• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the MachineInstr class, which is the
11 // basic representation for all target dependent machine instructions used by
12 // the back end.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
17 #define LLVM_CODEGEN_MACHINEINSTR_H
18 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/ilist.h"
24 #include "llvm/ADT/ilist_node.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/MC/MCInstrDesc.h"
28 #include "llvm/Support/ArrayRecycler.h"
29 #include "llvm/Support/DebugLoc.h"
30 #include "llvm/Target/TargetOpcodes.h"
31 #include <vector>
32 
33 namespace llvm {
34 
35 template <typename T> class SmallVectorImpl;
36 class AliasAnalysis;
37 class TargetInstrInfo;
38 class TargetRegisterClass;
39 class TargetRegisterInfo;
40 class MachineFunction;
41 class MachineMemOperand;
42 
43 //===----------------------------------------------------------------------===//
44 /// MachineInstr - Representation of each machine instruction.
45 ///
46 /// This class isn't a POD type, but it must have a trivial destructor. When a
47 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
48 /// without having their destructor called.
49 ///
50 class MachineInstr : public ilist_node<MachineInstr> {
51 public:
52   typedef MachineMemOperand **mmo_iterator;
53 
54   /// Flags to specify different kinds of comments to output in
55   /// assembly code.  These flags carry semantic information not
56   /// otherwise easily derivable from the IR text.
57   ///
58   enum CommentFlag {
59     ReloadReuse = 0x1
60   };
61 
62   enum MIFlag {
63     NoFlags      = 0,
64     FrameSetup   = 1 << 0,              // Instruction is used as a part of
65                                         // function frame setup code.
66     BundledPred  = 1 << 1,              // Instruction has bundled predecessors.
67     BundledSucc  = 1 << 2               // Instruction has bundled successors.
68   };
69 private:
70   const MCInstrDesc *MCID;              // Instruction descriptor.
71   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
72 
73   // Operands are allocated by an ArrayRecycler.
74   MachineOperand *Operands;             // Pointer to the first operand.
75   unsigned NumOperands;                 // Number of operands on instruction.
76   typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
77   OperandCapacity CapOperands;          // Capacity of the Operands array.
78 
79   uint8_t Flags;                        // Various bits of additional
80                                         // information about machine
81                                         // instruction.
82 
83   uint8_t AsmPrinterFlags;              // Various bits of information used by
84                                         // the AsmPrinter to emit helpful
85                                         // comments.  This is *not* semantic
86                                         // information.  Do not use this for
87                                         // anything other than to convey comment
88                                         // information to AsmPrinter.
89 
90   uint8_t NumMemRefs;                   // Information on memory references.
91   mmo_iterator MemRefs;
92 
93   DebugLoc debugLoc;                    // Source line information.
94 
95   MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION;
96   void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION;
97   // Use MachineFunction::DeleteMachineInstr() instead.
98   ~MachineInstr() LLVM_DELETED_FUNCTION;
99 
100   // Intrusive list support
101   friend struct ilist_traits<MachineInstr>;
102   friend struct ilist_traits<MachineBasicBlock>;
103   void setParent(MachineBasicBlock *P) { Parent = P; }
104 
105   /// MachineInstr ctor - This constructor creates a copy of the given
106   /// MachineInstr in the given MachineFunction.
107   MachineInstr(MachineFunction &, const MachineInstr &);
108 
109   /// MachineInstr ctor - This constructor create a MachineInstr and add the
110   /// implicit operands.  It reserves space for number of operands specified by
111   /// MCInstrDesc.  An explicit DebugLoc is supplied.
112   MachineInstr(MachineFunction&, const MCInstrDesc &MCID,
113                const DebugLoc dl, bool NoImp = false);
114 
115   // MachineInstrs are pool-allocated and owned by MachineFunction.
116   friend class MachineFunction;
117 
118 public:
119   const MachineBasicBlock* getParent() const { return Parent; }
120   MachineBasicBlock* getParent() { return Parent; }
121 
122   /// getAsmPrinterFlags - Return the asm printer flags bitvector.
123   ///
124   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
125 
126   /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
127   ///
128   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
129 
130   /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
131   ///
132   bool getAsmPrinterFlag(CommentFlag Flag) const {
133     return AsmPrinterFlags & Flag;
134   }
135 
136   /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
137   ///
138   void setAsmPrinterFlag(CommentFlag Flag) {
139     AsmPrinterFlags |= (uint8_t)Flag;
140   }
141 
142   /// clearAsmPrinterFlag - clear specific AsmPrinter flags
143   ///
144   void clearAsmPrinterFlag(CommentFlag Flag) {
145     AsmPrinterFlags &= ~Flag;
146   }
147 
148   /// getFlags - Return the MI flags bitvector.
149   uint8_t getFlags() const {
150     return Flags;
151   }
152 
153   /// getFlag - Return whether an MI flag is set.
154   bool getFlag(MIFlag Flag) const {
155     return Flags & Flag;
156   }
157 
158   /// setFlag - Set a MI flag.
159   void setFlag(MIFlag Flag) {
160     Flags |= (uint8_t)Flag;
161   }
162 
163   void setFlags(unsigned flags) {
164     // Filter out the automatically maintained flags.
165     unsigned Mask = BundledPred | BundledSucc;
166     Flags = (Flags & Mask) | (flags & ~Mask);
167   }
168 
169   /// clearFlag - Clear a MI flag.
170   void clearFlag(MIFlag Flag) {
171     Flags &= ~((uint8_t)Flag);
172   }
173 
174   /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
175   /// in a bundle).
176   ///
177   /// A bundle looks like this before it's finalized:
178   ///   ----------------
179   ///   |      MI      |
180   ///   ----------------
181   ///          |
182   ///   ----------------
183   ///   |      MI    * |
184   ///   ----------------
185   ///          |
186   ///   ----------------
187   ///   |      MI    * |
188   ///   ----------------
189   /// In this case, the first MI starts a bundle but is not inside a bundle, the
190   /// next 2 MIs are considered "inside" the bundle.
191   ///
192   /// After a bundle is finalized, it looks like this:
193   ///   ----------------
194   ///   |    Bundle    |
195   ///   ----------------
196   ///          |
197   ///   ----------------
198   ///   |      MI    * |
199   ///   ----------------
200   ///          |
201   ///   ----------------
202   ///   |      MI    * |
203   ///   ----------------
204   ///          |
205   ///   ----------------
206   ///   |      MI    * |
207   ///   ----------------
208   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
209   /// a bundle, but the next three MIs are.
210   bool isInsideBundle() const {
211     return getFlag(BundledPred);
212   }
213 
214   /// isBundled - Return true if this instruction part of a bundle. This is true
215   /// if either itself or its following instruction is marked "InsideBundle".
216   bool isBundled() const {
217     return isBundledWithPred() || isBundledWithSucc();
218   }
219 
220   /// Return true if this instruction is part of a bundle, and it is not the
221   /// first instruction in the bundle.
222   bool isBundledWithPred() const { return getFlag(BundledPred); }
223 
224   /// Return true if this instruction is part of a bundle, and it is not the
225   /// last instruction in the bundle.
226   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
227 
228   /// Bundle this instruction with its predecessor. This can be an unbundled
229   /// instruction, or it can be the first instruction in a bundle.
230   void bundleWithPred();
231 
232   /// Bundle this instruction with its successor. This can be an unbundled
233   /// instruction, or it can be the last instruction in a bundle.
234   void bundleWithSucc();
235 
236   /// Break bundle above this instruction.
237   void unbundleFromPred();
238 
239   /// Break bundle below this instruction.
240   void unbundleFromSucc();
241 
242   /// getDebugLoc - Returns the debug location id of this MachineInstr.
243   ///
244   DebugLoc getDebugLoc() const { return debugLoc; }
245 
246   /// emitError - Emit an error referring to the source location of this
247   /// instruction. This should only be used for inline assembly that is somehow
248   /// impossible to compile. Other errors should have been handled much
249   /// earlier.
250   ///
251   /// If this method returns, the caller should try to recover from the error.
252   ///
253   void emitError(StringRef Msg) const;
254 
255   /// getDesc - Returns the target instruction descriptor of this
256   /// MachineInstr.
257   const MCInstrDesc &getDesc() const { return *MCID; }
258 
259   /// getOpcode - Returns the opcode of this MachineInstr.
260   ///
261   int getOpcode() const { return MCID->Opcode; }
262 
263   /// Access to explicit operands of the instruction.
264   ///
265   unsigned getNumOperands() const { return NumOperands; }
266 
267   const MachineOperand& getOperand(unsigned i) const {
268     assert(i < getNumOperands() && "getOperand() out of range!");
269     return Operands[i];
270   }
271   MachineOperand& getOperand(unsigned i) {
272     assert(i < getNumOperands() && "getOperand() out of range!");
273     return Operands[i];
274   }
275 
276   /// getNumExplicitOperands - Returns the number of non-implicit operands.
277   ///
278   unsigned getNumExplicitOperands() const;
279 
280   /// iterator/begin/end - Iterate over all operands of a machine instruction.
281   typedef MachineOperand *mop_iterator;
282   typedef const MachineOperand *const_mop_iterator;
283 
284   mop_iterator operands_begin() { return Operands; }
285   mop_iterator operands_end() { return Operands + NumOperands; }
286 
287   const_mop_iterator operands_begin() const { return Operands; }
288   const_mop_iterator operands_end() const { return Operands + NumOperands; }
289 
290   /// Access to memory operands of the instruction
291   mmo_iterator memoperands_begin() const { return MemRefs; }
292   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
293   bool memoperands_empty() const { return NumMemRefs == 0; }
294 
295   /// hasOneMemOperand - Return true if this instruction has exactly one
296   /// MachineMemOperand.
297   bool hasOneMemOperand() const {
298     return NumMemRefs == 1;
299   }
300 
301   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
302   /// queries but they are bundle aware.
303 
304   enum QueryType {
305     IgnoreBundle,    // Ignore bundles
306     AnyInBundle,     // Return true if any instruction in bundle has property
307     AllInBundle      // Return true if all instructions in bundle have property
308   };
309 
310   /// hasProperty - Return true if the instruction (or in the case of a bundle,
311   /// the instructions inside the bundle) has the specified property.
312   /// The first argument is the property being queried.
313   /// The second argument indicates whether the query should look inside
314   /// instruction bundles.
315   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
316     // Inline the fast path for unbundled or bundle-internal instructions.
317     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
318       return getDesc().getFlags() & (1 << MCFlag);
319 
320     // If this is the first instruction in a bundle, take the slow path.
321     return hasPropertyInBundle(1 << MCFlag, Type);
322   }
323 
324   /// isVariadic - Return true if this instruction can have a variable number of
325   /// operands.  In this case, the variable operands will be after the normal
326   /// operands but before the implicit definitions and uses (if any are
327   /// present).
328   bool isVariadic(QueryType Type = IgnoreBundle) const {
329     return hasProperty(MCID::Variadic, Type);
330   }
331 
332   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
333   /// ARM instructions which can set condition code if 's' bit is set.
334   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
335     return hasProperty(MCID::HasOptionalDef, Type);
336   }
337 
338   /// isPseudo - Return true if this is a pseudo instruction that doesn't
339   /// correspond to a real machine instruction.
340   ///
341   bool isPseudo(QueryType Type = IgnoreBundle) const {
342     return hasProperty(MCID::Pseudo, Type);
343   }
344 
345   bool isReturn(QueryType Type = AnyInBundle) const {
346     return hasProperty(MCID::Return, Type);
347   }
348 
349   bool isCall(QueryType Type = AnyInBundle) const {
350     return hasProperty(MCID::Call, Type);
351   }
352 
353   /// isBarrier - Returns true if the specified instruction stops control flow
354   /// from executing the instruction immediately following it.  Examples include
355   /// unconditional branches and return instructions.
356   bool isBarrier(QueryType Type = AnyInBundle) const {
357     return hasProperty(MCID::Barrier, Type);
358   }
359 
360   /// isTerminator - Returns true if this instruction part of the terminator for
361   /// a basic block.  Typically this is things like return and branch
362   /// instructions.
363   ///
364   /// Various passes use this to insert code into the bottom of a basic block,
365   /// but before control flow occurs.
366   bool isTerminator(QueryType Type = AnyInBundle) const {
367     return hasProperty(MCID::Terminator, Type);
368   }
369 
370   /// isBranch - Returns true if this is a conditional, unconditional, or
371   /// indirect branch.  Predicates below can be used to discriminate between
372   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
373   /// get more information.
374   bool isBranch(QueryType Type = AnyInBundle) const {
375     return hasProperty(MCID::Branch, Type);
376   }
377 
378   /// isIndirectBranch - Return true if this is an indirect branch, such as a
379   /// branch through a register.
380   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
381     return hasProperty(MCID::IndirectBranch, Type);
382   }
383 
384   /// isConditionalBranch - Return true if this is a branch which may fall
385   /// through to the next instruction or may transfer control flow to some other
386   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
387   /// information about this branch.
388   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
389     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
390   }
391 
392   /// isUnconditionalBranch - Return true if this is a branch which always
393   /// transfers control flow to some other block.  The
394   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
395   /// about this branch.
396   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
397     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
398   }
399 
400   // isPredicable - Return true if this instruction has a predicate operand that
401   // controls execution.  It may be set to 'always', or may be set to other
402   /// values.   There are various methods in TargetInstrInfo that can be used to
403   /// control and modify the predicate in this instruction.
404   bool isPredicable(QueryType Type = AllInBundle) const {
405     // If it's a bundle than all bundled instructions must be predicable for this
406     // to return true.
407     return hasProperty(MCID::Predicable, Type);
408   }
409 
410   /// isCompare - Return true if this instruction is a comparison.
411   bool isCompare(QueryType Type = IgnoreBundle) const {
412     return hasProperty(MCID::Compare, Type);
413   }
414 
415   /// isMoveImmediate - Return true if this instruction is a move immediate
416   /// (including conditional moves) instruction.
417   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
418     return hasProperty(MCID::MoveImm, Type);
419   }
420 
421   /// isBitcast - Return true if this instruction is a bitcast instruction.
422   ///
423   bool isBitcast(QueryType Type = IgnoreBundle) const {
424     return hasProperty(MCID::Bitcast, Type);
425   }
426 
427   /// isSelect - Return true if this instruction is a select instruction.
428   ///
429   bool isSelect(QueryType Type = IgnoreBundle) const {
430     return hasProperty(MCID::Select, Type);
431   }
432 
433   /// isNotDuplicable - Return true if this instruction cannot be safely
434   /// duplicated.  For example, if the instruction has a unique labels attached
435   /// to it, duplicating it would cause multiple definition errors.
436   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
437     return hasProperty(MCID::NotDuplicable, Type);
438   }
439 
440   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
441   /// which must be filled by the code generator.
442   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
443     return hasProperty(MCID::DelaySlot, Type);
444   }
445 
446   /// canFoldAsLoad - Return true for instructions that can be folded as
447   /// memory operands in other instructions. The most common use for this
448   /// is instructions that are simple loads from memory that don't modify
449   /// the loaded value in any way, but it can also be used for instructions
450   /// that can be expressed as constant-pool loads, such as V_SETALLONES
451   /// on x86, to allow them to be folded when it is beneficial.
452   /// This should only be set on instructions that return a value in their
453   /// only virtual register definition.
454   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
455     return hasProperty(MCID::FoldableAsLoad, Type);
456   }
457 
458   //===--------------------------------------------------------------------===//
459   // Side Effect Analysis
460   //===--------------------------------------------------------------------===//
461 
462   /// mayLoad - Return true if this instruction could possibly read memory.
463   /// Instructions with this flag set are not necessarily simple load
464   /// instructions, they may load a value and modify it, for example.
465   bool mayLoad(QueryType Type = AnyInBundle) const {
466     if (isInlineAsm()) {
467       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
468       if (ExtraInfo & InlineAsm::Extra_MayLoad)
469         return true;
470     }
471     return hasProperty(MCID::MayLoad, Type);
472   }
473 
474 
475   /// mayStore - Return true if this instruction could possibly modify memory.
476   /// Instructions with this flag set are not necessarily simple store
477   /// instructions, they may store a modified value based on their operands, or
478   /// may not actually modify anything, for example.
479   bool mayStore(QueryType Type = AnyInBundle) const {
480     if (isInlineAsm()) {
481       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
482       if (ExtraInfo & InlineAsm::Extra_MayStore)
483         return true;
484     }
485     return hasProperty(MCID::MayStore, Type);
486   }
487 
488   //===--------------------------------------------------------------------===//
489   // Flags that indicate whether an instruction can be modified by a method.
490   //===--------------------------------------------------------------------===//
491 
492   /// isCommutable - Return true if this may be a 2- or 3-address
493   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
494   /// result if Y and Z are exchanged.  If this flag is set, then the
495   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
496   /// instruction.
497   ///
498   /// Note that this flag may be set on instructions that are only commutable
499   /// sometimes.  In these cases, the call to commuteInstruction will fail.
500   /// Also note that some instructions require non-trivial modification to
501   /// commute them.
502   bool isCommutable(QueryType Type = IgnoreBundle) const {
503     return hasProperty(MCID::Commutable, Type);
504   }
505 
506   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
507   /// which can be changed into a 3-address instruction if needed.  Doing this
508   /// transformation can be profitable in the register allocator, because it
509   /// means that the instruction can use a 2-address form if possible, but
510   /// degrade into a less efficient form if the source and dest register cannot
511   /// be assigned to the same register.  For example, this allows the x86
512   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
513   /// is the same speed as the shift but has bigger code size.
514   ///
515   /// If this returns true, then the target must implement the
516   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
517   /// is allowed to fail if the transformation isn't valid for this specific
518   /// instruction (e.g. shl reg, 4 on x86).
519   ///
520   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
521     return hasProperty(MCID::ConvertibleTo3Addr, Type);
522   }
523 
524   /// usesCustomInsertionHook - Return true if this instruction requires
525   /// custom insertion support when the DAG scheduler is inserting it into a
526   /// machine basic block.  If this is true for the instruction, it basically
527   /// means that it is a pseudo instruction used at SelectionDAG time that is
528   /// expanded out into magic code by the target when MachineInstrs are formed.
529   ///
530   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
531   /// is used to insert this into the MachineBasicBlock.
532   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
533     return hasProperty(MCID::UsesCustomInserter, Type);
534   }
535 
536   /// hasPostISelHook - Return true if this instruction requires *adjustment*
537   /// after instruction selection by calling a target hook. For example, this
538   /// can be used to fill in ARM 's' optional operand depending on whether
539   /// the conditional flag register is used.
540   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
541     return hasProperty(MCID::HasPostISelHook, Type);
542   }
543 
544   /// isRematerializable - Returns true if this instruction is a candidate for
545   /// remat.  This flag is deprecated, please don't use it anymore.  If this
546   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
547   /// verify the instruction is really rematable.
548   bool isRematerializable(QueryType Type = AllInBundle) const {
549     // It's only possible to re-mat a bundle if all bundled instructions are
550     // re-materializable.
551     return hasProperty(MCID::Rematerializable, Type);
552   }
553 
554   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
555   /// less) than a move instruction. This is useful during certain types of
556   /// optimizations (e.g., remat during two-address conversion or machine licm)
557   /// where we would like to remat or hoist the instruction, but not if it costs
558   /// more than moving the instruction into the appropriate register. Note, we
559   /// are not marking copies from and to the same register class with this flag.
560   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
561     // Only returns true for a bundle if all bundled instructions are cheap.
562     // FIXME: This probably requires a target hook.
563     return hasProperty(MCID::CheapAsAMove, Type);
564   }
565 
566   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
567   /// have special register allocation requirements that are not captured by the
568   /// operand register classes. e.g. ARM::STRD's two source registers must be an
569   /// even / odd pair, ARM::STM registers have to be in ascending order.
570   /// Post-register allocation passes should not attempt to change allocations
571   /// for sources of instructions with this flag.
572   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
573     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
574   }
575 
576   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
577   /// have special register allocation requirements that are not captured by the
578   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
579   /// even / odd pair, ARM::LDM registers have to be in ascending order.
580   /// Post-register allocation passes should not attempt to change allocations
581   /// for definitions of instructions with this flag.
582   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
583     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
584   }
585 
586 
587   enum MICheckType {
588     CheckDefs,      // Check all operands for equality
589     CheckKillDead,  // Check all operands including kill / dead markers
590     IgnoreDefs,     // Ignore all definitions
591     IgnoreVRegDefs  // Ignore virtual register definitions
592   };
593 
594   /// isIdenticalTo - Return true if this instruction is identical to (same
595   /// opcode and same operands as) the specified instruction.
596   bool isIdenticalTo(const MachineInstr *Other,
597                      MICheckType Check = CheckDefs) const;
598 
599   /// Unlink 'this' from the containing basic block, and return it without
600   /// deleting it.
601   ///
602   /// This function can not be used on bundled instructions, use
603   /// removeFromBundle() to remove individual instructions from a bundle.
604   MachineInstr *removeFromParent();
605 
606   /// Unlink this instruction from its basic block and return it without
607   /// deleting it.
608   ///
609   /// If the instruction is part of a bundle, the other instructions in the
610   /// bundle remain bundled.
611   MachineInstr *removeFromBundle();
612 
613   /// Unlink 'this' from the containing basic block and delete it.
614   ///
615   /// If this instruction is the header of a bundle, the whole bundle is erased.
616   /// This function can not be used for instructions inside a bundle, use
617   /// eraseFromBundle() to erase individual bundled instructions.
618   void eraseFromParent();
619 
620   /// Unlink 'this' form its basic block and delete it.
621   ///
622   /// If the instruction is part of a bundle, the other instructions in the
623   /// bundle remain bundled.
624   void eraseFromBundle();
625 
626   /// isLabel - Returns true if the MachineInstr represents a label.
627   ///
628   bool isLabel() const {
629     return getOpcode() == TargetOpcode::PROLOG_LABEL ||
630            getOpcode() == TargetOpcode::EH_LABEL ||
631            getOpcode() == TargetOpcode::GC_LABEL;
632   }
633 
634   bool isPrologLabel() const {
635     return getOpcode() == TargetOpcode::PROLOG_LABEL;
636   }
637   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
638   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
639   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
640 
641   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
642   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
643   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
644   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
645   bool isMSInlineAsm() const {
646     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
647   }
648   bool isStackAligningInlineAsm() const;
649   InlineAsm::AsmDialect getInlineAsmDialect() const;
650   bool isInsertSubreg() const {
651     return getOpcode() == TargetOpcode::INSERT_SUBREG;
652   }
653   bool isSubregToReg() const {
654     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
655   }
656   bool isRegSequence() const {
657     return getOpcode() == TargetOpcode::REG_SEQUENCE;
658   }
659   bool isBundle() const {
660     return getOpcode() == TargetOpcode::BUNDLE;
661   }
662   bool isCopy() const {
663     return getOpcode() == TargetOpcode::COPY;
664   }
665   bool isFullCopy() const {
666     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
667   }
668 
669   /// isCopyLike - Return true if the instruction behaves like a copy.
670   /// This does not include native copy instructions.
671   bool isCopyLike() const {
672     return isCopy() || isSubregToReg();
673   }
674 
675   /// isIdentityCopy - Return true is the instruction is an identity copy.
676   bool isIdentityCopy() const {
677     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
678       getOperand(0).getSubReg() == getOperand(1).getSubReg();
679   }
680 
681   /// isTransient - Return true if this is a transient instruction that is
682   /// either very likely to be eliminated during register allocation (such as
683   /// copy-like instructions), or if this instruction doesn't have an
684   /// execution-time cost.
685   bool isTransient() const {
686     switch(getOpcode()) {
687     default: return false;
688     // Copy-like instructions are usually eliminated during register allocation.
689     case TargetOpcode::PHI:
690     case TargetOpcode::COPY:
691     case TargetOpcode::INSERT_SUBREG:
692     case TargetOpcode::SUBREG_TO_REG:
693     case TargetOpcode::REG_SEQUENCE:
694     // Pseudo-instructions that don't produce any real output.
695     case TargetOpcode::IMPLICIT_DEF:
696     case TargetOpcode::KILL:
697     case TargetOpcode::PROLOG_LABEL:
698     case TargetOpcode::EH_LABEL:
699     case TargetOpcode::GC_LABEL:
700     case TargetOpcode::DBG_VALUE:
701       return true;
702     }
703   }
704 
705   /// Return the number of instructions inside the MI bundle, excluding the
706   /// bundle header.
707   ///
708   /// This is the number of instructions that MachineBasicBlock::iterator
709   /// skips, 0 for unbundled instructions.
710   unsigned getBundleSize() const;
711 
712   /// readsRegister - Return true if the MachineInstr reads the specified
713   /// register. If TargetRegisterInfo is passed, then it also checks if there
714   /// is a read of a super-register.
715   /// This does not count partial redefines of virtual registers as reads:
716   ///   %reg1024:6 = OP.
717   bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
718     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
719   }
720 
721   /// readsVirtualRegister - Return true if the MachineInstr reads the specified
722   /// virtual register. Take into account that a partial define is a
723   /// read-modify-write operation.
724   bool readsVirtualRegister(unsigned Reg) const {
725     return readsWritesVirtualRegister(Reg).first;
726   }
727 
728   /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
729   /// indicating if this instruction reads or writes Reg. This also considers
730   /// partial defines.
731   /// If Ops is not null, all operand indices for Reg are added.
732   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
733                                       SmallVectorImpl<unsigned> *Ops = 0) const;
734 
735   /// killsRegister - Return true if the MachineInstr kills the specified
736   /// register. If TargetRegisterInfo is passed, then it also checks if there is
737   /// a kill of a super-register.
738   bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
739     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
740   }
741 
742   /// definesRegister - Return true if the MachineInstr fully defines the
743   /// specified register. If TargetRegisterInfo is passed, then it also checks
744   /// if there is a def of a super-register.
745   /// NOTE: It's ignoring subreg indices on virtual registers.
746   bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const {
747     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
748   }
749 
750   /// modifiesRegister - Return true if the MachineInstr modifies (fully define
751   /// or partially define) the specified register.
752   /// NOTE: It's ignoring subreg indices on virtual registers.
753   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
754     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
755   }
756 
757   /// registerDefIsDead - Returns true if the register is dead in this machine
758   /// instruction. If TargetRegisterInfo is passed, then it also checks
759   /// if there is a dead def of a super-register.
760   bool registerDefIsDead(unsigned Reg,
761                          const TargetRegisterInfo *TRI = NULL) const {
762     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
763   }
764 
765   /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
766   /// the specific register or -1 if it is not found. It further tightens
767   /// the search criteria to a use that kills the register if isKill is true.
768   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
769                                 const TargetRegisterInfo *TRI = NULL) const;
770 
771   /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
772   /// a pointer to the MachineOperand rather than an index.
773   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
774                                          const TargetRegisterInfo *TRI = NULL) {
775     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
776     return (Idx == -1) ? NULL : &getOperand(Idx);
777   }
778 
779   /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
780   /// the specified register or -1 if it is not found. If isDead is true, defs
781   /// that are not dead are skipped. If Overlap is true, then it also looks for
782   /// defs that merely overlap the specified register. If TargetRegisterInfo is
783   /// non-null, then it also checks if there is a def of a super-register.
784   /// This may also return a register mask operand when Overlap is true.
785   int findRegisterDefOperandIdx(unsigned Reg,
786                                 bool isDead = false, bool Overlap = false,
787                                 const TargetRegisterInfo *TRI = NULL) const;
788 
789   /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
790   /// a pointer to the MachineOperand rather than an index.
791   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
792                                          const TargetRegisterInfo *TRI = NULL) {
793     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
794     return (Idx == -1) ? NULL : &getOperand(Idx);
795   }
796 
797   /// findFirstPredOperandIdx() - Find the index of the first operand in the
798   /// operand list that is used to represent the predicate. It returns -1 if
799   /// none is found.
800   int findFirstPredOperandIdx() const;
801 
802   /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
803   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
804   /// getOperand(OpIdx) does not belong to an inline asm operand group.
805   ///
806   /// If GroupNo is not NULL, it will receive the number of the operand group
807   /// containing OpIdx.
808   ///
809   /// The flag operand is an immediate that can be decoded with methods like
810   /// InlineAsm::hasRegClassConstraint().
811   ///
812   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const;
813 
814   /// getRegClassConstraint - Compute the static register class constraint for
815   /// operand OpIdx.  For normal instructions, this is derived from the
816   /// MCInstrDesc.  For inline assembly it is derived from the flag words.
817   ///
818   /// Returns NULL if the static register classs constraint cannot be
819   /// determined.
820   ///
821   const TargetRegisterClass*
822   getRegClassConstraint(unsigned OpIdx,
823                         const TargetInstrInfo *TII,
824                         const TargetRegisterInfo *TRI) const;
825 
826   /// tieOperands - Add a tie between the register operands at DefIdx and
827   /// UseIdx. The tie will cause the register allocator to ensure that the two
828   /// operands are assigned the same physical register.
829   ///
830   /// Tied operands are managed automatically for explicit operands in the
831   /// MCInstrDesc. This method is for exceptional cases like inline asm.
832   void tieOperands(unsigned DefIdx, unsigned UseIdx);
833 
834   /// findTiedOperandIdx - Given the index of a tied register operand, find the
835   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
836   /// index of the tied operand which must exist.
837   unsigned findTiedOperandIdx(unsigned OpIdx) const;
838 
839   /// isRegTiedToUseOperand - Given the index of a register def operand,
840   /// check if the register def is tied to a source operand, due to either
841   /// two-address elimination or inline assembly constraints. Returns the
842   /// first tied use operand index by reference if UseOpIdx is not null.
843   bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const {
844     const MachineOperand &MO = getOperand(DefOpIdx);
845     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
846       return false;
847     if (UseOpIdx)
848       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
849     return true;
850   }
851 
852   /// isRegTiedToDefOperand - Return true if the use operand of the specified
853   /// index is tied to an def operand. It also returns the def operand index by
854   /// reference if DefOpIdx is not null.
855   bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const {
856     const MachineOperand &MO = getOperand(UseOpIdx);
857     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
858       return false;
859     if (DefOpIdx)
860       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
861     return true;
862   }
863 
864   /// clearKillInfo - Clears kill flags on all operands.
865   ///
866   void clearKillInfo();
867 
868   /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
869   /// properly composing subreg indices where necessary.
870   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
871                           const TargetRegisterInfo &RegInfo);
872 
873   /// addRegisterKilled - We have determined MI kills a register. Look for the
874   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
875   /// add a implicit operand if it's not found. Returns true if the operand
876   /// exists / is added.
877   bool addRegisterKilled(unsigned IncomingReg,
878                          const TargetRegisterInfo *RegInfo,
879                          bool AddIfNotFound = false);
880 
881   /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
882   /// provided, this includes super-register kills.
883   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
884 
885   /// addRegisterDead - We have determined MI defined a register without a use.
886   /// Look for the operand that defines it and mark it as IsDead. If
887   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
888   /// true if the operand exists / is added.
889   bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo,
890                        bool AddIfNotFound = false);
891 
892   /// addRegisterDefined - We have determined MI defines a register. Make sure
893   /// there is an operand defining Reg.
894   void addRegisterDefined(unsigned IncomingReg,
895                           const TargetRegisterInfo *RegInfo = 0);
896 
897   /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
898   /// dead except those in the UsedRegs list.
899   ///
900   /// On instructions with register mask operands, also add implicit-def
901   /// operands for all registers in UsedRegs.
902   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
903                              const TargetRegisterInfo &TRI);
904 
905   /// isSafeToMove - Return true if it is safe to move this instruction. If
906   /// SawStore is set to true, it means that there is a store (or call) between
907   /// the instruction's location and its intended destination.
908   bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
909                     bool &SawStore) const;
910 
911   /// isSafeToReMat - Return true if it's safe to rematerialize the specified
912   /// instruction which defined the specified register instead of copying it.
913   bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA,
914                      unsigned DstReg) const;
915 
916   /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
917   /// or volatile memory reference, or if the information describing the memory
918   /// reference is not available. Return false if it is known to have no
919   /// ordered or volatile memory references.
920   bool hasOrderedMemoryRef() const;
921 
922   /// isInvariantLoad - Return true if this instruction is loading from a
923   /// location whose value is invariant across the function.  For example,
924   /// loading a value from the constant pool or from the argument area of
925   /// a function if it does not change.  This should only return true of *all*
926   /// loads the instruction does are invariant (if it does multiple loads).
927   bool isInvariantLoad(AliasAnalysis *AA) const;
928 
929   /// isConstantValuePHI - If the specified instruction is a PHI that always
930   /// merges together the same virtual register, return the register, otherwise
931   /// return 0.
932   unsigned isConstantValuePHI() const;
933 
934   /// hasUnmodeledSideEffects - Return true if this instruction has side
935   /// effects that are not modeled by mayLoad / mayStore, etc.
936   /// For all instructions, the property is encoded in MCInstrDesc::Flags
937   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
938   /// INLINEASM instruction, in which case the side effect property is encoded
939   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
940   ///
941   bool hasUnmodeledSideEffects() const;
942 
943   /// allDefsAreDead - Return true if all the defs of this instruction are dead.
944   ///
945   bool allDefsAreDead() const;
946 
947   /// copyImplicitOps - Copy implicit register operands from specified
948   /// instruction to this instruction.
949   void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
950 
951   //
952   // Debugging support
953   //
954   void print(raw_ostream &OS, const TargetMachine *TM = 0,
955              bool SkipOpers = false) const;
956   void dump() const;
957 
958   //===--------------------------------------------------------------------===//
959   // Accessors used to build up machine instructions.
960 
961   /// Add the specified operand to the instruction.  If it is an implicit
962   /// operand, it is added to the end of the operand list.  If it is an
963   /// explicit operand it is added at the end of the explicit operand list
964   /// (before the first implicit operand).
965   ///
966   /// MF must be the machine function that was used to allocate this
967   /// instruction.
968   ///
969   /// MachineInstrBuilder provides a more convenient interface for creating
970   /// instructions and adding operands.
971   void addOperand(MachineFunction &MF, const MachineOperand &Op);
972 
973   /// Add an operand without providing an MF reference. This only works for
974   /// instructions that are inserted in a basic block.
975   ///
976   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
977   /// preferred.
978   void addOperand(const MachineOperand &Op);
979 
980   /// setDesc - Replace the instruction descriptor (thus opcode) of
981   /// the current instruction with a new one.
982   ///
983   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
984 
985   /// setDebugLoc - Replace current source information with new such.
986   /// Avoid using this, the constructor argument is preferable.
987   ///
988   void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
989 
990   /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
991   /// fewer operand than it started with.
992   ///
993   void RemoveOperand(unsigned i);
994 
995   /// addMemOperand - Add a MachineMemOperand to the machine instruction.
996   /// This function should be used only occasionally. The setMemRefs function
997   /// is the primary method for setting up a MachineInstr's MemRefs list.
998   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
999 
1000   /// setMemRefs - Assign this MachineInstr's memory reference descriptor
1001   /// list. This does not transfer ownership.
1002   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
1003     MemRefs = NewMemRefs;
1004     NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
1005     assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
1006   }
1007 
1008 private:
1009   /// getRegInfo - If this instruction is embedded into a MachineFunction,
1010   /// return the MachineRegisterInfo object for the current function, otherwise
1011   /// return null.
1012   MachineRegisterInfo *getRegInfo();
1013 
1014   /// untieRegOperand - Break any tie involving OpIdx.
1015   void untieRegOperand(unsigned OpIdx) {
1016     MachineOperand &MO = getOperand(OpIdx);
1017     if (MO.isReg() && MO.isTied()) {
1018       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1019       MO.TiedTo = 0;
1020     }
1021   }
1022 
1023   /// addImplicitDefUseOperands - Add all implicit def and use operands to
1024   /// this instruction.
1025   void addImplicitDefUseOperands(MachineFunction &MF);
1026 
1027   /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
1028   /// this instruction from their respective use lists.  This requires that the
1029   /// operands already be on their use lists.
1030   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1031 
1032   /// AddRegOperandsToUseLists - Add all of the register operands in
1033   /// this instruction from their respective use lists.  This requires that the
1034   /// operands not be on their use lists yet.
1035   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1036 
1037   /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
1038   /// bundle.
1039   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
1040 };
1041 
1042 /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
1043 /// MachineInstr* by *value* of the instruction rather than by pointer value.
1044 /// The hashing and equality testing functions ignore definitions so this is
1045 /// useful for CSE, etc.
1046 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1047   static inline MachineInstr *getEmptyKey() {
1048     return 0;
1049   }
1050 
1051   static inline MachineInstr *getTombstoneKey() {
1052     return reinterpret_cast<MachineInstr*>(-1);
1053   }
1054 
1055   static unsigned getHashValue(const MachineInstr* const &MI);
1056 
1057   static bool isEqual(const MachineInstr* const &LHS,
1058                       const MachineInstr* const &RHS) {
1059     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1060         LHS == getEmptyKey() || LHS == getTombstoneKey())
1061       return LHS == RHS;
1062     return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
1063   }
1064 };
1065 
1066 //===----------------------------------------------------------------------===//
1067 // Debugging Support
1068 
1069 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1070   MI.print(OS);
1071   return OS;
1072 }
1073 
1074 } // End llvm namespace
1075 
1076 #endif
1077