• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/SemaInternal.h"
16 #include "TypeLocBuilder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Initialization.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/TemplateDeduction.h"
35 #include "llvm/ADT/APInt.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/Support/ErrorHandling.h"
38 using namespace clang;
39 using namespace sema;
40 
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)41 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
42                                    IdentifierInfo &II,
43                                    SourceLocation NameLoc,
44                                    Scope *S, CXXScopeSpec &SS,
45                                    ParsedType ObjectTypePtr,
46                                    bool EnteringContext) {
47   // Determine where to perform name lookup.
48 
49   // FIXME: This area of the standard is very messy, and the current
50   // wording is rather unclear about which scopes we search for the
51   // destructor name; see core issues 399 and 555. Issue 399 in
52   // particular shows where the current description of destructor name
53   // lookup is completely out of line with existing practice, e.g.,
54   // this appears to be ill-formed:
55   //
56   //   namespace N {
57   //     template <typename T> struct S {
58   //       ~S();
59   //     };
60   //   }
61   //
62   //   void f(N::S<int>* s) {
63   //     s->N::S<int>::~S();
64   //   }
65   //
66   // See also PR6358 and PR6359.
67   // For this reason, we're currently only doing the C++03 version of this
68   // code; the C++0x version has to wait until we get a proper spec.
69   QualType SearchType;
70   DeclContext *LookupCtx = 0;
71   bool isDependent = false;
72   bool LookInScope = false;
73 
74   // If we have an object type, it's because we are in a
75   // pseudo-destructor-expression or a member access expression, and
76   // we know what type we're looking for.
77   if (ObjectTypePtr)
78     SearchType = GetTypeFromParser(ObjectTypePtr);
79 
80   if (SS.isSet()) {
81     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
82 
83     bool AlreadySearched = false;
84     bool LookAtPrefix = true;
85     // C++ [basic.lookup.qual]p6:
86     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
87     //   the type-names are looked up as types in the scope designated by the
88     //   nested-name-specifier. In a qualified-id of the form:
89     //
90     //     ::[opt] nested-name-specifier  ~ class-name
91     //
92     //   where the nested-name-specifier designates a namespace scope, and in
93     //   a qualified-id of the form:
94     //
95     //     ::opt nested-name-specifier class-name ::  ~ class-name
96     //
97     //   the class-names are looked up as types in the scope designated by
98     //   the nested-name-specifier.
99     //
100     // Here, we check the first case (completely) and determine whether the
101     // code below is permitted to look at the prefix of the
102     // nested-name-specifier.
103     DeclContext *DC = computeDeclContext(SS, EnteringContext);
104     if (DC && DC->isFileContext()) {
105       AlreadySearched = true;
106       LookupCtx = DC;
107       isDependent = false;
108     } else if (DC && isa<CXXRecordDecl>(DC))
109       LookAtPrefix = false;
110 
111     // The second case from the C++03 rules quoted further above.
112     NestedNameSpecifier *Prefix = 0;
113     if (AlreadySearched) {
114       // Nothing left to do.
115     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
116       CXXScopeSpec PrefixSS;
117       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
118       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
119       isDependent = isDependentScopeSpecifier(PrefixSS);
120     } else if (ObjectTypePtr) {
121       LookupCtx = computeDeclContext(SearchType);
122       isDependent = SearchType->isDependentType();
123     } else {
124       LookupCtx = computeDeclContext(SS, EnteringContext);
125       isDependent = LookupCtx && LookupCtx->isDependentContext();
126     }
127 
128     LookInScope = false;
129   } else if (ObjectTypePtr) {
130     // C++ [basic.lookup.classref]p3:
131     //   If the unqualified-id is ~type-name, the type-name is looked up
132     //   in the context of the entire postfix-expression. If the type T
133     //   of the object expression is of a class type C, the type-name is
134     //   also looked up in the scope of class C. At least one of the
135     //   lookups shall find a name that refers to (possibly
136     //   cv-qualified) T.
137     LookupCtx = computeDeclContext(SearchType);
138     isDependent = SearchType->isDependentType();
139     assert((isDependent || !SearchType->isIncompleteType()) &&
140            "Caller should have completed object type");
141 
142     LookInScope = true;
143   } else {
144     // Perform lookup into the current scope (only).
145     LookInScope = true;
146   }
147 
148   TypeDecl *NonMatchingTypeDecl = 0;
149   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
150   for (unsigned Step = 0; Step != 2; ++Step) {
151     // Look for the name first in the computed lookup context (if we
152     // have one) and, if that fails to find a match, in the scope (if
153     // we're allowed to look there).
154     Found.clear();
155     if (Step == 0 && LookupCtx)
156       LookupQualifiedName(Found, LookupCtx);
157     else if (Step == 1 && LookInScope && S)
158       LookupName(Found, S);
159     else
160       continue;
161 
162     // FIXME: Should we be suppressing ambiguities here?
163     if (Found.isAmbiguous())
164       return ParsedType();
165 
166     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
167       QualType T = Context.getTypeDeclType(Type);
168 
169       if (SearchType.isNull() || SearchType->isDependentType() ||
170           Context.hasSameUnqualifiedType(T, SearchType)) {
171         // We found our type!
172 
173         return ParsedType::make(T);
174       }
175 
176       if (!SearchType.isNull())
177         NonMatchingTypeDecl = Type;
178     }
179 
180     // If the name that we found is a class template name, and it is
181     // the same name as the template name in the last part of the
182     // nested-name-specifier (if present) or the object type, then
183     // this is the destructor for that class.
184     // FIXME: This is a workaround until we get real drafting for core
185     // issue 399, for which there isn't even an obvious direction.
186     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
187       QualType MemberOfType;
188       if (SS.isSet()) {
189         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
190           // Figure out the type of the context, if it has one.
191           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
192             MemberOfType = Context.getTypeDeclType(Record);
193         }
194       }
195       if (MemberOfType.isNull())
196         MemberOfType = SearchType;
197 
198       if (MemberOfType.isNull())
199         continue;
200 
201       // We're referring into a class template specialization. If the
202       // class template we found is the same as the template being
203       // specialized, we found what we are looking for.
204       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
205         if (ClassTemplateSpecializationDecl *Spec
206               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
207           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
208                 Template->getCanonicalDecl())
209             return ParsedType::make(MemberOfType);
210         }
211 
212         continue;
213       }
214 
215       // We're referring to an unresolved class template
216       // specialization. Determine whether we class template we found
217       // is the same as the template being specialized or, if we don't
218       // know which template is being specialized, that it at least
219       // has the same name.
220       if (const TemplateSpecializationType *SpecType
221             = MemberOfType->getAs<TemplateSpecializationType>()) {
222         TemplateName SpecName = SpecType->getTemplateName();
223 
224         // The class template we found is the same template being
225         // specialized.
226         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
227           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
228             return ParsedType::make(MemberOfType);
229 
230           continue;
231         }
232 
233         // The class template we found has the same name as the
234         // (dependent) template name being specialized.
235         if (DependentTemplateName *DepTemplate
236                                     = SpecName.getAsDependentTemplateName()) {
237           if (DepTemplate->isIdentifier() &&
238               DepTemplate->getIdentifier() == Template->getIdentifier())
239             return ParsedType::make(MemberOfType);
240 
241           continue;
242         }
243       }
244     }
245   }
246 
247   if (isDependent) {
248     // We didn't find our type, but that's okay: it's dependent
249     // anyway.
250 
251     // FIXME: What if we have no nested-name-specifier?
252     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
253                                    SS.getWithLocInContext(Context),
254                                    II, NameLoc);
255     return ParsedType::make(T);
256   }
257 
258   if (NonMatchingTypeDecl) {
259     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
260     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
261       << T << SearchType;
262     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
263       << T;
264   } else if (ObjectTypePtr)
265     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
266       << &II;
267   else
268     Diag(NameLoc, diag::err_destructor_class_name);
269 
270   return ParsedType();
271 }
272 
getDestructorType(const DeclSpec & DS,ParsedType ObjectType)273 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
274     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
275       return ParsedType();
276     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
277            && "only get destructor types from declspecs");
278     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
279     QualType SearchType = GetTypeFromParser(ObjectType);
280     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
281       return ParsedType::make(T);
282     }
283 
284     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
285       << T << SearchType;
286     return ParsedType();
287 }
288 
289 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)290 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
291                                 SourceLocation TypeidLoc,
292                                 TypeSourceInfo *Operand,
293                                 SourceLocation RParenLoc) {
294   // C++ [expr.typeid]p4:
295   //   The top-level cv-qualifiers of the lvalue expression or the type-id
296   //   that is the operand of typeid are always ignored.
297   //   If the type of the type-id is a class type or a reference to a class
298   //   type, the class shall be completely-defined.
299   Qualifiers Quals;
300   QualType T
301     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
302                                       Quals);
303   if (T->getAs<RecordType>() &&
304       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
305     return ExprError();
306 
307   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
308                                            Operand,
309                                            SourceRange(TypeidLoc, RParenLoc)));
310 }
311 
312 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)313 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
314                                 SourceLocation TypeidLoc,
315                                 Expr *E,
316                                 SourceLocation RParenLoc) {
317   if (E && !E->isTypeDependent()) {
318     if (E->getType()->isPlaceholderType()) {
319       ExprResult result = CheckPlaceholderExpr(E);
320       if (result.isInvalid()) return ExprError();
321       E = result.take();
322     }
323 
324     QualType T = E->getType();
325     if (const RecordType *RecordT = T->getAs<RecordType>()) {
326       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
327       // C++ [expr.typeid]p3:
328       //   [...] If the type of the expression is a class type, the class
329       //   shall be completely-defined.
330       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
331         return ExprError();
332 
333       // C++ [expr.typeid]p3:
334       //   When typeid is applied to an expression other than an glvalue of a
335       //   polymorphic class type [...] [the] expression is an unevaluated
336       //   operand. [...]
337       if (RecordD->isPolymorphic() && E->isGLValue()) {
338         // The subexpression is potentially evaluated; switch the context
339         // and recheck the subexpression.
340         ExprResult Result = TransformToPotentiallyEvaluated(E);
341         if (Result.isInvalid()) return ExprError();
342         E = Result.take();
343 
344         // We require a vtable to query the type at run time.
345         MarkVTableUsed(TypeidLoc, RecordD);
346       }
347     }
348 
349     // C++ [expr.typeid]p4:
350     //   [...] If the type of the type-id is a reference to a possibly
351     //   cv-qualified type, the result of the typeid expression refers to a
352     //   std::type_info object representing the cv-unqualified referenced
353     //   type.
354     Qualifiers Quals;
355     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
356     if (!Context.hasSameType(T, UnqualT)) {
357       T = UnqualT;
358       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
359     }
360   }
361 
362   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
363                                            E,
364                                            SourceRange(TypeidLoc, RParenLoc)));
365 }
366 
367 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
368 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)369 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
370                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
371   // Find the std::type_info type.
372   if (!getStdNamespace())
373     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
374 
375   if (!CXXTypeInfoDecl) {
376     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
377     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
378     LookupQualifiedName(R, getStdNamespace());
379     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
380     // Microsoft's typeinfo doesn't have type_info in std but in the global
381     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
382     if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
383       LookupQualifiedName(R, Context.getTranslationUnitDecl());
384       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
385     }
386     if (!CXXTypeInfoDecl)
387       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
388   }
389 
390   if (!getLangOpts().RTTI) {
391     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
392   }
393 
394   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
395 
396   if (isType) {
397     // The operand is a type; handle it as such.
398     TypeSourceInfo *TInfo = 0;
399     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
400                                    &TInfo);
401     if (T.isNull())
402       return ExprError();
403 
404     if (!TInfo)
405       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
406 
407     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
408   }
409 
410   // The operand is an expression.
411   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
412 }
413 
414 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)415 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
416                                 SourceLocation TypeidLoc,
417                                 TypeSourceInfo *Operand,
418                                 SourceLocation RParenLoc) {
419   if (!Operand->getType()->isDependentType()) {
420     if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType()))
421       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
422   }
423 
424   // FIXME: add __uuidof semantic analysis for type operand.
425   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
426                                            Operand,
427                                            SourceRange(TypeidLoc, RParenLoc)));
428 }
429 
430 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)431 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
432                                 SourceLocation TypeidLoc,
433                                 Expr *E,
434                                 SourceLocation RParenLoc) {
435   if (!E->getType()->isDependentType()) {
436     if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType()) &&
437         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
438       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
439   }
440   // FIXME: add __uuidof semantic analysis for type operand.
441   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
442                                            E,
443                                            SourceRange(TypeidLoc, RParenLoc)));
444 }
445 
446 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
447 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)448 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
449                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
450   // If MSVCGuidDecl has not been cached, do the lookup.
451   if (!MSVCGuidDecl) {
452     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
453     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
454     LookupQualifiedName(R, Context.getTranslationUnitDecl());
455     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
456     if (!MSVCGuidDecl)
457       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
458   }
459 
460   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
461 
462   if (isType) {
463     // The operand is a type; handle it as such.
464     TypeSourceInfo *TInfo = 0;
465     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
466                                    &TInfo);
467     if (T.isNull())
468       return ExprError();
469 
470     if (!TInfo)
471       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
472 
473     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
474   }
475 
476   // The operand is an expression.
477   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
478 }
479 
480 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
481 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)482 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
483   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
484          "Unknown C++ Boolean value!");
485   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
486                                                 Context.BoolTy, OpLoc));
487 }
488 
489 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
490 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)491 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
492   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
493 }
494 
495 /// ActOnCXXThrow - Parse throw expressions.
496 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)497 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
498   bool IsThrownVarInScope = false;
499   if (Ex) {
500     // C++0x [class.copymove]p31:
501     //   When certain criteria are met, an implementation is allowed to omit the
502     //   copy/move construction of a class object [...]
503     //
504     //     - in a throw-expression, when the operand is the name of a
505     //       non-volatile automatic object (other than a function or catch-
506     //       clause parameter) whose scope does not extend beyond the end of the
507     //       innermost enclosing try-block (if there is one), the copy/move
508     //       operation from the operand to the exception object (15.1) can be
509     //       omitted by constructing the automatic object directly into the
510     //       exception object
511     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
512       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
513         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
514           for( ; S; S = S->getParent()) {
515             if (S->isDeclScope(Var)) {
516               IsThrownVarInScope = true;
517               break;
518             }
519 
520             if (S->getFlags() &
521                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
522                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
523                  Scope::TryScope))
524               break;
525           }
526         }
527       }
528   }
529 
530   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
531 }
532 
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)533 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
534                                bool IsThrownVarInScope) {
535   // Don't report an error if 'throw' is used in system headers.
536   if (!getLangOpts().CXXExceptions &&
537       !getSourceManager().isInSystemHeader(OpLoc))
538     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
539 
540   if (Ex && !Ex->isTypeDependent()) {
541     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
542     if (ExRes.isInvalid())
543       return ExprError();
544     Ex = ExRes.take();
545   }
546 
547   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
548                                           IsThrownVarInScope));
549 }
550 
551 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,Expr * E,bool IsThrownVarInScope)552 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
553                                       bool IsThrownVarInScope) {
554   // C++ [except.throw]p3:
555   //   A throw-expression initializes a temporary object, called the exception
556   //   object, the type of which is determined by removing any top-level
557   //   cv-qualifiers from the static type of the operand of throw and adjusting
558   //   the type from "array of T" or "function returning T" to "pointer to T"
559   //   or "pointer to function returning T", [...]
560   if (E->getType().hasQualifiers())
561     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
562                           E->getValueKind()).take();
563 
564   ExprResult Res = DefaultFunctionArrayConversion(E);
565   if (Res.isInvalid())
566     return ExprError();
567   E = Res.take();
568 
569   //   If the type of the exception would be an incomplete type or a pointer
570   //   to an incomplete type other than (cv) void the program is ill-formed.
571   QualType Ty = E->getType();
572   bool isPointer = false;
573   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
574     Ty = Ptr->getPointeeType();
575     isPointer = true;
576   }
577   if (!isPointer || !Ty->isVoidType()) {
578     if (RequireCompleteType(ThrowLoc, Ty,
579                             isPointer? diag::err_throw_incomplete_ptr
580                                      : diag::err_throw_incomplete,
581                             E->getSourceRange()))
582       return ExprError();
583 
584     if (RequireNonAbstractType(ThrowLoc, E->getType(),
585                                diag::err_throw_abstract_type, E))
586       return ExprError();
587   }
588 
589   // Initialize the exception result.  This implicitly weeds out
590   // abstract types or types with inaccessible copy constructors.
591 
592   // C++0x [class.copymove]p31:
593   //   When certain criteria are met, an implementation is allowed to omit the
594   //   copy/move construction of a class object [...]
595   //
596   //     - in a throw-expression, when the operand is the name of a
597   //       non-volatile automatic object (other than a function or catch-clause
598   //       parameter) whose scope does not extend beyond the end of the
599   //       innermost enclosing try-block (if there is one), the copy/move
600   //       operation from the operand to the exception object (15.1) can be
601   //       omitted by constructing the automatic object directly into the
602   //       exception object
603   const VarDecl *NRVOVariable = 0;
604   if (IsThrownVarInScope)
605     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
606 
607   InitializedEntity Entity =
608       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
609                                              /*NRVO=*/NRVOVariable != 0);
610   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
611                                         QualType(), E,
612                                         IsThrownVarInScope);
613   if (Res.isInvalid())
614     return ExprError();
615   E = Res.take();
616 
617   // If the exception has class type, we need additional handling.
618   const RecordType *RecordTy = Ty->getAs<RecordType>();
619   if (!RecordTy)
620     return Owned(E);
621   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
622 
623   // If we are throwing a polymorphic class type or pointer thereof,
624   // exception handling will make use of the vtable.
625   MarkVTableUsed(ThrowLoc, RD);
626 
627   // If a pointer is thrown, the referenced object will not be destroyed.
628   if (isPointer)
629     return Owned(E);
630 
631   // If the class has a destructor, we must be able to call it.
632   if (RD->hasIrrelevantDestructor())
633     return Owned(E);
634 
635   CXXDestructorDecl *Destructor = LookupDestructor(RD);
636   if (!Destructor)
637     return Owned(E);
638 
639   MarkFunctionReferenced(E->getExprLoc(), Destructor);
640   CheckDestructorAccess(E->getExprLoc(), Destructor,
641                         PDiag(diag::err_access_dtor_exception) << Ty);
642   DiagnoseUseOfDecl(Destructor, E->getExprLoc());
643   return Owned(E);
644 }
645 
getCurrentThisType()646 QualType Sema::getCurrentThisType() {
647   DeclContext *DC = getFunctionLevelDeclContext();
648   QualType ThisTy = CXXThisTypeOverride;
649   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
650     if (method && method->isInstance())
651       ThisTy = method->getThisType(Context);
652   }
653 
654   return ThisTy;
655 }
656 
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,unsigned CXXThisTypeQuals,bool Enabled)657 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
658                                          Decl *ContextDecl,
659                                          unsigned CXXThisTypeQuals,
660                                          bool Enabled)
661   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
662 {
663   if (!Enabled || !ContextDecl)
664     return;
665 
666   CXXRecordDecl *Record = 0;
667   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
668     Record = Template->getTemplatedDecl();
669   else
670     Record = cast<CXXRecordDecl>(ContextDecl);
671 
672   S.CXXThisTypeOverride
673     = S.Context.getPointerType(
674         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
675 
676   this->Enabled = true;
677 }
678 
679 
~CXXThisScopeRAII()680 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
681   if (Enabled) {
682     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
683   }
684 }
685 
CheckCXXThisCapture(SourceLocation Loc,bool Explicit)686 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
687   // We don't need to capture this in an unevaluated context.
688   if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
689     return;
690 
691   // Otherwise, check that we can capture 'this'.
692   unsigned NumClosures = 0;
693   for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
694     if (CapturingScopeInfo *CSI =
695             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
696       if (CSI->CXXThisCaptureIndex != 0) {
697         // 'this' is already being captured; there isn't anything more to do.
698         break;
699       }
700 
701       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
702           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
703           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
704           Explicit) {
705         // This closure can capture 'this'; continue looking upwards.
706         NumClosures++;
707         Explicit = false;
708         continue;
709       }
710       // This context can't implicitly capture 'this'; fail out.
711       Diag(Loc, diag::err_this_capture) << Explicit;
712       return;
713     }
714     break;
715   }
716 
717   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
718   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
719   // contexts.
720   for (unsigned idx = FunctionScopes.size() - 1;
721        NumClosures; --idx, --NumClosures) {
722     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
723     Expr *ThisExpr = 0;
724     QualType ThisTy = getCurrentThisType();
725     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
726       // For lambda expressions, build a field and an initializing expression.
727       CXXRecordDecl *Lambda = LSI->Lambda;
728       FieldDecl *Field
729         = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
730                             Context.getTrivialTypeSourceInfo(ThisTy, Loc),
731                             0, false, ICIS_NoInit);
732       Field->setImplicit(true);
733       Field->setAccess(AS_private);
734       Lambda->addDecl(Field);
735       ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
736     }
737     bool isNested = NumClosures > 1;
738     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
739   }
740 }
741 
ActOnCXXThis(SourceLocation Loc)742 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
743   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
744   /// is a non-lvalue expression whose value is the address of the object for
745   /// which the function is called.
746 
747   QualType ThisTy = getCurrentThisType();
748   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
749 
750   CheckCXXThisCapture(Loc);
751   return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
752 }
753 
isThisOutsideMemberFunctionBody(QualType BaseType)754 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
755   // If we're outside the body of a member function, then we'll have a specified
756   // type for 'this'.
757   if (CXXThisTypeOverride.isNull())
758     return false;
759 
760   // Determine whether we're looking into a class that's currently being
761   // defined.
762   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
763   return Class && Class->isBeingDefined();
764 }
765 
766 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)767 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
768                                 SourceLocation LParenLoc,
769                                 MultiExprArg exprs,
770                                 SourceLocation RParenLoc) {
771   if (!TypeRep)
772     return ExprError();
773 
774   TypeSourceInfo *TInfo;
775   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
776   if (!TInfo)
777     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
778 
779   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
780 }
781 
782 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
783 /// Can be interpreted either as function-style casting ("int(x)")
784 /// or class type construction ("ClassType(x,y,z)")
785 /// or creation of a value-initialized type ("int()").
786 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)787 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
788                                 SourceLocation LParenLoc,
789                                 MultiExprArg exprs,
790                                 SourceLocation RParenLoc) {
791   QualType Ty = TInfo->getType();
792   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
793 
794   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(exprs)) {
795     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
796                                                     LParenLoc,
797                                                     exprs,
798                                                     RParenLoc));
799   }
800 
801   unsigned NumExprs = exprs.size();
802   Expr **Exprs = exprs.data();
803 
804   bool ListInitialization = LParenLoc.isInvalid();
805   assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
806          && "List initialization must have initializer list as expression.");
807   SourceRange FullRange = SourceRange(TyBeginLoc,
808       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
809 
810   // C++ [expr.type.conv]p1:
811   // If the expression list is a single expression, the type conversion
812   // expression is equivalent (in definedness, and if defined in meaning) to the
813   // corresponding cast expression.
814   if (NumExprs == 1 && !ListInitialization) {
815     Expr *Arg = Exprs[0];
816     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
817   }
818 
819   QualType ElemTy = Ty;
820   if (Ty->isArrayType()) {
821     if (!ListInitialization)
822       return ExprError(Diag(TyBeginLoc,
823                             diag::err_value_init_for_array_type) << FullRange);
824     ElemTy = Context.getBaseElementType(Ty);
825   }
826 
827   if (!Ty->isVoidType() &&
828       RequireCompleteType(TyBeginLoc, ElemTy,
829                           diag::err_invalid_incomplete_type_use, FullRange))
830     return ExprError();
831 
832   if (RequireNonAbstractType(TyBeginLoc, Ty,
833                              diag::err_allocation_of_abstract_type))
834     return ExprError();
835 
836   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
837   InitializationKind Kind
838     = NumExprs ? ListInitialization
839                     ? InitializationKind::CreateDirectList(TyBeginLoc)
840                     : InitializationKind::CreateDirect(TyBeginLoc,
841                                                        LParenLoc, RParenLoc)
842                : InitializationKind::CreateValue(TyBeginLoc,
843                                                  LParenLoc, RParenLoc);
844   InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
845   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, exprs);
846 
847   if (!Result.isInvalid() && ListInitialization &&
848       isa<InitListExpr>(Result.get())) {
849     // If the list-initialization doesn't involve a constructor call, we'll get
850     // the initializer-list (with corrected type) back, but that's not what we
851     // want, since it will be treated as an initializer list in further
852     // processing. Explicitly insert a cast here.
853     InitListExpr *List = cast<InitListExpr>(Result.take());
854     Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
855                                     Expr::getValueKindForType(TInfo->getType()),
856                                                  TInfo, TyBeginLoc, CK_NoOp,
857                                                  List, /*Path=*/0, RParenLoc));
858   }
859 
860   // FIXME: Improve AST representation?
861   return Result;
862 }
863 
864 /// doesUsualArrayDeleteWantSize - Answers whether the usual
865 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)866 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
867                                          QualType allocType) {
868   const RecordType *record =
869     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
870   if (!record) return false;
871 
872   // Try to find an operator delete[] in class scope.
873 
874   DeclarationName deleteName =
875     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
876   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
877   S.LookupQualifiedName(ops, record->getDecl());
878 
879   // We're just doing this for information.
880   ops.suppressDiagnostics();
881 
882   // Very likely: there's no operator delete[].
883   if (ops.empty()) return false;
884 
885   // If it's ambiguous, it should be illegal to call operator delete[]
886   // on this thing, so it doesn't matter if we allocate extra space or not.
887   if (ops.isAmbiguous()) return false;
888 
889   LookupResult::Filter filter = ops.makeFilter();
890   while (filter.hasNext()) {
891     NamedDecl *del = filter.next()->getUnderlyingDecl();
892 
893     // C++0x [basic.stc.dynamic.deallocation]p2:
894     //   A template instance is never a usual deallocation function,
895     //   regardless of its signature.
896     if (isa<FunctionTemplateDecl>(del)) {
897       filter.erase();
898       continue;
899     }
900 
901     // C++0x [basic.stc.dynamic.deallocation]p2:
902     //   If class T does not declare [an operator delete[] with one
903     //   parameter] but does declare a member deallocation function
904     //   named operator delete[] with exactly two parameters, the
905     //   second of which has type std::size_t, then this function
906     //   is a usual deallocation function.
907     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
908       filter.erase();
909       continue;
910     }
911   }
912   filter.done();
913 
914   if (!ops.isSingleResult()) return false;
915 
916   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
917   return (del->getNumParams() == 2);
918 }
919 
920 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
921 ///
922 /// E.g.:
923 /// @code new (memory) int[size][4] @endcode
924 /// or
925 /// @code ::new Foo(23, "hello") @endcode
926 ///
927 /// \param StartLoc The first location of the expression.
928 /// \param UseGlobal True if 'new' was prefixed with '::'.
929 /// \param PlacementLParen Opening paren of the placement arguments.
930 /// \param PlacementArgs Placement new arguments.
931 /// \param PlacementRParen Closing paren of the placement arguments.
932 /// \param TypeIdParens If the type is in parens, the source range.
933 /// \param D The type to be allocated, as well as array dimensions.
934 /// \param Initializer The initializing expression or initializer-list, or null
935 ///   if there is none.
936 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)937 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
938                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
939                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
940                   Declarator &D, Expr *Initializer) {
941   bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
942 
943   Expr *ArraySize = 0;
944   // If the specified type is an array, unwrap it and save the expression.
945   if (D.getNumTypeObjects() > 0 &&
946       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
947      DeclaratorChunk &Chunk = D.getTypeObject(0);
948     if (TypeContainsAuto)
949       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
950         << D.getSourceRange());
951     if (Chunk.Arr.hasStatic)
952       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
953         << D.getSourceRange());
954     if (!Chunk.Arr.NumElts)
955       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
956         << D.getSourceRange());
957 
958     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
959     D.DropFirstTypeObject();
960   }
961 
962   // Every dimension shall be of constant size.
963   if (ArraySize) {
964     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
965       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
966         break;
967 
968       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
969       if (Expr *NumElts = (Expr *)Array.NumElts) {
970         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
971           Array.NumElts
972             = VerifyIntegerConstantExpression(NumElts, 0,
973                                               diag::err_new_array_nonconst)
974                 .take();
975           if (!Array.NumElts)
976             return ExprError();
977         }
978       }
979     }
980   }
981 
982   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
983   QualType AllocType = TInfo->getType();
984   if (D.isInvalidType())
985     return ExprError();
986 
987   SourceRange DirectInitRange;
988   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
989     DirectInitRange = List->getSourceRange();
990 
991   return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
992                      PlacementLParen,
993                      PlacementArgs,
994                      PlacementRParen,
995                      TypeIdParens,
996                      AllocType,
997                      TInfo,
998                      ArraySize,
999                      DirectInitRange,
1000                      Initializer,
1001                      TypeContainsAuto);
1002 }
1003 
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1004 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1005                                        Expr *Init) {
1006   if (!Init)
1007     return true;
1008   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1009     return PLE->getNumExprs() == 0;
1010   if (isa<ImplicitValueInitExpr>(Init))
1011     return true;
1012   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1013     return !CCE->isListInitialization() &&
1014            CCE->getConstructor()->isDefaultConstructor();
1015   else if (Style == CXXNewExpr::ListInit) {
1016     assert(isa<InitListExpr>(Init) &&
1017            "Shouldn't create list CXXConstructExprs for arrays.");
1018     return true;
1019   }
1020   return false;
1021 }
1022 
1023 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer,bool TypeMayContainAuto)1024 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1025                   SourceLocation PlacementLParen,
1026                   MultiExprArg PlacementArgs,
1027                   SourceLocation PlacementRParen,
1028                   SourceRange TypeIdParens,
1029                   QualType AllocType,
1030                   TypeSourceInfo *AllocTypeInfo,
1031                   Expr *ArraySize,
1032                   SourceRange DirectInitRange,
1033                   Expr *Initializer,
1034                   bool TypeMayContainAuto) {
1035   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1036   SourceLocation StartLoc = Range.getBegin();
1037 
1038   CXXNewExpr::InitializationStyle initStyle;
1039   if (DirectInitRange.isValid()) {
1040     assert(Initializer && "Have parens but no initializer.");
1041     initStyle = CXXNewExpr::CallInit;
1042   } else if (Initializer && isa<InitListExpr>(Initializer))
1043     initStyle = CXXNewExpr::ListInit;
1044   else {
1045     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1046             isa<CXXConstructExpr>(Initializer)) &&
1047            "Initializer expression that cannot have been implicitly created.");
1048     initStyle = CXXNewExpr::NoInit;
1049   }
1050 
1051   Expr **Inits = &Initializer;
1052   unsigned NumInits = Initializer ? 1 : 0;
1053   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1054     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1055     Inits = List->getExprs();
1056     NumInits = List->getNumExprs();
1057   }
1058 
1059   // Determine whether we've already built the initializer.
1060   bool HaveCompleteInit = false;
1061   if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1062       !isa<CXXTemporaryObjectExpr>(Initializer))
1063     HaveCompleteInit = true;
1064   else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1065     HaveCompleteInit = true;
1066 
1067   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1068   AutoType *AT = 0;
1069   if (TypeMayContainAuto &&
1070       (AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
1071     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1072       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1073                        << AllocType << TypeRange);
1074     if (initStyle == CXXNewExpr::ListInit)
1075       return ExprError(Diag(Inits[0]->getLocStart(),
1076                             diag::err_auto_new_requires_parens)
1077                        << AllocType << TypeRange);
1078     if (NumInits > 1) {
1079       Expr *FirstBad = Inits[1];
1080       return ExprError(Diag(FirstBad->getLocStart(),
1081                             diag::err_auto_new_ctor_multiple_expressions)
1082                        << AllocType << TypeRange);
1083     }
1084     Expr *Deduce = Inits[0];
1085     TypeSourceInfo *DeducedType = 0;
1086     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1087       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1088                        << AllocType << Deduce->getType()
1089                        << TypeRange << Deduce->getSourceRange());
1090     if (!DeducedType)
1091       return ExprError();
1092 
1093     AllocTypeInfo = DeducedType;
1094     AllocType = AllocTypeInfo->getType();
1095   }
1096 
1097   // Per C++0x [expr.new]p5, the type being constructed may be a
1098   // typedef of an array type.
1099   if (!ArraySize) {
1100     if (const ConstantArrayType *Array
1101                               = Context.getAsConstantArrayType(AllocType)) {
1102       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1103                                          Context.getSizeType(),
1104                                          TypeRange.getEnd());
1105       AllocType = Array->getElementType();
1106     }
1107   }
1108 
1109   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1110     return ExprError();
1111 
1112   if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1113     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1114          diag::warn_dangling_std_initializer_list)
1115         << /*at end of FE*/0 << Inits[0]->getSourceRange();
1116   }
1117 
1118   // In ARC, infer 'retaining' for the allocated
1119   if (getLangOpts().ObjCAutoRefCount &&
1120       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1121       AllocType->isObjCLifetimeType()) {
1122     AllocType = Context.getLifetimeQualifiedType(AllocType,
1123                                     AllocType->getObjCARCImplicitLifetime());
1124   }
1125 
1126   QualType ResultType = Context.getPointerType(AllocType);
1127 
1128   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1129   //   integral or enumeration type with a non-negative value."
1130   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1131   //   enumeration type, or a class type for which a single non-explicit
1132   //   conversion function to integral or unscoped enumeration type exists.
1133   if (ArraySize && !ArraySize->isTypeDependent()) {
1134     class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1135       Expr *ArraySize;
1136 
1137     public:
1138       SizeConvertDiagnoser(Expr *ArraySize)
1139         : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1140 
1141       virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1142                                                QualType T) {
1143         return S.Diag(Loc, diag::err_array_size_not_integral)
1144                  << S.getLangOpts().CPlusPlus11 << T;
1145       }
1146 
1147       virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1148                                                    QualType T) {
1149         return S.Diag(Loc, diag::err_array_size_incomplete_type)
1150                  << T << ArraySize->getSourceRange();
1151       }
1152 
1153       virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1154                                                      SourceLocation Loc,
1155                                                      QualType T,
1156                                                      QualType ConvTy) {
1157         return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1158       }
1159 
1160       virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1161                                                  CXXConversionDecl *Conv,
1162                                                  QualType ConvTy) {
1163         return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1164                  << ConvTy->isEnumeralType() << ConvTy;
1165       }
1166 
1167       virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1168                                                   QualType T) {
1169         return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1170       }
1171 
1172       virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1173                                               QualType ConvTy) {
1174         return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1175                  << ConvTy->isEnumeralType() << ConvTy;
1176       }
1177 
1178       virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1179                                                    QualType T,
1180                                                    QualType ConvTy) {
1181         return S.Diag(Loc,
1182                       S.getLangOpts().CPlusPlus11
1183                         ? diag::warn_cxx98_compat_array_size_conversion
1184                         : diag::ext_array_size_conversion)
1185                  << T << ConvTy->isEnumeralType() << ConvTy;
1186       }
1187     } SizeDiagnoser(ArraySize);
1188 
1189     ExprResult ConvertedSize
1190       = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1191                                            /*AllowScopedEnumerations*/ false);
1192     if (ConvertedSize.isInvalid())
1193       return ExprError();
1194 
1195     ArraySize = ConvertedSize.take();
1196     QualType SizeType = ArraySize->getType();
1197     if (!SizeType->isIntegralOrUnscopedEnumerationType())
1198       return ExprError();
1199 
1200     // C++98 [expr.new]p7:
1201     //   The expression in a direct-new-declarator shall have integral type
1202     //   with a non-negative value.
1203     //
1204     // Let's see if this is a constant < 0. If so, we reject it out of
1205     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1206     // array type.
1207     //
1208     // Note: such a construct has well-defined semantics in C++11: it throws
1209     // std::bad_array_new_length.
1210     if (!ArraySize->isValueDependent()) {
1211       llvm::APSInt Value;
1212       // We've already performed any required implicit conversion to integer or
1213       // unscoped enumeration type.
1214       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1215         if (Value < llvm::APSInt(
1216                         llvm::APInt::getNullValue(Value.getBitWidth()),
1217                                  Value.isUnsigned())) {
1218           if (getLangOpts().CPlusPlus11)
1219             Diag(ArraySize->getLocStart(),
1220                  diag::warn_typecheck_negative_array_new_size)
1221               << ArraySize->getSourceRange();
1222           else
1223             return ExprError(Diag(ArraySize->getLocStart(),
1224                                   diag::err_typecheck_negative_array_size)
1225                              << ArraySize->getSourceRange());
1226         } else if (!AllocType->isDependentType()) {
1227           unsigned ActiveSizeBits =
1228             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1229           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1230             if (getLangOpts().CPlusPlus11)
1231               Diag(ArraySize->getLocStart(),
1232                    diag::warn_array_new_too_large)
1233                 << Value.toString(10)
1234                 << ArraySize->getSourceRange();
1235             else
1236               return ExprError(Diag(ArraySize->getLocStart(),
1237                                     diag::err_array_too_large)
1238                                << Value.toString(10)
1239                                << ArraySize->getSourceRange());
1240           }
1241         }
1242       } else if (TypeIdParens.isValid()) {
1243         // Can't have dynamic array size when the type-id is in parentheses.
1244         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1245           << ArraySize->getSourceRange()
1246           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1247           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1248 
1249         TypeIdParens = SourceRange();
1250       }
1251     }
1252 
1253     // Note that we do *not* convert the argument in any way.  It can
1254     // be signed, larger than size_t, whatever.
1255   }
1256 
1257   FunctionDecl *OperatorNew = 0;
1258   FunctionDecl *OperatorDelete = 0;
1259   Expr **PlaceArgs = PlacementArgs.data();
1260   unsigned NumPlaceArgs = PlacementArgs.size();
1261 
1262   if (!AllocType->isDependentType() &&
1263       !Expr::hasAnyTypeDependentArguments(
1264         llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1265       FindAllocationFunctions(StartLoc,
1266                               SourceRange(PlacementLParen, PlacementRParen),
1267                               UseGlobal, AllocType, ArraySize, PlaceArgs,
1268                               NumPlaceArgs, OperatorNew, OperatorDelete))
1269     return ExprError();
1270 
1271   // If this is an array allocation, compute whether the usual array
1272   // deallocation function for the type has a size_t parameter.
1273   bool UsualArrayDeleteWantsSize = false;
1274   if (ArraySize && !AllocType->isDependentType())
1275     UsualArrayDeleteWantsSize
1276       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1277 
1278   SmallVector<Expr *, 8> AllPlaceArgs;
1279   if (OperatorNew) {
1280     // Add default arguments, if any.
1281     const FunctionProtoType *Proto =
1282       OperatorNew->getType()->getAs<FunctionProtoType>();
1283     VariadicCallType CallType =
1284       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1285 
1286     if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1287                                Proto, 1, PlaceArgs, NumPlaceArgs,
1288                                AllPlaceArgs, CallType))
1289       return ExprError();
1290 
1291     NumPlaceArgs = AllPlaceArgs.size();
1292     if (NumPlaceArgs > 0)
1293       PlaceArgs = &AllPlaceArgs[0];
1294 
1295     DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1296                           PlaceArgs, NumPlaceArgs);
1297 
1298     // FIXME: Missing call to CheckFunctionCall or equivalent
1299   }
1300 
1301   // Warn if the type is over-aligned and is being allocated by global operator
1302   // new.
1303   if (NumPlaceArgs == 0 && OperatorNew &&
1304       (OperatorNew->isImplicit() ||
1305        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1306     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1307       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1308       if (Align > SuitableAlign)
1309         Diag(StartLoc, diag::warn_overaligned_type)
1310             << AllocType
1311             << unsigned(Align / Context.getCharWidth())
1312             << unsigned(SuitableAlign / Context.getCharWidth());
1313     }
1314   }
1315 
1316   QualType InitType = AllocType;
1317   // Array 'new' can't have any initializers except empty parentheses.
1318   // Initializer lists are also allowed, in C++11. Rely on the parser for the
1319   // dialect distinction.
1320   if (ResultType->isArrayType() || ArraySize) {
1321     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1322       SourceRange InitRange(Inits[0]->getLocStart(),
1323                             Inits[NumInits - 1]->getLocEnd());
1324       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1325       return ExprError();
1326     }
1327     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1328       // We do the initialization typechecking against the array type
1329       // corresponding to the number of initializers + 1 (to also check
1330       // default-initialization).
1331       unsigned NumElements = ILE->getNumInits() + 1;
1332       InitType = Context.getConstantArrayType(AllocType,
1333           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1334                                               ArrayType::Normal, 0);
1335     }
1336   }
1337 
1338   // If we can perform the initialization, and we've not already done so,
1339   // do it now.
1340   if (!AllocType->isDependentType() &&
1341       !Expr::hasAnyTypeDependentArguments(
1342         llvm::makeArrayRef(Inits, NumInits)) &&
1343       !HaveCompleteInit) {
1344     // C++11 [expr.new]p15:
1345     //   A new-expression that creates an object of type T initializes that
1346     //   object as follows:
1347     InitializationKind Kind
1348     //     - If the new-initializer is omitted, the object is default-
1349     //       initialized (8.5); if no initialization is performed,
1350     //       the object has indeterminate value
1351       = initStyle == CXXNewExpr::NoInit
1352           ? InitializationKind::CreateDefault(TypeRange.getBegin())
1353     //     - Otherwise, the new-initializer is interpreted according to the
1354     //       initialization rules of 8.5 for direct-initialization.
1355           : initStyle == CXXNewExpr::ListInit
1356               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1357               : InitializationKind::CreateDirect(TypeRange.getBegin(),
1358                                                  DirectInitRange.getBegin(),
1359                                                  DirectInitRange.getEnd());
1360 
1361     InitializedEntity Entity
1362       = InitializedEntity::InitializeNew(StartLoc, InitType);
1363     InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1364     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1365                                           MultiExprArg(Inits, NumInits));
1366     if (FullInit.isInvalid())
1367       return ExprError();
1368 
1369     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1370     // we don't want the initialized object to be destructed.
1371     if (CXXBindTemporaryExpr *Binder =
1372             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1373       FullInit = Owned(Binder->getSubExpr());
1374 
1375     Initializer = FullInit.take();
1376   }
1377 
1378   // Mark the new and delete operators as referenced.
1379   if (OperatorNew) {
1380     DiagnoseUseOfDecl(OperatorNew, StartLoc);
1381     MarkFunctionReferenced(StartLoc, OperatorNew);
1382   }
1383   if (OperatorDelete) {
1384     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
1385     MarkFunctionReferenced(StartLoc, OperatorDelete);
1386   }
1387 
1388   // C++0x [expr.new]p17:
1389   //   If the new expression creates an array of objects of class type,
1390   //   access and ambiguity control are done for the destructor.
1391   QualType BaseAllocType = Context.getBaseElementType(AllocType);
1392   if (ArraySize && !BaseAllocType->isDependentType()) {
1393     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1394       if (CXXDestructorDecl *dtor = LookupDestructor(
1395               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1396         MarkFunctionReferenced(StartLoc, dtor);
1397         CheckDestructorAccess(StartLoc, dtor,
1398                               PDiag(diag::err_access_dtor)
1399                                 << BaseAllocType);
1400         DiagnoseUseOfDecl(dtor, StartLoc);
1401       }
1402     }
1403   }
1404 
1405   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1406                                         OperatorDelete,
1407                                         UsualArrayDeleteWantsSize,
1408                                    llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
1409                                         TypeIdParens,
1410                                         ArraySize, initStyle, Initializer,
1411                                         ResultType, AllocTypeInfo,
1412                                         Range, DirectInitRange));
1413 }
1414 
1415 /// \brief Checks that a type is suitable as the allocated type
1416 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1417 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1418                               SourceRange R) {
1419   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1420   //   abstract class type or array thereof.
1421   if (AllocType->isFunctionType())
1422     return Diag(Loc, diag::err_bad_new_type)
1423       << AllocType << 0 << R;
1424   else if (AllocType->isReferenceType())
1425     return Diag(Loc, diag::err_bad_new_type)
1426       << AllocType << 1 << R;
1427   else if (!AllocType->isDependentType() &&
1428            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1429     return true;
1430   else if (RequireNonAbstractType(Loc, AllocType,
1431                                   diag::err_allocation_of_abstract_type))
1432     return true;
1433   else if (AllocType->isVariablyModifiedType())
1434     return Diag(Loc, diag::err_variably_modified_new_type)
1435              << AllocType;
1436   else if (unsigned AddressSpace = AllocType.getAddressSpace())
1437     return Diag(Loc, diag::err_address_space_qualified_new)
1438       << AllocType.getUnqualifiedType() << AddressSpace;
1439   else if (getLangOpts().ObjCAutoRefCount) {
1440     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1441       QualType BaseAllocType = Context.getBaseElementType(AT);
1442       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1443           BaseAllocType->isObjCLifetimeType())
1444         return Diag(Loc, diag::err_arc_new_array_without_ownership)
1445           << BaseAllocType;
1446     }
1447   }
1448 
1449   return false;
1450 }
1451 
1452 /// \brief Determine whether the given function is a non-placement
1453 /// deallocation function.
isNonPlacementDeallocationFunction(FunctionDecl * FD)1454 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1455   if (FD->isInvalidDecl())
1456     return false;
1457 
1458   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1459     return Method->isUsualDeallocationFunction();
1460 
1461   return ((FD->getOverloadedOperator() == OO_Delete ||
1462            FD->getOverloadedOperator() == OO_Array_Delete) &&
1463           FD->getNumParams() == 1);
1464 }
1465 
1466 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1467 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,Expr ** PlaceArgs,unsigned NumPlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1468 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1469                                    bool UseGlobal, QualType AllocType,
1470                                    bool IsArray, Expr **PlaceArgs,
1471                                    unsigned NumPlaceArgs,
1472                                    FunctionDecl *&OperatorNew,
1473                                    FunctionDecl *&OperatorDelete) {
1474   // --- Choosing an allocation function ---
1475   // C++ 5.3.4p8 - 14 & 18
1476   // 1) If UseGlobal is true, only look in the global scope. Else, also look
1477   //   in the scope of the allocated class.
1478   // 2) If an array size is given, look for operator new[], else look for
1479   //   operator new.
1480   // 3) The first argument is always size_t. Append the arguments from the
1481   //   placement form.
1482 
1483   SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1484   // We don't care about the actual value of this argument.
1485   // FIXME: Should the Sema create the expression and embed it in the syntax
1486   // tree? Or should the consumer just recalculate the value?
1487   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1488                       Context.getTargetInfo().getPointerWidth(0)),
1489                       Context.getSizeType(),
1490                       SourceLocation());
1491   AllocArgs[0] = &Size;
1492   std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1493 
1494   // C++ [expr.new]p8:
1495   //   If the allocated type is a non-array type, the allocation
1496   //   function's name is operator new and the deallocation function's
1497   //   name is operator delete. If the allocated type is an array
1498   //   type, the allocation function's name is operator new[] and the
1499   //   deallocation function's name is operator delete[].
1500   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1501                                         IsArray ? OO_Array_New : OO_New);
1502   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1503                                         IsArray ? OO_Array_Delete : OO_Delete);
1504 
1505   QualType AllocElemType = Context.getBaseElementType(AllocType);
1506 
1507   if (AllocElemType->isRecordType() && !UseGlobal) {
1508     CXXRecordDecl *Record
1509       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1510     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1511                           AllocArgs.size(), Record, /*AllowMissing=*/true,
1512                           OperatorNew))
1513       return true;
1514   }
1515   if (!OperatorNew) {
1516     // Didn't find a member overload. Look for a global one.
1517     DeclareGlobalNewDelete();
1518     DeclContext *TUDecl = Context.getTranslationUnitDecl();
1519     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1520                           AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1521                           OperatorNew))
1522       return true;
1523   }
1524 
1525   // We don't need an operator delete if we're running under
1526   // -fno-exceptions.
1527   if (!getLangOpts().Exceptions) {
1528     OperatorDelete = 0;
1529     return false;
1530   }
1531 
1532   // FindAllocationOverload can change the passed in arguments, so we need to
1533   // copy them back.
1534   if (NumPlaceArgs > 0)
1535     std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1536 
1537   // C++ [expr.new]p19:
1538   //
1539   //   If the new-expression begins with a unary :: operator, the
1540   //   deallocation function's name is looked up in the global
1541   //   scope. Otherwise, if the allocated type is a class type T or an
1542   //   array thereof, the deallocation function's name is looked up in
1543   //   the scope of T. If this lookup fails to find the name, or if
1544   //   the allocated type is not a class type or array thereof, the
1545   //   deallocation function's name is looked up in the global scope.
1546   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1547   if (AllocElemType->isRecordType() && !UseGlobal) {
1548     CXXRecordDecl *RD
1549       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1550     LookupQualifiedName(FoundDelete, RD);
1551   }
1552   if (FoundDelete.isAmbiguous())
1553     return true; // FIXME: clean up expressions?
1554 
1555   if (FoundDelete.empty()) {
1556     DeclareGlobalNewDelete();
1557     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1558   }
1559 
1560   FoundDelete.suppressDiagnostics();
1561 
1562   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1563 
1564   // Whether we're looking for a placement operator delete is dictated
1565   // by whether we selected a placement operator new, not by whether
1566   // we had explicit placement arguments.  This matters for things like
1567   //   struct A { void *operator new(size_t, int = 0); ... };
1568   //   A *a = new A()
1569   bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1570 
1571   if (isPlacementNew) {
1572     // C++ [expr.new]p20:
1573     //   A declaration of a placement deallocation function matches the
1574     //   declaration of a placement allocation function if it has the
1575     //   same number of parameters and, after parameter transformations
1576     //   (8.3.5), all parameter types except the first are
1577     //   identical. [...]
1578     //
1579     // To perform this comparison, we compute the function type that
1580     // the deallocation function should have, and use that type both
1581     // for template argument deduction and for comparison purposes.
1582     //
1583     // FIXME: this comparison should ignore CC and the like.
1584     QualType ExpectedFunctionType;
1585     {
1586       const FunctionProtoType *Proto
1587         = OperatorNew->getType()->getAs<FunctionProtoType>();
1588 
1589       SmallVector<QualType, 4> ArgTypes;
1590       ArgTypes.push_back(Context.VoidPtrTy);
1591       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1592         ArgTypes.push_back(Proto->getArgType(I));
1593 
1594       FunctionProtoType::ExtProtoInfo EPI;
1595       EPI.Variadic = Proto->isVariadic();
1596 
1597       ExpectedFunctionType
1598         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1599     }
1600 
1601     for (LookupResult::iterator D = FoundDelete.begin(),
1602                              DEnd = FoundDelete.end();
1603          D != DEnd; ++D) {
1604       FunctionDecl *Fn = 0;
1605       if (FunctionTemplateDecl *FnTmpl
1606             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1607         // Perform template argument deduction to try to match the
1608         // expected function type.
1609         TemplateDeductionInfo Info(StartLoc);
1610         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1611           continue;
1612       } else
1613         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1614 
1615       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1616         Matches.push_back(std::make_pair(D.getPair(), Fn));
1617     }
1618   } else {
1619     // C++ [expr.new]p20:
1620     //   [...] Any non-placement deallocation function matches a
1621     //   non-placement allocation function. [...]
1622     for (LookupResult::iterator D = FoundDelete.begin(),
1623                              DEnd = FoundDelete.end();
1624          D != DEnd; ++D) {
1625       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1626         if (isNonPlacementDeallocationFunction(Fn))
1627           Matches.push_back(std::make_pair(D.getPair(), Fn));
1628     }
1629   }
1630 
1631   // C++ [expr.new]p20:
1632   //   [...] If the lookup finds a single matching deallocation
1633   //   function, that function will be called; otherwise, no
1634   //   deallocation function will be called.
1635   if (Matches.size() == 1) {
1636     OperatorDelete = Matches[0].second;
1637 
1638     // C++0x [expr.new]p20:
1639     //   If the lookup finds the two-parameter form of a usual
1640     //   deallocation function (3.7.4.2) and that function, considered
1641     //   as a placement deallocation function, would have been
1642     //   selected as a match for the allocation function, the program
1643     //   is ill-formed.
1644     if (NumPlaceArgs && getLangOpts().CPlusPlus11 &&
1645         isNonPlacementDeallocationFunction(OperatorDelete)) {
1646       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1647         << SourceRange(PlaceArgs[0]->getLocStart(),
1648                        PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1649       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1650         << DeleteName;
1651     } else {
1652       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1653                             Matches[0].first);
1654     }
1655   }
1656 
1657   return false;
1658 }
1659 
1660 /// FindAllocationOverload - Find an fitting overload for the allocation
1661 /// function in the specified scope.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,Expr ** Args,unsigned NumArgs,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1662 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1663                                   DeclarationName Name, Expr** Args,
1664                                   unsigned NumArgs, DeclContext *Ctx,
1665                                   bool AllowMissing, FunctionDecl *&Operator,
1666                                   bool Diagnose) {
1667   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1668   LookupQualifiedName(R, Ctx);
1669   if (R.empty()) {
1670     if (AllowMissing || !Diagnose)
1671       return false;
1672     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1673       << Name << Range;
1674   }
1675 
1676   if (R.isAmbiguous())
1677     return true;
1678 
1679   R.suppressDiagnostics();
1680 
1681   OverloadCandidateSet Candidates(StartLoc);
1682   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1683        Alloc != AllocEnd; ++Alloc) {
1684     // Even member operator new/delete are implicitly treated as
1685     // static, so don't use AddMemberCandidate.
1686     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1687 
1688     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1689       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1690                                    /*ExplicitTemplateArgs=*/0,
1691                                    llvm::makeArrayRef(Args, NumArgs),
1692                                    Candidates,
1693                                    /*SuppressUserConversions=*/false);
1694       continue;
1695     }
1696 
1697     FunctionDecl *Fn = cast<FunctionDecl>(D);
1698     AddOverloadCandidate(Fn, Alloc.getPair(),
1699                          llvm::makeArrayRef(Args, NumArgs), Candidates,
1700                          /*SuppressUserConversions=*/false);
1701   }
1702 
1703   // Do the resolution.
1704   OverloadCandidateSet::iterator Best;
1705   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1706   case OR_Success: {
1707     // Got one!
1708     FunctionDecl *FnDecl = Best->Function;
1709     MarkFunctionReferenced(StartLoc, FnDecl);
1710     // The first argument is size_t, and the first parameter must be size_t,
1711     // too. This is checked on declaration and can be assumed. (It can't be
1712     // asserted on, though, since invalid decls are left in there.)
1713     // Watch out for variadic allocator function.
1714     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1715     for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1716       InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1717                                                        FnDecl->getParamDecl(i));
1718 
1719       if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1720         return true;
1721 
1722       ExprResult Result
1723         = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1724       if (Result.isInvalid())
1725         return true;
1726 
1727       Args[i] = Result.takeAs<Expr>();
1728     }
1729 
1730     Operator = FnDecl;
1731 
1732     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1733                               Best->FoundDecl, Diagnose) == AR_inaccessible)
1734       return true;
1735 
1736     return false;
1737   }
1738 
1739   case OR_No_Viable_Function:
1740     if (Diagnose) {
1741       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1742         << Name << Range;
1743       Candidates.NoteCandidates(*this, OCD_AllCandidates,
1744                                 llvm::makeArrayRef(Args, NumArgs));
1745     }
1746     return true;
1747 
1748   case OR_Ambiguous:
1749     if (Diagnose) {
1750       Diag(StartLoc, diag::err_ovl_ambiguous_call)
1751         << Name << Range;
1752       Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1753                                 llvm::makeArrayRef(Args, NumArgs));
1754     }
1755     return true;
1756 
1757   case OR_Deleted: {
1758     if (Diagnose) {
1759       Diag(StartLoc, diag::err_ovl_deleted_call)
1760         << Best->Function->isDeleted()
1761         << Name
1762         << getDeletedOrUnavailableSuffix(Best->Function)
1763         << Range;
1764       Candidates.NoteCandidates(*this, OCD_AllCandidates,
1765                                 llvm::makeArrayRef(Args, NumArgs));
1766     }
1767     return true;
1768   }
1769   }
1770   llvm_unreachable("Unreachable, bad result from BestViableFunction");
1771 }
1772 
1773 
1774 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1775 /// delete. These are:
1776 /// @code
1777 ///   // C++03:
1778 ///   void* operator new(std::size_t) throw(std::bad_alloc);
1779 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
1780 ///   void operator delete(void *) throw();
1781 ///   void operator delete[](void *) throw();
1782 ///   // C++0x:
1783 ///   void* operator new(std::size_t);
1784 ///   void* operator new[](std::size_t);
1785 ///   void operator delete(void *);
1786 ///   void operator delete[](void *);
1787 /// @endcode
1788 /// C++0x operator delete is implicitly noexcept.
1789 /// Note that the placement and nothrow forms of new are *not* implicitly
1790 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()1791 void Sema::DeclareGlobalNewDelete() {
1792   if (GlobalNewDeleteDeclared)
1793     return;
1794 
1795   // C++ [basic.std.dynamic]p2:
1796   //   [...] The following allocation and deallocation functions (18.4) are
1797   //   implicitly declared in global scope in each translation unit of a
1798   //   program
1799   //
1800   //     C++03:
1801   //     void* operator new(std::size_t) throw(std::bad_alloc);
1802   //     void* operator new[](std::size_t) throw(std::bad_alloc);
1803   //     void  operator delete(void*) throw();
1804   //     void  operator delete[](void*) throw();
1805   //     C++0x:
1806   //     void* operator new(std::size_t);
1807   //     void* operator new[](std::size_t);
1808   //     void  operator delete(void*);
1809   //     void  operator delete[](void*);
1810   //
1811   //   These implicit declarations introduce only the function names operator
1812   //   new, operator new[], operator delete, operator delete[].
1813   //
1814   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1815   // "std" or "bad_alloc" as necessary to form the exception specification.
1816   // However, we do not make these implicit declarations visible to name
1817   // lookup.
1818   // Note that the C++0x versions of operator delete are deallocation functions,
1819   // and thus are implicitly noexcept.
1820   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1821     // The "std::bad_alloc" class has not yet been declared, so build it
1822     // implicitly.
1823     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1824                                         getOrCreateStdNamespace(),
1825                                         SourceLocation(), SourceLocation(),
1826                                       &PP.getIdentifierTable().get("bad_alloc"),
1827                                         0);
1828     getStdBadAlloc()->setImplicit(true);
1829   }
1830 
1831   GlobalNewDeleteDeclared = true;
1832 
1833   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1834   QualType SizeT = Context.getSizeType();
1835   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1836 
1837   DeclareGlobalAllocationFunction(
1838       Context.DeclarationNames.getCXXOperatorName(OO_New),
1839       VoidPtr, SizeT, AssumeSaneOperatorNew);
1840   DeclareGlobalAllocationFunction(
1841       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1842       VoidPtr, SizeT, AssumeSaneOperatorNew);
1843   DeclareGlobalAllocationFunction(
1844       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1845       Context.VoidTy, VoidPtr);
1846   DeclareGlobalAllocationFunction(
1847       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1848       Context.VoidTy, VoidPtr);
1849 }
1850 
1851 /// DeclareGlobalAllocationFunction - Declares a single implicit global
1852 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Argument,bool AddMallocAttr)1853 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1854                                            QualType Return, QualType Argument,
1855                                            bool AddMallocAttr) {
1856   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1857 
1858   // Check if this function is already declared.
1859   {
1860     DeclContext::lookup_result R = GlobalCtx->lookup(Name);
1861     for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
1862          Alloc != AllocEnd; ++Alloc) {
1863       // Only look at non-template functions, as it is the predefined,
1864       // non-templated allocation function we are trying to declare here.
1865       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1866         QualType InitialParamType =
1867           Context.getCanonicalType(
1868             Func->getParamDecl(0)->getType().getUnqualifiedType());
1869         // FIXME: Do we need to check for default arguments here?
1870         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1871           if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1872             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1873           return;
1874         }
1875       }
1876     }
1877   }
1878 
1879   QualType BadAllocType;
1880   bool HasBadAllocExceptionSpec
1881     = (Name.getCXXOverloadedOperator() == OO_New ||
1882        Name.getCXXOverloadedOperator() == OO_Array_New);
1883   if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
1884     assert(StdBadAlloc && "Must have std::bad_alloc declared");
1885     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1886   }
1887 
1888   FunctionProtoType::ExtProtoInfo EPI;
1889   if (HasBadAllocExceptionSpec) {
1890     if (!getLangOpts().CPlusPlus11) {
1891       EPI.ExceptionSpecType = EST_Dynamic;
1892       EPI.NumExceptions = 1;
1893       EPI.Exceptions = &BadAllocType;
1894     }
1895   } else {
1896     EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
1897                                 EST_BasicNoexcept : EST_DynamicNone;
1898   }
1899 
1900   QualType FnType = Context.getFunctionType(Return, Argument, EPI);
1901   FunctionDecl *Alloc =
1902     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1903                          SourceLocation(), Name,
1904                          FnType, /*TInfo=*/0, SC_None,
1905                          SC_None, false, true);
1906   Alloc->setImplicit();
1907 
1908   if (AddMallocAttr)
1909     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1910 
1911   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1912                                            SourceLocation(), 0,
1913                                            Argument, /*TInfo=*/0,
1914                                            SC_None, SC_None, 0);
1915   Alloc->setParams(Param);
1916 
1917   // FIXME: Also add this declaration to the IdentifierResolver, but
1918   // make sure it is at the end of the chain to coincide with the
1919   // global scope.
1920   Context.getTranslationUnitDecl()->addDecl(Alloc);
1921 }
1922 
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)1923 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1924                                     DeclarationName Name,
1925                                     FunctionDecl* &Operator, bool Diagnose) {
1926   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1927   // Try to find operator delete/operator delete[] in class scope.
1928   LookupQualifiedName(Found, RD);
1929 
1930   if (Found.isAmbiguous())
1931     return true;
1932 
1933   Found.suppressDiagnostics();
1934 
1935   SmallVector<DeclAccessPair,4> Matches;
1936   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1937        F != FEnd; ++F) {
1938     NamedDecl *ND = (*F)->getUnderlyingDecl();
1939 
1940     // Ignore template operator delete members from the check for a usual
1941     // deallocation function.
1942     if (isa<FunctionTemplateDecl>(ND))
1943       continue;
1944 
1945     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1946       Matches.push_back(F.getPair());
1947   }
1948 
1949   // There's exactly one suitable operator;  pick it.
1950   if (Matches.size() == 1) {
1951     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1952 
1953     if (Operator->isDeleted()) {
1954       if (Diagnose) {
1955         Diag(StartLoc, diag::err_deleted_function_use);
1956         NoteDeletedFunction(Operator);
1957       }
1958       return true;
1959     }
1960 
1961     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1962                               Matches[0], Diagnose) == AR_inaccessible)
1963       return true;
1964 
1965     return false;
1966 
1967   // We found multiple suitable operators;  complain about the ambiguity.
1968   } else if (!Matches.empty()) {
1969     if (Diagnose) {
1970       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1971         << Name << RD;
1972 
1973       for (SmallVectorImpl<DeclAccessPair>::iterator
1974              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1975         Diag((*F)->getUnderlyingDecl()->getLocation(),
1976              diag::note_member_declared_here) << Name;
1977     }
1978     return true;
1979   }
1980 
1981   // We did find operator delete/operator delete[] declarations, but
1982   // none of them were suitable.
1983   if (!Found.empty()) {
1984     if (Diagnose) {
1985       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1986         << Name << RD;
1987 
1988       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1989            F != FEnd; ++F)
1990         Diag((*F)->getUnderlyingDecl()->getLocation(),
1991              diag::note_member_declared_here) << Name;
1992     }
1993     return true;
1994   }
1995 
1996   // Look for a global declaration.
1997   DeclareGlobalNewDelete();
1998   DeclContext *TUDecl = Context.getTranslationUnitDecl();
1999 
2000   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2001   Expr* DeallocArgs[1];
2002   DeallocArgs[0] = &Null;
2003   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2004                              DeallocArgs, 1, TUDecl, !Diagnose,
2005                              Operator, Diagnose))
2006     return true;
2007 
2008   assert(Operator && "Did not find a deallocation function!");
2009   return false;
2010 }
2011 
2012 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2013 /// @code ::delete ptr; @endcode
2014 /// or
2015 /// @code delete [] ptr; @endcode
2016 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)2017 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2018                      bool ArrayForm, Expr *ExE) {
2019   // C++ [expr.delete]p1:
2020   //   The operand shall have a pointer type, or a class type having a single
2021   //   conversion function to a pointer type. The result has type void.
2022   //
2023   // DR599 amends "pointer type" to "pointer to object type" in both cases.
2024 
2025   ExprResult Ex = Owned(ExE);
2026   FunctionDecl *OperatorDelete = 0;
2027   bool ArrayFormAsWritten = ArrayForm;
2028   bool UsualArrayDeleteWantsSize = false;
2029 
2030   if (!Ex.get()->isTypeDependent()) {
2031     // Perform lvalue-to-rvalue cast, if needed.
2032     Ex = DefaultLvalueConversion(Ex.take());
2033     if (Ex.isInvalid())
2034       return ExprError();
2035 
2036     QualType Type = Ex.get()->getType();
2037 
2038     if (const RecordType *Record = Type->getAs<RecordType>()) {
2039       if (RequireCompleteType(StartLoc, Type,
2040                               diag::err_delete_incomplete_class_type))
2041         return ExprError();
2042 
2043       SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2044 
2045       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2046       std::pair<CXXRecordDecl::conversion_iterator,
2047                 CXXRecordDecl::conversion_iterator>
2048         Conversions = RD->getVisibleConversionFunctions();
2049       for (CXXRecordDecl::conversion_iterator
2050              I = Conversions.first, E = Conversions.second; I != E; ++I) {
2051         NamedDecl *D = I.getDecl();
2052         if (isa<UsingShadowDecl>(D))
2053           D = cast<UsingShadowDecl>(D)->getTargetDecl();
2054 
2055         // Skip over templated conversion functions; they aren't considered.
2056         if (isa<FunctionTemplateDecl>(D))
2057           continue;
2058 
2059         CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2060 
2061         QualType ConvType = Conv->getConversionType().getNonReferenceType();
2062         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2063           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2064             ObjectPtrConversions.push_back(Conv);
2065       }
2066       if (ObjectPtrConversions.size() == 1) {
2067         // We have a single conversion to a pointer-to-object type. Perform
2068         // that conversion.
2069         // TODO: don't redo the conversion calculation.
2070         ExprResult Res =
2071           PerformImplicitConversion(Ex.get(),
2072                             ObjectPtrConversions.front()->getConversionType(),
2073                                     AA_Converting);
2074         if (Res.isUsable()) {
2075           Ex = Res;
2076           Type = Ex.get()->getType();
2077         }
2078       }
2079       else if (ObjectPtrConversions.size() > 1) {
2080         Diag(StartLoc, diag::err_ambiguous_delete_operand)
2081               << Type << Ex.get()->getSourceRange();
2082         for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2083           NoteOverloadCandidate(ObjectPtrConversions[i]);
2084         return ExprError();
2085       }
2086     }
2087 
2088     if (!Type->isPointerType())
2089       return ExprError(Diag(StartLoc, diag::err_delete_operand)
2090         << Type << Ex.get()->getSourceRange());
2091 
2092     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2093     QualType PointeeElem = Context.getBaseElementType(Pointee);
2094 
2095     if (unsigned AddressSpace = Pointee.getAddressSpace())
2096       return Diag(Ex.get()->getLocStart(),
2097                   diag::err_address_space_qualified_delete)
2098                << Pointee.getUnqualifiedType() << AddressSpace;
2099 
2100     CXXRecordDecl *PointeeRD = 0;
2101     if (Pointee->isVoidType() && !isSFINAEContext()) {
2102       // The C++ standard bans deleting a pointer to a non-object type, which
2103       // effectively bans deletion of "void*". However, most compilers support
2104       // this, so we treat it as a warning unless we're in a SFINAE context.
2105       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2106         << Type << Ex.get()->getSourceRange();
2107     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2108       return ExprError(Diag(StartLoc, diag::err_delete_operand)
2109         << Type << Ex.get()->getSourceRange());
2110     } else if (!Pointee->isDependentType()) {
2111       if (!RequireCompleteType(StartLoc, Pointee,
2112                                diag::warn_delete_incomplete, Ex.get())) {
2113         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2114           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2115       }
2116     }
2117 
2118     // C++ [expr.delete]p2:
2119     //   [Note: a pointer to a const type can be the operand of a
2120     //   delete-expression; it is not necessary to cast away the constness
2121     //   (5.2.11) of the pointer expression before it is used as the operand
2122     //   of the delete-expression. ]
2123 
2124     if (Pointee->isArrayType() && !ArrayForm) {
2125       Diag(StartLoc, diag::warn_delete_array_type)
2126           << Type << Ex.get()->getSourceRange()
2127           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2128       ArrayForm = true;
2129     }
2130 
2131     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2132                                       ArrayForm ? OO_Array_Delete : OO_Delete);
2133 
2134     if (PointeeRD) {
2135       if (!UseGlobal &&
2136           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2137                                    OperatorDelete))
2138         return ExprError();
2139 
2140       // If we're allocating an array of records, check whether the
2141       // usual operator delete[] has a size_t parameter.
2142       if (ArrayForm) {
2143         // If the user specifically asked to use the global allocator,
2144         // we'll need to do the lookup into the class.
2145         if (UseGlobal)
2146           UsualArrayDeleteWantsSize =
2147             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2148 
2149         // Otherwise, the usual operator delete[] should be the
2150         // function we just found.
2151         else if (isa<CXXMethodDecl>(OperatorDelete))
2152           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2153       }
2154 
2155       if (!PointeeRD->hasIrrelevantDestructor())
2156         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2157           MarkFunctionReferenced(StartLoc,
2158                                     const_cast<CXXDestructorDecl*>(Dtor));
2159           DiagnoseUseOfDecl(Dtor, StartLoc);
2160         }
2161 
2162       // C++ [expr.delete]p3:
2163       //   In the first alternative (delete object), if the static type of the
2164       //   object to be deleted is different from its dynamic type, the static
2165       //   type shall be a base class of the dynamic type of the object to be
2166       //   deleted and the static type shall have a virtual destructor or the
2167       //   behavior is undefined.
2168       //
2169       // Note: a final class cannot be derived from, no issue there
2170       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2171         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2172         if (dtor && !dtor->isVirtual()) {
2173           if (PointeeRD->isAbstract()) {
2174             // If the class is abstract, we warn by default, because we're
2175             // sure the code has undefined behavior.
2176             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2177                 << PointeeElem;
2178           } else if (!ArrayForm) {
2179             // Otherwise, if this is not an array delete, it's a bit suspect,
2180             // but not necessarily wrong.
2181             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2182           }
2183         }
2184       }
2185 
2186     }
2187 
2188     if (!OperatorDelete) {
2189       // Look for a global declaration.
2190       DeclareGlobalNewDelete();
2191       DeclContext *TUDecl = Context.getTranslationUnitDecl();
2192       Expr *Arg = Ex.get();
2193       if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2194         Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2195                                        CK_BitCast, Arg, 0, VK_RValue);
2196       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2197                                  &Arg, 1, TUDecl, /*AllowMissing=*/false,
2198                                  OperatorDelete))
2199         return ExprError();
2200     }
2201 
2202     MarkFunctionReferenced(StartLoc, OperatorDelete);
2203 
2204     // Check access and ambiguity of operator delete and destructor.
2205     if (PointeeRD) {
2206       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2207           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2208                       PDiag(diag::err_access_dtor) << PointeeElem);
2209       }
2210     }
2211 
2212   }
2213 
2214   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2215                                            ArrayFormAsWritten,
2216                                            UsualArrayDeleteWantsSize,
2217                                            OperatorDelete, Ex.take(), StartLoc));
2218 }
2219 
2220 /// \brief Check the use of the given variable as a C++ condition in an if,
2221 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)2222 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2223                                         SourceLocation StmtLoc,
2224                                         bool ConvertToBoolean) {
2225   QualType T = ConditionVar->getType();
2226 
2227   // C++ [stmt.select]p2:
2228   //   The declarator shall not specify a function or an array.
2229   if (T->isFunctionType())
2230     return ExprError(Diag(ConditionVar->getLocation(),
2231                           diag::err_invalid_use_of_function_type)
2232                        << ConditionVar->getSourceRange());
2233   else if (T->isArrayType())
2234     return ExprError(Diag(ConditionVar->getLocation(),
2235                           diag::err_invalid_use_of_array_type)
2236                      << ConditionVar->getSourceRange());
2237 
2238   ExprResult Condition =
2239     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2240                               SourceLocation(),
2241                               ConditionVar,
2242                               /*enclosing*/ false,
2243                               ConditionVar->getLocation(),
2244                               ConditionVar->getType().getNonReferenceType(),
2245                               VK_LValue));
2246 
2247   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2248 
2249   if (ConvertToBoolean) {
2250     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2251     if (Condition.isInvalid())
2252       return ExprError();
2253   }
2254 
2255   return Condition;
2256 }
2257 
2258 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)2259 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2260   // C++ 6.4p4:
2261   // The value of a condition that is an initialized declaration in a statement
2262   // other than a switch statement is the value of the declared variable
2263   // implicitly converted to type bool. If that conversion is ill-formed, the
2264   // program is ill-formed.
2265   // The value of a condition that is an expression is the value of the
2266   // expression, implicitly converted to bool.
2267   //
2268   return PerformContextuallyConvertToBool(CondExpr);
2269 }
2270 
2271 /// Helper function to determine whether this is the (deprecated) C++
2272 /// conversion from a string literal to a pointer to non-const char or
2273 /// non-const wchar_t (for narrow and wide string literals,
2274 /// respectively).
2275 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2276 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2277   // Look inside the implicit cast, if it exists.
2278   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2279     From = Cast->getSubExpr();
2280 
2281   // A string literal (2.13.4) that is not a wide string literal can
2282   // be converted to an rvalue of type "pointer to char"; a wide
2283   // string literal can be converted to an rvalue of type "pointer
2284   // to wchar_t" (C++ 4.2p2).
2285   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2286     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2287       if (const BuiltinType *ToPointeeType
2288           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2289         // This conversion is considered only when there is an
2290         // explicit appropriate pointer target type (C++ 4.2p2).
2291         if (!ToPtrType->getPointeeType().hasQualifiers()) {
2292           switch (StrLit->getKind()) {
2293             case StringLiteral::UTF8:
2294             case StringLiteral::UTF16:
2295             case StringLiteral::UTF32:
2296               // We don't allow UTF literals to be implicitly converted
2297               break;
2298             case StringLiteral::Ascii:
2299               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2300                       ToPointeeType->getKind() == BuiltinType::Char_S);
2301             case StringLiteral::Wide:
2302               return ToPointeeType->isWideCharType();
2303           }
2304         }
2305       }
2306 
2307   return false;
2308 }
2309 
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)2310 static ExprResult BuildCXXCastArgument(Sema &S,
2311                                        SourceLocation CastLoc,
2312                                        QualType Ty,
2313                                        CastKind Kind,
2314                                        CXXMethodDecl *Method,
2315                                        DeclAccessPair FoundDecl,
2316                                        bool HadMultipleCandidates,
2317                                        Expr *From) {
2318   switch (Kind) {
2319   default: llvm_unreachable("Unhandled cast kind!");
2320   case CK_ConstructorConversion: {
2321     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2322     SmallVector<Expr*, 8> ConstructorArgs;
2323 
2324     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2325       return ExprError();
2326 
2327     S.CheckConstructorAccess(CastLoc, Constructor,
2328                              InitializedEntity::InitializeTemporary(Ty),
2329                              Constructor->getAccess());
2330 
2331     ExprResult Result
2332       = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2333                                 ConstructorArgs, HadMultipleCandidates,
2334                                 /*ListInit*/ false, /*ZeroInit*/ false,
2335                                 CXXConstructExpr::CK_Complete, SourceRange());
2336     if (Result.isInvalid())
2337       return ExprError();
2338 
2339     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2340   }
2341 
2342   case CK_UserDefinedConversion: {
2343     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2344 
2345     // Create an implicit call expr that calls it.
2346     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2347     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2348                                                  HadMultipleCandidates);
2349     if (Result.isInvalid())
2350       return ExprError();
2351     // Record usage of conversion in an implicit cast.
2352     Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2353                                               Result.get()->getType(),
2354                                               CK_UserDefinedConversion,
2355                                               Result.get(), 0,
2356                                               Result.get()->getValueKind()));
2357 
2358     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2359 
2360     return S.MaybeBindToTemporary(Result.get());
2361   }
2362   }
2363 }
2364 
2365 /// PerformImplicitConversion - Perform an implicit conversion of the
2366 /// expression From to the type ToType using the pre-computed implicit
2367 /// conversion sequence ICS. Returns the converted
2368 /// expression. Action is the kind of conversion we're performing,
2369 /// used in the error message.
2370 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2371 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2372                                 const ImplicitConversionSequence &ICS,
2373                                 AssignmentAction Action,
2374                                 CheckedConversionKind CCK) {
2375   switch (ICS.getKind()) {
2376   case ImplicitConversionSequence::StandardConversion: {
2377     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2378                                                Action, CCK);
2379     if (Res.isInvalid())
2380       return ExprError();
2381     From = Res.take();
2382     break;
2383   }
2384 
2385   case ImplicitConversionSequence::UserDefinedConversion: {
2386 
2387       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2388       CastKind CastKind;
2389       QualType BeforeToType;
2390       assert(FD && "FIXME: aggregate initialization from init list");
2391       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2392         CastKind = CK_UserDefinedConversion;
2393 
2394         // If the user-defined conversion is specified by a conversion function,
2395         // the initial standard conversion sequence converts the source type to
2396         // the implicit object parameter of the conversion function.
2397         BeforeToType = Context.getTagDeclType(Conv->getParent());
2398       } else {
2399         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2400         CastKind = CK_ConstructorConversion;
2401         // Do no conversion if dealing with ... for the first conversion.
2402         if (!ICS.UserDefined.EllipsisConversion) {
2403           // If the user-defined conversion is specified by a constructor, the
2404           // initial standard conversion sequence converts the source type to the
2405           // type required by the argument of the constructor
2406           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2407         }
2408       }
2409       // Watch out for elipsis conversion.
2410       if (!ICS.UserDefined.EllipsisConversion) {
2411         ExprResult Res =
2412           PerformImplicitConversion(From, BeforeToType,
2413                                     ICS.UserDefined.Before, AA_Converting,
2414                                     CCK);
2415         if (Res.isInvalid())
2416           return ExprError();
2417         From = Res.take();
2418       }
2419 
2420       ExprResult CastArg
2421         = BuildCXXCastArgument(*this,
2422                                From->getLocStart(),
2423                                ToType.getNonReferenceType(),
2424                                CastKind, cast<CXXMethodDecl>(FD),
2425                                ICS.UserDefined.FoundConversionFunction,
2426                                ICS.UserDefined.HadMultipleCandidates,
2427                                From);
2428 
2429       if (CastArg.isInvalid())
2430         return ExprError();
2431 
2432       From = CastArg.take();
2433 
2434       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2435                                        AA_Converting, CCK);
2436   }
2437 
2438   case ImplicitConversionSequence::AmbiguousConversion:
2439     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2440                           PDiag(diag::err_typecheck_ambiguous_condition)
2441                             << From->getSourceRange());
2442      return ExprError();
2443 
2444   case ImplicitConversionSequence::EllipsisConversion:
2445     llvm_unreachable("Cannot perform an ellipsis conversion");
2446 
2447   case ImplicitConversionSequence::BadConversion:
2448     return ExprError();
2449   }
2450 
2451   // Everything went well.
2452   return Owned(From);
2453 }
2454 
2455 /// PerformImplicitConversion - Perform an implicit conversion of the
2456 /// expression From to the type ToType by following the standard
2457 /// conversion sequence SCS. Returns the converted
2458 /// expression. Flavor is the context in which we're performing this
2459 /// conversion, for use in error messages.
2460 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)2461 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2462                                 const StandardConversionSequence& SCS,
2463                                 AssignmentAction Action,
2464                                 CheckedConversionKind CCK) {
2465   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2466 
2467   // Overall FIXME: we are recomputing too many types here and doing far too
2468   // much extra work. What this means is that we need to keep track of more
2469   // information that is computed when we try the implicit conversion initially,
2470   // so that we don't need to recompute anything here.
2471   QualType FromType = From->getType();
2472 
2473   if (SCS.CopyConstructor) {
2474     // FIXME: When can ToType be a reference type?
2475     assert(!ToType->isReferenceType());
2476     if (SCS.Second == ICK_Derived_To_Base) {
2477       SmallVector<Expr*, 8> ConstructorArgs;
2478       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2479                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
2480                                   ConstructorArgs))
2481         return ExprError();
2482       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2483                                    ToType, SCS.CopyConstructor,
2484                                    ConstructorArgs,
2485                                    /*HadMultipleCandidates*/ false,
2486                                    /*ListInit*/ false, /*ZeroInit*/ false,
2487                                    CXXConstructExpr::CK_Complete,
2488                                    SourceRange());
2489     }
2490     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2491                                  ToType, SCS.CopyConstructor,
2492                                  From, /*HadMultipleCandidates*/ false,
2493                                  /*ListInit*/ false, /*ZeroInit*/ false,
2494                                  CXXConstructExpr::CK_Complete,
2495                                  SourceRange());
2496   }
2497 
2498   // Resolve overloaded function references.
2499   if (Context.hasSameType(FromType, Context.OverloadTy)) {
2500     DeclAccessPair Found;
2501     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2502                                                           true, Found);
2503     if (!Fn)
2504       return ExprError();
2505 
2506     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2507       return ExprError();
2508 
2509     From = FixOverloadedFunctionReference(From, Found, Fn);
2510     FromType = From->getType();
2511   }
2512 
2513   // Perform the first implicit conversion.
2514   switch (SCS.First) {
2515   case ICK_Identity:
2516     // Nothing to do.
2517     break;
2518 
2519   case ICK_Lvalue_To_Rvalue: {
2520     assert(From->getObjectKind() != OK_ObjCProperty);
2521     FromType = FromType.getUnqualifiedType();
2522     ExprResult FromRes = DefaultLvalueConversion(From);
2523     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2524     From = FromRes.take();
2525     break;
2526   }
2527 
2528   case ICK_Array_To_Pointer:
2529     FromType = Context.getArrayDecayedType(FromType);
2530     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2531                              VK_RValue, /*BasePath=*/0, CCK).take();
2532     break;
2533 
2534   case ICK_Function_To_Pointer:
2535     FromType = Context.getPointerType(FromType);
2536     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2537                              VK_RValue, /*BasePath=*/0, CCK).take();
2538     break;
2539 
2540   default:
2541     llvm_unreachable("Improper first standard conversion");
2542   }
2543 
2544   // Perform the second implicit conversion
2545   switch (SCS.Second) {
2546   case ICK_Identity:
2547     // If both sides are functions (or pointers/references to them), there could
2548     // be incompatible exception declarations.
2549     if (CheckExceptionSpecCompatibility(From, ToType))
2550       return ExprError();
2551     // Nothing else to do.
2552     break;
2553 
2554   case ICK_NoReturn_Adjustment:
2555     // If both sides are functions (or pointers/references to them), there could
2556     // be incompatible exception declarations.
2557     if (CheckExceptionSpecCompatibility(From, ToType))
2558       return ExprError();
2559 
2560     From = ImpCastExprToType(From, ToType, CK_NoOp,
2561                              VK_RValue, /*BasePath=*/0, CCK).take();
2562     break;
2563 
2564   case ICK_Integral_Promotion:
2565   case ICK_Integral_Conversion:
2566     if (ToType->isBooleanType()) {
2567       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2568              SCS.Second == ICK_Integral_Promotion &&
2569              "only enums with fixed underlying type can promote to bool");
2570       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2571                                VK_RValue, /*BasePath=*/0, CCK).take();
2572     } else {
2573       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2574                                VK_RValue, /*BasePath=*/0, CCK).take();
2575     }
2576     break;
2577 
2578   case ICK_Floating_Promotion:
2579   case ICK_Floating_Conversion:
2580     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2581                              VK_RValue, /*BasePath=*/0, CCK).take();
2582     break;
2583 
2584   case ICK_Complex_Promotion:
2585   case ICK_Complex_Conversion: {
2586     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2587     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2588     CastKind CK;
2589     if (FromEl->isRealFloatingType()) {
2590       if (ToEl->isRealFloatingType())
2591         CK = CK_FloatingComplexCast;
2592       else
2593         CK = CK_FloatingComplexToIntegralComplex;
2594     } else if (ToEl->isRealFloatingType()) {
2595       CK = CK_IntegralComplexToFloatingComplex;
2596     } else {
2597       CK = CK_IntegralComplexCast;
2598     }
2599     From = ImpCastExprToType(From, ToType, CK,
2600                              VK_RValue, /*BasePath=*/0, CCK).take();
2601     break;
2602   }
2603 
2604   case ICK_Floating_Integral:
2605     if (ToType->isRealFloatingType())
2606       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2607                                VK_RValue, /*BasePath=*/0, CCK).take();
2608     else
2609       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2610                                VK_RValue, /*BasePath=*/0, CCK).take();
2611     break;
2612 
2613   case ICK_Compatible_Conversion:
2614       From = ImpCastExprToType(From, ToType, CK_NoOp,
2615                                VK_RValue, /*BasePath=*/0, CCK).take();
2616     break;
2617 
2618   case ICK_Writeback_Conversion:
2619   case ICK_Pointer_Conversion: {
2620     if (SCS.IncompatibleObjC && Action != AA_Casting) {
2621       // Diagnose incompatible Objective-C conversions
2622       if (Action == AA_Initializing || Action == AA_Assigning)
2623         Diag(From->getLocStart(),
2624              diag::ext_typecheck_convert_incompatible_pointer)
2625           << ToType << From->getType() << Action
2626           << From->getSourceRange() << 0;
2627       else
2628         Diag(From->getLocStart(),
2629              diag::ext_typecheck_convert_incompatible_pointer)
2630           << From->getType() << ToType << Action
2631           << From->getSourceRange() << 0;
2632 
2633       if (From->getType()->isObjCObjectPointerType() &&
2634           ToType->isObjCObjectPointerType())
2635         EmitRelatedResultTypeNote(From);
2636     }
2637     else if (getLangOpts().ObjCAutoRefCount &&
2638              !CheckObjCARCUnavailableWeakConversion(ToType,
2639                                                     From->getType())) {
2640       if (Action == AA_Initializing)
2641         Diag(From->getLocStart(),
2642              diag::err_arc_weak_unavailable_assign);
2643       else
2644         Diag(From->getLocStart(),
2645              diag::err_arc_convesion_of_weak_unavailable)
2646           << (Action == AA_Casting) << From->getType() << ToType
2647           << From->getSourceRange();
2648     }
2649 
2650     CastKind Kind = CK_Invalid;
2651     CXXCastPath BasePath;
2652     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2653       return ExprError();
2654 
2655     // Make sure we extend blocks if necessary.
2656     // FIXME: doing this here is really ugly.
2657     if (Kind == CK_BlockPointerToObjCPointerCast) {
2658       ExprResult E = From;
2659       (void) PrepareCastToObjCObjectPointer(E);
2660       From = E.take();
2661     }
2662 
2663     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2664              .take();
2665     break;
2666   }
2667 
2668   case ICK_Pointer_Member: {
2669     CastKind Kind = CK_Invalid;
2670     CXXCastPath BasePath;
2671     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2672       return ExprError();
2673     if (CheckExceptionSpecCompatibility(From, ToType))
2674       return ExprError();
2675     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2676              .take();
2677     break;
2678   }
2679 
2680   case ICK_Boolean_Conversion:
2681     // Perform half-to-boolean conversion via float.
2682     if (From->getType()->isHalfType()) {
2683       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2684       FromType = Context.FloatTy;
2685     }
2686 
2687     From = ImpCastExprToType(From, Context.BoolTy,
2688                              ScalarTypeToBooleanCastKind(FromType),
2689                              VK_RValue, /*BasePath=*/0, CCK).take();
2690     break;
2691 
2692   case ICK_Derived_To_Base: {
2693     CXXCastPath BasePath;
2694     if (CheckDerivedToBaseConversion(From->getType(),
2695                                      ToType.getNonReferenceType(),
2696                                      From->getLocStart(),
2697                                      From->getSourceRange(),
2698                                      &BasePath,
2699                                      CStyle))
2700       return ExprError();
2701 
2702     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2703                       CK_DerivedToBase, From->getValueKind(),
2704                       &BasePath, CCK).take();
2705     break;
2706   }
2707 
2708   case ICK_Vector_Conversion:
2709     From = ImpCastExprToType(From, ToType, CK_BitCast,
2710                              VK_RValue, /*BasePath=*/0, CCK).take();
2711     break;
2712 
2713   case ICK_Vector_Splat:
2714     From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2715                              VK_RValue, /*BasePath=*/0, CCK).take();
2716     break;
2717 
2718   case ICK_Complex_Real:
2719     // Case 1.  x -> _Complex y
2720     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2721       QualType ElType = ToComplex->getElementType();
2722       bool isFloatingComplex = ElType->isRealFloatingType();
2723 
2724       // x -> y
2725       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2726         // do nothing
2727       } else if (From->getType()->isRealFloatingType()) {
2728         From = ImpCastExprToType(From, ElType,
2729                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2730       } else {
2731         assert(From->getType()->isIntegerType());
2732         From = ImpCastExprToType(From, ElType,
2733                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2734       }
2735       // y -> _Complex y
2736       From = ImpCastExprToType(From, ToType,
2737                    isFloatingComplex ? CK_FloatingRealToComplex
2738                                      : CK_IntegralRealToComplex).take();
2739 
2740     // Case 2.  _Complex x -> y
2741     } else {
2742       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2743       assert(FromComplex);
2744 
2745       QualType ElType = FromComplex->getElementType();
2746       bool isFloatingComplex = ElType->isRealFloatingType();
2747 
2748       // _Complex x -> x
2749       From = ImpCastExprToType(From, ElType,
2750                    isFloatingComplex ? CK_FloatingComplexToReal
2751                                      : CK_IntegralComplexToReal,
2752                                VK_RValue, /*BasePath=*/0, CCK).take();
2753 
2754       // x -> y
2755       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2756         // do nothing
2757       } else if (ToType->isRealFloatingType()) {
2758         From = ImpCastExprToType(From, ToType,
2759                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2760                                  VK_RValue, /*BasePath=*/0, CCK).take();
2761       } else {
2762         assert(ToType->isIntegerType());
2763         From = ImpCastExprToType(From, ToType,
2764                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2765                                  VK_RValue, /*BasePath=*/0, CCK).take();
2766       }
2767     }
2768     break;
2769 
2770   case ICK_Block_Pointer_Conversion: {
2771     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2772                              VK_RValue, /*BasePath=*/0, CCK).take();
2773     break;
2774   }
2775 
2776   case ICK_TransparentUnionConversion: {
2777     ExprResult FromRes = Owned(From);
2778     Sema::AssignConvertType ConvTy =
2779       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2780     if (FromRes.isInvalid())
2781       return ExprError();
2782     From = FromRes.take();
2783     assert ((ConvTy == Sema::Compatible) &&
2784             "Improper transparent union conversion");
2785     (void)ConvTy;
2786     break;
2787   }
2788 
2789   case ICK_Zero_Event_Conversion:
2790     From = ImpCastExprToType(From, ToType,
2791                              CK_ZeroToOCLEvent,
2792                              From->getValueKind()).take();
2793     break;
2794 
2795   case ICK_Lvalue_To_Rvalue:
2796   case ICK_Array_To_Pointer:
2797   case ICK_Function_To_Pointer:
2798   case ICK_Qualification:
2799   case ICK_Num_Conversion_Kinds:
2800     llvm_unreachable("Improper second standard conversion");
2801   }
2802 
2803   switch (SCS.Third) {
2804   case ICK_Identity:
2805     // Nothing to do.
2806     break;
2807 
2808   case ICK_Qualification: {
2809     // The qualification keeps the category of the inner expression, unless the
2810     // target type isn't a reference.
2811     ExprValueKind VK = ToType->isReferenceType() ?
2812                                   From->getValueKind() : VK_RValue;
2813     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2814                              CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2815 
2816     if (SCS.DeprecatedStringLiteralToCharPtr &&
2817         !getLangOpts().WritableStrings)
2818       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2819         << ToType.getNonReferenceType();
2820 
2821     break;
2822     }
2823 
2824   default:
2825     llvm_unreachable("Improper third standard conversion");
2826   }
2827 
2828   // If this conversion sequence involved a scalar -> atomic conversion, perform
2829   // that conversion now.
2830   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2831     if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2832       From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2833                                CCK).take();
2834 
2835   return Owned(From);
2836 }
2837 
ActOnUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,ParsedType Ty,SourceLocation RParen)2838 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2839                                      SourceLocation KWLoc,
2840                                      ParsedType Ty,
2841                                      SourceLocation RParen) {
2842   TypeSourceInfo *TSInfo;
2843   QualType T = GetTypeFromParser(Ty, &TSInfo);
2844 
2845   if (!TSInfo)
2846     TSInfo = Context.getTrivialTypeSourceInfo(T);
2847   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2848 }
2849 
2850 /// \brief Check the completeness of a type in a unary type trait.
2851 ///
2852 /// If the particular type trait requires a complete type, tries to complete
2853 /// it. If completing the type fails, a diagnostic is emitted and false
2854 /// returned. If completing the type succeeds or no completion was required,
2855 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,UnaryTypeTrait UTT,SourceLocation Loc,QualType ArgTy)2856 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2857                                                 UnaryTypeTrait UTT,
2858                                                 SourceLocation Loc,
2859                                                 QualType ArgTy) {
2860   // C++0x [meta.unary.prop]p3:
2861   //   For all of the class templates X declared in this Clause, instantiating
2862   //   that template with a template argument that is a class template
2863   //   specialization may result in the implicit instantiation of the template
2864   //   argument if and only if the semantics of X require that the argument
2865   //   must be a complete type.
2866   // We apply this rule to all the type trait expressions used to implement
2867   // these class templates. We also try to follow any GCC documented behavior
2868   // in these expressions to ensure portability of standard libraries.
2869   switch (UTT) {
2870     // is_complete_type somewhat obviously cannot require a complete type.
2871   case UTT_IsCompleteType:
2872     // Fall-through
2873 
2874     // These traits are modeled on the type predicates in C++0x
2875     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2876     // requiring a complete type, as whether or not they return true cannot be
2877     // impacted by the completeness of the type.
2878   case UTT_IsVoid:
2879   case UTT_IsIntegral:
2880   case UTT_IsFloatingPoint:
2881   case UTT_IsArray:
2882   case UTT_IsPointer:
2883   case UTT_IsLvalueReference:
2884   case UTT_IsRvalueReference:
2885   case UTT_IsMemberFunctionPointer:
2886   case UTT_IsMemberObjectPointer:
2887   case UTT_IsEnum:
2888   case UTT_IsUnion:
2889   case UTT_IsClass:
2890   case UTT_IsFunction:
2891   case UTT_IsReference:
2892   case UTT_IsArithmetic:
2893   case UTT_IsFundamental:
2894   case UTT_IsObject:
2895   case UTT_IsScalar:
2896   case UTT_IsCompound:
2897   case UTT_IsMemberPointer:
2898     // Fall-through
2899 
2900     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2901     // which requires some of its traits to have the complete type. However,
2902     // the completeness of the type cannot impact these traits' semantics, and
2903     // so they don't require it. This matches the comments on these traits in
2904     // Table 49.
2905   case UTT_IsConst:
2906   case UTT_IsVolatile:
2907   case UTT_IsSigned:
2908   case UTT_IsUnsigned:
2909     return true;
2910 
2911     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2912     // applied to a complete type.
2913   case UTT_IsTrivial:
2914   case UTT_IsTriviallyCopyable:
2915   case UTT_IsStandardLayout:
2916   case UTT_IsPOD:
2917   case UTT_IsLiteral:
2918   case UTT_IsEmpty:
2919   case UTT_IsPolymorphic:
2920   case UTT_IsAbstract:
2921   case UTT_IsInterfaceClass:
2922     // Fall-through
2923 
2924   // These traits require a complete type.
2925   case UTT_IsFinal:
2926 
2927     // These trait expressions are designed to help implement predicates in
2928     // [meta.unary.prop] despite not being named the same. They are specified
2929     // by both GCC and the Embarcadero C++ compiler, and require the complete
2930     // type due to the overarching C++0x type predicates being implemented
2931     // requiring the complete type.
2932   case UTT_HasNothrowAssign:
2933   case UTT_HasNothrowConstructor:
2934   case UTT_HasNothrowCopy:
2935   case UTT_HasTrivialAssign:
2936   case UTT_HasTrivialDefaultConstructor:
2937   case UTT_HasTrivialCopy:
2938   case UTT_HasTrivialDestructor:
2939   case UTT_HasVirtualDestructor:
2940     // Arrays of unknown bound are expressly allowed.
2941     QualType ElTy = ArgTy;
2942     if (ArgTy->isIncompleteArrayType())
2943       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2944 
2945     // The void type is expressly allowed.
2946     if (ElTy->isVoidType())
2947       return true;
2948 
2949     return !S.RequireCompleteType(
2950       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2951   }
2952   llvm_unreachable("Type trait not handled by switch");
2953 }
2954 
EvaluateUnaryTypeTrait(Sema & Self,UnaryTypeTrait UTT,SourceLocation KeyLoc,QualType T)2955 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2956                                    SourceLocation KeyLoc, QualType T) {
2957   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2958 
2959   ASTContext &C = Self.Context;
2960   switch(UTT) {
2961     // Type trait expressions corresponding to the primary type category
2962     // predicates in C++0x [meta.unary.cat].
2963   case UTT_IsVoid:
2964     return T->isVoidType();
2965   case UTT_IsIntegral:
2966     return T->isIntegralType(C);
2967   case UTT_IsFloatingPoint:
2968     return T->isFloatingType();
2969   case UTT_IsArray:
2970     return T->isArrayType();
2971   case UTT_IsPointer:
2972     return T->isPointerType();
2973   case UTT_IsLvalueReference:
2974     return T->isLValueReferenceType();
2975   case UTT_IsRvalueReference:
2976     return T->isRValueReferenceType();
2977   case UTT_IsMemberFunctionPointer:
2978     return T->isMemberFunctionPointerType();
2979   case UTT_IsMemberObjectPointer:
2980     return T->isMemberDataPointerType();
2981   case UTT_IsEnum:
2982     return T->isEnumeralType();
2983   case UTT_IsUnion:
2984     return T->isUnionType();
2985   case UTT_IsClass:
2986     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
2987   case UTT_IsFunction:
2988     return T->isFunctionType();
2989 
2990     // Type trait expressions which correspond to the convenient composition
2991     // predicates in C++0x [meta.unary.comp].
2992   case UTT_IsReference:
2993     return T->isReferenceType();
2994   case UTT_IsArithmetic:
2995     return T->isArithmeticType() && !T->isEnumeralType();
2996   case UTT_IsFundamental:
2997     return T->isFundamentalType();
2998   case UTT_IsObject:
2999     return T->isObjectType();
3000   case UTT_IsScalar:
3001     // Note: semantic analysis depends on Objective-C lifetime types to be
3002     // considered scalar types. However, such types do not actually behave
3003     // like scalar types at run time (since they may require retain/release
3004     // operations), so we report them as non-scalar.
3005     if (T->isObjCLifetimeType()) {
3006       switch (T.getObjCLifetime()) {
3007       case Qualifiers::OCL_None:
3008       case Qualifiers::OCL_ExplicitNone:
3009         return true;
3010 
3011       case Qualifiers::OCL_Strong:
3012       case Qualifiers::OCL_Weak:
3013       case Qualifiers::OCL_Autoreleasing:
3014         return false;
3015       }
3016     }
3017 
3018     return T->isScalarType();
3019   case UTT_IsCompound:
3020     return T->isCompoundType();
3021   case UTT_IsMemberPointer:
3022     return T->isMemberPointerType();
3023 
3024     // Type trait expressions which correspond to the type property predicates
3025     // in C++0x [meta.unary.prop].
3026   case UTT_IsConst:
3027     return T.isConstQualified();
3028   case UTT_IsVolatile:
3029     return T.isVolatileQualified();
3030   case UTT_IsTrivial:
3031     return T.isTrivialType(Self.Context);
3032   case UTT_IsTriviallyCopyable:
3033     return T.isTriviallyCopyableType(Self.Context);
3034   case UTT_IsStandardLayout:
3035     return T->isStandardLayoutType();
3036   case UTT_IsPOD:
3037     return T.isPODType(Self.Context);
3038   case UTT_IsLiteral:
3039     return T->isLiteralType();
3040   case UTT_IsEmpty:
3041     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3042       return !RD->isUnion() && RD->isEmpty();
3043     return false;
3044   case UTT_IsPolymorphic:
3045     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3046       return RD->isPolymorphic();
3047     return false;
3048   case UTT_IsAbstract:
3049     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3050       return RD->isAbstract();
3051     return false;
3052   case UTT_IsInterfaceClass:
3053     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3054       return RD->isInterface();
3055     return false;
3056   case UTT_IsFinal:
3057     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3058       return RD->hasAttr<FinalAttr>();
3059     return false;
3060   case UTT_IsSigned:
3061     return T->isSignedIntegerType();
3062   case UTT_IsUnsigned:
3063     return T->isUnsignedIntegerType();
3064 
3065     // Type trait expressions which query classes regarding their construction,
3066     // destruction, and copying. Rather than being based directly on the
3067     // related type predicates in the standard, they are specified by both
3068     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3069     // specifications.
3070     //
3071     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3072     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3073     //
3074     // Note that these builtins do not behave as documented in g++: if a class
3075     // has both a trivial and a non-trivial special member of a particular kind,
3076     // they return false! For now, we emulate this behavior.
3077     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3078     // does not correctly compute triviality in the presence of multiple special
3079     // members of the same kind. Revisit this once the g++ bug is fixed.
3080   case UTT_HasTrivialDefaultConstructor:
3081     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3082     //   If __is_pod (type) is true then the trait is true, else if type is
3083     //   a cv class or union type (or array thereof) with a trivial default
3084     //   constructor ([class.ctor]) then the trait is true, else it is false.
3085     if (T.isPODType(Self.Context))
3086       return true;
3087     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3088       return RD->hasTrivialDefaultConstructor() &&
3089              !RD->hasNonTrivialDefaultConstructor();
3090     return false;
3091   case UTT_HasTrivialCopy:
3092     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3093     //   If __is_pod (type) is true or type is a reference type then
3094     //   the trait is true, else if type is a cv class or union type
3095     //   with a trivial copy constructor ([class.copy]) then the trait
3096     //   is true, else it is false.
3097     if (T.isPODType(Self.Context) || T->isReferenceType())
3098       return true;
3099     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3100       return RD->hasTrivialCopyConstructor() &&
3101              !RD->hasNonTrivialCopyConstructor();
3102     return false;
3103   case UTT_HasTrivialAssign:
3104     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3105     //   If type is const qualified or is a reference type then the
3106     //   trait is false. Otherwise if __is_pod (type) is true then the
3107     //   trait is true, else if type is a cv class or union type with
3108     //   a trivial copy assignment ([class.copy]) then the trait is
3109     //   true, else it is false.
3110     // Note: the const and reference restrictions are interesting,
3111     // given that const and reference members don't prevent a class
3112     // from having a trivial copy assignment operator (but do cause
3113     // errors if the copy assignment operator is actually used, q.v.
3114     // [class.copy]p12).
3115 
3116     if (T.isConstQualified())
3117       return false;
3118     if (T.isPODType(Self.Context))
3119       return true;
3120     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3121       return RD->hasTrivialCopyAssignment() &&
3122              !RD->hasNonTrivialCopyAssignment();
3123     return false;
3124   case UTT_HasTrivialDestructor:
3125     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3126     //   If __is_pod (type) is true or type is a reference type
3127     //   then the trait is true, else if type is a cv class or union
3128     //   type (or array thereof) with a trivial destructor
3129     //   ([class.dtor]) then the trait is true, else it is
3130     //   false.
3131     if (T.isPODType(Self.Context) || T->isReferenceType())
3132       return true;
3133 
3134     // Objective-C++ ARC: autorelease types don't require destruction.
3135     if (T->isObjCLifetimeType() &&
3136         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3137       return true;
3138 
3139     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3140       return RD->hasTrivialDestructor();
3141     return false;
3142   // TODO: Propagate nothrowness for implicitly declared special members.
3143   case UTT_HasNothrowAssign:
3144     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3145     //   If type is const qualified or is a reference type then the
3146     //   trait is false. Otherwise if __has_trivial_assign (type)
3147     //   is true then the trait is true, else if type is a cv class
3148     //   or union type with copy assignment operators that are known
3149     //   not to throw an exception then the trait is true, else it is
3150     //   false.
3151     if (C.getBaseElementType(T).isConstQualified())
3152       return false;
3153     if (T->isReferenceType())
3154       return false;
3155     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3156       return true;
3157     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3158       if (RD->hasTrivialCopyAssignment() && !RD->hasNonTrivialCopyAssignment())
3159         return true;
3160 
3161       bool FoundAssign = false;
3162       DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3163       LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3164                        Sema::LookupOrdinaryName);
3165       if (Self.LookupQualifiedName(Res, RD)) {
3166         Res.suppressDiagnostics();
3167         for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3168              Op != OpEnd; ++Op) {
3169           if (isa<FunctionTemplateDecl>(*Op))
3170             continue;
3171 
3172           CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3173           if (Operator->isCopyAssignmentOperator()) {
3174             FoundAssign = true;
3175             const FunctionProtoType *CPT
3176                 = Operator->getType()->getAs<FunctionProtoType>();
3177             CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3178             if (!CPT)
3179               return false;
3180             if (!CPT->isNothrow(Self.Context))
3181               return false;
3182           }
3183         }
3184       }
3185 
3186       return FoundAssign;
3187     }
3188     return false;
3189   case UTT_HasNothrowCopy:
3190     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3191     //   If __has_trivial_copy (type) is true then the trait is true, else
3192     //   if type is a cv class or union type with copy constructors that are
3193     //   known not to throw an exception then the trait is true, else it is
3194     //   false.
3195     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3196       return true;
3197     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3198       if (RD->hasTrivialCopyConstructor() &&
3199           !RD->hasNonTrivialCopyConstructor())
3200         return true;
3201 
3202       bool FoundConstructor = false;
3203       unsigned FoundTQs;
3204       DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3205       for (DeclContext::lookup_const_iterator Con = R.begin(),
3206            ConEnd = R.end(); Con != ConEnd; ++Con) {
3207         // A template constructor is never a copy constructor.
3208         // FIXME: However, it may actually be selected at the actual overload
3209         // resolution point.
3210         if (isa<FunctionTemplateDecl>(*Con))
3211           continue;
3212         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3213         if (Constructor->isCopyConstructor(FoundTQs)) {
3214           FoundConstructor = true;
3215           const FunctionProtoType *CPT
3216               = Constructor->getType()->getAs<FunctionProtoType>();
3217           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3218           if (!CPT)
3219             return false;
3220           // FIXME: check whether evaluating default arguments can throw.
3221           // For now, we'll be conservative and assume that they can throw.
3222           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3223             return false;
3224         }
3225       }
3226 
3227       return FoundConstructor;
3228     }
3229     return false;
3230   case UTT_HasNothrowConstructor:
3231     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3232     //   If __has_trivial_constructor (type) is true then the trait is
3233     //   true, else if type is a cv class or union type (or array
3234     //   thereof) with a default constructor that is known not to
3235     //   throw an exception then the trait is true, else it is false.
3236     if (T.isPODType(C) || T->isObjCLifetimeType())
3237       return true;
3238     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3239       if (RD->hasTrivialDefaultConstructor() &&
3240           !RD->hasNonTrivialDefaultConstructor())
3241         return true;
3242 
3243       DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3244       for (DeclContext::lookup_const_iterator Con = R.begin(),
3245            ConEnd = R.end(); Con != ConEnd; ++Con) {
3246         // FIXME: In C++0x, a constructor template can be a default constructor.
3247         if (isa<FunctionTemplateDecl>(*Con))
3248           continue;
3249         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3250         if (Constructor->isDefaultConstructor()) {
3251           const FunctionProtoType *CPT
3252               = Constructor->getType()->getAs<FunctionProtoType>();
3253           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3254           if (!CPT)
3255             return false;
3256           // TODO: check whether evaluating default arguments can throw.
3257           // For now, we'll be conservative and assume that they can throw.
3258           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3259         }
3260       }
3261     }
3262     return false;
3263   case UTT_HasVirtualDestructor:
3264     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3265     //   If type is a class type with a virtual destructor ([class.dtor])
3266     //   then the trait is true, else it is false.
3267     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3268       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3269         return Destructor->isVirtual();
3270     return false;
3271 
3272     // These type trait expressions are modeled on the specifications for the
3273     // Embarcadero C++0x type trait functions:
3274     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3275   case UTT_IsCompleteType:
3276     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3277     //   Returns True if and only if T is a complete type at the point of the
3278     //   function call.
3279     return !T->isIncompleteType();
3280   }
3281   llvm_unreachable("Type trait not covered by switch");
3282 }
3283 
BuildUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,SourceLocation RParen)3284 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3285                                      SourceLocation KWLoc,
3286                                      TypeSourceInfo *TSInfo,
3287                                      SourceLocation RParen) {
3288   QualType T = TSInfo->getType();
3289   if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3290     return ExprError();
3291 
3292   bool Value = false;
3293   if (!T->isDependentType())
3294     Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3295 
3296   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3297                                                 RParen, Context.BoolTy));
3298 }
3299 
ActOnBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,ParsedType LhsTy,ParsedType RhsTy,SourceLocation RParen)3300 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3301                                       SourceLocation KWLoc,
3302                                       ParsedType LhsTy,
3303                                       ParsedType RhsTy,
3304                                       SourceLocation RParen) {
3305   TypeSourceInfo *LhsTSInfo;
3306   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3307   if (!LhsTSInfo)
3308     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3309 
3310   TypeSourceInfo *RhsTSInfo;
3311   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3312   if (!RhsTSInfo)
3313     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3314 
3315   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3316 }
3317 
3318 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
3319 /// ARC mode.
hasNontrivialObjCLifetime(QualType T)3320 static bool hasNontrivialObjCLifetime(QualType T) {
3321   switch (T.getObjCLifetime()) {
3322   case Qualifiers::OCL_ExplicitNone:
3323     return false;
3324 
3325   case Qualifiers::OCL_Strong:
3326   case Qualifiers::OCL_Weak:
3327   case Qualifiers::OCL_Autoreleasing:
3328     return true;
3329 
3330   case Qualifiers::OCL_None:
3331     return T->isObjCLifetimeType();
3332   }
3333 
3334   llvm_unreachable("Unknown ObjC lifetime qualifier");
3335 }
3336 
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3337 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3338                               ArrayRef<TypeSourceInfo *> Args,
3339                               SourceLocation RParenLoc) {
3340   switch (Kind) {
3341   case clang::TT_IsTriviallyConstructible: {
3342     // C++11 [meta.unary.prop]:
3343     //   is_trivially_constructible is defined as:
3344     //
3345     //     is_constructible<T, Args...>::value is true and the variable
3346     //     definition for is_constructible, as defined below, is known to call no
3347     //     operation that is not trivial.
3348     //
3349     //   The predicate condition for a template specialization
3350     //   is_constructible<T, Args...> shall be satisfied if and only if the
3351     //   following variable definition would be well-formed for some invented
3352     //   variable t:
3353     //
3354     //     T t(create<Args>()...);
3355     if (Args.empty()) {
3356       S.Diag(KWLoc, diag::err_type_trait_arity)
3357         << 1 << 1 << 1 << (int)Args.size();
3358       return false;
3359     }
3360 
3361     bool SawVoid = false;
3362     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3363       if (Args[I]->getType()->isVoidType()) {
3364         SawVoid = true;
3365         continue;
3366       }
3367 
3368       if (!Args[I]->getType()->isIncompleteType() &&
3369         S.RequireCompleteType(KWLoc, Args[I]->getType(),
3370           diag::err_incomplete_type_used_in_type_trait_expr))
3371         return false;
3372     }
3373 
3374     // If any argument was 'void', of course it won't type-check.
3375     if (SawVoid)
3376       return false;
3377 
3378     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3379     SmallVector<Expr *, 2> ArgExprs;
3380     ArgExprs.reserve(Args.size() - 1);
3381     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3382       QualType T = Args[I]->getType();
3383       if (T->isObjectType() || T->isFunctionType())
3384         T = S.Context.getRValueReferenceType(T);
3385       OpaqueArgExprs.push_back(
3386         OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3387                         T.getNonLValueExprType(S.Context),
3388                         Expr::getValueKindForType(T)));
3389       ArgExprs.push_back(&OpaqueArgExprs.back());
3390     }
3391 
3392     // Perform the initialization in an unevaluated context within a SFINAE
3393     // trap at translation unit scope.
3394     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3395     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3396     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3397     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3398     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3399                                                                  RParenLoc));
3400     InitializationSequence Init(S, To, InitKind,
3401                                 ArgExprs.begin(), ArgExprs.size());
3402     if (Init.Failed())
3403       return false;
3404 
3405     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3406     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3407       return false;
3408 
3409     // Under Objective-C ARC, if the destination has non-trivial Objective-C
3410     // lifetime, this is a non-trivial construction.
3411     if (S.getLangOpts().ObjCAutoRefCount &&
3412         hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3413       return false;
3414 
3415     // The initialization succeeded; now make sure there are no non-trivial
3416     // calls.
3417     return !Result.get()->hasNonTrivialCall(S.Context);
3418   }
3419   }
3420 
3421   return false;
3422 }
3423 
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3424 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3425                                 ArrayRef<TypeSourceInfo *> Args,
3426                                 SourceLocation RParenLoc) {
3427   bool Dependent = false;
3428   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3429     if (Args[I]->getType()->isDependentType()) {
3430       Dependent = true;
3431       break;
3432     }
3433   }
3434 
3435   bool Value = false;
3436   if (!Dependent)
3437     Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3438 
3439   return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3440                                Args, RParenLoc, Value);
3441 }
3442 
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)3443 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3444                                 ArrayRef<ParsedType> Args,
3445                                 SourceLocation RParenLoc) {
3446   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3447   ConvertedArgs.reserve(Args.size());
3448 
3449   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3450     TypeSourceInfo *TInfo;
3451     QualType T = GetTypeFromParser(Args[I], &TInfo);
3452     if (!TInfo)
3453       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3454 
3455     ConvertedArgs.push_back(TInfo);
3456   }
3457 
3458   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3459 }
3460 
EvaluateBinaryTypeTrait(Sema & Self,BinaryTypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)3461 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3462                                     QualType LhsT, QualType RhsT,
3463                                     SourceLocation KeyLoc) {
3464   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3465          "Cannot evaluate traits of dependent types");
3466 
3467   switch(BTT) {
3468   case BTT_IsBaseOf: {
3469     // C++0x [meta.rel]p2
3470     // Base is a base class of Derived without regard to cv-qualifiers or
3471     // Base and Derived are not unions and name the same class type without
3472     // regard to cv-qualifiers.
3473 
3474     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3475     if (!lhsRecord) return false;
3476 
3477     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3478     if (!rhsRecord) return false;
3479 
3480     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3481              == (lhsRecord == rhsRecord));
3482 
3483     if (lhsRecord == rhsRecord)
3484       return !lhsRecord->getDecl()->isUnion();
3485 
3486     // C++0x [meta.rel]p2:
3487     //   If Base and Derived are class types and are different types
3488     //   (ignoring possible cv-qualifiers) then Derived shall be a
3489     //   complete type.
3490     if (Self.RequireCompleteType(KeyLoc, RhsT,
3491                           diag::err_incomplete_type_used_in_type_trait_expr))
3492       return false;
3493 
3494     return cast<CXXRecordDecl>(rhsRecord->getDecl())
3495       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3496   }
3497   case BTT_IsSame:
3498     return Self.Context.hasSameType(LhsT, RhsT);
3499   case BTT_TypeCompatible:
3500     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3501                                            RhsT.getUnqualifiedType());
3502   case BTT_IsConvertible:
3503   case BTT_IsConvertibleTo: {
3504     // C++0x [meta.rel]p4:
3505     //   Given the following function prototype:
3506     //
3507     //     template <class T>
3508     //       typename add_rvalue_reference<T>::type create();
3509     //
3510     //   the predicate condition for a template specialization
3511     //   is_convertible<From, To> shall be satisfied if and only if
3512     //   the return expression in the following code would be
3513     //   well-formed, including any implicit conversions to the return
3514     //   type of the function:
3515     //
3516     //     To test() {
3517     //       return create<From>();
3518     //     }
3519     //
3520     //   Access checking is performed as if in a context unrelated to To and
3521     //   From. Only the validity of the immediate context of the expression
3522     //   of the return-statement (including conversions to the return type)
3523     //   is considered.
3524     //
3525     // We model the initialization as a copy-initialization of a temporary
3526     // of the appropriate type, which for this expression is identical to the
3527     // return statement (since NRVO doesn't apply).
3528 
3529     // Functions aren't allowed to return function or array types.
3530     if (RhsT->isFunctionType() || RhsT->isArrayType())
3531       return false;
3532 
3533     // A return statement in a void function must have void type.
3534     if (RhsT->isVoidType())
3535       return LhsT->isVoidType();
3536 
3537     // A function definition requires a complete, non-abstract return type.
3538     if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3539         Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3540       return false;
3541 
3542     // Compute the result of add_rvalue_reference.
3543     if (LhsT->isObjectType() || LhsT->isFunctionType())
3544       LhsT = Self.Context.getRValueReferenceType(LhsT);
3545 
3546     // Build a fake source and destination for initialization.
3547     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3548     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3549                          Expr::getValueKindForType(LhsT));
3550     Expr *FromPtr = &From;
3551     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3552                                                            SourceLocation()));
3553 
3554     // Perform the initialization in an unevaluated context within a SFINAE
3555     // trap at translation unit scope.
3556     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3557     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3558     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3559     InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3560     if (Init.Failed())
3561       return false;
3562 
3563     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3564     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3565   }
3566 
3567   case BTT_IsTriviallyAssignable: {
3568     // C++11 [meta.unary.prop]p3:
3569     //   is_trivially_assignable is defined as:
3570     //     is_assignable<T, U>::value is true and the assignment, as defined by
3571     //     is_assignable, is known to call no operation that is not trivial
3572     //
3573     //   is_assignable is defined as:
3574     //     The expression declval<T>() = declval<U>() is well-formed when
3575     //     treated as an unevaluated operand (Clause 5).
3576     //
3577     //   For both, T and U shall be complete types, (possibly cv-qualified)
3578     //   void, or arrays of unknown bound.
3579     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3580         Self.RequireCompleteType(KeyLoc, LhsT,
3581           diag::err_incomplete_type_used_in_type_trait_expr))
3582       return false;
3583     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3584         Self.RequireCompleteType(KeyLoc, RhsT,
3585           diag::err_incomplete_type_used_in_type_trait_expr))
3586       return false;
3587 
3588     // cv void is never assignable.
3589     if (LhsT->isVoidType() || RhsT->isVoidType())
3590       return false;
3591 
3592     // Build expressions that emulate the effect of declval<T>() and
3593     // declval<U>().
3594     if (LhsT->isObjectType() || LhsT->isFunctionType())
3595       LhsT = Self.Context.getRValueReferenceType(LhsT);
3596     if (RhsT->isObjectType() || RhsT->isFunctionType())
3597       RhsT = Self.Context.getRValueReferenceType(RhsT);
3598     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3599                         Expr::getValueKindForType(LhsT));
3600     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3601                         Expr::getValueKindForType(RhsT));
3602 
3603     // Attempt the assignment in an unevaluated context within a SFINAE
3604     // trap at translation unit scope.
3605     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3606     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3607     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3608     ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3609     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3610       return false;
3611 
3612     // Under Objective-C ARC, if the destination has non-trivial Objective-C
3613     // lifetime, this is a non-trivial assignment.
3614     if (Self.getLangOpts().ObjCAutoRefCount &&
3615         hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3616       return false;
3617 
3618     return !Result.get()->hasNonTrivialCall(Self.Context);
3619   }
3620   }
3621   llvm_unreachable("Unknown type trait or not implemented");
3622 }
3623 
BuildBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,TypeSourceInfo * LhsTSInfo,TypeSourceInfo * RhsTSInfo,SourceLocation RParen)3624 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3625                                       SourceLocation KWLoc,
3626                                       TypeSourceInfo *LhsTSInfo,
3627                                       TypeSourceInfo *RhsTSInfo,
3628                                       SourceLocation RParen) {
3629   QualType LhsT = LhsTSInfo->getType();
3630   QualType RhsT = RhsTSInfo->getType();
3631 
3632   if (BTT == BTT_TypeCompatible) {
3633     if (getLangOpts().CPlusPlus) {
3634       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3635         << SourceRange(KWLoc, RParen);
3636       return ExprError();
3637     }
3638   }
3639 
3640   bool Value = false;
3641   if (!LhsT->isDependentType() && !RhsT->isDependentType())
3642     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3643 
3644   // Select trait result type.
3645   QualType ResultType;
3646   switch (BTT) {
3647   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3648   case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3649   case BTT_IsSame:         ResultType = Context.BoolTy; break;
3650   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3651   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3652   case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3653   }
3654 
3655   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3656                                                  RhsTSInfo, Value, RParen,
3657                                                  ResultType));
3658 }
3659 
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)3660 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3661                                      SourceLocation KWLoc,
3662                                      ParsedType Ty,
3663                                      Expr* DimExpr,
3664                                      SourceLocation RParen) {
3665   TypeSourceInfo *TSInfo;
3666   QualType T = GetTypeFromParser(Ty, &TSInfo);
3667   if (!TSInfo)
3668     TSInfo = Context.getTrivialTypeSourceInfo(T);
3669 
3670   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3671 }
3672 
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)3673 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3674                                            QualType T, Expr *DimExpr,
3675                                            SourceLocation KeyLoc) {
3676   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3677 
3678   switch(ATT) {
3679   case ATT_ArrayRank:
3680     if (T->isArrayType()) {
3681       unsigned Dim = 0;
3682       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3683         ++Dim;
3684         T = AT->getElementType();
3685       }
3686       return Dim;
3687     }
3688     return 0;
3689 
3690   case ATT_ArrayExtent: {
3691     llvm::APSInt Value;
3692     uint64_t Dim;
3693     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3694           diag::err_dimension_expr_not_constant_integer,
3695           false).isInvalid())
3696       return 0;
3697     if (Value.isSigned() && Value.isNegative()) {
3698       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3699         << DimExpr->getSourceRange();
3700       return 0;
3701     }
3702     Dim = Value.getLimitedValue();
3703 
3704     if (T->isArrayType()) {
3705       unsigned D = 0;
3706       bool Matched = false;
3707       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3708         if (Dim == D) {
3709           Matched = true;
3710           break;
3711         }
3712         ++D;
3713         T = AT->getElementType();
3714       }
3715 
3716       if (Matched && T->isArrayType()) {
3717         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3718           return CAT->getSize().getLimitedValue();
3719       }
3720     }
3721     return 0;
3722   }
3723   }
3724   llvm_unreachable("Unknown type trait or not implemented");
3725 }
3726 
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)3727 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3728                                      SourceLocation KWLoc,
3729                                      TypeSourceInfo *TSInfo,
3730                                      Expr* DimExpr,
3731                                      SourceLocation RParen) {
3732   QualType T = TSInfo->getType();
3733 
3734   // FIXME: This should likely be tracked as an APInt to remove any host
3735   // assumptions about the width of size_t on the target.
3736   uint64_t Value = 0;
3737   if (!T->isDependentType())
3738     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3739 
3740   // While the specification for these traits from the Embarcadero C++
3741   // compiler's documentation says the return type is 'unsigned int', Clang
3742   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3743   // compiler, there is no difference. On several other platforms this is an
3744   // important distinction.
3745   return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3746                                                 DimExpr, RParen,
3747                                                 Context.getSizeType()));
3748 }
3749 
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3750 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3751                                       SourceLocation KWLoc,
3752                                       Expr *Queried,
3753                                       SourceLocation RParen) {
3754   // If error parsing the expression, ignore.
3755   if (!Queried)
3756     return ExprError();
3757 
3758   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3759 
3760   return Result;
3761 }
3762 
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)3763 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3764   switch (ET) {
3765   case ET_IsLValueExpr: return E->isLValue();
3766   case ET_IsRValueExpr: return E->isRValue();
3767   }
3768   llvm_unreachable("Expression trait not covered by switch");
3769 }
3770 
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3771 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3772                                       SourceLocation KWLoc,
3773                                       Expr *Queried,
3774                                       SourceLocation RParen) {
3775   if (Queried->isTypeDependent()) {
3776     // Delay type-checking for type-dependent expressions.
3777   } else if (Queried->getType()->isPlaceholderType()) {
3778     ExprResult PE = CheckPlaceholderExpr(Queried);
3779     if (PE.isInvalid()) return ExprError();
3780     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3781   }
3782 
3783   bool Value = EvaluateExpressionTrait(ET, Queried);
3784 
3785   return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3786                                                  RParen, Context.BoolTy));
3787 }
3788 
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)3789 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3790                                             ExprValueKind &VK,
3791                                             SourceLocation Loc,
3792                                             bool isIndirect) {
3793   assert(!LHS.get()->getType()->isPlaceholderType() &&
3794          !RHS.get()->getType()->isPlaceholderType() &&
3795          "placeholders should have been weeded out by now");
3796 
3797   // The LHS undergoes lvalue conversions if this is ->*.
3798   if (isIndirect) {
3799     LHS = DefaultLvalueConversion(LHS.take());
3800     if (LHS.isInvalid()) return QualType();
3801   }
3802 
3803   // The RHS always undergoes lvalue conversions.
3804   RHS = DefaultLvalueConversion(RHS.take());
3805   if (RHS.isInvalid()) return QualType();
3806 
3807   const char *OpSpelling = isIndirect ? "->*" : ".*";
3808   // C++ 5.5p2
3809   //   The binary operator .* [p3: ->*] binds its second operand, which shall
3810   //   be of type "pointer to member of T" (where T is a completely-defined
3811   //   class type) [...]
3812   QualType RHSType = RHS.get()->getType();
3813   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3814   if (!MemPtr) {
3815     Diag(Loc, diag::err_bad_memptr_rhs)
3816       << OpSpelling << RHSType << RHS.get()->getSourceRange();
3817     return QualType();
3818   }
3819 
3820   QualType Class(MemPtr->getClass(), 0);
3821 
3822   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3823   // member pointer points must be completely-defined. However, there is no
3824   // reason for this semantic distinction, and the rule is not enforced by
3825   // other compilers. Therefore, we do not check this property, as it is
3826   // likely to be considered a defect.
3827 
3828   // C++ 5.5p2
3829   //   [...] to its first operand, which shall be of class T or of a class of
3830   //   which T is an unambiguous and accessible base class. [p3: a pointer to
3831   //   such a class]
3832   QualType LHSType = LHS.get()->getType();
3833   if (isIndirect) {
3834     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3835       LHSType = Ptr->getPointeeType();
3836     else {
3837       Diag(Loc, diag::err_bad_memptr_lhs)
3838         << OpSpelling << 1 << LHSType
3839         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3840       return QualType();
3841     }
3842   }
3843 
3844   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3845     // If we want to check the hierarchy, we need a complete type.
3846     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3847                             OpSpelling, (int)isIndirect)) {
3848       return QualType();
3849     }
3850     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3851                        /*DetectVirtual=*/false);
3852     // FIXME: Would it be useful to print full ambiguity paths, or is that
3853     // overkill?
3854     if (!IsDerivedFrom(LHSType, Class, Paths) ||
3855         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3856       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3857         << (int)isIndirect << LHS.get()->getType();
3858       return QualType();
3859     }
3860     // Cast LHS to type of use.
3861     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3862     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3863 
3864     CXXCastPath BasePath;
3865     BuildBasePathArray(Paths, BasePath);
3866     LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3867                             &BasePath);
3868   }
3869 
3870   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3871     // Diagnose use of pointer-to-member type which when used as
3872     // the functional cast in a pointer-to-member expression.
3873     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3874      return QualType();
3875   }
3876 
3877   // C++ 5.5p2
3878   //   The result is an object or a function of the type specified by the
3879   //   second operand.
3880   // The cv qualifiers are the union of those in the pointer and the left side,
3881   // in accordance with 5.5p5 and 5.2.5.
3882   QualType Result = MemPtr->getPointeeType();
3883   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3884 
3885   // C++0x [expr.mptr.oper]p6:
3886   //   In a .* expression whose object expression is an rvalue, the program is
3887   //   ill-formed if the second operand is a pointer to member function with
3888   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3889   //   expression is an lvalue, the program is ill-formed if the second operand
3890   //   is a pointer to member function with ref-qualifier &&.
3891   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3892     switch (Proto->getRefQualifier()) {
3893     case RQ_None:
3894       // Do nothing
3895       break;
3896 
3897     case RQ_LValue:
3898       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3899         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3900           << RHSType << 1 << LHS.get()->getSourceRange();
3901       break;
3902 
3903     case RQ_RValue:
3904       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3905         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3906           << RHSType << 0 << LHS.get()->getSourceRange();
3907       break;
3908     }
3909   }
3910 
3911   // C++ [expr.mptr.oper]p6:
3912   //   The result of a .* expression whose second operand is a pointer
3913   //   to a data member is of the same value category as its
3914   //   first operand. The result of a .* expression whose second
3915   //   operand is a pointer to a member function is a prvalue. The
3916   //   result of an ->* expression is an lvalue if its second operand
3917   //   is a pointer to data member and a prvalue otherwise.
3918   if (Result->isFunctionType()) {
3919     VK = VK_RValue;
3920     return Context.BoundMemberTy;
3921   } else if (isIndirect) {
3922     VK = VK_LValue;
3923   } else {
3924     VK = LHS.get()->getValueKind();
3925   }
3926 
3927   return Result;
3928 }
3929 
3930 /// \brief Try to convert a type to another according to C++0x 5.16p3.
3931 ///
3932 /// This is part of the parameter validation for the ? operator. If either
3933 /// value operand is a class type, the two operands are attempted to be
3934 /// converted to each other. This function does the conversion in one direction.
3935 /// It returns true if the program is ill-formed and has already been diagnosed
3936 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)3937 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3938                                 SourceLocation QuestionLoc,
3939                                 bool &HaveConversion,
3940                                 QualType &ToType) {
3941   HaveConversion = false;
3942   ToType = To->getType();
3943 
3944   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3945                                                            SourceLocation());
3946   // C++0x 5.16p3
3947   //   The process for determining whether an operand expression E1 of type T1
3948   //   can be converted to match an operand expression E2 of type T2 is defined
3949   //   as follows:
3950   //   -- If E2 is an lvalue:
3951   bool ToIsLvalue = To->isLValue();
3952   if (ToIsLvalue) {
3953     //   E1 can be converted to match E2 if E1 can be implicitly converted to
3954     //   type "lvalue reference to T2", subject to the constraint that in the
3955     //   conversion the reference must bind directly to E1.
3956     QualType T = Self.Context.getLValueReferenceType(ToType);
3957     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3958 
3959     InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3960     if (InitSeq.isDirectReferenceBinding()) {
3961       ToType = T;
3962       HaveConversion = true;
3963       return false;
3964     }
3965 
3966     if (InitSeq.isAmbiguous())
3967       return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3968   }
3969 
3970   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3971   //      -- if E1 and E2 have class type, and the underlying class types are
3972   //         the same or one is a base class of the other:
3973   QualType FTy = From->getType();
3974   QualType TTy = To->getType();
3975   const RecordType *FRec = FTy->getAs<RecordType>();
3976   const RecordType *TRec = TTy->getAs<RecordType>();
3977   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3978                        Self.IsDerivedFrom(FTy, TTy);
3979   if (FRec && TRec &&
3980       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3981     //         E1 can be converted to match E2 if the class of T2 is the
3982     //         same type as, or a base class of, the class of T1, and
3983     //         [cv2 > cv1].
3984     if (FRec == TRec || FDerivedFromT) {
3985       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3986         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3987         InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3988         if (InitSeq) {
3989           HaveConversion = true;
3990           return false;
3991         }
3992 
3993         if (InitSeq.isAmbiguous())
3994           return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3995       }
3996     }
3997 
3998     return false;
3999   }
4000 
4001   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4002   //        implicitly converted to the type that expression E2 would have
4003   //        if E2 were converted to an rvalue (or the type it has, if E2 is
4004   //        an rvalue).
4005   //
4006   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4007   // to the array-to-pointer or function-to-pointer conversions.
4008   if (!TTy->getAs<TagType>())
4009     TTy = TTy.getUnqualifiedType();
4010 
4011   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4012   InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
4013   HaveConversion = !InitSeq.Failed();
4014   ToType = TTy;
4015   if (InitSeq.isAmbiguous())
4016     return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4017 
4018   return false;
4019 }
4020 
4021 /// \brief Try to find a common type for two according to C++0x 5.16p5.
4022 ///
4023 /// This is part of the parameter validation for the ? operator. If either
4024 /// value operand is a class type, overload resolution is used to find a
4025 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4026 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4027                                     SourceLocation QuestionLoc) {
4028   Expr *Args[2] = { LHS.get(), RHS.get() };
4029   OverloadCandidateSet CandidateSet(QuestionLoc);
4030   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
4031                                     CandidateSet);
4032 
4033   OverloadCandidateSet::iterator Best;
4034   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4035     case OR_Success: {
4036       // We found a match. Perform the conversions on the arguments and move on.
4037       ExprResult LHSRes =
4038         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4039                                        Best->Conversions[0], Sema::AA_Converting);
4040       if (LHSRes.isInvalid())
4041         break;
4042       LHS = LHSRes;
4043 
4044       ExprResult RHSRes =
4045         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4046                                        Best->Conversions[1], Sema::AA_Converting);
4047       if (RHSRes.isInvalid())
4048         break;
4049       RHS = RHSRes;
4050       if (Best->Function)
4051         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4052       return false;
4053     }
4054 
4055     case OR_No_Viable_Function:
4056 
4057       // Emit a better diagnostic if one of the expressions is a null pointer
4058       // constant and the other is a pointer type. In this case, the user most
4059       // likely forgot to take the address of the other expression.
4060       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4061         return true;
4062 
4063       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4064         << LHS.get()->getType() << RHS.get()->getType()
4065         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4066       return true;
4067 
4068     case OR_Ambiguous:
4069       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4070         << LHS.get()->getType() << RHS.get()->getType()
4071         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4072       // FIXME: Print the possible common types by printing the return types of
4073       // the viable candidates.
4074       break;
4075 
4076     case OR_Deleted:
4077       llvm_unreachable("Conditional operator has only built-in overloads");
4078   }
4079   return true;
4080 }
4081 
4082 /// \brief Perform an "extended" implicit conversion as returned by
4083 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)4084 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4085   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4086   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4087                                                            SourceLocation());
4088   Expr *Arg = E.take();
4089   InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4090   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4091   if (Result.isInvalid())
4092     return true;
4093 
4094   E = Result;
4095   return false;
4096 }
4097 
4098 /// \brief Check the operands of ?: under C++ semantics.
4099 ///
4100 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4101 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4102 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4103                                            ExprResult &RHS, ExprValueKind &VK,
4104                                            ExprObjectKind &OK,
4105                                            SourceLocation QuestionLoc) {
4106   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4107   // interface pointers.
4108 
4109   // C++11 [expr.cond]p1
4110   //   The first expression is contextually converted to bool.
4111   if (!Cond.get()->isTypeDependent()) {
4112     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4113     if (CondRes.isInvalid())
4114       return QualType();
4115     Cond = CondRes;
4116   }
4117 
4118   // Assume r-value.
4119   VK = VK_RValue;
4120   OK = OK_Ordinary;
4121 
4122   // Either of the arguments dependent?
4123   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4124     return Context.DependentTy;
4125 
4126   // C++11 [expr.cond]p2
4127   //   If either the second or the third operand has type (cv) void, ...
4128   QualType LTy = LHS.get()->getType();
4129   QualType RTy = RHS.get()->getType();
4130   bool LVoid = LTy->isVoidType();
4131   bool RVoid = RTy->isVoidType();
4132   if (LVoid || RVoid) {
4133     //   ... then the [l2r] conversions are performed on the second and third
4134     //   operands ...
4135     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4136     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4137     if (LHS.isInvalid() || RHS.isInvalid())
4138       return QualType();
4139 
4140     // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4141     // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4142     // do this part for us.
4143     ExprResult &NonVoid = LVoid ? RHS : LHS;
4144     if (NonVoid.get()->getType()->isRecordType() &&
4145         NonVoid.get()->isGLValue()) {
4146       if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4147                              diag::err_allocation_of_abstract_type))
4148         return QualType();
4149       InitializedEntity Entity =
4150           InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4151       NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4152       if (NonVoid.isInvalid())
4153         return QualType();
4154     }
4155 
4156     LTy = LHS.get()->getType();
4157     RTy = RHS.get()->getType();
4158 
4159     //   ... and one of the following shall hold:
4160     //   -- The second or the third operand (but not both) is a throw-
4161     //      expression; the result is of the type of the other and is a prvalue.
4162     bool LThrow = isa<CXXThrowExpr>(LHS.get());
4163     bool RThrow = isa<CXXThrowExpr>(RHS.get());
4164     if (LThrow && !RThrow)
4165       return RTy;
4166     if (RThrow && !LThrow)
4167       return LTy;
4168 
4169     //   -- Both the second and third operands have type void; the result is of
4170     //      type void and is a prvalue.
4171     if (LVoid && RVoid)
4172       return Context.VoidTy;
4173 
4174     // Neither holds, error.
4175     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4176       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4177       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4178     return QualType();
4179   }
4180 
4181   // Neither is void.
4182 
4183   // C++11 [expr.cond]p3
4184   //   Otherwise, if the second and third operand have different types, and
4185   //   either has (cv) class type [...] an attempt is made to convert each of
4186   //   those operands to the type of the other.
4187   if (!Context.hasSameType(LTy, RTy) &&
4188       (LTy->isRecordType() || RTy->isRecordType())) {
4189     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4190     // These return true if a single direction is already ambiguous.
4191     QualType L2RType, R2LType;
4192     bool HaveL2R, HaveR2L;
4193     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4194       return QualType();
4195     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4196       return QualType();
4197 
4198     //   If both can be converted, [...] the program is ill-formed.
4199     if (HaveL2R && HaveR2L) {
4200       Diag(QuestionLoc, diag::err_conditional_ambiguous)
4201         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4202       return QualType();
4203     }
4204 
4205     //   If exactly one conversion is possible, that conversion is applied to
4206     //   the chosen operand and the converted operands are used in place of the
4207     //   original operands for the remainder of this section.
4208     if (HaveL2R) {
4209       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4210         return QualType();
4211       LTy = LHS.get()->getType();
4212     } else if (HaveR2L) {
4213       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4214         return QualType();
4215       RTy = RHS.get()->getType();
4216     }
4217   }
4218 
4219   // C++11 [expr.cond]p3
4220   //   if both are glvalues of the same value category and the same type except
4221   //   for cv-qualification, an attempt is made to convert each of those
4222   //   operands to the type of the other.
4223   ExprValueKind LVK = LHS.get()->getValueKind();
4224   ExprValueKind RVK = RHS.get()->getValueKind();
4225   if (!Context.hasSameType(LTy, RTy) &&
4226       Context.hasSameUnqualifiedType(LTy, RTy) &&
4227       LVK == RVK && LVK != VK_RValue) {
4228     // Since the unqualified types are reference-related and we require the
4229     // result to be as if a reference bound directly, the only conversion
4230     // we can perform is to add cv-qualifiers.
4231     Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4232     Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4233     if (RCVR.isStrictSupersetOf(LCVR)) {
4234       LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4235       LTy = LHS.get()->getType();
4236     }
4237     else if (LCVR.isStrictSupersetOf(RCVR)) {
4238       RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4239       RTy = RHS.get()->getType();
4240     }
4241   }
4242 
4243   // C++11 [expr.cond]p4
4244   //   If the second and third operands are glvalues of the same value
4245   //   category and have the same type, the result is of that type and
4246   //   value category and it is a bit-field if the second or the third
4247   //   operand is a bit-field, or if both are bit-fields.
4248   // We only extend this to bitfields, not to the crazy other kinds of
4249   // l-values.
4250   bool Same = Context.hasSameType(LTy, RTy);
4251   if (Same && LVK == RVK && LVK != VK_RValue &&
4252       LHS.get()->isOrdinaryOrBitFieldObject() &&
4253       RHS.get()->isOrdinaryOrBitFieldObject()) {
4254     VK = LHS.get()->getValueKind();
4255     if (LHS.get()->getObjectKind() == OK_BitField ||
4256         RHS.get()->getObjectKind() == OK_BitField)
4257       OK = OK_BitField;
4258     return LTy;
4259   }
4260 
4261   // C++11 [expr.cond]p5
4262   //   Otherwise, the result is a prvalue. If the second and third operands
4263   //   do not have the same type, and either has (cv) class type, ...
4264   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4265     //   ... overload resolution is used to determine the conversions (if any)
4266     //   to be applied to the operands. If the overload resolution fails, the
4267     //   program is ill-formed.
4268     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4269       return QualType();
4270   }
4271 
4272   // C++11 [expr.cond]p6
4273   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4274   //   conversions are performed on the second and third operands.
4275   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4276   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4277   if (LHS.isInvalid() || RHS.isInvalid())
4278     return QualType();
4279   LTy = LHS.get()->getType();
4280   RTy = RHS.get()->getType();
4281 
4282   //   After those conversions, one of the following shall hold:
4283   //   -- The second and third operands have the same type; the result
4284   //      is of that type. If the operands have class type, the result
4285   //      is a prvalue temporary of the result type, which is
4286   //      copy-initialized from either the second operand or the third
4287   //      operand depending on the value of the first operand.
4288   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4289     if (LTy->isRecordType()) {
4290       // The operands have class type. Make a temporary copy.
4291       if (RequireNonAbstractType(QuestionLoc, LTy,
4292                                  diag::err_allocation_of_abstract_type))
4293         return QualType();
4294       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4295 
4296       ExprResult LHSCopy = PerformCopyInitialization(Entity,
4297                                                      SourceLocation(),
4298                                                      LHS);
4299       if (LHSCopy.isInvalid())
4300         return QualType();
4301 
4302       ExprResult RHSCopy = PerformCopyInitialization(Entity,
4303                                                      SourceLocation(),
4304                                                      RHS);
4305       if (RHSCopy.isInvalid())
4306         return QualType();
4307 
4308       LHS = LHSCopy;
4309       RHS = RHSCopy;
4310     }
4311 
4312     return LTy;
4313   }
4314 
4315   // Extension: conditional operator involving vector types.
4316   if (LTy->isVectorType() || RTy->isVectorType())
4317     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4318 
4319   //   -- The second and third operands have arithmetic or enumeration type;
4320   //      the usual arithmetic conversions are performed to bring them to a
4321   //      common type, and the result is of that type.
4322   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4323     UsualArithmeticConversions(LHS, RHS);
4324     if (LHS.isInvalid() || RHS.isInvalid())
4325       return QualType();
4326     return LHS.get()->getType();
4327   }
4328 
4329   //   -- The second and third operands have pointer type, or one has pointer
4330   //      type and the other is a null pointer constant, or both are null
4331   //      pointer constants, at least one of which is non-integral; pointer
4332   //      conversions and qualification conversions are performed to bring them
4333   //      to their composite pointer type. The result is of the composite
4334   //      pointer type.
4335   //   -- The second and third operands have pointer to member type, or one has
4336   //      pointer to member type and the other is a null pointer constant;
4337   //      pointer to member conversions and qualification conversions are
4338   //      performed to bring them to a common type, whose cv-qualification
4339   //      shall match the cv-qualification of either the second or the third
4340   //      operand. The result is of the common type.
4341   bool NonStandardCompositeType = false;
4342   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4343                               isSFINAEContext()? 0 : &NonStandardCompositeType);
4344   if (!Composite.isNull()) {
4345     if (NonStandardCompositeType)
4346       Diag(QuestionLoc,
4347            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4348         << LTy << RTy << Composite
4349         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4350 
4351     return Composite;
4352   }
4353 
4354   // Similarly, attempt to find composite type of two objective-c pointers.
4355   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4356   if (!Composite.isNull())
4357     return Composite;
4358 
4359   // Check if we are using a null with a non-pointer type.
4360   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4361     return QualType();
4362 
4363   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4364     << LHS.get()->getType() << RHS.get()->getType()
4365     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4366   return QualType();
4367 }
4368 
4369 /// \brief Find a merged pointer type and convert the two expressions to it.
4370 ///
4371 /// This finds the composite pointer type (or member pointer type) for @p E1
4372 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4373 /// type and returns it.
4374 /// It does not emit diagnostics.
4375 ///
4376 /// \param Loc The location of the operator requiring these two expressions to
4377 /// be converted to the composite pointer type.
4378 ///
4379 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4380 /// a non-standard (but still sane) composite type to which both expressions
4381 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4382 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)4383 QualType Sema::FindCompositePointerType(SourceLocation Loc,
4384                                         Expr *&E1, Expr *&E2,
4385                                         bool *NonStandardCompositeType) {
4386   if (NonStandardCompositeType)
4387     *NonStandardCompositeType = false;
4388 
4389   assert(getLangOpts().CPlusPlus && "This function assumes C++");
4390   QualType T1 = E1->getType(), T2 = E2->getType();
4391 
4392   // C++11 5.9p2
4393   //   Pointer conversions and qualification conversions are performed on
4394   //   pointer operands to bring them to their composite pointer type. If
4395   //   one operand is a null pointer constant, the composite pointer type is
4396   //   std::nullptr_t if the other operand is also a null pointer constant or,
4397   //   if the other operand is a pointer, the type of the other operand.
4398   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4399       !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4400     if (T1->isNullPtrType() &&
4401         E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4402       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4403       return T1;
4404     }
4405     if (T2->isNullPtrType() &&
4406         E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4407       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4408       return T2;
4409     }
4410     return QualType();
4411   }
4412 
4413   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4414     if (T2->isMemberPointerType())
4415       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4416     else
4417       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4418     return T2;
4419   }
4420   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4421     if (T1->isMemberPointerType())
4422       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4423     else
4424       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4425     return T1;
4426   }
4427 
4428   // Now both have to be pointers or member pointers.
4429   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4430       (!T2->isPointerType() && !T2->isMemberPointerType()))
4431     return QualType();
4432 
4433   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4434   //   the other has type "pointer to cv2 T" and the composite pointer type is
4435   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4436   //   Otherwise, the composite pointer type is a pointer type similar to the
4437   //   type of one of the operands, with a cv-qualification signature that is
4438   //   the union of the cv-qualification signatures of the operand types.
4439   // In practice, the first part here is redundant; it's subsumed by the second.
4440   // What we do here is, we build the two possible composite types, and try the
4441   // conversions in both directions. If only one works, or if the two composite
4442   // types are the same, we have succeeded.
4443   // FIXME: extended qualifiers?
4444   typedef SmallVector<unsigned, 4> QualifierVector;
4445   QualifierVector QualifierUnion;
4446   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4447       ContainingClassVector;
4448   ContainingClassVector MemberOfClass;
4449   QualType Composite1 = Context.getCanonicalType(T1),
4450            Composite2 = Context.getCanonicalType(T2);
4451   unsigned NeedConstBefore = 0;
4452   do {
4453     const PointerType *Ptr1, *Ptr2;
4454     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4455         (Ptr2 = Composite2->getAs<PointerType>())) {
4456       Composite1 = Ptr1->getPointeeType();
4457       Composite2 = Ptr2->getPointeeType();
4458 
4459       // If we're allowed to create a non-standard composite type, keep track
4460       // of where we need to fill in additional 'const' qualifiers.
4461       if (NonStandardCompositeType &&
4462           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4463         NeedConstBefore = QualifierUnion.size();
4464 
4465       QualifierUnion.push_back(
4466                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4467       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4468       continue;
4469     }
4470 
4471     const MemberPointerType *MemPtr1, *MemPtr2;
4472     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4473         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4474       Composite1 = MemPtr1->getPointeeType();
4475       Composite2 = MemPtr2->getPointeeType();
4476 
4477       // If we're allowed to create a non-standard composite type, keep track
4478       // of where we need to fill in additional 'const' qualifiers.
4479       if (NonStandardCompositeType &&
4480           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4481         NeedConstBefore = QualifierUnion.size();
4482 
4483       QualifierUnion.push_back(
4484                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4485       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4486                                              MemPtr2->getClass()));
4487       continue;
4488     }
4489 
4490     // FIXME: block pointer types?
4491 
4492     // Cannot unwrap any more types.
4493     break;
4494   } while (true);
4495 
4496   if (NeedConstBefore && NonStandardCompositeType) {
4497     // Extension: Add 'const' to qualifiers that come before the first qualifier
4498     // mismatch, so that our (non-standard!) composite type meets the
4499     // requirements of C++ [conv.qual]p4 bullet 3.
4500     for (unsigned I = 0; I != NeedConstBefore; ++I) {
4501       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4502         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4503         *NonStandardCompositeType = true;
4504       }
4505     }
4506   }
4507 
4508   // Rewrap the composites as pointers or member pointers with the union CVRs.
4509   ContainingClassVector::reverse_iterator MOC
4510     = MemberOfClass.rbegin();
4511   for (QualifierVector::reverse_iterator
4512          I = QualifierUnion.rbegin(),
4513          E = QualifierUnion.rend();
4514        I != E; (void)++I, ++MOC) {
4515     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4516     if (MOC->first && MOC->second) {
4517       // Rebuild member pointer type
4518       Composite1 = Context.getMemberPointerType(
4519                                     Context.getQualifiedType(Composite1, Quals),
4520                                     MOC->first);
4521       Composite2 = Context.getMemberPointerType(
4522                                     Context.getQualifiedType(Composite2, Quals),
4523                                     MOC->second);
4524     } else {
4525       // Rebuild pointer type
4526       Composite1
4527         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4528       Composite2
4529         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4530     }
4531   }
4532 
4533   // Try to convert to the first composite pointer type.
4534   InitializedEntity Entity1
4535     = InitializedEntity::InitializeTemporary(Composite1);
4536   InitializationKind Kind
4537     = InitializationKind::CreateCopy(Loc, SourceLocation());
4538   InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4539   InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4540 
4541   if (E1ToC1 && E2ToC1) {
4542     // Conversion to Composite1 is viable.
4543     if (!Context.hasSameType(Composite1, Composite2)) {
4544       // Composite2 is a different type from Composite1. Check whether
4545       // Composite2 is also viable.
4546       InitializedEntity Entity2
4547         = InitializedEntity::InitializeTemporary(Composite2);
4548       InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4549       InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4550       if (E1ToC2 && E2ToC2) {
4551         // Both Composite1 and Composite2 are viable and are different;
4552         // this is an ambiguity.
4553         return QualType();
4554       }
4555     }
4556 
4557     // Convert E1 to Composite1
4558     ExprResult E1Result
4559       = E1ToC1.Perform(*this, Entity1, Kind, E1);
4560     if (E1Result.isInvalid())
4561       return QualType();
4562     E1 = E1Result.takeAs<Expr>();
4563 
4564     // Convert E2 to Composite1
4565     ExprResult E2Result
4566       = E2ToC1.Perform(*this, Entity1, Kind, E2);
4567     if (E2Result.isInvalid())
4568       return QualType();
4569     E2 = E2Result.takeAs<Expr>();
4570 
4571     return Composite1;
4572   }
4573 
4574   // Check whether Composite2 is viable.
4575   InitializedEntity Entity2
4576     = InitializedEntity::InitializeTemporary(Composite2);
4577   InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4578   InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4579   if (!E1ToC2 || !E2ToC2)
4580     return QualType();
4581 
4582   // Convert E1 to Composite2
4583   ExprResult E1Result
4584     = E1ToC2.Perform(*this, Entity2, Kind, E1);
4585   if (E1Result.isInvalid())
4586     return QualType();
4587   E1 = E1Result.takeAs<Expr>();
4588 
4589   // Convert E2 to Composite2
4590   ExprResult E2Result
4591     = E2ToC2.Perform(*this, Entity2, Kind, E2);
4592   if (E2Result.isInvalid())
4593     return QualType();
4594   E2 = E2Result.takeAs<Expr>();
4595 
4596   return Composite2;
4597 }
4598 
MaybeBindToTemporary(Expr * E)4599 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4600   if (!E)
4601     return ExprError();
4602 
4603   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4604 
4605   // If the result is a glvalue, we shouldn't bind it.
4606   if (!E->isRValue())
4607     return Owned(E);
4608 
4609   // In ARC, calls that return a retainable type can return retained,
4610   // in which case we have to insert a consuming cast.
4611   if (getLangOpts().ObjCAutoRefCount &&
4612       E->getType()->isObjCRetainableType()) {
4613 
4614     bool ReturnsRetained;
4615 
4616     // For actual calls, we compute this by examining the type of the
4617     // called value.
4618     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4619       Expr *Callee = Call->getCallee()->IgnoreParens();
4620       QualType T = Callee->getType();
4621 
4622       if (T == Context.BoundMemberTy) {
4623         // Handle pointer-to-members.
4624         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4625           T = BinOp->getRHS()->getType();
4626         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4627           T = Mem->getMemberDecl()->getType();
4628       }
4629 
4630       if (const PointerType *Ptr = T->getAs<PointerType>())
4631         T = Ptr->getPointeeType();
4632       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4633         T = Ptr->getPointeeType();
4634       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4635         T = MemPtr->getPointeeType();
4636 
4637       const FunctionType *FTy = T->getAs<FunctionType>();
4638       assert(FTy && "call to value not of function type?");
4639       ReturnsRetained = FTy->getExtInfo().getProducesResult();
4640 
4641     // ActOnStmtExpr arranges things so that StmtExprs of retainable
4642     // type always produce a +1 object.
4643     } else if (isa<StmtExpr>(E)) {
4644       ReturnsRetained = true;
4645 
4646     // We hit this case with the lambda conversion-to-block optimization;
4647     // we don't want any extra casts here.
4648     } else if (isa<CastExpr>(E) &&
4649                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4650       return Owned(E);
4651 
4652     // For message sends and property references, we try to find an
4653     // actual method.  FIXME: we should infer retention by selector in
4654     // cases where we don't have an actual method.
4655     } else {
4656       ObjCMethodDecl *D = 0;
4657       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4658         D = Send->getMethodDecl();
4659       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4660         D = BoxedExpr->getBoxingMethod();
4661       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4662         D = ArrayLit->getArrayWithObjectsMethod();
4663       } else if (ObjCDictionaryLiteral *DictLit
4664                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
4665         D = DictLit->getDictWithObjectsMethod();
4666       }
4667 
4668       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4669 
4670       // Don't do reclaims on performSelector calls; despite their
4671       // return type, the invoked method doesn't necessarily actually
4672       // return an object.
4673       if (!ReturnsRetained &&
4674           D && D->getMethodFamily() == OMF_performSelector)
4675         return Owned(E);
4676     }
4677 
4678     // Don't reclaim an object of Class type.
4679     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4680       return Owned(E);
4681 
4682     ExprNeedsCleanups = true;
4683 
4684     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4685                                    : CK_ARCReclaimReturnedObject);
4686     return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4687                                           VK_RValue));
4688   }
4689 
4690   if (!getLangOpts().CPlusPlus)
4691     return Owned(E);
4692 
4693   // Search for the base element type (cf. ASTContext::getBaseElementType) with
4694   // a fast path for the common case that the type is directly a RecordType.
4695   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4696   const RecordType *RT = 0;
4697   while (!RT) {
4698     switch (T->getTypeClass()) {
4699     case Type::Record:
4700       RT = cast<RecordType>(T);
4701       break;
4702     case Type::ConstantArray:
4703     case Type::IncompleteArray:
4704     case Type::VariableArray:
4705     case Type::DependentSizedArray:
4706       T = cast<ArrayType>(T)->getElementType().getTypePtr();
4707       break;
4708     default:
4709       return Owned(E);
4710     }
4711   }
4712 
4713   // That should be enough to guarantee that this type is complete, if we're
4714   // not processing a decltype expression.
4715   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4716   if (RD->isInvalidDecl() || RD->isDependentContext())
4717     return Owned(E);
4718 
4719   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4720   CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4721 
4722   if (Destructor) {
4723     MarkFunctionReferenced(E->getExprLoc(), Destructor);
4724     CheckDestructorAccess(E->getExprLoc(), Destructor,
4725                           PDiag(diag::err_access_dtor_temp)
4726                             << E->getType());
4727     DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4728 
4729     // If destructor is trivial, we can avoid the extra copy.
4730     if (Destructor->isTrivial())
4731       return Owned(E);
4732 
4733     // We need a cleanup, but we don't need to remember the temporary.
4734     ExprNeedsCleanups = true;
4735   }
4736 
4737   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4738   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4739 
4740   if (IsDecltype)
4741     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4742 
4743   return Owned(Bind);
4744 }
4745 
4746 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)4747 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4748   if (SubExpr.isInvalid())
4749     return ExprError();
4750 
4751   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4752 }
4753 
MaybeCreateExprWithCleanups(Expr * SubExpr)4754 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4755   assert(SubExpr && "sub expression can't be null!");
4756 
4757   CleanupVarDeclMarking();
4758 
4759   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4760   assert(ExprCleanupObjects.size() >= FirstCleanup);
4761   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4762   if (!ExprNeedsCleanups)
4763     return SubExpr;
4764 
4765   ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4766     = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4767                          ExprCleanupObjects.size() - FirstCleanup);
4768 
4769   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4770   DiscardCleanupsInEvaluationContext();
4771 
4772   return E;
4773 }
4774 
MaybeCreateStmtWithCleanups(Stmt * SubStmt)4775 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4776   assert(SubStmt && "sub statement can't be null!");
4777 
4778   CleanupVarDeclMarking();
4779 
4780   if (!ExprNeedsCleanups)
4781     return SubStmt;
4782 
4783   // FIXME: In order to attach the temporaries, wrap the statement into
4784   // a StmtExpr; currently this is only used for asm statements.
4785   // This is hacky, either create a new CXXStmtWithTemporaries statement or
4786   // a new AsmStmtWithTemporaries.
4787   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
4788                                                       SourceLocation(),
4789                                                       SourceLocation());
4790   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4791                                    SourceLocation());
4792   return MaybeCreateExprWithCleanups(E);
4793 }
4794 
4795 /// Process the expression contained within a decltype. For such expressions,
4796 /// certain semantic checks on temporaries are delayed until this point, and
4797 /// are omitted for the 'topmost' call in the decltype expression. If the
4798 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)4799 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4800   assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
4801 
4802   // C++11 [expr.call]p11:
4803   //   If a function call is a prvalue of object type,
4804   // -- if the function call is either
4805   //   -- the operand of a decltype-specifier, or
4806   //   -- the right operand of a comma operator that is the operand of a
4807   //      decltype-specifier,
4808   //   a temporary object is not introduced for the prvalue.
4809 
4810   // Recursively rebuild ParenExprs and comma expressions to strip out the
4811   // outermost CXXBindTemporaryExpr, if any.
4812   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4813     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4814     if (SubExpr.isInvalid())
4815       return ExprError();
4816     if (SubExpr.get() == PE->getSubExpr())
4817       return Owned(E);
4818     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4819   }
4820   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4821     if (BO->getOpcode() == BO_Comma) {
4822       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4823       if (RHS.isInvalid())
4824         return ExprError();
4825       if (RHS.get() == BO->getRHS())
4826         return Owned(E);
4827       return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4828                                                 BO_Comma, BO->getType(),
4829                                                 BO->getValueKind(),
4830                                                 BO->getObjectKind(),
4831                                                 BO->getOperatorLoc(),
4832                                                 BO->isFPContractable()));
4833     }
4834   }
4835 
4836   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4837   if (TopBind)
4838     E = TopBind->getSubExpr();
4839 
4840   // Disable the special decltype handling now.
4841   ExprEvalContexts.back().IsDecltype = false;
4842 
4843   // In MS mode, don't perform any extra checking of call return types within a
4844   // decltype expression.
4845   if (getLangOpts().MicrosoftMode)
4846     return Owned(E);
4847 
4848   // Perform the semantic checks we delayed until this point.
4849   CallExpr *TopCall = dyn_cast<CallExpr>(E);
4850   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
4851        I != N; ++I) {
4852     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
4853     if (Call == TopCall)
4854       continue;
4855 
4856     if (CheckCallReturnType(Call->getCallReturnType(),
4857                             Call->getLocStart(),
4858                             Call, Call->getDirectCallee()))
4859       return ExprError();
4860   }
4861 
4862   // Now all relevant types are complete, check the destructors are accessible
4863   // and non-deleted, and annotate them on the temporaries.
4864   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
4865        I != N; ++I) {
4866     CXXBindTemporaryExpr *Bind =
4867       ExprEvalContexts.back().DelayedDecltypeBinds[I];
4868     if (Bind == TopBind)
4869       continue;
4870 
4871     CXXTemporary *Temp = Bind->getTemporary();
4872 
4873     CXXRecordDecl *RD =
4874       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4875     CXXDestructorDecl *Destructor = LookupDestructor(RD);
4876     Temp->setDestructor(Destructor);
4877 
4878     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4879     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4880                           PDiag(diag::err_access_dtor_temp)
4881                             << Bind->getType());
4882     DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
4883 
4884     // We need a cleanup, but we don't need to remember the temporary.
4885     ExprNeedsCleanups = true;
4886   }
4887 
4888   // Possibly strip off the top CXXBindTemporaryExpr.
4889   return Owned(E);
4890 }
4891 
4892 ExprResult
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)4893 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4894                                    tok::TokenKind OpKind, ParsedType &ObjectType,
4895                                    bool &MayBePseudoDestructor) {
4896   // Since this might be a postfix expression, get rid of ParenListExprs.
4897   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4898   if (Result.isInvalid()) return ExprError();
4899   Base = Result.get();
4900 
4901   Result = CheckPlaceholderExpr(Base);
4902   if (Result.isInvalid()) return ExprError();
4903   Base = Result.take();
4904 
4905   QualType BaseType = Base->getType();
4906   MayBePseudoDestructor = false;
4907   if (BaseType->isDependentType()) {
4908     // If we have a pointer to a dependent type and are using the -> operator,
4909     // the object type is the type that the pointer points to. We might still
4910     // have enough information about that type to do something useful.
4911     if (OpKind == tok::arrow)
4912       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4913         BaseType = Ptr->getPointeeType();
4914 
4915     ObjectType = ParsedType::make(BaseType);
4916     MayBePseudoDestructor = true;
4917     return Owned(Base);
4918   }
4919 
4920   // C++ [over.match.oper]p8:
4921   //   [...] When operator->returns, the operator-> is applied  to the value
4922   //   returned, with the original second operand.
4923   if (OpKind == tok::arrow) {
4924     // The set of types we've considered so far.
4925     llvm::SmallPtrSet<CanQualType,8> CTypes;
4926     SmallVector<SourceLocation, 8> Locations;
4927     CTypes.insert(Context.getCanonicalType(BaseType));
4928 
4929     while (BaseType->isRecordType()) {
4930       Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4931       if (Result.isInvalid())
4932         return ExprError();
4933       Base = Result.get();
4934       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4935         Locations.push_back(OpCall->getDirectCallee()->getLocation());
4936       BaseType = Base->getType();
4937       CanQualType CBaseType = Context.getCanonicalType(BaseType);
4938       if (!CTypes.insert(CBaseType)) {
4939         Diag(OpLoc, diag::err_operator_arrow_circular);
4940         for (unsigned i = 0; i < Locations.size(); i++)
4941           Diag(Locations[i], diag::note_declared_at);
4942         return ExprError();
4943       }
4944     }
4945 
4946     if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4947       BaseType = BaseType->getPointeeType();
4948   }
4949 
4950   // Objective-C properties allow "." access on Objective-C pointer types,
4951   // so adjust the base type to the object type itself.
4952   if (BaseType->isObjCObjectPointerType())
4953     BaseType = BaseType->getPointeeType();
4954 
4955   // C++ [basic.lookup.classref]p2:
4956   //   [...] If the type of the object expression is of pointer to scalar
4957   //   type, the unqualified-id is looked up in the context of the complete
4958   //   postfix-expression.
4959   //
4960   // This also indicates that we could be parsing a pseudo-destructor-name.
4961   // Note that Objective-C class and object types can be pseudo-destructor
4962   // expressions or normal member (ivar or property) access expressions.
4963   if (BaseType->isObjCObjectOrInterfaceType()) {
4964     MayBePseudoDestructor = true;
4965   } else if (!BaseType->isRecordType()) {
4966     ObjectType = ParsedType();
4967     MayBePseudoDestructor = true;
4968     return Owned(Base);
4969   }
4970 
4971   // The object type must be complete (or dependent), or
4972   // C++11 [expr.prim.general]p3:
4973   //   Unlike the object expression in other contexts, *this is not required to
4974   //   be of complete type for purposes of class member access (5.2.5) outside
4975   //   the member function body.
4976   if (!BaseType->isDependentType() &&
4977       !isThisOutsideMemberFunctionBody(BaseType) &&
4978       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
4979     return ExprError();
4980 
4981   // C++ [basic.lookup.classref]p2:
4982   //   If the id-expression in a class member access (5.2.5) is an
4983   //   unqualified-id, and the type of the object expression is of a class
4984   //   type C (or of pointer to a class type C), the unqualified-id is looked
4985   //   up in the scope of class C. [...]
4986   ObjectType = ParsedType::make(BaseType);
4987   return Base;
4988 }
4989 
DiagnoseDtorReference(SourceLocation NameLoc,Expr * MemExpr)4990 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4991                                                    Expr *MemExpr) {
4992   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4993   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4994     << isa<CXXPseudoDestructorExpr>(MemExpr)
4995     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4996 
4997   return ActOnCallExpr(/*Scope*/ 0,
4998                        MemExpr,
4999                        /*LPLoc*/ ExpectedLParenLoc,
5000                        MultiExprArg(),
5001                        /*RPLoc*/ ExpectedLParenLoc);
5002 }
5003 
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)5004 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5005                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
5006   if (Base->hasPlaceholderType()) {
5007     ExprResult result = S.CheckPlaceholderExpr(Base);
5008     if (result.isInvalid()) return true;
5009     Base = result.take();
5010   }
5011   ObjectType = Base->getType();
5012 
5013   // C++ [expr.pseudo]p2:
5014   //   The left-hand side of the dot operator shall be of scalar type. The
5015   //   left-hand side of the arrow operator shall be of pointer to scalar type.
5016   //   This scalar type is the object type.
5017   // Note that this is rather different from the normal handling for the
5018   // arrow operator.
5019   if (OpKind == tok::arrow) {
5020     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5021       ObjectType = Ptr->getPointeeType();
5022     } else if (!Base->isTypeDependent()) {
5023       // The user wrote "p->" when she probably meant "p."; fix it.
5024       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5025         << ObjectType << true
5026         << FixItHint::CreateReplacement(OpLoc, ".");
5027       if (S.isSFINAEContext())
5028         return true;
5029 
5030       OpKind = tok::period;
5031     }
5032   }
5033 
5034   return false;
5035 }
5036 
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed,bool HasTrailingLParen)5037 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5038                                            SourceLocation OpLoc,
5039                                            tok::TokenKind OpKind,
5040                                            const CXXScopeSpec &SS,
5041                                            TypeSourceInfo *ScopeTypeInfo,
5042                                            SourceLocation CCLoc,
5043                                            SourceLocation TildeLoc,
5044                                          PseudoDestructorTypeStorage Destructed,
5045                                            bool HasTrailingLParen) {
5046   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5047 
5048   QualType ObjectType;
5049   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5050     return ExprError();
5051 
5052   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5053       !ObjectType->isVectorType()) {
5054     if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5055       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5056     else
5057       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5058         << ObjectType << Base->getSourceRange();
5059     return ExprError();
5060   }
5061 
5062   // C++ [expr.pseudo]p2:
5063   //   [...] The cv-unqualified versions of the object type and of the type
5064   //   designated by the pseudo-destructor-name shall be the same type.
5065   if (DestructedTypeInfo) {
5066     QualType DestructedType = DestructedTypeInfo->getType();
5067     SourceLocation DestructedTypeStart
5068       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5069     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5070       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5071         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5072           << ObjectType << DestructedType << Base->getSourceRange()
5073           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5074 
5075         // Recover by setting the destructed type to the object type.
5076         DestructedType = ObjectType;
5077         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5078                                                            DestructedTypeStart);
5079         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5080       } else if (DestructedType.getObjCLifetime() !=
5081                                                 ObjectType.getObjCLifetime()) {
5082 
5083         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5084           // Okay: just pretend that the user provided the correctly-qualified
5085           // type.
5086         } else {
5087           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5088             << ObjectType << DestructedType << Base->getSourceRange()
5089             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5090         }
5091 
5092         // Recover by setting the destructed type to the object type.
5093         DestructedType = ObjectType;
5094         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5095                                                            DestructedTypeStart);
5096         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5097       }
5098     }
5099   }
5100 
5101   // C++ [expr.pseudo]p2:
5102   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5103   //   form
5104   //
5105   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5106   //
5107   //   shall designate the same scalar type.
5108   if (ScopeTypeInfo) {
5109     QualType ScopeType = ScopeTypeInfo->getType();
5110     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5111         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5112 
5113       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5114            diag::err_pseudo_dtor_type_mismatch)
5115         << ObjectType << ScopeType << Base->getSourceRange()
5116         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5117 
5118       ScopeType = QualType();
5119       ScopeTypeInfo = 0;
5120     }
5121   }
5122 
5123   Expr *Result
5124     = new (Context) CXXPseudoDestructorExpr(Context, Base,
5125                                             OpKind == tok::arrow, OpLoc,
5126                                             SS.getWithLocInContext(Context),
5127                                             ScopeTypeInfo,
5128                                             CCLoc,
5129                                             TildeLoc,
5130                                             Destructed);
5131 
5132   if (HasTrailingLParen)
5133     return Owned(Result);
5134 
5135   return DiagnoseDtorReference(Destructed.getLocation(), Result);
5136 }
5137 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName,bool HasTrailingLParen)5138 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5139                                            SourceLocation OpLoc,
5140                                            tok::TokenKind OpKind,
5141                                            CXXScopeSpec &SS,
5142                                            UnqualifiedId &FirstTypeName,
5143                                            SourceLocation CCLoc,
5144                                            SourceLocation TildeLoc,
5145                                            UnqualifiedId &SecondTypeName,
5146                                            bool HasTrailingLParen) {
5147   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5148           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5149          "Invalid first type name in pseudo-destructor");
5150   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5151           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5152          "Invalid second type name in pseudo-destructor");
5153 
5154   QualType ObjectType;
5155   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5156     return ExprError();
5157 
5158   // Compute the object type that we should use for name lookup purposes. Only
5159   // record types and dependent types matter.
5160   ParsedType ObjectTypePtrForLookup;
5161   if (!SS.isSet()) {
5162     if (ObjectType->isRecordType())
5163       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5164     else if (ObjectType->isDependentType())
5165       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5166   }
5167 
5168   // Convert the name of the type being destructed (following the ~) into a
5169   // type (with source-location information).
5170   QualType DestructedType;
5171   TypeSourceInfo *DestructedTypeInfo = 0;
5172   PseudoDestructorTypeStorage Destructed;
5173   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5174     ParsedType T = getTypeName(*SecondTypeName.Identifier,
5175                                SecondTypeName.StartLocation,
5176                                S, &SS, true, false, ObjectTypePtrForLookup);
5177     if (!T &&
5178         ((SS.isSet() && !computeDeclContext(SS, false)) ||
5179          (!SS.isSet() && ObjectType->isDependentType()))) {
5180       // The name of the type being destroyed is a dependent name, and we
5181       // couldn't find anything useful in scope. Just store the identifier and
5182       // it's location, and we'll perform (qualified) name lookup again at
5183       // template instantiation time.
5184       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5185                                                SecondTypeName.StartLocation);
5186     } else if (!T) {
5187       Diag(SecondTypeName.StartLocation,
5188            diag::err_pseudo_dtor_destructor_non_type)
5189         << SecondTypeName.Identifier << ObjectType;
5190       if (isSFINAEContext())
5191         return ExprError();
5192 
5193       // Recover by assuming we had the right type all along.
5194       DestructedType = ObjectType;
5195     } else
5196       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5197   } else {
5198     // Resolve the template-id to a type.
5199     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5200     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5201                                        TemplateId->NumArgs);
5202     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5203                                        TemplateId->TemplateKWLoc,
5204                                        TemplateId->Template,
5205                                        TemplateId->TemplateNameLoc,
5206                                        TemplateId->LAngleLoc,
5207                                        TemplateArgsPtr,
5208                                        TemplateId->RAngleLoc);
5209     if (T.isInvalid() || !T.get()) {
5210       // Recover by assuming we had the right type all along.
5211       DestructedType = ObjectType;
5212     } else
5213       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5214   }
5215 
5216   // If we've performed some kind of recovery, (re-)build the type source
5217   // information.
5218   if (!DestructedType.isNull()) {
5219     if (!DestructedTypeInfo)
5220       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5221                                                   SecondTypeName.StartLocation);
5222     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5223   }
5224 
5225   // Convert the name of the scope type (the type prior to '::') into a type.
5226   TypeSourceInfo *ScopeTypeInfo = 0;
5227   QualType ScopeType;
5228   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5229       FirstTypeName.Identifier) {
5230     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5231       ParsedType T = getTypeName(*FirstTypeName.Identifier,
5232                                  FirstTypeName.StartLocation,
5233                                  S, &SS, true, false, ObjectTypePtrForLookup);
5234       if (!T) {
5235         Diag(FirstTypeName.StartLocation,
5236              diag::err_pseudo_dtor_destructor_non_type)
5237           << FirstTypeName.Identifier << ObjectType;
5238 
5239         if (isSFINAEContext())
5240           return ExprError();
5241 
5242         // Just drop this type. It's unnecessary anyway.
5243         ScopeType = QualType();
5244       } else
5245         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5246     } else {
5247       // Resolve the template-id to a type.
5248       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5249       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5250                                          TemplateId->NumArgs);
5251       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5252                                          TemplateId->TemplateKWLoc,
5253                                          TemplateId->Template,
5254                                          TemplateId->TemplateNameLoc,
5255                                          TemplateId->LAngleLoc,
5256                                          TemplateArgsPtr,
5257                                          TemplateId->RAngleLoc);
5258       if (T.isInvalid() || !T.get()) {
5259         // Recover by dropping this type.
5260         ScopeType = QualType();
5261       } else
5262         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5263     }
5264   }
5265 
5266   if (!ScopeType.isNull() && !ScopeTypeInfo)
5267     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5268                                                   FirstTypeName.StartLocation);
5269 
5270 
5271   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5272                                    ScopeTypeInfo, CCLoc, TildeLoc,
5273                                    Destructed, HasTrailingLParen);
5274 }
5275 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS,bool HasTrailingLParen)5276 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5277                                            SourceLocation OpLoc,
5278                                            tok::TokenKind OpKind,
5279                                            SourceLocation TildeLoc,
5280                                            const DeclSpec& DS,
5281                                            bool HasTrailingLParen) {
5282   QualType ObjectType;
5283   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5284     return ExprError();
5285 
5286   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5287 
5288   TypeLocBuilder TLB;
5289   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5290   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5291   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5292   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5293 
5294   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5295                                    0, SourceLocation(), TildeLoc,
5296                                    Destructed, HasTrailingLParen);
5297 }
5298 
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)5299 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5300                                         CXXConversionDecl *Method,
5301                                         bool HadMultipleCandidates) {
5302   if (Method->getParent()->isLambda() &&
5303       Method->getConversionType()->isBlockPointerType()) {
5304     // This is a lambda coversion to block pointer; check if the argument
5305     // is a LambdaExpr.
5306     Expr *SubE = E;
5307     CastExpr *CE = dyn_cast<CastExpr>(SubE);
5308     if (CE && CE->getCastKind() == CK_NoOp)
5309       SubE = CE->getSubExpr();
5310     SubE = SubE->IgnoreParens();
5311     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5312       SubE = BE->getSubExpr();
5313     if (isa<LambdaExpr>(SubE)) {
5314       // For the conversion to block pointer on a lambda expression, we
5315       // construct a special BlockLiteral instead; this doesn't really make
5316       // a difference in ARC, but outside of ARC the resulting block literal
5317       // follows the normal lifetime rules for block literals instead of being
5318       // autoreleased.
5319       DiagnosticErrorTrap Trap(Diags);
5320       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5321                                                      E->getExprLoc(),
5322                                                      Method, E);
5323       if (Exp.isInvalid())
5324         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5325       return Exp;
5326     }
5327   }
5328 
5329 
5330   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5331                                           FoundDecl, Method);
5332   if (Exp.isInvalid())
5333     return true;
5334 
5335   MemberExpr *ME =
5336       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5337                                SourceLocation(), Context.BoundMemberTy,
5338                                VK_RValue, OK_Ordinary);
5339   if (HadMultipleCandidates)
5340     ME->setHadMultipleCandidates(true);
5341   MarkMemberReferenced(ME);
5342 
5343   QualType ResultType = Method->getResultType();
5344   ExprValueKind VK = Expr::getValueKindForType(ResultType);
5345   ResultType = ResultType.getNonLValueExprType(Context);
5346 
5347   CXXMemberCallExpr *CE =
5348     new (Context) CXXMemberCallExpr(Context, ME, MultiExprArg(), ResultType, VK,
5349                                     Exp.get()->getLocEnd());
5350   return CE;
5351 }
5352 
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)5353 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5354                                       SourceLocation RParen) {
5355   CanThrowResult CanThrow = canThrow(Operand);
5356   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5357                                              CanThrow, KeyLoc, RParen));
5358 }
5359 
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)5360 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5361                                    Expr *Operand, SourceLocation RParen) {
5362   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5363 }
5364 
IsSpecialDiscardedValue(Expr * E)5365 static bool IsSpecialDiscardedValue(Expr *E) {
5366   // In C++11, discarded-value expressions of a certain form are special,
5367   // according to [expr]p10:
5368   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5369   //   expression is an lvalue of volatile-qualified type and it has
5370   //   one of the following forms:
5371   E = E->IgnoreParens();
5372 
5373   //   - id-expression (5.1.1),
5374   if (isa<DeclRefExpr>(E))
5375     return true;
5376 
5377   //   - subscripting (5.2.1),
5378   if (isa<ArraySubscriptExpr>(E))
5379     return true;
5380 
5381   //   - class member access (5.2.5),
5382   if (isa<MemberExpr>(E))
5383     return true;
5384 
5385   //   - indirection (5.3.1),
5386   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5387     if (UO->getOpcode() == UO_Deref)
5388       return true;
5389 
5390   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5391     //   - pointer-to-member operation (5.5),
5392     if (BO->isPtrMemOp())
5393       return true;
5394 
5395     //   - comma expression (5.18) where the right operand is one of the above.
5396     if (BO->getOpcode() == BO_Comma)
5397       return IsSpecialDiscardedValue(BO->getRHS());
5398   }
5399 
5400   //   - conditional expression (5.16) where both the second and the third
5401   //     operands are one of the above, or
5402   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5403     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5404            IsSpecialDiscardedValue(CO->getFalseExpr());
5405   // The related edge case of "*x ?: *x".
5406   if (BinaryConditionalOperator *BCO =
5407           dyn_cast<BinaryConditionalOperator>(E)) {
5408     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5409       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5410              IsSpecialDiscardedValue(BCO->getFalseExpr());
5411   }
5412 
5413   // Objective-C++ extensions to the rule.
5414   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5415     return true;
5416 
5417   return false;
5418 }
5419 
5420 /// Perform the conversions required for an expression used in a
5421 /// context that ignores the result.
IgnoredValueConversions(Expr * E)5422 ExprResult Sema::IgnoredValueConversions(Expr *E) {
5423   if (E->hasPlaceholderType()) {
5424     ExprResult result = CheckPlaceholderExpr(E);
5425     if (result.isInvalid()) return Owned(E);
5426     E = result.take();
5427   }
5428 
5429   // C99 6.3.2.1:
5430   //   [Except in specific positions,] an lvalue that does not have
5431   //   array type is converted to the value stored in the
5432   //   designated object (and is no longer an lvalue).
5433   if (E->isRValue()) {
5434     // In C, function designators (i.e. expressions of function type)
5435     // are r-values, but we still want to do function-to-pointer decay
5436     // on them.  This is both technically correct and convenient for
5437     // some clients.
5438     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5439       return DefaultFunctionArrayConversion(E);
5440 
5441     return Owned(E);
5442   }
5443 
5444   if (getLangOpts().CPlusPlus)  {
5445     // The C++11 standard defines the notion of a discarded-value expression;
5446     // normally, we don't need to do anything to handle it, but if it is a
5447     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5448     // conversion.
5449     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5450         E->getType().isVolatileQualified() &&
5451         IsSpecialDiscardedValue(E)) {
5452       ExprResult Res = DefaultLvalueConversion(E);
5453       if (Res.isInvalid())
5454         return Owned(E);
5455       E = Res.take();
5456     }
5457     return Owned(E);
5458   }
5459 
5460   // GCC seems to also exclude expressions of incomplete enum type.
5461   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5462     if (!T->getDecl()->isComplete()) {
5463       // FIXME: stupid workaround for a codegen bug!
5464       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5465       return Owned(E);
5466     }
5467   }
5468 
5469   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5470   if (Res.isInvalid())
5471     return Owned(E);
5472   E = Res.take();
5473 
5474   if (!E->getType()->isVoidType())
5475     RequireCompleteType(E->getExprLoc(), E->getType(),
5476                         diag::err_incomplete_type);
5477   return Owned(E);
5478 }
5479 
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr)5480 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5481                                      bool DiscardedValue,
5482                                      bool IsConstexpr) {
5483   ExprResult FullExpr = Owned(FE);
5484 
5485   if (!FullExpr.get())
5486     return ExprError();
5487 
5488   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5489     return ExprError();
5490 
5491   // Top-level expressions default to 'id' when we're in a debugger.
5492   if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5493       FullExpr.get()->getType() == Context.UnknownAnyTy) {
5494     FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5495     if (FullExpr.isInvalid())
5496       return ExprError();
5497   }
5498 
5499   if (DiscardedValue) {
5500     FullExpr = CheckPlaceholderExpr(FullExpr.take());
5501     if (FullExpr.isInvalid())
5502       return ExprError();
5503 
5504     FullExpr = IgnoredValueConversions(FullExpr.take());
5505     if (FullExpr.isInvalid())
5506       return ExprError();
5507   }
5508 
5509   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5510   return MaybeCreateExprWithCleanups(FullExpr);
5511 }
5512 
ActOnFinishFullStmt(Stmt * FullStmt)5513 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5514   if (!FullStmt) return StmtError();
5515 
5516   return MaybeCreateStmtWithCleanups(FullStmt);
5517 }
5518 
5519 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)5520 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5521                                    CXXScopeSpec &SS,
5522                                    const DeclarationNameInfo &TargetNameInfo) {
5523   DeclarationName TargetName = TargetNameInfo.getName();
5524   if (!TargetName)
5525     return IER_DoesNotExist;
5526 
5527   // If the name itself is dependent, then the result is dependent.
5528   if (TargetName.isDependentName())
5529     return IER_Dependent;
5530 
5531   // Do the redeclaration lookup in the current scope.
5532   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5533                  Sema::NotForRedeclaration);
5534   LookupParsedName(R, S, &SS);
5535   R.suppressDiagnostics();
5536 
5537   switch (R.getResultKind()) {
5538   case LookupResult::Found:
5539   case LookupResult::FoundOverloaded:
5540   case LookupResult::FoundUnresolvedValue:
5541   case LookupResult::Ambiguous:
5542     return IER_Exists;
5543 
5544   case LookupResult::NotFound:
5545     return IER_DoesNotExist;
5546 
5547   case LookupResult::NotFoundInCurrentInstantiation:
5548     return IER_Dependent;
5549   }
5550 
5551   llvm_unreachable("Invalid LookupResult Kind!");
5552 }
5553 
5554 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)5555 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5556                                    bool IsIfExists, CXXScopeSpec &SS,
5557                                    UnqualifiedId &Name) {
5558   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5559 
5560   // Check for unexpanded parameter packs.
5561   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5562   collectUnexpandedParameterPacks(SS, Unexpanded);
5563   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5564   if (!Unexpanded.empty()) {
5565     DiagnoseUnexpandedParameterPacks(KeywordLoc,
5566                                      IsIfExists? UPPC_IfExists
5567                                                : UPPC_IfNotExists,
5568                                      Unexpanded);
5569     return IER_Error;
5570   }
5571 
5572   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5573 }
5574