1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements type-related semantic analysis.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/TypeLoc.h"
22 #include "clang/AST/TypeLocVisitor.h"
23 #include "clang/Basic/OpenCL.h"
24 #include "clang/Basic/PartialDiagnostic.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Parse/ParseDiagnostic.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/DelayedDiagnostic.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/ScopeInfo.h"
32 #include "clang/Sema/Template.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/Support/ErrorHandling.h"
35 using namespace clang;
36
37 /// isOmittedBlockReturnType - Return true if this declarator is missing a
38 /// return type because this is a omitted return type on a block literal.
isOmittedBlockReturnType(const Declarator & D)39 static bool isOmittedBlockReturnType(const Declarator &D) {
40 if (D.getContext() != Declarator::BlockLiteralContext ||
41 D.getDeclSpec().hasTypeSpecifier())
42 return false;
43
44 if (D.getNumTypeObjects() == 0)
45 return true; // ^{ ... }
46
47 if (D.getNumTypeObjects() == 1 &&
48 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
49 return true; // ^(int X, float Y) { ... }
50
51 return false;
52 }
53
54 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
55 /// doesn't apply to the given type.
diagnoseBadTypeAttribute(Sema & S,const AttributeList & attr,QualType type)56 static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
57 QualType type) {
58 bool useExpansionLoc = false;
59
60 unsigned diagID = 0;
61 switch (attr.getKind()) {
62 case AttributeList::AT_ObjCGC:
63 diagID = diag::warn_pointer_attribute_wrong_type;
64 useExpansionLoc = true;
65 break;
66
67 case AttributeList::AT_ObjCOwnership:
68 diagID = diag::warn_objc_object_attribute_wrong_type;
69 useExpansionLoc = true;
70 break;
71
72 default:
73 // Assume everything else was a function attribute.
74 diagID = diag::warn_function_attribute_wrong_type;
75 break;
76 }
77
78 SourceLocation loc = attr.getLoc();
79 StringRef name = attr.getName()->getName();
80
81 // The GC attributes are usually written with macros; special-case them.
82 if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
83 if (attr.getParameterName()->isStr("strong")) {
84 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
85 } else if (attr.getParameterName()->isStr("weak")) {
86 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
87 }
88 }
89
90 S.Diag(loc, diagID) << name << type;
91 }
92
93 // objc_gc applies to Objective-C pointers or, otherwise, to the
94 // smallest available pointer type (i.e. 'void*' in 'void**').
95 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
96 case AttributeList::AT_ObjCGC: \
97 case AttributeList::AT_ObjCOwnership
98
99 // Function type attributes.
100 #define FUNCTION_TYPE_ATTRS_CASELIST \
101 case AttributeList::AT_NoReturn: \
102 case AttributeList::AT_CDecl: \
103 case AttributeList::AT_FastCall: \
104 case AttributeList::AT_StdCall: \
105 case AttributeList::AT_ThisCall: \
106 case AttributeList::AT_Pascal: \
107 case AttributeList::AT_Regparm: \
108 case AttributeList::AT_Pcs: \
109 case AttributeList::AT_PnaclCall: \
110 case AttributeList::AT_IntelOclBicc \
111
112 namespace {
113 /// An object which stores processing state for the entire
114 /// GetTypeForDeclarator process.
115 class TypeProcessingState {
116 Sema &sema;
117
118 /// The declarator being processed.
119 Declarator &declarator;
120
121 /// The index of the declarator chunk we're currently processing.
122 /// May be the total number of valid chunks, indicating the
123 /// DeclSpec.
124 unsigned chunkIndex;
125
126 /// Whether there are non-trivial modifications to the decl spec.
127 bool trivial;
128
129 /// Whether we saved the attributes in the decl spec.
130 bool hasSavedAttrs;
131
132 /// The original set of attributes on the DeclSpec.
133 SmallVector<AttributeList*, 2> savedAttrs;
134
135 /// A list of attributes to diagnose the uselessness of when the
136 /// processing is complete.
137 SmallVector<AttributeList*, 2> ignoredTypeAttrs;
138
139 public:
TypeProcessingState(Sema & sema,Declarator & declarator)140 TypeProcessingState(Sema &sema, Declarator &declarator)
141 : sema(sema), declarator(declarator),
142 chunkIndex(declarator.getNumTypeObjects()),
143 trivial(true), hasSavedAttrs(false) {}
144
getSema() const145 Sema &getSema() const {
146 return sema;
147 }
148
getDeclarator() const149 Declarator &getDeclarator() const {
150 return declarator;
151 }
152
isProcessingDeclSpec() const153 bool isProcessingDeclSpec() const {
154 return chunkIndex == declarator.getNumTypeObjects();
155 }
156
getCurrentChunkIndex() const157 unsigned getCurrentChunkIndex() const {
158 return chunkIndex;
159 }
160
setCurrentChunkIndex(unsigned idx)161 void setCurrentChunkIndex(unsigned idx) {
162 assert(idx <= declarator.getNumTypeObjects());
163 chunkIndex = idx;
164 }
165
getCurrentAttrListRef() const166 AttributeList *&getCurrentAttrListRef() const {
167 if (isProcessingDeclSpec())
168 return getMutableDeclSpec().getAttributes().getListRef();
169 return declarator.getTypeObject(chunkIndex).getAttrListRef();
170 }
171
172 /// Save the current set of attributes on the DeclSpec.
saveDeclSpecAttrs()173 void saveDeclSpecAttrs() {
174 // Don't try to save them multiple times.
175 if (hasSavedAttrs) return;
176
177 DeclSpec &spec = getMutableDeclSpec();
178 for (AttributeList *attr = spec.getAttributes().getList(); attr;
179 attr = attr->getNext())
180 savedAttrs.push_back(attr);
181 trivial &= savedAttrs.empty();
182 hasSavedAttrs = true;
183 }
184
185 /// Record that we had nowhere to put the given type attribute.
186 /// We will diagnose such attributes later.
addIgnoredTypeAttr(AttributeList & attr)187 void addIgnoredTypeAttr(AttributeList &attr) {
188 ignoredTypeAttrs.push_back(&attr);
189 }
190
191 /// Diagnose all the ignored type attributes, given that the
192 /// declarator worked out to the given type.
diagnoseIgnoredTypeAttrs(QualType type) const193 void diagnoseIgnoredTypeAttrs(QualType type) const {
194 for (SmallVectorImpl<AttributeList*>::const_iterator
195 i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
196 i != e; ++i)
197 diagnoseBadTypeAttribute(getSema(), **i, type);
198 }
199
~TypeProcessingState()200 ~TypeProcessingState() {
201 if (trivial) return;
202
203 restoreDeclSpecAttrs();
204 }
205
206 private:
getMutableDeclSpec() const207 DeclSpec &getMutableDeclSpec() const {
208 return const_cast<DeclSpec&>(declarator.getDeclSpec());
209 }
210
restoreDeclSpecAttrs()211 void restoreDeclSpecAttrs() {
212 assert(hasSavedAttrs);
213
214 if (savedAttrs.empty()) {
215 getMutableDeclSpec().getAttributes().set(0);
216 return;
217 }
218
219 getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
220 for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
221 savedAttrs[i]->setNext(savedAttrs[i+1]);
222 savedAttrs.back()->setNext(0);
223 }
224 };
225
226 /// Basically std::pair except that we really want to avoid an
227 /// implicit operator= for safety concerns. It's also a minor
228 /// link-time optimization for this to be a private type.
229 struct AttrAndList {
230 /// The attribute.
231 AttributeList &first;
232
233 /// The head of the list the attribute is currently in.
234 AttributeList *&second;
235
AttrAndList__anoncc0ca2df0111::AttrAndList236 AttrAndList(AttributeList &attr, AttributeList *&head)
237 : first(attr), second(head) {}
238 };
239 }
240
241 namespace llvm {
242 template <> struct isPodLike<AttrAndList> {
243 static const bool value = true;
244 };
245 }
246
spliceAttrIntoList(AttributeList & attr,AttributeList * & head)247 static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
248 attr.setNext(head);
249 head = &attr;
250 }
251
spliceAttrOutOfList(AttributeList & attr,AttributeList * & head)252 static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
253 if (head == &attr) {
254 head = attr.getNext();
255 return;
256 }
257
258 AttributeList *cur = head;
259 while (true) {
260 assert(cur && cur->getNext() && "ran out of attrs?");
261 if (cur->getNext() == &attr) {
262 cur->setNext(attr.getNext());
263 return;
264 }
265 cur = cur->getNext();
266 }
267 }
268
moveAttrFromListToList(AttributeList & attr,AttributeList * & fromList,AttributeList * & toList)269 static void moveAttrFromListToList(AttributeList &attr,
270 AttributeList *&fromList,
271 AttributeList *&toList) {
272 spliceAttrOutOfList(attr, fromList);
273 spliceAttrIntoList(attr, toList);
274 }
275
276 /// The location of a type attribute.
277 enum TypeAttrLocation {
278 /// The attribute is in the decl-specifier-seq.
279 TAL_DeclSpec,
280 /// The attribute is part of a DeclaratorChunk.
281 TAL_DeclChunk,
282 /// The attribute is immediately after the declaration's name.
283 TAL_DeclName
284 };
285
286 static void processTypeAttrs(TypeProcessingState &state,
287 QualType &type, TypeAttrLocation TAL,
288 AttributeList *attrs);
289
290 static bool handleFunctionTypeAttr(TypeProcessingState &state,
291 AttributeList &attr,
292 QualType &type);
293
294 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
295 AttributeList &attr, QualType &type);
296
297 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
298 AttributeList &attr, QualType &type);
299
handleObjCPointerTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)300 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
301 AttributeList &attr, QualType &type) {
302 if (attr.getKind() == AttributeList::AT_ObjCGC)
303 return handleObjCGCTypeAttr(state, attr, type);
304 assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
305 return handleObjCOwnershipTypeAttr(state, attr, type);
306 }
307
308 /// Given the index of a declarator chunk, check whether that chunk
309 /// directly specifies the return type of a function and, if so, find
310 /// an appropriate place for it.
311 ///
312 /// \param i - a notional index which the search will start
313 /// immediately inside
maybeMovePastReturnType(Declarator & declarator,unsigned i)314 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
315 unsigned i) {
316 assert(i <= declarator.getNumTypeObjects());
317
318 DeclaratorChunk *result = 0;
319
320 // First, look inwards past parens for a function declarator.
321 for (; i != 0; --i) {
322 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
323 switch (fnChunk.Kind) {
324 case DeclaratorChunk::Paren:
325 continue;
326
327 // If we find anything except a function, bail out.
328 case DeclaratorChunk::Pointer:
329 case DeclaratorChunk::BlockPointer:
330 case DeclaratorChunk::Array:
331 case DeclaratorChunk::Reference:
332 case DeclaratorChunk::MemberPointer:
333 return result;
334
335 // If we do find a function declarator, scan inwards from that,
336 // looking for a block-pointer declarator.
337 case DeclaratorChunk::Function:
338 for (--i; i != 0; --i) {
339 DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
340 switch (blockChunk.Kind) {
341 case DeclaratorChunk::Paren:
342 case DeclaratorChunk::Pointer:
343 case DeclaratorChunk::Array:
344 case DeclaratorChunk::Function:
345 case DeclaratorChunk::Reference:
346 case DeclaratorChunk::MemberPointer:
347 continue;
348 case DeclaratorChunk::BlockPointer:
349 result = &blockChunk;
350 goto continue_outer;
351 }
352 llvm_unreachable("bad declarator chunk kind");
353 }
354
355 // If we run out of declarators doing that, we're done.
356 return result;
357 }
358 llvm_unreachable("bad declarator chunk kind");
359
360 // Okay, reconsider from our new point.
361 continue_outer: ;
362 }
363
364 // Ran out of chunks, bail out.
365 return result;
366 }
367
368 /// Given that an objc_gc attribute was written somewhere on a
369 /// declaration *other* than on the declarator itself (for which, use
370 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
371 /// didn't apply in whatever position it was written in, try to move
372 /// it to a more appropriate position.
distributeObjCPointerTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType type)373 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
374 AttributeList &attr,
375 QualType type) {
376 Declarator &declarator = state.getDeclarator();
377
378 // Move it to the outermost normal or block pointer declarator.
379 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
380 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
381 switch (chunk.Kind) {
382 case DeclaratorChunk::Pointer:
383 case DeclaratorChunk::BlockPointer: {
384 // But don't move an ARC ownership attribute to the return type
385 // of a block.
386 DeclaratorChunk *destChunk = 0;
387 if (state.isProcessingDeclSpec() &&
388 attr.getKind() == AttributeList::AT_ObjCOwnership)
389 destChunk = maybeMovePastReturnType(declarator, i - 1);
390 if (!destChunk) destChunk = &chunk;
391
392 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
393 destChunk->getAttrListRef());
394 return;
395 }
396
397 case DeclaratorChunk::Paren:
398 case DeclaratorChunk::Array:
399 continue;
400
401 // We may be starting at the return type of a block.
402 case DeclaratorChunk::Function:
403 if (state.isProcessingDeclSpec() &&
404 attr.getKind() == AttributeList::AT_ObjCOwnership) {
405 if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
406 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
407 dest->getAttrListRef());
408 return;
409 }
410 }
411 goto error;
412
413 // Don't walk through these.
414 case DeclaratorChunk::Reference:
415 case DeclaratorChunk::MemberPointer:
416 goto error;
417 }
418 }
419 error:
420
421 diagnoseBadTypeAttribute(state.getSema(), attr, type);
422 }
423
424 /// Distribute an objc_gc type attribute that was written on the
425 /// declarator.
426 static void
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)427 distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
428 AttributeList &attr,
429 QualType &declSpecType) {
430 Declarator &declarator = state.getDeclarator();
431
432 // objc_gc goes on the innermost pointer to something that's not a
433 // pointer.
434 unsigned innermost = -1U;
435 bool considerDeclSpec = true;
436 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
437 DeclaratorChunk &chunk = declarator.getTypeObject(i);
438 switch (chunk.Kind) {
439 case DeclaratorChunk::Pointer:
440 case DeclaratorChunk::BlockPointer:
441 innermost = i;
442 continue;
443
444 case DeclaratorChunk::Reference:
445 case DeclaratorChunk::MemberPointer:
446 case DeclaratorChunk::Paren:
447 case DeclaratorChunk::Array:
448 continue;
449
450 case DeclaratorChunk::Function:
451 considerDeclSpec = false;
452 goto done;
453 }
454 }
455 done:
456
457 // That might actually be the decl spec if we weren't blocked by
458 // anything in the declarator.
459 if (considerDeclSpec) {
460 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
461 // Splice the attribute into the decl spec. Prevents the
462 // attribute from being applied multiple times and gives
463 // the source-location-filler something to work with.
464 state.saveDeclSpecAttrs();
465 moveAttrFromListToList(attr, declarator.getAttrListRef(),
466 declarator.getMutableDeclSpec().getAttributes().getListRef());
467 return;
468 }
469 }
470
471 // Otherwise, if we found an appropriate chunk, splice the attribute
472 // into it.
473 if (innermost != -1U) {
474 moveAttrFromListToList(attr, declarator.getAttrListRef(),
475 declarator.getTypeObject(innermost).getAttrListRef());
476 return;
477 }
478
479 // Otherwise, diagnose when we're done building the type.
480 spliceAttrOutOfList(attr, declarator.getAttrListRef());
481 state.addIgnoredTypeAttr(attr);
482 }
483
484 /// A function type attribute was written somewhere in a declaration
485 /// *other* than on the declarator itself or in the decl spec. Given
486 /// that it didn't apply in whatever position it was written in, try
487 /// to move it to a more appropriate position.
distributeFunctionTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType type)488 static void distributeFunctionTypeAttr(TypeProcessingState &state,
489 AttributeList &attr,
490 QualType type) {
491 Declarator &declarator = state.getDeclarator();
492
493 // Try to push the attribute from the return type of a function to
494 // the function itself.
495 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
496 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
497 switch (chunk.Kind) {
498 case DeclaratorChunk::Function:
499 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
500 chunk.getAttrListRef());
501 return;
502
503 case DeclaratorChunk::Paren:
504 case DeclaratorChunk::Pointer:
505 case DeclaratorChunk::BlockPointer:
506 case DeclaratorChunk::Array:
507 case DeclaratorChunk::Reference:
508 case DeclaratorChunk::MemberPointer:
509 continue;
510 }
511 }
512
513 diagnoseBadTypeAttribute(state.getSema(), attr, type);
514 }
515
516 /// Try to distribute a function type attribute to the innermost
517 /// function chunk or type. Returns true if the attribute was
518 /// distributed, false if no location was found.
519 static bool
distributeFunctionTypeAttrToInnermost(TypeProcessingState & state,AttributeList & attr,AttributeList * & attrList,QualType & declSpecType)520 distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
521 AttributeList &attr,
522 AttributeList *&attrList,
523 QualType &declSpecType) {
524 Declarator &declarator = state.getDeclarator();
525
526 // Put it on the innermost function chunk, if there is one.
527 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
528 DeclaratorChunk &chunk = declarator.getTypeObject(i);
529 if (chunk.Kind != DeclaratorChunk::Function) continue;
530
531 moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
532 return true;
533 }
534
535 if (handleFunctionTypeAttr(state, attr, declSpecType)) {
536 spliceAttrOutOfList(attr, attrList);
537 return true;
538 }
539
540 return false;
541 }
542
543 /// A function type attribute was written in the decl spec. Try to
544 /// apply it somewhere.
545 static void
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)546 distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
547 AttributeList &attr,
548 QualType &declSpecType) {
549 state.saveDeclSpecAttrs();
550
551 // C++11 attributes before the decl specifiers actually appertain to
552 // the declarators. Move them straight there. We don't support the
553 // 'put them wherever you like' semantics we allow for GNU attributes.
554 if (attr.isCXX11Attribute()) {
555 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
556 state.getDeclarator().getAttrListRef());
557 return;
558 }
559
560 // Try to distribute to the innermost.
561 if (distributeFunctionTypeAttrToInnermost(state, attr,
562 state.getCurrentAttrListRef(),
563 declSpecType))
564 return;
565
566 // If that failed, diagnose the bad attribute when the declarator is
567 // fully built.
568 state.addIgnoredTypeAttr(attr);
569 }
570
571 /// A function type attribute was written on the declarator. Try to
572 /// apply it somewhere.
573 static void
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)574 distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
575 AttributeList &attr,
576 QualType &declSpecType) {
577 Declarator &declarator = state.getDeclarator();
578
579 // Try to distribute to the innermost.
580 if (distributeFunctionTypeAttrToInnermost(state, attr,
581 declarator.getAttrListRef(),
582 declSpecType))
583 return;
584
585 // If that failed, diagnose the bad attribute when the declarator is
586 // fully built.
587 spliceAttrOutOfList(attr, declarator.getAttrListRef());
588 state.addIgnoredTypeAttr(attr);
589 }
590
591 /// \brief Given that there are attributes written on the declarator
592 /// itself, try to distribute any type attributes to the appropriate
593 /// declarator chunk.
594 ///
595 /// These are attributes like the following:
596 /// int f ATTR;
597 /// int (f ATTR)();
598 /// but not necessarily this:
599 /// int f() ATTR;
distributeTypeAttrsFromDeclarator(TypeProcessingState & state,QualType & declSpecType)600 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
601 QualType &declSpecType) {
602 // Collect all the type attributes from the declarator itself.
603 assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
604 AttributeList *attr = state.getDeclarator().getAttributes();
605 AttributeList *next;
606 do {
607 next = attr->getNext();
608
609 // Do not distribute C++11 attributes. They have strict rules for what
610 // they appertain to.
611 if (attr->isCXX11Attribute())
612 continue;
613
614 switch (attr->getKind()) {
615 OBJC_POINTER_TYPE_ATTRS_CASELIST:
616 distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
617 break;
618
619 case AttributeList::AT_NSReturnsRetained:
620 if (!state.getSema().getLangOpts().ObjCAutoRefCount)
621 break;
622 // fallthrough
623
624 FUNCTION_TYPE_ATTRS_CASELIST:
625 distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
626 break;
627
628 default:
629 break;
630 }
631 } while ((attr = next));
632 }
633
634 /// Add a synthetic '()' to a block-literal declarator if it is
635 /// required, given the return type.
maybeSynthesizeBlockSignature(TypeProcessingState & state,QualType declSpecType)636 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
637 QualType declSpecType) {
638 Declarator &declarator = state.getDeclarator();
639
640 // First, check whether the declarator would produce a function,
641 // i.e. whether the innermost semantic chunk is a function.
642 if (declarator.isFunctionDeclarator()) {
643 // If so, make that declarator a prototyped declarator.
644 declarator.getFunctionTypeInfo().hasPrototype = true;
645 return;
646 }
647
648 // If there are any type objects, the type as written won't name a
649 // function, regardless of the decl spec type. This is because a
650 // block signature declarator is always an abstract-declarator, and
651 // abstract-declarators can't just be parentheses chunks. Therefore
652 // we need to build a function chunk unless there are no type
653 // objects and the decl spec type is a function.
654 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
655 return;
656
657 // Note that there *are* cases with invalid declarators where
658 // declarators consist solely of parentheses. In general, these
659 // occur only in failed efforts to make function declarators, so
660 // faking up the function chunk is still the right thing to do.
661
662 // Otherwise, we need to fake up a function declarator.
663 SourceLocation loc = declarator.getLocStart();
664
665 // ...and *prepend* it to the declarator.
666 SourceLocation NoLoc;
667 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
668 /*HasProto=*/true,
669 /*IsAmbiguous=*/false,
670 /*LParenLoc=*/NoLoc,
671 /*ArgInfo=*/0,
672 /*NumArgs=*/0,
673 /*EllipsisLoc=*/NoLoc,
674 /*RParenLoc=*/NoLoc,
675 /*TypeQuals=*/0,
676 /*RefQualifierIsLvalueRef=*/true,
677 /*RefQualifierLoc=*/NoLoc,
678 /*ConstQualifierLoc=*/NoLoc,
679 /*VolatileQualifierLoc=*/NoLoc,
680 /*MutableLoc=*/NoLoc,
681 EST_None,
682 /*ESpecLoc=*/NoLoc,
683 /*Exceptions=*/0,
684 /*ExceptionRanges=*/0,
685 /*NumExceptions=*/0,
686 /*NoexceptExpr=*/0,
687 loc, loc, declarator));
688
689 // For consistency, make sure the state still has us as processing
690 // the decl spec.
691 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
692 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
693 }
694
695 /// \brief Convert the specified declspec to the appropriate type
696 /// object.
697 /// \param state Specifies the declarator containing the declaration specifier
698 /// to be converted, along with other associated processing state.
699 /// \returns The type described by the declaration specifiers. This function
700 /// never returns null.
ConvertDeclSpecToType(TypeProcessingState & state)701 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
702 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
703 // checking.
704
705 Sema &S = state.getSema();
706 Declarator &declarator = state.getDeclarator();
707 const DeclSpec &DS = declarator.getDeclSpec();
708 SourceLocation DeclLoc = declarator.getIdentifierLoc();
709 if (DeclLoc.isInvalid())
710 DeclLoc = DS.getLocStart();
711
712 ASTContext &Context = S.Context;
713
714 QualType Result;
715 switch (DS.getTypeSpecType()) {
716 case DeclSpec::TST_void:
717 Result = Context.VoidTy;
718 break;
719 case DeclSpec::TST_char:
720 if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
721 Result = Context.CharTy;
722 else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
723 Result = Context.SignedCharTy;
724 else {
725 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
726 "Unknown TSS value");
727 Result = Context.UnsignedCharTy;
728 }
729 break;
730 case DeclSpec::TST_wchar:
731 if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
732 Result = Context.WCharTy;
733 else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
734 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
735 << DS.getSpecifierName(DS.getTypeSpecType());
736 Result = Context.getSignedWCharType();
737 } else {
738 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
739 "Unknown TSS value");
740 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
741 << DS.getSpecifierName(DS.getTypeSpecType());
742 Result = Context.getUnsignedWCharType();
743 }
744 break;
745 case DeclSpec::TST_char16:
746 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
747 "Unknown TSS value");
748 Result = Context.Char16Ty;
749 break;
750 case DeclSpec::TST_char32:
751 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
752 "Unknown TSS value");
753 Result = Context.Char32Ty;
754 break;
755 case DeclSpec::TST_unspecified:
756 // "<proto1,proto2>" is an objc qualified ID with a missing id.
757 if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
758 Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
759 (ObjCProtocolDecl*const*)PQ,
760 DS.getNumProtocolQualifiers());
761 Result = Context.getObjCObjectPointerType(Result);
762 break;
763 }
764
765 // If this is a missing declspec in a block literal return context, then it
766 // is inferred from the return statements inside the block.
767 // The declspec is always missing in a lambda expr context; it is either
768 // specified with a trailing return type or inferred.
769 if (declarator.getContext() == Declarator::LambdaExprContext ||
770 isOmittedBlockReturnType(declarator)) {
771 Result = Context.DependentTy;
772 break;
773 }
774
775 // Unspecified typespec defaults to int in C90. However, the C90 grammar
776 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
777 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
778 // Note that the one exception to this is function definitions, which are
779 // allowed to be completely missing a declspec. This is handled in the
780 // parser already though by it pretending to have seen an 'int' in this
781 // case.
782 if (S.getLangOpts().ImplicitInt) {
783 // In C89 mode, we only warn if there is a completely missing declspec
784 // when one is not allowed.
785 if (DS.isEmpty()) {
786 S.Diag(DeclLoc, diag::ext_missing_declspec)
787 << DS.getSourceRange()
788 << FixItHint::CreateInsertion(DS.getLocStart(), "int");
789 }
790 } else if (!DS.hasTypeSpecifier()) {
791 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
792 // "At least one type specifier shall be given in the declaration
793 // specifiers in each declaration, and in the specifier-qualifier list in
794 // each struct declaration and type name."
795 // FIXME: Does Microsoft really have the implicit int extension in C++?
796 if (S.getLangOpts().CPlusPlus &&
797 !S.getLangOpts().MicrosoftExt) {
798 S.Diag(DeclLoc, diag::err_missing_type_specifier)
799 << DS.getSourceRange();
800
801 // When this occurs in C++ code, often something is very broken with the
802 // value being declared, poison it as invalid so we don't get chains of
803 // errors.
804 declarator.setInvalidType(true);
805 } else {
806 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
807 << DS.getSourceRange();
808 }
809 }
810
811 // FALL THROUGH.
812 case DeclSpec::TST_int: {
813 if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
814 switch (DS.getTypeSpecWidth()) {
815 case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
816 case DeclSpec::TSW_short: Result = Context.ShortTy; break;
817 case DeclSpec::TSW_long: Result = Context.LongTy; break;
818 case DeclSpec::TSW_longlong:
819 Result = Context.LongLongTy;
820
821 // 'long long' is a C99 or C++11 feature.
822 if (!S.getLangOpts().C99) {
823 if (S.getLangOpts().CPlusPlus)
824 S.Diag(DS.getTypeSpecWidthLoc(),
825 S.getLangOpts().CPlusPlus11 ?
826 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
827 else
828 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
829 }
830 break;
831 }
832 } else {
833 switch (DS.getTypeSpecWidth()) {
834 case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
835 case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
836 case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
837 case DeclSpec::TSW_longlong:
838 Result = Context.UnsignedLongLongTy;
839
840 // 'long long' is a C99 or C++11 feature.
841 if (!S.getLangOpts().C99) {
842 if (S.getLangOpts().CPlusPlus)
843 S.Diag(DS.getTypeSpecWidthLoc(),
844 S.getLangOpts().CPlusPlus11 ?
845 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
846 else
847 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
848 }
849 break;
850 }
851 }
852 break;
853 }
854 case DeclSpec::TST_int128:
855 if (!S.PP.getTargetInfo().hasInt128Type())
856 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
857 if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
858 Result = Context.UnsignedInt128Ty;
859 else
860 Result = Context.Int128Ty;
861 break;
862 case DeclSpec::TST_half: Result = Context.HalfTy; break;
863 case DeclSpec::TST_float: Result = Context.FloatTy; break;
864 case DeclSpec::TST_double:
865 if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
866 Result = Context.LongDoubleTy;
867 else
868 Result = Context.DoubleTy;
869
870 if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
871 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
872 declarator.setInvalidType(true);
873 }
874 break;
875 case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
876 case DeclSpec::TST_decimal32: // _Decimal32
877 case DeclSpec::TST_decimal64: // _Decimal64
878 case DeclSpec::TST_decimal128: // _Decimal128
879 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
880 Result = Context.IntTy;
881 declarator.setInvalidType(true);
882 break;
883 case DeclSpec::TST_class:
884 case DeclSpec::TST_enum:
885 case DeclSpec::TST_union:
886 case DeclSpec::TST_struct:
887 case DeclSpec::TST_interface: {
888 TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
889 if (!D) {
890 // This can happen in C++ with ambiguous lookups.
891 Result = Context.IntTy;
892 declarator.setInvalidType(true);
893 break;
894 }
895
896 // If the type is deprecated or unavailable, diagnose it.
897 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
898
899 assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
900 DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
901
902 // TypeQuals handled by caller.
903 Result = Context.getTypeDeclType(D);
904
905 // In both C and C++, make an ElaboratedType.
906 ElaboratedTypeKeyword Keyword
907 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
908 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
909 break;
910 }
911 case DeclSpec::TST_typename: {
912 assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
913 DS.getTypeSpecSign() == 0 &&
914 "Can't handle qualifiers on typedef names yet!");
915 Result = S.GetTypeFromParser(DS.getRepAsType());
916 if (Result.isNull())
917 declarator.setInvalidType(true);
918 else if (DeclSpec::ProtocolQualifierListTy PQ
919 = DS.getProtocolQualifiers()) {
920 if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
921 // Silently drop any existing protocol qualifiers.
922 // TODO: determine whether that's the right thing to do.
923 if (ObjT->getNumProtocols())
924 Result = ObjT->getBaseType();
925
926 if (DS.getNumProtocolQualifiers())
927 Result = Context.getObjCObjectType(Result,
928 (ObjCProtocolDecl*const*) PQ,
929 DS.getNumProtocolQualifiers());
930 } else if (Result->isObjCIdType()) {
931 // id<protocol-list>
932 Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
933 (ObjCProtocolDecl*const*) PQ,
934 DS.getNumProtocolQualifiers());
935 Result = Context.getObjCObjectPointerType(Result);
936 } else if (Result->isObjCClassType()) {
937 // Class<protocol-list>
938 Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
939 (ObjCProtocolDecl*const*) PQ,
940 DS.getNumProtocolQualifiers());
941 Result = Context.getObjCObjectPointerType(Result);
942 } else {
943 S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
944 << DS.getSourceRange();
945 declarator.setInvalidType(true);
946 }
947 }
948
949 // TypeQuals handled by caller.
950 break;
951 }
952 case DeclSpec::TST_typeofType:
953 // FIXME: Preserve type source info.
954 Result = S.GetTypeFromParser(DS.getRepAsType());
955 assert(!Result.isNull() && "Didn't get a type for typeof?");
956 if (!Result->isDependentType())
957 if (const TagType *TT = Result->getAs<TagType>())
958 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
959 // TypeQuals handled by caller.
960 Result = Context.getTypeOfType(Result);
961 break;
962 case DeclSpec::TST_typeofExpr: {
963 Expr *E = DS.getRepAsExpr();
964 assert(E && "Didn't get an expression for typeof?");
965 // TypeQuals handled by caller.
966 Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
967 if (Result.isNull()) {
968 Result = Context.IntTy;
969 declarator.setInvalidType(true);
970 }
971 break;
972 }
973 case DeclSpec::TST_decltype: {
974 Expr *E = DS.getRepAsExpr();
975 assert(E && "Didn't get an expression for decltype?");
976 // TypeQuals handled by caller.
977 Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
978 if (Result.isNull()) {
979 Result = Context.IntTy;
980 declarator.setInvalidType(true);
981 }
982 break;
983 }
984 case DeclSpec::TST_underlyingType:
985 Result = S.GetTypeFromParser(DS.getRepAsType());
986 assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
987 Result = S.BuildUnaryTransformType(Result,
988 UnaryTransformType::EnumUnderlyingType,
989 DS.getTypeSpecTypeLoc());
990 if (Result.isNull()) {
991 Result = Context.IntTy;
992 declarator.setInvalidType(true);
993 }
994 break;
995
996 case DeclSpec::TST_auto: {
997 // TypeQuals handled by caller.
998 Result = Context.getAutoType(QualType());
999 break;
1000 }
1001
1002 case DeclSpec::TST_unknown_anytype:
1003 Result = Context.UnknownAnyTy;
1004 break;
1005
1006 case DeclSpec::TST_atomic:
1007 Result = S.GetTypeFromParser(DS.getRepAsType());
1008 assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1009 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1010 if (Result.isNull()) {
1011 Result = Context.IntTy;
1012 declarator.setInvalidType(true);
1013 }
1014 break;
1015
1016 case DeclSpec::TST_image1d_t:
1017 Result = Context.OCLImage1dTy;
1018 break;
1019
1020 case DeclSpec::TST_image1d_array_t:
1021 Result = Context.OCLImage1dArrayTy;
1022 break;
1023
1024 case DeclSpec::TST_image1d_buffer_t:
1025 Result = Context.OCLImage1dBufferTy;
1026 break;
1027
1028 case DeclSpec::TST_image2d_t:
1029 Result = Context.OCLImage2dTy;
1030 break;
1031
1032 case DeclSpec::TST_image2d_array_t:
1033 Result = Context.OCLImage2dArrayTy;
1034 break;
1035
1036 case DeclSpec::TST_image3d_t:
1037 Result = Context.OCLImage3dTy;
1038 break;
1039
1040 case DeclSpec::TST_sampler_t:
1041 Result = Context.OCLSamplerTy;
1042 break;
1043
1044 case DeclSpec::TST_event_t:
1045 Result = Context.OCLEventTy;
1046 break;
1047
1048 case DeclSpec::TST_error:
1049 Result = Context.IntTy;
1050 declarator.setInvalidType(true);
1051 break;
1052 }
1053
1054 // Handle complex types.
1055 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1056 if (S.getLangOpts().Freestanding)
1057 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1058 Result = Context.getComplexType(Result);
1059 } else if (DS.isTypeAltiVecVector()) {
1060 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1061 assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1062 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1063 if (DS.isTypeAltiVecPixel())
1064 VecKind = VectorType::AltiVecPixel;
1065 else if (DS.isTypeAltiVecBool())
1066 VecKind = VectorType::AltiVecBool;
1067 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1068 }
1069
1070 // FIXME: Imaginary.
1071 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1072 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1073
1074 // Before we process any type attributes, synthesize a block literal
1075 // function declarator if necessary.
1076 if (declarator.getContext() == Declarator::BlockLiteralContext)
1077 maybeSynthesizeBlockSignature(state, Result);
1078
1079 // Apply any type attributes from the decl spec. This may cause the
1080 // list of type attributes to be temporarily saved while the type
1081 // attributes are pushed around.
1082 if (AttributeList *attrs = DS.getAttributes().getList())
1083 processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
1084
1085 // Apply const/volatile/restrict qualifiers to T.
1086 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1087
1088 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1089 // or incomplete types shall not be restrict-qualified." C++ also allows
1090 // restrict-qualified references.
1091 if (TypeQuals & DeclSpec::TQ_restrict) {
1092 if (Result->isAnyPointerType() || Result->isReferenceType()) {
1093 QualType EltTy;
1094 if (Result->isObjCObjectPointerType())
1095 EltTy = Result;
1096 else
1097 EltTy = Result->isPointerType() ?
1098 Result->getAs<PointerType>()->getPointeeType() :
1099 Result->getAs<ReferenceType>()->getPointeeType();
1100
1101 // If we have a pointer or reference, the pointee must have an object
1102 // incomplete type.
1103 if (!EltTy->isIncompleteOrObjectType()) {
1104 S.Diag(DS.getRestrictSpecLoc(),
1105 diag::err_typecheck_invalid_restrict_invalid_pointee)
1106 << EltTy << DS.getSourceRange();
1107 TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
1108 }
1109 } else {
1110 S.Diag(DS.getRestrictSpecLoc(),
1111 diag::err_typecheck_invalid_restrict_not_pointer)
1112 << Result << DS.getSourceRange();
1113 TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
1114 }
1115 }
1116
1117 // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
1118 // of a function type includes any type qualifiers, the behavior is
1119 // undefined."
1120 if (Result->isFunctionType() && TypeQuals) {
1121 // Get some location to point at, either the C or V location.
1122 SourceLocation Loc;
1123 if (TypeQuals & DeclSpec::TQ_const)
1124 Loc = DS.getConstSpecLoc();
1125 else if (TypeQuals & DeclSpec::TQ_volatile)
1126 Loc = DS.getVolatileSpecLoc();
1127 else {
1128 assert((TypeQuals & DeclSpec::TQ_restrict) &&
1129 "Has CVR quals but not C, V, or R?");
1130 Loc = DS.getRestrictSpecLoc();
1131 }
1132 S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
1133 << Result << DS.getSourceRange();
1134 }
1135
1136 // C++ [dcl.ref]p1:
1137 // Cv-qualified references are ill-formed except when the
1138 // cv-qualifiers are introduced through the use of a typedef
1139 // (7.1.3) or of a template type argument (14.3), in which
1140 // case the cv-qualifiers are ignored.
1141 // FIXME: Shouldn't we be checking SCS_typedef here?
1142 if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1143 TypeQuals && Result->isReferenceType()) {
1144 TypeQuals &= ~DeclSpec::TQ_const;
1145 TypeQuals &= ~DeclSpec::TQ_volatile;
1146 }
1147
1148 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1149 // than once in the same specifier-list or qualifier-list, either directly
1150 // or via one or more typedefs."
1151 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1152 && TypeQuals & Result.getCVRQualifiers()) {
1153 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1154 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1155 << "const";
1156 }
1157
1158 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1159 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1160 << "volatile";
1161 }
1162
1163 // C90 doesn't have restrict, so it doesn't force us to produce a warning
1164 // in this case.
1165 }
1166
1167 Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
1168 Result = Context.getQualifiedType(Result, Quals);
1169 }
1170
1171 return Result;
1172 }
1173
getPrintableNameForEntity(DeclarationName Entity)1174 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1175 if (Entity)
1176 return Entity.getAsString();
1177
1178 return "type name";
1179 }
1180
BuildQualifiedType(QualType T,SourceLocation Loc,Qualifiers Qs)1181 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1182 Qualifiers Qs) {
1183 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1184 // object or incomplete types shall not be restrict-qualified."
1185 if (Qs.hasRestrict()) {
1186 unsigned DiagID = 0;
1187 QualType ProblemTy;
1188
1189 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1190 if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1191 if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1192 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1193 ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1194 }
1195 } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1196 if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1197 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1198 ProblemTy = T->getAs<PointerType>()->getPointeeType();
1199 }
1200 } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1201 if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1202 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1203 ProblemTy = T->getAs<PointerType>()->getPointeeType();
1204 }
1205 } else if (!Ty->isDependentType()) {
1206 // FIXME: this deserves a proper diagnostic
1207 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1208 ProblemTy = T;
1209 }
1210
1211 if (DiagID) {
1212 Diag(Loc, DiagID) << ProblemTy;
1213 Qs.removeRestrict();
1214 }
1215 }
1216
1217 return Context.getQualifiedType(T, Qs);
1218 }
1219
1220 /// \brief Build a paren type including \p T.
BuildParenType(QualType T)1221 QualType Sema::BuildParenType(QualType T) {
1222 return Context.getParenType(T);
1223 }
1224
1225 /// Given that we're building a pointer or reference to the given
inferARCLifetimeForPointee(Sema & S,QualType type,SourceLocation loc,bool isReference)1226 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1227 SourceLocation loc,
1228 bool isReference) {
1229 // Bail out if retention is unrequired or already specified.
1230 if (!type->isObjCLifetimeType() ||
1231 type.getObjCLifetime() != Qualifiers::OCL_None)
1232 return type;
1233
1234 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1235
1236 // If the object type is const-qualified, we can safely use
1237 // __unsafe_unretained. This is safe (because there are no read
1238 // barriers), and it'll be safe to coerce anything but __weak* to
1239 // the resulting type.
1240 if (type.isConstQualified()) {
1241 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1242
1243 // Otherwise, check whether the static type does not require
1244 // retaining. This currently only triggers for Class (possibly
1245 // protocol-qualifed, and arrays thereof).
1246 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1247 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1248
1249 // If we are in an unevaluated context, like sizeof, skip adding a
1250 // qualification.
1251 } else if (S.isUnevaluatedContext()) {
1252 return type;
1253
1254 // If that failed, give an error and recover using __strong. __strong
1255 // is the option most likely to prevent spurious second-order diagnostics,
1256 // like when binding a reference to a field.
1257 } else {
1258 // These types can show up in private ivars in system headers, so
1259 // we need this to not be an error in those cases. Instead we
1260 // want to delay.
1261 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1262 S.DelayedDiagnostics.add(
1263 sema::DelayedDiagnostic::makeForbiddenType(loc,
1264 diag::err_arc_indirect_no_ownership, type, isReference));
1265 } else {
1266 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1267 }
1268 implicitLifetime = Qualifiers::OCL_Strong;
1269 }
1270 assert(implicitLifetime && "didn't infer any lifetime!");
1271
1272 Qualifiers qs;
1273 qs.addObjCLifetime(implicitLifetime);
1274 return S.Context.getQualifiedType(type, qs);
1275 }
1276
1277 /// \brief Build a pointer type.
1278 ///
1279 /// \param T The type to which we'll be building a pointer.
1280 ///
1281 /// \param Loc The location of the entity whose type involves this
1282 /// pointer type or, if there is no such entity, the location of the
1283 /// type that will have pointer type.
1284 ///
1285 /// \param Entity The name of the entity that involves the pointer
1286 /// type, if known.
1287 ///
1288 /// \returns A suitable pointer type, if there are no
1289 /// errors. Otherwise, returns a NULL type.
BuildPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)1290 QualType Sema::BuildPointerType(QualType T,
1291 SourceLocation Loc, DeclarationName Entity) {
1292 if (T->isReferenceType()) {
1293 // C++ 8.3.2p4: There shall be no ... pointers to references ...
1294 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1295 << getPrintableNameForEntity(Entity) << T;
1296 return QualType();
1297 }
1298
1299 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1300
1301 // In ARC, it is forbidden to build pointers to unqualified pointers.
1302 if (getLangOpts().ObjCAutoRefCount)
1303 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1304
1305 // Build the pointer type.
1306 return Context.getPointerType(T);
1307 }
1308
1309 /// \brief Build a reference type.
1310 ///
1311 /// \param T The type to which we'll be building a reference.
1312 ///
1313 /// \param Loc The location of the entity whose type involves this
1314 /// reference type or, if there is no such entity, the location of the
1315 /// type that will have reference type.
1316 ///
1317 /// \param Entity The name of the entity that involves the reference
1318 /// type, if known.
1319 ///
1320 /// \returns A suitable reference type, if there are no
1321 /// errors. Otherwise, returns a NULL type.
BuildReferenceType(QualType T,bool SpelledAsLValue,SourceLocation Loc,DeclarationName Entity)1322 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1323 SourceLocation Loc,
1324 DeclarationName Entity) {
1325 assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1326 "Unresolved overloaded function type");
1327
1328 // C++0x [dcl.ref]p6:
1329 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1330 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1331 // type T, an attempt to create the type "lvalue reference to cv TR" creates
1332 // the type "lvalue reference to T", while an attempt to create the type
1333 // "rvalue reference to cv TR" creates the type TR.
1334 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1335
1336 // C++ [dcl.ref]p4: There shall be no references to references.
1337 //
1338 // According to C++ DR 106, references to references are only
1339 // diagnosed when they are written directly (e.g., "int & &"),
1340 // but not when they happen via a typedef:
1341 //
1342 // typedef int& intref;
1343 // typedef intref& intref2;
1344 //
1345 // Parser::ParseDeclaratorInternal diagnoses the case where
1346 // references are written directly; here, we handle the
1347 // collapsing of references-to-references as described in C++0x.
1348 // DR 106 and 540 introduce reference-collapsing into C++98/03.
1349
1350 // C++ [dcl.ref]p1:
1351 // A declarator that specifies the type "reference to cv void"
1352 // is ill-formed.
1353 if (T->isVoidType()) {
1354 Diag(Loc, diag::err_reference_to_void);
1355 return QualType();
1356 }
1357
1358 // In ARC, it is forbidden to build references to unqualified pointers.
1359 if (getLangOpts().ObjCAutoRefCount)
1360 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1361
1362 // Handle restrict on references.
1363 if (LValueRef)
1364 return Context.getLValueReferenceType(T, SpelledAsLValue);
1365 return Context.getRValueReferenceType(T);
1366 }
1367
1368 /// Check whether the specified array size makes the array type a VLA. If so,
1369 /// return true, if not, return the size of the array in SizeVal.
isArraySizeVLA(Sema & S,Expr * ArraySize,llvm::APSInt & SizeVal)1370 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1371 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1372 // (like gnu99, but not c99) accept any evaluatable value as an extension.
1373 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1374 public:
1375 VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1376
1377 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1378 }
1379
1380 virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1381 S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1382 }
1383 } Diagnoser;
1384
1385 return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1386 S.LangOpts.GNUMode).isInvalid();
1387 }
1388
1389
1390 /// \brief Build an array type.
1391 ///
1392 /// \param T The type of each element in the array.
1393 ///
1394 /// \param ASM C99 array size modifier (e.g., '*', 'static').
1395 ///
1396 /// \param ArraySize Expression describing the size of the array.
1397 ///
1398 /// \param Brackets The range from the opening '[' to the closing ']'.
1399 ///
1400 /// \param Entity The name of the entity that involves the array
1401 /// type, if known.
1402 ///
1403 /// \returns A suitable array type, if there are no errors. Otherwise,
1404 /// returns a NULL type.
BuildArrayType(QualType T,ArrayType::ArraySizeModifier ASM,Expr * ArraySize,unsigned Quals,SourceRange Brackets,DeclarationName Entity)1405 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1406 Expr *ArraySize, unsigned Quals,
1407 SourceRange Brackets, DeclarationName Entity) {
1408
1409 SourceLocation Loc = Brackets.getBegin();
1410 if (getLangOpts().CPlusPlus) {
1411 // C++ [dcl.array]p1:
1412 // T is called the array element type; this type shall not be a reference
1413 // type, the (possibly cv-qualified) type void, a function type or an
1414 // abstract class type.
1415 //
1416 // C++ [dcl.array]p3:
1417 // When several "array of" specifications are adjacent, [...] only the
1418 // first of the constant expressions that specify the bounds of the arrays
1419 // may be omitted.
1420 //
1421 // Note: function types are handled in the common path with C.
1422 if (T->isReferenceType()) {
1423 Diag(Loc, diag::err_illegal_decl_array_of_references)
1424 << getPrintableNameForEntity(Entity) << T;
1425 return QualType();
1426 }
1427
1428 if (T->isVoidType() || T->isIncompleteArrayType()) {
1429 Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1430 return QualType();
1431 }
1432
1433 if (RequireNonAbstractType(Brackets.getBegin(), T,
1434 diag::err_array_of_abstract_type))
1435 return QualType();
1436
1437 } else {
1438 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1439 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1440 if (RequireCompleteType(Loc, T,
1441 diag::err_illegal_decl_array_incomplete_type))
1442 return QualType();
1443 }
1444
1445 if (T->isFunctionType()) {
1446 Diag(Loc, diag::err_illegal_decl_array_of_functions)
1447 << getPrintableNameForEntity(Entity) << T;
1448 return QualType();
1449 }
1450
1451 if (T->getContainedAutoType()) {
1452 Diag(Loc, diag::err_illegal_decl_array_of_auto)
1453 << getPrintableNameForEntity(Entity) << T;
1454 return QualType();
1455 }
1456
1457 if (const RecordType *EltTy = T->getAs<RecordType>()) {
1458 // If the element type is a struct or union that contains a variadic
1459 // array, accept it as a GNU extension: C99 6.7.2.1p2.
1460 if (EltTy->getDecl()->hasFlexibleArrayMember())
1461 Diag(Loc, diag::ext_flexible_array_in_array) << T;
1462 } else if (T->isObjCObjectType()) {
1463 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1464 return QualType();
1465 }
1466
1467 // Do placeholder conversions on the array size expression.
1468 if (ArraySize && ArraySize->hasPlaceholderType()) {
1469 ExprResult Result = CheckPlaceholderExpr(ArraySize);
1470 if (Result.isInvalid()) return QualType();
1471 ArraySize = Result.take();
1472 }
1473
1474 // Do lvalue-to-rvalue conversions on the array size expression.
1475 if (ArraySize && !ArraySize->isRValue()) {
1476 ExprResult Result = DefaultLvalueConversion(ArraySize);
1477 if (Result.isInvalid())
1478 return QualType();
1479
1480 ArraySize = Result.take();
1481 }
1482
1483 // C99 6.7.5.2p1: The size expression shall have integer type.
1484 // C++11 allows contextual conversions to such types.
1485 if (!getLangOpts().CPlusPlus11 &&
1486 ArraySize && !ArraySize->isTypeDependent() &&
1487 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1488 Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1489 << ArraySize->getType() << ArraySize->getSourceRange();
1490 return QualType();
1491 }
1492
1493 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1494 if (!ArraySize) {
1495 if (ASM == ArrayType::Star)
1496 T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1497 else
1498 T = Context.getIncompleteArrayType(T, ASM, Quals);
1499 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1500 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1501 } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1502 !T->isConstantSizeType()) ||
1503 isArraySizeVLA(*this, ArraySize, ConstVal)) {
1504 // Even in C++11, don't allow contextual conversions in the array bound
1505 // of a VLA.
1506 if (getLangOpts().CPlusPlus11 &&
1507 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1508 Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1509 << ArraySize->getType() << ArraySize->getSourceRange();
1510 return QualType();
1511 }
1512
1513 // C99: an array with an element type that has a non-constant-size is a VLA.
1514 // C99: an array with a non-ICE size is a VLA. We accept any expression
1515 // that we can fold to a non-zero positive value as an extension.
1516 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1517 } else {
1518 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1519 // have a value greater than zero.
1520 if (ConstVal.isSigned() && ConstVal.isNegative()) {
1521 if (Entity)
1522 Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1523 << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1524 else
1525 Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1526 << ArraySize->getSourceRange();
1527 return QualType();
1528 }
1529 if (ConstVal == 0) {
1530 // GCC accepts zero sized static arrays. We allow them when
1531 // we're not in a SFINAE context.
1532 Diag(ArraySize->getLocStart(),
1533 isSFINAEContext()? diag::err_typecheck_zero_array_size
1534 : diag::ext_typecheck_zero_array_size)
1535 << ArraySize->getSourceRange();
1536
1537 if (ASM == ArrayType::Static) {
1538 Diag(ArraySize->getLocStart(),
1539 diag::warn_typecheck_zero_static_array_size)
1540 << ArraySize->getSourceRange();
1541 ASM = ArrayType::Normal;
1542 }
1543 } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1544 !T->isIncompleteType()) {
1545 // Is the array too large?
1546 unsigned ActiveSizeBits
1547 = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1548 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1549 Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1550 << ConstVal.toString(10)
1551 << ArraySize->getSourceRange();
1552 }
1553
1554 T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1555 }
1556
1557 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
1558 if (getLangOpts().OpenCL && T->isVariableArrayType()) {
1559 Diag(Loc, diag::err_opencl_vla);
1560 return QualType();
1561 }
1562 // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1563 if (!getLangOpts().C99) {
1564 if (T->isVariableArrayType()) {
1565 // Prohibit the use of non-POD types in VLAs.
1566 QualType BaseT = Context.getBaseElementType(T);
1567 if (!T->isDependentType() &&
1568 !BaseT.isPODType(Context) &&
1569 !BaseT->isObjCLifetimeType()) {
1570 Diag(Loc, diag::err_vla_non_pod)
1571 << BaseT;
1572 return QualType();
1573 }
1574 // Prohibit the use of VLAs during template argument deduction.
1575 else if (isSFINAEContext()) {
1576 Diag(Loc, diag::err_vla_in_sfinae);
1577 return QualType();
1578 }
1579 // Just extwarn about VLAs.
1580 else
1581 Diag(Loc, diag::ext_vla);
1582 } else if (ASM != ArrayType::Normal || Quals != 0)
1583 Diag(Loc,
1584 getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1585 : diag::ext_c99_array_usage) << ASM;
1586 }
1587
1588 if (T->isVariableArrayType()) {
1589 // Warn about VLAs for -Wvla.
1590 Diag(Loc, diag::warn_vla_used);
1591 }
1592
1593 return T;
1594 }
1595
1596 /// \brief Build an ext-vector type.
1597 ///
1598 /// Run the required checks for the extended vector type.
BuildExtVectorType(QualType T,Expr * ArraySize,SourceLocation AttrLoc)1599 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1600 SourceLocation AttrLoc) {
1601 // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1602 // in conjunction with complex types (pointers, arrays, functions, etc.).
1603 if (!T->isDependentType() &&
1604 !T->isIntegerType() && !T->isRealFloatingType()) {
1605 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1606 return QualType();
1607 }
1608
1609 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1610 llvm::APSInt vecSize(32);
1611 if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1612 Diag(AttrLoc, diag::err_attribute_argument_not_int)
1613 << "ext_vector_type" << ArraySize->getSourceRange();
1614 return QualType();
1615 }
1616
1617 // unlike gcc's vector_size attribute, the size is specified as the
1618 // number of elements, not the number of bytes.
1619 unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1620
1621 if (vectorSize == 0) {
1622 Diag(AttrLoc, diag::err_attribute_zero_size)
1623 << ArraySize->getSourceRange();
1624 return QualType();
1625 }
1626
1627 return Context.getExtVectorType(T, vectorSize);
1628 }
1629
1630 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1631 }
1632
BuildFunctionType(QualType T,llvm::MutableArrayRef<QualType> ParamTypes,SourceLocation Loc,DeclarationName Entity,const FunctionProtoType::ExtProtoInfo & EPI)1633 QualType Sema::BuildFunctionType(QualType T,
1634 llvm::MutableArrayRef<QualType> ParamTypes,
1635 SourceLocation Loc, DeclarationName Entity,
1636 const FunctionProtoType::ExtProtoInfo &EPI) {
1637 if (T->isArrayType() || T->isFunctionType()) {
1638 Diag(Loc, diag::err_func_returning_array_function)
1639 << T->isFunctionType() << T;
1640 return QualType();
1641 }
1642
1643 // Functions cannot return half FP.
1644 if (T->isHalfType()) {
1645 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1646 FixItHint::CreateInsertion(Loc, "*");
1647 return QualType();
1648 }
1649
1650 bool Invalid = false;
1651 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
1652 // FIXME: Loc is too inprecise here, should use proper locations for args.
1653 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1654 if (ParamType->isVoidType()) {
1655 Diag(Loc, diag::err_param_with_void_type);
1656 Invalid = true;
1657 } else if (ParamType->isHalfType()) {
1658 // Disallow half FP arguments.
1659 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1660 FixItHint::CreateInsertion(Loc, "*");
1661 Invalid = true;
1662 }
1663
1664 ParamTypes[Idx] = ParamType;
1665 }
1666
1667 if (Invalid)
1668 return QualType();
1669
1670 return Context.getFunctionType(T, ParamTypes, EPI);
1671 }
1672
1673 /// \brief Build a member pointer type \c T Class::*.
1674 ///
1675 /// \param T the type to which the member pointer refers.
1676 /// \param Class the class type into which the member pointer points.
1677 /// \param Loc the location where this type begins
1678 /// \param Entity the name of the entity that will have this member pointer type
1679 ///
1680 /// \returns a member pointer type, if successful, or a NULL type if there was
1681 /// an error.
BuildMemberPointerType(QualType T,QualType Class,SourceLocation Loc,DeclarationName Entity)1682 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1683 SourceLocation Loc,
1684 DeclarationName Entity) {
1685 // Verify that we're not building a pointer to pointer to function with
1686 // exception specification.
1687 if (CheckDistantExceptionSpec(T)) {
1688 Diag(Loc, diag::err_distant_exception_spec);
1689
1690 // FIXME: If we're doing this as part of template instantiation,
1691 // we should return immediately.
1692
1693 // Build the type anyway, but use the canonical type so that the
1694 // exception specifiers are stripped off.
1695 T = Context.getCanonicalType(T);
1696 }
1697
1698 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1699 // with reference type, or "cv void."
1700 if (T->isReferenceType()) {
1701 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1702 << (Entity? Entity.getAsString() : "type name") << T;
1703 return QualType();
1704 }
1705
1706 if (T->isVoidType()) {
1707 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1708 << (Entity? Entity.getAsString() : "type name");
1709 return QualType();
1710 }
1711
1712 if (!Class->isDependentType() && !Class->isRecordType()) {
1713 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1714 return QualType();
1715 }
1716
1717 // C++ allows the class type in a member pointer to be an incomplete type.
1718 // In the Microsoft ABI, the size of the member pointer can vary
1719 // according to the class type, which means that we really need a
1720 // complete type if possible, which means we need to instantiate templates.
1721 //
1722 // For now, just require a complete type, which will instantiate
1723 // templates. This will also error if the type is just forward-declared,
1724 // which is a bug, but it's a bug that saves us from dealing with some
1725 // complexities at the moment.
1726 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
1727 RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1728 return QualType();
1729
1730 return Context.getMemberPointerType(T, Class.getTypePtr());
1731 }
1732
1733 /// \brief Build a block pointer type.
1734 ///
1735 /// \param T The type to which we'll be building a block pointer.
1736 ///
1737 /// \param Loc The source location, used for diagnostics.
1738 ///
1739 /// \param Entity The name of the entity that involves the block pointer
1740 /// type, if known.
1741 ///
1742 /// \returns A suitable block pointer type, if there are no
1743 /// errors. Otherwise, returns a NULL type.
BuildBlockPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)1744 QualType Sema::BuildBlockPointerType(QualType T,
1745 SourceLocation Loc,
1746 DeclarationName Entity) {
1747 if (!T->isFunctionType()) {
1748 Diag(Loc, diag::err_nonfunction_block_type);
1749 return QualType();
1750 }
1751
1752 return Context.getBlockPointerType(T);
1753 }
1754
GetTypeFromParser(ParsedType Ty,TypeSourceInfo ** TInfo)1755 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1756 QualType QT = Ty.get();
1757 if (QT.isNull()) {
1758 if (TInfo) *TInfo = 0;
1759 return QualType();
1760 }
1761
1762 TypeSourceInfo *DI = 0;
1763 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1764 QT = LIT->getType();
1765 DI = LIT->getTypeSourceInfo();
1766 }
1767
1768 if (TInfo) *TInfo = DI;
1769 return QT;
1770 }
1771
1772 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1773 Qualifiers::ObjCLifetime ownership,
1774 unsigned chunkIndex);
1775
1776 /// Given that this is the declaration of a parameter under ARC,
1777 /// attempt to infer attributes and such for pointer-to-whatever
1778 /// types.
inferARCWriteback(TypeProcessingState & state,QualType & declSpecType)1779 static void inferARCWriteback(TypeProcessingState &state,
1780 QualType &declSpecType) {
1781 Sema &S = state.getSema();
1782 Declarator &declarator = state.getDeclarator();
1783
1784 // TODO: should we care about decl qualifiers?
1785
1786 // Check whether the declarator has the expected form. We walk
1787 // from the inside out in order to make the block logic work.
1788 unsigned outermostPointerIndex = 0;
1789 bool isBlockPointer = false;
1790 unsigned numPointers = 0;
1791 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1792 unsigned chunkIndex = i;
1793 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1794 switch (chunk.Kind) {
1795 case DeclaratorChunk::Paren:
1796 // Ignore parens.
1797 break;
1798
1799 case DeclaratorChunk::Reference:
1800 case DeclaratorChunk::Pointer:
1801 // Count the number of pointers. Treat references
1802 // interchangeably as pointers; if they're mis-ordered, normal
1803 // type building will discover that.
1804 outermostPointerIndex = chunkIndex;
1805 numPointers++;
1806 break;
1807
1808 case DeclaratorChunk::BlockPointer:
1809 // If we have a pointer to block pointer, that's an acceptable
1810 // indirect reference; anything else is not an application of
1811 // the rules.
1812 if (numPointers != 1) return;
1813 numPointers++;
1814 outermostPointerIndex = chunkIndex;
1815 isBlockPointer = true;
1816
1817 // We don't care about pointer structure in return values here.
1818 goto done;
1819
1820 case DeclaratorChunk::Array: // suppress if written (id[])?
1821 case DeclaratorChunk::Function:
1822 case DeclaratorChunk::MemberPointer:
1823 return;
1824 }
1825 }
1826 done:
1827
1828 // If we have *one* pointer, then we want to throw the qualifier on
1829 // the declaration-specifiers, which means that it needs to be a
1830 // retainable object type.
1831 if (numPointers == 1) {
1832 // If it's not a retainable object type, the rule doesn't apply.
1833 if (!declSpecType->isObjCRetainableType()) return;
1834
1835 // If it already has lifetime, don't do anything.
1836 if (declSpecType.getObjCLifetime()) return;
1837
1838 // Otherwise, modify the type in-place.
1839 Qualifiers qs;
1840
1841 if (declSpecType->isObjCARCImplicitlyUnretainedType())
1842 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1843 else
1844 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1845 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1846
1847 // If we have *two* pointers, then we want to throw the qualifier on
1848 // the outermost pointer.
1849 } else if (numPointers == 2) {
1850 // If we don't have a block pointer, we need to check whether the
1851 // declaration-specifiers gave us something that will turn into a
1852 // retainable object pointer after we slap the first pointer on it.
1853 if (!isBlockPointer && !declSpecType->isObjCObjectType())
1854 return;
1855
1856 // Look for an explicit lifetime attribute there.
1857 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1858 if (chunk.Kind != DeclaratorChunk::Pointer &&
1859 chunk.Kind != DeclaratorChunk::BlockPointer)
1860 return;
1861 for (const AttributeList *attr = chunk.getAttrs(); attr;
1862 attr = attr->getNext())
1863 if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1864 return;
1865
1866 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1867 outermostPointerIndex);
1868
1869 // Any other number of pointers/references does not trigger the rule.
1870 } else return;
1871
1872 // TODO: mark whether we did this inference?
1873 }
1874
DiagnoseIgnoredQualifiers(unsigned Quals,SourceLocation ConstQualLoc,SourceLocation VolatileQualLoc,SourceLocation RestrictQualLoc,Sema & S)1875 static void DiagnoseIgnoredQualifiers(unsigned Quals,
1876 SourceLocation ConstQualLoc,
1877 SourceLocation VolatileQualLoc,
1878 SourceLocation RestrictQualLoc,
1879 Sema& S) {
1880 std::string QualStr;
1881 unsigned NumQuals = 0;
1882 SourceLocation Loc;
1883
1884 FixItHint ConstFixIt;
1885 FixItHint VolatileFixIt;
1886 FixItHint RestrictFixIt;
1887
1888 const SourceManager &SM = S.getSourceManager();
1889
1890 // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1891 // find a range and grow it to encompass all the qualifiers, regardless of
1892 // the order in which they textually appear.
1893 if (Quals & Qualifiers::Const) {
1894 ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1895 QualStr = "const";
1896 ++NumQuals;
1897 if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1898 Loc = ConstQualLoc;
1899 }
1900 if (Quals & Qualifiers::Volatile) {
1901 VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1902 QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1903 ++NumQuals;
1904 if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1905 Loc = VolatileQualLoc;
1906 }
1907 if (Quals & Qualifiers::Restrict) {
1908 RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1909 QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1910 ++NumQuals;
1911 if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1912 Loc = RestrictQualLoc;
1913 }
1914
1915 assert(NumQuals > 0 && "No known qualifiers?");
1916
1917 S.Diag(Loc, diag::warn_qual_return_type)
1918 << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1919 }
1920
GetDeclSpecTypeForDeclarator(TypeProcessingState & state,TypeSourceInfo * & ReturnTypeInfo)1921 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1922 TypeSourceInfo *&ReturnTypeInfo) {
1923 Sema &SemaRef = state.getSema();
1924 Declarator &D = state.getDeclarator();
1925 QualType T;
1926 ReturnTypeInfo = 0;
1927
1928 // The TagDecl owned by the DeclSpec.
1929 TagDecl *OwnedTagDecl = 0;
1930
1931 switch (D.getName().getKind()) {
1932 case UnqualifiedId::IK_ImplicitSelfParam:
1933 case UnqualifiedId::IK_OperatorFunctionId:
1934 case UnqualifiedId::IK_Identifier:
1935 case UnqualifiedId::IK_LiteralOperatorId:
1936 case UnqualifiedId::IK_TemplateId:
1937 T = ConvertDeclSpecToType(state);
1938
1939 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1940 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1941 // Owned declaration is embedded in declarator.
1942 OwnedTagDecl->setEmbeddedInDeclarator(true);
1943 }
1944 break;
1945
1946 case UnqualifiedId::IK_ConstructorName:
1947 case UnqualifiedId::IK_ConstructorTemplateId:
1948 case UnqualifiedId::IK_DestructorName:
1949 // Constructors and destructors don't have return types. Use
1950 // "void" instead.
1951 T = SemaRef.Context.VoidTy;
1952 if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
1953 processTypeAttrs(state, T, TAL_DeclSpec, attrs);
1954 break;
1955
1956 case UnqualifiedId::IK_ConversionFunctionId:
1957 // The result type of a conversion function is the type that it
1958 // converts to.
1959 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1960 &ReturnTypeInfo);
1961 break;
1962 }
1963
1964 if (D.getAttributes())
1965 distributeTypeAttrsFromDeclarator(state, T);
1966
1967 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1968 // In C++11, a function declarator using 'auto' must have a trailing return
1969 // type (this is checked later) and we can skip this. In other languages
1970 // using auto, we need to check regardless.
1971 if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1972 (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
1973 int Error = -1;
1974
1975 switch (D.getContext()) {
1976 case Declarator::KNRTypeListContext:
1977 llvm_unreachable("K&R type lists aren't allowed in C++");
1978 case Declarator::LambdaExprContext:
1979 llvm_unreachable("Can't specify a type specifier in lambda grammar");
1980 case Declarator::ObjCParameterContext:
1981 case Declarator::ObjCResultContext:
1982 case Declarator::PrototypeContext:
1983 Error = 0; // Function prototype
1984 break;
1985 case Declarator::MemberContext:
1986 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1987 break;
1988 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1989 case TTK_Enum: llvm_unreachable("unhandled tag kind");
1990 case TTK_Struct: Error = 1; /* Struct member */ break;
1991 case TTK_Union: Error = 2; /* Union member */ break;
1992 case TTK_Class: Error = 3; /* Class member */ break;
1993 case TTK_Interface: Error = 4; /* Interface member */ break;
1994 }
1995 break;
1996 case Declarator::CXXCatchContext:
1997 case Declarator::ObjCCatchContext:
1998 Error = 5; // Exception declaration
1999 break;
2000 case Declarator::TemplateParamContext:
2001 Error = 6; // Template parameter
2002 break;
2003 case Declarator::BlockLiteralContext:
2004 Error = 7; // Block literal
2005 break;
2006 case Declarator::TemplateTypeArgContext:
2007 Error = 8; // Template type argument
2008 break;
2009 case Declarator::AliasDeclContext:
2010 case Declarator::AliasTemplateContext:
2011 Error = 10; // Type alias
2012 break;
2013 case Declarator::TrailingReturnContext:
2014 Error = 11; // Function return type
2015 break;
2016 case Declarator::TypeNameContext:
2017 Error = 12; // Generic
2018 break;
2019 case Declarator::FileContext:
2020 case Declarator::BlockContext:
2021 case Declarator::ForContext:
2022 case Declarator::ConditionContext:
2023 case Declarator::CXXNewContext:
2024 break;
2025 }
2026
2027 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2028 Error = 9;
2029
2030 // In Objective-C it is an error to use 'auto' on a function declarator.
2031 if (D.isFunctionDeclarator())
2032 Error = 11;
2033
2034 // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2035 // contains a trailing return type. That is only legal at the outermost
2036 // level. Check all declarator chunks (outermost first) anyway, to give
2037 // better diagnostics.
2038 if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
2039 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2040 unsigned chunkIndex = e - i - 1;
2041 state.setCurrentChunkIndex(chunkIndex);
2042 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2043 if (DeclType.Kind == DeclaratorChunk::Function) {
2044 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2045 if (FTI.hasTrailingReturnType()) {
2046 Error = -1;
2047 break;
2048 }
2049 }
2050 }
2051 }
2052
2053 if (Error != -1) {
2054 SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2055 diag::err_auto_not_allowed)
2056 << Error;
2057 T = SemaRef.Context.IntTy;
2058 D.setInvalidType(true);
2059 } else
2060 SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2061 diag::warn_cxx98_compat_auto_type_specifier);
2062 }
2063
2064 if (SemaRef.getLangOpts().CPlusPlus &&
2065 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2066 // Check the contexts where C++ forbids the declaration of a new class
2067 // or enumeration in a type-specifier-seq.
2068 switch (D.getContext()) {
2069 case Declarator::TrailingReturnContext:
2070 // Class and enumeration definitions are syntactically not allowed in
2071 // trailing return types.
2072 llvm_unreachable("parser should not have allowed this");
2073 break;
2074 case Declarator::FileContext:
2075 case Declarator::MemberContext:
2076 case Declarator::BlockContext:
2077 case Declarator::ForContext:
2078 case Declarator::BlockLiteralContext:
2079 case Declarator::LambdaExprContext:
2080 // C++11 [dcl.type]p3:
2081 // A type-specifier-seq shall not define a class or enumeration unless
2082 // it appears in the type-id of an alias-declaration (7.1.3) that is not
2083 // the declaration of a template-declaration.
2084 case Declarator::AliasDeclContext:
2085 break;
2086 case Declarator::AliasTemplateContext:
2087 SemaRef.Diag(OwnedTagDecl->getLocation(),
2088 diag::err_type_defined_in_alias_template)
2089 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2090 D.setInvalidType(true);
2091 break;
2092 case Declarator::TypeNameContext:
2093 case Declarator::TemplateParamContext:
2094 case Declarator::CXXNewContext:
2095 case Declarator::CXXCatchContext:
2096 case Declarator::ObjCCatchContext:
2097 case Declarator::TemplateTypeArgContext:
2098 SemaRef.Diag(OwnedTagDecl->getLocation(),
2099 diag::err_type_defined_in_type_specifier)
2100 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2101 D.setInvalidType(true);
2102 break;
2103 case Declarator::PrototypeContext:
2104 case Declarator::ObjCParameterContext:
2105 case Declarator::ObjCResultContext:
2106 case Declarator::KNRTypeListContext:
2107 // C++ [dcl.fct]p6:
2108 // Types shall not be defined in return or parameter types.
2109 SemaRef.Diag(OwnedTagDecl->getLocation(),
2110 diag::err_type_defined_in_param_type)
2111 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2112 D.setInvalidType(true);
2113 break;
2114 case Declarator::ConditionContext:
2115 // C++ 6.4p2:
2116 // The type-specifier-seq shall not contain typedef and shall not declare
2117 // a new class or enumeration.
2118 SemaRef.Diag(OwnedTagDecl->getLocation(),
2119 diag::err_type_defined_in_condition);
2120 D.setInvalidType(true);
2121 break;
2122 }
2123 }
2124
2125 return T;
2126 }
2127
getFunctionQualifiersAsString(const FunctionProtoType * FnTy)2128 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2129 std::string Quals =
2130 Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2131
2132 switch (FnTy->getRefQualifier()) {
2133 case RQ_None:
2134 break;
2135
2136 case RQ_LValue:
2137 if (!Quals.empty())
2138 Quals += ' ';
2139 Quals += '&';
2140 break;
2141
2142 case RQ_RValue:
2143 if (!Quals.empty())
2144 Quals += ' ';
2145 Quals += "&&";
2146 break;
2147 }
2148
2149 return Quals;
2150 }
2151
2152 /// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2153 /// can be contained within the declarator chunk DeclType, and produce an
2154 /// appropriate diagnostic if not.
checkQualifiedFunction(Sema & S,QualType T,DeclaratorChunk & DeclType)2155 static void checkQualifiedFunction(Sema &S, QualType T,
2156 DeclaratorChunk &DeclType) {
2157 // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2158 // cv-qualifier or a ref-qualifier can only appear at the topmost level
2159 // of a type.
2160 int DiagKind = -1;
2161 switch (DeclType.Kind) {
2162 case DeclaratorChunk::Paren:
2163 case DeclaratorChunk::MemberPointer:
2164 // These cases are permitted.
2165 return;
2166 case DeclaratorChunk::Array:
2167 case DeclaratorChunk::Function:
2168 // These cases don't allow function types at all; no need to diagnose the
2169 // qualifiers separately.
2170 return;
2171 case DeclaratorChunk::BlockPointer:
2172 DiagKind = 0;
2173 break;
2174 case DeclaratorChunk::Pointer:
2175 DiagKind = 1;
2176 break;
2177 case DeclaratorChunk::Reference:
2178 DiagKind = 2;
2179 break;
2180 }
2181
2182 assert(DiagKind != -1);
2183 S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2184 << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2185 << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2186 }
2187
2188 /// Produce an approprioate diagnostic for an ambiguity between a function
2189 /// declarator and a C++ direct-initializer.
warnAboutAmbiguousFunction(Sema & S,Declarator & D,DeclaratorChunk & DeclType,QualType RT)2190 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2191 DeclaratorChunk &DeclType, QualType RT) {
2192 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2193 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2194
2195 // If the return type is void there is no ambiguity.
2196 if (RT->isVoidType())
2197 return;
2198
2199 // An initializer for a non-class type can have at most one argument.
2200 if (!RT->isRecordType() && FTI.NumArgs > 1)
2201 return;
2202
2203 // An initializer for a reference must have exactly one argument.
2204 if (RT->isReferenceType() && FTI.NumArgs != 1)
2205 return;
2206
2207 // Only warn if this declarator is declaring a function at block scope, and
2208 // doesn't have a storage class (such as 'extern') specified.
2209 if (!D.isFunctionDeclarator() ||
2210 D.getFunctionDefinitionKind() != FDK_Declaration ||
2211 !S.CurContext->isFunctionOrMethod() ||
2212 D.getDeclSpec().getStorageClassSpecAsWritten()
2213 != DeclSpec::SCS_unspecified)
2214 return;
2215
2216 // Inside a condition, a direct initializer is not permitted. We allow one to
2217 // be parsed in order to give better diagnostics in condition parsing.
2218 if (D.getContext() == Declarator::ConditionContext)
2219 return;
2220
2221 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2222
2223 S.Diag(DeclType.Loc,
2224 FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
2225 : diag::warn_empty_parens_are_function_decl)
2226 << ParenRange;
2227
2228 // If the declaration looks like:
2229 // T var1,
2230 // f();
2231 // and name lookup finds a function named 'f', then the ',' was
2232 // probably intended to be a ';'.
2233 if (!D.isFirstDeclarator() && D.getIdentifier()) {
2234 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2235 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2236 if (Comma.getFileID() != Name.getFileID() ||
2237 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2238 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2239 Sema::LookupOrdinaryName);
2240 if (S.LookupName(Result, S.getCurScope()))
2241 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2242 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2243 << D.getIdentifier();
2244 }
2245 }
2246
2247 if (FTI.NumArgs > 0) {
2248 // For a declaration with parameters, eg. "T var(T());", suggest adding parens
2249 // around the first parameter to turn the declaration into a variable
2250 // declaration.
2251 SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
2252 SourceLocation B = Range.getBegin();
2253 SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
2254 // FIXME: Maybe we should suggest adding braces instead of parens
2255 // in C++11 for classes that don't have an initializer_list constructor.
2256 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2257 << FixItHint::CreateInsertion(B, "(")
2258 << FixItHint::CreateInsertion(E, ")");
2259 } else {
2260 // For a declaration without parameters, eg. "T var();", suggest replacing the
2261 // parens with an initializer to turn the declaration into a variable
2262 // declaration.
2263 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2264
2265 // Empty parens mean value-initialization, and no parens mean
2266 // default initialization. These are equivalent if the default
2267 // constructor is user-provided or if zero-initialization is a
2268 // no-op.
2269 if (RD && RD->hasDefinition() &&
2270 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2271 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2272 << FixItHint::CreateRemoval(ParenRange);
2273 else {
2274 std::string Init = S.getFixItZeroInitializerForType(RT);
2275 if (Init.empty() && S.LangOpts.CPlusPlus11)
2276 Init = "{}";
2277 if (!Init.empty())
2278 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2279 << FixItHint::CreateReplacement(ParenRange, Init);
2280 }
2281 }
2282 }
2283
GetFullTypeForDeclarator(TypeProcessingState & state,QualType declSpecType,TypeSourceInfo * TInfo)2284 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2285 QualType declSpecType,
2286 TypeSourceInfo *TInfo) {
2287
2288 QualType T = declSpecType;
2289 Declarator &D = state.getDeclarator();
2290 Sema &S = state.getSema();
2291 ASTContext &Context = S.Context;
2292 const LangOptions &LangOpts = S.getLangOpts();
2293
2294 // The name we're declaring, if any.
2295 DeclarationName Name;
2296 if (D.getIdentifier())
2297 Name = D.getIdentifier();
2298
2299 // Does this declaration declare a typedef-name?
2300 bool IsTypedefName =
2301 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2302 D.getContext() == Declarator::AliasDeclContext ||
2303 D.getContext() == Declarator::AliasTemplateContext;
2304
2305 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2306 bool IsQualifiedFunction = T->isFunctionProtoType() &&
2307 (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2308 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2309
2310 // Walk the DeclTypeInfo, building the recursive type as we go.
2311 // DeclTypeInfos are ordered from the identifier out, which is
2312 // opposite of what we want :).
2313 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2314 unsigned chunkIndex = e - i - 1;
2315 state.setCurrentChunkIndex(chunkIndex);
2316 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2317 if (IsQualifiedFunction) {
2318 checkQualifiedFunction(S, T, DeclType);
2319 IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2320 }
2321 switch (DeclType.Kind) {
2322 case DeclaratorChunk::Paren:
2323 T = S.BuildParenType(T);
2324 break;
2325 case DeclaratorChunk::BlockPointer:
2326 // If blocks are disabled, emit an error.
2327 if (!LangOpts.Blocks)
2328 S.Diag(DeclType.Loc, diag::err_blocks_disable);
2329
2330 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2331 if (DeclType.Cls.TypeQuals)
2332 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2333 break;
2334 case DeclaratorChunk::Pointer:
2335 // Verify that we're not building a pointer to pointer to function with
2336 // exception specification.
2337 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2338 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2339 D.setInvalidType(true);
2340 // Build the type anyway.
2341 }
2342 if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2343 T = Context.getObjCObjectPointerType(T);
2344 if (DeclType.Ptr.TypeQuals)
2345 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2346 break;
2347 }
2348 T = S.BuildPointerType(T, DeclType.Loc, Name);
2349 if (DeclType.Ptr.TypeQuals)
2350 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2351
2352 break;
2353 case DeclaratorChunk::Reference: {
2354 // Verify that we're not building a reference to pointer to function with
2355 // exception specification.
2356 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2357 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2358 D.setInvalidType(true);
2359 // Build the type anyway.
2360 }
2361 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2362
2363 Qualifiers Quals;
2364 if (DeclType.Ref.HasRestrict)
2365 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2366 break;
2367 }
2368 case DeclaratorChunk::Array: {
2369 // Verify that we're not building an array of pointers to function with
2370 // exception specification.
2371 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2372 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2373 D.setInvalidType(true);
2374 // Build the type anyway.
2375 }
2376 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2377 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2378 ArrayType::ArraySizeModifier ASM;
2379 if (ATI.isStar)
2380 ASM = ArrayType::Star;
2381 else if (ATI.hasStatic)
2382 ASM = ArrayType::Static;
2383 else
2384 ASM = ArrayType::Normal;
2385 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2386 // FIXME: This check isn't quite right: it allows star in prototypes
2387 // for function definitions, and disallows some edge cases detailed
2388 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2389 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2390 ASM = ArrayType::Normal;
2391 D.setInvalidType(true);
2392 }
2393
2394 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2395 // shall appear only in a declaration of a function parameter with an
2396 // array type, ...
2397 if (ASM == ArrayType::Static || ATI.TypeQuals) {
2398 if (!(D.isPrototypeContext() ||
2399 D.getContext() == Declarator::KNRTypeListContext)) {
2400 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2401 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2402 // Remove the 'static' and the type qualifiers.
2403 if (ASM == ArrayType::Static)
2404 ASM = ArrayType::Normal;
2405 ATI.TypeQuals = 0;
2406 D.setInvalidType(true);
2407 }
2408
2409 // C99 6.7.5.2p1: ... and then only in the outermost array type
2410 // derivation.
2411 unsigned x = chunkIndex;
2412 while (x != 0) {
2413 // Walk outwards along the declarator chunks.
2414 x--;
2415 const DeclaratorChunk &DC = D.getTypeObject(x);
2416 switch (DC.Kind) {
2417 case DeclaratorChunk::Paren:
2418 continue;
2419 case DeclaratorChunk::Array:
2420 case DeclaratorChunk::Pointer:
2421 case DeclaratorChunk::Reference:
2422 case DeclaratorChunk::MemberPointer:
2423 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2424 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2425 if (ASM == ArrayType::Static)
2426 ASM = ArrayType::Normal;
2427 ATI.TypeQuals = 0;
2428 D.setInvalidType(true);
2429 break;
2430 case DeclaratorChunk::Function:
2431 case DeclaratorChunk::BlockPointer:
2432 // These are invalid anyway, so just ignore.
2433 break;
2434 }
2435 }
2436 }
2437
2438 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2439 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2440 break;
2441 }
2442 case DeclaratorChunk::Function: {
2443 // If the function declarator has a prototype (i.e. it is not () and
2444 // does not have a K&R-style identifier list), then the arguments are part
2445 // of the type, otherwise the argument list is ().
2446 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2447 IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2448
2449 // Check for auto functions and trailing return type and adjust the
2450 // return type accordingly.
2451 if (!D.isInvalidType()) {
2452 // trailing-return-type is only required if we're declaring a function,
2453 // and not, for instance, a pointer to a function.
2454 if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2455 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
2456 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2457 diag::err_auto_missing_trailing_return);
2458 T = Context.IntTy;
2459 D.setInvalidType(true);
2460 } else if (FTI.hasTrailingReturnType()) {
2461 // T must be exactly 'auto' at this point. See CWG issue 681.
2462 if (isa<ParenType>(T)) {
2463 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2464 diag::err_trailing_return_in_parens)
2465 << T << D.getDeclSpec().getSourceRange();
2466 D.setInvalidType(true);
2467 } else if (D.getContext() != Declarator::LambdaExprContext &&
2468 (T.hasQualifiers() || !isa<AutoType>(T))) {
2469 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2470 diag::err_trailing_return_without_auto)
2471 << T << D.getDeclSpec().getSourceRange();
2472 D.setInvalidType(true);
2473 }
2474 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2475 if (T.isNull()) {
2476 // An error occurred parsing the trailing return type.
2477 T = Context.IntTy;
2478 D.setInvalidType(true);
2479 }
2480 }
2481 }
2482
2483 // C99 6.7.5.3p1: The return type may not be a function or array type.
2484 // For conversion functions, we'll diagnose this particular error later.
2485 if ((T->isArrayType() || T->isFunctionType()) &&
2486 (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2487 unsigned diagID = diag::err_func_returning_array_function;
2488 // Last processing chunk in block context means this function chunk
2489 // represents the block.
2490 if (chunkIndex == 0 &&
2491 D.getContext() == Declarator::BlockLiteralContext)
2492 diagID = diag::err_block_returning_array_function;
2493 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2494 T = Context.IntTy;
2495 D.setInvalidType(true);
2496 }
2497
2498 // Do not allow returning half FP value.
2499 // FIXME: This really should be in BuildFunctionType.
2500 if (T->isHalfType()) {
2501 if (S.getLangOpts().OpenCL) {
2502 if (!S.getOpenCLOptions().cl_khr_fp16) {
2503 S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
2504 D.setInvalidType(true);
2505 }
2506 } else {
2507 S.Diag(D.getIdentifierLoc(),
2508 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
2509 D.setInvalidType(true);
2510 }
2511 }
2512
2513 // cv-qualifiers on return types are pointless except when the type is a
2514 // class type in C++.
2515 if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2516 (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2517 (!LangOpts.CPlusPlus || !T->isDependentType())) {
2518 assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2519 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2520 assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2521
2522 DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2523
2524 DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2525 SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2526 SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2527 SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2528 S);
2529
2530 } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2531 (!LangOpts.CPlusPlus ||
2532 (!T->isDependentType() && !T->isRecordType()))) {
2533
2534 DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2535 D.getDeclSpec().getConstSpecLoc(),
2536 D.getDeclSpec().getVolatileSpecLoc(),
2537 D.getDeclSpec().getRestrictSpecLoc(),
2538 S);
2539 }
2540
2541 // Objective-C ARC ownership qualifiers are ignored on the function
2542 // return type (by type canonicalization). Complain if this attribute
2543 // was written here.
2544 if (T.getQualifiers().hasObjCLifetime()) {
2545 SourceLocation AttrLoc;
2546 if (chunkIndex + 1 < D.getNumTypeObjects()) {
2547 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2548 for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
2549 Attr; Attr = Attr->getNext()) {
2550 if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2551 AttrLoc = Attr->getLoc();
2552 break;
2553 }
2554 }
2555 }
2556 if (AttrLoc.isInvalid()) {
2557 for (const AttributeList *Attr
2558 = D.getDeclSpec().getAttributes().getList();
2559 Attr; Attr = Attr->getNext()) {
2560 if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2561 AttrLoc = Attr->getLoc();
2562 break;
2563 }
2564 }
2565 }
2566
2567 if (AttrLoc.isValid()) {
2568 // The ownership attributes are almost always written via
2569 // the predefined
2570 // __strong/__weak/__autoreleasing/__unsafe_unretained.
2571 if (AttrLoc.isMacroID())
2572 AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
2573
2574 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
2575 << T.getQualifiers().getObjCLifetime();
2576 }
2577 }
2578
2579 if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2580 // C++ [dcl.fct]p6:
2581 // Types shall not be defined in return or parameter types.
2582 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2583 if (Tag->isCompleteDefinition())
2584 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2585 << Context.getTypeDeclType(Tag);
2586 }
2587
2588 // Exception specs are not allowed in typedefs. Complain, but add it
2589 // anyway.
2590 if (IsTypedefName && FTI.getExceptionSpecType())
2591 S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2592 << (D.getContext() == Declarator::AliasDeclContext ||
2593 D.getContext() == Declarator::AliasTemplateContext);
2594
2595 // If we see "T var();" or "T var(T());" at block scope, it is probably
2596 // an attempt to initialize a variable, not a function declaration.
2597 if (FTI.isAmbiguous)
2598 warnAboutAmbiguousFunction(S, D, DeclType, T);
2599
2600 if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2601 // Simple void foo(), where the incoming T is the result type.
2602 T = Context.getFunctionNoProtoType(T);
2603 } else {
2604 // We allow a zero-parameter variadic function in C if the
2605 // function is marked with the "overloadable" attribute. Scan
2606 // for this attribute now.
2607 if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2608 bool Overloadable = false;
2609 for (const AttributeList *Attrs = D.getAttributes();
2610 Attrs; Attrs = Attrs->getNext()) {
2611 if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2612 Overloadable = true;
2613 break;
2614 }
2615 }
2616
2617 if (!Overloadable)
2618 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2619 }
2620
2621 if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2622 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2623 // definition.
2624 S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2625 D.setInvalidType(true);
2626 // Recover by creating a K&R-style function type.
2627 T = Context.getFunctionNoProtoType(T);
2628 break;
2629 }
2630
2631 FunctionProtoType::ExtProtoInfo EPI;
2632 EPI.Variadic = FTI.isVariadic;
2633 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2634 EPI.TypeQuals = FTI.TypeQuals;
2635 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2636 : FTI.RefQualifierIsLValueRef? RQ_LValue
2637 : RQ_RValue;
2638
2639 // Otherwise, we have a function with an argument list that is
2640 // potentially variadic.
2641 SmallVector<QualType, 16> ArgTys;
2642 ArgTys.reserve(FTI.NumArgs);
2643
2644 SmallVector<bool, 16> ConsumedArguments;
2645 ConsumedArguments.reserve(FTI.NumArgs);
2646 bool HasAnyConsumedArguments = false;
2647
2648 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2649 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2650 QualType ArgTy = Param->getType();
2651 assert(!ArgTy.isNull() && "Couldn't parse type?");
2652
2653 // Adjust the parameter type.
2654 assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2655 "Unadjusted type?");
2656
2657 // Look for 'void'. void is allowed only as a single argument to a
2658 // function with no other parameters (C99 6.7.5.3p10). We record
2659 // int(void) as a FunctionProtoType with an empty argument list.
2660 if (ArgTy->isVoidType()) {
2661 // If this is something like 'float(int, void)', reject it. 'void'
2662 // is an incomplete type (C99 6.2.5p19) and function decls cannot
2663 // have arguments of incomplete type.
2664 if (FTI.NumArgs != 1 || FTI.isVariadic) {
2665 S.Diag(DeclType.Loc, diag::err_void_only_param);
2666 ArgTy = Context.IntTy;
2667 Param->setType(ArgTy);
2668 } else if (FTI.ArgInfo[i].Ident) {
2669 // Reject, but continue to parse 'int(void abc)'.
2670 S.Diag(FTI.ArgInfo[i].IdentLoc,
2671 diag::err_param_with_void_type);
2672 ArgTy = Context.IntTy;
2673 Param->setType(ArgTy);
2674 } else {
2675 // Reject, but continue to parse 'float(const void)'.
2676 if (ArgTy.hasQualifiers())
2677 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2678
2679 // Do not add 'void' to the ArgTys list.
2680 break;
2681 }
2682 } else if (ArgTy->isHalfType()) {
2683 // Disallow half FP arguments.
2684 // FIXME: This really should be in BuildFunctionType.
2685 if (S.getLangOpts().OpenCL) {
2686 if (!S.getOpenCLOptions().cl_khr_fp16) {
2687 S.Diag(Param->getLocation(),
2688 diag::err_opencl_half_argument) << ArgTy;
2689 D.setInvalidType();
2690 Param->setInvalidDecl();
2691 }
2692 } else {
2693 S.Diag(Param->getLocation(),
2694 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
2695 D.setInvalidType();
2696 }
2697 } else if (!FTI.hasPrototype) {
2698 if (ArgTy->isPromotableIntegerType()) {
2699 ArgTy = Context.getPromotedIntegerType(ArgTy);
2700 Param->setKNRPromoted(true);
2701 } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2702 if (BTy->getKind() == BuiltinType::Float) {
2703 ArgTy = Context.DoubleTy;
2704 Param->setKNRPromoted(true);
2705 }
2706 }
2707 }
2708
2709 if (LangOpts.ObjCAutoRefCount) {
2710 bool Consumed = Param->hasAttr<NSConsumedAttr>();
2711 ConsumedArguments.push_back(Consumed);
2712 HasAnyConsumedArguments |= Consumed;
2713 }
2714
2715 ArgTys.push_back(ArgTy);
2716 }
2717
2718 if (HasAnyConsumedArguments)
2719 EPI.ConsumedArguments = ConsumedArguments.data();
2720
2721 SmallVector<QualType, 4> Exceptions;
2722 SmallVector<ParsedType, 2> DynamicExceptions;
2723 SmallVector<SourceRange, 2> DynamicExceptionRanges;
2724 Expr *NoexceptExpr = 0;
2725
2726 if (FTI.getExceptionSpecType() == EST_Dynamic) {
2727 // FIXME: It's rather inefficient to have to split into two vectors
2728 // here.
2729 unsigned N = FTI.NumExceptions;
2730 DynamicExceptions.reserve(N);
2731 DynamicExceptionRanges.reserve(N);
2732 for (unsigned I = 0; I != N; ++I) {
2733 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2734 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2735 }
2736 } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2737 NoexceptExpr = FTI.NoexceptExpr;
2738 }
2739
2740 S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2741 DynamicExceptions,
2742 DynamicExceptionRanges,
2743 NoexceptExpr,
2744 Exceptions,
2745 EPI);
2746
2747 T = Context.getFunctionType(T, ArgTys, EPI);
2748 }
2749
2750 break;
2751 }
2752 case DeclaratorChunk::MemberPointer:
2753 // The scope spec must refer to a class, or be dependent.
2754 CXXScopeSpec &SS = DeclType.Mem.Scope();
2755 QualType ClsType;
2756 if (SS.isInvalid()) {
2757 // Avoid emitting extra errors if we already errored on the scope.
2758 D.setInvalidType(true);
2759 } else if (S.isDependentScopeSpecifier(SS) ||
2760 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2761 NestedNameSpecifier *NNS
2762 = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2763 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2764 switch (NNS->getKind()) {
2765 case NestedNameSpecifier::Identifier:
2766 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2767 NNS->getAsIdentifier());
2768 break;
2769
2770 case NestedNameSpecifier::Namespace:
2771 case NestedNameSpecifier::NamespaceAlias:
2772 case NestedNameSpecifier::Global:
2773 llvm_unreachable("Nested-name-specifier must name a type");
2774
2775 case NestedNameSpecifier::TypeSpec:
2776 case NestedNameSpecifier::TypeSpecWithTemplate:
2777 ClsType = QualType(NNS->getAsType(), 0);
2778 // Note: if the NNS has a prefix and ClsType is a nondependent
2779 // TemplateSpecializationType, then the NNS prefix is NOT included
2780 // in ClsType; hence we wrap ClsType into an ElaboratedType.
2781 // NOTE: in particular, no wrap occurs if ClsType already is an
2782 // Elaborated, DependentName, or DependentTemplateSpecialization.
2783 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2784 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2785 break;
2786 }
2787 } else {
2788 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2789 diag::err_illegal_decl_mempointer_in_nonclass)
2790 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2791 << DeclType.Mem.Scope().getRange();
2792 D.setInvalidType(true);
2793 }
2794
2795 if (!ClsType.isNull())
2796 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2797 if (T.isNull()) {
2798 T = Context.IntTy;
2799 D.setInvalidType(true);
2800 } else if (DeclType.Mem.TypeQuals) {
2801 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2802 }
2803 break;
2804 }
2805
2806 if (T.isNull()) {
2807 D.setInvalidType(true);
2808 T = Context.IntTy;
2809 }
2810
2811 // See if there are any attributes on this declarator chunk.
2812 if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2813 processTypeAttrs(state, T, TAL_DeclChunk, attrs);
2814 }
2815
2816 if (LangOpts.CPlusPlus && T->isFunctionType()) {
2817 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2818 assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2819
2820 // C++ 8.3.5p4:
2821 // A cv-qualifier-seq shall only be part of the function type
2822 // for a nonstatic member function, the function type to which a pointer
2823 // to member refers, or the top-level function type of a function typedef
2824 // declaration.
2825 //
2826 // Core issue 547 also allows cv-qualifiers on function types that are
2827 // top-level template type arguments.
2828 bool FreeFunction;
2829 if (!D.getCXXScopeSpec().isSet()) {
2830 FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2831 D.getContext() != Declarator::LambdaExprContext) ||
2832 D.getDeclSpec().isFriendSpecified());
2833 } else {
2834 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2835 FreeFunction = (DC && !DC->isRecord());
2836 }
2837
2838 // C++11 [dcl.fct]p6 (w/DR1417):
2839 // An attempt to specify a function type with a cv-qualifier-seq or a
2840 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2841 // - the function type for a non-static member function,
2842 // - the function type to which a pointer to member refers,
2843 // - the top-level function type of a function typedef declaration or
2844 // alias-declaration,
2845 // - the type-id in the default argument of a type-parameter, or
2846 // - the type-id of a template-argument for a type-parameter
2847 if (IsQualifiedFunction &&
2848 !(!FreeFunction &&
2849 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2850 !IsTypedefName &&
2851 D.getContext() != Declarator::TemplateTypeArgContext) {
2852 SourceLocation Loc = D.getLocStart();
2853 SourceRange RemovalRange;
2854 unsigned I;
2855 if (D.isFunctionDeclarator(I)) {
2856 SmallVector<SourceLocation, 4> RemovalLocs;
2857 const DeclaratorChunk &Chunk = D.getTypeObject(I);
2858 assert(Chunk.Kind == DeclaratorChunk::Function);
2859 if (Chunk.Fun.hasRefQualifier())
2860 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2861 if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2862 RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2863 if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2864 RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2865 // FIXME: We do not track the location of the __restrict qualifier.
2866 //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2867 // RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2868 if (!RemovalLocs.empty()) {
2869 std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2870 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
2871 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2872 Loc = RemovalLocs.front();
2873 }
2874 }
2875
2876 S.Diag(Loc, diag::err_invalid_qualified_function_type)
2877 << FreeFunction << D.isFunctionDeclarator() << T
2878 << getFunctionQualifiersAsString(FnTy)
2879 << FixItHint::CreateRemoval(RemovalRange);
2880
2881 // Strip the cv-qualifiers and ref-qualifiers from the type.
2882 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2883 EPI.TypeQuals = 0;
2884 EPI.RefQualifier = RQ_None;
2885
2886 T = Context.getFunctionType(FnTy->getResultType(),
2887 ArrayRef<QualType>(FnTy->arg_type_begin(),
2888 FnTy->getNumArgs()),
2889 EPI);
2890 // Rebuild any parens around the identifier in the function type.
2891 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2892 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
2893 break;
2894 T = S.BuildParenType(T);
2895 }
2896 }
2897 }
2898
2899 // Apply any undistributed attributes from the declarator.
2900 if (!T.isNull())
2901 if (AttributeList *attrs = D.getAttributes())
2902 processTypeAttrs(state, T, TAL_DeclName, attrs);
2903
2904 // Diagnose any ignored type attributes.
2905 if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2906
2907 // C++0x [dcl.constexpr]p9:
2908 // A constexpr specifier used in an object declaration declares the object
2909 // as const.
2910 if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2911 T.addConst();
2912 }
2913
2914 // If there was an ellipsis in the declarator, the declaration declares a
2915 // parameter pack whose type may be a pack expansion type.
2916 if (D.hasEllipsis() && !T.isNull()) {
2917 // C++0x [dcl.fct]p13:
2918 // A declarator-id or abstract-declarator containing an ellipsis shall
2919 // only be used in a parameter-declaration. Such a parameter-declaration
2920 // is a parameter pack (14.5.3). [...]
2921 switch (D.getContext()) {
2922 case Declarator::PrototypeContext:
2923 // C++0x [dcl.fct]p13:
2924 // [...] When it is part of a parameter-declaration-clause, the
2925 // parameter pack is a function parameter pack (14.5.3). The type T
2926 // of the declarator-id of the function parameter pack shall contain
2927 // a template parameter pack; each template parameter pack in T is
2928 // expanded by the function parameter pack.
2929 //
2930 // We represent function parameter packs as function parameters whose
2931 // type is a pack expansion.
2932 if (!T->containsUnexpandedParameterPack()) {
2933 S.Diag(D.getEllipsisLoc(),
2934 diag::err_function_parameter_pack_without_parameter_packs)
2935 << T << D.getSourceRange();
2936 D.setEllipsisLoc(SourceLocation());
2937 } else {
2938 T = Context.getPackExpansionType(T, None);
2939 }
2940 break;
2941
2942 case Declarator::TemplateParamContext:
2943 // C++0x [temp.param]p15:
2944 // If a template-parameter is a [...] is a parameter-declaration that
2945 // declares a parameter pack (8.3.5), then the template-parameter is a
2946 // template parameter pack (14.5.3).
2947 //
2948 // Note: core issue 778 clarifies that, if there are any unexpanded
2949 // parameter packs in the type of the non-type template parameter, then
2950 // it expands those parameter packs.
2951 if (T->containsUnexpandedParameterPack())
2952 T = Context.getPackExpansionType(T, None);
2953 else
2954 S.Diag(D.getEllipsisLoc(),
2955 LangOpts.CPlusPlus11
2956 ? diag::warn_cxx98_compat_variadic_templates
2957 : diag::ext_variadic_templates);
2958 break;
2959
2960 case Declarator::FileContext:
2961 case Declarator::KNRTypeListContext:
2962 case Declarator::ObjCParameterContext: // FIXME: special diagnostic here?
2963 case Declarator::ObjCResultContext: // FIXME: special diagnostic here?
2964 case Declarator::TypeNameContext:
2965 case Declarator::CXXNewContext:
2966 case Declarator::AliasDeclContext:
2967 case Declarator::AliasTemplateContext:
2968 case Declarator::MemberContext:
2969 case Declarator::BlockContext:
2970 case Declarator::ForContext:
2971 case Declarator::ConditionContext:
2972 case Declarator::CXXCatchContext:
2973 case Declarator::ObjCCatchContext:
2974 case Declarator::BlockLiteralContext:
2975 case Declarator::LambdaExprContext:
2976 case Declarator::TrailingReturnContext:
2977 case Declarator::TemplateTypeArgContext:
2978 // FIXME: We may want to allow parameter packs in block-literal contexts
2979 // in the future.
2980 S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2981 D.setEllipsisLoc(SourceLocation());
2982 break;
2983 }
2984 }
2985
2986 if (T.isNull())
2987 return Context.getNullTypeSourceInfo();
2988 else if (D.isInvalidType())
2989 return Context.getTrivialTypeSourceInfo(T);
2990
2991 return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2992 }
2993
2994 /// GetTypeForDeclarator - Convert the type for the specified
2995 /// declarator to Type instances.
2996 ///
2997 /// The result of this call will never be null, but the associated
2998 /// type may be a null type if there's an unrecoverable error.
GetTypeForDeclarator(Declarator & D,Scope * S)2999 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
3000 // Determine the type of the declarator. Not all forms of declarator
3001 // have a type.
3002
3003 TypeProcessingState state(*this, D);
3004
3005 TypeSourceInfo *ReturnTypeInfo = 0;
3006 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3007 if (T.isNull())
3008 return Context.getNullTypeSourceInfo();
3009
3010 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
3011 inferARCWriteback(state, T);
3012
3013 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
3014 }
3015
transferARCOwnershipToDeclSpec(Sema & S,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)3016 static void transferARCOwnershipToDeclSpec(Sema &S,
3017 QualType &declSpecTy,
3018 Qualifiers::ObjCLifetime ownership) {
3019 if (declSpecTy->isObjCRetainableType() &&
3020 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
3021 Qualifiers qs;
3022 qs.addObjCLifetime(ownership);
3023 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
3024 }
3025 }
3026
transferARCOwnershipToDeclaratorChunk(TypeProcessingState & state,Qualifiers::ObjCLifetime ownership,unsigned chunkIndex)3027 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3028 Qualifiers::ObjCLifetime ownership,
3029 unsigned chunkIndex) {
3030 Sema &S = state.getSema();
3031 Declarator &D = state.getDeclarator();
3032
3033 // Look for an explicit lifetime attribute.
3034 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
3035 for (const AttributeList *attr = chunk.getAttrs(); attr;
3036 attr = attr->getNext())
3037 if (attr->getKind() == AttributeList::AT_ObjCOwnership)
3038 return;
3039
3040 const char *attrStr = 0;
3041 switch (ownership) {
3042 case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
3043 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
3044 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
3045 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
3046 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
3047 }
3048
3049 // If there wasn't one, add one (with an invalid source location
3050 // so that we don't make an AttributedType for it).
3051 AttributeList *attr = D.getAttributePool()
3052 .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
3053 /*scope*/ 0, SourceLocation(),
3054 &S.Context.Idents.get(attrStr), SourceLocation(),
3055 /*args*/ 0, 0, AttributeList::AS_GNU);
3056 spliceAttrIntoList(*attr, chunk.getAttrListRef());
3057
3058 // TODO: mark whether we did this inference?
3059 }
3060
3061 /// \brief Used for transferring ownership in casts resulting in l-values.
transferARCOwnership(TypeProcessingState & state,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)3062 static void transferARCOwnership(TypeProcessingState &state,
3063 QualType &declSpecTy,
3064 Qualifiers::ObjCLifetime ownership) {
3065 Sema &S = state.getSema();
3066 Declarator &D = state.getDeclarator();
3067
3068 int inner = -1;
3069 bool hasIndirection = false;
3070 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3071 DeclaratorChunk &chunk = D.getTypeObject(i);
3072 switch (chunk.Kind) {
3073 case DeclaratorChunk::Paren:
3074 // Ignore parens.
3075 break;
3076
3077 case DeclaratorChunk::Array:
3078 case DeclaratorChunk::Reference:
3079 case DeclaratorChunk::Pointer:
3080 if (inner != -1)
3081 hasIndirection = true;
3082 inner = i;
3083 break;
3084
3085 case DeclaratorChunk::BlockPointer:
3086 if (inner != -1)
3087 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
3088 return;
3089
3090 case DeclaratorChunk::Function:
3091 case DeclaratorChunk::MemberPointer:
3092 return;
3093 }
3094 }
3095
3096 if (inner == -1)
3097 return;
3098
3099 DeclaratorChunk &chunk = D.getTypeObject(inner);
3100 if (chunk.Kind == DeclaratorChunk::Pointer) {
3101 if (declSpecTy->isObjCRetainableType())
3102 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3103 if (declSpecTy->isObjCObjectType() && hasIndirection)
3104 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
3105 } else {
3106 assert(chunk.Kind == DeclaratorChunk::Array ||
3107 chunk.Kind == DeclaratorChunk::Reference);
3108 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3109 }
3110 }
3111
GetTypeForDeclaratorCast(Declarator & D,QualType FromTy)3112 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
3113 TypeProcessingState state(*this, D);
3114
3115 TypeSourceInfo *ReturnTypeInfo = 0;
3116 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3117 if (declSpecTy.isNull())
3118 return Context.getNullTypeSourceInfo();
3119
3120 if (getLangOpts().ObjCAutoRefCount) {
3121 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
3122 if (ownership != Qualifiers::OCL_None)
3123 transferARCOwnership(state, declSpecTy, ownership);
3124 }
3125
3126 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
3127 }
3128
3129 /// Map an AttributedType::Kind to an AttributeList::Kind.
getAttrListKind(AttributedType::Kind kind)3130 static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
3131 switch (kind) {
3132 case AttributedType::attr_address_space:
3133 return AttributeList::AT_AddressSpace;
3134 case AttributedType::attr_regparm:
3135 return AttributeList::AT_Regparm;
3136 case AttributedType::attr_vector_size:
3137 return AttributeList::AT_VectorSize;
3138 case AttributedType::attr_neon_vector_type:
3139 return AttributeList::AT_NeonVectorType;
3140 case AttributedType::attr_neon_polyvector_type:
3141 return AttributeList::AT_NeonPolyVectorType;
3142 case AttributedType::attr_objc_gc:
3143 return AttributeList::AT_ObjCGC;
3144 case AttributedType::attr_objc_ownership:
3145 return AttributeList::AT_ObjCOwnership;
3146 case AttributedType::attr_noreturn:
3147 return AttributeList::AT_NoReturn;
3148 case AttributedType::attr_cdecl:
3149 return AttributeList::AT_CDecl;
3150 case AttributedType::attr_fastcall:
3151 return AttributeList::AT_FastCall;
3152 case AttributedType::attr_stdcall:
3153 return AttributeList::AT_StdCall;
3154 case AttributedType::attr_thiscall:
3155 return AttributeList::AT_ThisCall;
3156 case AttributedType::attr_pascal:
3157 return AttributeList::AT_Pascal;
3158 case AttributedType::attr_pcs:
3159 return AttributeList::AT_Pcs;
3160 case AttributedType::attr_pnaclcall:
3161 return AttributeList::AT_PnaclCall;
3162 case AttributedType::attr_inteloclbicc:
3163 return AttributeList::AT_IntelOclBicc;
3164 }
3165 llvm_unreachable("unexpected attribute kind!");
3166 }
3167
fillAttributedTypeLoc(AttributedTypeLoc TL,const AttributeList * attrs)3168 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3169 const AttributeList *attrs) {
3170 AttributedType::Kind kind = TL.getAttrKind();
3171
3172 assert(attrs && "no type attributes in the expected location!");
3173 AttributeList::Kind parsedKind = getAttrListKind(kind);
3174 while (attrs->getKind() != parsedKind) {
3175 attrs = attrs->getNext();
3176 assert(attrs && "no matching attribute in expected location!");
3177 }
3178
3179 TL.setAttrNameLoc(attrs->getLoc());
3180 if (TL.hasAttrExprOperand())
3181 TL.setAttrExprOperand(attrs->getArg(0));
3182 else if (TL.hasAttrEnumOperand())
3183 TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
3184
3185 // FIXME: preserve this information to here.
3186 if (TL.hasAttrOperand())
3187 TL.setAttrOperandParensRange(SourceRange());
3188 }
3189
3190 namespace {
3191 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3192 ASTContext &Context;
3193 const DeclSpec &DS;
3194
3195 public:
TypeSpecLocFiller(ASTContext & Context,const DeclSpec & DS)3196 TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3197 : Context(Context), DS(DS) {}
3198
VisitAttributedTypeLoc(AttributedTypeLoc TL)3199 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3200 fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3201 Visit(TL.getModifiedLoc());
3202 }
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)3203 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3204 Visit(TL.getUnqualifiedLoc());
3205 }
VisitTypedefTypeLoc(TypedefTypeLoc TL)3206 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3207 TL.setNameLoc(DS.getTypeSpecTypeLoc());
3208 }
VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL)3209 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3210 TL.setNameLoc(DS.getTypeSpecTypeLoc());
3211 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3212 // addition field. What we have is good enough for dispay of location
3213 // of 'fixit' on interface name.
3214 TL.setNameEndLoc(DS.getLocEnd());
3215 }
VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL)3216 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3217 // Handle the base type, which might not have been written explicitly.
3218 if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3219 TL.setHasBaseTypeAsWritten(false);
3220 TL.getBaseLoc().initialize(Context, SourceLocation());
3221 } else {
3222 TL.setHasBaseTypeAsWritten(true);
3223 Visit(TL.getBaseLoc());
3224 }
3225
3226 // Protocol qualifiers.
3227 if (DS.getProtocolQualifiers()) {
3228 assert(TL.getNumProtocols() > 0);
3229 assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3230 TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3231 TL.setRAngleLoc(DS.getSourceRange().getEnd());
3232 for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3233 TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3234 } else {
3235 assert(TL.getNumProtocols() == 0);
3236 TL.setLAngleLoc(SourceLocation());
3237 TL.setRAngleLoc(SourceLocation());
3238 }
3239 }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)3240 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3241 TL.setStarLoc(SourceLocation());
3242 Visit(TL.getPointeeLoc());
3243 }
VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL)3244 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3245 TypeSourceInfo *TInfo = 0;
3246 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3247
3248 // If we got no declarator info from previous Sema routines,
3249 // just fill with the typespec loc.
3250 if (!TInfo) {
3251 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3252 return;
3253 }
3254
3255 TypeLoc OldTL = TInfo->getTypeLoc();
3256 if (TInfo->getType()->getAs<ElaboratedType>()) {
3257 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
3258 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
3259 .castAs<TemplateSpecializationTypeLoc>();
3260 TL.copy(NamedTL);
3261 }
3262 else
3263 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
3264 }
VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL)3265 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3266 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3267 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3268 TL.setParensRange(DS.getTypeofParensRange());
3269 }
VisitTypeOfTypeLoc(TypeOfTypeLoc TL)3270 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3271 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3272 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3273 TL.setParensRange(DS.getTypeofParensRange());
3274 assert(DS.getRepAsType());
3275 TypeSourceInfo *TInfo = 0;
3276 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3277 TL.setUnderlyingTInfo(TInfo);
3278 }
VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL)3279 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3280 // FIXME: This holds only because we only have one unary transform.
3281 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3282 TL.setKWLoc(DS.getTypeSpecTypeLoc());
3283 TL.setParensRange(DS.getTypeofParensRange());
3284 assert(DS.getRepAsType());
3285 TypeSourceInfo *TInfo = 0;
3286 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3287 TL.setUnderlyingTInfo(TInfo);
3288 }
VisitBuiltinTypeLoc(BuiltinTypeLoc TL)3289 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3290 // By default, use the source location of the type specifier.
3291 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3292 if (TL.needsExtraLocalData()) {
3293 // Set info for the written builtin specifiers.
3294 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3295 // Try to have a meaningful source location.
3296 if (TL.getWrittenSignSpec() != TSS_unspecified)
3297 // Sign spec loc overrides the others (e.g., 'unsigned long').
3298 TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3299 else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3300 // Width spec loc overrides type spec loc (e.g., 'short int').
3301 TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3302 }
3303 }
VisitElaboratedTypeLoc(ElaboratedTypeLoc TL)3304 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3305 ElaboratedTypeKeyword Keyword
3306 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3307 if (DS.getTypeSpecType() == TST_typename) {
3308 TypeSourceInfo *TInfo = 0;
3309 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3310 if (TInfo) {
3311 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
3312 return;
3313 }
3314 }
3315 TL.setElaboratedKeywordLoc(Keyword != ETK_None
3316 ? DS.getTypeSpecTypeLoc()
3317 : SourceLocation());
3318 const CXXScopeSpec& SS = DS.getTypeSpecScope();
3319 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3320 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3321 }
VisitDependentNameTypeLoc(DependentNameTypeLoc TL)3322 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3323 assert(DS.getTypeSpecType() == TST_typename);
3324 TypeSourceInfo *TInfo = 0;
3325 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3326 assert(TInfo);
3327 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
3328 }
VisitDependentTemplateSpecializationTypeLoc(DependentTemplateSpecializationTypeLoc TL)3329 void VisitDependentTemplateSpecializationTypeLoc(
3330 DependentTemplateSpecializationTypeLoc TL) {
3331 assert(DS.getTypeSpecType() == TST_typename);
3332 TypeSourceInfo *TInfo = 0;
3333 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3334 assert(TInfo);
3335 TL.copy(
3336 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
3337 }
VisitTagTypeLoc(TagTypeLoc TL)3338 void VisitTagTypeLoc(TagTypeLoc TL) {
3339 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3340 }
VisitAtomicTypeLoc(AtomicTypeLoc TL)3341 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3342 TL.setKWLoc(DS.getTypeSpecTypeLoc());
3343 TL.setParensRange(DS.getTypeofParensRange());
3344
3345 TypeSourceInfo *TInfo = 0;
3346 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3347 assert(TInfo);
3348 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3349 }
3350
VisitTypeLoc(TypeLoc TL)3351 void VisitTypeLoc(TypeLoc TL) {
3352 // FIXME: add other typespec types and change this to an assert.
3353 TL.initialize(Context, DS.getTypeSpecTypeLoc());
3354 }
3355 };
3356
3357 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3358 ASTContext &Context;
3359 const DeclaratorChunk &Chunk;
3360
3361 public:
DeclaratorLocFiller(ASTContext & Context,const DeclaratorChunk & Chunk)3362 DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3363 : Context(Context), Chunk(Chunk) {}
3364
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)3365 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3366 llvm_unreachable("qualified type locs not expected here!");
3367 }
3368
VisitAttributedTypeLoc(AttributedTypeLoc TL)3369 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3370 fillAttributedTypeLoc(TL, Chunk.getAttrs());
3371 }
VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL)3372 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3373 assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3374 TL.setCaretLoc(Chunk.Loc);
3375 }
VisitPointerTypeLoc(PointerTypeLoc TL)3376 void VisitPointerTypeLoc(PointerTypeLoc TL) {
3377 assert(Chunk.Kind == DeclaratorChunk::Pointer);
3378 TL.setStarLoc(Chunk.Loc);
3379 }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)3380 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3381 assert(Chunk.Kind == DeclaratorChunk::Pointer);
3382 TL.setStarLoc(Chunk.Loc);
3383 }
VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL)3384 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3385 assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3386 const CXXScopeSpec& SS = Chunk.Mem.Scope();
3387 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3388
3389 const Type* ClsTy = TL.getClass();
3390 QualType ClsQT = QualType(ClsTy, 0);
3391 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3392 // Now copy source location info into the type loc component.
3393 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3394 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3395 case NestedNameSpecifier::Identifier:
3396 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3397 {
3398 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
3399 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3400 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3401 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3402 }
3403 break;
3404
3405 case NestedNameSpecifier::TypeSpec:
3406 case NestedNameSpecifier::TypeSpecWithTemplate:
3407 if (isa<ElaboratedType>(ClsTy)) {
3408 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
3409 ETLoc.setElaboratedKeywordLoc(SourceLocation());
3410 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3411 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3412 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3413 } else {
3414 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3415 }
3416 break;
3417
3418 case NestedNameSpecifier::Namespace:
3419 case NestedNameSpecifier::NamespaceAlias:
3420 case NestedNameSpecifier::Global:
3421 llvm_unreachable("Nested-name-specifier must name a type");
3422 }
3423
3424 // Finally fill in MemberPointerLocInfo fields.
3425 TL.setStarLoc(Chunk.Loc);
3426 TL.setClassTInfo(ClsTInfo);
3427 }
VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL)3428 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3429 assert(Chunk.Kind == DeclaratorChunk::Reference);
3430 // 'Amp' is misleading: this might have been originally
3431 /// spelled with AmpAmp.
3432 TL.setAmpLoc(Chunk.Loc);
3433 }
VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL)3434 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3435 assert(Chunk.Kind == DeclaratorChunk::Reference);
3436 assert(!Chunk.Ref.LValueRef);
3437 TL.setAmpAmpLoc(Chunk.Loc);
3438 }
VisitArrayTypeLoc(ArrayTypeLoc TL)3439 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3440 assert(Chunk.Kind == DeclaratorChunk::Array);
3441 TL.setLBracketLoc(Chunk.Loc);
3442 TL.setRBracketLoc(Chunk.EndLoc);
3443 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3444 }
VisitFunctionTypeLoc(FunctionTypeLoc TL)3445 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3446 assert(Chunk.Kind == DeclaratorChunk::Function);
3447 TL.setLocalRangeBegin(Chunk.Loc);
3448 TL.setLocalRangeEnd(Chunk.EndLoc);
3449
3450 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3451 TL.setLParenLoc(FTI.getLParenLoc());
3452 TL.setRParenLoc(FTI.getRParenLoc());
3453 for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3454 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3455 TL.setArg(tpi++, Param);
3456 }
3457 // FIXME: exception specs
3458 }
VisitParenTypeLoc(ParenTypeLoc TL)3459 void VisitParenTypeLoc(ParenTypeLoc TL) {
3460 assert(Chunk.Kind == DeclaratorChunk::Paren);
3461 TL.setLParenLoc(Chunk.Loc);
3462 TL.setRParenLoc(Chunk.EndLoc);
3463 }
3464
VisitTypeLoc(TypeLoc TL)3465 void VisitTypeLoc(TypeLoc TL) {
3466 llvm_unreachable("unsupported TypeLoc kind in declarator!");
3467 }
3468 };
3469 }
3470
3471 /// \brief Create and instantiate a TypeSourceInfo with type source information.
3472 ///
3473 /// \param T QualType referring to the type as written in source code.
3474 ///
3475 /// \param ReturnTypeInfo For declarators whose return type does not show
3476 /// up in the normal place in the declaration specifiers (such as a C++
3477 /// conversion function), this pointer will refer to a type source information
3478 /// for that return type.
3479 TypeSourceInfo *
GetTypeSourceInfoForDeclarator(Declarator & D,QualType T,TypeSourceInfo * ReturnTypeInfo)3480 Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3481 TypeSourceInfo *ReturnTypeInfo) {
3482 TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3483 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3484
3485 // Handle parameter packs whose type is a pack expansion.
3486 if (isa<PackExpansionType>(T)) {
3487 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
3488 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3489 }
3490
3491 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3492 while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
3493 fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3494 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3495 }
3496
3497 DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3498 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3499 }
3500
3501 // If we have different source information for the return type, use
3502 // that. This really only applies to C++ conversion functions.
3503 if (ReturnTypeInfo) {
3504 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3505 assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3506 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3507 } else {
3508 TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3509 }
3510
3511 return TInfo;
3512 }
3513
3514 /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
CreateParsedType(QualType T,TypeSourceInfo * TInfo)3515 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3516 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3517 // and Sema during declaration parsing. Try deallocating/caching them when
3518 // it's appropriate, instead of allocating them and keeping them around.
3519 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3520 TypeAlignment);
3521 new (LocT) LocInfoType(T, TInfo);
3522 assert(LocT->getTypeClass() != T->getTypeClass() &&
3523 "LocInfoType's TypeClass conflicts with an existing Type class");
3524 return ParsedType::make(QualType(LocT, 0));
3525 }
3526
getAsStringInternal(std::string & Str,const PrintingPolicy & Policy) const3527 void LocInfoType::getAsStringInternal(std::string &Str,
3528 const PrintingPolicy &Policy) const {
3529 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3530 " was used directly instead of getting the QualType through"
3531 " GetTypeFromParser");
3532 }
3533
ActOnTypeName(Scope * S,Declarator & D)3534 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3535 // C99 6.7.6: Type names have no identifier. This is already validated by
3536 // the parser.
3537 assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3538
3539 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3540 QualType T = TInfo->getType();
3541 if (D.isInvalidType())
3542 return true;
3543
3544 // Make sure there are no unused decl attributes on the declarator.
3545 // We don't want to do this for ObjC parameters because we're going
3546 // to apply them to the actual parameter declaration.
3547 // Likewise, we don't want to do this for alias declarations, because
3548 // we are actually going to build a declaration from this eventually.
3549 if (D.getContext() != Declarator::ObjCParameterContext &&
3550 D.getContext() != Declarator::AliasDeclContext &&
3551 D.getContext() != Declarator::AliasTemplateContext)
3552 checkUnusedDeclAttributes(D);
3553
3554 if (getLangOpts().CPlusPlus) {
3555 // Check that there are no default arguments (C++ only).
3556 CheckExtraCXXDefaultArguments(D);
3557 }
3558
3559 return CreateParsedType(T, TInfo);
3560 }
3561
ActOnObjCInstanceType(SourceLocation Loc)3562 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3563 QualType T = Context.getObjCInstanceType();
3564 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3565 return CreateParsedType(T, TInfo);
3566 }
3567
3568
3569 //===----------------------------------------------------------------------===//
3570 // Type Attribute Processing
3571 //===----------------------------------------------------------------------===//
3572
3573 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3574 /// specified type. The attribute contains 1 argument, the id of the address
3575 /// space for the type.
HandleAddressSpaceTypeAttribute(QualType & Type,const AttributeList & Attr,Sema & S)3576 static void HandleAddressSpaceTypeAttribute(QualType &Type,
3577 const AttributeList &Attr, Sema &S){
3578
3579 // If this type is already address space qualified, reject it.
3580 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3581 // qualifiers for two or more different address spaces."
3582 if (Type.getAddressSpace()) {
3583 S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3584 Attr.setInvalid();
3585 return;
3586 }
3587
3588 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3589 // qualified by an address-space qualifier."
3590 if (Type->isFunctionType()) {
3591 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3592 Attr.setInvalid();
3593 return;
3594 }
3595
3596 // Check the attribute arguments.
3597 if (Attr.getNumArgs() != 1) {
3598 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3599 Attr.setInvalid();
3600 return;
3601 }
3602 Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3603 llvm::APSInt addrSpace(32);
3604 if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3605 !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3606 S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3607 << ASArgExpr->getSourceRange();
3608 Attr.setInvalid();
3609 return;
3610 }
3611
3612 // Bounds checking.
3613 if (addrSpace.isSigned()) {
3614 if (addrSpace.isNegative()) {
3615 S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3616 << ASArgExpr->getSourceRange();
3617 Attr.setInvalid();
3618 return;
3619 }
3620 addrSpace.setIsSigned(false);
3621 }
3622 llvm::APSInt max(addrSpace.getBitWidth());
3623 max = Qualifiers::MaxAddressSpace;
3624 if (addrSpace > max) {
3625 S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3626 << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3627 Attr.setInvalid();
3628 return;
3629 }
3630
3631 unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3632 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3633 }
3634
3635 /// Does this type have a "direct" ownership qualifier? That is,
3636 /// is it written like "__strong id", as opposed to something like
3637 /// "typeof(foo)", where that happens to be strong?
hasDirectOwnershipQualifier(QualType type)3638 static bool hasDirectOwnershipQualifier(QualType type) {
3639 // Fast path: no qualifier at all.
3640 assert(type.getQualifiers().hasObjCLifetime());
3641
3642 while (true) {
3643 // __strong id
3644 if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3645 if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3646 return true;
3647
3648 type = attr->getModifiedType();
3649
3650 // X *__strong (...)
3651 } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3652 type = paren->getInnerType();
3653
3654 // That's it for things we want to complain about. In particular,
3655 // we do not want to look through typedefs, typeof(expr),
3656 // typeof(type), or any other way that the type is somehow
3657 // abstracted.
3658 } else {
3659
3660 return false;
3661 }
3662 }
3663 }
3664
3665 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
3666 /// attribute on the specified type.
3667 ///
3668 /// Returns 'true' if the attribute was handled.
handleObjCOwnershipTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)3669 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3670 AttributeList &attr,
3671 QualType &type) {
3672 bool NonObjCPointer = false;
3673
3674 if (!type->isDependentType()) {
3675 if (const PointerType *ptr = type->getAs<PointerType>()) {
3676 QualType pointee = ptr->getPointeeType();
3677 if (pointee->isObjCRetainableType() || pointee->isPointerType())
3678 return false;
3679 // It is important not to lose the source info that there was an attribute
3680 // applied to non-objc pointer. We will create an attributed type but
3681 // its type will be the same as the original type.
3682 NonObjCPointer = true;
3683 } else if (!type->isObjCRetainableType()) {
3684 return false;
3685 }
3686
3687 // Don't accept an ownership attribute in the declspec if it would
3688 // just be the return type of a block pointer.
3689 if (state.isProcessingDeclSpec()) {
3690 Declarator &D = state.getDeclarator();
3691 if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
3692 return false;
3693 }
3694 }
3695
3696 Sema &S = state.getSema();
3697 SourceLocation AttrLoc = attr.getLoc();
3698 if (AttrLoc.isMacroID())
3699 AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3700
3701 if (!attr.getParameterName()) {
3702 S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3703 << "objc_ownership" << 1;
3704 attr.setInvalid();
3705 return true;
3706 }
3707
3708 // Consume lifetime attributes without further comment outside of
3709 // ARC mode.
3710 if (!S.getLangOpts().ObjCAutoRefCount)
3711 return true;
3712
3713 Qualifiers::ObjCLifetime lifetime;
3714 if (attr.getParameterName()->isStr("none"))
3715 lifetime = Qualifiers::OCL_ExplicitNone;
3716 else if (attr.getParameterName()->isStr("strong"))
3717 lifetime = Qualifiers::OCL_Strong;
3718 else if (attr.getParameterName()->isStr("weak"))
3719 lifetime = Qualifiers::OCL_Weak;
3720 else if (attr.getParameterName()->isStr("autoreleasing"))
3721 lifetime = Qualifiers::OCL_Autoreleasing;
3722 else {
3723 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3724 << "objc_ownership" << attr.getParameterName();
3725 attr.setInvalid();
3726 return true;
3727 }
3728
3729 SplitQualType underlyingType = type.split();
3730
3731 // Check for redundant/conflicting ownership qualifiers.
3732 if (Qualifiers::ObjCLifetime previousLifetime
3733 = type.getQualifiers().getObjCLifetime()) {
3734 // If it's written directly, that's an error.
3735 if (hasDirectOwnershipQualifier(type)) {
3736 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3737 << type;
3738 return true;
3739 }
3740
3741 // Otherwise, if the qualifiers actually conflict, pull sugar off
3742 // until we reach a type that is directly qualified.
3743 if (previousLifetime != lifetime) {
3744 // This should always terminate: the canonical type is
3745 // qualified, so some bit of sugar must be hiding it.
3746 while (!underlyingType.Quals.hasObjCLifetime()) {
3747 underlyingType = underlyingType.getSingleStepDesugaredType();
3748 }
3749 underlyingType.Quals.removeObjCLifetime();
3750 }
3751 }
3752
3753 underlyingType.Quals.addObjCLifetime(lifetime);
3754
3755 if (NonObjCPointer) {
3756 StringRef name = attr.getName()->getName();
3757 switch (lifetime) {
3758 case Qualifiers::OCL_None:
3759 case Qualifiers::OCL_ExplicitNone:
3760 break;
3761 case Qualifiers::OCL_Strong: name = "__strong"; break;
3762 case Qualifiers::OCL_Weak: name = "__weak"; break;
3763 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3764 }
3765 S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3766 << name << type;
3767 }
3768
3769 QualType origType = type;
3770 if (!NonObjCPointer)
3771 type = S.Context.getQualifiedType(underlyingType);
3772
3773 // If we have a valid source location for the attribute, use an
3774 // AttributedType instead.
3775 if (AttrLoc.isValid())
3776 type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3777 origType, type);
3778
3779 // Forbid __weak if the runtime doesn't support it.
3780 if (lifetime == Qualifiers::OCL_Weak &&
3781 !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
3782
3783 // Actually, delay this until we know what we're parsing.
3784 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3785 S.DelayedDiagnostics.add(
3786 sema::DelayedDiagnostic::makeForbiddenType(
3787 S.getSourceManager().getExpansionLoc(AttrLoc),
3788 diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3789 } else {
3790 S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3791 }
3792
3793 attr.setInvalid();
3794 return true;
3795 }
3796
3797 // Forbid __weak for class objects marked as
3798 // objc_arc_weak_reference_unavailable
3799 if (lifetime == Qualifiers::OCL_Weak) {
3800 if (const ObjCObjectPointerType *ObjT =
3801 type->getAs<ObjCObjectPointerType>()) {
3802 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
3803 if (Class->isArcWeakrefUnavailable()) {
3804 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3805 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3806 diag::note_class_declared);
3807 }
3808 }
3809 }
3810 }
3811
3812 return true;
3813 }
3814
3815 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3816 /// attribute on the specified type. Returns true to indicate that
3817 /// the attribute was handled, false to indicate that the type does
3818 /// not permit the attribute.
handleObjCGCTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)3819 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3820 AttributeList &attr,
3821 QualType &type) {
3822 Sema &S = state.getSema();
3823
3824 // Delay if this isn't some kind of pointer.
3825 if (!type->isPointerType() &&
3826 !type->isObjCObjectPointerType() &&
3827 !type->isBlockPointerType())
3828 return false;
3829
3830 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3831 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3832 attr.setInvalid();
3833 return true;
3834 }
3835
3836 // Check the attribute arguments.
3837 if (!attr.getParameterName()) {
3838 S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3839 << "objc_gc" << 1;
3840 attr.setInvalid();
3841 return true;
3842 }
3843 Qualifiers::GC GCAttr;
3844 if (attr.getNumArgs() != 0) {
3845 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3846 attr.setInvalid();
3847 return true;
3848 }
3849 if (attr.getParameterName()->isStr("weak"))
3850 GCAttr = Qualifiers::Weak;
3851 else if (attr.getParameterName()->isStr("strong"))
3852 GCAttr = Qualifiers::Strong;
3853 else {
3854 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3855 << "objc_gc" << attr.getParameterName();
3856 attr.setInvalid();
3857 return true;
3858 }
3859
3860 QualType origType = type;
3861 type = S.Context.getObjCGCQualType(origType, GCAttr);
3862
3863 // Make an attributed type to preserve the source information.
3864 if (attr.getLoc().isValid())
3865 type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3866 origType, type);
3867
3868 return true;
3869 }
3870
3871 namespace {
3872 /// A helper class to unwrap a type down to a function for the
3873 /// purposes of applying attributes there.
3874 ///
3875 /// Use:
3876 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
3877 /// if (unwrapped.isFunctionType()) {
3878 /// const FunctionType *fn = unwrapped.get();
3879 /// // change fn somehow
3880 /// T = unwrapped.wrap(fn);
3881 /// }
3882 struct FunctionTypeUnwrapper {
3883 enum WrapKind {
3884 Desugar,
3885 Parens,
3886 Pointer,
3887 BlockPointer,
3888 Reference,
3889 MemberPointer
3890 };
3891
3892 QualType Original;
3893 const FunctionType *Fn;
3894 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3895
FunctionTypeUnwrapper__anoncc0ca2df0311::FunctionTypeUnwrapper3896 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3897 while (true) {
3898 const Type *Ty = T.getTypePtr();
3899 if (isa<FunctionType>(Ty)) {
3900 Fn = cast<FunctionType>(Ty);
3901 return;
3902 } else if (isa<ParenType>(Ty)) {
3903 T = cast<ParenType>(Ty)->getInnerType();
3904 Stack.push_back(Parens);
3905 } else if (isa<PointerType>(Ty)) {
3906 T = cast<PointerType>(Ty)->getPointeeType();
3907 Stack.push_back(Pointer);
3908 } else if (isa<BlockPointerType>(Ty)) {
3909 T = cast<BlockPointerType>(Ty)->getPointeeType();
3910 Stack.push_back(BlockPointer);
3911 } else if (isa<MemberPointerType>(Ty)) {
3912 T = cast<MemberPointerType>(Ty)->getPointeeType();
3913 Stack.push_back(MemberPointer);
3914 } else if (isa<ReferenceType>(Ty)) {
3915 T = cast<ReferenceType>(Ty)->getPointeeType();
3916 Stack.push_back(Reference);
3917 } else {
3918 const Type *DTy = Ty->getUnqualifiedDesugaredType();
3919 if (Ty == DTy) {
3920 Fn = 0;
3921 return;
3922 }
3923
3924 T = QualType(DTy, 0);
3925 Stack.push_back(Desugar);
3926 }
3927 }
3928 }
3929
isFunctionType__anoncc0ca2df0311::FunctionTypeUnwrapper3930 bool isFunctionType() const { return (Fn != 0); }
get__anoncc0ca2df0311::FunctionTypeUnwrapper3931 const FunctionType *get() const { return Fn; }
3932
wrap__anoncc0ca2df0311::FunctionTypeUnwrapper3933 QualType wrap(Sema &S, const FunctionType *New) {
3934 // If T wasn't modified from the unwrapped type, do nothing.
3935 if (New == get()) return Original;
3936
3937 Fn = New;
3938 return wrap(S.Context, Original, 0);
3939 }
3940
3941 private:
wrap__anoncc0ca2df0311::FunctionTypeUnwrapper3942 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3943 if (I == Stack.size())
3944 return C.getQualifiedType(Fn, Old.getQualifiers());
3945
3946 // Build up the inner type, applying the qualifiers from the old
3947 // type to the new type.
3948 SplitQualType SplitOld = Old.split();
3949
3950 // As a special case, tail-recurse if there are no qualifiers.
3951 if (SplitOld.Quals.empty())
3952 return wrap(C, SplitOld.Ty, I);
3953 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3954 }
3955
wrap__anoncc0ca2df0311::FunctionTypeUnwrapper3956 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3957 if (I == Stack.size()) return QualType(Fn, 0);
3958
3959 switch (static_cast<WrapKind>(Stack[I++])) {
3960 case Desugar:
3961 // This is the point at which we potentially lose source
3962 // information.
3963 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3964
3965 case Parens: {
3966 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3967 return C.getParenType(New);
3968 }
3969
3970 case Pointer: {
3971 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3972 return C.getPointerType(New);
3973 }
3974
3975 case BlockPointer: {
3976 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3977 return C.getBlockPointerType(New);
3978 }
3979
3980 case MemberPointer: {
3981 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3982 QualType New = wrap(C, OldMPT->getPointeeType(), I);
3983 return C.getMemberPointerType(New, OldMPT->getClass());
3984 }
3985
3986 case Reference: {
3987 const ReferenceType *OldRef = cast<ReferenceType>(Old);
3988 QualType New = wrap(C, OldRef->getPointeeType(), I);
3989 if (isa<LValueReferenceType>(OldRef))
3990 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3991 else
3992 return C.getRValueReferenceType(New);
3993 }
3994 }
3995
3996 llvm_unreachable("unknown wrapping kind");
3997 }
3998 };
3999 }
4000
4001 /// Process an individual function attribute. Returns true to
4002 /// indicate that the attribute was handled, false if it wasn't.
handleFunctionTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)4003 static bool handleFunctionTypeAttr(TypeProcessingState &state,
4004 AttributeList &attr,
4005 QualType &type) {
4006 Sema &S = state.getSema();
4007
4008 FunctionTypeUnwrapper unwrapped(S, type);
4009
4010 if (attr.getKind() == AttributeList::AT_NoReturn) {
4011 if (S.CheckNoReturnAttr(attr))
4012 return true;
4013
4014 // Delay if this is not a function type.
4015 if (!unwrapped.isFunctionType())
4016 return false;
4017
4018 // Otherwise we can process right away.
4019 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
4020 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4021 return true;
4022 }
4023
4024 // ns_returns_retained is not always a type attribute, but if we got
4025 // here, we're treating it as one right now.
4026 if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
4027 assert(S.getLangOpts().ObjCAutoRefCount &&
4028 "ns_returns_retained treated as type attribute in non-ARC");
4029 if (attr.getNumArgs()) return true;
4030
4031 // Delay if this is not a function type.
4032 if (!unwrapped.isFunctionType())
4033 return false;
4034
4035 FunctionType::ExtInfo EI
4036 = unwrapped.get()->getExtInfo().withProducesResult(true);
4037 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4038 return true;
4039 }
4040
4041 if (attr.getKind() == AttributeList::AT_Regparm) {
4042 unsigned value;
4043 if (S.CheckRegparmAttr(attr, value))
4044 return true;
4045
4046 // Delay if this is not a function type.
4047 if (!unwrapped.isFunctionType())
4048 return false;
4049
4050 // Diagnose regparm with fastcall.
4051 const FunctionType *fn = unwrapped.get();
4052 CallingConv CC = fn->getCallConv();
4053 if (CC == CC_X86FastCall) {
4054 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4055 << FunctionType::getNameForCallConv(CC)
4056 << "regparm";
4057 attr.setInvalid();
4058 return true;
4059 }
4060
4061 FunctionType::ExtInfo EI =
4062 unwrapped.get()->getExtInfo().withRegParm(value);
4063 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4064 return true;
4065 }
4066
4067 // Delay if the type didn't work out to a function.
4068 if (!unwrapped.isFunctionType()) return false;
4069
4070 // Otherwise, a calling convention.
4071 CallingConv CC;
4072 if (S.CheckCallingConvAttr(attr, CC))
4073 return true;
4074
4075 const FunctionType *fn = unwrapped.get();
4076 CallingConv CCOld = fn->getCallConv();
4077 if (S.Context.getCanonicalCallConv(CC) ==
4078 S.Context.getCanonicalCallConv(CCOld)) {
4079 FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
4080 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4081 return true;
4082 }
4083
4084 if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
4085 // Should we diagnose reapplications of the same convention?
4086 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4087 << FunctionType::getNameForCallConv(CC)
4088 << FunctionType::getNameForCallConv(CCOld);
4089 attr.setInvalid();
4090 return true;
4091 }
4092
4093 // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
4094 if (CC == CC_X86FastCall) {
4095 if (isa<FunctionNoProtoType>(fn)) {
4096 S.Diag(attr.getLoc(), diag::err_cconv_knr)
4097 << FunctionType::getNameForCallConv(CC);
4098 attr.setInvalid();
4099 return true;
4100 }
4101
4102 const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
4103 if (FnP->isVariadic()) {
4104 S.Diag(attr.getLoc(), diag::err_cconv_varargs)
4105 << FunctionType::getNameForCallConv(CC);
4106 attr.setInvalid();
4107 return true;
4108 }
4109
4110 // Also diagnose fastcall with regparm.
4111 if (fn->getHasRegParm()) {
4112 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4113 << "regparm"
4114 << FunctionType::getNameForCallConv(CC);
4115 attr.setInvalid();
4116 return true;
4117 }
4118 }
4119
4120 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
4121 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4122 return true;
4123 }
4124
4125 /// Handle OpenCL image access qualifiers: read_only, write_only, read_write
HandleOpenCLImageAccessAttribute(QualType & CurType,const AttributeList & Attr,Sema & S)4126 static void HandleOpenCLImageAccessAttribute(QualType& CurType,
4127 const AttributeList &Attr,
4128 Sema &S) {
4129 // Check the attribute arguments.
4130 if (Attr.getNumArgs() != 1) {
4131 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4132 Attr.setInvalid();
4133 return;
4134 }
4135 Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
4136 llvm::APSInt arg(32);
4137 if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4138 !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
4139 S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4140 << "opencl_image_access" << sizeExpr->getSourceRange();
4141 Attr.setInvalid();
4142 return;
4143 }
4144 unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
4145 switch (iarg) {
4146 case CLIA_read_only:
4147 case CLIA_write_only:
4148 case CLIA_read_write:
4149 // Implemented in a separate patch
4150 break;
4151 default:
4152 // Implemented in a separate patch
4153 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4154 << sizeExpr->getSourceRange();
4155 Attr.setInvalid();
4156 break;
4157 }
4158 }
4159
4160 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
4161 /// and float scalars, although arrays, pointers, and function return values are
4162 /// allowed in conjunction with this construct. Aggregates with this attribute
4163 /// are invalid, even if they are of the same size as a corresponding scalar.
4164 /// The raw attribute should contain precisely 1 argument, the vector size for
4165 /// the variable, measured in bytes. If curType and rawAttr are well formed,
4166 /// this routine will return a new vector type.
HandleVectorSizeAttr(QualType & CurType,const AttributeList & Attr,Sema & S)4167 static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4168 Sema &S) {
4169 // Check the attribute arguments.
4170 if (Attr.getNumArgs() != 1) {
4171 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4172 Attr.setInvalid();
4173 return;
4174 }
4175 Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
4176 llvm::APSInt vecSize(32);
4177 if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4178 !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4179 S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4180 << "vector_size" << sizeExpr->getSourceRange();
4181 Attr.setInvalid();
4182 return;
4183 }
4184 // the base type must be integer or float, and can't already be a vector.
4185 if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
4186 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4187 Attr.setInvalid();
4188 return;
4189 }
4190 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4191 // vecSize is specified in bytes - convert to bits.
4192 unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4193
4194 // the vector size needs to be an integral multiple of the type size.
4195 if (vectorSize % typeSize) {
4196 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4197 << sizeExpr->getSourceRange();
4198 Attr.setInvalid();
4199 return;
4200 }
4201 if (vectorSize == 0) {
4202 S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4203 << sizeExpr->getSourceRange();
4204 Attr.setInvalid();
4205 return;
4206 }
4207
4208 // Success! Instantiate the vector type, the number of elements is > 0, and
4209 // not required to be a power of 2, unlike GCC.
4210 CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4211 VectorType::GenericVector);
4212 }
4213
4214 /// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4215 /// a type.
HandleExtVectorTypeAttr(QualType & CurType,const AttributeList & Attr,Sema & S)4216 static void HandleExtVectorTypeAttr(QualType &CurType,
4217 const AttributeList &Attr,
4218 Sema &S) {
4219 Expr *sizeExpr;
4220
4221 // Special case where the argument is a template id.
4222 if (Attr.getParameterName()) {
4223 CXXScopeSpec SS;
4224 SourceLocation TemplateKWLoc;
4225 UnqualifiedId id;
4226 id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
4227
4228 ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4229 id, false, false);
4230 if (Size.isInvalid())
4231 return;
4232
4233 sizeExpr = Size.get();
4234 } else {
4235 // check the attribute arguments.
4236 if (Attr.getNumArgs() != 1) {
4237 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4238 return;
4239 }
4240 sizeExpr = Attr.getArg(0);
4241 }
4242
4243 // Create the vector type.
4244 QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4245 if (!T.isNull())
4246 CurType = T;
4247 }
4248
4249 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4250 /// "neon_polyvector_type" attributes are used to create vector types that
4251 /// are mangled according to ARM's ABI. Otherwise, these types are identical
4252 /// to those created with the "vector_size" attribute. Unlike "vector_size"
4253 /// the argument to these Neon attributes is the number of vector elements,
4254 /// not the vector size in bytes. The vector width and element type must
4255 /// match one of the standard Neon vector types.
HandleNeonVectorTypeAttr(QualType & CurType,const AttributeList & Attr,Sema & S,VectorType::VectorKind VecKind,const char * AttrName)4256 static void HandleNeonVectorTypeAttr(QualType& CurType,
4257 const AttributeList &Attr, Sema &S,
4258 VectorType::VectorKind VecKind,
4259 const char *AttrName) {
4260 // Check the attribute arguments.
4261 if (Attr.getNumArgs() != 1) {
4262 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4263 Attr.setInvalid();
4264 return;
4265 }
4266 // The number of elements must be an ICE.
4267 Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
4268 llvm::APSInt numEltsInt(32);
4269 if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4270 !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4271 S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4272 << AttrName << numEltsExpr->getSourceRange();
4273 Attr.setInvalid();
4274 return;
4275 }
4276 // Only certain element types are supported for Neon vectors.
4277 const BuiltinType* BTy = CurType->getAs<BuiltinType>();
4278 if (!BTy ||
4279 (VecKind == VectorType::NeonPolyVector &&
4280 BTy->getKind() != BuiltinType::SChar &&
4281 BTy->getKind() != BuiltinType::Short) ||
4282 (BTy->getKind() != BuiltinType::SChar &&
4283 BTy->getKind() != BuiltinType::UChar &&
4284 BTy->getKind() != BuiltinType::Short &&
4285 BTy->getKind() != BuiltinType::UShort &&
4286 BTy->getKind() != BuiltinType::Int &&
4287 BTy->getKind() != BuiltinType::UInt &&
4288 BTy->getKind() != BuiltinType::LongLong &&
4289 BTy->getKind() != BuiltinType::ULongLong &&
4290 BTy->getKind() != BuiltinType::Float)) {
4291 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
4292 Attr.setInvalid();
4293 return;
4294 }
4295 // The total size of the vector must be 64 or 128 bits.
4296 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4297 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4298 unsigned vecSize = typeSize * numElts;
4299 if (vecSize != 64 && vecSize != 128) {
4300 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4301 Attr.setInvalid();
4302 return;
4303 }
4304
4305 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4306 }
4307
processTypeAttrs(TypeProcessingState & state,QualType & type,TypeAttrLocation TAL,AttributeList * attrs)4308 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4309 TypeAttrLocation TAL, AttributeList *attrs) {
4310 // Scan through and apply attributes to this type where it makes sense. Some
4311 // attributes (such as __address_space__, __vector_size__, etc) apply to the
4312 // type, but others can be present in the type specifiers even though they
4313 // apply to the decl. Here we apply type attributes and ignore the rest.
4314
4315 AttributeList *next;
4316 do {
4317 AttributeList &attr = *attrs;
4318 next = attr.getNext();
4319
4320 // Skip attributes that were marked to be invalid.
4321 if (attr.isInvalid())
4322 continue;
4323
4324 if (attr.isCXX11Attribute()) {
4325 // [[gnu::...]] attributes are treated as declaration attributes, so may
4326 // not appertain to a DeclaratorChunk, even if we handle them as type
4327 // attributes.
4328 if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
4329 if (TAL == TAL_DeclChunk) {
4330 state.getSema().Diag(attr.getLoc(),
4331 diag::warn_cxx11_gnu_attribute_on_type)
4332 << attr.getName();
4333 continue;
4334 }
4335 } else if (TAL != TAL_DeclChunk) {
4336 // Otherwise, only consider type processing for a C++11 attribute if
4337 // it's actually been applied to a type.
4338 continue;
4339 }
4340 }
4341
4342 // If this is an attribute we can handle, do so now,
4343 // otherwise, add it to the FnAttrs list for rechaining.
4344 switch (attr.getKind()) {
4345 default:
4346 // A C++11 attribute on a declarator chunk must appertain to a type.
4347 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
4348 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
4349 << attr.getName();
4350 attr.setUsedAsTypeAttr();
4351 }
4352 break;
4353
4354 case AttributeList::UnknownAttribute:
4355 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
4356 state.getSema().Diag(attr.getLoc(),
4357 diag::warn_unknown_attribute_ignored)
4358 << attr.getName();
4359 break;
4360
4361 case AttributeList::IgnoredAttribute:
4362 break;
4363
4364 case AttributeList::AT_MayAlias:
4365 // FIXME: This attribute needs to actually be handled, but if we ignore
4366 // it it breaks large amounts of Linux software.
4367 attr.setUsedAsTypeAttr();
4368 break;
4369 case AttributeList::AT_AddressSpace:
4370 HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4371 attr.setUsedAsTypeAttr();
4372 break;
4373 OBJC_POINTER_TYPE_ATTRS_CASELIST:
4374 if (!handleObjCPointerTypeAttr(state, attr, type))
4375 distributeObjCPointerTypeAttr(state, attr, type);
4376 attr.setUsedAsTypeAttr();
4377 break;
4378 case AttributeList::AT_VectorSize:
4379 HandleVectorSizeAttr(type, attr, state.getSema());
4380 attr.setUsedAsTypeAttr();
4381 break;
4382 case AttributeList::AT_ExtVectorType:
4383 HandleExtVectorTypeAttr(type, attr, state.getSema());
4384 attr.setUsedAsTypeAttr();
4385 break;
4386 case AttributeList::AT_NeonVectorType:
4387 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4388 VectorType::NeonVector, "neon_vector_type");
4389 attr.setUsedAsTypeAttr();
4390 break;
4391 case AttributeList::AT_NeonPolyVectorType:
4392 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4393 VectorType::NeonPolyVector,
4394 "neon_polyvector_type");
4395 attr.setUsedAsTypeAttr();
4396 break;
4397 case AttributeList::AT_OpenCLImageAccess:
4398 HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4399 attr.setUsedAsTypeAttr();
4400 break;
4401
4402 case AttributeList::AT_Win64:
4403 case AttributeList::AT_Ptr32:
4404 case AttributeList::AT_Ptr64:
4405 // FIXME: Don't ignore these. We have partial handling for them as
4406 // declaration attributes in SemaDeclAttr.cpp; that should be moved here.
4407 attr.setUsedAsTypeAttr();
4408 break;
4409
4410 case AttributeList::AT_NSReturnsRetained:
4411 if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4412 break;
4413 // fallthrough into the function attrs
4414
4415 FUNCTION_TYPE_ATTRS_CASELIST:
4416 attr.setUsedAsTypeAttr();
4417
4418 // Never process function type attributes as part of the
4419 // declaration-specifiers.
4420 if (TAL == TAL_DeclSpec)
4421 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4422
4423 // Otherwise, handle the possible delays.
4424 else if (!handleFunctionTypeAttr(state, attr, type))
4425 distributeFunctionTypeAttr(state, attr, type);
4426 break;
4427 }
4428 } while ((attrs = next));
4429 }
4430
4431 /// \brief Ensure that the type of the given expression is complete.
4432 ///
4433 /// This routine checks whether the expression \p E has a complete type. If the
4434 /// expression refers to an instantiable construct, that instantiation is
4435 /// performed as needed to complete its type. Furthermore
4436 /// Sema::RequireCompleteType is called for the expression's type (or in the
4437 /// case of a reference type, the referred-to type).
4438 ///
4439 /// \param E The expression whose type is required to be complete.
4440 /// \param Diagnoser The object that will emit a diagnostic if the type is
4441 /// incomplete.
4442 ///
4443 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4444 /// otherwise.
RequireCompleteExprType(Expr * E,TypeDiagnoser & Diagnoser)4445 bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4446 QualType T = E->getType();
4447
4448 // Fast path the case where the type is already complete.
4449 if (!T->isIncompleteType())
4450 return false;
4451
4452 // Incomplete array types may be completed by the initializer attached to
4453 // their definitions. For static data members of class templates we need to
4454 // instantiate the definition to get this initializer and complete the type.
4455 if (T->isIncompleteArrayType()) {
4456 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4457 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4458 if (Var->isStaticDataMember() &&
4459 Var->getInstantiatedFromStaticDataMember()) {
4460
4461 MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4462 assert(MSInfo && "Missing member specialization information?");
4463 if (MSInfo->getTemplateSpecializationKind()
4464 != TSK_ExplicitSpecialization) {
4465 // If we don't already have a point of instantiation, this is it.
4466 if (MSInfo->getPointOfInstantiation().isInvalid()) {
4467 MSInfo->setPointOfInstantiation(E->getLocStart());
4468
4469 // This is a modification of an existing AST node. Notify
4470 // listeners.
4471 if (ASTMutationListener *L = getASTMutationListener())
4472 L->StaticDataMemberInstantiated(Var);
4473 }
4474
4475 InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4476
4477 // Update the type to the newly instantiated definition's type both
4478 // here and within the expression.
4479 if (VarDecl *Def = Var->getDefinition()) {
4480 DRE->setDecl(Def);
4481 T = Def->getType();
4482 DRE->setType(T);
4483 E->setType(T);
4484 }
4485 }
4486
4487 // We still go on to try to complete the type independently, as it
4488 // may also require instantiations or diagnostics if it remains
4489 // incomplete.
4490 }
4491 }
4492 }
4493 }
4494
4495 // FIXME: Are there other cases which require instantiating something other
4496 // than the type to complete the type of an expression?
4497
4498 // Look through reference types and complete the referred type.
4499 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4500 T = Ref->getPointeeType();
4501
4502 return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
4503 }
4504
4505 namespace {
4506 struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
4507 unsigned DiagID;
4508
TypeDiagnoserDiag__anoncc0ca2df0411::TypeDiagnoserDiag4509 TypeDiagnoserDiag(unsigned DiagID)
4510 : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
4511
diagnose__anoncc0ca2df0411::TypeDiagnoserDiag4512 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
4513 if (Suppressed) return;
4514 S.Diag(Loc, DiagID) << T;
4515 }
4516 };
4517 }
4518
RequireCompleteExprType(Expr * E,unsigned DiagID)4519 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
4520 TypeDiagnoserDiag Diagnoser(DiagID);
4521 return RequireCompleteExprType(E, Diagnoser);
4522 }
4523
4524 /// @brief Ensure that the type T is a complete type.
4525 ///
4526 /// This routine checks whether the type @p T is complete in any
4527 /// context where a complete type is required. If @p T is a complete
4528 /// type, returns false. If @p T is a class template specialization,
4529 /// this routine then attempts to perform class template
4530 /// instantiation. If instantiation fails, or if @p T is incomplete
4531 /// and cannot be completed, issues the diagnostic @p diag (giving it
4532 /// the type @p T) and returns true.
4533 ///
4534 /// @param Loc The location in the source that the incomplete type
4535 /// diagnostic should refer to.
4536 ///
4537 /// @param T The type that this routine is examining for completeness.
4538 ///
4539 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4540 /// @c false otherwise.
RequireCompleteType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)4541 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4542 TypeDiagnoser &Diagnoser) {
4543 // FIXME: Add this assertion to make sure we always get instantiation points.
4544 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4545 // FIXME: Add this assertion to help us flush out problems with
4546 // checking for dependent types and type-dependent expressions.
4547 //
4548 // assert(!T->isDependentType() &&
4549 // "Can't ask whether a dependent type is complete");
4550
4551 // If we have a complete type, we're done.
4552 NamedDecl *Def = 0;
4553 if (!T->isIncompleteType(&Def)) {
4554 // If we know about the definition but it is not visible, complain.
4555 if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
4556 // Suppress this error outside of a SFINAE context if we've already
4557 // emitted the error once for this type. There's no usefulness in
4558 // repeating the diagnostic.
4559 // FIXME: Add a Fix-It that imports the corresponding module or includes
4560 // the header.
4561 Module *Owner = Def->getOwningModule();
4562 Diag(Loc, diag::err_module_private_definition)
4563 << T << Owner->getFullModuleName();
4564 Diag(Def->getLocation(), diag::note_previous_definition);
4565
4566 if (!isSFINAEContext()) {
4567 // Recover by implicitly importing this module.
4568 createImplicitModuleImport(Loc, Owner);
4569 }
4570 }
4571
4572 return false;
4573 }
4574
4575 const TagType *Tag = T->getAs<TagType>();
4576 const ObjCInterfaceType *IFace = 0;
4577
4578 if (Tag) {
4579 // Avoid diagnosing invalid decls as incomplete.
4580 if (Tag->getDecl()->isInvalidDecl())
4581 return true;
4582
4583 // Give the external AST source a chance to complete the type.
4584 if (Tag->getDecl()->hasExternalLexicalStorage()) {
4585 Context.getExternalSource()->CompleteType(Tag->getDecl());
4586 if (!Tag->isIncompleteType())
4587 return false;
4588 }
4589 }
4590 else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4591 // Avoid diagnosing invalid decls as incomplete.
4592 if (IFace->getDecl()->isInvalidDecl())
4593 return true;
4594
4595 // Give the external AST source a chance to complete the type.
4596 if (IFace->getDecl()->hasExternalLexicalStorage()) {
4597 Context.getExternalSource()->CompleteType(IFace->getDecl());
4598 if (!IFace->isIncompleteType())
4599 return false;
4600 }
4601 }
4602
4603 // If we have a class template specialization or a class member of a
4604 // class template specialization, or an array with known size of such,
4605 // try to instantiate it.
4606 QualType MaybeTemplate = T;
4607 while (const ConstantArrayType *Array
4608 = Context.getAsConstantArrayType(MaybeTemplate))
4609 MaybeTemplate = Array->getElementType();
4610 if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4611 if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4612 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4613 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4614 return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4615 TSK_ImplicitInstantiation,
4616 /*Complain=*/!Diagnoser.Suppressed);
4617 } else if (CXXRecordDecl *Rec
4618 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4619 CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
4620 if (!Rec->isBeingDefined() && Pattern) {
4621 MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
4622 assert(MSI && "Missing member specialization information?");
4623 // This record was instantiated from a class within a template.
4624 if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4625 return InstantiateClass(Loc, Rec, Pattern,
4626 getTemplateInstantiationArgs(Rec),
4627 TSK_ImplicitInstantiation,
4628 /*Complain=*/!Diagnoser.Suppressed);
4629 }
4630 }
4631 }
4632
4633 if (Diagnoser.Suppressed)
4634 return true;
4635
4636 // We have an incomplete type. Produce a diagnostic.
4637 Diagnoser.diagnose(*this, Loc, T);
4638
4639 // If the type was a forward declaration of a class/struct/union
4640 // type, produce a note.
4641 if (Tag && !Tag->getDecl()->isInvalidDecl())
4642 Diag(Tag->getDecl()->getLocation(),
4643 Tag->isBeingDefined() ? diag::note_type_being_defined
4644 : diag::note_forward_declaration)
4645 << QualType(Tag, 0);
4646
4647 // If the Objective-C class was a forward declaration, produce a note.
4648 if (IFace && !IFace->getDecl()->isInvalidDecl())
4649 Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4650
4651 return true;
4652 }
4653
RequireCompleteType(SourceLocation Loc,QualType T,unsigned DiagID)4654 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4655 unsigned DiagID) {
4656 TypeDiagnoserDiag Diagnoser(DiagID);
4657 return RequireCompleteType(Loc, T, Diagnoser);
4658 }
4659
4660 /// \brief Get diagnostic %select index for tag kind for
4661 /// literal type diagnostic message.
4662 /// WARNING: Indexes apply to particular diagnostics only!
4663 ///
4664 /// \returns diagnostic %select index.
getLiteralDiagFromTagKind(TagTypeKind Tag)4665 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
4666 switch (Tag) {
4667 case TTK_Struct: return 0;
4668 case TTK_Interface: return 1;
4669 case TTK_Class: return 2;
4670 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
4671 }
4672 }
4673
4674 /// @brief Ensure that the type T is a literal type.
4675 ///
4676 /// This routine checks whether the type @p T is a literal type. If @p T is an
4677 /// incomplete type, an attempt is made to complete it. If @p T is a literal
4678 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4679 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4680 /// it the type @p T), along with notes explaining why the type is not a
4681 /// literal type, and returns true.
4682 ///
4683 /// @param Loc The location in the source that the non-literal type
4684 /// diagnostic should refer to.
4685 ///
4686 /// @param T The type that this routine is examining for literalness.
4687 ///
4688 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
4689 ///
4690 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4691 /// @c false otherwise.
RequireLiteralType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)4692 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4693 TypeDiagnoser &Diagnoser) {
4694 assert(!T->isDependentType() && "type should not be dependent");
4695
4696 QualType ElemType = Context.getBaseElementType(T);
4697 RequireCompleteType(Loc, ElemType, 0);
4698
4699 if (T->isLiteralType())
4700 return false;
4701
4702 if (Diagnoser.Suppressed)
4703 return true;
4704
4705 Diagnoser.diagnose(*this, Loc, T);
4706
4707 if (T->isVariableArrayType())
4708 return true;
4709
4710 const RecordType *RT = ElemType->getAs<RecordType>();
4711 if (!RT)
4712 return true;
4713
4714 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4715
4716 // A partially-defined class type can't be a literal type, because a literal
4717 // class type must have a trivial destructor (which can't be checked until
4718 // the class definition is complete).
4719 if (!RD->isCompleteDefinition()) {
4720 RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
4721 return true;
4722 }
4723
4724 // If the class has virtual base classes, then it's not an aggregate, and
4725 // cannot have any constexpr constructors or a trivial default constructor,
4726 // so is non-literal. This is better to diagnose than the resulting absence
4727 // of constexpr constructors.
4728 if (RD->getNumVBases()) {
4729 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4730 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
4731 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4732 E = RD->vbases_end(); I != E; ++I)
4733 Diag(I->getLocStart(),
4734 diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4735 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
4736 !RD->hasTrivialDefaultConstructor()) {
4737 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4738 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4739 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4740 E = RD->bases_end(); I != E; ++I) {
4741 if (!I->getType()->isLiteralType()) {
4742 Diag(I->getLocStart(),
4743 diag::note_non_literal_base_class)
4744 << RD << I->getType() << I->getSourceRange();
4745 return true;
4746 }
4747 }
4748 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4749 E = RD->field_end(); I != E; ++I) {
4750 if (!I->getType()->isLiteralType() ||
4751 I->getType().isVolatileQualified()) {
4752 Diag(I->getLocation(), diag::note_non_literal_field)
4753 << RD << *I << I->getType()
4754 << I->getType().isVolatileQualified();
4755 return true;
4756 }
4757 }
4758 } else if (!RD->hasTrivialDestructor()) {
4759 // All fields and bases are of literal types, so have trivial destructors.
4760 // If this class's destructor is non-trivial it must be user-declared.
4761 CXXDestructorDecl *Dtor = RD->getDestructor();
4762 assert(Dtor && "class has literal fields and bases but no dtor?");
4763 if (!Dtor)
4764 return true;
4765
4766 Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4767 diag::note_non_literal_user_provided_dtor :
4768 diag::note_non_literal_nontrivial_dtor) << RD;
4769 if (!Dtor->isUserProvided())
4770 SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
4771 }
4772
4773 return true;
4774 }
4775
RequireLiteralType(SourceLocation Loc,QualType T,unsigned DiagID)4776 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
4777 TypeDiagnoserDiag Diagnoser(DiagID);
4778 return RequireLiteralType(Loc, T, Diagnoser);
4779 }
4780
4781 /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4782 /// and qualified by the nested-name-specifier contained in SS.
getElaboratedType(ElaboratedTypeKeyword Keyword,const CXXScopeSpec & SS,QualType T)4783 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4784 const CXXScopeSpec &SS, QualType T) {
4785 if (T.isNull())
4786 return T;
4787 NestedNameSpecifier *NNS;
4788 if (SS.isValid())
4789 NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4790 else {
4791 if (Keyword == ETK_None)
4792 return T;
4793 NNS = 0;
4794 }
4795 return Context.getElaboratedType(Keyword, NNS, T);
4796 }
4797
BuildTypeofExprType(Expr * E,SourceLocation Loc)4798 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4799 ExprResult ER = CheckPlaceholderExpr(E);
4800 if (ER.isInvalid()) return QualType();
4801 E = ER.take();
4802
4803 if (!E->isTypeDependent()) {
4804 QualType T = E->getType();
4805 if (const TagType *TT = T->getAs<TagType>())
4806 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4807 }
4808 return Context.getTypeOfExprType(E);
4809 }
4810
4811 /// getDecltypeForExpr - Given an expr, will return the decltype for
4812 /// that expression, according to the rules in C++11
4813 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
getDecltypeForExpr(Sema & S,Expr * E)4814 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4815 if (E->isTypeDependent())
4816 return S.Context.DependentTy;
4817
4818 // C++11 [dcl.type.simple]p4:
4819 // The type denoted by decltype(e) is defined as follows:
4820 //
4821 // - if e is an unparenthesized id-expression or an unparenthesized class
4822 // member access (5.2.5), decltype(e) is the type of the entity named
4823 // by e. If there is no such entity, or if e names a set of overloaded
4824 // functions, the program is ill-formed;
4825 //
4826 // We apply the same rules for Objective-C ivar and property references.
4827 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4828 if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4829 return VD->getType();
4830 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4831 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4832 return FD->getType();
4833 } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
4834 return IR->getDecl()->getType();
4835 } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
4836 if (PR->isExplicitProperty())
4837 return PR->getExplicitProperty()->getType();
4838 }
4839
4840 // C++11 [expr.lambda.prim]p18:
4841 // Every occurrence of decltype((x)) where x is a possibly
4842 // parenthesized id-expression that names an entity of automatic
4843 // storage duration is treated as if x were transformed into an
4844 // access to a corresponding data member of the closure type that
4845 // would have been declared if x were an odr-use of the denoted
4846 // entity.
4847 using namespace sema;
4848 if (S.getCurLambda()) {
4849 if (isa<ParenExpr>(E)) {
4850 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4851 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4852 QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
4853 if (!T.isNull())
4854 return S.Context.getLValueReferenceType(T);
4855 }
4856 }
4857 }
4858 }
4859
4860
4861 // C++11 [dcl.type.simple]p4:
4862 // [...]
4863 QualType T = E->getType();
4864 switch (E->getValueKind()) {
4865 // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4866 // type of e;
4867 case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4868 // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4869 // type of e;
4870 case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4871 // - otherwise, decltype(e) is the type of e.
4872 case VK_RValue: break;
4873 }
4874
4875 return T;
4876 }
4877
BuildDecltypeType(Expr * E,SourceLocation Loc)4878 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4879 ExprResult ER = CheckPlaceholderExpr(E);
4880 if (ER.isInvalid()) return QualType();
4881 E = ER.take();
4882
4883 return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4884 }
4885
BuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)4886 QualType Sema::BuildUnaryTransformType(QualType BaseType,
4887 UnaryTransformType::UTTKind UKind,
4888 SourceLocation Loc) {
4889 switch (UKind) {
4890 case UnaryTransformType::EnumUnderlyingType:
4891 if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4892 Diag(Loc, diag::err_only_enums_have_underlying_types);
4893 return QualType();
4894 } else {
4895 QualType Underlying = BaseType;
4896 if (!BaseType->isDependentType()) {
4897 EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4898 assert(ED && "EnumType has no EnumDecl");
4899 DiagnoseUseOfDecl(ED, Loc);
4900 Underlying = ED->getIntegerType();
4901 }
4902 assert(!Underlying.isNull());
4903 return Context.getUnaryTransformType(BaseType, Underlying,
4904 UnaryTransformType::EnumUnderlyingType);
4905 }
4906 }
4907 llvm_unreachable("unknown unary transform type");
4908 }
4909
BuildAtomicType(QualType T,SourceLocation Loc)4910 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4911 if (!T->isDependentType()) {
4912 // FIXME: It isn't entirely clear whether incomplete atomic types
4913 // are allowed or not; for simplicity, ban them for the moment.
4914 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
4915 return QualType();
4916
4917 int DisallowedKind = -1;
4918 if (T->isArrayType())
4919 DisallowedKind = 1;
4920 else if (T->isFunctionType())
4921 DisallowedKind = 2;
4922 else if (T->isReferenceType())
4923 DisallowedKind = 3;
4924 else if (T->isAtomicType())
4925 DisallowedKind = 4;
4926 else if (T.hasQualifiers())
4927 DisallowedKind = 5;
4928 else if (!T.isTriviallyCopyableType(Context))
4929 // Some other non-trivially-copyable type (probably a C++ class)
4930 DisallowedKind = 6;
4931
4932 if (DisallowedKind != -1) {
4933 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4934 return QualType();
4935 }
4936
4937 // FIXME: Do we need any handling for ARC here?
4938 }
4939
4940 // Build the pointer type.
4941 return Context.getAtomicType(T);
4942 }
4943