false;
11388 }
11389 
11390 struct DupKey {
11391   int64_t val;
11392   bool isTombstoneOrEmptyKey;
DupKeyDupKey11393   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11394     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11395 };
11396 
GetDupKey(const llvm::APSInt & Val)11397 static DupKey GetDupKey(const llvm::APSInt& Val) {
11398   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11399                 false);
11400 }
11401 
11402 struct DenseMapInfoDupKey {
getEmptyKeyDenseMapInfoDupKey11403   static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKeyDenseMapInfoDupKey11404   static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValueDenseMapInfoDupKey11405   static unsigned getHashValue(const DupKey Key) {
11406     return (unsigned)(Key.val * 37);
11407   }
isEqualDenseMapInfoDupKey11408   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11409     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11410            LHS.val == RHS.val;
11411   }
11412 };
11413 
11414 // Emits a warning when an element is implicitly set a value that
11415 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,Decl ** Elements,unsigned NumElements,EnumDecl * Enum,QualType EnumType)11416 static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
11417                                         unsigned NumElements, EnumDecl *Enum,
11418                                         QualType EnumType) {
11419   if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11420                                  Enum->getLocation()) ==
11421       DiagnosticsEngine::Ignored)
11422     return;
11423   // Avoid anonymous enums
11424   if (!Enum->getIdentifier())
11425     return;
11426 
11427   // Only check for small enums.
11428   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11429     return;
11430 
11431   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11432   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11433 
11434   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11435   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11436           ValueToVectorMap;
11437 
11438   DuplicatesVector DupVector;
11439   ValueToVectorMap EnumMap;
11440 
11441   // Populate the EnumMap with all values represented by enum constants without
11442   // an initialier.
11443   for (unsigned i = 0; i < NumElements; ++i) {
11444     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11445 
11446     // Null EnumConstantDecl means a previous diagnostic has been emitted for
11447     // this constant.  Skip this enum since it may be ill-formed.
11448     if (!ECD) {
11449       return;
11450     }
11451 
11452     if (ECD->getInitExpr())
11453       continue;
11454 
11455     DupKey Key = GetDupKey(ECD->getInitVal());
11456     DeclOrVector &Entry = EnumMap[Key];
11457 
11458     // First time encountering this value.
11459     if (Entry.isNull())
11460       Entry = ECD;
11461   }
11462 
11463   // Create vectors for any values that has duplicates.
11464   for (unsigned i = 0; i < NumElements; ++i) {
11465     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11466     if (!ValidDuplicateEnum(ECD, Enum))
11467       continue;
11468 
11469     DupKey Key = GetDupKey(ECD->getInitVal());
11470 
11471     DeclOrVector& Entry = EnumMap[Key];
11472     if (Entry.isNull())
11473       continue;
11474 
11475     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11476       // Ensure constants are different.
11477       if (D == ECD)
11478         continue;
11479 
11480       // Create new vector and push values onto it.
11481       ECDVector *Vec = new ECDVector();
11482       Vec->push_back(D);
11483       Vec->push_back(ECD);
11484 
11485       // Update entry to point to the duplicates vector.
11486       Entry = Vec;
11487 
11488       // Store the vector somewhere we can consult later for quick emission of
11489       // diagnostics.
11490       DupVector.push_back(Vec);
11491       continue;
11492     }
11493 
11494     ECDVector *Vec = Entry.get<ECDVector*>();
11495     // Make sure constants are not added more than once.
11496     if (*Vec->begin() == ECD)
11497       continue;
11498 
11499     Vec->push_back(ECD);
11500   }
11501 
11502   // Emit diagnostics.
11503   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11504                                   DupVectorEnd = DupVector.end();
11505        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11506     ECDVector *Vec = *DupVectorIter;
11507     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11508 
11509     // Emit warning for one enum constant.
11510     ECDVector::iterator I = Vec->begin();
11511     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11512       << (*I)->getName() << (*I)->getInitVal().toString(10)
11513       << (*I)->getSourceRange();
11514     ++I;
11515 
11516     // Emit one note for each of the remaining enum constants with
11517     // the same value.
11518     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11519       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11520         << (*I)->getName() << (*I)->getInitVal().toString(10)
11521         << (*I)->getSourceRange();
11522     delete Vec;
11523   }
11524 }
11525 
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,Decl ** Elements,unsigned NumElements,Scope * S,AttributeList * Attr)11526 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11527                          SourceLocation RBraceLoc, Decl *EnumDeclX,
11528                          Decl **Elements, unsigned NumElements,
11529                          Scope *S, AttributeList *Attr) {
11530   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11531   QualType EnumType = Context.getTypeDeclType(Enum);
11532 
11533   if (Attr)
11534     ProcessDeclAttributeList(S, Enum, Attr);
11535 
11536   if (Enum->isDependentType()) {
11537     for (unsigned i = 0; i != NumElements; ++i) {
11538       EnumConstantDecl *ECD =
11539         cast_or_null<EnumConstantDecl>(Elements[i]);
11540       if (!ECD) continue;
11541 
11542       ECD->setType(EnumType);
11543     }
11544 
11545     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11546     return;
11547   }
11548 
11549   // TODO: If the result value doesn't fit in an int, it must be a long or long
11550   // long value.  ISO C does not support this, but GCC does as an extension,
11551   // emit a warning.
11552   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11553   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11554   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11555 
11556   // Verify that all the values are okay, compute the size of the values, and
11557   // reverse the list.
11558   unsigned NumNegativeBits = 0;
11559   unsigned NumPositiveBits = 0;
11560 
11561   // Keep track of whether all elements have type int.
11562   bool AllElementsInt = true;
11563 
11564   for (unsigned i = 0; i != NumElements; ++i) {
11565     EnumConstantDecl *ECD =
11566       cast_or_null<EnumConstantDecl>(Elements[i]);
11567     if (!ECD) continue;  // Already issued a diagnostic.
11568 
11569     const llvm::APSInt &InitVal = ECD->getInitVal();
11570 
11571     // Keep track of the size of positive and negative values.
11572     if (InitVal.isUnsigned() || InitVal.isNonNegative())
11573       NumPositiveBits = std::max(NumPositiveBits,
11574                                  (unsigned)InitVal.getActiveBits());
11575     else
11576       NumNegativeBits = std::max(NumNegativeBits,
11577                                  (unsigned)InitVal.getMinSignedBits());
11578 
11579     // Keep track of whether every enum element has type int (very commmon).
11580     if (AllElementsInt)
11581       AllElementsInt = ECD->getType() == Context.IntTy;
11582   }
11583 
11584   // Figure out the type that should be used for this enum.
11585   QualType BestType;
11586   unsigned BestWidth;
11587 
11588   // C++0x N3000 [conv.prom]p3:
11589   //   An rvalue of an unscoped enumeration type whose underlying
11590   //   type is not fixed can be converted to an rvalue of the first
11591   //   of the following types that can represent all the values of
11592   //   the enumeration: int, unsigned int, long int, unsigned long
11593   //   int, long long int, or unsigned long long int.
11594   // C99 6.4.4.3p2:
11595   //   An identifier declared as an enumeration constant has type int.
11596   // The C99 rule is modified by a gcc extension
11597   QualType BestPromotionType;
11598 
11599   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11600   // -fshort-enums is the equivalent to specifying the packed attribute on all
11601   // enum definitions.
11602   if (LangOpts.ShortEnums)
11603     Packed = true;
11604 
11605   if (Enum->isFixed()) {
11606     BestType = Enum->getIntegerType();
11607     if (BestType->isPromotableIntegerType())
11608       BestPromotionType = Context.getPromotedIntegerType(BestType);
11609     else
11610       BestPromotionType = BestType;
11611     // We don't need to set BestWidth, because BestType is going to be the type
11612     // of the enumerators, but we do anyway because otherwise some compilers
11613     // warn that it might be used uninitialized.
11614     BestWidth = CharWidth;
11615   }
11616   else if (NumNegativeBits) {
11617     // If there is a negative value, figure out the smallest integer type (of
11618     // int/long/longlong) that fits.
11619     // If it's packed, check also if it fits a char or a short.
11620     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11621       BestType = Context.SignedCharTy;
11622       BestWidth = CharWidth;
11623     } else if (Packed && NumNegativeBits <= ShortWidth &&
11624                NumPositiveBits < ShortWidth) {
11625       BestType = Context.ShortTy;
11626       BestWidth = ShortWidth;
11627     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11628       BestType = Context.IntTy;
11629       BestWidth = IntWidth;
11630     } else {
11631       BestWidth = Context.getTargetInfo().getLongWidth();
11632 
11633       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11634         BestType = Context.LongTy;
11635       } else {
11636         BestWidth = Context.getTargetInfo().getLongLongWidth();
11637 
11638         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11639           Diag(Enum->getLocation(), diag::warn_enum_too_large);
11640         BestType = Context.LongLongTy;
11641       }
11642     }
11643     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11644   } else {
11645     // If there is no negative value, figure out the smallest type that fits
11646     // all of the enumerator values.
11647     // If it's packed, check also if it fits a char or a short.
11648     if (Packed && NumPositiveBits <= CharWidth) {
11649       BestType = Context.UnsignedCharTy;
11650       BestPromotionType = Context.IntTy;
11651       BestWidth = CharWidth;
11652     } else if (Packed && NumPositiveBits <= ShortWidth) {
11653       BestType = Context.UnsignedShortTy;
11654       BestPromotionType = Context.IntTy;
11655       BestWidth = ShortWidth;
11656     } else if (NumPositiveBits <= IntWidth) {
11657       BestType = Context.UnsignedIntTy;
11658       BestWidth = IntWidth;
11659       BestPromotionType
11660         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11661                            ? Context.UnsignedIntTy : Context.IntTy;
11662     } else if (NumPositiveBits <=
11663                (BestWidth = Context.getTargetInfo().getLongWidth())) {
11664       BestType = Context.UnsignedLongTy;
11665       BestPromotionType
11666         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11667                            ? Context.UnsignedLongTy : Context.LongTy;
11668     } else {
11669       BestWidth = Context.getTargetInfo().getLongLongWidth();
11670       assert(NumPositiveBits <= BestWidth &&
11671              "How could an initializer get larger than ULL?");
11672       BestType = Context.UnsignedLongLongTy;
11673       BestPromotionType
11674         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11675                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
11676     }
11677   }
11678 
11679   // Loop over all of the enumerator constants, changing their types to match
11680   // the type of the enum if needed.
11681   for (unsigned i = 0; i != NumElements; ++i) {
11682     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11683     if (!ECD) continue;  // Already issued a diagnostic.
11684 
11685     // Standard C says the enumerators have int type, but we allow, as an
11686     // extension, the enumerators to be larger than int size.  If each
11687     // enumerator value fits in an int, type it as an int, otherwise type it the
11688     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11689     // that X has type 'int', not 'unsigned'.
11690 
11691     // Determine whether the value fits into an int.
11692     llvm::APSInt InitVal = ECD->getInitVal();
11693 
11694     // If it fits into an integer type, force it.  Otherwise force it to match
11695     // the enum decl type.
11696     QualType NewTy;
11697     unsigned NewWidth;
11698     bool NewSign;
11699     if (!getLangOpts().CPlusPlus &&
11700         !Enum->isFixed() &&
11701         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11702       NewTy = Context.IntTy;
11703       NewWidth = IntWidth;
11704       NewSign = true;
11705     } else if (ECD->getType() == BestType) {
11706       // Already the right type!
11707       if (getLangOpts().CPlusPlus)
11708         // C++ [dcl.enum]p4: Following the closing brace of an
11709         // enum-specifier, each enumerator has the type of its
11710         // enumeration.
11711         ECD->setType(EnumType);
11712       continue;
11713     } else {
11714       NewTy = BestType;
11715       NewWidth = BestWidth;
11716       NewSign = BestType->isSignedIntegerOrEnumerationType();
11717     }
11718 
11719     // Adjust the APSInt value.
11720     InitVal = InitVal.extOrTrunc(NewWidth);
11721     InitVal.setIsSigned(NewSign);
11722     ECD->setInitVal(InitVal);
11723 
11724     // Adjust the Expr initializer and type.
11725     if (ECD->getInitExpr() &&
11726         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11727       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11728                                                 CK_IntegralCast,
11729                                                 ECD->getInitExpr(),
11730                                                 /*base paths*/ 0,
11731                                                 VK_RValue));
11732     if (getLangOpts().CPlusPlus)
11733       // C++ [dcl.enum]p4: Following the closing brace of an
11734       // enum-specifier, each enumerator has the type of its
11735       // enumeration.
11736       ECD->setType(EnumType);
11737     else
11738       ECD->setType(NewTy);
11739   }
11740 
11741   Enum->completeDefinition(BestType, BestPromotionType,
11742                            NumPositiveBits, NumNegativeBits);
11743 
11744   // If we're declaring a function, ensure this decl isn't forgotten about -
11745   // it needs to go into the function scope.
11746   if (InFunctionDeclarator)
11747     DeclsInPrototypeScope.push_back(Enum);
11748 
11749   CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11750 
11751   // Now that the enum type is defined, ensure it's not been underaligned.
11752   if (Enum->hasAttrs())
11753     CheckAlignasUnderalignment(Enum);
11754 }
11755 
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)11756 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11757                                   SourceLocation StartLoc,
11758                                   SourceLocation EndLoc) {
11759   StringLiteral *AsmString = cast<StringLiteral>(expr);
11760 
11761   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11762                                                    AsmString, StartLoc,
11763                                                    EndLoc);
11764   CurContext->addDecl(New);
11765   return New;
11766 }
11767 
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)11768 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11769                                    SourceLocation ImportLoc,
11770                                    ModuleIdPath Path) {
11771   Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11772                                                 Module::AllVisible,
11773                                                 /*IsIncludeDirective=*/false);
11774   if (!Mod)
11775     return true;
11776 
11777   SmallVector<SourceLocation, 2> IdentifierLocs;
11778   Module *ModCheck = Mod;
11779   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11780     // If we've run out of module parents, just drop the remaining identifiers.
11781     // We need the length to be consistent.
11782     if (!ModCheck)
11783       break;
11784     ModCheck = ModCheck->Parent;
11785 
11786     IdentifierLocs.push_back(Path[I].second);
11787   }
11788 
11789   ImportDecl *Import = ImportDecl::Create(Context,
11790                                           Context.getTranslationUnitDecl(),
11791                                           AtLoc.isValid()? AtLoc : ImportLoc,
11792                                           Mod, IdentifierLocs);
11793   Context.getTranslationUnitDecl()->addDecl(Import);
11794   return Import;
11795 }
11796 
createImplicitModuleImport(SourceLocation Loc,Module * Mod)11797 void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11798   // Create the implicit import declaration.
11799   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11800   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11801                                                    Loc, Mod, Loc);
11802   TU->addDecl(ImportD);
11803   Consumer.HandleImplicitImportDecl(ImportD);
11804 
11805   // Make the module visible.
11806   PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
11807 }
11808 
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)11809 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11810                                       IdentifierInfo* AliasName,
11811                                       SourceLocation PragmaLoc,
11812                                       SourceLocation NameLoc,
11813                                       SourceLocation AliasNameLoc) {
11814   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11815                                     LookupOrdinaryName);
11816   AsmLabelAttr *Attr =
11817      ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11818 
11819   if (PrevDecl)
11820     PrevDecl->addAttr(Attr);
11821   else
11822     (void)ExtnameUndeclaredIdentifiers.insert(
11823       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11824 }
11825 
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)11826 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11827                              SourceLocation PragmaLoc,
11828                              SourceLocation NameLoc) {
11829   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11830 
11831   if (PrevDecl) {
11832     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11833   } else {
11834     (void)WeakUndeclaredIdentifiers.insert(
11835       std::pair<IdentifierInfo*,WeakInfo>
11836         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11837   }
11838 }
11839 
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)11840 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11841                                 IdentifierInfo* AliasName,
11842                                 SourceLocation PragmaLoc,
11843                                 SourceLocation NameLoc,
11844                                 SourceLocation AliasNameLoc) {
11845   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11846                                     LookupOrdinaryName);
11847   WeakInfo W = WeakInfo(Name, NameLoc);
11848 
11849   if (PrevDecl) {
11850     if (!PrevDecl->hasAttr<AliasAttr>())
11851       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11852         DeclApplyPragmaWeak(TUScope, ND, W);
11853   } else {
11854     (void)WeakUndeclaredIdentifiers.insert(
11855       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11856   }
11857 }
11858 
getObjCDeclContext() const11859 Decl *Sema::getObjCDeclContext() const {
11860   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11861 }
11862 
getCurContextAvailability() const11863 AvailabilityResult Sema::getCurContextAvailability() const {
11864   const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11865   return D->getAvailability();
11866 }
11867