• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains code to translate the data produced by the decoder into
12 //  MCInsts.
13 // Documentation for the disassembler can be found in X86Disassembler.h.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "X86Disassembler.h"
18 #include "X86DisassemblerDecoder.h"
19 #include "llvm/MC/MCContext.h"
20 #include "llvm/MC/MCDisassembler.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCInst.h"
23 #include "llvm/MC/MCInstrInfo.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MemoryObject.h"
27 #include "llvm/Support/TargetRegistry.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 #define GET_REGINFO_ENUM
31 #include "X86GenRegisterInfo.inc"
32 #define GET_INSTRINFO_ENUM
33 #include "X86GenInstrInfo.inc"
34 
35 using namespace llvm;
36 using namespace llvm::X86Disassembler;
37 
x86DisassemblerDebug(const char * file,unsigned line,const char * s)38 void x86DisassemblerDebug(const char *file,
39                           unsigned line,
40                           const char *s) {
41   dbgs() << file << ":" << line << ": " << s;
42 }
43 
x86DisassemblerGetInstrName(unsigned Opcode,const void * mii)44 const char *x86DisassemblerGetInstrName(unsigned Opcode, const void *mii) {
45   const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
46   return MII->getName(Opcode);
47 }
48 
49 #define debug(s) DEBUG(x86DisassemblerDebug(__FILE__, __LINE__, s));
50 
51 namespace llvm {
52 
53 // Fill-ins to make the compiler happy.  These constants are never actually
54 //   assigned; they are just filler to make an automatically-generated switch
55 //   statement work.
56 namespace X86 {
57   enum {
58     BX_SI = 500,
59     BX_DI = 501,
60     BP_SI = 502,
61     BP_DI = 503,
62     sib   = 504,
63     sib64 = 505
64   };
65 }
66 
67 extern Target TheX86_32Target, TheX86_64Target;
68 
69 }
70 
71 static bool translateInstruction(MCInst &target,
72                                 InternalInstruction &source,
73                                 const MCDisassembler *Dis);
74 
X86GenericDisassembler(const MCSubtargetInfo & STI,DisassemblerMode mode,const MCInstrInfo * MII)75 X86GenericDisassembler::X86GenericDisassembler(const MCSubtargetInfo &STI,
76                                                DisassemblerMode mode,
77                                                const MCInstrInfo *MII)
78   : MCDisassembler(STI), MII(MII), fMode(mode) {}
79 
~X86GenericDisassembler()80 X86GenericDisassembler::~X86GenericDisassembler() {
81   delete MII;
82 }
83 
84 /// regionReader - a callback function that wraps the readByte method from
85 ///   MemoryObject.
86 ///
87 /// @param arg      - The generic callback parameter.  In this case, this should
88 ///                   be a pointer to a MemoryObject.
89 /// @param byte     - A pointer to the byte to be read.
90 /// @param address  - The address to be read.
regionReader(const void * arg,uint8_t * byte,uint64_t address)91 static int regionReader(const void* arg, uint8_t* byte, uint64_t address) {
92   const MemoryObject* region = static_cast<const MemoryObject*>(arg);
93   return region->readByte(address, byte);
94 }
95 
96 /// logger - a callback function that wraps the operator<< method from
97 ///   raw_ostream.
98 ///
99 /// @param arg      - The generic callback parameter.  This should be a pointe
100 ///                   to a raw_ostream.
101 /// @param log      - A string to be logged.  logger() adds a newline.
logger(void * arg,const char * log)102 static void logger(void* arg, const char* log) {
103   if (!arg)
104     return;
105 
106   raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
107   vStream << log << "\n";
108 }
109 
110 //
111 // Public interface for the disassembler
112 //
113 
114 MCDisassembler::DecodeStatus
getInstruction(MCInst & instr,uint64_t & size,const MemoryObject & region,uint64_t address,raw_ostream & vStream,raw_ostream & cStream) const115 X86GenericDisassembler::getInstruction(MCInst &instr,
116                                        uint64_t &size,
117                                        const MemoryObject &region,
118                                        uint64_t address,
119                                        raw_ostream &vStream,
120                                        raw_ostream &cStream) const {
121   CommentStream = &cStream;
122 
123   InternalInstruction internalInstr;
124 
125   dlog_t loggerFn = logger;
126   if (&vStream == &nulls())
127     loggerFn = 0; // Disable logging completely if it's going to nulls().
128 
129   int ret = decodeInstruction(&internalInstr,
130                               regionReader,
131                               (const void*)&region,
132                               loggerFn,
133                               (void*)&vStream,
134                               (const void*)MII,
135                               address,
136                               fMode);
137 
138   if (ret) {
139     size = internalInstr.readerCursor - address;
140     return Fail;
141   }
142   else {
143     size = internalInstr.length;
144     return (!translateInstruction(instr, internalInstr, this)) ?
145             Success : Fail;
146   }
147 }
148 
149 //
150 // Private code that translates from struct InternalInstructions to MCInsts.
151 //
152 
153 /// translateRegister - Translates an internal register to the appropriate LLVM
154 ///   register, and appends it as an operand to an MCInst.
155 ///
156 /// @param mcInst     - The MCInst to append to.
157 /// @param reg        - The Reg to append.
translateRegister(MCInst & mcInst,Reg reg)158 static void translateRegister(MCInst &mcInst, Reg reg) {
159 #define ENTRY(x) X86::x,
160   uint8_t llvmRegnums[] = {
161     ALL_REGS
162     0
163   };
164 #undef ENTRY
165 
166   uint8_t llvmRegnum = llvmRegnums[reg];
167   mcInst.addOperand(MCOperand::CreateReg(llvmRegnum));
168 }
169 
170 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
171 /// immediate Value in the MCInst.
172 ///
173 /// @param Value      - The immediate Value, has had any PC adjustment made by
174 ///                     the caller.
175 /// @param isBranch   - If the instruction is a branch instruction
176 /// @param Address    - The starting address of the instruction
177 /// @param Offset     - The byte offset to this immediate in the instruction
178 /// @param Width      - The byte width of this immediate in the instruction
179 ///
180 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
181 /// called then that function is called to get any symbolic information for the
182 /// immediate in the instruction using the Address, Offset and Width.  If that
183 /// returns non-zero then the symbolic information it returns is used to create
184 /// an MCExpr and that is added as an operand to the MCInst.  If getOpInfo()
185 /// returns zero and isBranch is true then a symbol look up for immediate Value
186 /// is done and if a symbol is found an MCExpr is created with that, else
187 /// an MCExpr with the immediate Value is created.  This function returns true
188 /// if it adds an operand to the MCInst and false otherwise.
tryAddingSymbolicOperand(int64_t Value,bool isBranch,uint64_t Address,uint64_t Offset,uint64_t Width,MCInst & MI,const MCDisassembler * Dis)189 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
190                                      uint64_t Address, uint64_t Offset,
191                                      uint64_t Width, MCInst &MI,
192                                      const MCDisassembler *Dis) {
193   LLVMOpInfoCallback getOpInfo = Dis->getLLVMOpInfoCallback();
194   struct LLVMOpInfo1 SymbolicOp;
195   memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1));
196   SymbolicOp.Value = Value;
197   void *DisInfo = Dis->getDisInfoBlock();
198 
199   if (!getOpInfo ||
200       !getOpInfo(DisInfo, Address, Offset, Width, 1, &SymbolicOp)) {
201     // Clear SymbolicOp.Value from above and also all other fields.
202     memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1));
203     LLVMSymbolLookupCallback SymbolLookUp = Dis->getLLVMSymbolLookupCallback();
204     if (!SymbolLookUp)
205       return false;
206     uint64_t ReferenceType;
207     if (isBranch)
208        ReferenceType = LLVMDisassembler_ReferenceType_In_Branch;
209     else
210        ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
211     const char *ReferenceName;
212     const char *Name = SymbolLookUp(DisInfo, Value, &ReferenceType, Address,
213                                     &ReferenceName);
214     if (Name) {
215       SymbolicOp.AddSymbol.Name = Name;
216       SymbolicOp.AddSymbol.Present = true;
217     }
218     // For branches always create an MCExpr so it gets printed as hex address.
219     else if (isBranch) {
220       SymbolicOp.Value = Value;
221     }
222     if(ReferenceType == LLVMDisassembler_ReferenceType_Out_SymbolStub)
223       (*Dis->CommentStream) << "symbol stub for: " << ReferenceName;
224     if (!Name && !isBranch)
225       return false;
226   }
227 
228   MCContext *Ctx = Dis->getMCContext();
229   const MCExpr *Add = NULL;
230   if (SymbolicOp.AddSymbol.Present) {
231     if (SymbolicOp.AddSymbol.Name) {
232       StringRef Name(SymbolicOp.AddSymbol.Name);
233       MCSymbol *Sym = Ctx->GetOrCreateSymbol(Name);
234       Add = MCSymbolRefExpr::Create(Sym, *Ctx);
235     } else {
236       Add = MCConstantExpr::Create((int)SymbolicOp.AddSymbol.Value, *Ctx);
237     }
238   }
239 
240   const MCExpr *Sub = NULL;
241   if (SymbolicOp.SubtractSymbol.Present) {
242       if (SymbolicOp.SubtractSymbol.Name) {
243       StringRef Name(SymbolicOp.SubtractSymbol.Name);
244       MCSymbol *Sym = Ctx->GetOrCreateSymbol(Name);
245       Sub = MCSymbolRefExpr::Create(Sym, *Ctx);
246     } else {
247       Sub = MCConstantExpr::Create((int)SymbolicOp.SubtractSymbol.Value, *Ctx);
248     }
249   }
250 
251   const MCExpr *Off = NULL;
252   if (SymbolicOp.Value != 0)
253     Off = MCConstantExpr::Create(SymbolicOp.Value, *Ctx);
254 
255   const MCExpr *Expr;
256   if (Sub) {
257     const MCExpr *LHS;
258     if (Add)
259       LHS = MCBinaryExpr::CreateSub(Add, Sub, *Ctx);
260     else
261       LHS = MCUnaryExpr::CreateMinus(Sub, *Ctx);
262     if (Off != 0)
263       Expr = MCBinaryExpr::CreateAdd(LHS, Off, *Ctx);
264     else
265       Expr = LHS;
266   } else if (Add) {
267     if (Off != 0)
268       Expr = MCBinaryExpr::CreateAdd(Add, Off, *Ctx);
269     else
270       Expr = Add;
271   } else {
272     if (Off != 0)
273       Expr = Off;
274     else
275       Expr = MCConstantExpr::Create(0, *Ctx);
276   }
277 
278   MI.addOperand(MCOperand::CreateExpr(Expr));
279 
280   return true;
281 }
282 
283 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
284 /// referenced by a load instruction with the base register that is the rip.
285 /// These can often be addresses in a literal pool.  The Address of the
286 /// instruction and its immediate Value are used to determine the address
287 /// being referenced in the literal pool entry.  The SymbolLookUp call back will
288 /// return a pointer to a literal 'C' string if the referenced address is an
289 /// address into a section with 'C' string literals.
tryAddingPcLoadReferenceComment(uint64_t Address,uint64_t Value,const void * Decoder)290 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
291                                             const void *Decoder) {
292   const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
293   LLVMSymbolLookupCallback SymbolLookUp = Dis->getLLVMSymbolLookupCallback();
294   if (SymbolLookUp) {
295     void *DisInfo = Dis->getDisInfoBlock();
296     uint64_t ReferenceType = LLVMDisassembler_ReferenceType_In_PCrel_Load;
297     const char *ReferenceName;
298     (void)SymbolLookUp(DisInfo, Value, &ReferenceType, Address, &ReferenceName);
299     if(ReferenceType == LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr)
300       (*Dis->CommentStream) << "literal pool for: " << ReferenceName;
301   }
302 }
303 
304 /// translateImmediate  - Appends an immediate operand to an MCInst.
305 ///
306 /// @param mcInst       - The MCInst to append to.
307 /// @param immediate    - The immediate value to append.
308 /// @param operand      - The operand, as stored in the descriptor table.
309 /// @param insn         - The internal instruction.
translateImmediate(MCInst & mcInst,uint64_t immediate,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)310 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
311                                const OperandSpecifier &operand,
312                                InternalInstruction &insn,
313                                const MCDisassembler *Dis) {
314   // Sign-extend the immediate if necessary.
315 
316   OperandType type = (OperandType)operand.type;
317 
318   bool isBranch = false;
319   uint64_t pcrel = 0;
320   if (type == TYPE_RELv) {
321     isBranch = true;
322     pcrel = insn.startLocation +
323             insn.immediateOffset + insn.immediateSize;
324     switch (insn.displacementSize) {
325     default:
326       break;
327     case 1:
328       type = TYPE_MOFFS8;
329       break;
330     case 2:
331       type = TYPE_MOFFS16;
332       break;
333     case 4:
334       type = TYPE_MOFFS32;
335       break;
336     case 8:
337       type = TYPE_MOFFS64;
338       break;
339     }
340   }
341   // By default sign-extend all X86 immediates based on their encoding.
342   else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 ||
343            type == TYPE_IMM64) {
344     uint32_t Opcode = mcInst.getOpcode();
345     switch (operand.encoding) {
346     default:
347       break;
348     case ENCODING_IB:
349       // Special case those X86 instructions that use the imm8 as a set of
350       // bits, bit count, etc. and are not sign-extend.
351       if (Opcode != X86::BLENDPSrri && Opcode != X86::BLENDPDrri &&
352           Opcode != X86::PBLENDWrri && Opcode != X86::MPSADBWrri &&
353           Opcode != X86::DPPSrri && Opcode != X86::DPPDrri &&
354           Opcode != X86::INSERTPSrr && Opcode != X86::VBLENDPSYrri &&
355           Opcode != X86::VBLENDPSYrmi && Opcode != X86::VBLENDPDYrri &&
356           Opcode != X86::VBLENDPDYrmi && Opcode != X86::VPBLENDWrri &&
357           Opcode != X86::VMPSADBWrri && Opcode != X86::VDPPSYrri &&
358           Opcode != X86::VDPPSYrmi && Opcode != X86::VDPPDrri &&
359           Opcode != X86::VINSERTPSrr)
360         type = TYPE_MOFFS8;
361       break;
362     case ENCODING_IW:
363       type = TYPE_MOFFS16;
364       break;
365     case ENCODING_ID:
366       type = TYPE_MOFFS32;
367       break;
368     case ENCODING_IO:
369       type = TYPE_MOFFS64;
370       break;
371     }
372   }
373 
374   switch (type) {
375   case TYPE_XMM32:
376   case TYPE_XMM64:
377   case TYPE_XMM128:
378     mcInst.addOperand(MCOperand::CreateReg(X86::XMM0 + (immediate >> 4)));
379     return;
380   case TYPE_XMM256:
381     mcInst.addOperand(MCOperand::CreateReg(X86::YMM0 + (immediate >> 4)));
382     return;
383   case TYPE_REL8:
384     isBranch = true;
385     pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
386     // fall through to sign extend the immediate if needed.
387   case TYPE_MOFFS8:
388     if(immediate & 0x80)
389       immediate |= ~(0xffull);
390     break;
391   case TYPE_MOFFS16:
392     if(immediate & 0x8000)
393       immediate |= ~(0xffffull);
394     break;
395   case TYPE_REL32:
396   case TYPE_REL64:
397     isBranch = true;
398     pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
399     // fall through to sign extend the immediate if needed.
400   case TYPE_MOFFS32:
401     if(immediate & 0x80000000)
402       immediate |= ~(0xffffffffull);
403     break;
404   case TYPE_MOFFS64:
405   default:
406     // operand is 64 bits wide.  Do nothing.
407     break;
408   }
409 
410   if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
411                                insn.immediateOffset, insn.immediateSize,
412                                mcInst, Dis))
413     mcInst.addOperand(MCOperand::CreateImm(immediate));
414 }
415 
416 /// translateRMRegister - Translates a register stored in the R/M field of the
417 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
418 /// @param mcInst       - The MCInst to append to.
419 /// @param insn         - The internal instruction to extract the R/M field
420 ///                       from.
421 /// @return             - 0 on success; -1 otherwise
translateRMRegister(MCInst & mcInst,InternalInstruction & insn)422 static bool translateRMRegister(MCInst &mcInst,
423                                 InternalInstruction &insn) {
424   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
425     debug("A R/M register operand may not have a SIB byte");
426     return true;
427   }
428 
429   switch (insn.eaBase) {
430   default:
431     debug("Unexpected EA base register");
432     return true;
433   case EA_BASE_NONE:
434     debug("EA_BASE_NONE for ModR/M base");
435     return true;
436 #define ENTRY(x) case EA_BASE_##x:
437   ALL_EA_BASES
438 #undef ENTRY
439     debug("A R/M register operand may not have a base; "
440           "the operand must be a register.");
441     return true;
442 #define ENTRY(x)                                                      \
443   case EA_REG_##x:                                                    \
444     mcInst.addOperand(MCOperand::CreateReg(X86::x)); break;
445   ALL_REGS
446 #undef ENTRY
447   }
448 
449   return false;
450 }
451 
452 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
453 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
454 ///   operand in LLVM's format, and appends it to an MCInst.
455 ///
456 /// @param mcInst       - The MCInst to append to.
457 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
458 ///                       from.
459 /// @return             - 0 on success; nonzero otherwise
translateRMMemory(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis)460 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
461                               const MCDisassembler *Dis) {
462   // Addresses in an MCInst are represented as five operands:
463   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
464   //                                SIB base
465   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
466   //                                scale amount
467   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
468   //                                the index (which is multiplied by the
469   //                                scale amount)
470   //   4. displacement  (immediate) 0, or the displacement if there is one
471   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
472   //                                if we have segment overrides
473 
474   MCOperand baseReg;
475   MCOperand scaleAmount;
476   MCOperand indexReg;
477   MCOperand displacement;
478   MCOperand segmentReg;
479   uint64_t pcrel = 0;
480 
481   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
482     if (insn.sibBase != SIB_BASE_NONE) {
483       switch (insn.sibBase) {
484       default:
485         debug("Unexpected sibBase");
486         return true;
487 #define ENTRY(x)                                          \
488       case SIB_BASE_##x:                                  \
489         baseReg = MCOperand::CreateReg(X86::x); break;
490       ALL_SIB_BASES
491 #undef ENTRY
492       }
493     } else {
494       baseReg = MCOperand::CreateReg(0);
495     }
496 
497     // Check whether we are handling VSIB addressing mode for GATHER.
498     // If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and
499     // we should use SIB_INDEX_XMM4|YMM4 for VSIB.
500     // I don't see a way to get the correct IndexReg in readSIB:
501     //   We can tell whether it is VSIB or SIB after instruction ID is decoded,
502     //   but instruction ID may not be decoded yet when calling readSIB.
503     uint32_t Opcode = mcInst.getOpcode();
504     bool IndexIs128 = (Opcode == X86::VGATHERDPDrm ||
505                        Opcode == X86::VGATHERDPDYrm ||
506                        Opcode == X86::VGATHERQPDrm ||
507                        Opcode == X86::VGATHERDPSrm ||
508                        Opcode == X86::VGATHERQPSrm ||
509                        Opcode == X86::VPGATHERDQrm ||
510                        Opcode == X86::VPGATHERDQYrm ||
511                        Opcode == X86::VPGATHERQQrm ||
512                        Opcode == X86::VPGATHERDDrm ||
513                        Opcode == X86::VPGATHERQDrm);
514     bool IndexIs256 = (Opcode == X86::VGATHERQPDYrm ||
515                        Opcode == X86::VGATHERDPSYrm ||
516                        Opcode == X86::VGATHERQPSYrm ||
517                        Opcode == X86::VPGATHERQQYrm ||
518                        Opcode == X86::VPGATHERDDYrm ||
519                        Opcode == X86::VPGATHERQDYrm);
520     if (IndexIs128 || IndexIs256) {
521       unsigned IndexOffset = insn.sibIndex -
522                          (insn.addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX);
523       SIBIndex IndexBase = IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0;
524       insn.sibIndex = (SIBIndex)(IndexBase +
525                            (insn.sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset));
526     }
527 
528     if (insn.sibIndex != SIB_INDEX_NONE) {
529       switch (insn.sibIndex) {
530       default:
531         debug("Unexpected sibIndex");
532         return true;
533 #define ENTRY(x)                                          \
534       case SIB_INDEX_##x:                                 \
535         indexReg = MCOperand::CreateReg(X86::x); break;
536       EA_BASES_32BIT
537       EA_BASES_64BIT
538       REGS_XMM
539       REGS_YMM
540 #undef ENTRY
541       }
542     } else {
543       indexReg = MCOperand::CreateReg(0);
544     }
545 
546     scaleAmount = MCOperand::CreateImm(insn.sibScale);
547   } else {
548     switch (insn.eaBase) {
549     case EA_BASE_NONE:
550       if (insn.eaDisplacement == EA_DISP_NONE) {
551         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
552         return true;
553       }
554       if (insn.mode == MODE_64BIT){
555         pcrel = insn.startLocation +
556                 insn.displacementOffset + insn.displacementSize;
557         tryAddingPcLoadReferenceComment(insn.startLocation +
558                                         insn.displacementOffset,
559                                         insn.displacement + pcrel, Dis);
560         baseReg = MCOperand::CreateReg(X86::RIP); // Section 2.2.1.6
561       }
562       else
563         baseReg = MCOperand::CreateReg(0);
564 
565       indexReg = MCOperand::CreateReg(0);
566       break;
567     case EA_BASE_BX_SI:
568       baseReg = MCOperand::CreateReg(X86::BX);
569       indexReg = MCOperand::CreateReg(X86::SI);
570       break;
571     case EA_BASE_BX_DI:
572       baseReg = MCOperand::CreateReg(X86::BX);
573       indexReg = MCOperand::CreateReg(X86::DI);
574       break;
575     case EA_BASE_BP_SI:
576       baseReg = MCOperand::CreateReg(X86::BP);
577       indexReg = MCOperand::CreateReg(X86::SI);
578       break;
579     case EA_BASE_BP_DI:
580       baseReg = MCOperand::CreateReg(X86::BP);
581       indexReg = MCOperand::CreateReg(X86::DI);
582       break;
583     default:
584       indexReg = MCOperand::CreateReg(0);
585       switch (insn.eaBase) {
586       default:
587         debug("Unexpected eaBase");
588         return true;
589         // Here, we will use the fill-ins defined above.  However,
590         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
591         //   sib and sib64 were handled in the top-level if, so they're only
592         //   placeholders to keep the compiler happy.
593 #define ENTRY(x)                                        \
594       case EA_BASE_##x:                                 \
595         baseReg = MCOperand::CreateReg(X86::x); break;
596       ALL_EA_BASES
597 #undef ENTRY
598 #define ENTRY(x) case EA_REG_##x:
599       ALL_REGS
600 #undef ENTRY
601         debug("A R/M memory operand may not be a register; "
602               "the base field must be a base.");
603         return true;
604       }
605     }
606 
607     scaleAmount = MCOperand::CreateImm(1);
608   }
609 
610   displacement = MCOperand::CreateImm(insn.displacement);
611 
612   static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
613     0,        // SEG_OVERRIDE_NONE
614     X86::CS,
615     X86::SS,
616     X86::DS,
617     X86::ES,
618     X86::FS,
619     X86::GS
620   };
621 
622   segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
623 
624   mcInst.addOperand(baseReg);
625   mcInst.addOperand(scaleAmount);
626   mcInst.addOperand(indexReg);
627   if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
628                                insn.startLocation, insn.displacementOffset,
629                                insn.displacementSize, mcInst, Dis))
630     mcInst.addOperand(displacement);
631   mcInst.addOperand(segmentReg);
632   return false;
633 }
634 
635 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
636 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
637 ///
638 /// @param mcInst       - The MCInst to append to.
639 /// @param operand      - The operand, as stored in the descriptor table.
640 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
641 ///                       from.
642 /// @return             - 0 on success; nonzero otherwise
translateRM(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)643 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
644                         InternalInstruction &insn, const MCDisassembler *Dis) {
645   switch (operand.type) {
646   default:
647     debug("Unexpected type for a R/M operand");
648     return true;
649   case TYPE_R8:
650   case TYPE_R16:
651   case TYPE_R32:
652   case TYPE_R64:
653   case TYPE_Rv:
654   case TYPE_MM:
655   case TYPE_MM32:
656   case TYPE_MM64:
657   case TYPE_XMM:
658   case TYPE_XMM32:
659   case TYPE_XMM64:
660   case TYPE_XMM128:
661   case TYPE_XMM256:
662   case TYPE_DEBUGREG:
663   case TYPE_CONTROLREG:
664     return translateRMRegister(mcInst, insn);
665   case TYPE_M:
666   case TYPE_M8:
667   case TYPE_M16:
668   case TYPE_M32:
669   case TYPE_M64:
670   case TYPE_M128:
671   case TYPE_M256:
672   case TYPE_M512:
673   case TYPE_Mv:
674   case TYPE_M32FP:
675   case TYPE_M64FP:
676   case TYPE_M80FP:
677   case TYPE_M16INT:
678   case TYPE_M32INT:
679   case TYPE_M64INT:
680   case TYPE_M1616:
681   case TYPE_M1632:
682   case TYPE_M1664:
683   case TYPE_LEA:
684     return translateRMMemory(mcInst, insn, Dis);
685   }
686 }
687 
688 /// translateFPRegister - Translates a stack position on the FPU stack to its
689 ///   LLVM form, and appends it to an MCInst.
690 ///
691 /// @param mcInst       - The MCInst to append to.
692 /// @param stackPos     - The stack position to translate.
693 /// @return             - 0 on success; nonzero otherwise.
translateFPRegister(MCInst & mcInst,uint8_t stackPos)694 static bool translateFPRegister(MCInst &mcInst,
695                                uint8_t stackPos) {
696   if (stackPos >= 8) {
697     debug("Invalid FP stack position");
698     return true;
699   }
700 
701   mcInst.addOperand(MCOperand::CreateReg(X86::ST0 + stackPos));
702 
703   return false;
704 }
705 
706 /// translateOperand - Translates an operand stored in an internal instruction
707 ///   to LLVM's format and appends it to an MCInst.
708 ///
709 /// @param mcInst       - The MCInst to append to.
710 /// @param operand      - The operand, as stored in the descriptor table.
711 /// @param insn         - The internal instruction.
712 /// @return             - false on success; true otherwise.
translateOperand(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)713 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
714                              InternalInstruction &insn,
715                              const MCDisassembler *Dis) {
716   switch (operand.encoding) {
717   default:
718     debug("Unhandled operand encoding during translation");
719     return true;
720   case ENCODING_REG:
721     translateRegister(mcInst, insn.reg);
722     return false;
723   case ENCODING_RM:
724     return translateRM(mcInst, operand, insn, Dis);
725   case ENCODING_CB:
726   case ENCODING_CW:
727   case ENCODING_CD:
728   case ENCODING_CP:
729   case ENCODING_CO:
730   case ENCODING_CT:
731     debug("Translation of code offsets isn't supported.");
732     return true;
733   case ENCODING_IB:
734   case ENCODING_IW:
735   case ENCODING_ID:
736   case ENCODING_IO:
737   case ENCODING_Iv:
738   case ENCODING_Ia:
739     translateImmediate(mcInst,
740                        insn.immediates[insn.numImmediatesTranslated++],
741                        operand,
742                        insn,
743                        Dis);
744     return false;
745   case ENCODING_RB:
746   case ENCODING_RW:
747   case ENCODING_RD:
748   case ENCODING_RO:
749     translateRegister(mcInst, insn.opcodeRegister);
750     return false;
751   case ENCODING_I:
752     return translateFPRegister(mcInst, insn.opcodeModifier);
753   case ENCODING_Rv:
754     translateRegister(mcInst, insn.opcodeRegister);
755     return false;
756   case ENCODING_VVVV:
757     translateRegister(mcInst, insn.vvvv);
758     return false;
759   case ENCODING_DUP:
760     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
761                             insn, Dis);
762   }
763 }
764 
765 /// translateInstruction - Translates an internal instruction and all its
766 ///   operands to an MCInst.
767 ///
768 /// @param mcInst       - The MCInst to populate with the instruction's data.
769 /// @param insn         - The internal instruction.
770 /// @return             - false on success; true otherwise.
translateInstruction(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis)771 static bool translateInstruction(MCInst &mcInst,
772                                 InternalInstruction &insn,
773                                 const MCDisassembler *Dis) {
774   if (!insn.spec) {
775     debug("Instruction has no specification");
776     return true;
777   }
778 
779   mcInst.setOpcode(insn.instructionID);
780 
781   int index;
782 
783   insn.numImmediatesTranslated = 0;
784 
785   for (index = 0; index < X86_MAX_OPERANDS; ++index) {
786     if (insn.operands[index].encoding != ENCODING_NONE) {
787       if (translateOperand(mcInst, insn.operands[index], insn, Dis)) {
788         return true;
789       }
790     }
791   }
792 
793   return false;
794 }
795 
createX86_32Disassembler(const Target & T,const MCSubtargetInfo & STI)796 static MCDisassembler *createX86_32Disassembler(const Target &T,
797                                                 const MCSubtargetInfo &STI) {
798   return new X86Disassembler::X86GenericDisassembler(STI, MODE_32BIT,
799                                                      T.createMCInstrInfo());
800 }
801 
createX86_64Disassembler(const Target & T,const MCSubtargetInfo & STI)802 static MCDisassembler *createX86_64Disassembler(const Target &T,
803                                                 const MCSubtargetInfo &STI) {
804   return new X86Disassembler::X86GenericDisassembler(STI, MODE_64BIT,
805                                                      T.createMCInstrInfo());
806 }
807 
LLVMInitializeX86Disassembler()808 extern "C" void LLVMInitializeX86Disassembler() {
809   // Register the disassembler.
810   TargetRegistry::RegisterMCDisassembler(TheX86_32Target,
811                                          createX86_32Disassembler);
812   TargetRegistry::RegisterMCDisassembler(TheX86_64Target,
813                                          createX86_64Disassembler);
814 }
815