1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/ADT/Statistic.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAsmLayout.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCDwarf.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCFixupKindInfo.h"
22 #include "llvm/MC/MCObjectWriter.h"
23 #include "llvm/MC/MCSection.h"
24 #include "llvm/MC/MCSymbol.h"
25 #include "llvm/MC/MCValue.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/LEB128.h"
29 #include "llvm/Support/TargetRegistry.h"
30 #include "llvm/Support/raw_ostream.h"
31
32 using namespace llvm;
33
34 namespace {
35 namespace stats {
36 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
37 STATISTIC(EmittedRelaxableFragments,
38 "Number of emitted assembler fragments - relaxable");
39 STATISTIC(EmittedDataFragments,
40 "Number of emitted assembler fragments - data");
41 STATISTIC(EmittedCompactEncodedInstFragments,
42 "Number of emitted assembler fragments - compact encoded inst");
43 STATISTIC(EmittedAlignFragments,
44 "Number of emitted assembler fragments - align");
45 STATISTIC(EmittedFillFragments,
46 "Number of emitted assembler fragments - fill");
47 STATISTIC(EmittedOrgFragments,
48 "Number of emitted assembler fragments - org");
49 STATISTIC(evaluateFixup, "Number of evaluated fixups");
50 STATISTIC(FragmentLayouts, "Number of fragment layouts");
51 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
52 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
53 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
54 }
55 }
56
57 // FIXME FIXME FIXME: There are number of places in this file where we convert
58 // what is a 64-bit assembler value used for computation into a value in the
59 // object file, which may truncate it. We should detect that truncation where
60 // invalid and report errors back.
61
62 /* *** */
63
MCAsmLayout(MCAssembler & Asm)64 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
65 : Assembler(Asm), LastValidFragment()
66 {
67 // Compute the section layout order. Virtual sections must go last.
68 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
69 if (!it->getSection().isVirtualSection())
70 SectionOrder.push_back(&*it);
71 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
72 if (it->getSection().isVirtualSection())
73 SectionOrder.push_back(&*it);
74 }
75
isFragmentValid(const MCFragment * F) const76 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
77 const MCSectionData &SD = *F->getParent();
78 const MCFragment *LastValid = LastValidFragment.lookup(&SD);
79 if (!LastValid)
80 return false;
81 assert(LastValid->getParent() == F->getParent());
82 return F->getLayoutOrder() <= LastValid->getLayoutOrder();
83 }
84
invalidateFragmentsFrom(MCFragment * F)85 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
86 // If this fragment wasn't already valid, we don't need to do anything.
87 if (!isFragmentValid(F))
88 return;
89
90 // Otherwise, reset the last valid fragment to the previous fragment
91 // (if this is the first fragment, it will be NULL).
92 const MCSectionData &SD = *F->getParent();
93 LastValidFragment[&SD] = F->getPrevNode();
94 }
95
ensureValid(const MCFragment * F) const96 void MCAsmLayout::ensureValid(const MCFragment *F) const {
97 MCSectionData &SD = *F->getParent();
98
99 MCFragment *Cur = LastValidFragment[&SD];
100 if (!Cur)
101 Cur = &*SD.begin();
102 else
103 Cur = Cur->getNextNode();
104
105 // Advance the layout position until the fragment is valid.
106 while (!isFragmentValid(F)) {
107 assert(Cur && "Layout bookkeeping error");
108 const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
109 Cur = Cur->getNextNode();
110 }
111 }
112
getFragmentOffset(const MCFragment * F) const113 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
114 ensureValid(F);
115 assert(F->Offset != ~UINT64_C(0) && "Address not set!");
116 return F->Offset;
117 }
118
getSymbolOffset(const MCSymbolData * SD) const119 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
120 const MCSymbol &S = SD->getSymbol();
121
122 // If this is a variable, then recursively evaluate now.
123 if (S.isVariable()) {
124 MCValue Target;
125 if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this))
126 report_fatal_error("unable to evaluate offset for variable '" +
127 S.getName() + "'");
128
129 // Verify that any used symbols are defined.
130 if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined())
131 report_fatal_error("unable to evaluate offset to undefined symbol '" +
132 Target.getSymA()->getSymbol().getName() + "'");
133 if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined())
134 report_fatal_error("unable to evaluate offset to undefined symbol '" +
135 Target.getSymB()->getSymbol().getName() + "'");
136
137 uint64_t Offset = Target.getConstant();
138 if (Target.getSymA())
139 Offset += getSymbolOffset(&Assembler.getSymbolData(
140 Target.getSymA()->getSymbol()));
141 if (Target.getSymB())
142 Offset -= getSymbolOffset(&Assembler.getSymbolData(
143 Target.getSymB()->getSymbol()));
144 return Offset;
145 }
146
147 assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
148 return getFragmentOffset(SD->getFragment()) + SD->getOffset();
149 }
150
getSectionAddressSize(const MCSectionData * SD) const151 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
152 // The size is the last fragment's end offset.
153 const MCFragment &F = SD->getFragmentList().back();
154 return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
155 }
156
getSectionFileSize(const MCSectionData * SD) const157 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
158 // Virtual sections have no file size.
159 if (SD->getSection().isVirtualSection())
160 return 0;
161
162 // Otherwise, the file size is the same as the address space size.
163 return getSectionAddressSize(SD);
164 }
165
computeBundlePadding(const MCFragment * F,uint64_t FOffset,uint64_t FSize)166 uint64_t MCAsmLayout::computeBundlePadding(const MCFragment *F,
167 uint64_t FOffset, uint64_t FSize) {
168 uint64_t BundleSize = Assembler.getBundleAlignSize();
169 assert(BundleSize > 0 &&
170 "computeBundlePadding should only be called if bundling is enabled");
171 uint64_t BundleMask = BundleSize - 1;
172 uint64_t OffsetInBundle = FOffset & BundleMask;
173 uint64_t EndOfFragment = OffsetInBundle + FSize;
174
175 // There are two kinds of bundling restrictions:
176 //
177 // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
178 // *end* on a bundle boundary.
179 // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
180 // would, add padding until the end of the bundle so that the fragment
181 // will start in a new one.
182 if (F->alignToBundleEnd()) {
183 // Three possibilities here:
184 //
185 // A) The fragment just happens to end at a bundle boundary, so we're good.
186 // B) The fragment ends before the current bundle boundary: pad it just
187 // enough to reach the boundary.
188 // C) The fragment ends after the current bundle boundary: pad it until it
189 // reaches the end of the next bundle boundary.
190 //
191 // Note: this code could be made shorter with some modulo trickery, but it's
192 // intentionally kept in its more explicit form for simplicity.
193 if (EndOfFragment == BundleSize)
194 return 0;
195 else if (EndOfFragment < BundleSize)
196 return BundleSize - EndOfFragment;
197 else { // EndOfFragment > BundleSize
198 return 2 * BundleSize - EndOfFragment;
199 }
200 } else if (EndOfFragment > BundleSize)
201 return BundleSize - OffsetInBundle;
202 else
203 return 0;
204 }
205
206 /* *** */
207
MCFragment()208 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
209 }
210
~MCFragment()211 MCFragment::~MCFragment() {
212 }
213
MCFragment(FragmentType _Kind,MCSectionData * _Parent)214 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
215 : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0)),
216 LayoutOrder(~(0U))
217 {
218 if (Parent)
219 Parent->getFragmentList().push_back(this);
220 }
221
222 /* *** */
223
~MCEncodedFragment()224 MCEncodedFragment::~MCEncodedFragment() {
225 }
226
227 /* *** */
228
~MCEncodedFragmentWithFixups()229 MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
230 }
231
232 /* *** */
233
MCSectionData()234 MCSectionData::MCSectionData() : Section(0) {}
235
MCSectionData(const MCSection & _Section,MCAssembler * A)236 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
237 : Section(&_Section),
238 Ordinal(~UINT32_C(0)),
239 Alignment(1),
240 BundleLockState(NotBundleLocked), BundleGroupBeforeFirstInst(false),
241 HasInstructions(false)
242 {
243 if (A)
244 A->getSectionList().push_back(this);
245 }
246
247 /* *** */
248
MCSymbolData()249 MCSymbolData::MCSymbolData() : Symbol(0) {}
250
MCSymbolData(const MCSymbol & _Symbol,MCFragment * _Fragment,uint64_t _Offset,MCAssembler * A)251 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
252 uint64_t _Offset, MCAssembler *A)
253 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
254 IsExternal(false), IsPrivateExtern(false),
255 CommonSize(0), SymbolSize(0), CommonAlign(0),
256 Flags(0), Index(0)
257 {
258 if (A)
259 A->getSymbolList().push_back(this);
260 }
261
262 /* *** */
263
MCAssembler(MCContext & Context_,MCAsmBackend & Backend_,MCCodeEmitter & Emitter_,MCObjectWriter & Writer_,raw_ostream & OS_)264 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
265 MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
266 raw_ostream &OS_)
267 : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(&Writer_),
268 OS(OS_), BundleAlignSize(0), RelaxAll(false), NoExecStack(false),
269 SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
270 }
271
~MCAssembler()272 MCAssembler::~MCAssembler() {
273 }
274
setWriter(MCObjectWriter & ObjectWriter)275 void MCAssembler::setWriter(MCObjectWriter &ObjectWriter) {
276 delete Writer;
277 Writer = &ObjectWriter;
278 }
279
reset()280 void MCAssembler::reset() {
281 Sections.clear();
282 Symbols.clear();
283 SectionMap.clear();
284 SymbolMap.clear();
285 IndirectSymbols.clear();
286 DataRegions.clear();
287 ThumbFuncs.clear();
288 RelaxAll = false;
289 NoExecStack = false;
290 SubsectionsViaSymbols = false;
291 ELFHeaderEFlags = 0;
292
293 // reset objects owned by us
294 getBackend().reset();
295 getEmitter().reset();
296 getWriter().reset();
297 }
298
isSymbolLinkerVisible(const MCSymbol & Symbol) const299 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
300 // Non-temporary labels should always be visible to the linker.
301 if (!Symbol.isTemporary())
302 return true;
303
304 // Absolute temporary labels are never visible.
305 if (!Symbol.isInSection())
306 return false;
307
308 // Otherwise, check if the section requires symbols even for temporary labels.
309 return getBackend().doesSectionRequireSymbols(Symbol.getSection());
310 }
311
getAtom(const MCSymbolData * SD) const312 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
313 // Linker visible symbols define atoms.
314 if (isSymbolLinkerVisible(SD->getSymbol()))
315 return SD;
316
317 // Absolute and undefined symbols have no defining atom.
318 if (!SD->getFragment())
319 return 0;
320
321 // Non-linker visible symbols in sections which can't be atomized have no
322 // defining atom.
323 if (!getBackend().isSectionAtomizable(
324 SD->getFragment()->getParent()->getSection()))
325 return 0;
326
327 // Otherwise, return the atom for the containing fragment.
328 return SD->getFragment()->getAtom();
329 }
330
evaluateFixup(const MCAsmLayout & Layout,const MCFixup & Fixup,const MCFragment * DF,MCValue & Target,uint64_t & Value) const331 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
332 const MCFixup &Fixup, const MCFragment *DF,
333 MCValue &Target, uint64_t &Value) const {
334 ++stats::evaluateFixup;
335
336 if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
337 getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
338
339 bool IsPCRel = Backend.getFixupKindInfo(
340 Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
341
342 bool IsResolved;
343 if (IsPCRel) {
344 if (Target.getSymB()) {
345 IsResolved = false;
346 } else if (!Target.getSymA()) {
347 IsResolved = false;
348 } else {
349 const MCSymbolRefExpr *A = Target.getSymA();
350 const MCSymbol &SA = A->getSymbol();
351 if (A->getKind() != MCSymbolRefExpr::VK_None ||
352 SA.AliasedSymbol().isUndefined()) {
353 IsResolved = false;
354 } else {
355 const MCSymbolData &DataA = getSymbolData(SA);
356 IsResolved =
357 getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
358 *DF, false, true);
359 }
360 }
361 } else {
362 IsResolved = Target.isAbsolute();
363 }
364
365 Value = Target.getConstant();
366
367 if (const MCSymbolRefExpr *A = Target.getSymA()) {
368 const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
369 if (Sym.isDefined())
370 Value += Layout.getSymbolOffset(&getSymbolData(Sym));
371 }
372 if (const MCSymbolRefExpr *B = Target.getSymB()) {
373 const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
374 if (Sym.isDefined())
375 Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
376 }
377
378
379 bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
380 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
381 assert((ShouldAlignPC ? IsPCRel : true) &&
382 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
383
384 if (IsPCRel) {
385 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
386
387 // A number of ARM fixups in Thumb mode require that the effective PC
388 // address be determined as the 32-bit aligned version of the actual offset.
389 if (ShouldAlignPC) Offset &= ~0x3;
390 Value -= Offset;
391 }
392
393 // Let the backend adjust the fixup value if necessary, including whether
394 // we need a relocation.
395 Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
396 IsResolved);
397
398 return IsResolved;
399 }
400
computeFragmentSize(const MCAsmLayout & Layout,const MCFragment & F) const401 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
402 const MCFragment &F) const {
403 switch (F.getKind()) {
404 case MCFragment::FT_Data:
405 case MCFragment::FT_Relaxable:
406 case MCFragment::FT_CompactEncodedInst:
407 return cast<MCEncodedFragment>(F).getContents().size();
408 case MCFragment::FT_Fill:
409 return cast<MCFillFragment>(F).getSize();
410
411 case MCFragment::FT_LEB:
412 return cast<MCLEBFragment>(F).getContents().size();
413
414 case MCFragment::FT_Align: {
415 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
416 unsigned Offset = Layout.getFragmentOffset(&AF);
417 unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
418 // If we are padding with nops, force the padding to be larger than the
419 // minimum nop size.
420 if (Size > 0 && AF.hasEmitNops()) {
421 while (Size % getBackend().getMinimumNopSize())
422 Size += AF.getAlignment();
423 }
424 if (Size > AF.getMaxBytesToEmit())
425 return 0;
426 return Size;
427 }
428
429 case MCFragment::FT_Org: {
430 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
431 int64_t TargetLocation;
432 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
433 report_fatal_error("expected assembly-time absolute expression");
434
435 // FIXME: We need a way to communicate this error.
436 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
437 int64_t Size = TargetLocation - FragmentOffset;
438 if (Size < 0 || Size >= 0x40000000)
439 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
440 "' (at offset '" + Twine(FragmentOffset) + "')");
441 return Size;
442 }
443
444 case MCFragment::FT_Dwarf:
445 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
446 case MCFragment::FT_DwarfFrame:
447 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
448 }
449
450 llvm_unreachable("invalid fragment kind");
451 }
452
layoutFragment(MCFragment * F)453 void MCAsmLayout::layoutFragment(MCFragment *F) {
454 MCFragment *Prev = F->getPrevNode();
455
456 // We should never try to recompute something which is valid.
457 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
458 // We should never try to compute the fragment layout if its predecessor
459 // isn't valid.
460 assert((!Prev || isFragmentValid(Prev)) &&
461 "Attempt to compute fragment before its predecessor!");
462
463 ++stats::FragmentLayouts;
464
465 // Compute fragment offset and size.
466 if (Prev)
467 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
468 else
469 F->Offset = 0;
470 LastValidFragment[F->getParent()] = F;
471
472 // If bundling is enabled and this fragment has instructions in it, it has to
473 // obey the bundling restrictions. With padding, we'll have:
474 //
475 //
476 // BundlePadding
477 // |||
478 // -------------------------------------
479 // Prev |##########| F |
480 // -------------------------------------
481 // ^
482 // |
483 // F->Offset
484 //
485 // The fragment's offset will point to after the padding, and its computed
486 // size won't include the padding.
487 //
488 if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
489 assert(isa<MCEncodedFragment>(F) &&
490 "Only MCEncodedFragment implementations have instructions");
491 uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
492
493 if (FSize > Assembler.getBundleAlignSize())
494 report_fatal_error("Fragment can't be larger than a bundle size");
495
496 uint64_t RequiredBundlePadding = computeBundlePadding(F, F->Offset, FSize);
497 if (RequiredBundlePadding > UINT8_MAX)
498 report_fatal_error("Padding cannot exceed 255 bytes");
499 F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
500 F->Offset += RequiredBundlePadding;
501 }
502 }
503
504 /// \brief Write the contents of a fragment to the given object writer. Expects
505 /// a MCEncodedFragment.
writeFragmentContents(const MCFragment & F,MCObjectWriter * OW)506 static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
507 const MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
508 OW->WriteBytes(EF.getContents());
509 }
510
511 /// \brief Write the fragment \p F to the output file.
writeFragment(const MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment & F)512 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
513 const MCFragment &F) {
514 MCObjectWriter *OW = &Asm.getWriter();
515
516 // FIXME: Embed in fragments instead?
517 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
518
519 // Should NOP padding be written out before this fragment?
520 unsigned BundlePadding = F.getBundlePadding();
521 if (BundlePadding > 0) {
522 assert(Asm.isBundlingEnabled() &&
523 "Writing bundle padding with disabled bundling");
524 assert(F.hasInstructions() &&
525 "Writing bundle padding for a fragment without instructions");
526
527 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FragmentSize);
528 if (F.alignToBundleEnd() && TotalLength > Asm.getBundleAlignSize()) {
529 // If the padding itself crosses a bundle boundary, it must be emitted
530 // in 2 pieces, since even nop instructions must not cross boundaries.
531 // v--------------v <- BundleAlignSize
532 // v---------v <- BundlePadding
533 // ----------------------------
534 // | Prev |####|####| F |
535 // ----------------------------
536 // ^-------------------^ <- TotalLength
537 unsigned DistanceToBoundary = TotalLength - Asm.getBundleAlignSize();
538 if (!Asm.getBackend().writeNopData(DistanceToBoundary, OW))
539 report_fatal_error("unable to write NOP sequence of " +
540 Twine(DistanceToBoundary) + " bytes");
541 BundlePadding -= DistanceToBoundary;
542 }
543 if (!Asm.getBackend().writeNopData(BundlePadding, OW))
544 report_fatal_error("unable to write NOP sequence of " +
545 Twine(BundlePadding) + " bytes");
546 }
547
548 // This variable (and its dummy usage) is to participate in the assert at
549 // the end of the function.
550 uint64_t Start = OW->getStream().tell();
551 (void) Start;
552
553 ++stats::EmittedFragments;
554
555 switch (F.getKind()) {
556 case MCFragment::FT_Align: {
557 ++stats::EmittedAlignFragments;
558 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
559 uint64_t Count = FragmentSize / AF.getValueSize();
560
561 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
562
563 // FIXME: This error shouldn't actually occur (the front end should emit
564 // multiple .align directives to enforce the semantics it wants), but is
565 // severe enough that we want to report it. How to handle this?
566 if (Count * AF.getValueSize() != FragmentSize)
567 report_fatal_error("undefined .align directive, value size '" +
568 Twine(AF.getValueSize()) +
569 "' is not a divisor of padding size '" +
570 Twine(FragmentSize) + "'");
571
572 // See if we are aligning with nops, and if so do that first to try to fill
573 // the Count bytes. Then if that did not fill any bytes or there are any
574 // bytes left to fill use the Value and ValueSize to fill the rest.
575 // If we are aligning with nops, ask that target to emit the right data.
576 if (AF.hasEmitNops()) {
577 if (!Asm.getBackend().writeNopData(Count, OW))
578 report_fatal_error("unable to write nop sequence of " +
579 Twine(Count) + " bytes");
580 break;
581 }
582
583 // Otherwise, write out in multiples of the value size.
584 for (uint64_t i = 0; i != Count; ++i) {
585 switch (AF.getValueSize()) {
586 default: llvm_unreachable("Invalid size!");
587 case 1: OW->Write8 (uint8_t (AF.getValue())); break;
588 case 2: OW->Write16(uint16_t(AF.getValue())); break;
589 case 4: OW->Write32(uint32_t(AF.getValue())); break;
590 case 8: OW->Write64(uint64_t(AF.getValue())); break;
591 }
592 }
593 break;
594 }
595
596 case MCFragment::FT_Data:
597 ++stats::EmittedDataFragments;
598 writeFragmentContents(F, OW);
599 break;
600
601 case MCFragment::FT_Relaxable:
602 ++stats::EmittedRelaxableFragments;
603 writeFragmentContents(F, OW);
604 break;
605
606 case MCFragment::FT_CompactEncodedInst:
607 ++stats::EmittedCompactEncodedInstFragments;
608 writeFragmentContents(F, OW);
609 break;
610
611 case MCFragment::FT_Fill: {
612 ++stats::EmittedFillFragments;
613 const MCFillFragment &FF = cast<MCFillFragment>(F);
614
615 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
616
617 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
618 switch (FF.getValueSize()) {
619 default: llvm_unreachable("Invalid size!");
620 case 1: OW->Write8 (uint8_t (FF.getValue())); break;
621 case 2: OW->Write16(uint16_t(FF.getValue())); break;
622 case 4: OW->Write32(uint32_t(FF.getValue())); break;
623 case 8: OW->Write64(uint64_t(FF.getValue())); break;
624 }
625 }
626 break;
627 }
628
629 case MCFragment::FT_LEB: {
630 const MCLEBFragment &LF = cast<MCLEBFragment>(F);
631 OW->WriteBytes(LF.getContents().str());
632 break;
633 }
634
635 case MCFragment::FT_Org: {
636 ++stats::EmittedOrgFragments;
637 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
638
639 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
640 OW->Write8(uint8_t(OF.getValue()));
641
642 break;
643 }
644
645 case MCFragment::FT_Dwarf: {
646 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
647 OW->WriteBytes(OF.getContents().str());
648 break;
649 }
650 case MCFragment::FT_DwarfFrame: {
651 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
652 OW->WriteBytes(CF.getContents().str());
653 break;
654 }
655 }
656
657 assert(OW->getStream().tell() - Start == FragmentSize &&
658 "The stream should advance by fragment size");
659 }
660
writeSectionData(const MCSectionData * SD,const MCAsmLayout & Layout) const661 void MCAssembler::writeSectionData(const MCSectionData *SD,
662 const MCAsmLayout &Layout) const {
663 // Ignore virtual sections.
664 if (SD->getSection().isVirtualSection()) {
665 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
666
667 // Check that contents are only things legal inside a virtual section.
668 for (MCSectionData::const_iterator it = SD->begin(),
669 ie = SD->end(); it != ie; ++it) {
670 switch (it->getKind()) {
671 default: llvm_unreachable("Invalid fragment in virtual section!");
672 case MCFragment::FT_Data: {
673 // Check that we aren't trying to write a non-zero contents (or fixups)
674 // into a virtual section. This is to support clients which use standard
675 // directives to fill the contents of virtual sections.
676 const MCDataFragment &DF = cast<MCDataFragment>(*it);
677 assert(DF.fixup_begin() == DF.fixup_end() &&
678 "Cannot have fixups in virtual section!");
679 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
680 assert(DF.getContents()[i] == 0 &&
681 "Invalid data value for virtual section!");
682 break;
683 }
684 case MCFragment::FT_Align:
685 // Check that we aren't trying to write a non-zero value into a virtual
686 // section.
687 assert((!cast<MCAlignFragment>(it)->getValueSize() ||
688 !cast<MCAlignFragment>(it)->getValue()) &&
689 "Invalid align in virtual section!");
690 break;
691 case MCFragment::FT_Fill:
692 assert(!cast<MCFillFragment>(it)->getValueSize() &&
693 "Invalid fill in virtual section!");
694 break;
695 }
696 }
697
698 return;
699 }
700
701 uint64_t Start = getWriter().getStream().tell();
702 (void)Start;
703
704 for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
705 it != ie; ++it)
706 writeFragment(*this, Layout, *it);
707
708 assert(getWriter().getStream().tell() - Start ==
709 Layout.getSectionAddressSize(SD));
710 }
711
712
handleFixup(const MCAsmLayout & Layout,MCFragment & F,const MCFixup & Fixup)713 uint64_t MCAssembler::handleFixup(const MCAsmLayout &Layout,
714 MCFragment &F,
715 const MCFixup &Fixup) {
716 // Evaluate the fixup.
717 MCValue Target;
718 uint64_t FixedValue;
719 if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
720 // The fixup was unresolved, we need a relocation. Inform the object
721 // writer of the relocation, and give it an opportunity to adjust the
722 // fixup value if need be.
723 getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
724 }
725 return FixedValue;
726 }
727
Finish()728 void MCAssembler::Finish() {
729 DEBUG_WITH_TYPE("mc-dump", {
730 llvm::errs() << "assembler backend - pre-layout\n--\n";
731 dump(); });
732
733 // Create the layout object.
734 MCAsmLayout Layout(*this);
735
736 // Create dummy fragments and assign section ordinals.
737 unsigned SectionIndex = 0;
738 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
739 // Create dummy fragments to eliminate any empty sections, this simplifies
740 // layout.
741 if (it->getFragmentList().empty())
742 new MCDataFragment(it);
743
744 it->setOrdinal(SectionIndex++);
745 }
746
747 // Assign layout order indices to sections and fragments.
748 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
749 MCSectionData *SD = Layout.getSectionOrder()[i];
750 SD->setLayoutOrder(i);
751
752 unsigned FragmentIndex = 0;
753 for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
754 iFrag != iFragEnd; ++iFrag)
755 iFrag->setLayoutOrder(FragmentIndex++);
756 }
757
758 // Layout until everything fits.
759 while (layoutOnce(Layout))
760 continue;
761
762 DEBUG_WITH_TYPE("mc-dump", {
763 llvm::errs() << "assembler backend - post-relaxation\n--\n";
764 dump(); });
765
766 // Finalize the layout, including fragment lowering.
767 finishLayout(Layout);
768
769 DEBUG_WITH_TYPE("mc-dump", {
770 llvm::errs() << "assembler backend - final-layout\n--\n";
771 dump(); });
772
773 uint64_t StartOffset = OS.tell();
774
775 // Allow the object writer a chance to perform post-layout binding (for
776 // example, to set the index fields in the symbol data).
777 getWriter().ExecutePostLayoutBinding(*this, Layout);
778
779 // Evaluate and apply the fixups, generating relocation entries as necessary.
780 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
781 for (MCSectionData::iterator it2 = it->begin(),
782 ie2 = it->end(); it2 != ie2; ++it2) {
783 MCEncodedFragmentWithFixups *F =
784 dyn_cast<MCEncodedFragmentWithFixups>(it2);
785 if (F) {
786 for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
787 ie3 = F->fixup_end(); it3 != ie3; ++it3) {
788 MCFixup &Fixup = *it3;
789 uint64_t FixedValue = handleFixup(Layout, *F, Fixup);
790 getBackend().applyFixup(Fixup, F->getContents().data(),
791 F->getContents().size(), FixedValue);
792 }
793 }
794 }
795 }
796
797 // Write the object file.
798 getWriter().WriteObject(*this, Layout);
799
800 stats::ObjectBytes += OS.tell() - StartOffset;
801 }
802
fixupNeedsRelaxation(const MCFixup & Fixup,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const803 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
804 const MCRelaxableFragment *DF,
805 const MCAsmLayout &Layout) const {
806 // If we cannot resolve the fixup value, it requires relaxation.
807 MCValue Target;
808 uint64_t Value;
809 if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
810 return true;
811
812 return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
813 }
814
fragmentNeedsRelaxation(const MCRelaxableFragment * F,const MCAsmLayout & Layout) const815 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
816 const MCAsmLayout &Layout) const {
817 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
818 // are intentionally pushing out inst fragments, or because we relaxed a
819 // previous instruction to one that doesn't need relaxation.
820 if (!getBackend().mayNeedRelaxation(F->getInst()))
821 return false;
822
823 for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
824 ie = F->fixup_end(); it != ie; ++it)
825 if (fixupNeedsRelaxation(*it, F, Layout))
826 return true;
827
828 return false;
829 }
830
relaxInstruction(MCAsmLayout & Layout,MCRelaxableFragment & F)831 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
832 MCRelaxableFragment &F) {
833 if (!fragmentNeedsRelaxation(&F, Layout))
834 return false;
835
836 ++stats::RelaxedInstructions;
837
838 // FIXME-PERF: We could immediately lower out instructions if we can tell
839 // they are fully resolved, to avoid retesting on later passes.
840
841 // Relax the fragment.
842
843 MCInst Relaxed;
844 getBackend().relaxInstruction(F.getInst(), Relaxed);
845
846 // Encode the new instruction.
847 //
848 // FIXME-PERF: If it matters, we could let the target do this. It can
849 // probably do so more efficiently in many cases.
850 SmallVector<MCFixup, 4> Fixups;
851 SmallString<256> Code;
852 raw_svector_ostream VecOS(Code);
853 getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
854 VecOS.flush();
855
856 // Update the fragment.
857 F.setInst(Relaxed);
858 F.getContents() = Code;
859 F.getFixups() = Fixups;
860
861 return true;
862 }
863
relaxLEB(MCAsmLayout & Layout,MCLEBFragment & LF)864 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
865 int64_t Value = 0;
866 uint64_t OldSize = LF.getContents().size();
867 bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
868 (void)IsAbs;
869 assert(IsAbs);
870 SmallString<8> &Data = LF.getContents();
871 Data.clear();
872 raw_svector_ostream OSE(Data);
873 if (LF.isSigned())
874 encodeSLEB128(Value, OSE);
875 else
876 encodeULEB128(Value, OSE);
877 OSE.flush();
878 return OldSize != LF.getContents().size();
879 }
880
relaxDwarfLineAddr(MCAsmLayout & Layout,MCDwarfLineAddrFragment & DF)881 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
882 MCDwarfLineAddrFragment &DF) {
883 int64_t AddrDelta = 0;
884 uint64_t OldSize = DF.getContents().size();
885 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
886 (void)IsAbs;
887 assert(IsAbs);
888 int64_t LineDelta;
889 LineDelta = DF.getLineDelta();
890 SmallString<8> &Data = DF.getContents();
891 Data.clear();
892 raw_svector_ostream OSE(Data);
893 MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE);
894 OSE.flush();
895 return OldSize != Data.size();
896 }
897
relaxDwarfCallFrameFragment(MCAsmLayout & Layout,MCDwarfCallFrameFragment & DF)898 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
899 MCDwarfCallFrameFragment &DF) {
900 int64_t AddrDelta = 0;
901 uint64_t OldSize = DF.getContents().size();
902 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
903 (void)IsAbs;
904 assert(IsAbs);
905 SmallString<8> &Data = DF.getContents();
906 Data.clear();
907 raw_svector_ostream OSE(Data);
908 MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE);
909 OSE.flush();
910 return OldSize != Data.size();
911 }
912
layoutSectionOnce(MCAsmLayout & Layout,MCSectionData & SD)913 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
914 // Holds the first fragment which needed relaxing during this layout. It will
915 // remain NULL if none were relaxed.
916 // When a fragment is relaxed, all the fragments following it should get
917 // invalidated because their offset is going to change.
918 MCFragment *FirstRelaxedFragment = NULL;
919
920 // Attempt to relax all the fragments in the section.
921 for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
922 // Check if this is a fragment that needs relaxation.
923 bool RelaxedFrag = false;
924 switch(I->getKind()) {
925 default:
926 break;
927 case MCFragment::FT_Relaxable:
928 assert(!getRelaxAll() &&
929 "Did not expect a MCRelaxableFragment in RelaxAll mode");
930 RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
931 break;
932 case MCFragment::FT_Dwarf:
933 RelaxedFrag = relaxDwarfLineAddr(Layout,
934 *cast<MCDwarfLineAddrFragment>(I));
935 break;
936 case MCFragment::FT_DwarfFrame:
937 RelaxedFrag =
938 relaxDwarfCallFrameFragment(Layout,
939 *cast<MCDwarfCallFrameFragment>(I));
940 break;
941 case MCFragment::FT_LEB:
942 RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
943 break;
944 }
945 if (RelaxedFrag && !FirstRelaxedFragment)
946 FirstRelaxedFragment = I;
947 }
948 if (FirstRelaxedFragment) {
949 Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
950 return true;
951 }
952 return false;
953 }
954
layoutOnce(MCAsmLayout & Layout)955 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
956 ++stats::RelaxationSteps;
957
958 bool WasRelaxed = false;
959 for (iterator it = begin(), ie = end(); it != ie; ++it) {
960 MCSectionData &SD = *it;
961 while (layoutSectionOnce(Layout, SD))
962 WasRelaxed = true;
963 }
964
965 return WasRelaxed;
966 }
967
finishLayout(MCAsmLayout & Layout)968 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
969 // The layout is done. Mark every fragment as valid.
970 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
971 Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
972 }
973 }
974
975 // Debugging methods
976
977 namespace llvm {
978
operator <<(raw_ostream & OS,const MCFixup & AF)979 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
980 OS << "<MCFixup" << " Offset:" << AF.getOffset()
981 << " Value:" << *AF.getValue()
982 << " Kind:" << AF.getKind() << ">";
983 return OS;
984 }
985
986 }
987
988 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump()989 void MCFragment::dump() {
990 raw_ostream &OS = llvm::errs();
991
992 OS << "<";
993 switch (getKind()) {
994 case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
995 case MCFragment::FT_Data: OS << "MCDataFragment"; break;
996 case MCFragment::FT_CompactEncodedInst:
997 OS << "MCCompactEncodedInstFragment"; break;
998 case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
999 case MCFragment::FT_Relaxable: OS << "MCRelaxableFragment"; break;
1000 case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
1001 case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
1002 case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
1003 case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
1004 }
1005
1006 OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
1007 << " Offset:" << Offset
1008 << " HasInstructions:" << hasInstructions()
1009 << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
1010
1011 switch (getKind()) {
1012 case MCFragment::FT_Align: {
1013 const MCAlignFragment *AF = cast<MCAlignFragment>(this);
1014 if (AF->hasEmitNops())
1015 OS << " (emit nops)";
1016 OS << "\n ";
1017 OS << " Alignment:" << AF->getAlignment()
1018 << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
1019 << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
1020 break;
1021 }
1022 case MCFragment::FT_Data: {
1023 const MCDataFragment *DF = cast<MCDataFragment>(this);
1024 OS << "\n ";
1025 OS << " Contents:[";
1026 const SmallVectorImpl<char> &Contents = DF->getContents();
1027 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1028 if (i) OS << ",";
1029 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1030 }
1031 OS << "] (" << Contents.size() << " bytes)";
1032
1033 if (DF->fixup_begin() != DF->fixup_end()) {
1034 OS << ",\n ";
1035 OS << " Fixups:[";
1036 for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
1037 ie = DF->fixup_end(); it != ie; ++it) {
1038 if (it != DF->fixup_begin()) OS << ",\n ";
1039 OS << *it;
1040 }
1041 OS << "]";
1042 }
1043 break;
1044 }
1045 case MCFragment::FT_CompactEncodedInst: {
1046 const MCCompactEncodedInstFragment *CEIF =
1047 cast<MCCompactEncodedInstFragment>(this);
1048 OS << "\n ";
1049 OS << " Contents:[";
1050 const SmallVectorImpl<char> &Contents = CEIF->getContents();
1051 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1052 if (i) OS << ",";
1053 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1054 }
1055 OS << "] (" << Contents.size() << " bytes)";
1056 break;
1057 }
1058 case MCFragment::FT_Fill: {
1059 const MCFillFragment *FF = cast<MCFillFragment>(this);
1060 OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
1061 << " Size:" << FF->getSize();
1062 break;
1063 }
1064 case MCFragment::FT_Relaxable: {
1065 const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
1066 OS << "\n ";
1067 OS << " Inst:";
1068 F->getInst().dump_pretty(OS);
1069 break;
1070 }
1071 case MCFragment::FT_Org: {
1072 const MCOrgFragment *OF = cast<MCOrgFragment>(this);
1073 OS << "\n ";
1074 OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
1075 break;
1076 }
1077 case MCFragment::FT_Dwarf: {
1078 const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
1079 OS << "\n ";
1080 OS << " AddrDelta:" << OF->getAddrDelta()
1081 << " LineDelta:" << OF->getLineDelta();
1082 break;
1083 }
1084 case MCFragment::FT_DwarfFrame: {
1085 const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
1086 OS << "\n ";
1087 OS << " AddrDelta:" << CF->getAddrDelta();
1088 break;
1089 }
1090 case MCFragment::FT_LEB: {
1091 const MCLEBFragment *LF = cast<MCLEBFragment>(this);
1092 OS << "\n ";
1093 OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
1094 break;
1095 }
1096 }
1097 OS << ">";
1098 }
1099
dump()1100 void MCSectionData::dump() {
1101 raw_ostream &OS = llvm::errs();
1102
1103 OS << "<MCSectionData";
1104 OS << " Alignment:" << getAlignment()
1105 << " Fragments:[\n ";
1106 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1107 if (it != begin()) OS << ",\n ";
1108 it->dump();
1109 }
1110 OS << "]>";
1111 }
1112
dump()1113 void MCSymbolData::dump() {
1114 raw_ostream &OS = llvm::errs();
1115
1116 OS << "<MCSymbolData Symbol:" << getSymbol()
1117 << " Fragment:" << getFragment() << " Offset:" << getOffset()
1118 << " Flags:" << getFlags() << " Index:" << getIndex();
1119 if (isCommon())
1120 OS << " (common, size:" << getCommonSize()
1121 << " align: " << getCommonAlignment() << ")";
1122 if (isExternal())
1123 OS << " (external)";
1124 if (isPrivateExtern())
1125 OS << " (private extern)";
1126 OS << ">";
1127 }
1128
dump()1129 void MCAssembler::dump() {
1130 raw_ostream &OS = llvm::errs();
1131
1132 OS << "<MCAssembler\n";
1133 OS << " Sections:[\n ";
1134 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1135 if (it != begin()) OS << ",\n ";
1136 it->dump();
1137 }
1138 OS << "],\n";
1139 OS << " Symbols:[";
1140
1141 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1142 if (it != symbol_begin()) OS << ",\n ";
1143 it->dump();
1144 }
1145 OS << "]>\n";
1146 }
1147 #endif
1148
1149 // anchors for MC*Fragment vtables
anchor()1150 void MCEncodedFragment::anchor() { }
anchor()1151 void MCEncodedFragmentWithFixups::anchor() { }
anchor()1152 void MCDataFragment::anchor() { }
anchor()1153 void MCCompactEncodedInstFragment::anchor() { }
anchor()1154 void MCRelaxableFragment::anchor() { }
anchor()1155 void MCAlignFragment::anchor() { }
anchor()1156 void MCFillFragment::anchor() { }
anchor()1157 void MCOrgFragment::anchor() { }
anchor()1158 void MCLEBFragment::anchor() { }
anchor()1159 void MCDwarfLineAddrFragment::anchor() { }
anchor()1160 void MCDwarfCallFrameFragment::anchor() { }
1161