1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27
28 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30 DeclContext *CurContext) {
31 if (T.isNull())
32 return 0;
33
34 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37 if (!Record->isDependentContext() ||
38 Record->isCurrentInstantiation(CurContext))
39 return Record;
40
41 return 0;
42 } else if (isa<InjectedClassNameType>(Ty))
43 return cast<InjectedClassNameType>(Ty)->getDecl();
44 else
45 return 0;
46 }
47
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
computeDeclContext(QualType T)55 DeclContext *Sema::computeDeclContext(QualType T) {
56 if (!T->isDependentType())
57 if (const TagType *Tag = T->getAs<TagType>())
58 return Tag->getDecl();
59
60 return ::getCurrentInstantiationOf(T, CurContext);
61 }
62
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77 bool EnteringContext) {
78 if (!SS.isSet() || SS.isInvalid())
79 return 0;
80
81 NestedNameSpecifier *NNS
82 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
83 if (NNS->isDependent()) {
84 // If this nested-name-specifier refers to the current
85 // instantiation, return its DeclContext.
86 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
87 return Record;
88
89 if (EnteringContext) {
90 const Type *NNSType = NNS->getAsType();
91 if (!NNSType) {
92 return 0;
93 }
94
95 // Look through type alias templates, per C++0x [temp.dep.type]p1.
96 NNSType = Context.getCanonicalType(NNSType);
97 if (const TemplateSpecializationType *SpecType
98 = NNSType->getAs<TemplateSpecializationType>()) {
99 // We are entering the context of the nested name specifier, so try to
100 // match the nested name specifier to either a primary class template
101 // or a class template partial specialization.
102 if (ClassTemplateDecl *ClassTemplate
103 = dyn_cast_or_null<ClassTemplateDecl>(
104 SpecType->getTemplateName().getAsTemplateDecl())) {
105 QualType ContextType
106 = Context.getCanonicalType(QualType(SpecType, 0));
107
108 // If the type of the nested name specifier is the same as the
109 // injected class name of the named class template, we're entering
110 // into that class template definition.
111 QualType Injected
112 = ClassTemplate->getInjectedClassNameSpecialization();
113 if (Context.hasSameType(Injected, ContextType))
114 return ClassTemplate->getTemplatedDecl();
115
116 // If the type of the nested name specifier is the same as the
117 // type of one of the class template's class template partial
118 // specializations, we're entering into the definition of that
119 // class template partial specialization.
120 if (ClassTemplatePartialSpecializationDecl *PartialSpec
121 = ClassTemplate->findPartialSpecialization(ContextType))
122 return PartialSpec;
123 }
124 } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
125 // The nested name specifier refers to a member of a class template.
126 return RecordT->getDecl();
127 }
128 }
129
130 return 0;
131 }
132
133 switch (NNS->getKind()) {
134 case NestedNameSpecifier::Identifier:
135 llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
136
137 case NestedNameSpecifier::Namespace:
138 return NNS->getAsNamespace();
139
140 case NestedNameSpecifier::NamespaceAlias:
141 return NNS->getAsNamespaceAlias()->getNamespace();
142
143 case NestedNameSpecifier::TypeSpec:
144 case NestedNameSpecifier::TypeSpecWithTemplate: {
145 const TagType *Tag = NNS->getAsType()->getAs<TagType>();
146 assert(Tag && "Non-tag type in nested-name-specifier");
147 return Tag->getDecl();
148 }
149
150 case NestedNameSpecifier::Global:
151 return Context.getTranslationUnitDecl();
152 }
153
154 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
155 }
156
isDependentScopeSpecifier(const CXXScopeSpec & SS)157 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
158 if (!SS.isSet() || SS.isInvalid())
159 return false;
160
161 NestedNameSpecifier *NNS
162 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
163 return NNS->isDependent();
164 }
165
166 // \brief Determine whether this C++ scope specifier refers to an
167 // unknown specialization, i.e., a dependent type that is not the
168 // current instantiation.
isUnknownSpecialization(const CXXScopeSpec & SS)169 bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
170 if (!isDependentScopeSpecifier(SS))
171 return false;
172
173 NestedNameSpecifier *NNS
174 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
175 return getCurrentInstantiationOf(NNS) == 0;
176 }
177
178 /// \brief If the given nested name specifier refers to the current
179 /// instantiation, return the declaration that corresponds to that
180 /// current instantiation (C++0x [temp.dep.type]p1).
181 ///
182 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)183 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
184 assert(getLangOpts().CPlusPlus && "Only callable in C++");
185 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
186
187 if (!NNS->getAsType())
188 return 0;
189
190 QualType T = QualType(NNS->getAsType(), 0);
191 return ::getCurrentInstantiationOf(T, CurContext);
192 }
193
194 /// \brief Require that the context specified by SS be complete.
195 ///
196 /// If SS refers to a type, this routine checks whether the type is
197 /// complete enough (or can be made complete enough) for name lookup
198 /// into the DeclContext. A type that is not yet completed can be
199 /// considered "complete enough" if it is a class/struct/union/enum
200 /// that is currently being defined. Or, if we have a type that names
201 /// a class template specialization that is not a complete type, we
202 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)203 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
204 DeclContext *DC) {
205 assert(DC != 0 && "given null context");
206
207 TagDecl *tag = dyn_cast<TagDecl>(DC);
208
209 // If this is a dependent type, then we consider it complete.
210 if (!tag || tag->isDependentContext())
211 return false;
212
213 // If we're currently defining this type, then lookup into the
214 // type is okay: don't complain that it isn't complete yet.
215 QualType type = Context.getTypeDeclType(tag);
216 const TagType *tagType = type->getAs<TagType>();
217 if (tagType && tagType->isBeingDefined())
218 return false;
219
220 SourceLocation loc = SS.getLastQualifierNameLoc();
221 if (loc.isInvalid()) loc = SS.getRange().getBegin();
222
223 // The type must be complete.
224 if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
225 SS.getRange())) {
226 SS.SetInvalid(SS.getRange());
227 return true;
228 }
229
230 // Fixed enum types are complete, but they aren't valid as scopes
231 // until we see a definition, so awkwardly pull out this special
232 // case.
233 const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
234 if (!enumType || enumType->getDecl()->isCompleteDefinition())
235 return false;
236
237 // Try to instantiate the definition, if this is a specialization of an
238 // enumeration temploid.
239 EnumDecl *ED = enumType->getDecl();
240 if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
241 MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
242 if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
243 if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
244 TSK_ImplicitInstantiation)) {
245 SS.SetInvalid(SS.getRange());
246 return true;
247 }
248 return false;
249 }
250 }
251
252 Diag(loc, diag::err_incomplete_nested_name_spec)
253 << type << SS.getRange();
254 SS.SetInvalid(SS.getRange());
255 return true;
256 }
257
ActOnCXXGlobalScopeSpecifier(Scope * S,SourceLocation CCLoc,CXXScopeSpec & SS)258 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
259 CXXScopeSpec &SS) {
260 SS.MakeGlobal(Context, CCLoc);
261 return false;
262 }
263
264 /// \brief Determines whether the given declaration is an valid acceptable
265 /// result for name lookup of a nested-name-specifier.
isAcceptableNestedNameSpecifier(const NamedDecl * SD)266 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) {
267 if (!SD)
268 return false;
269
270 // Namespace and namespace aliases are fine.
271 if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
272 return true;
273
274 if (!isa<TypeDecl>(SD))
275 return false;
276
277 // Determine whether we have a class (or, in C++11, an enum) or
278 // a typedef thereof. If so, build the nested-name-specifier.
279 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
280 if (T->isDependentType())
281 return true;
282 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
283 if (TD->getUnderlyingType()->isRecordType() ||
284 (Context.getLangOpts().CPlusPlus11 &&
285 TD->getUnderlyingType()->isEnumeralType()))
286 return true;
287 } else if (isa<RecordDecl>(SD) ||
288 (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD)))
289 return true;
290
291 return false;
292 }
293
294 /// \brief If the given nested-name-specifier begins with a bare identifier
295 /// (e.g., Base::), perform name lookup for that identifier as a
296 /// nested-name-specifier within the given scope, and return the result of that
297 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)298 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
299 if (!S || !NNS)
300 return 0;
301
302 while (NNS->getPrefix())
303 NNS = NNS->getPrefix();
304
305 if (NNS->getKind() != NestedNameSpecifier::Identifier)
306 return 0;
307
308 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
309 LookupNestedNameSpecifierName);
310 LookupName(Found, S);
311 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
312
313 if (!Found.isSingleResult())
314 return 0;
315
316 NamedDecl *Result = Found.getFoundDecl();
317 if (isAcceptableNestedNameSpecifier(Result))
318 return Result;
319
320 return 0;
321 }
322
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)323 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
324 SourceLocation IdLoc,
325 IdentifierInfo &II,
326 ParsedType ObjectTypePtr) {
327 QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
328 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
329
330 // Determine where to perform name lookup
331 DeclContext *LookupCtx = 0;
332 bool isDependent = false;
333 if (!ObjectType.isNull()) {
334 // This nested-name-specifier occurs in a member access expression, e.g.,
335 // x->B::f, and we are looking into the type of the object.
336 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
337 LookupCtx = computeDeclContext(ObjectType);
338 isDependent = ObjectType->isDependentType();
339 } else if (SS.isSet()) {
340 // This nested-name-specifier occurs after another nested-name-specifier,
341 // so long into the context associated with the prior nested-name-specifier.
342 LookupCtx = computeDeclContext(SS, false);
343 isDependent = isDependentScopeSpecifier(SS);
344 Found.setContextRange(SS.getRange());
345 }
346
347 if (LookupCtx) {
348 // Perform "qualified" name lookup into the declaration context we
349 // computed, which is either the type of the base of a member access
350 // expression or the declaration context associated with a prior
351 // nested-name-specifier.
352
353 // The declaration context must be complete.
354 if (!LookupCtx->isDependentContext() &&
355 RequireCompleteDeclContext(SS, LookupCtx))
356 return false;
357
358 LookupQualifiedName(Found, LookupCtx);
359 } else if (isDependent) {
360 return false;
361 } else {
362 LookupName(Found, S);
363 }
364 Found.suppressDiagnostics();
365
366 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
367 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
368
369 return false;
370 }
371
372 namespace {
373
374 // Callback to only accept typo corrections that can be a valid C++ member
375 // intializer: either a non-static field member or a base class.
376 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
377 public:
NestedNameSpecifierValidatorCCC(Sema & SRef)378 explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
379 : SRef(SRef) {}
380
ValidateCandidate(const TypoCorrection & candidate)381 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
382 return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
383 }
384
385 private:
386 Sema &SRef;
387 };
388
389 }
390
391 /// \brief Build a new nested-name-specifier for "identifier::", as described
392 /// by ActOnCXXNestedNameSpecifier.
393 ///
394 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
395 /// that it contains an extra parameter \p ScopeLookupResult, which provides
396 /// the result of name lookup within the scope of the nested-name-specifier
397 /// that was computed at template definition time.
398 ///
399 /// If ErrorRecoveryLookup is true, then this call is used to improve error
400 /// recovery. This means that it should not emit diagnostics, it should
401 /// just return true on failure. It also means it should only return a valid
402 /// scope if it *knows* that the result is correct. It should not return in a
403 /// dependent context, for example. Nor will it extend \p SS with the scope
404 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup)405 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
406 IdentifierInfo &Identifier,
407 SourceLocation IdentifierLoc,
408 SourceLocation CCLoc,
409 QualType ObjectType,
410 bool EnteringContext,
411 CXXScopeSpec &SS,
412 NamedDecl *ScopeLookupResult,
413 bool ErrorRecoveryLookup) {
414 LookupResult Found(*this, &Identifier, IdentifierLoc,
415 LookupNestedNameSpecifierName);
416
417 // Determine where to perform name lookup
418 DeclContext *LookupCtx = 0;
419 bool isDependent = false;
420 if (!ObjectType.isNull()) {
421 // This nested-name-specifier occurs in a member access expression, e.g.,
422 // x->B::f, and we are looking into the type of the object.
423 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
424 LookupCtx = computeDeclContext(ObjectType);
425 isDependent = ObjectType->isDependentType();
426 } else if (SS.isSet()) {
427 // This nested-name-specifier occurs after another nested-name-specifier,
428 // so look into the context associated with the prior nested-name-specifier.
429 LookupCtx = computeDeclContext(SS, EnteringContext);
430 isDependent = isDependentScopeSpecifier(SS);
431 Found.setContextRange(SS.getRange());
432 }
433
434
435 bool ObjectTypeSearchedInScope = false;
436 if (LookupCtx) {
437 // Perform "qualified" name lookup into the declaration context we
438 // computed, which is either the type of the base of a member access
439 // expression or the declaration context associated with a prior
440 // nested-name-specifier.
441
442 // The declaration context must be complete.
443 if (!LookupCtx->isDependentContext() &&
444 RequireCompleteDeclContext(SS, LookupCtx))
445 return true;
446
447 LookupQualifiedName(Found, LookupCtx);
448
449 if (!ObjectType.isNull() && Found.empty()) {
450 // C++ [basic.lookup.classref]p4:
451 // If the id-expression in a class member access is a qualified-id of
452 // the form
453 //
454 // class-name-or-namespace-name::...
455 //
456 // the class-name-or-namespace-name following the . or -> operator is
457 // looked up both in the context of the entire postfix-expression and in
458 // the scope of the class of the object expression. If the name is found
459 // only in the scope of the class of the object expression, the name
460 // shall refer to a class-name. If the name is found only in the
461 // context of the entire postfix-expression, the name shall refer to a
462 // class-name or namespace-name. [...]
463 //
464 // Qualified name lookup into a class will not find a namespace-name,
465 // so we do not need to diagnose that case specifically. However,
466 // this qualified name lookup may find nothing. In that case, perform
467 // unqualified name lookup in the given scope (if available) or
468 // reconstruct the result from when name lookup was performed at template
469 // definition time.
470 if (S)
471 LookupName(Found, S);
472 else if (ScopeLookupResult)
473 Found.addDecl(ScopeLookupResult);
474
475 ObjectTypeSearchedInScope = true;
476 }
477 } else if (!isDependent) {
478 // Perform unqualified name lookup in the current scope.
479 LookupName(Found, S);
480 }
481
482 // If we performed lookup into a dependent context and did not find anything,
483 // that's fine: just build a dependent nested-name-specifier.
484 if (Found.empty() && isDependent &&
485 !(LookupCtx && LookupCtx->isRecord() &&
486 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
487 !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
488 // Don't speculate if we're just trying to improve error recovery.
489 if (ErrorRecoveryLookup)
490 return true;
491
492 // We were not able to compute the declaration context for a dependent
493 // base object type or prior nested-name-specifier, so this
494 // nested-name-specifier refers to an unknown specialization. Just build
495 // a dependent nested-name-specifier.
496 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
497 return false;
498 }
499
500 // FIXME: Deal with ambiguities cleanly.
501
502 if (Found.empty() && !ErrorRecoveryLookup) {
503 // We haven't found anything, and we're not recovering from a
504 // different kind of error, so look for typos.
505 DeclarationName Name = Found.getLookupName();
506 NestedNameSpecifierValidatorCCC Validator(*this);
507 TypoCorrection Corrected;
508 Found.clear();
509 if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
510 Found.getLookupKind(), S, &SS, Validator,
511 LookupCtx, EnteringContext))) {
512 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
513 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
514 if (LookupCtx)
515 Diag(Found.getNameLoc(), diag::err_no_member_suggest)
516 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
517 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
518 CorrectedStr);
519 else
520 Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
521 << Name << CorrectedQuotedStr
522 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
523
524 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
525 Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
526 Found.addDecl(ND);
527 }
528 Found.setLookupName(Corrected.getCorrection());
529 } else {
530 Found.setLookupName(&Identifier);
531 }
532 }
533
534 NamedDecl *SD = Found.getAsSingle<NamedDecl>();
535 if (isAcceptableNestedNameSpecifier(SD)) {
536 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
537 !getLangOpts().CPlusPlus11) {
538 // C++03 [basic.lookup.classref]p4:
539 // [...] If the name is found in both contexts, the
540 // class-name-or-namespace-name shall refer to the same entity.
541 //
542 // We already found the name in the scope of the object. Now, look
543 // into the current scope (the scope of the postfix-expression) to
544 // see if we can find the same name there. As above, if there is no
545 // scope, reconstruct the result from the template instantiation itself.
546 //
547 // Note that C++11 does *not* perform this redundant lookup.
548 NamedDecl *OuterDecl;
549 if (S) {
550 LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
551 LookupNestedNameSpecifierName);
552 LookupName(FoundOuter, S);
553 OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
554 } else
555 OuterDecl = ScopeLookupResult;
556
557 if (isAcceptableNestedNameSpecifier(OuterDecl) &&
558 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
559 (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
560 !Context.hasSameType(
561 Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
562 Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
563 if (ErrorRecoveryLookup)
564 return true;
565
566 Diag(IdentifierLoc,
567 diag::err_nested_name_member_ref_lookup_ambiguous)
568 << &Identifier;
569 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
570 << ObjectType;
571 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
572
573 // Fall through so that we'll pick the name we found in the object
574 // type, since that's probably what the user wanted anyway.
575 }
576 }
577
578 // If we're just performing this lookup for error-recovery purposes,
579 // don't extend the nested-name-specifier. Just return now.
580 if (ErrorRecoveryLookup)
581 return false;
582
583 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
584 SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
585 return false;
586 }
587
588 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
589 SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
590 return false;
591 }
592
593 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
594 TypeLocBuilder TLB;
595 if (isa<InjectedClassNameType>(T)) {
596 InjectedClassNameTypeLoc InjectedTL
597 = TLB.push<InjectedClassNameTypeLoc>(T);
598 InjectedTL.setNameLoc(IdentifierLoc);
599 } else if (isa<RecordType>(T)) {
600 RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
601 RecordTL.setNameLoc(IdentifierLoc);
602 } else if (isa<TypedefType>(T)) {
603 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
604 TypedefTL.setNameLoc(IdentifierLoc);
605 } else if (isa<EnumType>(T)) {
606 EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
607 EnumTL.setNameLoc(IdentifierLoc);
608 } else if (isa<TemplateTypeParmType>(T)) {
609 TemplateTypeParmTypeLoc TemplateTypeTL
610 = TLB.push<TemplateTypeParmTypeLoc>(T);
611 TemplateTypeTL.setNameLoc(IdentifierLoc);
612 } else if (isa<UnresolvedUsingType>(T)) {
613 UnresolvedUsingTypeLoc UnresolvedTL
614 = TLB.push<UnresolvedUsingTypeLoc>(T);
615 UnresolvedTL.setNameLoc(IdentifierLoc);
616 } else if (isa<SubstTemplateTypeParmType>(T)) {
617 SubstTemplateTypeParmTypeLoc TL
618 = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
619 TL.setNameLoc(IdentifierLoc);
620 } else if (isa<SubstTemplateTypeParmPackType>(T)) {
621 SubstTemplateTypeParmPackTypeLoc TL
622 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
623 TL.setNameLoc(IdentifierLoc);
624 } else {
625 llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
626 }
627
628 if (T->isEnumeralType())
629 Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
630
631 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
632 CCLoc);
633 return false;
634 }
635
636 // Otherwise, we have an error case. If we don't want diagnostics, just
637 // return an error now.
638 if (ErrorRecoveryLookup)
639 return true;
640
641 // If we didn't find anything during our lookup, try again with
642 // ordinary name lookup, which can help us produce better error
643 // messages.
644 if (Found.empty()) {
645 Found.clear(LookupOrdinaryName);
646 LookupName(Found, S);
647 }
648
649 // In Microsoft mode, if we are within a templated function and we can't
650 // resolve Identifier, then extend the SS with Identifier. This will have
651 // the effect of resolving Identifier during template instantiation.
652 // The goal is to be able to resolve a function call whose
653 // nested-name-specifier is located inside a dependent base class.
654 // Example:
655 //
656 // class C {
657 // public:
658 // static void foo2() { }
659 // };
660 // template <class T> class A { public: typedef C D; };
661 //
662 // template <class T> class B : public A<T> {
663 // public:
664 // void foo() { D::foo2(); }
665 // };
666 if (getLangOpts().MicrosoftExt) {
667 DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
668 if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
669 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
670 return false;
671 }
672 }
673
674 unsigned DiagID;
675 if (!Found.empty())
676 DiagID = diag::err_expected_class_or_namespace;
677 else if (SS.isSet()) {
678 Diag(IdentifierLoc, diag::err_no_member)
679 << &Identifier << LookupCtx << SS.getRange();
680 return true;
681 } else
682 DiagID = diag::err_undeclared_var_use;
683
684 if (SS.isSet())
685 Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
686 else
687 Diag(IdentifierLoc, DiagID) << &Identifier;
688
689 return true;
690 }
691
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS)692 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
693 IdentifierInfo &Identifier,
694 SourceLocation IdentifierLoc,
695 SourceLocation CCLoc,
696 ParsedType ObjectType,
697 bool EnteringContext,
698 CXXScopeSpec &SS) {
699 if (SS.isInvalid())
700 return true;
701
702 return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
703 GetTypeFromParser(ObjectType),
704 EnteringContext, SS,
705 /*ScopeLookupResult=*/0, false);
706 }
707
ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec & SS,const DeclSpec & DS,SourceLocation ColonColonLoc)708 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
709 const DeclSpec &DS,
710 SourceLocation ColonColonLoc) {
711 if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
712 return true;
713
714 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
715
716 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
717 if (!T->isDependentType() && !T->getAs<TagType>()) {
718 Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class)
719 << T << getLangOpts().CPlusPlus;
720 return true;
721 }
722
723 TypeLocBuilder TLB;
724 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
725 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
726 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
727 ColonColonLoc);
728 return false;
729 }
730
731 /// IsInvalidUnlessNestedName - This method is used for error recovery
732 /// purposes to determine whether the specified identifier is only valid as
733 /// a nested name specifier, for example a namespace name. It is
734 /// conservatively correct to always return false from this method.
735 ///
736 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)737 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
738 IdentifierInfo &Identifier,
739 SourceLocation IdentifierLoc,
740 SourceLocation ColonLoc,
741 ParsedType ObjectType,
742 bool EnteringContext) {
743 if (SS.isInvalid())
744 return false;
745
746 return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
747 GetTypeFromParser(ObjectType),
748 EnteringContext, SS,
749 /*ScopeLookupResult=*/0, true);
750 }
751
ActOnCXXNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)752 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
753 CXXScopeSpec &SS,
754 SourceLocation TemplateKWLoc,
755 TemplateTy Template,
756 SourceLocation TemplateNameLoc,
757 SourceLocation LAngleLoc,
758 ASTTemplateArgsPtr TemplateArgsIn,
759 SourceLocation RAngleLoc,
760 SourceLocation CCLoc,
761 bool EnteringContext) {
762 if (SS.isInvalid())
763 return true;
764
765 // Translate the parser's template argument list in our AST format.
766 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
767 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
768
769 if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
770 // Handle a dependent template specialization for which we cannot resolve
771 // the template name.
772 assert(DTN->getQualifier()
773 == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
774 QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
775 DTN->getQualifier(),
776 DTN->getIdentifier(),
777 TemplateArgs);
778
779 // Create source-location information for this type.
780 TypeLocBuilder Builder;
781 DependentTemplateSpecializationTypeLoc SpecTL
782 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
783 SpecTL.setElaboratedKeywordLoc(SourceLocation());
784 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
785 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
786 SpecTL.setTemplateNameLoc(TemplateNameLoc);
787 SpecTL.setLAngleLoc(LAngleLoc);
788 SpecTL.setRAngleLoc(RAngleLoc);
789 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
790 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
791
792 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
793 CCLoc);
794 return false;
795 }
796
797
798 if (Template.get().getAsOverloadedTemplate() ||
799 isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
800 SourceRange R(TemplateNameLoc, RAngleLoc);
801 if (SS.getRange().isValid())
802 R.setBegin(SS.getRange().getBegin());
803
804 Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
805 << Template.get() << R;
806 NoteAllFoundTemplates(Template.get());
807 return true;
808 }
809
810 // We were able to resolve the template name to an actual template.
811 // Build an appropriate nested-name-specifier.
812 QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
813 TemplateArgs);
814 if (T.isNull())
815 return true;
816
817 // Alias template specializations can produce types which are not valid
818 // nested name specifiers.
819 if (!T->isDependentType() && !T->getAs<TagType>()) {
820 Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
821 NoteAllFoundTemplates(Template.get());
822 return true;
823 }
824
825 // Provide source-location information for the template specialization type.
826 TypeLocBuilder Builder;
827 TemplateSpecializationTypeLoc SpecTL
828 = Builder.push<TemplateSpecializationTypeLoc>(T);
829 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
830 SpecTL.setTemplateNameLoc(TemplateNameLoc);
831 SpecTL.setLAngleLoc(LAngleLoc);
832 SpecTL.setRAngleLoc(RAngleLoc);
833 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
834 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
835
836
837 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
838 CCLoc);
839 return false;
840 }
841
842 namespace {
843 /// \brief A structure that stores a nested-name-specifier annotation,
844 /// including both the nested-name-specifier
845 struct NestedNameSpecifierAnnotation {
846 NestedNameSpecifier *NNS;
847 };
848 }
849
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)850 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
851 if (SS.isEmpty() || SS.isInvalid())
852 return 0;
853
854 void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
855 SS.location_size()),
856 llvm::alignOf<NestedNameSpecifierAnnotation>());
857 NestedNameSpecifierAnnotation *Annotation
858 = new (Mem) NestedNameSpecifierAnnotation;
859 Annotation->NNS = SS.getScopeRep();
860 memcpy(Annotation + 1, SS.location_data(), SS.location_size());
861 return Annotation;
862 }
863
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)864 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
865 SourceRange AnnotationRange,
866 CXXScopeSpec &SS) {
867 if (!AnnotationPtr) {
868 SS.SetInvalid(AnnotationRange);
869 return;
870 }
871
872 NestedNameSpecifierAnnotation *Annotation
873 = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
874 SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
875 }
876
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)877 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
878 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
879
880 NestedNameSpecifier *Qualifier =
881 static_cast<NestedNameSpecifier*>(SS.getScopeRep());
882
883 // There are only two places a well-formed program may qualify a
884 // declarator: first, when defining a namespace or class member
885 // out-of-line, and second, when naming an explicitly-qualified
886 // friend function. The latter case is governed by
887 // C++03 [basic.lookup.unqual]p10:
888 // In a friend declaration naming a member function, a name used
889 // in the function declarator and not part of a template-argument
890 // in a template-id is first looked up in the scope of the member
891 // function's class. If it is not found, or if the name is part of
892 // a template-argument in a template-id, the look up is as
893 // described for unqualified names in the definition of the class
894 // granting friendship.
895 // i.e. we don't push a scope unless it's a class member.
896
897 switch (Qualifier->getKind()) {
898 case NestedNameSpecifier::Global:
899 case NestedNameSpecifier::Namespace:
900 case NestedNameSpecifier::NamespaceAlias:
901 // These are always namespace scopes. We never want to enter a
902 // namespace scope from anything but a file context.
903 return CurContext->getRedeclContext()->isFileContext();
904
905 case NestedNameSpecifier::Identifier:
906 case NestedNameSpecifier::TypeSpec:
907 case NestedNameSpecifier::TypeSpecWithTemplate:
908 // These are never namespace scopes.
909 return true;
910 }
911
912 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
913 }
914
915 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
916 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
917 /// After this method is called, according to [C++ 3.4.3p3], names should be
918 /// looked up in the declarator-id's scope, until the declarator is parsed and
919 /// ActOnCXXExitDeclaratorScope is called.
920 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)921 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
922 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
923
924 if (SS.isInvalid()) return true;
925
926 DeclContext *DC = computeDeclContext(SS, true);
927 if (!DC) return true;
928
929 // Before we enter a declarator's context, we need to make sure that
930 // it is a complete declaration context.
931 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
932 return true;
933
934 EnterDeclaratorContext(S, DC);
935
936 // Rebuild the nested name specifier for the new scope.
937 if (DC->isDependentContext())
938 RebuildNestedNameSpecifierInCurrentInstantiation(SS);
939
940 return false;
941 }
942
943 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
944 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
945 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
946 /// Used to indicate that names should revert to being looked up in the
947 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)948 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
949 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
950 if (SS.isInvalid())
951 return;
952 assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
953 "exiting declarator scope we never really entered");
954 ExitDeclaratorContext(S);
955 }
956