• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_JSREGEXP_H_
29 #define V8_JSREGEXP_H_
30 
31 #include "allocation.h"
32 #include "assembler.h"
33 #include "zone-inl.h"
34 
35 namespace v8 {
36 namespace internal {
37 
38 class NodeVisitor;
39 class RegExpCompiler;
40 class RegExpMacroAssembler;
41 class RegExpNode;
42 class RegExpTree;
43 
44 class RegExpImpl {
45  public:
46   // Whether V8 is compiled with native regexp support or not.
UsesNativeRegExp()47   static bool UsesNativeRegExp() {
48 #ifdef V8_INTERPRETED_REGEXP
49     return false;
50 #else
51     return true;
52 #endif
53   }
54 
55   // Creates a regular expression literal in the old space.
56   // This function calls the garbage collector if necessary.
57   static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
58                                             Handle<String> pattern,
59                                             Handle<String> flags,
60                                             bool* has_pending_exception);
61 
62   // Returns a string representation of a regular expression.
63   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
64   // This function calls the garbage collector if necessary.
65   static Handle<String> ToString(Handle<Object> value);
66 
67   // Parses the RegExp pattern and prepares the JSRegExp object with
68   // generic data and choice of implementation - as well as what
69   // the implementation wants to store in the data field.
70   // Returns false if compilation fails.
71   static Handle<Object> Compile(Handle<JSRegExp> re,
72                                 Handle<String> pattern,
73                                 Handle<String> flags);
74 
75   // See ECMA-262 section 15.10.6.2.
76   // This function calls the garbage collector if necessary.
77   static Handle<Object> Exec(Handle<JSRegExp> regexp,
78                              Handle<String> subject,
79                              int index,
80                              Handle<JSArray> lastMatchInfo);
81 
82   // Prepares a JSRegExp object with Irregexp-specific data.
83   static void IrregexpInitialize(Handle<JSRegExp> re,
84                                  Handle<String> pattern,
85                                  JSRegExp::Flags flags,
86                                  int capture_register_count);
87 
88 
89   static void AtomCompile(Handle<JSRegExp> re,
90                           Handle<String> pattern,
91                           JSRegExp::Flags flags,
92                           Handle<String> match_pattern);
93 
94   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
95                                  Handle<String> subject,
96                                  int index,
97                                  Handle<JSArray> lastMatchInfo);
98 
99   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
100 
101   // Prepare a RegExp for being executed one or more times (using
102   // IrregexpExecOnce) on the subject.
103   // This ensures that the regexp is compiled for the subject, and that
104   // the subject is flat.
105   // Returns the number of integer spaces required by IrregexpExecOnce
106   // as its "registers" argument. If the regexp cannot be compiled,
107   // an exception is set as pending, and this function returns negative.
108   static int IrregexpPrepare(Handle<JSRegExp> regexp,
109                              Handle<String> subject);
110 
111   // Execute a regular expression once on the subject, starting from
112   // character "index".
113   // If successful, returns RE_SUCCESS and set the capture positions
114   // in the first registers.
115   // If matching fails, returns RE_FAILURE.
116   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
117   static IrregexpResult IrregexpExecOnce(Handle<JSRegExp> regexp,
118                                          Handle<String> subject,
119                                          int index,
120                                          Vector<int> registers);
121 
122   // Execute an Irregexp bytecode pattern.
123   // On a successful match, the result is a JSArray containing
124   // captured positions. On a failure, the result is the null value.
125   // Returns an empty handle in case of an exception.
126   static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
127                                      Handle<String> subject,
128                                      int index,
129                                      Handle<JSArray> lastMatchInfo);
130 
131   // Array index in the lastMatchInfo array.
132   static const int kLastCaptureCount = 0;
133   static const int kLastSubject = 1;
134   static const int kLastInput = 2;
135   static const int kFirstCapture = 3;
136   static const int kLastMatchOverhead = 3;
137 
138   // Direct offset into the lastMatchInfo array.
139   static const int kLastCaptureCountOffset =
140       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
141   static const int kLastSubjectOffset =
142       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
143   static const int kLastInputOffset =
144       FixedArray::kHeaderSize + kLastInput * kPointerSize;
145   static const int kFirstCaptureOffset =
146       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
147 
148   // Used to access the lastMatchInfo array.
GetCapture(FixedArray * array,int index)149   static int GetCapture(FixedArray* array, int index) {
150     return Smi::cast(array->get(index + kFirstCapture))->value();
151   }
152 
SetLastCaptureCount(FixedArray * array,int to)153   static void SetLastCaptureCount(FixedArray* array, int to) {
154     array->set(kLastCaptureCount, Smi::FromInt(to));
155   }
156 
SetLastSubject(FixedArray * array,String * to)157   static void SetLastSubject(FixedArray* array, String* to) {
158     array->set(kLastSubject, to);
159   }
160 
SetLastInput(FixedArray * array,String * to)161   static void SetLastInput(FixedArray* array, String* to) {
162     array->set(kLastInput, to);
163   }
164 
SetCapture(FixedArray * array,int index,int to)165   static void SetCapture(FixedArray* array, int index, int to) {
166     array->set(index + kFirstCapture, Smi::FromInt(to));
167   }
168 
GetLastCaptureCount(FixedArray * array)169   static int GetLastCaptureCount(FixedArray* array) {
170     return Smi::cast(array->get(kLastCaptureCount))->value();
171   }
172 
173   // For acting on the JSRegExp data FixedArray.
174   static int IrregexpMaxRegisterCount(FixedArray* re);
175   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
176   static int IrregexpNumberOfCaptures(FixedArray* re);
177   static int IrregexpNumberOfRegisters(FixedArray* re);
178   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
179   static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
180 
181   // Limit the space regexps take up on the heap.  In order to limit this we
182   // would like to keep track of the amount of regexp code on the heap.  This
183   // is not tracked, however.  As a conservative approximation we track the
184   // total regexp code compiled including code that has subsequently been freed
185   // and the total executable memory at any point.
186   static const int kRegExpExecutableMemoryLimit = 16 * MB;
187   static const int kRegWxpCompiledLimit = 1 * MB;
188 
189  private:
190   static String* last_ascii_string_;
191   static String* two_byte_cached_string_;
192 
193   static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
194   static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
195 
196 
197   // Set the subject cache.  The previous string buffer is not deleted, so the
198   // caller should ensure that it doesn't leak.
199   static void SetSubjectCache(String* subject,
200                               char* utf8_subject,
201                               int uft8_length,
202                               int character_position,
203                               int utf8_position);
204 
205   // A one element cache of the last utf8_subject string and its length.  The
206   // subject JS String object is cached in the heap.  We also cache a
207   // translation between position and utf8 position.
208   static char* utf8_subject_cache_;
209   static int utf8_length_cache_;
210   static int utf8_position_;
211   static int character_position_;
212 };
213 
214 
215 // Represents the location of one element relative to the intersection of
216 // two sets. Corresponds to the four areas of a Venn diagram.
217 enum ElementInSetsRelation {
218   kInsideNone = 0,
219   kInsideFirst = 1,
220   kInsideSecond = 2,
221   kInsideBoth = 3
222 };
223 
224 
225 // Represents the relation of two sets.
226 // Sets can be either disjoint, partially or fully overlapping, or equal.
227 class SetRelation BASE_EMBEDDED {
228  public:
229   // Relation is represented by a bit saying whether there are elements in
230   // one set that is not in the other, and a bit saying that there are elements
231   // that are in both sets.
232 
233   // Location of an element. Corresponds to the internal areas of
234   // a Venn diagram.
235   enum {
236     kInFirst = 1 << kInsideFirst,
237     kInSecond = 1 << kInsideSecond,
238     kInBoth = 1 << kInsideBoth
239   };
SetRelation()240   SetRelation() : bits_(0) {}
~SetRelation()241   ~SetRelation() {}
242   // Add the existence of objects in a particular
SetElementsInFirstSet()243   void SetElementsInFirstSet() { bits_ |= kInFirst; }
SetElementsInSecondSet()244   void SetElementsInSecondSet() { bits_ |= kInSecond; }
SetElementsInBothSets()245   void SetElementsInBothSets() { bits_ |= kInBoth; }
246   // Check the currently known relation of the sets (common functions only,
247   // for other combinations, use value() to get the bits and check them
248   // manually).
249   // Sets are completely disjoint.
Disjoint()250   bool Disjoint() { return (bits_ & kInBoth) == 0; }
251   // Sets are equal.
Equals()252   bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
253   // First set contains second.
Contains()254   bool Contains() { return (bits_ & kInSecond) == 0; }
255   // Second set contains first.
ContainedIn()256   bool ContainedIn() { return (bits_ & kInFirst) == 0; }
NonTrivialIntersection()257   bool NonTrivialIntersection() {
258     return (bits_ == (kInFirst | kInSecond | kInBoth));
259   }
value()260   int value() { return bits_; }
261 
262  private:
263   int bits_;
264 };
265 
266 
267 class CharacterRange {
268  public:
CharacterRange()269   CharacterRange() : from_(0), to_(0) { }
270   // For compatibility with the CHECK_OK macro
CharacterRange(void * null)271   CharacterRange(void* null) { ASSERT_EQ(NULL, null); }  //NOLINT
CharacterRange(uc16 from,uc16 to)272   CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
273   static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
274   static Vector<const uc16> GetWordBounds();
Singleton(uc16 value)275   static inline CharacterRange Singleton(uc16 value) {
276     return CharacterRange(value, value);
277   }
Range(uc16 from,uc16 to)278   static inline CharacterRange Range(uc16 from, uc16 to) {
279     ASSERT(from <= to);
280     return CharacterRange(from, to);
281   }
Everything()282   static inline CharacterRange Everything() {
283     return CharacterRange(0, 0xFFFF);
284   }
Contains(uc16 i)285   bool Contains(uc16 i) { return from_ <= i && i <= to_; }
from()286   uc16 from() const { return from_; }
set_from(uc16 value)287   void set_from(uc16 value) { from_ = value; }
to()288   uc16 to() const { return to_; }
set_to(uc16 value)289   void set_to(uc16 value) { to_ = value; }
is_valid()290   bool is_valid() { return from_ <= to_; }
IsEverything(uc16 max)291   bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
IsSingleton()292   bool IsSingleton() { return (from_ == to_); }
293   void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
294   static void Split(ZoneList<CharacterRange>* base,
295                     Vector<const uc16> overlay,
296                     ZoneList<CharacterRange>** included,
297                     ZoneList<CharacterRange>** excluded);
298   // Whether a range list is in canonical form: Ranges ordered by from value,
299   // and ranges non-overlapping and non-adjacent.
300   static bool IsCanonical(ZoneList<CharacterRange>* ranges);
301   // Convert range list to canonical form. The characters covered by the ranges
302   // will still be the same, but no character is in more than one range, and
303   // adjacent ranges are merged. The resulting list may be shorter than the
304   // original, but cannot be longer.
305   static void Canonicalize(ZoneList<CharacterRange>* ranges);
306   // Check how the set of characters defined by a CharacterRange list relates
307   // to the set of word characters. List must be in canonical form.
308   static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
309   // Takes two character range lists (representing character sets) in canonical
310   // form and merges them.
311   // The characters that are only covered by the first set are added to
312   // first_set_only_out. the characters that are only in the second set are
313   // added to second_set_only_out, and the characters that are in both are
314   // added to both_sets_out.
315   // The pointers to first_set_only_out, second_set_only_out and both_sets_out
316   // should be to empty lists, but they need not be distinct, and may be NULL.
317   // If NULL, the characters are dropped, and if two arguments are the same
318   // pointer, the result is the union of the two sets that would be created
319   // if the pointers had been distinct.
320   // This way, the Merge function can compute all the usual set operations:
321   // union (all three out-sets are equal), intersection (only both_sets_out is
322   // non-NULL), and set difference (only first_set is non-NULL).
323   static void Merge(ZoneList<CharacterRange>* first_set,
324                     ZoneList<CharacterRange>* second_set,
325                     ZoneList<CharacterRange>* first_set_only_out,
326                     ZoneList<CharacterRange>* second_set_only_out,
327                     ZoneList<CharacterRange>* both_sets_out);
328   // Negate the contents of a character range in canonical form.
329   static void Negate(ZoneList<CharacterRange>* src,
330                      ZoneList<CharacterRange>* dst);
331   static const int kStartMarker = (1 << 24);
332   static const int kPayloadMask = (1 << 24) - 1;
333 
334  private:
335   uc16 from_;
336   uc16 to_;
337 };
338 
339 
340 // A set of unsigned integers that behaves especially well on small
341 // integers (< 32).  May do zone-allocation.
342 class OutSet: public ZoneObject {
343  public:
OutSet()344   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
345   OutSet* Extend(unsigned value);
346   bool Get(unsigned value);
347   static const unsigned kFirstLimit = 32;
348 
349  private:
350   // Destructively set a value in this set.  In most cases you want
351   // to use Extend instead to ensure that only one instance exists
352   // that contains the same values.
353   void Set(unsigned value);
354 
355   // The successors are a list of sets that contain the same values
356   // as this set and the one more value that is not present in this
357   // set.
successors()358   ZoneList<OutSet*>* successors() { return successors_; }
359 
OutSet(uint32_t first,ZoneList<unsigned> * remaining)360   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
361       : first_(first), remaining_(remaining), successors_(NULL) { }
362   uint32_t first_;
363   ZoneList<unsigned>* remaining_;
364   ZoneList<OutSet*>* successors_;
365   friend class Trace;
366 };
367 
368 
369 // A mapping from integers, specified as ranges, to a set of integers.
370 // Used for mapping character ranges to choices.
371 class DispatchTable : public ZoneObject {
372  public:
373   class Entry {
374    public:
Entry()375     Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from,uc16 to,OutSet * out_set)376     Entry(uc16 from, uc16 to, OutSet* out_set)
377         : from_(from), to_(to), out_set_(out_set) { }
from()378     uc16 from() { return from_; }
to()379     uc16 to() { return to_; }
set_to(uc16 value)380     void set_to(uc16 value) { to_ = value; }
AddValue(int value)381     void AddValue(int value) { out_set_ = out_set_->Extend(value); }
out_set()382     OutSet* out_set() { return out_set_; }
383    private:
384     uc16 from_;
385     uc16 to_;
386     OutSet* out_set_;
387   };
388 
389   class Config {
390    public:
391     typedef uc16 Key;
392     typedef Entry Value;
393     static const uc16 kNoKey;
NoValue()394     static const Entry NoValue() { return Value(); }
Compare(uc16 a,uc16 b)395     static inline int Compare(uc16 a, uc16 b) {
396       if (a == b)
397         return 0;
398       else if (a < b)
399         return -1;
400       else
401         return 1;
402     }
403   };
404 
405   void AddRange(CharacterRange range, int value);
406   OutSet* Get(uc16 value);
407   void Dump();
408 
409   template <typename Callback>
ForEach(Callback * callback)410   void ForEach(Callback* callback) { return tree()->ForEach(callback); }
411 
412  private:
413   // There can't be a static empty set since it allocates its
414   // successors in a zone and caches them.
empty()415   OutSet* empty() { return &empty_; }
416   OutSet empty_;
tree()417   ZoneSplayTree<Config>* tree() { return &tree_; }
418   ZoneSplayTree<Config> tree_;
419 };
420 
421 
422 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
423   VISIT(End)                                                         \
424   VISIT(Action)                                                      \
425   VISIT(Choice)                                                      \
426   VISIT(BackReference)                                               \
427   VISIT(Assertion)                                                   \
428   VISIT(Text)
429 
430 
431 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT)                            \
432   VISIT(Disjunction)                                                 \
433   VISIT(Alternative)                                                 \
434   VISIT(Assertion)                                                   \
435   VISIT(CharacterClass)                                              \
436   VISIT(Atom)                                                        \
437   VISIT(Quantifier)                                                  \
438   VISIT(Capture)                                                     \
439   VISIT(Lookahead)                                                   \
440   VISIT(BackReference)                                               \
441   VISIT(Empty)                                                       \
442   VISIT(Text)
443 
444 
445 #define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)446 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
447 #undef FORWARD_DECLARE
448 
449 
450 class TextElement {
451  public:
452   enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
453   TextElement() : type(UNINITIALIZED) { }
454   explicit TextElement(Type t) : type(t), cp_offset(-1) { }
455   static TextElement Atom(RegExpAtom* atom);
456   static TextElement CharClass(RegExpCharacterClass* char_class);
457   int length();
458   Type type;
459   union {
460     RegExpAtom* u_atom;
461     RegExpCharacterClass* u_char_class;
462   } data;
463   int cp_offset;
464 };
465 
466 
467 class Trace;
468 
469 
470 struct NodeInfo {
NodeInfoNodeInfo471   NodeInfo()
472       : being_analyzed(false),
473         been_analyzed(false),
474         follows_word_interest(false),
475         follows_newline_interest(false),
476         follows_start_interest(false),
477         at_end(false),
478         visited(false) { }
479 
480   // Returns true if the interests and assumptions of this node
481   // matches the given one.
MatchesNodeInfo482   bool Matches(NodeInfo* that) {
483     return (at_end == that->at_end) &&
484            (follows_word_interest == that->follows_word_interest) &&
485            (follows_newline_interest == that->follows_newline_interest) &&
486            (follows_start_interest == that->follows_start_interest);
487   }
488 
489   // Updates the interests of this node given the interests of the
490   // node preceding it.
AddFromPrecedingNodeInfo491   void AddFromPreceding(NodeInfo* that) {
492     at_end |= that->at_end;
493     follows_word_interest |= that->follows_word_interest;
494     follows_newline_interest |= that->follows_newline_interest;
495     follows_start_interest |= that->follows_start_interest;
496   }
497 
HasLookbehindNodeInfo498   bool HasLookbehind() {
499     return follows_word_interest ||
500            follows_newline_interest ||
501            follows_start_interest;
502   }
503 
504   // Sets the interests of this node to include the interests of the
505   // following node.
AddFromFollowingNodeInfo506   void AddFromFollowing(NodeInfo* that) {
507     follows_word_interest |= that->follows_word_interest;
508     follows_newline_interest |= that->follows_newline_interest;
509     follows_start_interest |= that->follows_start_interest;
510   }
511 
ResetCompilationStateNodeInfo512   void ResetCompilationState() {
513     being_analyzed = false;
514     been_analyzed = false;
515   }
516 
517   bool being_analyzed: 1;
518   bool been_analyzed: 1;
519 
520   // These bits are set of this node has to know what the preceding
521   // character was.
522   bool follows_word_interest: 1;
523   bool follows_newline_interest: 1;
524   bool follows_start_interest: 1;
525 
526   bool at_end: 1;
527   bool visited: 1;
528 };
529 
530 
531 class SiblingList {
532  public:
SiblingList()533   SiblingList() : list_(NULL) { }
length()534   int length() {
535     return list_ == NULL ? 0 : list_->length();
536   }
Ensure(RegExpNode * parent)537   void Ensure(RegExpNode* parent) {
538     if (list_ == NULL) {
539       list_ = new ZoneList<RegExpNode*>(2);
540       list_->Add(parent);
541     }
542   }
Add(RegExpNode * node)543   void Add(RegExpNode* node) { list_->Add(node); }
Get(int index)544   RegExpNode* Get(int index) { return list_->at(index); }
545  private:
546   ZoneList<RegExpNode*>* list_;
547 };
548 
549 
550 // Details of a quick mask-compare check that can look ahead in the
551 // input stream.
552 class QuickCheckDetails {
553  public:
QuickCheckDetails()554   QuickCheckDetails()
555       : characters_(0),
556         mask_(0),
557         value_(0),
558         cannot_match_(false) { }
QuickCheckDetails(int characters)559   explicit QuickCheckDetails(int characters)
560       : characters_(characters),
561         mask_(0),
562         value_(0),
563         cannot_match_(false) { }
564   bool Rationalize(bool ascii);
565   // Merge in the information from another branch of an alternation.
566   void Merge(QuickCheckDetails* other, int from_index);
567   // Advance the current position by some amount.
568   void Advance(int by, bool ascii);
569   void Clear();
cannot_match()570   bool cannot_match() { return cannot_match_; }
set_cannot_match()571   void set_cannot_match() { cannot_match_ = true; }
572   struct Position {
PositionPosition573     Position() : mask(0), value(0), determines_perfectly(false) { }
574     uc16 mask;
575     uc16 value;
576     bool determines_perfectly;
577   };
characters()578   int characters() { return characters_; }
set_characters(int characters)579   void set_characters(int characters) { characters_ = characters; }
positions(int index)580   Position* positions(int index) {
581     ASSERT(index >= 0);
582     ASSERT(index < characters_);
583     return positions_ + index;
584   }
mask()585   uint32_t mask() { return mask_; }
value()586   uint32_t value() { return value_; }
587 
588  private:
589   // How many characters do we have quick check information from.  This is
590   // the same for all branches of a choice node.
591   int characters_;
592   Position positions_[4];
593   // These values are the condensate of the above array after Rationalize().
594   uint32_t mask_;
595   uint32_t value_;
596   // If set to true, there is no way this quick check can match at all.
597   // E.g., if it requires to be at the start of the input, and isn't.
598   bool cannot_match_;
599 };
600 
601 
602 class RegExpNode: public ZoneObject {
603  public:
RegExpNode()604   RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
605   virtual ~RegExpNode();
606   virtual void Accept(NodeVisitor* visitor) = 0;
607   // Generates a goto to this node or actually generates the code at this point.
608   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
609   // How many characters must this node consume at a minimum in order to
610   // succeed.  If we have found at least 'still_to_find' characters that
611   // must be consumed there is no need to ask any following nodes whether
612   // they are sure to eat any more characters.  The not_at_start argument is
613   // used to indicate that we know we are not at the start of the input.  In
614   // this case anchored branches will always fail and can be ignored when
615   // determining how many characters are consumed on success.
616   virtual int EatsAtLeast(int still_to_find,
617                           int recursion_depth,
618                           bool not_at_start) = 0;
619   // Emits some quick code that checks whether the preloaded characters match.
620   // Falls through on certain failure, jumps to the label on possible success.
621   // If the node cannot make a quick check it does nothing and returns false.
622   bool EmitQuickCheck(RegExpCompiler* compiler,
623                       Trace* trace,
624                       bool preload_has_checked_bounds,
625                       Label* on_possible_success,
626                       QuickCheckDetails* details_return,
627                       bool fall_through_on_failure);
628   // For a given number of characters this returns a mask and a value.  The
629   // next n characters are anded with the mask and compared with the value.
630   // A comparison failure indicates the node cannot match the next n characters.
631   // A comparison success indicates the node may match.
632   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
633                                     RegExpCompiler* compiler,
634                                     int characters_filled_in,
635                                     bool not_at_start) = 0;
636   static const int kNodeIsTooComplexForGreedyLoops = -1;
GreedyLoopTextLength()637   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
label()638   Label* label() { return &label_; }
639   // If non-generic code is generated for a node (i.e. the node is not at the
640   // start of the trace) then it cannot be reused.  This variable sets a limit
641   // on how often we allow that to happen before we insist on starting a new
642   // trace and generating generic code for a node that can be reused by flushing
643   // the deferred actions in the current trace and generating a goto.
644   static const int kMaxCopiesCodeGenerated = 10;
645 
info()646   NodeInfo* info() { return &info_; }
647 
AddSibling(RegExpNode * node)648   void AddSibling(RegExpNode* node) { siblings_.Add(node); }
649 
650   // Static version of EnsureSibling that expresses the fact that the
651   // result has the same type as the input.
652   template <class C>
EnsureSibling(C * node,NodeInfo * info,bool * cloned)653   static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
654     return static_cast<C*>(node->EnsureSibling(info, cloned));
655   }
656 
siblings()657   SiblingList* siblings() { return &siblings_; }
set_siblings(SiblingList * other)658   void set_siblings(SiblingList* other) { siblings_ = *other; }
659 
660   // Return the set of possible next characters recognized by the regexp
661   // (or a safe subset, potentially the set of all characters).
662   ZoneList<CharacterRange>* FirstCharacterSet();
663 
664   // Compute (if possible within the budget of traversed nodes) the
665   // possible first characters of the input matched by this node and
666   // its continuation. Returns the remaining budget after the computation.
667   // If the budget is spent, the result is negative, and the cached
668   // first_character_set_ value isn't set.
669   virtual int ComputeFirstCharacterSet(int budget);
670 
671   // Get and set the cached first character set value.
first_character_set()672   ZoneList<CharacterRange>* first_character_set() {
673     return first_character_set_;
674   }
set_first_character_set(ZoneList<CharacterRange> * character_set)675   void set_first_character_set(ZoneList<CharacterRange>* character_set) {
676     first_character_set_ = character_set;
677   }
678 
679  protected:
680   enum LimitResult { DONE, CONTINUE };
681   static const int kComputeFirstCharacterSetFail = -1;
682 
683   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
684 
685   // Returns a sibling of this node whose interests and assumptions
686   // match the ones in the given node info.  If no sibling exists NULL
687   // is returned.
688   RegExpNode* TryGetSibling(NodeInfo* info);
689 
690   // Returns a sibling of this node whose interests match the ones in
691   // the given node info.  The info must not contain any assertions.
692   // If no node exists a new one will be created by cloning the current
693   // node.  The result will always be an instance of the same concrete
694   // class as this node.
695   RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
696 
697   // Returns a clone of this node initialized using the copy constructor
698   // of its concrete class.  Note that the node may have to be pre-
699   // processed before it is on a usable state.
700   virtual RegExpNode* Clone() = 0;
701 
702  private:
703   static const int kFirstCharBudget = 10;
704   Label label_;
705   NodeInfo info_;
706   SiblingList siblings_;
707   ZoneList<CharacterRange>* first_character_set_;
708   // This variable keeps track of how many times code has been generated for
709   // this node (in different traces).  We don't keep track of where the
710   // generated code is located unless the code is generated at the start of
711   // a trace, in which case it is generic and can be reused by flushing the
712   // deferred operations in the current trace and generating a goto.
713   int trace_count_;
714 };
715 
716 
717 // A simple closed interval.
718 class Interval {
719  public:
Interval()720   Interval() : from_(kNone), to_(kNone) { }
Interval(int from,int to)721   Interval(int from, int to) : from_(from), to_(to) { }
Union(Interval that)722   Interval Union(Interval that) {
723     if (that.from_ == kNone)
724       return *this;
725     else if (from_ == kNone)
726       return that;
727     else
728       return Interval(Min(from_, that.from_), Max(to_, that.to_));
729   }
Contains(int value)730   bool Contains(int value) {
731     return (from_ <= value) && (value <= to_);
732   }
is_empty()733   bool is_empty() { return from_ == kNone; }
from()734   int from() { return from_; }
to()735   int to() { return to_; }
Empty()736   static Interval Empty() { return Interval(); }
737   static const int kNone = -1;
738  private:
739   int from_;
740   int to_;
741 };
742 
743 
744 class SeqRegExpNode: public RegExpNode {
745  public:
SeqRegExpNode(RegExpNode * on_success)746   explicit SeqRegExpNode(RegExpNode* on_success)
747       : on_success_(on_success) { }
on_success()748   RegExpNode* on_success() { return on_success_; }
set_on_success(RegExpNode * node)749   void set_on_success(RegExpNode* node) { on_success_ = node; }
750  private:
751   RegExpNode* on_success_;
752 };
753 
754 
755 class ActionNode: public SeqRegExpNode {
756  public:
757   enum Type {
758     SET_REGISTER,
759     INCREMENT_REGISTER,
760     STORE_POSITION,
761     BEGIN_SUBMATCH,
762     POSITIVE_SUBMATCH_SUCCESS,
763     EMPTY_MATCH_CHECK,
764     CLEAR_CAPTURES
765   };
766   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
767   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
768   static ActionNode* StorePosition(int reg,
769                                    bool is_capture,
770                                    RegExpNode* on_success);
771   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
772   static ActionNode* BeginSubmatch(int stack_pointer_reg,
773                                    int position_reg,
774                                    RegExpNode* on_success);
775   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
776                                              int restore_reg,
777                                              int clear_capture_count,
778                                              int clear_capture_from,
779                                              RegExpNode* on_success);
780   static ActionNode* EmptyMatchCheck(int start_register,
781                                      int repetition_register,
782                                      int repetition_limit,
783                                      RegExpNode* on_success);
784   virtual void Accept(NodeVisitor* visitor);
785   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
786   virtual int EatsAtLeast(int still_to_find,
787                           int recursion_depth,
788                           bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)789   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
790                                     RegExpCompiler* compiler,
791                                     int filled_in,
792                                     bool not_at_start) {
793     return on_success()->GetQuickCheckDetails(
794         details, compiler, filled_in, not_at_start);
795   }
type()796   Type type() { return type_; }
797   // TODO(erikcorry): We should allow some action nodes in greedy loops.
GreedyLoopTextLength()798   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
Clone()799   virtual ActionNode* Clone() { return new ActionNode(*this); }
800   virtual int ComputeFirstCharacterSet(int budget);
801 
802  private:
803   union {
804     struct {
805       int reg;
806       int value;
807     } u_store_register;
808     struct {
809       int reg;
810     } u_increment_register;
811     struct {
812       int reg;
813       bool is_capture;
814     } u_position_register;
815     struct {
816       int stack_pointer_register;
817       int current_position_register;
818       int clear_register_count;
819       int clear_register_from;
820     } u_submatch;
821     struct {
822       int start_register;
823       int repetition_register;
824       int repetition_limit;
825     } u_empty_match_check;
826     struct {
827       int range_from;
828       int range_to;
829     } u_clear_captures;
830   } data_;
ActionNode(Type type,RegExpNode * on_success)831   ActionNode(Type type, RegExpNode* on_success)
832       : SeqRegExpNode(on_success),
833         type_(type) { }
834   Type type_;
835   friend class DotPrinter;
836 };
837 
838 
839 class TextNode: public SeqRegExpNode {
840  public:
TextNode(ZoneList<TextElement> * elms,RegExpNode * on_success)841   TextNode(ZoneList<TextElement>* elms,
842            RegExpNode* on_success)
843       : SeqRegExpNode(on_success),
844         elms_(elms) { }
TextNode(RegExpCharacterClass * that,RegExpNode * on_success)845   TextNode(RegExpCharacterClass* that,
846            RegExpNode* on_success)
847       : SeqRegExpNode(on_success),
848         elms_(new ZoneList<TextElement>(1)) {
849     elms_->Add(TextElement::CharClass(that));
850   }
851   virtual void Accept(NodeVisitor* visitor);
852   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
853   virtual int EatsAtLeast(int still_to_find,
854                           int recursion_depth,
855                           bool not_at_start);
856   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
857                                     RegExpCompiler* compiler,
858                                     int characters_filled_in,
859                                     bool not_at_start);
elements()860   ZoneList<TextElement>* elements() { return elms_; }
861   void MakeCaseIndependent(bool is_ascii);
862   virtual int GreedyLoopTextLength();
Clone()863   virtual TextNode* Clone() {
864     TextNode* result = new TextNode(*this);
865     result->CalculateOffsets();
866     return result;
867   }
868   void CalculateOffsets();
869   virtual int ComputeFirstCharacterSet(int budget);
870 
871  private:
872   enum TextEmitPassType {
873     NON_ASCII_MATCH,             // Check for characters that can't match.
874     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
875     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
876     CASE_CHARACTER_MATCH,        // Case-independent single character check.
877     CHARACTER_CLASS_MATCH        // Character class.
878   };
879   static bool SkipPass(int pass, bool ignore_case);
880   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
881   static const int kLastPass = CHARACTER_CLASS_MATCH;
882   void TextEmitPass(RegExpCompiler* compiler,
883                     TextEmitPassType pass,
884                     bool preloaded,
885                     Trace* trace,
886                     bool first_element_checked,
887                     int* checked_up_to);
888   int Length();
889   ZoneList<TextElement>* elms_;
890 };
891 
892 
893 class AssertionNode: public SeqRegExpNode {
894  public:
895   enum AssertionNodeType {
896     AT_END,
897     AT_START,
898     AT_BOUNDARY,
899     AT_NON_BOUNDARY,
900     AFTER_NEWLINE,
901     // Types not directly expressible in regexp syntax.
902     // Used for modifying a boundary node if its following character is
903     // known to be word and/or non-word.
904     AFTER_NONWORD_CHARACTER,
905     AFTER_WORD_CHARACTER
906   };
AtEnd(RegExpNode * on_success)907   static AssertionNode* AtEnd(RegExpNode* on_success) {
908     return new AssertionNode(AT_END, on_success);
909   }
AtStart(RegExpNode * on_success)910   static AssertionNode* AtStart(RegExpNode* on_success) {
911     return new AssertionNode(AT_START, on_success);
912   }
AtBoundary(RegExpNode * on_success)913   static AssertionNode* AtBoundary(RegExpNode* on_success) {
914     return new AssertionNode(AT_BOUNDARY, on_success);
915   }
AtNonBoundary(RegExpNode * on_success)916   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
917     return new AssertionNode(AT_NON_BOUNDARY, on_success);
918   }
AfterNewline(RegExpNode * on_success)919   static AssertionNode* AfterNewline(RegExpNode* on_success) {
920     return new AssertionNode(AFTER_NEWLINE, on_success);
921   }
922   virtual void Accept(NodeVisitor* visitor);
923   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
924   virtual int EatsAtLeast(int still_to_find,
925                           int recursion_depth,
926                           bool not_at_start);
927   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
928                                     RegExpCompiler* compiler,
929                                     int filled_in,
930                                     bool not_at_start);
931   virtual int ComputeFirstCharacterSet(int budget);
Clone()932   virtual AssertionNode* Clone() { return new AssertionNode(*this); }
type()933   AssertionNodeType type() { return type_; }
set_type(AssertionNodeType type)934   void set_type(AssertionNodeType type) { type_ = type; }
935 
936  private:
AssertionNode(AssertionNodeType t,RegExpNode * on_success)937   AssertionNode(AssertionNodeType t, RegExpNode* on_success)
938       : SeqRegExpNode(on_success), type_(t) { }
939   AssertionNodeType type_;
940 };
941 
942 
943 class BackReferenceNode: public SeqRegExpNode {
944  public:
BackReferenceNode(int start_reg,int end_reg,RegExpNode * on_success)945   BackReferenceNode(int start_reg,
946                     int end_reg,
947                     RegExpNode* on_success)
948       : SeqRegExpNode(on_success),
949         start_reg_(start_reg),
950         end_reg_(end_reg) { }
951   virtual void Accept(NodeVisitor* visitor);
start_register()952   int start_register() { return start_reg_; }
end_register()953   int end_register() { return end_reg_; }
954   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
955   virtual int EatsAtLeast(int still_to_find,
956                           int recursion_depth,
957                           bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)958   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
959                                     RegExpCompiler* compiler,
960                                     int characters_filled_in,
961                                     bool not_at_start) {
962     return;
963   }
Clone()964   virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
965   virtual int ComputeFirstCharacterSet(int budget);
966 
967  private:
968   int start_reg_;
969   int end_reg_;
970 };
971 
972 
973 class EndNode: public RegExpNode {
974  public:
975   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action)976   explicit EndNode(Action action) : action_(action) { }
977   virtual void Accept(NodeVisitor* visitor);
978   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
EatsAtLeast(int still_to_find,int recursion_depth,bool not_at_start)979   virtual int EatsAtLeast(int still_to_find,
980                           int recursion_depth,
981                           bool not_at_start) { return 0; }
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)982   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
983                                     RegExpCompiler* compiler,
984                                     int characters_filled_in,
985                                     bool not_at_start) {
986     // Returning 0 from EatsAtLeast should ensure we never get here.
987     UNREACHABLE();
988   }
Clone()989   virtual EndNode* Clone() { return new EndNode(*this); }
990  private:
991   Action action_;
992 };
993 
994 
995 class NegativeSubmatchSuccess: public EndNode {
996  public:
NegativeSubmatchSuccess(int stack_pointer_reg,int position_reg,int clear_capture_count,int clear_capture_start)997   NegativeSubmatchSuccess(int stack_pointer_reg,
998                           int position_reg,
999                           int clear_capture_count,
1000                           int clear_capture_start)
1001       : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
1002         stack_pointer_register_(stack_pointer_reg),
1003         current_position_register_(position_reg),
1004         clear_capture_count_(clear_capture_count),
1005         clear_capture_start_(clear_capture_start) { }
1006   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1007 
1008  private:
1009   int stack_pointer_register_;
1010   int current_position_register_;
1011   int clear_capture_count_;
1012   int clear_capture_start_;
1013 };
1014 
1015 
1016 class Guard: public ZoneObject {
1017  public:
1018   enum Relation { LT, GEQ };
Guard(int reg,Relation op,int value)1019   Guard(int reg, Relation op, int value)
1020       : reg_(reg),
1021         op_(op),
1022         value_(value) { }
reg()1023   int reg() { return reg_; }
op()1024   Relation op() { return op_; }
value()1025   int value() { return value_; }
1026 
1027  private:
1028   int reg_;
1029   Relation op_;
1030   int value_;
1031 };
1032 
1033 
1034 class GuardedAlternative {
1035  public:
GuardedAlternative(RegExpNode * node)1036   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
1037   void AddGuard(Guard* guard);
node()1038   RegExpNode* node() { return node_; }
set_node(RegExpNode * node)1039   void set_node(RegExpNode* node) { node_ = node; }
guards()1040   ZoneList<Guard*>* guards() { return guards_; }
1041 
1042  private:
1043   RegExpNode* node_;
1044   ZoneList<Guard*>* guards_;
1045 };
1046 
1047 
1048 class AlternativeGeneration;
1049 
1050 
1051 class ChoiceNode: public RegExpNode {
1052  public:
ChoiceNode(int expected_size)1053   explicit ChoiceNode(int expected_size)
1054       : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
1055         table_(NULL),
1056         not_at_start_(false),
1057         being_calculated_(false) { }
1058   virtual void Accept(NodeVisitor* visitor);
AddAlternative(GuardedAlternative node)1059   void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
alternatives()1060   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1061   DispatchTable* GetTable(bool ignore_case);
1062   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1063   virtual int EatsAtLeast(int still_to_find,
1064                           int recursion_depth,
1065                           bool not_at_start);
1066   int EatsAtLeastHelper(int still_to_find,
1067                         int recursion_depth,
1068                         RegExpNode* ignore_this_node,
1069                         bool not_at_start);
1070   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1071                                     RegExpCompiler* compiler,
1072                                     int characters_filled_in,
1073                                     bool not_at_start);
Clone()1074   virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
1075 
being_calculated()1076   bool being_calculated() { return being_calculated_; }
not_at_start()1077   bool not_at_start() { return not_at_start_; }
set_not_at_start()1078   void set_not_at_start() { not_at_start_ = true; }
set_being_calculated(bool b)1079   void set_being_calculated(bool b) { being_calculated_ = b; }
try_to_emit_quick_check_for_alternative(int i)1080   virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
1081 
1082  protected:
1083   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
1084   ZoneList<GuardedAlternative>* alternatives_;
1085 
1086  private:
1087   friend class DispatchTableConstructor;
1088   friend class Analysis;
1089   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1090                      Guard* guard,
1091                      Trace* trace);
1092   int CalculatePreloadCharacters(RegExpCompiler* compiler, bool not_at_start);
1093   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1094                                  Trace* trace,
1095                                  GuardedAlternative alternative,
1096                                  AlternativeGeneration* alt_gen,
1097                                  int preload_characters,
1098                                  bool next_expects_preload);
1099   DispatchTable* table_;
1100   // If true, this node is never checked at the start of the input.
1101   // Allows a new trace to start with at_start() set to false.
1102   bool not_at_start_;
1103   bool being_calculated_;
1104 };
1105 
1106 
1107 class NegativeLookaheadChoiceNode: public ChoiceNode {
1108  public:
NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,GuardedAlternative then_do_this)1109   explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1110                                        GuardedAlternative then_do_this)
1111       : ChoiceNode(2) {
1112     AddAlternative(this_must_fail);
1113     AddAlternative(then_do_this);
1114   }
1115   virtual int EatsAtLeast(int still_to_find,
1116                           int recursion_depth,
1117                           bool not_at_start);
1118   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1119                                     RegExpCompiler* compiler,
1120                                     int characters_filled_in,
1121                                     bool not_at_start);
1122   // For a negative lookahead we don't emit the quick check for the
1123   // alternative that is expected to fail.  This is because quick check code
1124   // starts by loading enough characters for the alternative that takes fewest
1125   // characters, but on a negative lookahead the negative branch did not take
1126   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
try_to_emit_quick_check_for_alternative(int i)1127   virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
1128   virtual int ComputeFirstCharacterSet(int budget);
1129 };
1130 
1131 
1132 class LoopChoiceNode: public ChoiceNode {
1133  public:
LoopChoiceNode(bool body_can_be_zero_length)1134   explicit LoopChoiceNode(bool body_can_be_zero_length)
1135       : ChoiceNode(2),
1136         loop_node_(NULL),
1137         continue_node_(NULL),
1138         body_can_be_zero_length_(body_can_be_zero_length) { }
1139   void AddLoopAlternative(GuardedAlternative alt);
1140   void AddContinueAlternative(GuardedAlternative alt);
1141   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1142   virtual int EatsAtLeast(int still_to_find,
1143                           int recursion_depth,
1144                           bool not_at_start);
1145   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1146                                     RegExpCompiler* compiler,
1147                                     int characters_filled_in,
1148                                     bool not_at_start);
1149   virtual int ComputeFirstCharacterSet(int budget);
Clone()1150   virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
loop_node()1151   RegExpNode* loop_node() { return loop_node_; }
continue_node()1152   RegExpNode* continue_node() { return continue_node_; }
body_can_be_zero_length()1153   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1154   virtual void Accept(NodeVisitor* visitor);
1155 
1156  private:
1157   // AddAlternative is made private for loop nodes because alternatives
1158   // should not be added freely, we need to keep track of which node
1159   // goes back to the node itself.
AddAlternative(GuardedAlternative node)1160   void AddAlternative(GuardedAlternative node) {
1161     ChoiceNode::AddAlternative(node);
1162   }
1163 
1164   RegExpNode* loop_node_;
1165   RegExpNode* continue_node_;
1166   bool body_can_be_zero_length_;
1167 };
1168 
1169 
1170 // There are many ways to generate code for a node.  This class encapsulates
1171 // the current way we should be generating.  In other words it encapsulates
1172 // the current state of the code generator.  The effect of this is that we
1173 // generate code for paths that the matcher can take through the regular
1174 // expression.  A given node in the regexp can be code-generated several times
1175 // as it can be part of several traces.  For example for the regexp:
1176 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1177 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
1178 // to match foo is generated only once (the traces have a common prefix).  The
1179 // code to store the capture is deferred and generated (twice) after the places
1180 // where baz has been matched.
1181 class Trace {
1182  public:
1183   // A value for a property that is either known to be true, know to be false,
1184   // or not known.
1185   enum TriBool {
1186     UNKNOWN = -1, FALSE = 0, TRUE = 1
1187   };
1188 
1189   class DeferredAction {
1190    public:
DeferredAction(ActionNode::Type type,int reg)1191     DeferredAction(ActionNode::Type type, int reg)
1192         : type_(type), reg_(reg), next_(NULL) { }
next()1193     DeferredAction* next() { return next_; }
1194     bool Mentions(int reg);
reg()1195     int reg() { return reg_; }
type()1196     ActionNode::Type type() { return type_; }
1197    private:
1198     ActionNode::Type type_;
1199     int reg_;
1200     DeferredAction* next_;
1201     friend class Trace;
1202   };
1203 
1204   class DeferredCapture : public DeferredAction {
1205    public:
DeferredCapture(int reg,bool is_capture,Trace * trace)1206     DeferredCapture(int reg, bool is_capture, Trace* trace)
1207         : DeferredAction(ActionNode::STORE_POSITION, reg),
1208           cp_offset_(trace->cp_offset()),
1209           is_capture_(is_capture) { }
cp_offset()1210     int cp_offset() { return cp_offset_; }
is_capture()1211     bool is_capture() { return is_capture_; }
1212    private:
1213     int cp_offset_;
1214     bool is_capture_;
set_cp_offset(int cp_offset)1215     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1216   };
1217 
1218   class DeferredSetRegister : public DeferredAction {
1219    public:
DeferredSetRegister(int reg,int value)1220     DeferredSetRegister(int reg, int value)
1221         : DeferredAction(ActionNode::SET_REGISTER, reg),
1222           value_(value) { }
value()1223     int value() { return value_; }
1224    private:
1225     int value_;
1226   };
1227 
1228   class DeferredClearCaptures : public DeferredAction {
1229    public:
DeferredClearCaptures(Interval range)1230     explicit DeferredClearCaptures(Interval range)
1231         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1232           range_(range) { }
range()1233     Interval range() { return range_; }
1234    private:
1235     Interval range_;
1236   };
1237 
1238   class DeferredIncrementRegister : public DeferredAction {
1239    public:
DeferredIncrementRegister(int reg)1240     explicit DeferredIncrementRegister(int reg)
1241         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1242   };
1243 
Trace()1244   Trace()
1245       : cp_offset_(0),
1246         actions_(NULL),
1247         backtrack_(NULL),
1248         stop_node_(NULL),
1249         loop_label_(NULL),
1250         characters_preloaded_(0),
1251         bound_checked_up_to_(0),
1252         flush_budget_(100),
1253         at_start_(UNKNOWN) { }
1254 
1255   // End the trace.  This involves flushing the deferred actions in the trace
1256   // and pushing a backtrack location onto the backtrack stack.  Once this is
1257   // done we can start a new trace or go to one that has already been
1258   // generated.
1259   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()1260   int cp_offset() { return cp_offset_; }
actions()1261   DeferredAction* actions() { return actions_; }
1262   // A trivial trace is one that has no deferred actions or other state that
1263   // affects the assumptions used when generating code.  There is no recorded
1264   // backtrack location in a trivial trace, so with a trivial trace we will
1265   // generate code that, on a failure to match, gets the backtrack location
1266   // from the backtrack stack rather than using a direct jump instruction.  We
1267   // always start code generation with a trivial trace and non-trivial traces
1268   // are created as we emit code for nodes or add to the list of deferred
1269   // actions in the trace.  The location of the code generated for a node using
1270   // a trivial trace is recorded in a label in the node so that gotos can be
1271   // generated to that code.
is_trivial()1272   bool is_trivial() {
1273     return backtrack_ == NULL &&
1274            actions_ == NULL &&
1275            cp_offset_ == 0 &&
1276            characters_preloaded_ == 0 &&
1277            bound_checked_up_to_ == 0 &&
1278            quick_check_performed_.characters() == 0 &&
1279            at_start_ == UNKNOWN;
1280   }
at_start()1281   TriBool at_start() { return at_start_; }
set_at_start(bool at_start)1282   void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
backtrack()1283   Label* backtrack() { return backtrack_; }
loop_label()1284   Label* loop_label() { return loop_label_; }
stop_node()1285   RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()1286   int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()1287   int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()1288   int flush_budget() { return flush_budget_; }
quick_check_performed()1289   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1290   bool mentions_reg(int reg);
1291   // Returns true if a deferred position store exists to the specified
1292   // register and stores the offset in the out-parameter.  Otherwise
1293   // returns false.
1294   bool GetStoredPosition(int reg, int* cp_offset);
1295   // These set methods and AdvanceCurrentPositionInTrace should be used only on
1296   // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)1297   void add_action(DeferredAction* new_action) {
1298     ASSERT(new_action->next_ == NULL);
1299     new_action->next_ = actions_;
1300     actions_ = new_action;
1301   }
set_backtrack(Label * backtrack)1302   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)1303   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)1304   void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int count)1305   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
set_bound_checked_up_to(int to)1306   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)1307   void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)1308   void set_quick_check_performed(QuickCheckDetails* d) {
1309     quick_check_performed_ = *d;
1310   }
1311   void InvalidateCurrentCharacter();
1312   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1313 
1314  private:
1315   int FindAffectedRegisters(OutSet* affected_registers);
1316   void PerformDeferredActions(RegExpMacroAssembler* macro,
1317                                int max_register,
1318                                OutSet& affected_registers,
1319                                OutSet* registers_to_pop,
1320                                OutSet* registers_to_clear);
1321   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1322                                 int max_register,
1323                                 OutSet& registers_to_pop,
1324                                 OutSet& registers_to_clear);
1325   int cp_offset_;
1326   DeferredAction* actions_;
1327   Label* backtrack_;
1328   RegExpNode* stop_node_;
1329   Label* loop_label_;
1330   int characters_preloaded_;
1331   int bound_checked_up_to_;
1332   QuickCheckDetails quick_check_performed_;
1333   int flush_budget_;
1334   TriBool at_start_;
1335 };
1336 
1337 
1338 class NodeVisitor {
1339  public:
~NodeVisitor()1340   virtual ~NodeVisitor() { }
1341 #define DECLARE_VISIT(Type)                                          \
1342   virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1343 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1344 #undef DECLARE_VISIT
1345   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1346 };
1347 
1348 
1349 // Node visitor used to add the start set of the alternatives to the
1350 // dispatch table of a choice node.
1351 class DispatchTableConstructor: public NodeVisitor {
1352  public:
DispatchTableConstructor(DispatchTable * table,bool ignore_case)1353   DispatchTableConstructor(DispatchTable* table, bool ignore_case)
1354       : table_(table),
1355         choice_index_(-1),
1356         ignore_case_(ignore_case) { }
1357 
1358   void BuildTable(ChoiceNode* node);
1359 
AddRange(CharacterRange range)1360   void AddRange(CharacterRange range) {
1361     table()->AddRange(range, choice_index_);
1362   }
1363 
1364   void AddInverse(ZoneList<CharacterRange>* ranges);
1365 
1366 #define DECLARE_VISIT(Type)                                          \
1367   virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1368 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1369 #undef DECLARE_VISIT
1370 
1371   DispatchTable* table() { return table_; }
set_choice_index(int value)1372   void set_choice_index(int value) { choice_index_ = value; }
1373 
1374  protected:
1375   DispatchTable* table_;
1376   int choice_index_;
1377   bool ignore_case_;
1378 };
1379 
1380 
1381 // Assertion propagation moves information about assertions such as
1382 // \b to the affected nodes.  For instance, in /.\b./ information must
1383 // be propagated to the first '.' that whatever follows needs to know
1384 // if it matched a word or a non-word, and to the second '.' that it
1385 // has to check if it succeeds a word or non-word.  In this case the
1386 // result will be something like:
1387 //
1388 //   +-------+        +------------+
1389 //   |   .   |        |      .     |
1390 //   +-------+  --->  +------------+
1391 //   | word? |        | check word |
1392 //   +-------+        +------------+
1393 class Analysis: public NodeVisitor {
1394  public:
Analysis(bool ignore_case,bool is_ascii)1395   Analysis(bool ignore_case, bool is_ascii)
1396       : ignore_case_(ignore_case),
1397         is_ascii_(is_ascii),
1398         error_message_(NULL) { }
1399   void EnsureAnalyzed(RegExpNode* node);
1400 
1401 #define DECLARE_VISIT(Type)                                          \
1402   virtual void Visit##Type(Type##Node* that);
1403 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1404 #undef DECLARE_VISIT
1405   virtual void VisitLoopChoice(LoopChoiceNode* that);
1406 
has_failed()1407   bool has_failed() { return error_message_ != NULL; }
error_message()1408   const char* error_message() {
1409     ASSERT(error_message_ != NULL);
1410     return error_message_;
1411   }
fail(const char * error_message)1412   void fail(const char* error_message) {
1413     error_message_ = error_message;
1414   }
1415 
1416  private:
1417   bool ignore_case_;
1418   bool is_ascii_;
1419   const char* error_message_;
1420 
1421   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1422 };
1423 
1424 
1425 struct RegExpCompileData {
RegExpCompileDataRegExpCompileData1426   RegExpCompileData()
1427     : tree(NULL),
1428       node(NULL),
1429       simple(true),
1430       contains_anchor(false),
1431       capture_count(0) { }
1432   RegExpTree* tree;
1433   RegExpNode* node;
1434   bool simple;
1435   bool contains_anchor;
1436   Handle<String> error;
1437   int capture_count;
1438 };
1439 
1440 
1441 class RegExpEngine: public AllStatic {
1442  public:
1443   struct CompilationResult {
CompilationResultCompilationResult1444     explicit CompilationResult(const char* error_message)
1445         : error_message(error_message),
1446           code(HEAP->the_hole_value()),
1447           num_registers(0) {}
CompilationResultCompilationResult1448     CompilationResult(Object* code, int registers)
1449       : error_message(NULL),
1450         code(code),
1451         num_registers(registers) {}
1452     const char* error_message;
1453     Object* code;
1454     int num_registers;
1455   };
1456 
1457   static CompilationResult Compile(RegExpCompileData* input,
1458                                    bool ignore_case,
1459                                    bool multiline,
1460                                    Handle<String> pattern,
1461                                    bool is_ascii);
1462 
1463   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1464 };
1465 
1466 
1467 class OffsetsVector {
1468  public:
OffsetsVector(int num_registers,Isolate * isolate)1469   inline OffsetsVector(int num_registers, Isolate* isolate)
1470       : offsets_vector_length_(num_registers) {
1471     if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
1472       vector_ = NewArray<int>(offsets_vector_length_);
1473     } else {
1474       vector_ = isolate->jsregexp_static_offsets_vector();
1475     }
1476   }
~OffsetsVector()1477   inline ~OffsetsVector() {
1478     if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
1479       DeleteArray(vector_);
1480       vector_ = NULL;
1481     }
1482   }
vector()1483   inline int* vector() { return vector_; }
length()1484   inline int length() { return offsets_vector_length_; }
1485 
1486   static const int kStaticOffsetsVectorSize = 50;
1487 
1488  private:
static_offsets_vector_address(Isolate * isolate)1489   static Address static_offsets_vector_address(Isolate* isolate) {
1490     return reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector());
1491   }
1492 
1493   int* vector_;
1494   int offsets_vector_length_;
1495 
1496   friend class ExternalReference;
1497 };
1498 
1499 
1500 } }  // namespace v8::internal
1501 
1502 #endif  // V8_JSREGEXP_H_
1503