• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crypto/bn/bn_exp.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 
113 #include "cryptlib.h"
114 #include "bn_lcl.h"
115 
116 #include <stdlib.h>
117 #ifdef _WIN32
118 # include <malloc.h>
119 # ifndef alloca
120 #  define alloca _alloca
121 # endif
122 #elif defined(__GNUC__)
123 # ifndef alloca
124 #  define alloca(s) __builtin_alloca((s))
125 # endif
126 #endif
127 
128 /* maximum precomputation table size for *variable* sliding windows */
129 #define TABLE_SIZE	32
130 
131 /* this one works - simple but works */
BN_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)132 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
133 	{
134 	int i,bits,ret=0;
135 	BIGNUM *v,*rr;
136 
137 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
138 		{
139 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
140 		BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
141 		return -1;
142 		}
143 
144 	BN_CTX_start(ctx);
145 	if ((r == a) || (r == p))
146 		rr = BN_CTX_get(ctx);
147 	else
148 		rr = r;
149 	v = BN_CTX_get(ctx);
150 	if (rr == NULL || v == NULL) goto err;
151 
152 	if (BN_copy(v,a) == NULL) goto err;
153 	bits=BN_num_bits(p);
154 
155 	if (BN_is_odd(p))
156 		{ if (BN_copy(rr,a) == NULL) goto err; }
157 	else	{ if (!BN_one(rr)) goto err; }
158 
159 	for (i=1; i<bits; i++)
160 		{
161 		if (!BN_sqr(v,v,ctx)) goto err;
162 		if (BN_is_bit_set(p,i))
163 			{
164 			if (!BN_mul(rr,rr,v,ctx)) goto err;
165 			}
166 		}
167 	ret=1;
168 err:
169 	if (r != rr) BN_copy(r,rr);
170 	BN_CTX_end(ctx);
171 	bn_check_top(r);
172 	return(ret);
173 	}
174 
175 
BN_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)176 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
177 	       BN_CTX *ctx)
178 	{
179 	int ret;
180 
181 	bn_check_top(a);
182 	bn_check_top(p);
183 	bn_check_top(m);
184 
185 	/* For even modulus  m = 2^k*m_odd,  it might make sense to compute
186 	 * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
187 	 * exponentiation for the odd part), using appropriate exponent
188 	 * reductions, and combine the results using the CRT.
189 	 *
190 	 * For now, we use Montgomery only if the modulus is odd; otherwise,
191 	 * exponentiation using the reciprocal-based quick remaindering
192 	 * algorithm is used.
193 	 *
194 	 * (Timing obtained with expspeed.c [computations  a^p mod m
195 	 * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
196 	 * 4096, 8192 bits], compared to the running time of the
197 	 * standard algorithm:
198 	 *
199 	 *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
200          *                     55 .. 77 %  [UltraSparc processor, but
201 	 *                                  debug-solaris-sparcv8-gcc conf.]
202 	 *
203 	 *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
204 	 *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
205 	 *
206 	 * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
207 	 * at 2048 and more bits, but at 512 and 1024 bits, it was
208 	 * slower even than the standard algorithm!
209 	 *
210 	 * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
211 	 * should be obtained when the new Montgomery reduction code
212 	 * has been integrated into OpenSSL.)
213 	 */
214 
215 #define MONT_MUL_MOD
216 #define MONT_EXP_WORD
217 #define RECP_MUL_MOD
218 
219 #ifdef MONT_MUL_MOD
220 	/* I have finally been able to take out this pre-condition of
221 	 * the top bit being set.  It was caused by an error in BN_div
222 	 * with negatives.  There was also another problem when for a^b%m
223 	 * a >= m.  eay 07-May-97 */
224 /*	if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */
225 
226 	if (BN_is_odd(m))
227 		{
228 #  ifdef MONT_EXP_WORD
229 		if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0))
230 			{
231 			BN_ULONG A = a->d[0];
232 			ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL);
233 			}
234 		else
235 #  endif
236 			ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL);
237 		}
238 	else
239 #endif
240 #ifdef RECP_MUL_MOD
241 		{ ret=BN_mod_exp_recp(r,a,p,m,ctx); }
242 #else
243 		{ ret=BN_mod_exp_simple(r,a,p,m,ctx); }
244 #endif
245 
246 	bn_check_top(r);
247 	return(ret);
248 	}
249 
250 
BN_mod_exp_recp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)251 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
252 		    const BIGNUM *m, BN_CTX *ctx)
253 	{
254 	int i,j,bits,ret=0,wstart,wend,window,wvalue;
255 	int start=1;
256 	BIGNUM *aa;
257 	/* Table of variables obtained from 'ctx' */
258 	BIGNUM *val[TABLE_SIZE];
259 	BN_RECP_CTX recp;
260 
261 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
262 		{
263 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
264 		BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
265 		return -1;
266 		}
267 
268 	bits=BN_num_bits(p);
269 
270 	if (bits == 0)
271 		{
272 		ret = BN_one(r);
273 		return ret;
274 		}
275 
276 	BN_CTX_start(ctx);
277 	aa = BN_CTX_get(ctx);
278 	val[0] = BN_CTX_get(ctx);
279 	if(!aa || !val[0]) goto err;
280 
281 	BN_RECP_CTX_init(&recp);
282 	if (m->neg)
283 		{
284 		/* ignore sign of 'm' */
285 		if (!BN_copy(aa, m)) goto err;
286 		aa->neg = 0;
287 		if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err;
288 		}
289 	else
290 		{
291 		if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err;
292 		}
293 
294 	if (!BN_nnmod(val[0],a,m,ctx)) goto err;		/* 1 */
295 	if (BN_is_zero(val[0]))
296 		{
297 		BN_zero(r);
298 		ret = 1;
299 		goto err;
300 		}
301 
302 	window = BN_window_bits_for_exponent_size(bits);
303 	if (window > 1)
304 		{
305 		if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx))
306 			goto err;				/* 2 */
307 		j=1<<(window-1);
308 		for (i=1; i<j; i++)
309 			{
310 			if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
311 					!BN_mod_mul_reciprocal(val[i],val[i-1],
312 						aa,&recp,ctx))
313 				goto err;
314 			}
315 		}
316 
317 	start=1;	/* This is used to avoid multiplication etc
318 			 * when there is only the value '1' in the
319 			 * buffer. */
320 	wvalue=0;	/* The 'value' of the window */
321 	wstart=bits-1;	/* The top bit of the window */
322 	wend=0;		/* The bottom bit of the window */
323 
324 	if (!BN_one(r)) goto err;
325 
326 	for (;;)
327 		{
328 		if (BN_is_bit_set(p,wstart) == 0)
329 			{
330 			if (!start)
331 				if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
332 				goto err;
333 			if (wstart == 0) break;
334 			wstart--;
335 			continue;
336 			}
337 		/* We now have wstart on a 'set' bit, we now need to work out
338 		 * how bit a window to do.  To do this we need to scan
339 		 * forward until the last set bit before the end of the
340 		 * window */
341 		j=wstart;
342 		wvalue=1;
343 		wend=0;
344 		for (i=1; i<window; i++)
345 			{
346 			if (wstart-i < 0) break;
347 			if (BN_is_bit_set(p,wstart-i))
348 				{
349 				wvalue<<=(i-wend);
350 				wvalue|=1;
351 				wend=i;
352 				}
353 			}
354 
355 		/* wend is the size of the current window */
356 		j=wend+1;
357 		/* add the 'bytes above' */
358 		if (!start)
359 			for (i=0; i<j; i++)
360 				{
361 				if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
362 					goto err;
363 				}
364 
365 		/* wvalue will be an odd number < 2^window */
366 		if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx))
367 			goto err;
368 
369 		/* move the 'window' down further */
370 		wstart-=wend+1;
371 		wvalue=0;
372 		start=0;
373 		if (wstart < 0) break;
374 		}
375 	ret=1;
376 err:
377 	BN_CTX_end(ctx);
378 	BN_RECP_CTX_free(&recp);
379 	bn_check_top(r);
380 	return(ret);
381 	}
382 
383 
BN_mod_exp_mont(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)384 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
385 		    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
386 	{
387 	int i,j,bits,ret=0,wstart,wend,window,wvalue;
388 	int start=1;
389 	BIGNUM *d,*r;
390 	const BIGNUM *aa;
391 	/* Table of variables obtained from 'ctx' */
392 	BIGNUM *val[TABLE_SIZE];
393 	BN_MONT_CTX *mont=NULL;
394 
395 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
396 		{
397 		return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
398 		}
399 
400 	bn_check_top(a);
401 	bn_check_top(p);
402 	bn_check_top(m);
403 
404 	if (!BN_is_odd(m))
405 		{
406 		BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS);
407 		return(0);
408 		}
409 	bits=BN_num_bits(p);
410 	if (bits == 0)
411 		{
412 		ret = BN_one(rr);
413 		return ret;
414 		}
415 
416 	BN_CTX_start(ctx);
417 	d = BN_CTX_get(ctx);
418 	r = BN_CTX_get(ctx);
419 	val[0] = BN_CTX_get(ctx);
420 	if (!d || !r || !val[0]) goto err;
421 
422 	/* If this is not done, things will break in the montgomery
423 	 * part */
424 
425 	if (in_mont != NULL)
426 		mont=in_mont;
427 	else
428 		{
429 		if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
430 		if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
431 		}
432 
433 	if (a->neg || BN_ucmp(a,m) >= 0)
434 		{
435 		if (!BN_nnmod(val[0],a,m,ctx))
436 			goto err;
437 		aa= val[0];
438 		}
439 	else
440 		aa=a;
441 	if (BN_is_zero(aa))
442 		{
443 		BN_zero(rr);
444 		ret = 1;
445 		goto err;
446 		}
447 	if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */
448 
449 	window = BN_window_bits_for_exponent_size(bits);
450 	if (window > 1)
451 		{
452 		if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */
453 		j=1<<(window-1);
454 		for (i=1; i<j; i++)
455 			{
456 			if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
457 					!BN_mod_mul_montgomery(val[i],val[i-1],
458 						d,mont,ctx))
459 				goto err;
460 			}
461 		}
462 
463 	start=1;	/* This is used to avoid multiplication etc
464 			 * when there is only the value '1' in the
465 			 * buffer. */
466 	wvalue=0;	/* The 'value' of the window */
467 	wstart=bits-1;	/* The top bit of the window */
468 	wend=0;		/* The bottom bit of the window */
469 
470 	if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
471 	for (;;)
472 		{
473 		if (BN_is_bit_set(p,wstart) == 0)
474 			{
475 			if (!start)
476 				{
477 				if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
478 				goto err;
479 				}
480 			if (wstart == 0) break;
481 			wstart--;
482 			continue;
483 			}
484 		/* We now have wstart on a 'set' bit, we now need to work out
485 		 * how bit a window to do.  To do this we need to scan
486 		 * forward until the last set bit before the end of the
487 		 * window */
488 		j=wstart;
489 		wvalue=1;
490 		wend=0;
491 		for (i=1; i<window; i++)
492 			{
493 			if (wstart-i < 0) break;
494 			if (BN_is_bit_set(p,wstart-i))
495 				{
496 				wvalue<<=(i-wend);
497 				wvalue|=1;
498 				wend=i;
499 				}
500 			}
501 
502 		/* wend is the size of the current window */
503 		j=wend+1;
504 		/* add the 'bytes above' */
505 		if (!start)
506 			for (i=0; i<j; i++)
507 				{
508 				if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
509 					goto err;
510 				}
511 
512 		/* wvalue will be an odd number < 2^window */
513 		if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx))
514 			goto err;
515 
516 		/* move the 'window' down further */
517 		wstart-=wend+1;
518 		wvalue=0;
519 		start=0;
520 		if (wstart < 0) break;
521 		}
522 	if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
523 	ret=1;
524 err:
525 	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
526 	BN_CTX_end(ctx);
527 	bn_check_top(rr);
528 	return(ret);
529 	}
530 
531 
532 /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout
533  * so that accessing any of these table values shows the same access pattern as far
534  * as cache lines are concerned.  The following functions are used to transfer a BIGNUM
535  * from/to that table. */
536 
MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM * b,int top,unsigned char * buf,int idx,int width)537 static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, int idx, int width)
538 	{
539 	size_t i, j;
540 
541 	if (top > b->top)
542 		top = b->top; /* this works because 'buf' is explicitly zeroed */
543 	for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width)
544 		{
545 		buf[j] = ((unsigned char*)b->d)[i];
546 		}
547 
548 	return 1;
549 	}
550 
MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM * b,int top,unsigned char * buf,int idx,int width)551 static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width)
552 	{
553 	size_t i, j;
554 
555 	if (bn_wexpand(b, top) == NULL)
556 		return 0;
557 
558 	for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width)
559 		{
560 		((unsigned char*)b->d)[i] = buf[j];
561 		}
562 
563 	b->top = top;
564 	bn_correct_top(b);
565 	return 1;
566 	}
567 
568 /* Given a pointer value, compute the next address that is a cache line multiple. */
569 #define MOD_EXP_CTIME_ALIGN(x_) \
570 	((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
571 
572 /* This variant of BN_mod_exp_mont() uses fixed windows and the special
573  * precomputation memory layout to limit data-dependency to a minimum
574  * to protect secret exponents (cf. the hyper-threading timing attacks
575  * pointed out by Colin Percival,
576  * http://www.daemonology.net/hyperthreading-considered-harmful/)
577  */
BN_mod_exp_mont_consttime(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)578 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
579 		    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
580 	{
581 	int i,bits,ret=0,window,wvalue;
582 	int top;
583 	BN_MONT_CTX *mont=NULL;
584 
585 	int numPowers;
586 	unsigned char *powerbufFree=NULL;
587 	int powerbufLen = 0;
588 	unsigned char *powerbuf=NULL;
589 	BIGNUM tmp, am;
590 
591 	bn_check_top(a);
592 	bn_check_top(p);
593 	bn_check_top(m);
594 
595 	top = m->top;
596 
597 	if (!(m->d[0] & 1))
598 		{
599 		BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS);
600 		return(0);
601 		}
602 	bits=BN_num_bits(p);
603 	if (bits == 0)
604 		{
605 		ret = BN_one(rr);
606 		return ret;
607 		}
608 
609 	BN_CTX_start(ctx);
610 
611 	/* Allocate a montgomery context if it was not supplied by the caller.
612 	 * If this is not done, things will break in the montgomery part.
613  	 */
614 	if (in_mont != NULL)
615 		mont=in_mont;
616 	else
617 		{
618 		if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
619 		if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
620 		}
621 
622 	/* Get the window size to use with size of p. */
623 	window = BN_window_bits_for_ctime_exponent_size(bits);
624 #if defined(OPENSSL_BN_ASM_MONT5)
625 	if (window==6 && bits<=1024) window=5;	/* ~5% improvement of 2048-bit RSA sign */
626 #endif
627 
628 	/* Allocate a buffer large enough to hold all of the pre-computed
629 	 * powers of am, am itself and tmp.
630 	 */
631 	numPowers = 1 << window;
632 	powerbufLen = sizeof(m->d[0])*(top*numPowers +
633 				((2*top)>numPowers?(2*top):numPowers));
634 #ifdef alloca
635 	if (powerbufLen < 3072)
636 		powerbufFree = alloca(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
637 	else
638 #endif
639 	if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL)
640 		goto err;
641 
642 	powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
643 	memset(powerbuf, 0, powerbufLen);
644 
645 #ifdef alloca
646 	if (powerbufLen < 3072)
647 		powerbufFree = NULL;
648 #endif
649 
650 	/* lay down tmp and am right after powers table */
651 	tmp.d     = (BN_ULONG *)(powerbuf + sizeof(m->d[0])*top*numPowers);
652 	am.d      = tmp.d + top;
653 	tmp.top   = am.top  = 0;
654 	tmp.dmax  = am.dmax = top;
655 	tmp.neg   = am.neg  = 0;
656 	tmp.flags = am.flags = BN_FLG_STATIC_DATA;
657 
658 	/* prepare a^0 in Montgomery domain */
659 #if 1
660  	if (!BN_to_montgomery(&tmp,BN_value_one(),mont,ctx))	goto err;
661 #else
662 	tmp.d[0] = (0-m->d[0])&BN_MASK2;	/* 2^(top*BN_BITS2) - m */
663 	for (i=1;i<top;i++)
664 		tmp.d[i] = (~m->d[i])&BN_MASK2;
665 	tmp.top = top;
666 #endif
667 
668 	/* prepare a^1 in Montgomery domain */
669 	if (a->neg || BN_ucmp(a,m) >= 0)
670 		{
671 		if (!BN_mod(&am,a,m,ctx))			goto err;
672 		if (!BN_to_montgomery(&am,&am,mont,ctx))	goto err;
673 		}
674 	else	if (!BN_to_montgomery(&am,a,mont,ctx))		goto err;
675 
676 #if defined(OPENSSL_BN_ASM_MONT5)
677     /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
678      * specifically optimization of cache-timing attack countermeasures
679      * and pre-computation optimization. */
680 
681     /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
682      * 512-bit RSA is hardly relevant, we omit it to spare size... */
683     if (window==5)
684 	{
685 	void bn_mul_mont_gather5(BN_ULONG *rp,const BN_ULONG *ap,
686 			const void *table,const BN_ULONG *np,
687 			const BN_ULONG *n0,int num,int power);
688 	void bn_scatter5(const BN_ULONG *inp,size_t num,
689 			void *table,size_t power);
690 	void bn_gather5(BN_ULONG *out,size_t num,
691 			void *table,size_t power);
692 
693 	BN_ULONG *np=mont->N.d, *n0=mont->n0;
694 
695 	/* BN_to_montgomery can contaminate words above .top
696 	 * [in BN_DEBUG[_DEBUG] build]... */
697 	for (i=am.top; i<top; i++)	am.d[i]=0;
698 	for (i=tmp.top; i<top; i++)	tmp.d[i]=0;
699 
700 	bn_scatter5(tmp.d,top,powerbuf,0);
701 	bn_scatter5(am.d,am.top,powerbuf,1);
702 	bn_mul_mont(tmp.d,am.d,am.d,np,n0,top);
703 	bn_scatter5(tmp.d,top,powerbuf,2);
704 
705 #if 0
706 	for (i=3; i<32; i++)
707 		{
708 		/* Calculate a^i = a^(i-1) * a */
709 		bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
710 		bn_scatter5(tmp.d,top,powerbuf,i);
711 		}
712 #else
713 	/* same as above, but uses squaring for 1/2 of operations */
714 	for (i=4; i<32; i*=2)
715 		{
716 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
717 		bn_scatter5(tmp.d,top,powerbuf,i);
718 		}
719 	for (i=3; i<8; i+=2)
720 		{
721 		int j;
722 		bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
723 		bn_scatter5(tmp.d,top,powerbuf,i);
724 		for (j=2*i; j<32; j*=2)
725 			{
726 			bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
727 			bn_scatter5(tmp.d,top,powerbuf,j);
728 			}
729 		}
730 	for (; i<16; i+=2)
731 		{
732 		bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
733 		bn_scatter5(tmp.d,top,powerbuf,i);
734 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
735 		bn_scatter5(tmp.d,top,powerbuf,2*i);
736 		}
737 	for (; i<32; i+=2)
738 		{
739 		bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
740 		bn_scatter5(tmp.d,top,powerbuf,i);
741 		}
742 #endif
743 	bits--;
744 	for (wvalue=0, i=bits%5; i>=0; i--,bits--)
745 		wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
746 	bn_gather5(tmp.d,top,powerbuf,wvalue);
747 
748 	/* Scan the exponent one window at a time starting from the most
749 	 * significant bits.
750 	 */
751 	while (bits >= 0)
752 		{
753 		for (wvalue=0, i=0; i<5; i++,bits--)
754 			wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
755 
756 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
757 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
758 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
759 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
760 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
761 		bn_mul_mont_gather5(tmp.d,tmp.d,powerbuf,np,n0,top,wvalue);
762 		}
763 
764 	tmp.top=top;
765 	bn_correct_top(&tmp);
766 	}
767     else
768 #endif
769 	{
770 	if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, numPowers)) goto err;
771 	if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am,  top, powerbuf, 1, numPowers)) goto err;
772 
773 	/* If the window size is greater than 1, then calculate
774 	 * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
775 	 * (even powers could instead be computed as (a^(i/2))^2
776 	 * to use the slight performance advantage of sqr over mul).
777 	 */
778 	if (window > 1)
779 		{
780 		if (!BN_mod_mul_montgomery(&tmp,&am,&am,mont,ctx))	goto err;
781 		if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2, numPowers)) goto err;
782 		for (i=3; i<numPowers; i++)
783 			{
784 			/* Calculate a^i = a^(i-1) * a */
785 			if (!BN_mod_mul_montgomery(&tmp,&am,&tmp,mont,ctx))
786 				goto err;
787 			if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i, numPowers)) goto err;
788 			}
789 		}
790 
791 	bits--;
792 	for (wvalue=0, i=bits%window; i>=0; i--,bits--)
793 		wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
794 	if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp,top,powerbuf,wvalue,numPowers)) goto err;
795 
796 	/* Scan the exponent one window at a time starting from the most
797 	 * significant bits.
798 	 */
799  	while (bits >= 0)
800   		{
801  		wvalue=0; /* The 'value' of the window */
802 
803  		/* Scan the window, squaring the result as we go */
804  		for (i=0; i<window; i++,bits--)
805  			{
806 			if (!BN_mod_mul_montgomery(&tmp,&tmp,&tmp,mont,ctx))	goto err;
807 			wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
808   			}
809 
810 		/* Fetch the appropriate pre-computed value from the pre-buf */
811 		if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue, numPowers)) goto err;
812 
813  		/* Multiply the result into the intermediate result */
814  		if (!BN_mod_mul_montgomery(&tmp,&tmp,&am,mont,ctx)) goto err;
815   		}
816 	}
817 
818  	/* Convert the final result from montgomery to standard format */
819 	if (!BN_from_montgomery(rr,&tmp,mont,ctx)) goto err;
820 	ret=1;
821 err:
822 	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
823 	if (powerbuf!=NULL)
824 		{
825 		OPENSSL_cleanse(powerbuf,powerbufLen);
826 		if (powerbufFree) OPENSSL_free(powerbufFree);
827 		}
828 	BN_CTX_end(ctx);
829 	return(ret);
830 	}
831 
BN_mod_exp_mont_word(BIGNUM * rr,BN_ULONG a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)832 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
833                          const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
834 	{
835 	BN_MONT_CTX *mont = NULL;
836 	int b, bits, ret=0;
837 	int r_is_one;
838 	BN_ULONG w, next_w;
839 	BIGNUM *d, *r, *t;
840 	BIGNUM *swap_tmp;
841 #define BN_MOD_MUL_WORD(r, w, m) \
842 		(BN_mul_word(r, (w)) && \
843 		(/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
844 			(BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
845 		/* BN_MOD_MUL_WORD is only used with 'w' large,
846 		 * so the BN_ucmp test is probably more overhead
847 		 * than always using BN_mod (which uses BN_copy if
848 		 * a similar test returns true). */
849 		/* We can use BN_mod and do not need BN_nnmod because our
850 		 * accumulator is never negative (the result of BN_mod does
851 		 * not depend on the sign of the modulus).
852 		 */
853 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
854 		(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
855 
856 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
857 		{
858 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
859 		BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
860 		return -1;
861 		}
862 
863 	bn_check_top(p);
864 	bn_check_top(m);
865 
866 	if (!BN_is_odd(m))
867 		{
868 		BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS);
869 		return(0);
870 		}
871 	if (m->top == 1)
872 		a %= m->d[0]; /* make sure that 'a' is reduced */
873 
874 	bits = BN_num_bits(p);
875 	if (bits == 0)
876 		{
877 		ret = BN_one(rr);
878 		return ret;
879 		}
880 	if (a == 0)
881 		{
882 		BN_zero(rr);
883 		ret = 1;
884 		return ret;
885 		}
886 
887 	BN_CTX_start(ctx);
888 	d = BN_CTX_get(ctx);
889 	r = BN_CTX_get(ctx);
890 	t = BN_CTX_get(ctx);
891 	if (d == NULL || r == NULL || t == NULL) goto err;
892 
893 	if (in_mont != NULL)
894 		mont=in_mont;
895 	else
896 		{
897 		if ((mont = BN_MONT_CTX_new()) == NULL) goto err;
898 		if (!BN_MONT_CTX_set(mont, m, ctx)) goto err;
899 		}
900 
901 	r_is_one = 1; /* except for Montgomery factor */
902 
903 	/* bits-1 >= 0 */
904 
905 	/* The result is accumulated in the product r*w. */
906 	w = a; /* bit 'bits-1' of 'p' is always set */
907 	for (b = bits-2; b >= 0; b--)
908 		{
909 		/* First, square r*w. */
910 		next_w = w*w;
911 		if ((next_w/w) != w) /* overflow */
912 			{
913 			if (r_is_one)
914 				{
915 				if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
916 				r_is_one = 0;
917 				}
918 			else
919 				{
920 				if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
921 				}
922 			next_w = 1;
923 			}
924 		w = next_w;
925 		if (!r_is_one)
926 			{
927 			if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err;
928 			}
929 
930 		/* Second, multiply r*w by 'a' if exponent bit is set. */
931 		if (BN_is_bit_set(p, b))
932 			{
933 			next_w = w*a;
934 			if ((next_w/a) != w) /* overflow */
935 				{
936 				if (r_is_one)
937 					{
938 					if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
939 					r_is_one = 0;
940 					}
941 				else
942 					{
943 					if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
944 					}
945 				next_w = a;
946 				}
947 			w = next_w;
948 			}
949 		}
950 
951 	/* Finally, set r:=r*w. */
952 	if (w != 1)
953 		{
954 		if (r_is_one)
955 			{
956 			if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
957 			r_is_one = 0;
958 			}
959 		else
960 			{
961 			if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
962 			}
963 		}
964 
965 	if (r_is_one) /* can happen only if a == 1*/
966 		{
967 		if (!BN_one(rr)) goto err;
968 		}
969 	else
970 		{
971 		if (!BN_from_montgomery(rr, r, mont, ctx)) goto err;
972 		}
973 	ret = 1;
974 err:
975 	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
976 	BN_CTX_end(ctx);
977 	bn_check_top(rr);
978 	return(ret);
979 	}
980 
981 
982 /* The old fallback, simple version :-) */
BN_mod_exp_simple(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)983 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
984 		const BIGNUM *m, BN_CTX *ctx)
985 	{
986 	int i,j,bits,ret=0,wstart,wend,window,wvalue;
987 	int start=1;
988 	BIGNUM *d;
989 	/* Table of variables obtained from 'ctx' */
990 	BIGNUM *val[TABLE_SIZE];
991 
992 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
993 		{
994 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
995 		BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
996 		return -1;
997 		}
998 
999 	bits=BN_num_bits(p);
1000 
1001 	if (bits == 0)
1002 		{
1003 		ret = BN_one(r);
1004 		return ret;
1005 		}
1006 
1007 	BN_CTX_start(ctx);
1008 	d = BN_CTX_get(ctx);
1009 	val[0] = BN_CTX_get(ctx);
1010 	if(!d || !val[0]) goto err;
1011 
1012 	if (!BN_nnmod(val[0],a,m,ctx)) goto err;		/* 1 */
1013 	if (BN_is_zero(val[0]))
1014 		{
1015 		BN_zero(r);
1016 		ret = 1;
1017 		goto err;
1018 		}
1019 
1020 	window = BN_window_bits_for_exponent_size(bits);
1021 	if (window > 1)
1022 		{
1023 		if (!BN_mod_mul(d,val[0],val[0],m,ctx))
1024 			goto err;				/* 2 */
1025 		j=1<<(window-1);
1026 		for (i=1; i<j; i++)
1027 			{
1028 			if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
1029 					!BN_mod_mul(val[i],val[i-1],d,m,ctx))
1030 				goto err;
1031 			}
1032 		}
1033 
1034 	start=1;	/* This is used to avoid multiplication etc
1035 			 * when there is only the value '1' in the
1036 			 * buffer. */
1037 	wvalue=0;	/* The 'value' of the window */
1038 	wstart=bits-1;	/* The top bit of the window */
1039 	wend=0;		/* The bottom bit of the window */
1040 
1041 	if (!BN_one(r)) goto err;
1042 
1043 	for (;;)
1044 		{
1045 		if (BN_is_bit_set(p,wstart) == 0)
1046 			{
1047 			if (!start)
1048 				if (!BN_mod_mul(r,r,r,m,ctx))
1049 				goto err;
1050 			if (wstart == 0) break;
1051 			wstart--;
1052 			continue;
1053 			}
1054 		/* We now have wstart on a 'set' bit, we now need to work out
1055 		 * how bit a window to do.  To do this we need to scan
1056 		 * forward until the last set bit before the end of the
1057 		 * window */
1058 		j=wstart;
1059 		wvalue=1;
1060 		wend=0;
1061 		for (i=1; i<window; i++)
1062 			{
1063 			if (wstart-i < 0) break;
1064 			if (BN_is_bit_set(p,wstart-i))
1065 				{
1066 				wvalue<<=(i-wend);
1067 				wvalue|=1;
1068 				wend=i;
1069 				}
1070 			}
1071 
1072 		/* wend is the size of the current window */
1073 		j=wend+1;
1074 		/* add the 'bytes above' */
1075 		if (!start)
1076 			for (i=0; i<j; i++)
1077 				{
1078 				if (!BN_mod_mul(r,r,r,m,ctx))
1079 					goto err;
1080 				}
1081 
1082 		/* wvalue will be an odd number < 2^window */
1083 		if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx))
1084 			goto err;
1085 
1086 		/* move the 'window' down further */
1087 		wstart-=wend+1;
1088 		wvalue=0;
1089 		start=0;
1090 		if (wstart < 0) break;
1091 		}
1092 	ret=1;
1093 err:
1094 	BN_CTX_end(ctx);
1095 	bn_check_top(r);
1096 	return(ret);
1097 	}
1098