1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "TypeLocBuilder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Initialization.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/TemplateDeduction.h"
35 #include "llvm/ADT/APInt.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/Support/ErrorHandling.h"
38 using namespace clang;
39 using namespace sema;
40
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)41 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
42 IdentifierInfo &II,
43 SourceLocation NameLoc,
44 Scope *S, CXXScopeSpec &SS,
45 ParsedType ObjectTypePtr,
46 bool EnteringContext) {
47 // Determine where to perform name lookup.
48
49 // FIXME: This area of the standard is very messy, and the current
50 // wording is rather unclear about which scopes we search for the
51 // destructor name; see core issues 399 and 555. Issue 399 in
52 // particular shows where the current description of destructor name
53 // lookup is completely out of line with existing practice, e.g.,
54 // this appears to be ill-formed:
55 //
56 // namespace N {
57 // template <typename T> struct S {
58 // ~S();
59 // };
60 // }
61 //
62 // void f(N::S<int>* s) {
63 // s->N::S<int>::~S();
64 // }
65 //
66 // See also PR6358 and PR6359.
67 // For this reason, we're currently only doing the C++03 version of this
68 // code; the C++0x version has to wait until we get a proper spec.
69 QualType SearchType;
70 DeclContext *LookupCtx = 0;
71 bool isDependent = false;
72 bool LookInScope = false;
73
74 // If we have an object type, it's because we are in a
75 // pseudo-destructor-expression or a member access expression, and
76 // we know what type we're looking for.
77 if (ObjectTypePtr)
78 SearchType = GetTypeFromParser(ObjectTypePtr);
79
80 if (SS.isSet()) {
81 NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
82
83 bool AlreadySearched = false;
84 bool LookAtPrefix = true;
85 // C++ [basic.lookup.qual]p6:
86 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
87 // the type-names are looked up as types in the scope designated by the
88 // nested-name-specifier. In a qualified-id of the form:
89 //
90 // ::[opt] nested-name-specifier ~ class-name
91 //
92 // where the nested-name-specifier designates a namespace scope, and in
93 // a qualified-id of the form:
94 //
95 // ::opt nested-name-specifier class-name :: ~ class-name
96 //
97 // the class-names are looked up as types in the scope designated by
98 // the nested-name-specifier.
99 //
100 // Here, we check the first case (completely) and determine whether the
101 // code below is permitted to look at the prefix of the
102 // nested-name-specifier.
103 DeclContext *DC = computeDeclContext(SS, EnteringContext);
104 if (DC && DC->isFileContext()) {
105 AlreadySearched = true;
106 LookupCtx = DC;
107 isDependent = false;
108 } else if (DC && isa<CXXRecordDecl>(DC))
109 LookAtPrefix = false;
110
111 // The second case from the C++03 rules quoted further above.
112 NestedNameSpecifier *Prefix = 0;
113 if (AlreadySearched) {
114 // Nothing left to do.
115 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
116 CXXScopeSpec PrefixSS;
117 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
118 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
119 isDependent = isDependentScopeSpecifier(PrefixSS);
120 } else if (ObjectTypePtr) {
121 LookupCtx = computeDeclContext(SearchType);
122 isDependent = SearchType->isDependentType();
123 } else {
124 LookupCtx = computeDeclContext(SS, EnteringContext);
125 isDependent = LookupCtx && LookupCtx->isDependentContext();
126 }
127
128 LookInScope = false;
129 } else if (ObjectTypePtr) {
130 // C++ [basic.lookup.classref]p3:
131 // If the unqualified-id is ~type-name, the type-name is looked up
132 // in the context of the entire postfix-expression. If the type T
133 // of the object expression is of a class type C, the type-name is
134 // also looked up in the scope of class C. At least one of the
135 // lookups shall find a name that refers to (possibly
136 // cv-qualified) T.
137 LookupCtx = computeDeclContext(SearchType);
138 isDependent = SearchType->isDependentType();
139 assert((isDependent || !SearchType->isIncompleteType()) &&
140 "Caller should have completed object type");
141
142 LookInScope = true;
143 } else {
144 // Perform lookup into the current scope (only).
145 LookInScope = true;
146 }
147
148 TypeDecl *NonMatchingTypeDecl = 0;
149 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
150 for (unsigned Step = 0; Step != 2; ++Step) {
151 // Look for the name first in the computed lookup context (if we
152 // have one) and, if that fails to find a match, in the scope (if
153 // we're allowed to look there).
154 Found.clear();
155 if (Step == 0 && LookupCtx)
156 LookupQualifiedName(Found, LookupCtx);
157 else if (Step == 1 && LookInScope && S)
158 LookupName(Found, S);
159 else
160 continue;
161
162 // FIXME: Should we be suppressing ambiguities here?
163 if (Found.isAmbiguous())
164 return ParsedType();
165
166 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
167 QualType T = Context.getTypeDeclType(Type);
168
169 if (SearchType.isNull() || SearchType->isDependentType() ||
170 Context.hasSameUnqualifiedType(T, SearchType)) {
171 // We found our type!
172
173 return ParsedType::make(T);
174 }
175
176 if (!SearchType.isNull())
177 NonMatchingTypeDecl = Type;
178 }
179
180 // If the name that we found is a class template name, and it is
181 // the same name as the template name in the last part of the
182 // nested-name-specifier (if present) or the object type, then
183 // this is the destructor for that class.
184 // FIXME: This is a workaround until we get real drafting for core
185 // issue 399, for which there isn't even an obvious direction.
186 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
187 QualType MemberOfType;
188 if (SS.isSet()) {
189 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
190 // Figure out the type of the context, if it has one.
191 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
192 MemberOfType = Context.getTypeDeclType(Record);
193 }
194 }
195 if (MemberOfType.isNull())
196 MemberOfType = SearchType;
197
198 if (MemberOfType.isNull())
199 continue;
200
201 // We're referring into a class template specialization. If the
202 // class template we found is the same as the template being
203 // specialized, we found what we are looking for.
204 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
205 if (ClassTemplateSpecializationDecl *Spec
206 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
207 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
208 Template->getCanonicalDecl())
209 return ParsedType::make(MemberOfType);
210 }
211
212 continue;
213 }
214
215 // We're referring to an unresolved class template
216 // specialization. Determine whether we class template we found
217 // is the same as the template being specialized or, if we don't
218 // know which template is being specialized, that it at least
219 // has the same name.
220 if (const TemplateSpecializationType *SpecType
221 = MemberOfType->getAs<TemplateSpecializationType>()) {
222 TemplateName SpecName = SpecType->getTemplateName();
223
224 // The class template we found is the same template being
225 // specialized.
226 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
227 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
228 return ParsedType::make(MemberOfType);
229
230 continue;
231 }
232
233 // The class template we found has the same name as the
234 // (dependent) template name being specialized.
235 if (DependentTemplateName *DepTemplate
236 = SpecName.getAsDependentTemplateName()) {
237 if (DepTemplate->isIdentifier() &&
238 DepTemplate->getIdentifier() == Template->getIdentifier())
239 return ParsedType::make(MemberOfType);
240
241 continue;
242 }
243 }
244 }
245 }
246
247 if (isDependent) {
248 // We didn't find our type, but that's okay: it's dependent
249 // anyway.
250
251 // FIXME: What if we have no nested-name-specifier?
252 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
253 SS.getWithLocInContext(Context),
254 II, NameLoc);
255 return ParsedType::make(T);
256 }
257
258 if (NonMatchingTypeDecl) {
259 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
260 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
261 << T << SearchType;
262 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
263 << T;
264 } else if (ObjectTypePtr)
265 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
266 << &II;
267 else
268 Diag(NameLoc, diag::err_destructor_class_name);
269
270 return ParsedType();
271 }
272
getDestructorType(const DeclSpec & DS,ParsedType ObjectType)273 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
274 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
275 return ParsedType();
276 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
277 && "only get destructor types from declspecs");
278 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
279 QualType SearchType = GetTypeFromParser(ObjectType);
280 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
281 return ParsedType::make(T);
282 }
283
284 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
285 << T << SearchType;
286 return ParsedType();
287 }
288
289 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)290 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
291 SourceLocation TypeidLoc,
292 TypeSourceInfo *Operand,
293 SourceLocation RParenLoc) {
294 // C++ [expr.typeid]p4:
295 // The top-level cv-qualifiers of the lvalue expression or the type-id
296 // that is the operand of typeid are always ignored.
297 // If the type of the type-id is a class type or a reference to a class
298 // type, the class shall be completely-defined.
299 Qualifiers Quals;
300 QualType T
301 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
302 Quals);
303 if (T->getAs<RecordType>() &&
304 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
305 return ExprError();
306
307 return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
308 Operand,
309 SourceRange(TypeidLoc, RParenLoc)));
310 }
311
312 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)313 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
314 SourceLocation TypeidLoc,
315 Expr *E,
316 SourceLocation RParenLoc) {
317 if (E && !E->isTypeDependent()) {
318 if (E->getType()->isPlaceholderType()) {
319 ExprResult result = CheckPlaceholderExpr(E);
320 if (result.isInvalid()) return ExprError();
321 E = result.take();
322 }
323
324 QualType T = E->getType();
325 if (const RecordType *RecordT = T->getAs<RecordType>()) {
326 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
327 // C++ [expr.typeid]p3:
328 // [...] If the type of the expression is a class type, the class
329 // shall be completely-defined.
330 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
331 return ExprError();
332
333 // C++ [expr.typeid]p3:
334 // When typeid is applied to an expression other than an glvalue of a
335 // polymorphic class type [...] [the] expression is an unevaluated
336 // operand. [...]
337 if (RecordD->isPolymorphic() && E->isGLValue()) {
338 // The subexpression is potentially evaluated; switch the context
339 // and recheck the subexpression.
340 ExprResult Result = TransformToPotentiallyEvaluated(E);
341 if (Result.isInvalid()) return ExprError();
342 E = Result.take();
343
344 // We require a vtable to query the type at run time.
345 MarkVTableUsed(TypeidLoc, RecordD);
346 }
347 }
348
349 // C++ [expr.typeid]p4:
350 // [...] If the type of the type-id is a reference to a possibly
351 // cv-qualified type, the result of the typeid expression refers to a
352 // std::type_info object representing the cv-unqualified referenced
353 // type.
354 Qualifiers Quals;
355 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
356 if (!Context.hasSameType(T, UnqualT)) {
357 T = UnqualT;
358 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
359 }
360 }
361
362 return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
363 E,
364 SourceRange(TypeidLoc, RParenLoc)));
365 }
366
367 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
368 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)369 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
370 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
371 // Find the std::type_info type.
372 if (!getStdNamespace())
373 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
374
375 if (!CXXTypeInfoDecl) {
376 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
377 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
378 LookupQualifiedName(R, getStdNamespace());
379 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
380 // Microsoft's typeinfo doesn't have type_info in std but in the global
381 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
382 if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
383 LookupQualifiedName(R, Context.getTranslationUnitDecl());
384 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
385 }
386 if (!CXXTypeInfoDecl)
387 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
388 }
389
390 if (!getLangOpts().RTTI) {
391 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
392 }
393
394 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
395
396 if (isType) {
397 // The operand is a type; handle it as such.
398 TypeSourceInfo *TInfo = 0;
399 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
400 &TInfo);
401 if (T.isNull())
402 return ExprError();
403
404 if (!TInfo)
405 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
406
407 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
408 }
409
410 // The operand is an expression.
411 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
412 }
413
414 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)415 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
416 SourceLocation TypeidLoc,
417 TypeSourceInfo *Operand,
418 SourceLocation RParenLoc) {
419 if (!Operand->getType()->isDependentType()) {
420 if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType()))
421 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
422 }
423
424 // FIXME: add __uuidof semantic analysis for type operand.
425 return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
426 Operand,
427 SourceRange(TypeidLoc, RParenLoc)));
428 }
429
430 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)431 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
432 SourceLocation TypeidLoc,
433 Expr *E,
434 SourceLocation RParenLoc) {
435 if (!E->getType()->isDependentType()) {
436 if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType()) &&
437 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
438 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
439 }
440 // FIXME: add __uuidof semantic analysis for type operand.
441 return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
442 E,
443 SourceRange(TypeidLoc, RParenLoc)));
444 }
445
446 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
447 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)448 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
449 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
450 // If MSVCGuidDecl has not been cached, do the lookup.
451 if (!MSVCGuidDecl) {
452 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
453 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
454 LookupQualifiedName(R, Context.getTranslationUnitDecl());
455 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
456 if (!MSVCGuidDecl)
457 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
458 }
459
460 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
461
462 if (isType) {
463 // The operand is a type; handle it as such.
464 TypeSourceInfo *TInfo = 0;
465 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
466 &TInfo);
467 if (T.isNull())
468 return ExprError();
469
470 if (!TInfo)
471 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
472
473 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
474 }
475
476 // The operand is an expression.
477 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
478 }
479
480 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
481 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)482 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
483 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
484 "Unknown C++ Boolean value!");
485 return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
486 Context.BoolTy, OpLoc));
487 }
488
489 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
490 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)491 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
492 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
493 }
494
495 /// ActOnCXXThrow - Parse throw expressions.
496 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)497 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
498 bool IsThrownVarInScope = false;
499 if (Ex) {
500 // C++0x [class.copymove]p31:
501 // When certain criteria are met, an implementation is allowed to omit the
502 // copy/move construction of a class object [...]
503 //
504 // - in a throw-expression, when the operand is the name of a
505 // non-volatile automatic object (other than a function or catch-
506 // clause parameter) whose scope does not extend beyond the end of the
507 // innermost enclosing try-block (if there is one), the copy/move
508 // operation from the operand to the exception object (15.1) can be
509 // omitted by constructing the automatic object directly into the
510 // exception object
511 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
512 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
513 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
514 for( ; S; S = S->getParent()) {
515 if (S->isDeclScope(Var)) {
516 IsThrownVarInScope = true;
517 break;
518 }
519
520 if (S->getFlags() &
521 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
522 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
523 Scope::TryScope))
524 break;
525 }
526 }
527 }
528 }
529
530 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
531 }
532
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)533 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
534 bool IsThrownVarInScope) {
535 // Don't report an error if 'throw' is used in system headers.
536 if (!getLangOpts().CXXExceptions &&
537 !getSourceManager().isInSystemHeader(OpLoc))
538 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
539
540 if (Ex && !Ex->isTypeDependent()) {
541 ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
542 if (ExRes.isInvalid())
543 return ExprError();
544 Ex = ExRes.take();
545 }
546
547 return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
548 IsThrownVarInScope));
549 }
550
551 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,Expr * E,bool IsThrownVarInScope)552 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
553 bool IsThrownVarInScope) {
554 // C++ [except.throw]p3:
555 // A throw-expression initializes a temporary object, called the exception
556 // object, the type of which is determined by removing any top-level
557 // cv-qualifiers from the static type of the operand of throw and adjusting
558 // the type from "array of T" or "function returning T" to "pointer to T"
559 // or "pointer to function returning T", [...]
560 if (E->getType().hasQualifiers())
561 E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
562 E->getValueKind()).take();
563
564 ExprResult Res = DefaultFunctionArrayConversion(E);
565 if (Res.isInvalid())
566 return ExprError();
567 E = Res.take();
568
569 // If the type of the exception would be an incomplete type or a pointer
570 // to an incomplete type other than (cv) void the program is ill-formed.
571 QualType Ty = E->getType();
572 bool isPointer = false;
573 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
574 Ty = Ptr->getPointeeType();
575 isPointer = true;
576 }
577 if (!isPointer || !Ty->isVoidType()) {
578 if (RequireCompleteType(ThrowLoc, Ty,
579 isPointer? diag::err_throw_incomplete_ptr
580 : diag::err_throw_incomplete,
581 E->getSourceRange()))
582 return ExprError();
583
584 if (RequireNonAbstractType(ThrowLoc, E->getType(),
585 diag::err_throw_abstract_type, E))
586 return ExprError();
587 }
588
589 // Initialize the exception result. This implicitly weeds out
590 // abstract types or types with inaccessible copy constructors.
591
592 // C++0x [class.copymove]p31:
593 // When certain criteria are met, an implementation is allowed to omit the
594 // copy/move construction of a class object [...]
595 //
596 // - in a throw-expression, when the operand is the name of a
597 // non-volatile automatic object (other than a function or catch-clause
598 // parameter) whose scope does not extend beyond the end of the
599 // innermost enclosing try-block (if there is one), the copy/move
600 // operation from the operand to the exception object (15.1) can be
601 // omitted by constructing the automatic object directly into the
602 // exception object
603 const VarDecl *NRVOVariable = 0;
604 if (IsThrownVarInScope)
605 NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
606
607 InitializedEntity Entity =
608 InitializedEntity::InitializeException(ThrowLoc, E->getType(),
609 /*NRVO=*/NRVOVariable != 0);
610 Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
611 QualType(), E,
612 IsThrownVarInScope);
613 if (Res.isInvalid())
614 return ExprError();
615 E = Res.take();
616
617 // If the exception has class type, we need additional handling.
618 const RecordType *RecordTy = Ty->getAs<RecordType>();
619 if (!RecordTy)
620 return Owned(E);
621 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
622
623 // If we are throwing a polymorphic class type or pointer thereof,
624 // exception handling will make use of the vtable.
625 MarkVTableUsed(ThrowLoc, RD);
626
627 // If a pointer is thrown, the referenced object will not be destroyed.
628 if (isPointer)
629 return Owned(E);
630
631 // If the class has a destructor, we must be able to call it.
632 if (RD->hasIrrelevantDestructor())
633 return Owned(E);
634
635 CXXDestructorDecl *Destructor = LookupDestructor(RD);
636 if (!Destructor)
637 return Owned(E);
638
639 MarkFunctionReferenced(E->getExprLoc(), Destructor);
640 CheckDestructorAccess(E->getExprLoc(), Destructor,
641 PDiag(diag::err_access_dtor_exception) << Ty);
642 DiagnoseUseOfDecl(Destructor, E->getExprLoc());
643 return Owned(E);
644 }
645
getCurrentThisType()646 QualType Sema::getCurrentThisType() {
647 DeclContext *DC = getFunctionLevelDeclContext();
648 QualType ThisTy = CXXThisTypeOverride;
649 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
650 if (method && method->isInstance())
651 ThisTy = method->getThisType(Context);
652 }
653
654 return ThisTy;
655 }
656
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,unsigned CXXThisTypeQuals,bool Enabled)657 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
658 Decl *ContextDecl,
659 unsigned CXXThisTypeQuals,
660 bool Enabled)
661 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
662 {
663 if (!Enabled || !ContextDecl)
664 return;
665
666 CXXRecordDecl *Record = 0;
667 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
668 Record = Template->getTemplatedDecl();
669 else
670 Record = cast<CXXRecordDecl>(ContextDecl);
671
672 S.CXXThisTypeOverride
673 = S.Context.getPointerType(
674 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
675
676 this->Enabled = true;
677 }
678
679
~CXXThisScopeRAII()680 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
681 if (Enabled) {
682 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
683 }
684 }
685
CheckCXXThisCapture(SourceLocation Loc,bool Explicit)686 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
687 // We don't need to capture this in an unevaluated context.
688 if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
689 return;
690
691 // Otherwise, check that we can capture 'this'.
692 unsigned NumClosures = 0;
693 for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
694 if (CapturingScopeInfo *CSI =
695 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
696 if (CSI->CXXThisCaptureIndex != 0) {
697 // 'this' is already being captured; there isn't anything more to do.
698 break;
699 }
700
701 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
702 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
703 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
704 Explicit) {
705 // This closure can capture 'this'; continue looking upwards.
706 NumClosures++;
707 Explicit = false;
708 continue;
709 }
710 // This context can't implicitly capture 'this'; fail out.
711 Diag(Loc, diag::err_this_capture) << Explicit;
712 return;
713 }
714 break;
715 }
716
717 // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
718 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
719 // contexts.
720 for (unsigned idx = FunctionScopes.size() - 1;
721 NumClosures; --idx, --NumClosures) {
722 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
723 Expr *ThisExpr = 0;
724 QualType ThisTy = getCurrentThisType();
725 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
726 // For lambda expressions, build a field and an initializing expression.
727 CXXRecordDecl *Lambda = LSI->Lambda;
728 FieldDecl *Field
729 = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
730 Context.getTrivialTypeSourceInfo(ThisTy, Loc),
731 0, false, ICIS_NoInit);
732 Field->setImplicit(true);
733 Field->setAccess(AS_private);
734 Lambda->addDecl(Field);
735 ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
736 }
737 bool isNested = NumClosures > 1;
738 CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
739 }
740 }
741
ActOnCXXThis(SourceLocation Loc)742 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
743 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
744 /// is a non-lvalue expression whose value is the address of the object for
745 /// which the function is called.
746
747 QualType ThisTy = getCurrentThisType();
748 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
749
750 CheckCXXThisCapture(Loc);
751 return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
752 }
753
isThisOutsideMemberFunctionBody(QualType BaseType)754 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
755 // If we're outside the body of a member function, then we'll have a specified
756 // type for 'this'.
757 if (CXXThisTypeOverride.isNull())
758 return false;
759
760 // Determine whether we're looking into a class that's currently being
761 // defined.
762 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
763 return Class && Class->isBeingDefined();
764 }
765
766 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)767 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
768 SourceLocation LParenLoc,
769 MultiExprArg exprs,
770 SourceLocation RParenLoc) {
771 if (!TypeRep)
772 return ExprError();
773
774 TypeSourceInfo *TInfo;
775 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
776 if (!TInfo)
777 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
778
779 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
780 }
781
782 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
783 /// Can be interpreted either as function-style casting ("int(x)")
784 /// or class type construction ("ClassType(x,y,z)")
785 /// or creation of a value-initialized type ("int()").
786 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)787 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
788 SourceLocation LParenLoc,
789 MultiExprArg exprs,
790 SourceLocation RParenLoc) {
791 QualType Ty = TInfo->getType();
792 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
793
794 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(exprs)) {
795 return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
796 LParenLoc,
797 exprs,
798 RParenLoc));
799 }
800
801 unsigned NumExprs = exprs.size();
802 Expr **Exprs = exprs.data();
803
804 bool ListInitialization = LParenLoc.isInvalid();
805 assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
806 && "List initialization must have initializer list as expression.");
807 SourceRange FullRange = SourceRange(TyBeginLoc,
808 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
809
810 // C++ [expr.type.conv]p1:
811 // If the expression list is a single expression, the type conversion
812 // expression is equivalent (in definedness, and if defined in meaning) to the
813 // corresponding cast expression.
814 if (NumExprs == 1 && !ListInitialization) {
815 Expr *Arg = Exprs[0];
816 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
817 }
818
819 QualType ElemTy = Ty;
820 if (Ty->isArrayType()) {
821 if (!ListInitialization)
822 return ExprError(Diag(TyBeginLoc,
823 diag::err_value_init_for_array_type) << FullRange);
824 ElemTy = Context.getBaseElementType(Ty);
825 }
826
827 if (!Ty->isVoidType() &&
828 RequireCompleteType(TyBeginLoc, ElemTy,
829 diag::err_invalid_incomplete_type_use, FullRange))
830 return ExprError();
831
832 if (RequireNonAbstractType(TyBeginLoc, Ty,
833 diag::err_allocation_of_abstract_type))
834 return ExprError();
835
836 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
837 InitializationKind Kind
838 = NumExprs ? ListInitialization
839 ? InitializationKind::CreateDirectList(TyBeginLoc)
840 : InitializationKind::CreateDirect(TyBeginLoc,
841 LParenLoc, RParenLoc)
842 : InitializationKind::CreateValue(TyBeginLoc,
843 LParenLoc, RParenLoc);
844 InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
845 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, exprs);
846
847 if (!Result.isInvalid() && ListInitialization &&
848 isa<InitListExpr>(Result.get())) {
849 // If the list-initialization doesn't involve a constructor call, we'll get
850 // the initializer-list (with corrected type) back, but that's not what we
851 // want, since it will be treated as an initializer list in further
852 // processing. Explicitly insert a cast here.
853 InitListExpr *List = cast<InitListExpr>(Result.take());
854 Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
855 Expr::getValueKindForType(TInfo->getType()),
856 TInfo, TyBeginLoc, CK_NoOp,
857 List, /*Path=*/0, RParenLoc));
858 }
859
860 // FIXME: Improve AST representation?
861 return Result;
862 }
863
864 /// doesUsualArrayDeleteWantSize - Answers whether the usual
865 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)866 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
867 QualType allocType) {
868 const RecordType *record =
869 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
870 if (!record) return false;
871
872 // Try to find an operator delete[] in class scope.
873
874 DeclarationName deleteName =
875 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
876 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
877 S.LookupQualifiedName(ops, record->getDecl());
878
879 // We're just doing this for information.
880 ops.suppressDiagnostics();
881
882 // Very likely: there's no operator delete[].
883 if (ops.empty()) return false;
884
885 // If it's ambiguous, it should be illegal to call operator delete[]
886 // on this thing, so it doesn't matter if we allocate extra space or not.
887 if (ops.isAmbiguous()) return false;
888
889 LookupResult::Filter filter = ops.makeFilter();
890 while (filter.hasNext()) {
891 NamedDecl *del = filter.next()->getUnderlyingDecl();
892
893 // C++0x [basic.stc.dynamic.deallocation]p2:
894 // A template instance is never a usual deallocation function,
895 // regardless of its signature.
896 if (isa<FunctionTemplateDecl>(del)) {
897 filter.erase();
898 continue;
899 }
900
901 // C++0x [basic.stc.dynamic.deallocation]p2:
902 // If class T does not declare [an operator delete[] with one
903 // parameter] but does declare a member deallocation function
904 // named operator delete[] with exactly two parameters, the
905 // second of which has type std::size_t, then this function
906 // is a usual deallocation function.
907 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
908 filter.erase();
909 continue;
910 }
911 }
912 filter.done();
913
914 if (!ops.isSingleResult()) return false;
915
916 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
917 return (del->getNumParams() == 2);
918 }
919
920 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
921 ///
922 /// E.g.:
923 /// @code new (memory) int[size][4] @endcode
924 /// or
925 /// @code ::new Foo(23, "hello") @endcode
926 ///
927 /// \param StartLoc The first location of the expression.
928 /// \param UseGlobal True if 'new' was prefixed with '::'.
929 /// \param PlacementLParen Opening paren of the placement arguments.
930 /// \param PlacementArgs Placement new arguments.
931 /// \param PlacementRParen Closing paren of the placement arguments.
932 /// \param TypeIdParens If the type is in parens, the source range.
933 /// \param D The type to be allocated, as well as array dimensions.
934 /// \param Initializer The initializing expression or initializer-list, or null
935 /// if there is none.
936 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)937 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
938 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
939 SourceLocation PlacementRParen, SourceRange TypeIdParens,
940 Declarator &D, Expr *Initializer) {
941 bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
942
943 Expr *ArraySize = 0;
944 // If the specified type is an array, unwrap it and save the expression.
945 if (D.getNumTypeObjects() > 0 &&
946 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
947 DeclaratorChunk &Chunk = D.getTypeObject(0);
948 if (TypeContainsAuto)
949 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
950 << D.getSourceRange());
951 if (Chunk.Arr.hasStatic)
952 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
953 << D.getSourceRange());
954 if (!Chunk.Arr.NumElts)
955 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
956 << D.getSourceRange());
957
958 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
959 D.DropFirstTypeObject();
960 }
961
962 // Every dimension shall be of constant size.
963 if (ArraySize) {
964 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
965 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
966 break;
967
968 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
969 if (Expr *NumElts = (Expr *)Array.NumElts) {
970 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
971 Array.NumElts
972 = VerifyIntegerConstantExpression(NumElts, 0,
973 diag::err_new_array_nonconst)
974 .take();
975 if (!Array.NumElts)
976 return ExprError();
977 }
978 }
979 }
980 }
981
982 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
983 QualType AllocType = TInfo->getType();
984 if (D.isInvalidType())
985 return ExprError();
986
987 SourceRange DirectInitRange;
988 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
989 DirectInitRange = List->getSourceRange();
990
991 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
992 PlacementLParen,
993 PlacementArgs,
994 PlacementRParen,
995 TypeIdParens,
996 AllocType,
997 TInfo,
998 ArraySize,
999 DirectInitRange,
1000 Initializer,
1001 TypeContainsAuto);
1002 }
1003
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1004 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1005 Expr *Init) {
1006 if (!Init)
1007 return true;
1008 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1009 return PLE->getNumExprs() == 0;
1010 if (isa<ImplicitValueInitExpr>(Init))
1011 return true;
1012 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1013 return !CCE->isListInitialization() &&
1014 CCE->getConstructor()->isDefaultConstructor();
1015 else if (Style == CXXNewExpr::ListInit) {
1016 assert(isa<InitListExpr>(Init) &&
1017 "Shouldn't create list CXXConstructExprs for arrays.");
1018 return true;
1019 }
1020 return false;
1021 }
1022
1023 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer,bool TypeMayContainAuto)1024 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1025 SourceLocation PlacementLParen,
1026 MultiExprArg PlacementArgs,
1027 SourceLocation PlacementRParen,
1028 SourceRange TypeIdParens,
1029 QualType AllocType,
1030 TypeSourceInfo *AllocTypeInfo,
1031 Expr *ArraySize,
1032 SourceRange DirectInitRange,
1033 Expr *Initializer,
1034 bool TypeMayContainAuto) {
1035 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1036 SourceLocation StartLoc = Range.getBegin();
1037
1038 CXXNewExpr::InitializationStyle initStyle;
1039 if (DirectInitRange.isValid()) {
1040 assert(Initializer && "Have parens but no initializer.");
1041 initStyle = CXXNewExpr::CallInit;
1042 } else if (Initializer && isa<InitListExpr>(Initializer))
1043 initStyle = CXXNewExpr::ListInit;
1044 else {
1045 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1046 isa<CXXConstructExpr>(Initializer)) &&
1047 "Initializer expression that cannot have been implicitly created.");
1048 initStyle = CXXNewExpr::NoInit;
1049 }
1050
1051 Expr **Inits = &Initializer;
1052 unsigned NumInits = Initializer ? 1 : 0;
1053 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1054 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1055 Inits = List->getExprs();
1056 NumInits = List->getNumExprs();
1057 }
1058
1059 // Determine whether we've already built the initializer.
1060 bool HaveCompleteInit = false;
1061 if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1062 !isa<CXXTemporaryObjectExpr>(Initializer))
1063 HaveCompleteInit = true;
1064 else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1065 HaveCompleteInit = true;
1066
1067 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1068 AutoType *AT = 0;
1069 if (TypeMayContainAuto &&
1070 (AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
1071 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1072 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1073 << AllocType << TypeRange);
1074 if (initStyle == CXXNewExpr::ListInit)
1075 return ExprError(Diag(Inits[0]->getLocStart(),
1076 diag::err_auto_new_requires_parens)
1077 << AllocType << TypeRange);
1078 if (NumInits > 1) {
1079 Expr *FirstBad = Inits[1];
1080 return ExprError(Diag(FirstBad->getLocStart(),
1081 diag::err_auto_new_ctor_multiple_expressions)
1082 << AllocType << TypeRange);
1083 }
1084 Expr *Deduce = Inits[0];
1085 TypeSourceInfo *DeducedType = 0;
1086 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1087 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1088 << AllocType << Deduce->getType()
1089 << TypeRange << Deduce->getSourceRange());
1090 if (!DeducedType)
1091 return ExprError();
1092
1093 AllocTypeInfo = DeducedType;
1094 AllocType = AllocTypeInfo->getType();
1095 }
1096
1097 // Per C++0x [expr.new]p5, the type being constructed may be a
1098 // typedef of an array type.
1099 if (!ArraySize) {
1100 if (const ConstantArrayType *Array
1101 = Context.getAsConstantArrayType(AllocType)) {
1102 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1103 Context.getSizeType(),
1104 TypeRange.getEnd());
1105 AllocType = Array->getElementType();
1106 }
1107 }
1108
1109 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1110 return ExprError();
1111
1112 if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1113 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1114 diag::warn_dangling_std_initializer_list)
1115 << /*at end of FE*/0 << Inits[0]->getSourceRange();
1116 }
1117
1118 // In ARC, infer 'retaining' for the allocated
1119 if (getLangOpts().ObjCAutoRefCount &&
1120 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1121 AllocType->isObjCLifetimeType()) {
1122 AllocType = Context.getLifetimeQualifiedType(AllocType,
1123 AllocType->getObjCARCImplicitLifetime());
1124 }
1125
1126 QualType ResultType = Context.getPointerType(AllocType);
1127
1128 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1129 // integral or enumeration type with a non-negative value."
1130 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1131 // enumeration type, or a class type for which a single non-explicit
1132 // conversion function to integral or unscoped enumeration type exists.
1133 if (ArraySize && !ArraySize->isTypeDependent()) {
1134 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1135 Expr *ArraySize;
1136
1137 public:
1138 SizeConvertDiagnoser(Expr *ArraySize)
1139 : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1140
1141 virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1142 QualType T) {
1143 return S.Diag(Loc, diag::err_array_size_not_integral)
1144 << S.getLangOpts().CPlusPlus11 << T;
1145 }
1146
1147 virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1148 QualType T) {
1149 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1150 << T << ArraySize->getSourceRange();
1151 }
1152
1153 virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1154 SourceLocation Loc,
1155 QualType T,
1156 QualType ConvTy) {
1157 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1158 }
1159
1160 virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1161 CXXConversionDecl *Conv,
1162 QualType ConvTy) {
1163 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1164 << ConvTy->isEnumeralType() << ConvTy;
1165 }
1166
1167 virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1168 QualType T) {
1169 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1170 }
1171
1172 virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1173 QualType ConvTy) {
1174 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1175 << ConvTy->isEnumeralType() << ConvTy;
1176 }
1177
1178 virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1179 QualType T,
1180 QualType ConvTy) {
1181 return S.Diag(Loc,
1182 S.getLangOpts().CPlusPlus11
1183 ? diag::warn_cxx98_compat_array_size_conversion
1184 : diag::ext_array_size_conversion)
1185 << T << ConvTy->isEnumeralType() << ConvTy;
1186 }
1187 } SizeDiagnoser(ArraySize);
1188
1189 ExprResult ConvertedSize
1190 = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1191 /*AllowScopedEnumerations*/ false);
1192 if (ConvertedSize.isInvalid())
1193 return ExprError();
1194
1195 ArraySize = ConvertedSize.take();
1196 QualType SizeType = ArraySize->getType();
1197 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1198 return ExprError();
1199
1200 // C++98 [expr.new]p7:
1201 // The expression in a direct-new-declarator shall have integral type
1202 // with a non-negative value.
1203 //
1204 // Let's see if this is a constant < 0. If so, we reject it out of
1205 // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1206 // array type.
1207 //
1208 // Note: such a construct has well-defined semantics in C++11: it throws
1209 // std::bad_array_new_length.
1210 if (!ArraySize->isValueDependent()) {
1211 llvm::APSInt Value;
1212 // We've already performed any required implicit conversion to integer or
1213 // unscoped enumeration type.
1214 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1215 if (Value < llvm::APSInt(
1216 llvm::APInt::getNullValue(Value.getBitWidth()),
1217 Value.isUnsigned())) {
1218 if (getLangOpts().CPlusPlus11)
1219 Diag(ArraySize->getLocStart(),
1220 diag::warn_typecheck_negative_array_new_size)
1221 << ArraySize->getSourceRange();
1222 else
1223 return ExprError(Diag(ArraySize->getLocStart(),
1224 diag::err_typecheck_negative_array_size)
1225 << ArraySize->getSourceRange());
1226 } else if (!AllocType->isDependentType()) {
1227 unsigned ActiveSizeBits =
1228 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1229 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1230 if (getLangOpts().CPlusPlus11)
1231 Diag(ArraySize->getLocStart(),
1232 diag::warn_array_new_too_large)
1233 << Value.toString(10)
1234 << ArraySize->getSourceRange();
1235 else
1236 return ExprError(Diag(ArraySize->getLocStart(),
1237 diag::err_array_too_large)
1238 << Value.toString(10)
1239 << ArraySize->getSourceRange());
1240 }
1241 }
1242 } else if (TypeIdParens.isValid()) {
1243 // Can't have dynamic array size when the type-id is in parentheses.
1244 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1245 << ArraySize->getSourceRange()
1246 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1247 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1248
1249 TypeIdParens = SourceRange();
1250 }
1251 }
1252
1253 // Note that we do *not* convert the argument in any way. It can
1254 // be signed, larger than size_t, whatever.
1255 }
1256
1257 FunctionDecl *OperatorNew = 0;
1258 FunctionDecl *OperatorDelete = 0;
1259 Expr **PlaceArgs = PlacementArgs.data();
1260 unsigned NumPlaceArgs = PlacementArgs.size();
1261
1262 if (!AllocType->isDependentType() &&
1263 !Expr::hasAnyTypeDependentArguments(
1264 llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1265 FindAllocationFunctions(StartLoc,
1266 SourceRange(PlacementLParen, PlacementRParen),
1267 UseGlobal, AllocType, ArraySize, PlaceArgs,
1268 NumPlaceArgs, OperatorNew, OperatorDelete))
1269 return ExprError();
1270
1271 // If this is an array allocation, compute whether the usual array
1272 // deallocation function for the type has a size_t parameter.
1273 bool UsualArrayDeleteWantsSize = false;
1274 if (ArraySize && !AllocType->isDependentType())
1275 UsualArrayDeleteWantsSize
1276 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1277
1278 SmallVector<Expr *, 8> AllPlaceArgs;
1279 if (OperatorNew) {
1280 // Add default arguments, if any.
1281 const FunctionProtoType *Proto =
1282 OperatorNew->getType()->getAs<FunctionProtoType>();
1283 VariadicCallType CallType =
1284 Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1285
1286 if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1287 Proto, 1, PlaceArgs, NumPlaceArgs,
1288 AllPlaceArgs, CallType))
1289 return ExprError();
1290
1291 NumPlaceArgs = AllPlaceArgs.size();
1292 if (NumPlaceArgs > 0)
1293 PlaceArgs = &AllPlaceArgs[0];
1294
1295 DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1296 PlaceArgs, NumPlaceArgs);
1297
1298 // FIXME: Missing call to CheckFunctionCall or equivalent
1299 }
1300
1301 // Warn if the type is over-aligned and is being allocated by global operator
1302 // new.
1303 if (NumPlaceArgs == 0 && OperatorNew &&
1304 (OperatorNew->isImplicit() ||
1305 getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1306 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1307 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1308 if (Align > SuitableAlign)
1309 Diag(StartLoc, diag::warn_overaligned_type)
1310 << AllocType
1311 << unsigned(Align / Context.getCharWidth())
1312 << unsigned(SuitableAlign / Context.getCharWidth());
1313 }
1314 }
1315
1316 QualType InitType = AllocType;
1317 // Array 'new' can't have any initializers except empty parentheses.
1318 // Initializer lists are also allowed, in C++11. Rely on the parser for the
1319 // dialect distinction.
1320 if (ResultType->isArrayType() || ArraySize) {
1321 if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1322 SourceRange InitRange(Inits[0]->getLocStart(),
1323 Inits[NumInits - 1]->getLocEnd());
1324 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1325 return ExprError();
1326 }
1327 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1328 // We do the initialization typechecking against the array type
1329 // corresponding to the number of initializers + 1 (to also check
1330 // default-initialization).
1331 unsigned NumElements = ILE->getNumInits() + 1;
1332 InitType = Context.getConstantArrayType(AllocType,
1333 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1334 ArrayType::Normal, 0);
1335 }
1336 }
1337
1338 // If we can perform the initialization, and we've not already done so,
1339 // do it now.
1340 if (!AllocType->isDependentType() &&
1341 !Expr::hasAnyTypeDependentArguments(
1342 llvm::makeArrayRef(Inits, NumInits)) &&
1343 !HaveCompleteInit) {
1344 // C++11 [expr.new]p15:
1345 // A new-expression that creates an object of type T initializes that
1346 // object as follows:
1347 InitializationKind Kind
1348 // - If the new-initializer is omitted, the object is default-
1349 // initialized (8.5); if no initialization is performed,
1350 // the object has indeterminate value
1351 = initStyle == CXXNewExpr::NoInit
1352 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1353 // - Otherwise, the new-initializer is interpreted according to the
1354 // initialization rules of 8.5 for direct-initialization.
1355 : initStyle == CXXNewExpr::ListInit
1356 ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1357 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1358 DirectInitRange.getBegin(),
1359 DirectInitRange.getEnd());
1360
1361 InitializedEntity Entity
1362 = InitializedEntity::InitializeNew(StartLoc, InitType);
1363 InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1364 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1365 MultiExprArg(Inits, NumInits));
1366 if (FullInit.isInvalid())
1367 return ExprError();
1368
1369 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1370 // we don't want the initialized object to be destructed.
1371 if (CXXBindTemporaryExpr *Binder =
1372 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1373 FullInit = Owned(Binder->getSubExpr());
1374
1375 Initializer = FullInit.take();
1376 }
1377
1378 // Mark the new and delete operators as referenced.
1379 if (OperatorNew) {
1380 DiagnoseUseOfDecl(OperatorNew, StartLoc);
1381 MarkFunctionReferenced(StartLoc, OperatorNew);
1382 }
1383 if (OperatorDelete) {
1384 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
1385 MarkFunctionReferenced(StartLoc, OperatorDelete);
1386 }
1387
1388 // C++0x [expr.new]p17:
1389 // If the new expression creates an array of objects of class type,
1390 // access and ambiguity control are done for the destructor.
1391 QualType BaseAllocType = Context.getBaseElementType(AllocType);
1392 if (ArraySize && !BaseAllocType->isDependentType()) {
1393 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1394 if (CXXDestructorDecl *dtor = LookupDestructor(
1395 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1396 MarkFunctionReferenced(StartLoc, dtor);
1397 CheckDestructorAccess(StartLoc, dtor,
1398 PDiag(diag::err_access_dtor)
1399 << BaseAllocType);
1400 DiagnoseUseOfDecl(dtor, StartLoc);
1401 }
1402 }
1403 }
1404
1405 return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1406 OperatorDelete,
1407 UsualArrayDeleteWantsSize,
1408 llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
1409 TypeIdParens,
1410 ArraySize, initStyle, Initializer,
1411 ResultType, AllocTypeInfo,
1412 Range, DirectInitRange));
1413 }
1414
1415 /// \brief Checks that a type is suitable as the allocated type
1416 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1417 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1418 SourceRange R) {
1419 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1420 // abstract class type or array thereof.
1421 if (AllocType->isFunctionType())
1422 return Diag(Loc, diag::err_bad_new_type)
1423 << AllocType << 0 << R;
1424 else if (AllocType->isReferenceType())
1425 return Diag(Loc, diag::err_bad_new_type)
1426 << AllocType << 1 << R;
1427 else if (!AllocType->isDependentType() &&
1428 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1429 return true;
1430 else if (RequireNonAbstractType(Loc, AllocType,
1431 diag::err_allocation_of_abstract_type))
1432 return true;
1433 else if (AllocType->isVariablyModifiedType())
1434 return Diag(Loc, diag::err_variably_modified_new_type)
1435 << AllocType;
1436 else if (unsigned AddressSpace = AllocType.getAddressSpace())
1437 return Diag(Loc, diag::err_address_space_qualified_new)
1438 << AllocType.getUnqualifiedType() << AddressSpace;
1439 else if (getLangOpts().ObjCAutoRefCount) {
1440 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1441 QualType BaseAllocType = Context.getBaseElementType(AT);
1442 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1443 BaseAllocType->isObjCLifetimeType())
1444 return Diag(Loc, diag::err_arc_new_array_without_ownership)
1445 << BaseAllocType;
1446 }
1447 }
1448
1449 return false;
1450 }
1451
1452 /// \brief Determine whether the given function is a non-placement
1453 /// deallocation function.
isNonPlacementDeallocationFunction(FunctionDecl * FD)1454 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1455 if (FD->isInvalidDecl())
1456 return false;
1457
1458 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1459 return Method->isUsualDeallocationFunction();
1460
1461 return ((FD->getOverloadedOperator() == OO_Delete ||
1462 FD->getOverloadedOperator() == OO_Array_Delete) &&
1463 FD->getNumParams() == 1);
1464 }
1465
1466 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1467 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,Expr ** PlaceArgs,unsigned NumPlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1468 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1469 bool UseGlobal, QualType AllocType,
1470 bool IsArray, Expr **PlaceArgs,
1471 unsigned NumPlaceArgs,
1472 FunctionDecl *&OperatorNew,
1473 FunctionDecl *&OperatorDelete) {
1474 // --- Choosing an allocation function ---
1475 // C++ 5.3.4p8 - 14 & 18
1476 // 1) If UseGlobal is true, only look in the global scope. Else, also look
1477 // in the scope of the allocated class.
1478 // 2) If an array size is given, look for operator new[], else look for
1479 // operator new.
1480 // 3) The first argument is always size_t. Append the arguments from the
1481 // placement form.
1482
1483 SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1484 // We don't care about the actual value of this argument.
1485 // FIXME: Should the Sema create the expression and embed it in the syntax
1486 // tree? Or should the consumer just recalculate the value?
1487 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1488 Context.getTargetInfo().getPointerWidth(0)),
1489 Context.getSizeType(),
1490 SourceLocation());
1491 AllocArgs[0] = &Size;
1492 std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1493
1494 // C++ [expr.new]p8:
1495 // If the allocated type is a non-array type, the allocation
1496 // function's name is operator new and the deallocation function's
1497 // name is operator delete. If the allocated type is an array
1498 // type, the allocation function's name is operator new[] and the
1499 // deallocation function's name is operator delete[].
1500 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1501 IsArray ? OO_Array_New : OO_New);
1502 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1503 IsArray ? OO_Array_Delete : OO_Delete);
1504
1505 QualType AllocElemType = Context.getBaseElementType(AllocType);
1506
1507 if (AllocElemType->isRecordType() && !UseGlobal) {
1508 CXXRecordDecl *Record
1509 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1510 if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1511 AllocArgs.size(), Record, /*AllowMissing=*/true,
1512 OperatorNew))
1513 return true;
1514 }
1515 if (!OperatorNew) {
1516 // Didn't find a member overload. Look for a global one.
1517 DeclareGlobalNewDelete();
1518 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1519 if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1520 AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1521 OperatorNew))
1522 return true;
1523 }
1524
1525 // We don't need an operator delete if we're running under
1526 // -fno-exceptions.
1527 if (!getLangOpts().Exceptions) {
1528 OperatorDelete = 0;
1529 return false;
1530 }
1531
1532 // FindAllocationOverload can change the passed in arguments, so we need to
1533 // copy them back.
1534 if (NumPlaceArgs > 0)
1535 std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1536
1537 // C++ [expr.new]p19:
1538 //
1539 // If the new-expression begins with a unary :: operator, the
1540 // deallocation function's name is looked up in the global
1541 // scope. Otherwise, if the allocated type is a class type T or an
1542 // array thereof, the deallocation function's name is looked up in
1543 // the scope of T. If this lookup fails to find the name, or if
1544 // the allocated type is not a class type or array thereof, the
1545 // deallocation function's name is looked up in the global scope.
1546 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1547 if (AllocElemType->isRecordType() && !UseGlobal) {
1548 CXXRecordDecl *RD
1549 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1550 LookupQualifiedName(FoundDelete, RD);
1551 }
1552 if (FoundDelete.isAmbiguous())
1553 return true; // FIXME: clean up expressions?
1554
1555 if (FoundDelete.empty()) {
1556 DeclareGlobalNewDelete();
1557 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1558 }
1559
1560 FoundDelete.suppressDiagnostics();
1561
1562 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1563
1564 // Whether we're looking for a placement operator delete is dictated
1565 // by whether we selected a placement operator new, not by whether
1566 // we had explicit placement arguments. This matters for things like
1567 // struct A { void *operator new(size_t, int = 0); ... };
1568 // A *a = new A()
1569 bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1570
1571 if (isPlacementNew) {
1572 // C++ [expr.new]p20:
1573 // A declaration of a placement deallocation function matches the
1574 // declaration of a placement allocation function if it has the
1575 // same number of parameters and, after parameter transformations
1576 // (8.3.5), all parameter types except the first are
1577 // identical. [...]
1578 //
1579 // To perform this comparison, we compute the function type that
1580 // the deallocation function should have, and use that type both
1581 // for template argument deduction and for comparison purposes.
1582 //
1583 // FIXME: this comparison should ignore CC and the like.
1584 QualType ExpectedFunctionType;
1585 {
1586 const FunctionProtoType *Proto
1587 = OperatorNew->getType()->getAs<FunctionProtoType>();
1588
1589 SmallVector<QualType, 4> ArgTypes;
1590 ArgTypes.push_back(Context.VoidPtrTy);
1591 for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1592 ArgTypes.push_back(Proto->getArgType(I));
1593
1594 FunctionProtoType::ExtProtoInfo EPI;
1595 EPI.Variadic = Proto->isVariadic();
1596
1597 ExpectedFunctionType
1598 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1599 }
1600
1601 for (LookupResult::iterator D = FoundDelete.begin(),
1602 DEnd = FoundDelete.end();
1603 D != DEnd; ++D) {
1604 FunctionDecl *Fn = 0;
1605 if (FunctionTemplateDecl *FnTmpl
1606 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1607 // Perform template argument deduction to try to match the
1608 // expected function type.
1609 TemplateDeductionInfo Info(StartLoc);
1610 if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1611 continue;
1612 } else
1613 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1614
1615 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1616 Matches.push_back(std::make_pair(D.getPair(), Fn));
1617 }
1618 } else {
1619 // C++ [expr.new]p20:
1620 // [...] Any non-placement deallocation function matches a
1621 // non-placement allocation function. [...]
1622 for (LookupResult::iterator D = FoundDelete.begin(),
1623 DEnd = FoundDelete.end();
1624 D != DEnd; ++D) {
1625 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1626 if (isNonPlacementDeallocationFunction(Fn))
1627 Matches.push_back(std::make_pair(D.getPair(), Fn));
1628 }
1629 }
1630
1631 // C++ [expr.new]p20:
1632 // [...] If the lookup finds a single matching deallocation
1633 // function, that function will be called; otherwise, no
1634 // deallocation function will be called.
1635 if (Matches.size() == 1) {
1636 OperatorDelete = Matches[0].second;
1637
1638 // C++0x [expr.new]p20:
1639 // If the lookup finds the two-parameter form of a usual
1640 // deallocation function (3.7.4.2) and that function, considered
1641 // as a placement deallocation function, would have been
1642 // selected as a match for the allocation function, the program
1643 // is ill-formed.
1644 if (NumPlaceArgs && getLangOpts().CPlusPlus11 &&
1645 isNonPlacementDeallocationFunction(OperatorDelete)) {
1646 Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1647 << SourceRange(PlaceArgs[0]->getLocStart(),
1648 PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1649 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1650 << DeleteName;
1651 } else {
1652 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1653 Matches[0].first);
1654 }
1655 }
1656
1657 return false;
1658 }
1659
1660 /// FindAllocationOverload - Find an fitting overload for the allocation
1661 /// function in the specified scope.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,Expr ** Args,unsigned NumArgs,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1662 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1663 DeclarationName Name, Expr** Args,
1664 unsigned NumArgs, DeclContext *Ctx,
1665 bool AllowMissing, FunctionDecl *&Operator,
1666 bool Diagnose) {
1667 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1668 LookupQualifiedName(R, Ctx);
1669 if (R.empty()) {
1670 if (AllowMissing || !Diagnose)
1671 return false;
1672 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1673 << Name << Range;
1674 }
1675
1676 if (R.isAmbiguous())
1677 return true;
1678
1679 R.suppressDiagnostics();
1680
1681 OverloadCandidateSet Candidates(StartLoc);
1682 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1683 Alloc != AllocEnd; ++Alloc) {
1684 // Even member operator new/delete are implicitly treated as
1685 // static, so don't use AddMemberCandidate.
1686 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1687
1688 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1689 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1690 /*ExplicitTemplateArgs=*/0,
1691 llvm::makeArrayRef(Args, NumArgs),
1692 Candidates,
1693 /*SuppressUserConversions=*/false);
1694 continue;
1695 }
1696
1697 FunctionDecl *Fn = cast<FunctionDecl>(D);
1698 AddOverloadCandidate(Fn, Alloc.getPair(),
1699 llvm::makeArrayRef(Args, NumArgs), Candidates,
1700 /*SuppressUserConversions=*/false);
1701 }
1702
1703 // Do the resolution.
1704 OverloadCandidateSet::iterator Best;
1705 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1706 case OR_Success: {
1707 // Got one!
1708 FunctionDecl *FnDecl = Best->Function;
1709 MarkFunctionReferenced(StartLoc, FnDecl);
1710 // The first argument is size_t, and the first parameter must be size_t,
1711 // too. This is checked on declaration and can be assumed. (It can't be
1712 // asserted on, though, since invalid decls are left in there.)
1713 // Watch out for variadic allocator function.
1714 unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1715 for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1716 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1717 FnDecl->getParamDecl(i));
1718
1719 if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1720 return true;
1721
1722 ExprResult Result
1723 = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1724 if (Result.isInvalid())
1725 return true;
1726
1727 Args[i] = Result.takeAs<Expr>();
1728 }
1729
1730 Operator = FnDecl;
1731
1732 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1733 Best->FoundDecl, Diagnose) == AR_inaccessible)
1734 return true;
1735
1736 return false;
1737 }
1738
1739 case OR_No_Viable_Function:
1740 if (Diagnose) {
1741 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1742 << Name << Range;
1743 Candidates.NoteCandidates(*this, OCD_AllCandidates,
1744 llvm::makeArrayRef(Args, NumArgs));
1745 }
1746 return true;
1747
1748 case OR_Ambiguous:
1749 if (Diagnose) {
1750 Diag(StartLoc, diag::err_ovl_ambiguous_call)
1751 << Name << Range;
1752 Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1753 llvm::makeArrayRef(Args, NumArgs));
1754 }
1755 return true;
1756
1757 case OR_Deleted: {
1758 if (Diagnose) {
1759 Diag(StartLoc, diag::err_ovl_deleted_call)
1760 << Best->Function->isDeleted()
1761 << Name
1762 << getDeletedOrUnavailableSuffix(Best->Function)
1763 << Range;
1764 Candidates.NoteCandidates(*this, OCD_AllCandidates,
1765 llvm::makeArrayRef(Args, NumArgs));
1766 }
1767 return true;
1768 }
1769 }
1770 llvm_unreachable("Unreachable, bad result from BestViableFunction");
1771 }
1772
1773
1774 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1775 /// delete. These are:
1776 /// @code
1777 /// // C++03:
1778 /// void* operator new(std::size_t) throw(std::bad_alloc);
1779 /// void* operator new[](std::size_t) throw(std::bad_alloc);
1780 /// void operator delete(void *) throw();
1781 /// void operator delete[](void *) throw();
1782 /// // C++0x:
1783 /// void* operator new(std::size_t);
1784 /// void* operator new[](std::size_t);
1785 /// void operator delete(void *);
1786 /// void operator delete[](void *);
1787 /// @endcode
1788 /// C++0x operator delete is implicitly noexcept.
1789 /// Note that the placement and nothrow forms of new are *not* implicitly
1790 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()1791 void Sema::DeclareGlobalNewDelete() {
1792 if (GlobalNewDeleteDeclared)
1793 return;
1794
1795 // C++ [basic.std.dynamic]p2:
1796 // [...] The following allocation and deallocation functions (18.4) are
1797 // implicitly declared in global scope in each translation unit of a
1798 // program
1799 //
1800 // C++03:
1801 // void* operator new(std::size_t) throw(std::bad_alloc);
1802 // void* operator new[](std::size_t) throw(std::bad_alloc);
1803 // void operator delete(void*) throw();
1804 // void operator delete[](void*) throw();
1805 // C++0x:
1806 // void* operator new(std::size_t);
1807 // void* operator new[](std::size_t);
1808 // void operator delete(void*);
1809 // void operator delete[](void*);
1810 //
1811 // These implicit declarations introduce only the function names operator
1812 // new, operator new[], operator delete, operator delete[].
1813 //
1814 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1815 // "std" or "bad_alloc" as necessary to form the exception specification.
1816 // However, we do not make these implicit declarations visible to name
1817 // lookup.
1818 // Note that the C++0x versions of operator delete are deallocation functions,
1819 // and thus are implicitly noexcept.
1820 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1821 // The "std::bad_alloc" class has not yet been declared, so build it
1822 // implicitly.
1823 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1824 getOrCreateStdNamespace(),
1825 SourceLocation(), SourceLocation(),
1826 &PP.getIdentifierTable().get("bad_alloc"),
1827 0);
1828 getStdBadAlloc()->setImplicit(true);
1829 }
1830
1831 GlobalNewDeleteDeclared = true;
1832
1833 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1834 QualType SizeT = Context.getSizeType();
1835 bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1836
1837 DeclareGlobalAllocationFunction(
1838 Context.DeclarationNames.getCXXOperatorName(OO_New),
1839 VoidPtr, SizeT, AssumeSaneOperatorNew);
1840 DeclareGlobalAllocationFunction(
1841 Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1842 VoidPtr, SizeT, AssumeSaneOperatorNew);
1843 DeclareGlobalAllocationFunction(
1844 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1845 Context.VoidTy, VoidPtr);
1846 DeclareGlobalAllocationFunction(
1847 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1848 Context.VoidTy, VoidPtr);
1849 }
1850
1851 /// DeclareGlobalAllocationFunction - Declares a single implicit global
1852 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Argument,bool AddMallocAttr)1853 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1854 QualType Return, QualType Argument,
1855 bool AddMallocAttr) {
1856 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1857
1858 // Check if this function is already declared.
1859 {
1860 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
1861 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
1862 Alloc != AllocEnd; ++Alloc) {
1863 // Only look at non-template functions, as it is the predefined,
1864 // non-templated allocation function we are trying to declare here.
1865 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1866 QualType InitialParamType =
1867 Context.getCanonicalType(
1868 Func->getParamDecl(0)->getType().getUnqualifiedType());
1869 // FIXME: Do we need to check for default arguments here?
1870 if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1871 if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1872 Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1873 return;
1874 }
1875 }
1876 }
1877 }
1878
1879 QualType BadAllocType;
1880 bool HasBadAllocExceptionSpec
1881 = (Name.getCXXOverloadedOperator() == OO_New ||
1882 Name.getCXXOverloadedOperator() == OO_Array_New);
1883 if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
1884 assert(StdBadAlloc && "Must have std::bad_alloc declared");
1885 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1886 }
1887
1888 FunctionProtoType::ExtProtoInfo EPI;
1889 if (HasBadAllocExceptionSpec) {
1890 if (!getLangOpts().CPlusPlus11) {
1891 EPI.ExceptionSpecType = EST_Dynamic;
1892 EPI.NumExceptions = 1;
1893 EPI.Exceptions = &BadAllocType;
1894 }
1895 } else {
1896 EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
1897 EST_BasicNoexcept : EST_DynamicNone;
1898 }
1899
1900 QualType FnType = Context.getFunctionType(Return, Argument, EPI);
1901 FunctionDecl *Alloc =
1902 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1903 SourceLocation(), Name,
1904 FnType, /*TInfo=*/0, SC_None,
1905 SC_None, false, true);
1906 Alloc->setImplicit();
1907
1908 if (AddMallocAttr)
1909 Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1910
1911 ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1912 SourceLocation(), 0,
1913 Argument, /*TInfo=*/0,
1914 SC_None, SC_None, 0);
1915 Alloc->setParams(Param);
1916
1917 // FIXME: Also add this declaration to the IdentifierResolver, but
1918 // make sure it is at the end of the chain to coincide with the
1919 // global scope.
1920 Context.getTranslationUnitDecl()->addDecl(Alloc);
1921 }
1922
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)1923 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1924 DeclarationName Name,
1925 FunctionDecl* &Operator, bool Diagnose) {
1926 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1927 // Try to find operator delete/operator delete[] in class scope.
1928 LookupQualifiedName(Found, RD);
1929
1930 if (Found.isAmbiguous())
1931 return true;
1932
1933 Found.suppressDiagnostics();
1934
1935 SmallVector<DeclAccessPair,4> Matches;
1936 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1937 F != FEnd; ++F) {
1938 NamedDecl *ND = (*F)->getUnderlyingDecl();
1939
1940 // Ignore template operator delete members from the check for a usual
1941 // deallocation function.
1942 if (isa<FunctionTemplateDecl>(ND))
1943 continue;
1944
1945 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1946 Matches.push_back(F.getPair());
1947 }
1948
1949 // There's exactly one suitable operator; pick it.
1950 if (Matches.size() == 1) {
1951 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1952
1953 if (Operator->isDeleted()) {
1954 if (Diagnose) {
1955 Diag(StartLoc, diag::err_deleted_function_use);
1956 NoteDeletedFunction(Operator);
1957 }
1958 return true;
1959 }
1960
1961 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1962 Matches[0], Diagnose) == AR_inaccessible)
1963 return true;
1964
1965 return false;
1966
1967 // We found multiple suitable operators; complain about the ambiguity.
1968 } else if (!Matches.empty()) {
1969 if (Diagnose) {
1970 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1971 << Name << RD;
1972
1973 for (SmallVectorImpl<DeclAccessPair>::iterator
1974 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1975 Diag((*F)->getUnderlyingDecl()->getLocation(),
1976 diag::note_member_declared_here) << Name;
1977 }
1978 return true;
1979 }
1980
1981 // We did find operator delete/operator delete[] declarations, but
1982 // none of them were suitable.
1983 if (!Found.empty()) {
1984 if (Diagnose) {
1985 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1986 << Name << RD;
1987
1988 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1989 F != FEnd; ++F)
1990 Diag((*F)->getUnderlyingDecl()->getLocation(),
1991 diag::note_member_declared_here) << Name;
1992 }
1993 return true;
1994 }
1995
1996 // Look for a global declaration.
1997 DeclareGlobalNewDelete();
1998 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1999
2000 CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2001 Expr* DeallocArgs[1];
2002 DeallocArgs[0] = &Null;
2003 if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2004 DeallocArgs, 1, TUDecl, !Diagnose,
2005 Operator, Diagnose))
2006 return true;
2007
2008 assert(Operator && "Did not find a deallocation function!");
2009 return false;
2010 }
2011
2012 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2013 /// @code ::delete ptr; @endcode
2014 /// or
2015 /// @code delete [] ptr; @endcode
2016 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)2017 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2018 bool ArrayForm, Expr *ExE) {
2019 // C++ [expr.delete]p1:
2020 // The operand shall have a pointer type, or a class type having a single
2021 // conversion function to a pointer type. The result has type void.
2022 //
2023 // DR599 amends "pointer type" to "pointer to object type" in both cases.
2024
2025 ExprResult Ex = Owned(ExE);
2026 FunctionDecl *OperatorDelete = 0;
2027 bool ArrayFormAsWritten = ArrayForm;
2028 bool UsualArrayDeleteWantsSize = false;
2029
2030 if (!Ex.get()->isTypeDependent()) {
2031 // Perform lvalue-to-rvalue cast, if needed.
2032 Ex = DefaultLvalueConversion(Ex.take());
2033 if (Ex.isInvalid())
2034 return ExprError();
2035
2036 QualType Type = Ex.get()->getType();
2037
2038 if (const RecordType *Record = Type->getAs<RecordType>()) {
2039 if (RequireCompleteType(StartLoc, Type,
2040 diag::err_delete_incomplete_class_type))
2041 return ExprError();
2042
2043 SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2044
2045 CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2046 std::pair<CXXRecordDecl::conversion_iterator,
2047 CXXRecordDecl::conversion_iterator>
2048 Conversions = RD->getVisibleConversionFunctions();
2049 for (CXXRecordDecl::conversion_iterator
2050 I = Conversions.first, E = Conversions.second; I != E; ++I) {
2051 NamedDecl *D = I.getDecl();
2052 if (isa<UsingShadowDecl>(D))
2053 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2054
2055 // Skip over templated conversion functions; they aren't considered.
2056 if (isa<FunctionTemplateDecl>(D))
2057 continue;
2058
2059 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2060
2061 QualType ConvType = Conv->getConversionType().getNonReferenceType();
2062 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2063 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2064 ObjectPtrConversions.push_back(Conv);
2065 }
2066 if (ObjectPtrConversions.size() == 1) {
2067 // We have a single conversion to a pointer-to-object type. Perform
2068 // that conversion.
2069 // TODO: don't redo the conversion calculation.
2070 ExprResult Res =
2071 PerformImplicitConversion(Ex.get(),
2072 ObjectPtrConversions.front()->getConversionType(),
2073 AA_Converting);
2074 if (Res.isUsable()) {
2075 Ex = Res;
2076 Type = Ex.get()->getType();
2077 }
2078 }
2079 else if (ObjectPtrConversions.size() > 1) {
2080 Diag(StartLoc, diag::err_ambiguous_delete_operand)
2081 << Type << Ex.get()->getSourceRange();
2082 for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2083 NoteOverloadCandidate(ObjectPtrConversions[i]);
2084 return ExprError();
2085 }
2086 }
2087
2088 if (!Type->isPointerType())
2089 return ExprError(Diag(StartLoc, diag::err_delete_operand)
2090 << Type << Ex.get()->getSourceRange());
2091
2092 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2093 QualType PointeeElem = Context.getBaseElementType(Pointee);
2094
2095 if (unsigned AddressSpace = Pointee.getAddressSpace())
2096 return Diag(Ex.get()->getLocStart(),
2097 diag::err_address_space_qualified_delete)
2098 << Pointee.getUnqualifiedType() << AddressSpace;
2099
2100 CXXRecordDecl *PointeeRD = 0;
2101 if (Pointee->isVoidType() && !isSFINAEContext()) {
2102 // The C++ standard bans deleting a pointer to a non-object type, which
2103 // effectively bans deletion of "void*". However, most compilers support
2104 // this, so we treat it as a warning unless we're in a SFINAE context.
2105 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2106 << Type << Ex.get()->getSourceRange();
2107 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2108 return ExprError(Diag(StartLoc, diag::err_delete_operand)
2109 << Type << Ex.get()->getSourceRange());
2110 } else if (!Pointee->isDependentType()) {
2111 if (!RequireCompleteType(StartLoc, Pointee,
2112 diag::warn_delete_incomplete, Ex.get())) {
2113 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2114 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2115 }
2116 }
2117
2118 // C++ [expr.delete]p2:
2119 // [Note: a pointer to a const type can be the operand of a
2120 // delete-expression; it is not necessary to cast away the constness
2121 // (5.2.11) of the pointer expression before it is used as the operand
2122 // of the delete-expression. ]
2123
2124 if (Pointee->isArrayType() && !ArrayForm) {
2125 Diag(StartLoc, diag::warn_delete_array_type)
2126 << Type << Ex.get()->getSourceRange()
2127 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2128 ArrayForm = true;
2129 }
2130
2131 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2132 ArrayForm ? OO_Array_Delete : OO_Delete);
2133
2134 if (PointeeRD) {
2135 if (!UseGlobal &&
2136 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2137 OperatorDelete))
2138 return ExprError();
2139
2140 // If we're allocating an array of records, check whether the
2141 // usual operator delete[] has a size_t parameter.
2142 if (ArrayForm) {
2143 // If the user specifically asked to use the global allocator,
2144 // we'll need to do the lookup into the class.
2145 if (UseGlobal)
2146 UsualArrayDeleteWantsSize =
2147 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2148
2149 // Otherwise, the usual operator delete[] should be the
2150 // function we just found.
2151 else if (isa<CXXMethodDecl>(OperatorDelete))
2152 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2153 }
2154
2155 if (!PointeeRD->hasIrrelevantDestructor())
2156 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2157 MarkFunctionReferenced(StartLoc,
2158 const_cast<CXXDestructorDecl*>(Dtor));
2159 DiagnoseUseOfDecl(Dtor, StartLoc);
2160 }
2161
2162 // C++ [expr.delete]p3:
2163 // In the first alternative (delete object), if the static type of the
2164 // object to be deleted is different from its dynamic type, the static
2165 // type shall be a base class of the dynamic type of the object to be
2166 // deleted and the static type shall have a virtual destructor or the
2167 // behavior is undefined.
2168 //
2169 // Note: a final class cannot be derived from, no issue there
2170 if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2171 CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2172 if (dtor && !dtor->isVirtual()) {
2173 if (PointeeRD->isAbstract()) {
2174 // If the class is abstract, we warn by default, because we're
2175 // sure the code has undefined behavior.
2176 Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2177 << PointeeElem;
2178 } else if (!ArrayForm) {
2179 // Otherwise, if this is not an array delete, it's a bit suspect,
2180 // but not necessarily wrong.
2181 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2182 }
2183 }
2184 }
2185
2186 }
2187
2188 if (!OperatorDelete) {
2189 // Look for a global declaration.
2190 DeclareGlobalNewDelete();
2191 DeclContext *TUDecl = Context.getTranslationUnitDecl();
2192 Expr *Arg = Ex.get();
2193 if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2194 Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2195 CK_BitCast, Arg, 0, VK_RValue);
2196 if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2197 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2198 OperatorDelete))
2199 return ExprError();
2200 }
2201
2202 MarkFunctionReferenced(StartLoc, OperatorDelete);
2203
2204 // Check access and ambiguity of operator delete and destructor.
2205 if (PointeeRD) {
2206 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2207 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2208 PDiag(diag::err_access_dtor) << PointeeElem);
2209 }
2210 }
2211
2212 }
2213
2214 return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2215 ArrayFormAsWritten,
2216 UsualArrayDeleteWantsSize,
2217 OperatorDelete, Ex.take(), StartLoc));
2218 }
2219
2220 /// \brief Check the use of the given variable as a C++ condition in an if,
2221 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)2222 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2223 SourceLocation StmtLoc,
2224 bool ConvertToBoolean) {
2225 QualType T = ConditionVar->getType();
2226
2227 // C++ [stmt.select]p2:
2228 // The declarator shall not specify a function or an array.
2229 if (T->isFunctionType())
2230 return ExprError(Diag(ConditionVar->getLocation(),
2231 diag::err_invalid_use_of_function_type)
2232 << ConditionVar->getSourceRange());
2233 else if (T->isArrayType())
2234 return ExprError(Diag(ConditionVar->getLocation(),
2235 diag::err_invalid_use_of_array_type)
2236 << ConditionVar->getSourceRange());
2237
2238 ExprResult Condition =
2239 Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2240 SourceLocation(),
2241 ConditionVar,
2242 /*enclosing*/ false,
2243 ConditionVar->getLocation(),
2244 ConditionVar->getType().getNonReferenceType(),
2245 VK_LValue));
2246
2247 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2248
2249 if (ConvertToBoolean) {
2250 Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2251 if (Condition.isInvalid())
2252 return ExprError();
2253 }
2254
2255 return Condition;
2256 }
2257
2258 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)2259 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2260 // C++ 6.4p4:
2261 // The value of a condition that is an initialized declaration in a statement
2262 // other than a switch statement is the value of the declared variable
2263 // implicitly converted to type bool. If that conversion is ill-formed, the
2264 // program is ill-formed.
2265 // The value of a condition that is an expression is the value of the
2266 // expression, implicitly converted to bool.
2267 //
2268 return PerformContextuallyConvertToBool(CondExpr);
2269 }
2270
2271 /// Helper function to determine whether this is the (deprecated) C++
2272 /// conversion from a string literal to a pointer to non-const char or
2273 /// non-const wchar_t (for narrow and wide string literals,
2274 /// respectively).
2275 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2276 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2277 // Look inside the implicit cast, if it exists.
2278 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2279 From = Cast->getSubExpr();
2280
2281 // A string literal (2.13.4) that is not a wide string literal can
2282 // be converted to an rvalue of type "pointer to char"; a wide
2283 // string literal can be converted to an rvalue of type "pointer
2284 // to wchar_t" (C++ 4.2p2).
2285 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2286 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2287 if (const BuiltinType *ToPointeeType
2288 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2289 // This conversion is considered only when there is an
2290 // explicit appropriate pointer target type (C++ 4.2p2).
2291 if (!ToPtrType->getPointeeType().hasQualifiers()) {
2292 switch (StrLit->getKind()) {
2293 case StringLiteral::UTF8:
2294 case StringLiteral::UTF16:
2295 case StringLiteral::UTF32:
2296 // We don't allow UTF literals to be implicitly converted
2297 break;
2298 case StringLiteral::Ascii:
2299 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2300 ToPointeeType->getKind() == BuiltinType::Char_S);
2301 case StringLiteral::Wide:
2302 return ToPointeeType->isWideCharType();
2303 }
2304 }
2305 }
2306
2307 return false;
2308 }
2309
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)2310 static ExprResult BuildCXXCastArgument(Sema &S,
2311 SourceLocation CastLoc,
2312 QualType Ty,
2313 CastKind Kind,
2314 CXXMethodDecl *Method,
2315 DeclAccessPair FoundDecl,
2316 bool HadMultipleCandidates,
2317 Expr *From) {
2318 switch (Kind) {
2319 default: llvm_unreachable("Unhandled cast kind!");
2320 case CK_ConstructorConversion: {
2321 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2322 SmallVector<Expr*, 8> ConstructorArgs;
2323
2324 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2325 return ExprError();
2326
2327 S.CheckConstructorAccess(CastLoc, Constructor,
2328 InitializedEntity::InitializeTemporary(Ty),
2329 Constructor->getAccess());
2330
2331 ExprResult Result
2332 = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2333 ConstructorArgs, HadMultipleCandidates,
2334 /*ListInit*/ false, /*ZeroInit*/ false,
2335 CXXConstructExpr::CK_Complete, SourceRange());
2336 if (Result.isInvalid())
2337 return ExprError();
2338
2339 return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2340 }
2341
2342 case CK_UserDefinedConversion: {
2343 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2344
2345 // Create an implicit call expr that calls it.
2346 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2347 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2348 HadMultipleCandidates);
2349 if (Result.isInvalid())
2350 return ExprError();
2351 // Record usage of conversion in an implicit cast.
2352 Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2353 Result.get()->getType(),
2354 CK_UserDefinedConversion,
2355 Result.get(), 0,
2356 Result.get()->getValueKind()));
2357
2358 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2359
2360 return S.MaybeBindToTemporary(Result.get());
2361 }
2362 }
2363 }
2364
2365 /// PerformImplicitConversion - Perform an implicit conversion of the
2366 /// expression From to the type ToType using the pre-computed implicit
2367 /// conversion sequence ICS. Returns the converted
2368 /// expression. Action is the kind of conversion we're performing,
2369 /// used in the error message.
2370 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2371 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2372 const ImplicitConversionSequence &ICS,
2373 AssignmentAction Action,
2374 CheckedConversionKind CCK) {
2375 switch (ICS.getKind()) {
2376 case ImplicitConversionSequence::StandardConversion: {
2377 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2378 Action, CCK);
2379 if (Res.isInvalid())
2380 return ExprError();
2381 From = Res.take();
2382 break;
2383 }
2384
2385 case ImplicitConversionSequence::UserDefinedConversion: {
2386
2387 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2388 CastKind CastKind;
2389 QualType BeforeToType;
2390 assert(FD && "FIXME: aggregate initialization from init list");
2391 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2392 CastKind = CK_UserDefinedConversion;
2393
2394 // If the user-defined conversion is specified by a conversion function,
2395 // the initial standard conversion sequence converts the source type to
2396 // the implicit object parameter of the conversion function.
2397 BeforeToType = Context.getTagDeclType(Conv->getParent());
2398 } else {
2399 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2400 CastKind = CK_ConstructorConversion;
2401 // Do no conversion if dealing with ... for the first conversion.
2402 if (!ICS.UserDefined.EllipsisConversion) {
2403 // If the user-defined conversion is specified by a constructor, the
2404 // initial standard conversion sequence converts the source type to the
2405 // type required by the argument of the constructor
2406 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2407 }
2408 }
2409 // Watch out for elipsis conversion.
2410 if (!ICS.UserDefined.EllipsisConversion) {
2411 ExprResult Res =
2412 PerformImplicitConversion(From, BeforeToType,
2413 ICS.UserDefined.Before, AA_Converting,
2414 CCK);
2415 if (Res.isInvalid())
2416 return ExprError();
2417 From = Res.take();
2418 }
2419
2420 ExprResult CastArg
2421 = BuildCXXCastArgument(*this,
2422 From->getLocStart(),
2423 ToType.getNonReferenceType(),
2424 CastKind, cast<CXXMethodDecl>(FD),
2425 ICS.UserDefined.FoundConversionFunction,
2426 ICS.UserDefined.HadMultipleCandidates,
2427 From);
2428
2429 if (CastArg.isInvalid())
2430 return ExprError();
2431
2432 From = CastArg.take();
2433
2434 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2435 AA_Converting, CCK);
2436 }
2437
2438 case ImplicitConversionSequence::AmbiguousConversion:
2439 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2440 PDiag(diag::err_typecheck_ambiguous_condition)
2441 << From->getSourceRange());
2442 return ExprError();
2443
2444 case ImplicitConversionSequence::EllipsisConversion:
2445 llvm_unreachable("Cannot perform an ellipsis conversion");
2446
2447 case ImplicitConversionSequence::BadConversion:
2448 return ExprError();
2449 }
2450
2451 // Everything went well.
2452 return Owned(From);
2453 }
2454
2455 /// PerformImplicitConversion - Perform an implicit conversion of the
2456 /// expression From to the type ToType by following the standard
2457 /// conversion sequence SCS. Returns the converted
2458 /// expression. Flavor is the context in which we're performing this
2459 /// conversion, for use in error messages.
2460 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)2461 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2462 const StandardConversionSequence& SCS,
2463 AssignmentAction Action,
2464 CheckedConversionKind CCK) {
2465 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2466
2467 // Overall FIXME: we are recomputing too many types here and doing far too
2468 // much extra work. What this means is that we need to keep track of more
2469 // information that is computed when we try the implicit conversion initially,
2470 // so that we don't need to recompute anything here.
2471 QualType FromType = From->getType();
2472
2473 if (SCS.CopyConstructor) {
2474 // FIXME: When can ToType be a reference type?
2475 assert(!ToType->isReferenceType());
2476 if (SCS.Second == ICK_Derived_To_Base) {
2477 SmallVector<Expr*, 8> ConstructorArgs;
2478 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2479 From, /*FIXME:ConstructLoc*/SourceLocation(),
2480 ConstructorArgs))
2481 return ExprError();
2482 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2483 ToType, SCS.CopyConstructor,
2484 ConstructorArgs,
2485 /*HadMultipleCandidates*/ false,
2486 /*ListInit*/ false, /*ZeroInit*/ false,
2487 CXXConstructExpr::CK_Complete,
2488 SourceRange());
2489 }
2490 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2491 ToType, SCS.CopyConstructor,
2492 From, /*HadMultipleCandidates*/ false,
2493 /*ListInit*/ false, /*ZeroInit*/ false,
2494 CXXConstructExpr::CK_Complete,
2495 SourceRange());
2496 }
2497
2498 // Resolve overloaded function references.
2499 if (Context.hasSameType(FromType, Context.OverloadTy)) {
2500 DeclAccessPair Found;
2501 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2502 true, Found);
2503 if (!Fn)
2504 return ExprError();
2505
2506 if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2507 return ExprError();
2508
2509 From = FixOverloadedFunctionReference(From, Found, Fn);
2510 FromType = From->getType();
2511 }
2512
2513 // Perform the first implicit conversion.
2514 switch (SCS.First) {
2515 case ICK_Identity:
2516 // Nothing to do.
2517 break;
2518
2519 case ICK_Lvalue_To_Rvalue: {
2520 assert(From->getObjectKind() != OK_ObjCProperty);
2521 FromType = FromType.getUnqualifiedType();
2522 ExprResult FromRes = DefaultLvalueConversion(From);
2523 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2524 From = FromRes.take();
2525 break;
2526 }
2527
2528 case ICK_Array_To_Pointer:
2529 FromType = Context.getArrayDecayedType(FromType);
2530 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2531 VK_RValue, /*BasePath=*/0, CCK).take();
2532 break;
2533
2534 case ICK_Function_To_Pointer:
2535 FromType = Context.getPointerType(FromType);
2536 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2537 VK_RValue, /*BasePath=*/0, CCK).take();
2538 break;
2539
2540 default:
2541 llvm_unreachable("Improper first standard conversion");
2542 }
2543
2544 // Perform the second implicit conversion
2545 switch (SCS.Second) {
2546 case ICK_Identity:
2547 // If both sides are functions (or pointers/references to them), there could
2548 // be incompatible exception declarations.
2549 if (CheckExceptionSpecCompatibility(From, ToType))
2550 return ExprError();
2551 // Nothing else to do.
2552 break;
2553
2554 case ICK_NoReturn_Adjustment:
2555 // If both sides are functions (or pointers/references to them), there could
2556 // be incompatible exception declarations.
2557 if (CheckExceptionSpecCompatibility(From, ToType))
2558 return ExprError();
2559
2560 From = ImpCastExprToType(From, ToType, CK_NoOp,
2561 VK_RValue, /*BasePath=*/0, CCK).take();
2562 break;
2563
2564 case ICK_Integral_Promotion:
2565 case ICK_Integral_Conversion:
2566 if (ToType->isBooleanType()) {
2567 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2568 SCS.Second == ICK_Integral_Promotion &&
2569 "only enums with fixed underlying type can promote to bool");
2570 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2571 VK_RValue, /*BasePath=*/0, CCK).take();
2572 } else {
2573 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2574 VK_RValue, /*BasePath=*/0, CCK).take();
2575 }
2576 break;
2577
2578 case ICK_Floating_Promotion:
2579 case ICK_Floating_Conversion:
2580 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2581 VK_RValue, /*BasePath=*/0, CCK).take();
2582 break;
2583
2584 case ICK_Complex_Promotion:
2585 case ICK_Complex_Conversion: {
2586 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2587 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2588 CastKind CK;
2589 if (FromEl->isRealFloatingType()) {
2590 if (ToEl->isRealFloatingType())
2591 CK = CK_FloatingComplexCast;
2592 else
2593 CK = CK_FloatingComplexToIntegralComplex;
2594 } else if (ToEl->isRealFloatingType()) {
2595 CK = CK_IntegralComplexToFloatingComplex;
2596 } else {
2597 CK = CK_IntegralComplexCast;
2598 }
2599 From = ImpCastExprToType(From, ToType, CK,
2600 VK_RValue, /*BasePath=*/0, CCK).take();
2601 break;
2602 }
2603
2604 case ICK_Floating_Integral:
2605 if (ToType->isRealFloatingType())
2606 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2607 VK_RValue, /*BasePath=*/0, CCK).take();
2608 else
2609 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2610 VK_RValue, /*BasePath=*/0, CCK).take();
2611 break;
2612
2613 case ICK_Compatible_Conversion:
2614 From = ImpCastExprToType(From, ToType, CK_NoOp,
2615 VK_RValue, /*BasePath=*/0, CCK).take();
2616 break;
2617
2618 case ICK_Writeback_Conversion:
2619 case ICK_Pointer_Conversion: {
2620 if (SCS.IncompatibleObjC && Action != AA_Casting) {
2621 // Diagnose incompatible Objective-C conversions
2622 if (Action == AA_Initializing || Action == AA_Assigning)
2623 Diag(From->getLocStart(),
2624 diag::ext_typecheck_convert_incompatible_pointer)
2625 << ToType << From->getType() << Action
2626 << From->getSourceRange() << 0;
2627 else
2628 Diag(From->getLocStart(),
2629 diag::ext_typecheck_convert_incompatible_pointer)
2630 << From->getType() << ToType << Action
2631 << From->getSourceRange() << 0;
2632
2633 if (From->getType()->isObjCObjectPointerType() &&
2634 ToType->isObjCObjectPointerType())
2635 EmitRelatedResultTypeNote(From);
2636 }
2637 else if (getLangOpts().ObjCAutoRefCount &&
2638 !CheckObjCARCUnavailableWeakConversion(ToType,
2639 From->getType())) {
2640 if (Action == AA_Initializing)
2641 Diag(From->getLocStart(),
2642 diag::err_arc_weak_unavailable_assign);
2643 else
2644 Diag(From->getLocStart(),
2645 diag::err_arc_convesion_of_weak_unavailable)
2646 << (Action == AA_Casting) << From->getType() << ToType
2647 << From->getSourceRange();
2648 }
2649
2650 CastKind Kind = CK_Invalid;
2651 CXXCastPath BasePath;
2652 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2653 return ExprError();
2654
2655 // Make sure we extend blocks if necessary.
2656 // FIXME: doing this here is really ugly.
2657 if (Kind == CK_BlockPointerToObjCPointerCast) {
2658 ExprResult E = From;
2659 (void) PrepareCastToObjCObjectPointer(E);
2660 From = E.take();
2661 }
2662
2663 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2664 .take();
2665 break;
2666 }
2667
2668 case ICK_Pointer_Member: {
2669 CastKind Kind = CK_Invalid;
2670 CXXCastPath BasePath;
2671 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2672 return ExprError();
2673 if (CheckExceptionSpecCompatibility(From, ToType))
2674 return ExprError();
2675 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2676 .take();
2677 break;
2678 }
2679
2680 case ICK_Boolean_Conversion:
2681 // Perform half-to-boolean conversion via float.
2682 if (From->getType()->isHalfType()) {
2683 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2684 FromType = Context.FloatTy;
2685 }
2686
2687 From = ImpCastExprToType(From, Context.BoolTy,
2688 ScalarTypeToBooleanCastKind(FromType),
2689 VK_RValue, /*BasePath=*/0, CCK).take();
2690 break;
2691
2692 case ICK_Derived_To_Base: {
2693 CXXCastPath BasePath;
2694 if (CheckDerivedToBaseConversion(From->getType(),
2695 ToType.getNonReferenceType(),
2696 From->getLocStart(),
2697 From->getSourceRange(),
2698 &BasePath,
2699 CStyle))
2700 return ExprError();
2701
2702 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2703 CK_DerivedToBase, From->getValueKind(),
2704 &BasePath, CCK).take();
2705 break;
2706 }
2707
2708 case ICK_Vector_Conversion:
2709 From = ImpCastExprToType(From, ToType, CK_BitCast,
2710 VK_RValue, /*BasePath=*/0, CCK).take();
2711 break;
2712
2713 case ICK_Vector_Splat:
2714 From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2715 VK_RValue, /*BasePath=*/0, CCK).take();
2716 break;
2717
2718 case ICK_Complex_Real:
2719 // Case 1. x -> _Complex y
2720 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2721 QualType ElType = ToComplex->getElementType();
2722 bool isFloatingComplex = ElType->isRealFloatingType();
2723
2724 // x -> y
2725 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2726 // do nothing
2727 } else if (From->getType()->isRealFloatingType()) {
2728 From = ImpCastExprToType(From, ElType,
2729 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2730 } else {
2731 assert(From->getType()->isIntegerType());
2732 From = ImpCastExprToType(From, ElType,
2733 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2734 }
2735 // y -> _Complex y
2736 From = ImpCastExprToType(From, ToType,
2737 isFloatingComplex ? CK_FloatingRealToComplex
2738 : CK_IntegralRealToComplex).take();
2739
2740 // Case 2. _Complex x -> y
2741 } else {
2742 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2743 assert(FromComplex);
2744
2745 QualType ElType = FromComplex->getElementType();
2746 bool isFloatingComplex = ElType->isRealFloatingType();
2747
2748 // _Complex x -> x
2749 From = ImpCastExprToType(From, ElType,
2750 isFloatingComplex ? CK_FloatingComplexToReal
2751 : CK_IntegralComplexToReal,
2752 VK_RValue, /*BasePath=*/0, CCK).take();
2753
2754 // x -> y
2755 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2756 // do nothing
2757 } else if (ToType->isRealFloatingType()) {
2758 From = ImpCastExprToType(From, ToType,
2759 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2760 VK_RValue, /*BasePath=*/0, CCK).take();
2761 } else {
2762 assert(ToType->isIntegerType());
2763 From = ImpCastExprToType(From, ToType,
2764 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2765 VK_RValue, /*BasePath=*/0, CCK).take();
2766 }
2767 }
2768 break;
2769
2770 case ICK_Block_Pointer_Conversion: {
2771 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2772 VK_RValue, /*BasePath=*/0, CCK).take();
2773 break;
2774 }
2775
2776 case ICK_TransparentUnionConversion: {
2777 ExprResult FromRes = Owned(From);
2778 Sema::AssignConvertType ConvTy =
2779 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2780 if (FromRes.isInvalid())
2781 return ExprError();
2782 From = FromRes.take();
2783 assert ((ConvTy == Sema::Compatible) &&
2784 "Improper transparent union conversion");
2785 (void)ConvTy;
2786 break;
2787 }
2788
2789 case ICK_Zero_Event_Conversion:
2790 From = ImpCastExprToType(From, ToType,
2791 CK_ZeroToOCLEvent,
2792 From->getValueKind()).take();
2793 break;
2794
2795 case ICK_Lvalue_To_Rvalue:
2796 case ICK_Array_To_Pointer:
2797 case ICK_Function_To_Pointer:
2798 case ICK_Qualification:
2799 case ICK_Num_Conversion_Kinds:
2800 llvm_unreachable("Improper second standard conversion");
2801 }
2802
2803 switch (SCS.Third) {
2804 case ICK_Identity:
2805 // Nothing to do.
2806 break;
2807
2808 case ICK_Qualification: {
2809 // The qualification keeps the category of the inner expression, unless the
2810 // target type isn't a reference.
2811 ExprValueKind VK = ToType->isReferenceType() ?
2812 From->getValueKind() : VK_RValue;
2813 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2814 CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2815
2816 if (SCS.DeprecatedStringLiteralToCharPtr &&
2817 !getLangOpts().WritableStrings)
2818 Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2819 << ToType.getNonReferenceType();
2820
2821 break;
2822 }
2823
2824 default:
2825 llvm_unreachable("Improper third standard conversion");
2826 }
2827
2828 // If this conversion sequence involved a scalar -> atomic conversion, perform
2829 // that conversion now.
2830 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2831 if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2832 From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2833 CCK).take();
2834
2835 return Owned(From);
2836 }
2837
ActOnUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,ParsedType Ty,SourceLocation RParen)2838 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2839 SourceLocation KWLoc,
2840 ParsedType Ty,
2841 SourceLocation RParen) {
2842 TypeSourceInfo *TSInfo;
2843 QualType T = GetTypeFromParser(Ty, &TSInfo);
2844
2845 if (!TSInfo)
2846 TSInfo = Context.getTrivialTypeSourceInfo(T);
2847 return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2848 }
2849
2850 /// \brief Check the completeness of a type in a unary type trait.
2851 ///
2852 /// If the particular type trait requires a complete type, tries to complete
2853 /// it. If completing the type fails, a diagnostic is emitted and false
2854 /// returned. If completing the type succeeds or no completion was required,
2855 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,UnaryTypeTrait UTT,SourceLocation Loc,QualType ArgTy)2856 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2857 UnaryTypeTrait UTT,
2858 SourceLocation Loc,
2859 QualType ArgTy) {
2860 // C++0x [meta.unary.prop]p3:
2861 // For all of the class templates X declared in this Clause, instantiating
2862 // that template with a template argument that is a class template
2863 // specialization may result in the implicit instantiation of the template
2864 // argument if and only if the semantics of X require that the argument
2865 // must be a complete type.
2866 // We apply this rule to all the type trait expressions used to implement
2867 // these class templates. We also try to follow any GCC documented behavior
2868 // in these expressions to ensure portability of standard libraries.
2869 switch (UTT) {
2870 // is_complete_type somewhat obviously cannot require a complete type.
2871 case UTT_IsCompleteType:
2872 // Fall-through
2873
2874 // These traits are modeled on the type predicates in C++0x
2875 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2876 // requiring a complete type, as whether or not they return true cannot be
2877 // impacted by the completeness of the type.
2878 case UTT_IsVoid:
2879 case UTT_IsIntegral:
2880 case UTT_IsFloatingPoint:
2881 case UTT_IsArray:
2882 case UTT_IsPointer:
2883 case UTT_IsLvalueReference:
2884 case UTT_IsRvalueReference:
2885 case UTT_IsMemberFunctionPointer:
2886 case UTT_IsMemberObjectPointer:
2887 case UTT_IsEnum:
2888 case UTT_IsUnion:
2889 case UTT_IsClass:
2890 case UTT_IsFunction:
2891 case UTT_IsReference:
2892 case UTT_IsArithmetic:
2893 case UTT_IsFundamental:
2894 case UTT_IsObject:
2895 case UTT_IsScalar:
2896 case UTT_IsCompound:
2897 case UTT_IsMemberPointer:
2898 // Fall-through
2899
2900 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2901 // which requires some of its traits to have the complete type. However,
2902 // the completeness of the type cannot impact these traits' semantics, and
2903 // so they don't require it. This matches the comments on these traits in
2904 // Table 49.
2905 case UTT_IsConst:
2906 case UTT_IsVolatile:
2907 case UTT_IsSigned:
2908 case UTT_IsUnsigned:
2909 return true;
2910
2911 // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2912 // applied to a complete type.
2913 case UTT_IsTrivial:
2914 case UTT_IsTriviallyCopyable:
2915 case UTT_IsStandardLayout:
2916 case UTT_IsPOD:
2917 case UTT_IsLiteral:
2918 case UTT_IsEmpty:
2919 case UTT_IsPolymorphic:
2920 case UTT_IsAbstract:
2921 case UTT_IsInterfaceClass:
2922 // Fall-through
2923
2924 // These traits require a complete type.
2925 case UTT_IsFinal:
2926
2927 // These trait expressions are designed to help implement predicates in
2928 // [meta.unary.prop] despite not being named the same. They are specified
2929 // by both GCC and the Embarcadero C++ compiler, and require the complete
2930 // type due to the overarching C++0x type predicates being implemented
2931 // requiring the complete type.
2932 case UTT_HasNothrowAssign:
2933 case UTT_HasNothrowConstructor:
2934 case UTT_HasNothrowCopy:
2935 case UTT_HasTrivialAssign:
2936 case UTT_HasTrivialDefaultConstructor:
2937 case UTT_HasTrivialCopy:
2938 case UTT_HasTrivialDestructor:
2939 case UTT_HasVirtualDestructor:
2940 // Arrays of unknown bound are expressly allowed.
2941 QualType ElTy = ArgTy;
2942 if (ArgTy->isIncompleteArrayType())
2943 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2944
2945 // The void type is expressly allowed.
2946 if (ElTy->isVoidType())
2947 return true;
2948
2949 return !S.RequireCompleteType(
2950 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2951 }
2952 llvm_unreachable("Type trait not handled by switch");
2953 }
2954
EvaluateUnaryTypeTrait(Sema & Self,UnaryTypeTrait UTT,SourceLocation KeyLoc,QualType T)2955 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2956 SourceLocation KeyLoc, QualType T) {
2957 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2958
2959 ASTContext &C = Self.Context;
2960 switch(UTT) {
2961 // Type trait expressions corresponding to the primary type category
2962 // predicates in C++0x [meta.unary.cat].
2963 case UTT_IsVoid:
2964 return T->isVoidType();
2965 case UTT_IsIntegral:
2966 return T->isIntegralType(C);
2967 case UTT_IsFloatingPoint:
2968 return T->isFloatingType();
2969 case UTT_IsArray:
2970 return T->isArrayType();
2971 case UTT_IsPointer:
2972 return T->isPointerType();
2973 case UTT_IsLvalueReference:
2974 return T->isLValueReferenceType();
2975 case UTT_IsRvalueReference:
2976 return T->isRValueReferenceType();
2977 case UTT_IsMemberFunctionPointer:
2978 return T->isMemberFunctionPointerType();
2979 case UTT_IsMemberObjectPointer:
2980 return T->isMemberDataPointerType();
2981 case UTT_IsEnum:
2982 return T->isEnumeralType();
2983 case UTT_IsUnion:
2984 return T->isUnionType();
2985 case UTT_IsClass:
2986 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
2987 case UTT_IsFunction:
2988 return T->isFunctionType();
2989
2990 // Type trait expressions which correspond to the convenient composition
2991 // predicates in C++0x [meta.unary.comp].
2992 case UTT_IsReference:
2993 return T->isReferenceType();
2994 case UTT_IsArithmetic:
2995 return T->isArithmeticType() && !T->isEnumeralType();
2996 case UTT_IsFundamental:
2997 return T->isFundamentalType();
2998 case UTT_IsObject:
2999 return T->isObjectType();
3000 case UTT_IsScalar:
3001 // Note: semantic analysis depends on Objective-C lifetime types to be
3002 // considered scalar types. However, such types do not actually behave
3003 // like scalar types at run time (since they may require retain/release
3004 // operations), so we report them as non-scalar.
3005 if (T->isObjCLifetimeType()) {
3006 switch (T.getObjCLifetime()) {
3007 case Qualifiers::OCL_None:
3008 case Qualifiers::OCL_ExplicitNone:
3009 return true;
3010
3011 case Qualifiers::OCL_Strong:
3012 case Qualifiers::OCL_Weak:
3013 case Qualifiers::OCL_Autoreleasing:
3014 return false;
3015 }
3016 }
3017
3018 return T->isScalarType();
3019 case UTT_IsCompound:
3020 return T->isCompoundType();
3021 case UTT_IsMemberPointer:
3022 return T->isMemberPointerType();
3023
3024 // Type trait expressions which correspond to the type property predicates
3025 // in C++0x [meta.unary.prop].
3026 case UTT_IsConst:
3027 return T.isConstQualified();
3028 case UTT_IsVolatile:
3029 return T.isVolatileQualified();
3030 case UTT_IsTrivial:
3031 return T.isTrivialType(Self.Context);
3032 case UTT_IsTriviallyCopyable:
3033 return T.isTriviallyCopyableType(Self.Context);
3034 case UTT_IsStandardLayout:
3035 return T->isStandardLayoutType();
3036 case UTT_IsPOD:
3037 return T.isPODType(Self.Context);
3038 case UTT_IsLiteral:
3039 return T->isLiteralType();
3040 case UTT_IsEmpty:
3041 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3042 return !RD->isUnion() && RD->isEmpty();
3043 return false;
3044 case UTT_IsPolymorphic:
3045 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3046 return RD->isPolymorphic();
3047 return false;
3048 case UTT_IsAbstract:
3049 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3050 return RD->isAbstract();
3051 return false;
3052 case UTT_IsInterfaceClass:
3053 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3054 return RD->isInterface();
3055 return false;
3056 case UTT_IsFinal:
3057 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3058 return RD->hasAttr<FinalAttr>();
3059 return false;
3060 case UTT_IsSigned:
3061 return T->isSignedIntegerType();
3062 case UTT_IsUnsigned:
3063 return T->isUnsignedIntegerType();
3064
3065 // Type trait expressions which query classes regarding their construction,
3066 // destruction, and copying. Rather than being based directly on the
3067 // related type predicates in the standard, they are specified by both
3068 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3069 // specifications.
3070 //
3071 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3072 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3073 //
3074 // Note that these builtins do not behave as documented in g++: if a class
3075 // has both a trivial and a non-trivial special member of a particular kind,
3076 // they return false! For now, we emulate this behavior.
3077 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3078 // does not correctly compute triviality in the presence of multiple special
3079 // members of the same kind. Revisit this once the g++ bug is fixed.
3080 case UTT_HasTrivialDefaultConstructor:
3081 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3082 // If __is_pod (type) is true then the trait is true, else if type is
3083 // a cv class or union type (or array thereof) with a trivial default
3084 // constructor ([class.ctor]) then the trait is true, else it is false.
3085 if (T.isPODType(Self.Context))
3086 return true;
3087 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3088 return RD->hasTrivialDefaultConstructor() &&
3089 !RD->hasNonTrivialDefaultConstructor();
3090 return false;
3091 case UTT_HasTrivialCopy:
3092 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3093 // If __is_pod (type) is true or type is a reference type then
3094 // the trait is true, else if type is a cv class or union type
3095 // with a trivial copy constructor ([class.copy]) then the trait
3096 // is true, else it is false.
3097 if (T.isPODType(Self.Context) || T->isReferenceType())
3098 return true;
3099 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3100 return RD->hasTrivialCopyConstructor() &&
3101 !RD->hasNonTrivialCopyConstructor();
3102 return false;
3103 case UTT_HasTrivialAssign:
3104 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3105 // If type is const qualified or is a reference type then the
3106 // trait is false. Otherwise if __is_pod (type) is true then the
3107 // trait is true, else if type is a cv class or union type with
3108 // a trivial copy assignment ([class.copy]) then the trait is
3109 // true, else it is false.
3110 // Note: the const and reference restrictions are interesting,
3111 // given that const and reference members don't prevent a class
3112 // from having a trivial copy assignment operator (but do cause
3113 // errors if the copy assignment operator is actually used, q.v.
3114 // [class.copy]p12).
3115
3116 if (T.isConstQualified())
3117 return false;
3118 if (T.isPODType(Self.Context))
3119 return true;
3120 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3121 return RD->hasTrivialCopyAssignment() &&
3122 !RD->hasNonTrivialCopyAssignment();
3123 return false;
3124 case UTT_HasTrivialDestructor:
3125 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3126 // If __is_pod (type) is true or type is a reference type
3127 // then the trait is true, else if type is a cv class or union
3128 // type (or array thereof) with a trivial destructor
3129 // ([class.dtor]) then the trait is true, else it is
3130 // false.
3131 if (T.isPODType(Self.Context) || T->isReferenceType())
3132 return true;
3133
3134 // Objective-C++ ARC: autorelease types don't require destruction.
3135 if (T->isObjCLifetimeType() &&
3136 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3137 return true;
3138
3139 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3140 return RD->hasTrivialDestructor();
3141 return false;
3142 // TODO: Propagate nothrowness for implicitly declared special members.
3143 case UTT_HasNothrowAssign:
3144 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3145 // If type is const qualified or is a reference type then the
3146 // trait is false. Otherwise if __has_trivial_assign (type)
3147 // is true then the trait is true, else if type is a cv class
3148 // or union type with copy assignment operators that are known
3149 // not to throw an exception then the trait is true, else it is
3150 // false.
3151 if (C.getBaseElementType(T).isConstQualified())
3152 return false;
3153 if (T->isReferenceType())
3154 return false;
3155 if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3156 return true;
3157 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3158 if (RD->hasTrivialCopyAssignment() && !RD->hasNonTrivialCopyAssignment())
3159 return true;
3160
3161 bool FoundAssign = false;
3162 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3163 LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3164 Sema::LookupOrdinaryName);
3165 if (Self.LookupQualifiedName(Res, RD)) {
3166 Res.suppressDiagnostics();
3167 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3168 Op != OpEnd; ++Op) {
3169 if (isa<FunctionTemplateDecl>(*Op))
3170 continue;
3171
3172 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3173 if (Operator->isCopyAssignmentOperator()) {
3174 FoundAssign = true;
3175 const FunctionProtoType *CPT
3176 = Operator->getType()->getAs<FunctionProtoType>();
3177 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3178 if (!CPT)
3179 return false;
3180 if (!CPT->isNothrow(Self.Context))
3181 return false;
3182 }
3183 }
3184 }
3185
3186 return FoundAssign;
3187 }
3188 return false;
3189 case UTT_HasNothrowCopy:
3190 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3191 // If __has_trivial_copy (type) is true then the trait is true, else
3192 // if type is a cv class or union type with copy constructors that are
3193 // known not to throw an exception then the trait is true, else it is
3194 // false.
3195 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3196 return true;
3197 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3198 if (RD->hasTrivialCopyConstructor() &&
3199 !RD->hasNonTrivialCopyConstructor())
3200 return true;
3201
3202 bool FoundConstructor = false;
3203 unsigned FoundTQs;
3204 DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3205 for (DeclContext::lookup_const_iterator Con = R.begin(),
3206 ConEnd = R.end(); Con != ConEnd; ++Con) {
3207 // A template constructor is never a copy constructor.
3208 // FIXME: However, it may actually be selected at the actual overload
3209 // resolution point.
3210 if (isa<FunctionTemplateDecl>(*Con))
3211 continue;
3212 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3213 if (Constructor->isCopyConstructor(FoundTQs)) {
3214 FoundConstructor = true;
3215 const FunctionProtoType *CPT
3216 = Constructor->getType()->getAs<FunctionProtoType>();
3217 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3218 if (!CPT)
3219 return false;
3220 // FIXME: check whether evaluating default arguments can throw.
3221 // For now, we'll be conservative and assume that they can throw.
3222 if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3223 return false;
3224 }
3225 }
3226
3227 return FoundConstructor;
3228 }
3229 return false;
3230 case UTT_HasNothrowConstructor:
3231 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3232 // If __has_trivial_constructor (type) is true then the trait is
3233 // true, else if type is a cv class or union type (or array
3234 // thereof) with a default constructor that is known not to
3235 // throw an exception then the trait is true, else it is false.
3236 if (T.isPODType(C) || T->isObjCLifetimeType())
3237 return true;
3238 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3239 if (RD->hasTrivialDefaultConstructor() &&
3240 !RD->hasNonTrivialDefaultConstructor())
3241 return true;
3242
3243 DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3244 for (DeclContext::lookup_const_iterator Con = R.begin(),
3245 ConEnd = R.end(); Con != ConEnd; ++Con) {
3246 // FIXME: In C++0x, a constructor template can be a default constructor.
3247 if (isa<FunctionTemplateDecl>(*Con))
3248 continue;
3249 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3250 if (Constructor->isDefaultConstructor()) {
3251 const FunctionProtoType *CPT
3252 = Constructor->getType()->getAs<FunctionProtoType>();
3253 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3254 if (!CPT)
3255 return false;
3256 // TODO: check whether evaluating default arguments can throw.
3257 // For now, we'll be conservative and assume that they can throw.
3258 return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3259 }
3260 }
3261 }
3262 return false;
3263 case UTT_HasVirtualDestructor:
3264 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3265 // If type is a class type with a virtual destructor ([class.dtor])
3266 // then the trait is true, else it is false.
3267 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3268 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3269 return Destructor->isVirtual();
3270 return false;
3271
3272 // These type trait expressions are modeled on the specifications for the
3273 // Embarcadero C++0x type trait functions:
3274 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3275 case UTT_IsCompleteType:
3276 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3277 // Returns True if and only if T is a complete type at the point of the
3278 // function call.
3279 return !T->isIncompleteType();
3280 }
3281 llvm_unreachable("Type trait not covered by switch");
3282 }
3283
BuildUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,SourceLocation RParen)3284 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3285 SourceLocation KWLoc,
3286 TypeSourceInfo *TSInfo,
3287 SourceLocation RParen) {
3288 QualType T = TSInfo->getType();
3289 if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3290 return ExprError();
3291
3292 bool Value = false;
3293 if (!T->isDependentType())
3294 Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3295
3296 return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3297 RParen, Context.BoolTy));
3298 }
3299
ActOnBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,ParsedType LhsTy,ParsedType RhsTy,SourceLocation RParen)3300 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3301 SourceLocation KWLoc,
3302 ParsedType LhsTy,
3303 ParsedType RhsTy,
3304 SourceLocation RParen) {
3305 TypeSourceInfo *LhsTSInfo;
3306 QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3307 if (!LhsTSInfo)
3308 LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3309
3310 TypeSourceInfo *RhsTSInfo;
3311 QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3312 if (!RhsTSInfo)
3313 RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3314
3315 return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3316 }
3317
3318 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
3319 /// ARC mode.
hasNontrivialObjCLifetime(QualType T)3320 static bool hasNontrivialObjCLifetime(QualType T) {
3321 switch (T.getObjCLifetime()) {
3322 case Qualifiers::OCL_ExplicitNone:
3323 return false;
3324
3325 case Qualifiers::OCL_Strong:
3326 case Qualifiers::OCL_Weak:
3327 case Qualifiers::OCL_Autoreleasing:
3328 return true;
3329
3330 case Qualifiers::OCL_None:
3331 return T->isObjCLifetimeType();
3332 }
3333
3334 llvm_unreachable("Unknown ObjC lifetime qualifier");
3335 }
3336
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3337 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3338 ArrayRef<TypeSourceInfo *> Args,
3339 SourceLocation RParenLoc) {
3340 switch (Kind) {
3341 case clang::TT_IsTriviallyConstructible: {
3342 // C++11 [meta.unary.prop]:
3343 // is_trivially_constructible is defined as:
3344 //
3345 // is_constructible<T, Args...>::value is true and the variable
3346 // definition for is_constructible, as defined below, is known to call no
3347 // operation that is not trivial.
3348 //
3349 // The predicate condition for a template specialization
3350 // is_constructible<T, Args...> shall be satisfied if and only if the
3351 // following variable definition would be well-formed for some invented
3352 // variable t:
3353 //
3354 // T t(create<Args>()...);
3355 if (Args.empty()) {
3356 S.Diag(KWLoc, diag::err_type_trait_arity)
3357 << 1 << 1 << 1 << (int)Args.size();
3358 return false;
3359 }
3360
3361 bool SawVoid = false;
3362 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3363 if (Args[I]->getType()->isVoidType()) {
3364 SawVoid = true;
3365 continue;
3366 }
3367
3368 if (!Args[I]->getType()->isIncompleteType() &&
3369 S.RequireCompleteType(KWLoc, Args[I]->getType(),
3370 diag::err_incomplete_type_used_in_type_trait_expr))
3371 return false;
3372 }
3373
3374 // If any argument was 'void', of course it won't type-check.
3375 if (SawVoid)
3376 return false;
3377
3378 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3379 SmallVector<Expr *, 2> ArgExprs;
3380 ArgExprs.reserve(Args.size() - 1);
3381 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3382 QualType T = Args[I]->getType();
3383 if (T->isObjectType() || T->isFunctionType())
3384 T = S.Context.getRValueReferenceType(T);
3385 OpaqueArgExprs.push_back(
3386 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3387 T.getNonLValueExprType(S.Context),
3388 Expr::getValueKindForType(T)));
3389 ArgExprs.push_back(&OpaqueArgExprs.back());
3390 }
3391
3392 // Perform the initialization in an unevaluated context within a SFINAE
3393 // trap at translation unit scope.
3394 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3395 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3396 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3397 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3398 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3399 RParenLoc));
3400 InitializationSequence Init(S, To, InitKind,
3401 ArgExprs.begin(), ArgExprs.size());
3402 if (Init.Failed())
3403 return false;
3404
3405 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3406 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3407 return false;
3408
3409 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3410 // lifetime, this is a non-trivial construction.
3411 if (S.getLangOpts().ObjCAutoRefCount &&
3412 hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3413 return false;
3414
3415 // The initialization succeeded; now make sure there are no non-trivial
3416 // calls.
3417 return !Result.get()->hasNonTrivialCall(S.Context);
3418 }
3419 }
3420
3421 return false;
3422 }
3423
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3424 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3425 ArrayRef<TypeSourceInfo *> Args,
3426 SourceLocation RParenLoc) {
3427 bool Dependent = false;
3428 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3429 if (Args[I]->getType()->isDependentType()) {
3430 Dependent = true;
3431 break;
3432 }
3433 }
3434
3435 bool Value = false;
3436 if (!Dependent)
3437 Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3438
3439 return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3440 Args, RParenLoc, Value);
3441 }
3442
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)3443 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3444 ArrayRef<ParsedType> Args,
3445 SourceLocation RParenLoc) {
3446 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3447 ConvertedArgs.reserve(Args.size());
3448
3449 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3450 TypeSourceInfo *TInfo;
3451 QualType T = GetTypeFromParser(Args[I], &TInfo);
3452 if (!TInfo)
3453 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3454
3455 ConvertedArgs.push_back(TInfo);
3456 }
3457
3458 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3459 }
3460
EvaluateBinaryTypeTrait(Sema & Self,BinaryTypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)3461 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3462 QualType LhsT, QualType RhsT,
3463 SourceLocation KeyLoc) {
3464 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3465 "Cannot evaluate traits of dependent types");
3466
3467 switch(BTT) {
3468 case BTT_IsBaseOf: {
3469 // C++0x [meta.rel]p2
3470 // Base is a base class of Derived without regard to cv-qualifiers or
3471 // Base and Derived are not unions and name the same class type without
3472 // regard to cv-qualifiers.
3473
3474 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3475 if (!lhsRecord) return false;
3476
3477 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3478 if (!rhsRecord) return false;
3479
3480 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3481 == (lhsRecord == rhsRecord));
3482
3483 if (lhsRecord == rhsRecord)
3484 return !lhsRecord->getDecl()->isUnion();
3485
3486 // C++0x [meta.rel]p2:
3487 // If Base and Derived are class types and are different types
3488 // (ignoring possible cv-qualifiers) then Derived shall be a
3489 // complete type.
3490 if (Self.RequireCompleteType(KeyLoc, RhsT,
3491 diag::err_incomplete_type_used_in_type_trait_expr))
3492 return false;
3493
3494 return cast<CXXRecordDecl>(rhsRecord->getDecl())
3495 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3496 }
3497 case BTT_IsSame:
3498 return Self.Context.hasSameType(LhsT, RhsT);
3499 case BTT_TypeCompatible:
3500 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3501 RhsT.getUnqualifiedType());
3502 case BTT_IsConvertible:
3503 case BTT_IsConvertibleTo: {
3504 // C++0x [meta.rel]p4:
3505 // Given the following function prototype:
3506 //
3507 // template <class T>
3508 // typename add_rvalue_reference<T>::type create();
3509 //
3510 // the predicate condition for a template specialization
3511 // is_convertible<From, To> shall be satisfied if and only if
3512 // the return expression in the following code would be
3513 // well-formed, including any implicit conversions to the return
3514 // type of the function:
3515 //
3516 // To test() {
3517 // return create<From>();
3518 // }
3519 //
3520 // Access checking is performed as if in a context unrelated to To and
3521 // From. Only the validity of the immediate context of the expression
3522 // of the return-statement (including conversions to the return type)
3523 // is considered.
3524 //
3525 // We model the initialization as a copy-initialization of a temporary
3526 // of the appropriate type, which for this expression is identical to the
3527 // return statement (since NRVO doesn't apply).
3528
3529 // Functions aren't allowed to return function or array types.
3530 if (RhsT->isFunctionType() || RhsT->isArrayType())
3531 return false;
3532
3533 // A return statement in a void function must have void type.
3534 if (RhsT->isVoidType())
3535 return LhsT->isVoidType();
3536
3537 // A function definition requires a complete, non-abstract return type.
3538 if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3539 Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3540 return false;
3541
3542 // Compute the result of add_rvalue_reference.
3543 if (LhsT->isObjectType() || LhsT->isFunctionType())
3544 LhsT = Self.Context.getRValueReferenceType(LhsT);
3545
3546 // Build a fake source and destination for initialization.
3547 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3548 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3549 Expr::getValueKindForType(LhsT));
3550 Expr *FromPtr = &From;
3551 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3552 SourceLocation()));
3553
3554 // Perform the initialization in an unevaluated context within a SFINAE
3555 // trap at translation unit scope.
3556 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3557 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3558 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3559 InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3560 if (Init.Failed())
3561 return false;
3562
3563 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3564 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3565 }
3566
3567 case BTT_IsTriviallyAssignable: {
3568 // C++11 [meta.unary.prop]p3:
3569 // is_trivially_assignable is defined as:
3570 // is_assignable<T, U>::value is true and the assignment, as defined by
3571 // is_assignable, is known to call no operation that is not trivial
3572 //
3573 // is_assignable is defined as:
3574 // The expression declval<T>() = declval<U>() is well-formed when
3575 // treated as an unevaluated operand (Clause 5).
3576 //
3577 // For both, T and U shall be complete types, (possibly cv-qualified)
3578 // void, or arrays of unknown bound.
3579 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3580 Self.RequireCompleteType(KeyLoc, LhsT,
3581 diag::err_incomplete_type_used_in_type_trait_expr))
3582 return false;
3583 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3584 Self.RequireCompleteType(KeyLoc, RhsT,
3585 diag::err_incomplete_type_used_in_type_trait_expr))
3586 return false;
3587
3588 // cv void is never assignable.
3589 if (LhsT->isVoidType() || RhsT->isVoidType())
3590 return false;
3591
3592 // Build expressions that emulate the effect of declval<T>() and
3593 // declval<U>().
3594 if (LhsT->isObjectType() || LhsT->isFunctionType())
3595 LhsT = Self.Context.getRValueReferenceType(LhsT);
3596 if (RhsT->isObjectType() || RhsT->isFunctionType())
3597 RhsT = Self.Context.getRValueReferenceType(RhsT);
3598 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3599 Expr::getValueKindForType(LhsT));
3600 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3601 Expr::getValueKindForType(RhsT));
3602
3603 // Attempt the assignment in an unevaluated context within a SFINAE
3604 // trap at translation unit scope.
3605 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3606 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3607 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3608 ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3609 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3610 return false;
3611
3612 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3613 // lifetime, this is a non-trivial assignment.
3614 if (Self.getLangOpts().ObjCAutoRefCount &&
3615 hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3616 return false;
3617
3618 return !Result.get()->hasNonTrivialCall(Self.Context);
3619 }
3620 }
3621 llvm_unreachable("Unknown type trait or not implemented");
3622 }
3623
BuildBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,TypeSourceInfo * LhsTSInfo,TypeSourceInfo * RhsTSInfo,SourceLocation RParen)3624 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3625 SourceLocation KWLoc,
3626 TypeSourceInfo *LhsTSInfo,
3627 TypeSourceInfo *RhsTSInfo,
3628 SourceLocation RParen) {
3629 QualType LhsT = LhsTSInfo->getType();
3630 QualType RhsT = RhsTSInfo->getType();
3631
3632 if (BTT == BTT_TypeCompatible) {
3633 if (getLangOpts().CPlusPlus) {
3634 Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3635 << SourceRange(KWLoc, RParen);
3636 return ExprError();
3637 }
3638 }
3639
3640 bool Value = false;
3641 if (!LhsT->isDependentType() && !RhsT->isDependentType())
3642 Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3643
3644 // Select trait result type.
3645 QualType ResultType;
3646 switch (BTT) {
3647 case BTT_IsBaseOf: ResultType = Context.BoolTy; break;
3648 case BTT_IsConvertible: ResultType = Context.BoolTy; break;
3649 case BTT_IsSame: ResultType = Context.BoolTy; break;
3650 case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3651 case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3652 case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3653 }
3654
3655 return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3656 RhsTSInfo, Value, RParen,
3657 ResultType));
3658 }
3659
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)3660 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3661 SourceLocation KWLoc,
3662 ParsedType Ty,
3663 Expr* DimExpr,
3664 SourceLocation RParen) {
3665 TypeSourceInfo *TSInfo;
3666 QualType T = GetTypeFromParser(Ty, &TSInfo);
3667 if (!TSInfo)
3668 TSInfo = Context.getTrivialTypeSourceInfo(T);
3669
3670 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3671 }
3672
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)3673 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3674 QualType T, Expr *DimExpr,
3675 SourceLocation KeyLoc) {
3676 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3677
3678 switch(ATT) {
3679 case ATT_ArrayRank:
3680 if (T->isArrayType()) {
3681 unsigned Dim = 0;
3682 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3683 ++Dim;
3684 T = AT->getElementType();
3685 }
3686 return Dim;
3687 }
3688 return 0;
3689
3690 case ATT_ArrayExtent: {
3691 llvm::APSInt Value;
3692 uint64_t Dim;
3693 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3694 diag::err_dimension_expr_not_constant_integer,
3695 false).isInvalid())
3696 return 0;
3697 if (Value.isSigned() && Value.isNegative()) {
3698 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3699 << DimExpr->getSourceRange();
3700 return 0;
3701 }
3702 Dim = Value.getLimitedValue();
3703
3704 if (T->isArrayType()) {
3705 unsigned D = 0;
3706 bool Matched = false;
3707 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3708 if (Dim == D) {
3709 Matched = true;
3710 break;
3711 }
3712 ++D;
3713 T = AT->getElementType();
3714 }
3715
3716 if (Matched && T->isArrayType()) {
3717 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3718 return CAT->getSize().getLimitedValue();
3719 }
3720 }
3721 return 0;
3722 }
3723 }
3724 llvm_unreachable("Unknown type trait or not implemented");
3725 }
3726
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)3727 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3728 SourceLocation KWLoc,
3729 TypeSourceInfo *TSInfo,
3730 Expr* DimExpr,
3731 SourceLocation RParen) {
3732 QualType T = TSInfo->getType();
3733
3734 // FIXME: This should likely be tracked as an APInt to remove any host
3735 // assumptions about the width of size_t on the target.
3736 uint64_t Value = 0;
3737 if (!T->isDependentType())
3738 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3739
3740 // While the specification for these traits from the Embarcadero C++
3741 // compiler's documentation says the return type is 'unsigned int', Clang
3742 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3743 // compiler, there is no difference. On several other platforms this is an
3744 // important distinction.
3745 return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3746 DimExpr, RParen,
3747 Context.getSizeType()));
3748 }
3749
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3750 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3751 SourceLocation KWLoc,
3752 Expr *Queried,
3753 SourceLocation RParen) {
3754 // If error parsing the expression, ignore.
3755 if (!Queried)
3756 return ExprError();
3757
3758 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3759
3760 return Result;
3761 }
3762
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)3763 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3764 switch (ET) {
3765 case ET_IsLValueExpr: return E->isLValue();
3766 case ET_IsRValueExpr: return E->isRValue();
3767 }
3768 llvm_unreachable("Expression trait not covered by switch");
3769 }
3770
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3771 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3772 SourceLocation KWLoc,
3773 Expr *Queried,
3774 SourceLocation RParen) {
3775 if (Queried->isTypeDependent()) {
3776 // Delay type-checking for type-dependent expressions.
3777 } else if (Queried->getType()->isPlaceholderType()) {
3778 ExprResult PE = CheckPlaceholderExpr(Queried);
3779 if (PE.isInvalid()) return ExprError();
3780 return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3781 }
3782
3783 bool Value = EvaluateExpressionTrait(ET, Queried);
3784
3785 return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3786 RParen, Context.BoolTy));
3787 }
3788
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)3789 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3790 ExprValueKind &VK,
3791 SourceLocation Loc,
3792 bool isIndirect) {
3793 assert(!LHS.get()->getType()->isPlaceholderType() &&
3794 !RHS.get()->getType()->isPlaceholderType() &&
3795 "placeholders should have been weeded out by now");
3796
3797 // The LHS undergoes lvalue conversions if this is ->*.
3798 if (isIndirect) {
3799 LHS = DefaultLvalueConversion(LHS.take());
3800 if (LHS.isInvalid()) return QualType();
3801 }
3802
3803 // The RHS always undergoes lvalue conversions.
3804 RHS = DefaultLvalueConversion(RHS.take());
3805 if (RHS.isInvalid()) return QualType();
3806
3807 const char *OpSpelling = isIndirect ? "->*" : ".*";
3808 // C++ 5.5p2
3809 // The binary operator .* [p3: ->*] binds its second operand, which shall
3810 // be of type "pointer to member of T" (where T is a completely-defined
3811 // class type) [...]
3812 QualType RHSType = RHS.get()->getType();
3813 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3814 if (!MemPtr) {
3815 Diag(Loc, diag::err_bad_memptr_rhs)
3816 << OpSpelling << RHSType << RHS.get()->getSourceRange();
3817 return QualType();
3818 }
3819
3820 QualType Class(MemPtr->getClass(), 0);
3821
3822 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3823 // member pointer points must be completely-defined. However, there is no
3824 // reason for this semantic distinction, and the rule is not enforced by
3825 // other compilers. Therefore, we do not check this property, as it is
3826 // likely to be considered a defect.
3827
3828 // C++ 5.5p2
3829 // [...] to its first operand, which shall be of class T or of a class of
3830 // which T is an unambiguous and accessible base class. [p3: a pointer to
3831 // such a class]
3832 QualType LHSType = LHS.get()->getType();
3833 if (isIndirect) {
3834 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3835 LHSType = Ptr->getPointeeType();
3836 else {
3837 Diag(Loc, diag::err_bad_memptr_lhs)
3838 << OpSpelling << 1 << LHSType
3839 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3840 return QualType();
3841 }
3842 }
3843
3844 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3845 // If we want to check the hierarchy, we need a complete type.
3846 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3847 OpSpelling, (int)isIndirect)) {
3848 return QualType();
3849 }
3850 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3851 /*DetectVirtual=*/false);
3852 // FIXME: Would it be useful to print full ambiguity paths, or is that
3853 // overkill?
3854 if (!IsDerivedFrom(LHSType, Class, Paths) ||
3855 Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3856 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3857 << (int)isIndirect << LHS.get()->getType();
3858 return QualType();
3859 }
3860 // Cast LHS to type of use.
3861 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3862 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3863
3864 CXXCastPath BasePath;
3865 BuildBasePathArray(Paths, BasePath);
3866 LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3867 &BasePath);
3868 }
3869
3870 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3871 // Diagnose use of pointer-to-member type which when used as
3872 // the functional cast in a pointer-to-member expression.
3873 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3874 return QualType();
3875 }
3876
3877 // C++ 5.5p2
3878 // The result is an object or a function of the type specified by the
3879 // second operand.
3880 // The cv qualifiers are the union of those in the pointer and the left side,
3881 // in accordance with 5.5p5 and 5.2.5.
3882 QualType Result = MemPtr->getPointeeType();
3883 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3884
3885 // C++0x [expr.mptr.oper]p6:
3886 // In a .* expression whose object expression is an rvalue, the program is
3887 // ill-formed if the second operand is a pointer to member function with
3888 // ref-qualifier &. In a ->* expression or in a .* expression whose object
3889 // expression is an lvalue, the program is ill-formed if the second operand
3890 // is a pointer to member function with ref-qualifier &&.
3891 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3892 switch (Proto->getRefQualifier()) {
3893 case RQ_None:
3894 // Do nothing
3895 break;
3896
3897 case RQ_LValue:
3898 if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3899 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3900 << RHSType << 1 << LHS.get()->getSourceRange();
3901 break;
3902
3903 case RQ_RValue:
3904 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3905 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3906 << RHSType << 0 << LHS.get()->getSourceRange();
3907 break;
3908 }
3909 }
3910
3911 // C++ [expr.mptr.oper]p6:
3912 // The result of a .* expression whose second operand is a pointer
3913 // to a data member is of the same value category as its
3914 // first operand. The result of a .* expression whose second
3915 // operand is a pointer to a member function is a prvalue. The
3916 // result of an ->* expression is an lvalue if its second operand
3917 // is a pointer to data member and a prvalue otherwise.
3918 if (Result->isFunctionType()) {
3919 VK = VK_RValue;
3920 return Context.BoundMemberTy;
3921 } else if (isIndirect) {
3922 VK = VK_LValue;
3923 } else {
3924 VK = LHS.get()->getValueKind();
3925 }
3926
3927 return Result;
3928 }
3929
3930 /// \brief Try to convert a type to another according to C++0x 5.16p3.
3931 ///
3932 /// This is part of the parameter validation for the ? operator. If either
3933 /// value operand is a class type, the two operands are attempted to be
3934 /// converted to each other. This function does the conversion in one direction.
3935 /// It returns true if the program is ill-formed and has already been diagnosed
3936 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)3937 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3938 SourceLocation QuestionLoc,
3939 bool &HaveConversion,
3940 QualType &ToType) {
3941 HaveConversion = false;
3942 ToType = To->getType();
3943
3944 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3945 SourceLocation());
3946 // C++0x 5.16p3
3947 // The process for determining whether an operand expression E1 of type T1
3948 // can be converted to match an operand expression E2 of type T2 is defined
3949 // as follows:
3950 // -- If E2 is an lvalue:
3951 bool ToIsLvalue = To->isLValue();
3952 if (ToIsLvalue) {
3953 // E1 can be converted to match E2 if E1 can be implicitly converted to
3954 // type "lvalue reference to T2", subject to the constraint that in the
3955 // conversion the reference must bind directly to E1.
3956 QualType T = Self.Context.getLValueReferenceType(ToType);
3957 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3958
3959 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3960 if (InitSeq.isDirectReferenceBinding()) {
3961 ToType = T;
3962 HaveConversion = true;
3963 return false;
3964 }
3965
3966 if (InitSeq.isAmbiguous())
3967 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3968 }
3969
3970 // -- If E2 is an rvalue, or if the conversion above cannot be done:
3971 // -- if E1 and E2 have class type, and the underlying class types are
3972 // the same or one is a base class of the other:
3973 QualType FTy = From->getType();
3974 QualType TTy = To->getType();
3975 const RecordType *FRec = FTy->getAs<RecordType>();
3976 const RecordType *TRec = TTy->getAs<RecordType>();
3977 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3978 Self.IsDerivedFrom(FTy, TTy);
3979 if (FRec && TRec &&
3980 (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3981 // E1 can be converted to match E2 if the class of T2 is the
3982 // same type as, or a base class of, the class of T1, and
3983 // [cv2 > cv1].
3984 if (FRec == TRec || FDerivedFromT) {
3985 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3986 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3987 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3988 if (InitSeq) {
3989 HaveConversion = true;
3990 return false;
3991 }
3992
3993 if (InitSeq.isAmbiguous())
3994 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3995 }
3996 }
3997
3998 return false;
3999 }
4000
4001 // -- Otherwise: E1 can be converted to match E2 if E1 can be
4002 // implicitly converted to the type that expression E2 would have
4003 // if E2 were converted to an rvalue (or the type it has, if E2 is
4004 // an rvalue).
4005 //
4006 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4007 // to the array-to-pointer or function-to-pointer conversions.
4008 if (!TTy->getAs<TagType>())
4009 TTy = TTy.getUnqualifiedType();
4010
4011 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4012 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
4013 HaveConversion = !InitSeq.Failed();
4014 ToType = TTy;
4015 if (InitSeq.isAmbiguous())
4016 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4017
4018 return false;
4019 }
4020
4021 /// \brief Try to find a common type for two according to C++0x 5.16p5.
4022 ///
4023 /// This is part of the parameter validation for the ? operator. If either
4024 /// value operand is a class type, overload resolution is used to find a
4025 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4026 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4027 SourceLocation QuestionLoc) {
4028 Expr *Args[2] = { LHS.get(), RHS.get() };
4029 OverloadCandidateSet CandidateSet(QuestionLoc);
4030 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
4031 CandidateSet);
4032
4033 OverloadCandidateSet::iterator Best;
4034 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4035 case OR_Success: {
4036 // We found a match. Perform the conversions on the arguments and move on.
4037 ExprResult LHSRes =
4038 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4039 Best->Conversions[0], Sema::AA_Converting);
4040 if (LHSRes.isInvalid())
4041 break;
4042 LHS = LHSRes;
4043
4044 ExprResult RHSRes =
4045 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4046 Best->Conversions[1], Sema::AA_Converting);
4047 if (RHSRes.isInvalid())
4048 break;
4049 RHS = RHSRes;
4050 if (Best->Function)
4051 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4052 return false;
4053 }
4054
4055 case OR_No_Viable_Function:
4056
4057 // Emit a better diagnostic if one of the expressions is a null pointer
4058 // constant and the other is a pointer type. In this case, the user most
4059 // likely forgot to take the address of the other expression.
4060 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4061 return true;
4062
4063 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4064 << LHS.get()->getType() << RHS.get()->getType()
4065 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4066 return true;
4067
4068 case OR_Ambiguous:
4069 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4070 << LHS.get()->getType() << RHS.get()->getType()
4071 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4072 // FIXME: Print the possible common types by printing the return types of
4073 // the viable candidates.
4074 break;
4075
4076 case OR_Deleted:
4077 llvm_unreachable("Conditional operator has only built-in overloads");
4078 }
4079 return true;
4080 }
4081
4082 /// \brief Perform an "extended" implicit conversion as returned by
4083 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)4084 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4085 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4086 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4087 SourceLocation());
4088 Expr *Arg = E.take();
4089 InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4090 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4091 if (Result.isInvalid())
4092 return true;
4093
4094 E = Result;
4095 return false;
4096 }
4097
4098 /// \brief Check the operands of ?: under C++ semantics.
4099 ///
4100 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4101 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4102 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4103 ExprResult &RHS, ExprValueKind &VK,
4104 ExprObjectKind &OK,
4105 SourceLocation QuestionLoc) {
4106 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4107 // interface pointers.
4108
4109 // C++11 [expr.cond]p1
4110 // The first expression is contextually converted to bool.
4111 if (!Cond.get()->isTypeDependent()) {
4112 ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4113 if (CondRes.isInvalid())
4114 return QualType();
4115 Cond = CondRes;
4116 }
4117
4118 // Assume r-value.
4119 VK = VK_RValue;
4120 OK = OK_Ordinary;
4121
4122 // Either of the arguments dependent?
4123 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4124 return Context.DependentTy;
4125
4126 // C++11 [expr.cond]p2
4127 // If either the second or the third operand has type (cv) void, ...
4128 QualType LTy = LHS.get()->getType();
4129 QualType RTy = RHS.get()->getType();
4130 bool LVoid = LTy->isVoidType();
4131 bool RVoid = RTy->isVoidType();
4132 if (LVoid || RVoid) {
4133 // ... then the [l2r] conversions are performed on the second and third
4134 // operands ...
4135 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4136 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4137 if (LHS.isInvalid() || RHS.isInvalid())
4138 return QualType();
4139
4140 // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4141 // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4142 // do this part for us.
4143 ExprResult &NonVoid = LVoid ? RHS : LHS;
4144 if (NonVoid.get()->getType()->isRecordType() &&
4145 NonVoid.get()->isGLValue()) {
4146 if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4147 diag::err_allocation_of_abstract_type))
4148 return QualType();
4149 InitializedEntity Entity =
4150 InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4151 NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4152 if (NonVoid.isInvalid())
4153 return QualType();
4154 }
4155
4156 LTy = LHS.get()->getType();
4157 RTy = RHS.get()->getType();
4158
4159 // ... and one of the following shall hold:
4160 // -- The second or the third operand (but not both) is a throw-
4161 // expression; the result is of the type of the other and is a prvalue.
4162 bool LThrow = isa<CXXThrowExpr>(LHS.get());
4163 bool RThrow = isa<CXXThrowExpr>(RHS.get());
4164 if (LThrow && !RThrow)
4165 return RTy;
4166 if (RThrow && !LThrow)
4167 return LTy;
4168
4169 // -- Both the second and third operands have type void; the result is of
4170 // type void and is a prvalue.
4171 if (LVoid && RVoid)
4172 return Context.VoidTy;
4173
4174 // Neither holds, error.
4175 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4176 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4177 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4178 return QualType();
4179 }
4180
4181 // Neither is void.
4182
4183 // C++11 [expr.cond]p3
4184 // Otherwise, if the second and third operand have different types, and
4185 // either has (cv) class type [...] an attempt is made to convert each of
4186 // those operands to the type of the other.
4187 if (!Context.hasSameType(LTy, RTy) &&
4188 (LTy->isRecordType() || RTy->isRecordType())) {
4189 ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4190 // These return true if a single direction is already ambiguous.
4191 QualType L2RType, R2LType;
4192 bool HaveL2R, HaveR2L;
4193 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4194 return QualType();
4195 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4196 return QualType();
4197
4198 // If both can be converted, [...] the program is ill-formed.
4199 if (HaveL2R && HaveR2L) {
4200 Diag(QuestionLoc, diag::err_conditional_ambiguous)
4201 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4202 return QualType();
4203 }
4204
4205 // If exactly one conversion is possible, that conversion is applied to
4206 // the chosen operand and the converted operands are used in place of the
4207 // original operands for the remainder of this section.
4208 if (HaveL2R) {
4209 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4210 return QualType();
4211 LTy = LHS.get()->getType();
4212 } else if (HaveR2L) {
4213 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4214 return QualType();
4215 RTy = RHS.get()->getType();
4216 }
4217 }
4218
4219 // C++11 [expr.cond]p3
4220 // if both are glvalues of the same value category and the same type except
4221 // for cv-qualification, an attempt is made to convert each of those
4222 // operands to the type of the other.
4223 ExprValueKind LVK = LHS.get()->getValueKind();
4224 ExprValueKind RVK = RHS.get()->getValueKind();
4225 if (!Context.hasSameType(LTy, RTy) &&
4226 Context.hasSameUnqualifiedType(LTy, RTy) &&
4227 LVK == RVK && LVK != VK_RValue) {
4228 // Since the unqualified types are reference-related and we require the
4229 // result to be as if a reference bound directly, the only conversion
4230 // we can perform is to add cv-qualifiers.
4231 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4232 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4233 if (RCVR.isStrictSupersetOf(LCVR)) {
4234 LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4235 LTy = LHS.get()->getType();
4236 }
4237 else if (LCVR.isStrictSupersetOf(RCVR)) {
4238 RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4239 RTy = RHS.get()->getType();
4240 }
4241 }
4242
4243 // C++11 [expr.cond]p4
4244 // If the second and third operands are glvalues of the same value
4245 // category and have the same type, the result is of that type and
4246 // value category and it is a bit-field if the second or the third
4247 // operand is a bit-field, or if both are bit-fields.
4248 // We only extend this to bitfields, not to the crazy other kinds of
4249 // l-values.
4250 bool Same = Context.hasSameType(LTy, RTy);
4251 if (Same && LVK == RVK && LVK != VK_RValue &&
4252 LHS.get()->isOrdinaryOrBitFieldObject() &&
4253 RHS.get()->isOrdinaryOrBitFieldObject()) {
4254 VK = LHS.get()->getValueKind();
4255 if (LHS.get()->getObjectKind() == OK_BitField ||
4256 RHS.get()->getObjectKind() == OK_BitField)
4257 OK = OK_BitField;
4258 return LTy;
4259 }
4260
4261 // C++11 [expr.cond]p5
4262 // Otherwise, the result is a prvalue. If the second and third operands
4263 // do not have the same type, and either has (cv) class type, ...
4264 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4265 // ... overload resolution is used to determine the conversions (if any)
4266 // to be applied to the operands. If the overload resolution fails, the
4267 // program is ill-formed.
4268 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4269 return QualType();
4270 }
4271
4272 // C++11 [expr.cond]p6
4273 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4274 // conversions are performed on the second and third operands.
4275 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4276 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4277 if (LHS.isInvalid() || RHS.isInvalid())
4278 return QualType();
4279 LTy = LHS.get()->getType();
4280 RTy = RHS.get()->getType();
4281
4282 // After those conversions, one of the following shall hold:
4283 // -- The second and third operands have the same type; the result
4284 // is of that type. If the operands have class type, the result
4285 // is a prvalue temporary of the result type, which is
4286 // copy-initialized from either the second operand or the third
4287 // operand depending on the value of the first operand.
4288 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4289 if (LTy->isRecordType()) {
4290 // The operands have class type. Make a temporary copy.
4291 if (RequireNonAbstractType(QuestionLoc, LTy,
4292 diag::err_allocation_of_abstract_type))
4293 return QualType();
4294 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4295
4296 ExprResult LHSCopy = PerformCopyInitialization(Entity,
4297 SourceLocation(),
4298 LHS);
4299 if (LHSCopy.isInvalid())
4300 return QualType();
4301
4302 ExprResult RHSCopy = PerformCopyInitialization(Entity,
4303 SourceLocation(),
4304 RHS);
4305 if (RHSCopy.isInvalid())
4306 return QualType();
4307
4308 LHS = LHSCopy;
4309 RHS = RHSCopy;
4310 }
4311
4312 return LTy;
4313 }
4314
4315 // Extension: conditional operator involving vector types.
4316 if (LTy->isVectorType() || RTy->isVectorType())
4317 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4318
4319 // -- The second and third operands have arithmetic or enumeration type;
4320 // the usual arithmetic conversions are performed to bring them to a
4321 // common type, and the result is of that type.
4322 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4323 UsualArithmeticConversions(LHS, RHS);
4324 if (LHS.isInvalid() || RHS.isInvalid())
4325 return QualType();
4326 return LHS.get()->getType();
4327 }
4328
4329 // -- The second and third operands have pointer type, or one has pointer
4330 // type and the other is a null pointer constant, or both are null
4331 // pointer constants, at least one of which is non-integral; pointer
4332 // conversions and qualification conversions are performed to bring them
4333 // to their composite pointer type. The result is of the composite
4334 // pointer type.
4335 // -- The second and third operands have pointer to member type, or one has
4336 // pointer to member type and the other is a null pointer constant;
4337 // pointer to member conversions and qualification conversions are
4338 // performed to bring them to a common type, whose cv-qualification
4339 // shall match the cv-qualification of either the second or the third
4340 // operand. The result is of the common type.
4341 bool NonStandardCompositeType = false;
4342 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4343 isSFINAEContext()? 0 : &NonStandardCompositeType);
4344 if (!Composite.isNull()) {
4345 if (NonStandardCompositeType)
4346 Diag(QuestionLoc,
4347 diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4348 << LTy << RTy << Composite
4349 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4350
4351 return Composite;
4352 }
4353
4354 // Similarly, attempt to find composite type of two objective-c pointers.
4355 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4356 if (!Composite.isNull())
4357 return Composite;
4358
4359 // Check if we are using a null with a non-pointer type.
4360 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4361 return QualType();
4362
4363 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4364 << LHS.get()->getType() << RHS.get()->getType()
4365 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4366 return QualType();
4367 }
4368
4369 /// \brief Find a merged pointer type and convert the two expressions to it.
4370 ///
4371 /// This finds the composite pointer type (or member pointer type) for @p E1
4372 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4373 /// type and returns it.
4374 /// It does not emit diagnostics.
4375 ///
4376 /// \param Loc The location of the operator requiring these two expressions to
4377 /// be converted to the composite pointer type.
4378 ///
4379 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4380 /// a non-standard (but still sane) composite type to which both expressions
4381 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4382 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)4383 QualType Sema::FindCompositePointerType(SourceLocation Loc,
4384 Expr *&E1, Expr *&E2,
4385 bool *NonStandardCompositeType) {
4386 if (NonStandardCompositeType)
4387 *NonStandardCompositeType = false;
4388
4389 assert(getLangOpts().CPlusPlus && "This function assumes C++");
4390 QualType T1 = E1->getType(), T2 = E2->getType();
4391
4392 // C++11 5.9p2
4393 // Pointer conversions and qualification conversions are performed on
4394 // pointer operands to bring them to their composite pointer type. If
4395 // one operand is a null pointer constant, the composite pointer type is
4396 // std::nullptr_t if the other operand is also a null pointer constant or,
4397 // if the other operand is a pointer, the type of the other operand.
4398 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4399 !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4400 if (T1->isNullPtrType() &&
4401 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4402 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4403 return T1;
4404 }
4405 if (T2->isNullPtrType() &&
4406 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4407 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4408 return T2;
4409 }
4410 return QualType();
4411 }
4412
4413 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4414 if (T2->isMemberPointerType())
4415 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4416 else
4417 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4418 return T2;
4419 }
4420 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4421 if (T1->isMemberPointerType())
4422 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4423 else
4424 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4425 return T1;
4426 }
4427
4428 // Now both have to be pointers or member pointers.
4429 if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4430 (!T2->isPointerType() && !T2->isMemberPointerType()))
4431 return QualType();
4432
4433 // Otherwise, of one of the operands has type "pointer to cv1 void," then
4434 // the other has type "pointer to cv2 T" and the composite pointer type is
4435 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4436 // Otherwise, the composite pointer type is a pointer type similar to the
4437 // type of one of the operands, with a cv-qualification signature that is
4438 // the union of the cv-qualification signatures of the operand types.
4439 // In practice, the first part here is redundant; it's subsumed by the second.
4440 // What we do here is, we build the two possible composite types, and try the
4441 // conversions in both directions. If only one works, or if the two composite
4442 // types are the same, we have succeeded.
4443 // FIXME: extended qualifiers?
4444 typedef SmallVector<unsigned, 4> QualifierVector;
4445 QualifierVector QualifierUnion;
4446 typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4447 ContainingClassVector;
4448 ContainingClassVector MemberOfClass;
4449 QualType Composite1 = Context.getCanonicalType(T1),
4450 Composite2 = Context.getCanonicalType(T2);
4451 unsigned NeedConstBefore = 0;
4452 do {
4453 const PointerType *Ptr1, *Ptr2;
4454 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4455 (Ptr2 = Composite2->getAs<PointerType>())) {
4456 Composite1 = Ptr1->getPointeeType();
4457 Composite2 = Ptr2->getPointeeType();
4458
4459 // If we're allowed to create a non-standard composite type, keep track
4460 // of where we need to fill in additional 'const' qualifiers.
4461 if (NonStandardCompositeType &&
4462 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4463 NeedConstBefore = QualifierUnion.size();
4464
4465 QualifierUnion.push_back(
4466 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4467 MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4468 continue;
4469 }
4470
4471 const MemberPointerType *MemPtr1, *MemPtr2;
4472 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4473 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4474 Composite1 = MemPtr1->getPointeeType();
4475 Composite2 = MemPtr2->getPointeeType();
4476
4477 // If we're allowed to create a non-standard composite type, keep track
4478 // of where we need to fill in additional 'const' qualifiers.
4479 if (NonStandardCompositeType &&
4480 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4481 NeedConstBefore = QualifierUnion.size();
4482
4483 QualifierUnion.push_back(
4484 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4485 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4486 MemPtr2->getClass()));
4487 continue;
4488 }
4489
4490 // FIXME: block pointer types?
4491
4492 // Cannot unwrap any more types.
4493 break;
4494 } while (true);
4495
4496 if (NeedConstBefore && NonStandardCompositeType) {
4497 // Extension: Add 'const' to qualifiers that come before the first qualifier
4498 // mismatch, so that our (non-standard!) composite type meets the
4499 // requirements of C++ [conv.qual]p4 bullet 3.
4500 for (unsigned I = 0; I != NeedConstBefore; ++I) {
4501 if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4502 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4503 *NonStandardCompositeType = true;
4504 }
4505 }
4506 }
4507
4508 // Rewrap the composites as pointers or member pointers with the union CVRs.
4509 ContainingClassVector::reverse_iterator MOC
4510 = MemberOfClass.rbegin();
4511 for (QualifierVector::reverse_iterator
4512 I = QualifierUnion.rbegin(),
4513 E = QualifierUnion.rend();
4514 I != E; (void)++I, ++MOC) {
4515 Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4516 if (MOC->first && MOC->second) {
4517 // Rebuild member pointer type
4518 Composite1 = Context.getMemberPointerType(
4519 Context.getQualifiedType(Composite1, Quals),
4520 MOC->first);
4521 Composite2 = Context.getMemberPointerType(
4522 Context.getQualifiedType(Composite2, Quals),
4523 MOC->second);
4524 } else {
4525 // Rebuild pointer type
4526 Composite1
4527 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4528 Composite2
4529 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4530 }
4531 }
4532
4533 // Try to convert to the first composite pointer type.
4534 InitializedEntity Entity1
4535 = InitializedEntity::InitializeTemporary(Composite1);
4536 InitializationKind Kind
4537 = InitializationKind::CreateCopy(Loc, SourceLocation());
4538 InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4539 InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4540
4541 if (E1ToC1 && E2ToC1) {
4542 // Conversion to Composite1 is viable.
4543 if (!Context.hasSameType(Composite1, Composite2)) {
4544 // Composite2 is a different type from Composite1. Check whether
4545 // Composite2 is also viable.
4546 InitializedEntity Entity2
4547 = InitializedEntity::InitializeTemporary(Composite2);
4548 InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4549 InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4550 if (E1ToC2 && E2ToC2) {
4551 // Both Composite1 and Composite2 are viable and are different;
4552 // this is an ambiguity.
4553 return QualType();
4554 }
4555 }
4556
4557 // Convert E1 to Composite1
4558 ExprResult E1Result
4559 = E1ToC1.Perform(*this, Entity1, Kind, E1);
4560 if (E1Result.isInvalid())
4561 return QualType();
4562 E1 = E1Result.takeAs<Expr>();
4563
4564 // Convert E2 to Composite1
4565 ExprResult E2Result
4566 = E2ToC1.Perform(*this, Entity1, Kind, E2);
4567 if (E2Result.isInvalid())
4568 return QualType();
4569 E2 = E2Result.takeAs<Expr>();
4570
4571 return Composite1;
4572 }
4573
4574 // Check whether Composite2 is viable.
4575 InitializedEntity Entity2
4576 = InitializedEntity::InitializeTemporary(Composite2);
4577 InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4578 InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4579 if (!E1ToC2 || !E2ToC2)
4580 return QualType();
4581
4582 // Convert E1 to Composite2
4583 ExprResult E1Result
4584 = E1ToC2.Perform(*this, Entity2, Kind, E1);
4585 if (E1Result.isInvalid())
4586 return QualType();
4587 E1 = E1Result.takeAs<Expr>();
4588
4589 // Convert E2 to Composite2
4590 ExprResult E2Result
4591 = E2ToC2.Perform(*this, Entity2, Kind, E2);
4592 if (E2Result.isInvalid())
4593 return QualType();
4594 E2 = E2Result.takeAs<Expr>();
4595
4596 return Composite2;
4597 }
4598
MaybeBindToTemporary(Expr * E)4599 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4600 if (!E)
4601 return ExprError();
4602
4603 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4604
4605 // If the result is a glvalue, we shouldn't bind it.
4606 if (!E->isRValue())
4607 return Owned(E);
4608
4609 // In ARC, calls that return a retainable type can return retained,
4610 // in which case we have to insert a consuming cast.
4611 if (getLangOpts().ObjCAutoRefCount &&
4612 E->getType()->isObjCRetainableType()) {
4613
4614 bool ReturnsRetained;
4615
4616 // For actual calls, we compute this by examining the type of the
4617 // called value.
4618 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4619 Expr *Callee = Call->getCallee()->IgnoreParens();
4620 QualType T = Callee->getType();
4621
4622 if (T == Context.BoundMemberTy) {
4623 // Handle pointer-to-members.
4624 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4625 T = BinOp->getRHS()->getType();
4626 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4627 T = Mem->getMemberDecl()->getType();
4628 }
4629
4630 if (const PointerType *Ptr = T->getAs<PointerType>())
4631 T = Ptr->getPointeeType();
4632 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4633 T = Ptr->getPointeeType();
4634 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4635 T = MemPtr->getPointeeType();
4636
4637 const FunctionType *FTy = T->getAs<FunctionType>();
4638 assert(FTy && "call to value not of function type?");
4639 ReturnsRetained = FTy->getExtInfo().getProducesResult();
4640
4641 // ActOnStmtExpr arranges things so that StmtExprs of retainable
4642 // type always produce a +1 object.
4643 } else if (isa<StmtExpr>(E)) {
4644 ReturnsRetained = true;
4645
4646 // We hit this case with the lambda conversion-to-block optimization;
4647 // we don't want any extra casts here.
4648 } else if (isa<CastExpr>(E) &&
4649 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4650 return Owned(E);
4651
4652 // For message sends and property references, we try to find an
4653 // actual method. FIXME: we should infer retention by selector in
4654 // cases where we don't have an actual method.
4655 } else {
4656 ObjCMethodDecl *D = 0;
4657 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4658 D = Send->getMethodDecl();
4659 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4660 D = BoxedExpr->getBoxingMethod();
4661 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4662 D = ArrayLit->getArrayWithObjectsMethod();
4663 } else if (ObjCDictionaryLiteral *DictLit
4664 = dyn_cast<ObjCDictionaryLiteral>(E)) {
4665 D = DictLit->getDictWithObjectsMethod();
4666 }
4667
4668 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4669
4670 // Don't do reclaims on performSelector calls; despite their
4671 // return type, the invoked method doesn't necessarily actually
4672 // return an object.
4673 if (!ReturnsRetained &&
4674 D && D->getMethodFamily() == OMF_performSelector)
4675 return Owned(E);
4676 }
4677
4678 // Don't reclaim an object of Class type.
4679 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4680 return Owned(E);
4681
4682 ExprNeedsCleanups = true;
4683
4684 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4685 : CK_ARCReclaimReturnedObject);
4686 return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4687 VK_RValue));
4688 }
4689
4690 if (!getLangOpts().CPlusPlus)
4691 return Owned(E);
4692
4693 // Search for the base element type (cf. ASTContext::getBaseElementType) with
4694 // a fast path for the common case that the type is directly a RecordType.
4695 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4696 const RecordType *RT = 0;
4697 while (!RT) {
4698 switch (T->getTypeClass()) {
4699 case Type::Record:
4700 RT = cast<RecordType>(T);
4701 break;
4702 case Type::ConstantArray:
4703 case Type::IncompleteArray:
4704 case Type::VariableArray:
4705 case Type::DependentSizedArray:
4706 T = cast<ArrayType>(T)->getElementType().getTypePtr();
4707 break;
4708 default:
4709 return Owned(E);
4710 }
4711 }
4712
4713 // That should be enough to guarantee that this type is complete, if we're
4714 // not processing a decltype expression.
4715 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4716 if (RD->isInvalidDecl() || RD->isDependentContext())
4717 return Owned(E);
4718
4719 bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4720 CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4721
4722 if (Destructor) {
4723 MarkFunctionReferenced(E->getExprLoc(), Destructor);
4724 CheckDestructorAccess(E->getExprLoc(), Destructor,
4725 PDiag(diag::err_access_dtor_temp)
4726 << E->getType());
4727 DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4728
4729 // If destructor is trivial, we can avoid the extra copy.
4730 if (Destructor->isTrivial())
4731 return Owned(E);
4732
4733 // We need a cleanup, but we don't need to remember the temporary.
4734 ExprNeedsCleanups = true;
4735 }
4736
4737 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4738 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4739
4740 if (IsDecltype)
4741 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4742
4743 return Owned(Bind);
4744 }
4745
4746 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)4747 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4748 if (SubExpr.isInvalid())
4749 return ExprError();
4750
4751 return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4752 }
4753
MaybeCreateExprWithCleanups(Expr * SubExpr)4754 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4755 assert(SubExpr && "sub expression can't be null!");
4756
4757 CleanupVarDeclMarking();
4758
4759 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4760 assert(ExprCleanupObjects.size() >= FirstCleanup);
4761 assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4762 if (!ExprNeedsCleanups)
4763 return SubExpr;
4764
4765 ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4766 = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4767 ExprCleanupObjects.size() - FirstCleanup);
4768
4769 Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4770 DiscardCleanupsInEvaluationContext();
4771
4772 return E;
4773 }
4774
MaybeCreateStmtWithCleanups(Stmt * SubStmt)4775 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4776 assert(SubStmt && "sub statement can't be null!");
4777
4778 CleanupVarDeclMarking();
4779
4780 if (!ExprNeedsCleanups)
4781 return SubStmt;
4782
4783 // FIXME: In order to attach the temporaries, wrap the statement into
4784 // a StmtExpr; currently this is only used for asm statements.
4785 // This is hacky, either create a new CXXStmtWithTemporaries statement or
4786 // a new AsmStmtWithTemporaries.
4787 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
4788 SourceLocation(),
4789 SourceLocation());
4790 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4791 SourceLocation());
4792 return MaybeCreateExprWithCleanups(E);
4793 }
4794
4795 /// Process the expression contained within a decltype. For such expressions,
4796 /// certain semantic checks on temporaries are delayed until this point, and
4797 /// are omitted for the 'topmost' call in the decltype expression. If the
4798 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)4799 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4800 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
4801
4802 // C++11 [expr.call]p11:
4803 // If a function call is a prvalue of object type,
4804 // -- if the function call is either
4805 // -- the operand of a decltype-specifier, or
4806 // -- the right operand of a comma operator that is the operand of a
4807 // decltype-specifier,
4808 // a temporary object is not introduced for the prvalue.
4809
4810 // Recursively rebuild ParenExprs and comma expressions to strip out the
4811 // outermost CXXBindTemporaryExpr, if any.
4812 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4813 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4814 if (SubExpr.isInvalid())
4815 return ExprError();
4816 if (SubExpr.get() == PE->getSubExpr())
4817 return Owned(E);
4818 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4819 }
4820 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4821 if (BO->getOpcode() == BO_Comma) {
4822 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4823 if (RHS.isInvalid())
4824 return ExprError();
4825 if (RHS.get() == BO->getRHS())
4826 return Owned(E);
4827 return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4828 BO_Comma, BO->getType(),
4829 BO->getValueKind(),
4830 BO->getObjectKind(),
4831 BO->getOperatorLoc(),
4832 BO->isFPContractable()));
4833 }
4834 }
4835
4836 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4837 if (TopBind)
4838 E = TopBind->getSubExpr();
4839
4840 // Disable the special decltype handling now.
4841 ExprEvalContexts.back().IsDecltype = false;
4842
4843 // In MS mode, don't perform any extra checking of call return types within a
4844 // decltype expression.
4845 if (getLangOpts().MicrosoftMode)
4846 return Owned(E);
4847
4848 // Perform the semantic checks we delayed until this point.
4849 CallExpr *TopCall = dyn_cast<CallExpr>(E);
4850 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
4851 I != N; ++I) {
4852 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
4853 if (Call == TopCall)
4854 continue;
4855
4856 if (CheckCallReturnType(Call->getCallReturnType(),
4857 Call->getLocStart(),
4858 Call, Call->getDirectCallee()))
4859 return ExprError();
4860 }
4861
4862 // Now all relevant types are complete, check the destructors are accessible
4863 // and non-deleted, and annotate them on the temporaries.
4864 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
4865 I != N; ++I) {
4866 CXXBindTemporaryExpr *Bind =
4867 ExprEvalContexts.back().DelayedDecltypeBinds[I];
4868 if (Bind == TopBind)
4869 continue;
4870
4871 CXXTemporary *Temp = Bind->getTemporary();
4872
4873 CXXRecordDecl *RD =
4874 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4875 CXXDestructorDecl *Destructor = LookupDestructor(RD);
4876 Temp->setDestructor(Destructor);
4877
4878 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4879 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4880 PDiag(diag::err_access_dtor_temp)
4881 << Bind->getType());
4882 DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
4883
4884 // We need a cleanup, but we don't need to remember the temporary.
4885 ExprNeedsCleanups = true;
4886 }
4887
4888 // Possibly strip off the top CXXBindTemporaryExpr.
4889 return Owned(E);
4890 }
4891
4892 ExprResult
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)4893 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4894 tok::TokenKind OpKind, ParsedType &ObjectType,
4895 bool &MayBePseudoDestructor) {
4896 // Since this might be a postfix expression, get rid of ParenListExprs.
4897 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4898 if (Result.isInvalid()) return ExprError();
4899 Base = Result.get();
4900
4901 Result = CheckPlaceholderExpr(Base);
4902 if (Result.isInvalid()) return ExprError();
4903 Base = Result.take();
4904
4905 QualType BaseType = Base->getType();
4906 MayBePseudoDestructor = false;
4907 if (BaseType->isDependentType()) {
4908 // If we have a pointer to a dependent type and are using the -> operator,
4909 // the object type is the type that the pointer points to. We might still
4910 // have enough information about that type to do something useful.
4911 if (OpKind == tok::arrow)
4912 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4913 BaseType = Ptr->getPointeeType();
4914
4915 ObjectType = ParsedType::make(BaseType);
4916 MayBePseudoDestructor = true;
4917 return Owned(Base);
4918 }
4919
4920 // C++ [over.match.oper]p8:
4921 // [...] When operator->returns, the operator-> is applied to the value
4922 // returned, with the original second operand.
4923 if (OpKind == tok::arrow) {
4924 // The set of types we've considered so far.
4925 llvm::SmallPtrSet<CanQualType,8> CTypes;
4926 SmallVector<SourceLocation, 8> Locations;
4927 CTypes.insert(Context.getCanonicalType(BaseType));
4928
4929 while (BaseType->isRecordType()) {
4930 Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4931 if (Result.isInvalid())
4932 return ExprError();
4933 Base = Result.get();
4934 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4935 Locations.push_back(OpCall->getDirectCallee()->getLocation());
4936 BaseType = Base->getType();
4937 CanQualType CBaseType = Context.getCanonicalType(BaseType);
4938 if (!CTypes.insert(CBaseType)) {
4939 Diag(OpLoc, diag::err_operator_arrow_circular);
4940 for (unsigned i = 0; i < Locations.size(); i++)
4941 Diag(Locations[i], diag::note_declared_at);
4942 return ExprError();
4943 }
4944 }
4945
4946 if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4947 BaseType = BaseType->getPointeeType();
4948 }
4949
4950 // Objective-C properties allow "." access on Objective-C pointer types,
4951 // so adjust the base type to the object type itself.
4952 if (BaseType->isObjCObjectPointerType())
4953 BaseType = BaseType->getPointeeType();
4954
4955 // C++ [basic.lookup.classref]p2:
4956 // [...] If the type of the object expression is of pointer to scalar
4957 // type, the unqualified-id is looked up in the context of the complete
4958 // postfix-expression.
4959 //
4960 // This also indicates that we could be parsing a pseudo-destructor-name.
4961 // Note that Objective-C class and object types can be pseudo-destructor
4962 // expressions or normal member (ivar or property) access expressions.
4963 if (BaseType->isObjCObjectOrInterfaceType()) {
4964 MayBePseudoDestructor = true;
4965 } else if (!BaseType->isRecordType()) {
4966 ObjectType = ParsedType();
4967 MayBePseudoDestructor = true;
4968 return Owned(Base);
4969 }
4970
4971 // The object type must be complete (or dependent), or
4972 // C++11 [expr.prim.general]p3:
4973 // Unlike the object expression in other contexts, *this is not required to
4974 // be of complete type for purposes of class member access (5.2.5) outside
4975 // the member function body.
4976 if (!BaseType->isDependentType() &&
4977 !isThisOutsideMemberFunctionBody(BaseType) &&
4978 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
4979 return ExprError();
4980
4981 // C++ [basic.lookup.classref]p2:
4982 // If the id-expression in a class member access (5.2.5) is an
4983 // unqualified-id, and the type of the object expression is of a class
4984 // type C (or of pointer to a class type C), the unqualified-id is looked
4985 // up in the scope of class C. [...]
4986 ObjectType = ParsedType::make(BaseType);
4987 return Base;
4988 }
4989
DiagnoseDtorReference(SourceLocation NameLoc,Expr * MemExpr)4990 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4991 Expr *MemExpr) {
4992 SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4993 Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4994 << isa<CXXPseudoDestructorExpr>(MemExpr)
4995 << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4996
4997 return ActOnCallExpr(/*Scope*/ 0,
4998 MemExpr,
4999 /*LPLoc*/ ExpectedLParenLoc,
5000 MultiExprArg(),
5001 /*RPLoc*/ ExpectedLParenLoc);
5002 }
5003
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)5004 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5005 tok::TokenKind& OpKind, SourceLocation OpLoc) {
5006 if (Base->hasPlaceholderType()) {
5007 ExprResult result = S.CheckPlaceholderExpr(Base);
5008 if (result.isInvalid()) return true;
5009 Base = result.take();
5010 }
5011 ObjectType = Base->getType();
5012
5013 // C++ [expr.pseudo]p2:
5014 // The left-hand side of the dot operator shall be of scalar type. The
5015 // left-hand side of the arrow operator shall be of pointer to scalar type.
5016 // This scalar type is the object type.
5017 // Note that this is rather different from the normal handling for the
5018 // arrow operator.
5019 if (OpKind == tok::arrow) {
5020 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5021 ObjectType = Ptr->getPointeeType();
5022 } else if (!Base->isTypeDependent()) {
5023 // The user wrote "p->" when she probably meant "p."; fix it.
5024 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5025 << ObjectType << true
5026 << FixItHint::CreateReplacement(OpLoc, ".");
5027 if (S.isSFINAEContext())
5028 return true;
5029
5030 OpKind = tok::period;
5031 }
5032 }
5033
5034 return false;
5035 }
5036
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed,bool HasTrailingLParen)5037 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5038 SourceLocation OpLoc,
5039 tok::TokenKind OpKind,
5040 const CXXScopeSpec &SS,
5041 TypeSourceInfo *ScopeTypeInfo,
5042 SourceLocation CCLoc,
5043 SourceLocation TildeLoc,
5044 PseudoDestructorTypeStorage Destructed,
5045 bool HasTrailingLParen) {
5046 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5047
5048 QualType ObjectType;
5049 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5050 return ExprError();
5051
5052 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5053 !ObjectType->isVectorType()) {
5054 if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5055 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5056 else
5057 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5058 << ObjectType << Base->getSourceRange();
5059 return ExprError();
5060 }
5061
5062 // C++ [expr.pseudo]p2:
5063 // [...] The cv-unqualified versions of the object type and of the type
5064 // designated by the pseudo-destructor-name shall be the same type.
5065 if (DestructedTypeInfo) {
5066 QualType DestructedType = DestructedTypeInfo->getType();
5067 SourceLocation DestructedTypeStart
5068 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5069 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5070 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5071 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5072 << ObjectType << DestructedType << Base->getSourceRange()
5073 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5074
5075 // Recover by setting the destructed type to the object type.
5076 DestructedType = ObjectType;
5077 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5078 DestructedTypeStart);
5079 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5080 } else if (DestructedType.getObjCLifetime() !=
5081 ObjectType.getObjCLifetime()) {
5082
5083 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5084 // Okay: just pretend that the user provided the correctly-qualified
5085 // type.
5086 } else {
5087 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5088 << ObjectType << DestructedType << Base->getSourceRange()
5089 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5090 }
5091
5092 // Recover by setting the destructed type to the object type.
5093 DestructedType = ObjectType;
5094 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5095 DestructedTypeStart);
5096 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5097 }
5098 }
5099 }
5100
5101 // C++ [expr.pseudo]p2:
5102 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5103 // form
5104 //
5105 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5106 //
5107 // shall designate the same scalar type.
5108 if (ScopeTypeInfo) {
5109 QualType ScopeType = ScopeTypeInfo->getType();
5110 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5111 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5112
5113 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5114 diag::err_pseudo_dtor_type_mismatch)
5115 << ObjectType << ScopeType << Base->getSourceRange()
5116 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5117
5118 ScopeType = QualType();
5119 ScopeTypeInfo = 0;
5120 }
5121 }
5122
5123 Expr *Result
5124 = new (Context) CXXPseudoDestructorExpr(Context, Base,
5125 OpKind == tok::arrow, OpLoc,
5126 SS.getWithLocInContext(Context),
5127 ScopeTypeInfo,
5128 CCLoc,
5129 TildeLoc,
5130 Destructed);
5131
5132 if (HasTrailingLParen)
5133 return Owned(Result);
5134
5135 return DiagnoseDtorReference(Destructed.getLocation(), Result);
5136 }
5137
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName,bool HasTrailingLParen)5138 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5139 SourceLocation OpLoc,
5140 tok::TokenKind OpKind,
5141 CXXScopeSpec &SS,
5142 UnqualifiedId &FirstTypeName,
5143 SourceLocation CCLoc,
5144 SourceLocation TildeLoc,
5145 UnqualifiedId &SecondTypeName,
5146 bool HasTrailingLParen) {
5147 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5148 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5149 "Invalid first type name in pseudo-destructor");
5150 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5151 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5152 "Invalid second type name in pseudo-destructor");
5153
5154 QualType ObjectType;
5155 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5156 return ExprError();
5157
5158 // Compute the object type that we should use for name lookup purposes. Only
5159 // record types and dependent types matter.
5160 ParsedType ObjectTypePtrForLookup;
5161 if (!SS.isSet()) {
5162 if (ObjectType->isRecordType())
5163 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5164 else if (ObjectType->isDependentType())
5165 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5166 }
5167
5168 // Convert the name of the type being destructed (following the ~) into a
5169 // type (with source-location information).
5170 QualType DestructedType;
5171 TypeSourceInfo *DestructedTypeInfo = 0;
5172 PseudoDestructorTypeStorage Destructed;
5173 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5174 ParsedType T = getTypeName(*SecondTypeName.Identifier,
5175 SecondTypeName.StartLocation,
5176 S, &SS, true, false, ObjectTypePtrForLookup);
5177 if (!T &&
5178 ((SS.isSet() && !computeDeclContext(SS, false)) ||
5179 (!SS.isSet() && ObjectType->isDependentType()))) {
5180 // The name of the type being destroyed is a dependent name, and we
5181 // couldn't find anything useful in scope. Just store the identifier and
5182 // it's location, and we'll perform (qualified) name lookup again at
5183 // template instantiation time.
5184 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5185 SecondTypeName.StartLocation);
5186 } else if (!T) {
5187 Diag(SecondTypeName.StartLocation,
5188 diag::err_pseudo_dtor_destructor_non_type)
5189 << SecondTypeName.Identifier << ObjectType;
5190 if (isSFINAEContext())
5191 return ExprError();
5192
5193 // Recover by assuming we had the right type all along.
5194 DestructedType = ObjectType;
5195 } else
5196 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5197 } else {
5198 // Resolve the template-id to a type.
5199 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5200 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5201 TemplateId->NumArgs);
5202 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5203 TemplateId->TemplateKWLoc,
5204 TemplateId->Template,
5205 TemplateId->TemplateNameLoc,
5206 TemplateId->LAngleLoc,
5207 TemplateArgsPtr,
5208 TemplateId->RAngleLoc);
5209 if (T.isInvalid() || !T.get()) {
5210 // Recover by assuming we had the right type all along.
5211 DestructedType = ObjectType;
5212 } else
5213 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5214 }
5215
5216 // If we've performed some kind of recovery, (re-)build the type source
5217 // information.
5218 if (!DestructedType.isNull()) {
5219 if (!DestructedTypeInfo)
5220 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5221 SecondTypeName.StartLocation);
5222 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5223 }
5224
5225 // Convert the name of the scope type (the type prior to '::') into a type.
5226 TypeSourceInfo *ScopeTypeInfo = 0;
5227 QualType ScopeType;
5228 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5229 FirstTypeName.Identifier) {
5230 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5231 ParsedType T = getTypeName(*FirstTypeName.Identifier,
5232 FirstTypeName.StartLocation,
5233 S, &SS, true, false, ObjectTypePtrForLookup);
5234 if (!T) {
5235 Diag(FirstTypeName.StartLocation,
5236 diag::err_pseudo_dtor_destructor_non_type)
5237 << FirstTypeName.Identifier << ObjectType;
5238
5239 if (isSFINAEContext())
5240 return ExprError();
5241
5242 // Just drop this type. It's unnecessary anyway.
5243 ScopeType = QualType();
5244 } else
5245 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5246 } else {
5247 // Resolve the template-id to a type.
5248 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5249 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5250 TemplateId->NumArgs);
5251 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5252 TemplateId->TemplateKWLoc,
5253 TemplateId->Template,
5254 TemplateId->TemplateNameLoc,
5255 TemplateId->LAngleLoc,
5256 TemplateArgsPtr,
5257 TemplateId->RAngleLoc);
5258 if (T.isInvalid() || !T.get()) {
5259 // Recover by dropping this type.
5260 ScopeType = QualType();
5261 } else
5262 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5263 }
5264 }
5265
5266 if (!ScopeType.isNull() && !ScopeTypeInfo)
5267 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5268 FirstTypeName.StartLocation);
5269
5270
5271 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5272 ScopeTypeInfo, CCLoc, TildeLoc,
5273 Destructed, HasTrailingLParen);
5274 }
5275
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS,bool HasTrailingLParen)5276 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5277 SourceLocation OpLoc,
5278 tok::TokenKind OpKind,
5279 SourceLocation TildeLoc,
5280 const DeclSpec& DS,
5281 bool HasTrailingLParen) {
5282 QualType ObjectType;
5283 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5284 return ExprError();
5285
5286 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5287
5288 TypeLocBuilder TLB;
5289 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5290 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5291 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5292 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5293
5294 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5295 0, SourceLocation(), TildeLoc,
5296 Destructed, HasTrailingLParen);
5297 }
5298
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)5299 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5300 CXXConversionDecl *Method,
5301 bool HadMultipleCandidates) {
5302 if (Method->getParent()->isLambda() &&
5303 Method->getConversionType()->isBlockPointerType()) {
5304 // This is a lambda coversion to block pointer; check if the argument
5305 // is a LambdaExpr.
5306 Expr *SubE = E;
5307 CastExpr *CE = dyn_cast<CastExpr>(SubE);
5308 if (CE && CE->getCastKind() == CK_NoOp)
5309 SubE = CE->getSubExpr();
5310 SubE = SubE->IgnoreParens();
5311 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5312 SubE = BE->getSubExpr();
5313 if (isa<LambdaExpr>(SubE)) {
5314 // For the conversion to block pointer on a lambda expression, we
5315 // construct a special BlockLiteral instead; this doesn't really make
5316 // a difference in ARC, but outside of ARC the resulting block literal
5317 // follows the normal lifetime rules for block literals instead of being
5318 // autoreleased.
5319 DiagnosticErrorTrap Trap(Diags);
5320 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5321 E->getExprLoc(),
5322 Method, E);
5323 if (Exp.isInvalid())
5324 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5325 return Exp;
5326 }
5327 }
5328
5329
5330 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5331 FoundDecl, Method);
5332 if (Exp.isInvalid())
5333 return true;
5334
5335 MemberExpr *ME =
5336 new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5337 SourceLocation(), Context.BoundMemberTy,
5338 VK_RValue, OK_Ordinary);
5339 if (HadMultipleCandidates)
5340 ME->setHadMultipleCandidates(true);
5341 MarkMemberReferenced(ME);
5342
5343 QualType ResultType = Method->getResultType();
5344 ExprValueKind VK = Expr::getValueKindForType(ResultType);
5345 ResultType = ResultType.getNonLValueExprType(Context);
5346
5347 CXXMemberCallExpr *CE =
5348 new (Context) CXXMemberCallExpr(Context, ME, MultiExprArg(), ResultType, VK,
5349 Exp.get()->getLocEnd());
5350 return CE;
5351 }
5352
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)5353 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5354 SourceLocation RParen) {
5355 CanThrowResult CanThrow = canThrow(Operand);
5356 return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5357 CanThrow, KeyLoc, RParen));
5358 }
5359
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)5360 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5361 Expr *Operand, SourceLocation RParen) {
5362 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5363 }
5364
IsSpecialDiscardedValue(Expr * E)5365 static bool IsSpecialDiscardedValue(Expr *E) {
5366 // In C++11, discarded-value expressions of a certain form are special,
5367 // according to [expr]p10:
5368 // The lvalue-to-rvalue conversion (4.1) is applied only if the
5369 // expression is an lvalue of volatile-qualified type and it has
5370 // one of the following forms:
5371 E = E->IgnoreParens();
5372
5373 // - id-expression (5.1.1),
5374 if (isa<DeclRefExpr>(E))
5375 return true;
5376
5377 // - subscripting (5.2.1),
5378 if (isa<ArraySubscriptExpr>(E))
5379 return true;
5380
5381 // - class member access (5.2.5),
5382 if (isa<MemberExpr>(E))
5383 return true;
5384
5385 // - indirection (5.3.1),
5386 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5387 if (UO->getOpcode() == UO_Deref)
5388 return true;
5389
5390 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5391 // - pointer-to-member operation (5.5),
5392 if (BO->isPtrMemOp())
5393 return true;
5394
5395 // - comma expression (5.18) where the right operand is one of the above.
5396 if (BO->getOpcode() == BO_Comma)
5397 return IsSpecialDiscardedValue(BO->getRHS());
5398 }
5399
5400 // - conditional expression (5.16) where both the second and the third
5401 // operands are one of the above, or
5402 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5403 return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5404 IsSpecialDiscardedValue(CO->getFalseExpr());
5405 // The related edge case of "*x ?: *x".
5406 if (BinaryConditionalOperator *BCO =
5407 dyn_cast<BinaryConditionalOperator>(E)) {
5408 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5409 return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5410 IsSpecialDiscardedValue(BCO->getFalseExpr());
5411 }
5412
5413 // Objective-C++ extensions to the rule.
5414 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5415 return true;
5416
5417 return false;
5418 }
5419
5420 /// Perform the conversions required for an expression used in a
5421 /// context that ignores the result.
IgnoredValueConversions(Expr * E)5422 ExprResult Sema::IgnoredValueConversions(Expr *E) {
5423 if (E->hasPlaceholderType()) {
5424 ExprResult result = CheckPlaceholderExpr(E);
5425 if (result.isInvalid()) return Owned(E);
5426 E = result.take();
5427 }
5428
5429 // C99 6.3.2.1:
5430 // [Except in specific positions,] an lvalue that does not have
5431 // array type is converted to the value stored in the
5432 // designated object (and is no longer an lvalue).
5433 if (E->isRValue()) {
5434 // In C, function designators (i.e. expressions of function type)
5435 // are r-values, but we still want to do function-to-pointer decay
5436 // on them. This is both technically correct and convenient for
5437 // some clients.
5438 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5439 return DefaultFunctionArrayConversion(E);
5440
5441 return Owned(E);
5442 }
5443
5444 if (getLangOpts().CPlusPlus) {
5445 // The C++11 standard defines the notion of a discarded-value expression;
5446 // normally, we don't need to do anything to handle it, but if it is a
5447 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5448 // conversion.
5449 if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5450 E->getType().isVolatileQualified() &&
5451 IsSpecialDiscardedValue(E)) {
5452 ExprResult Res = DefaultLvalueConversion(E);
5453 if (Res.isInvalid())
5454 return Owned(E);
5455 E = Res.take();
5456 }
5457 return Owned(E);
5458 }
5459
5460 // GCC seems to also exclude expressions of incomplete enum type.
5461 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5462 if (!T->getDecl()->isComplete()) {
5463 // FIXME: stupid workaround for a codegen bug!
5464 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5465 return Owned(E);
5466 }
5467 }
5468
5469 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5470 if (Res.isInvalid())
5471 return Owned(E);
5472 E = Res.take();
5473
5474 if (!E->getType()->isVoidType())
5475 RequireCompleteType(E->getExprLoc(), E->getType(),
5476 diag::err_incomplete_type);
5477 return Owned(E);
5478 }
5479
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr)5480 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5481 bool DiscardedValue,
5482 bool IsConstexpr) {
5483 ExprResult FullExpr = Owned(FE);
5484
5485 if (!FullExpr.get())
5486 return ExprError();
5487
5488 if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5489 return ExprError();
5490
5491 // Top-level expressions default to 'id' when we're in a debugger.
5492 if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5493 FullExpr.get()->getType() == Context.UnknownAnyTy) {
5494 FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5495 if (FullExpr.isInvalid())
5496 return ExprError();
5497 }
5498
5499 if (DiscardedValue) {
5500 FullExpr = CheckPlaceholderExpr(FullExpr.take());
5501 if (FullExpr.isInvalid())
5502 return ExprError();
5503
5504 FullExpr = IgnoredValueConversions(FullExpr.take());
5505 if (FullExpr.isInvalid())
5506 return ExprError();
5507 }
5508
5509 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5510 return MaybeCreateExprWithCleanups(FullExpr);
5511 }
5512
ActOnFinishFullStmt(Stmt * FullStmt)5513 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5514 if (!FullStmt) return StmtError();
5515
5516 return MaybeCreateStmtWithCleanups(FullStmt);
5517 }
5518
5519 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)5520 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5521 CXXScopeSpec &SS,
5522 const DeclarationNameInfo &TargetNameInfo) {
5523 DeclarationName TargetName = TargetNameInfo.getName();
5524 if (!TargetName)
5525 return IER_DoesNotExist;
5526
5527 // If the name itself is dependent, then the result is dependent.
5528 if (TargetName.isDependentName())
5529 return IER_Dependent;
5530
5531 // Do the redeclaration lookup in the current scope.
5532 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5533 Sema::NotForRedeclaration);
5534 LookupParsedName(R, S, &SS);
5535 R.suppressDiagnostics();
5536
5537 switch (R.getResultKind()) {
5538 case LookupResult::Found:
5539 case LookupResult::FoundOverloaded:
5540 case LookupResult::FoundUnresolvedValue:
5541 case LookupResult::Ambiguous:
5542 return IER_Exists;
5543
5544 case LookupResult::NotFound:
5545 return IER_DoesNotExist;
5546
5547 case LookupResult::NotFoundInCurrentInstantiation:
5548 return IER_Dependent;
5549 }
5550
5551 llvm_unreachable("Invalid LookupResult Kind!");
5552 }
5553
5554 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)5555 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5556 bool IsIfExists, CXXScopeSpec &SS,
5557 UnqualifiedId &Name) {
5558 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5559
5560 // Check for unexpanded parameter packs.
5561 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5562 collectUnexpandedParameterPacks(SS, Unexpanded);
5563 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5564 if (!Unexpanded.empty()) {
5565 DiagnoseUnexpandedParameterPacks(KeywordLoc,
5566 IsIfExists? UPPC_IfExists
5567 : UPPC_IfNotExists,
5568 Unexpanded);
5569 return IER_Error;
5570 }
5571
5572 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5573 }
5574