• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 
39 #include "mips/assembler-mips.h"
40 
41 #include "cpu.h"
42 #include "debug.h"
43 
44 
45 namespace v8 {
46 namespace internal {
47 
48 // -----------------------------------------------------------------------------
49 // Operand and MemOperand.
50 
Operand(int32_t immediate,RelocInfo::Mode rmode)51 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
52   rm_ = no_reg;
53   imm32_ = immediate;
54   rmode_ = rmode;
55 }
56 
57 
Operand(const ExternalReference & f)58 Operand::Operand(const ExternalReference& f)  {
59   rm_ = no_reg;
60   imm32_ = reinterpret_cast<int32_t>(f.address());
61   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
62 }
63 
64 
Operand(Smi * value)65 Operand::Operand(Smi* value) {
66   rm_ = no_reg;
67   imm32_ =  reinterpret_cast<intptr_t>(value);
68   rmode_ = RelocInfo::NONE;
69 }
70 
71 
Operand(Register rm)72 Operand::Operand(Register rm) {
73   rm_ = rm;
74 }
75 
76 
is_reg()77 bool Operand::is_reg() const {
78   return rm_.is_valid();
79 }
80 
81 
ToAllocationIndex(FPURegister reg)82 int FPURegister::ToAllocationIndex(FPURegister reg) {
83   ASSERT(reg.code() % 2 == 0);
84   ASSERT(reg.code() / 2 < kNumAllocatableRegisters);
85   ASSERT(reg.is_valid());
86   ASSERT(!reg.is(kDoubleRegZero));
87   ASSERT(!reg.is(kLithiumScratchDouble));
88   return (reg.code() / 2);
89 }
90 
91 
92 // -----------------------------------------------------------------------------
93 // RelocInfo.
94 
apply(intptr_t delta)95 void RelocInfo::apply(intptr_t delta) {
96   if (IsCodeTarget(rmode_)) {
97     uint32_t scope1 = (uint32_t) target_address() & ~kImm28Mask;
98     uint32_t scope2 = reinterpret_cast<uint32_t>(pc_) & ~kImm28Mask;
99 
100     if (scope1 != scope2) {
101       Assembler::JumpLabelToJumpRegister(pc_);
102     }
103   }
104   if (IsInternalReference(rmode_)) {
105     // Absolute code pointer inside code object moves with the code object.
106     byte* p = reinterpret_cast<byte*>(pc_);
107     int count = Assembler::RelocateInternalReference(p, delta);
108     CPU::FlushICache(p, count * sizeof(uint32_t));
109   }
110 }
111 
112 
target_address()113 Address RelocInfo::target_address() {
114   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
115   return Assembler::target_address_at(pc_);
116 }
117 
118 
target_address_address()119 Address RelocInfo::target_address_address() {
120   ASSERT(IsCodeTarget(rmode_) ||
121          rmode_ == RUNTIME_ENTRY ||
122          rmode_ == EMBEDDED_OBJECT ||
123          rmode_ == EXTERNAL_REFERENCE);
124   // Read the address of the word containing the target_address in an
125   // instruction stream.
126   // The only architecture-independent user of this function is the serializer.
127   // The serializer uses it to find out how many raw bytes of instruction to
128   // output before the next target.
129   // For an instruction like LUI/ORI where the target bits are mixed into the
130   // instruction bits, the size of the target will be zero, indicating that the
131   // serializer should not step forward in memory after a target is resolved
132   // and written. In this case the target_address_address function should
133   // return the end of the instructions to be patched, allowing the
134   // deserializer to deserialize the instructions as raw bytes and put them in
135   // place, ready to be patched with the target. After jump optimization,
136   // that is the address of the instruction that follows J/JAL/JR/JALR
137   // instruction.
138   return reinterpret_cast<Address>(
139     pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
140 }
141 
142 
target_address_size()143 int RelocInfo::target_address_size() {
144   return Assembler::kSpecialTargetSize;
145 }
146 
147 
set_target_address(Address target,WriteBarrierMode mode)148 void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
149   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
150   Assembler::set_target_address_at(pc_, target);
151   if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) {
152     Object* target_code = Code::GetCodeFromTargetAddress(target);
153     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
154         host(), this, HeapObject::cast(target_code));
155   }
156 }
157 
158 
target_object()159 Object* RelocInfo::target_object() {
160   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
161   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
162 }
163 
164 
target_object_handle(Assembler * origin)165 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
166   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
167   return Handle<Object>(reinterpret_cast<Object**>(
168       Assembler::target_address_at(pc_)));
169 }
170 
171 
target_object_address()172 Object** RelocInfo::target_object_address() {
173   // Provide a "natural pointer" to the embedded object,
174   // which can be de-referenced during heap iteration.
175   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
176   reconstructed_obj_ptr_ =
177       reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
178   return &reconstructed_obj_ptr_;
179 }
180 
181 
set_target_object(Object * target,WriteBarrierMode mode)182 void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
183   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
184   Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
185   if (mode == UPDATE_WRITE_BARRIER &&
186       host() != NULL &&
187       target->IsHeapObject()) {
188     host()->GetHeap()->incremental_marking()->RecordWrite(
189         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
190   }
191 }
192 
193 
target_reference_address()194 Address* RelocInfo::target_reference_address() {
195   ASSERT(rmode_ == EXTERNAL_REFERENCE);
196   reconstructed_adr_ptr_ = Assembler::target_address_at(pc_);
197   return &reconstructed_adr_ptr_;
198 }
199 
200 
target_cell_handle()201 Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() {
202   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
203   Address address = Memory::Address_at(pc_);
204   return Handle<JSGlobalPropertyCell>(
205       reinterpret_cast<JSGlobalPropertyCell**>(address));
206 }
207 
208 
target_cell()209 JSGlobalPropertyCell* RelocInfo::target_cell() {
210   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
211   Address address = Memory::Address_at(pc_);
212   Object* object = HeapObject::FromAddress(
213       address - JSGlobalPropertyCell::kValueOffset);
214   return reinterpret_cast<JSGlobalPropertyCell*>(object);
215 }
216 
217 
set_target_cell(JSGlobalPropertyCell * cell,WriteBarrierMode mode)218 void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell,
219                                 WriteBarrierMode mode) {
220   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
221   Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
222   Memory::Address_at(pc_) = address;
223   if (mode == UPDATE_WRITE_BARRIER && host() != NULL) {
224     // TODO(1550) We are passing NULL as a slot because cell can never be on
225     // evacuation candidate.
226     host()->GetHeap()->incremental_marking()->RecordWrite(
227         host(), NULL, cell);
228   }
229 }
230 
231 
call_address()232 Address RelocInfo::call_address() {
233   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
234          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
235   // The pc_ offset of 0 assumes mips patched return sequence per
236   // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
237   // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
238   return Assembler::target_address_at(pc_);
239 }
240 
241 
set_call_address(Address target)242 void RelocInfo::set_call_address(Address target) {
243   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
244          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
245   // The pc_ offset of 0 assumes mips patched return sequence per
246   // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
247   // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
248   Assembler::set_target_address_at(pc_, target);
249   if (host() != NULL) {
250     Object* target_code = Code::GetCodeFromTargetAddress(target);
251     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
252         host(), this, HeapObject::cast(target_code));
253   }
254 }
255 
256 
call_object()257 Object* RelocInfo::call_object() {
258   return *call_object_address();
259 }
260 
261 
call_object_address()262 Object** RelocInfo::call_object_address() {
263   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
264          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
265   return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
266 }
267 
268 
set_call_object(Object * target)269 void RelocInfo::set_call_object(Object* target) {
270   *call_object_address() = target;
271 }
272 
273 
IsPatchedReturnSequence()274 bool RelocInfo::IsPatchedReturnSequence() {
275   Instr instr0 = Assembler::instr_at(pc_);
276   Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
277   Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize);
278   bool patched_return = ((instr0 & kOpcodeMask) == LUI &&
279                          (instr1 & kOpcodeMask) == ORI &&
280                          ((instr2 & kOpcodeMask) == JAL ||
281                           ((instr2 & kOpcodeMask) == SPECIAL &&
282                            (instr2 & kFunctionFieldMask) == JALR)));
283   return patched_return;
284 }
285 
286 
IsPatchedDebugBreakSlotSequence()287 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
288   Instr current_instr = Assembler::instr_at(pc_);
289   return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
290 }
291 
292 
Visit(ObjectVisitor * visitor)293 void RelocInfo::Visit(ObjectVisitor* visitor) {
294   RelocInfo::Mode mode = rmode();
295   if (mode == RelocInfo::EMBEDDED_OBJECT) {
296     visitor->VisitEmbeddedPointer(this);
297   } else if (RelocInfo::IsCodeTarget(mode)) {
298     visitor->VisitCodeTarget(this);
299   } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
300     visitor->VisitGlobalPropertyCell(this);
301   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
302     visitor->VisitExternalReference(this);
303 #ifdef ENABLE_DEBUGGER_SUPPORT
304   // TODO(isolates): Get a cached isolate below.
305   } else if (((RelocInfo::IsJSReturn(mode) &&
306               IsPatchedReturnSequence()) ||
307              (RelocInfo::IsDebugBreakSlot(mode) &&
308              IsPatchedDebugBreakSlotSequence())) &&
309              Isolate::Current()->debug()->has_break_points()) {
310     visitor->VisitDebugTarget(this);
311 #endif
312   } else if (mode == RelocInfo::RUNTIME_ENTRY) {
313     visitor->VisitRuntimeEntry(this);
314   }
315 }
316 
317 
318 template<typename StaticVisitor>
Visit(Heap * heap)319 void RelocInfo::Visit(Heap* heap) {
320   RelocInfo::Mode mode = rmode();
321   if (mode == RelocInfo::EMBEDDED_OBJECT) {
322     StaticVisitor::VisitEmbeddedPointer(heap, this);
323   } else if (RelocInfo::IsCodeTarget(mode)) {
324     StaticVisitor::VisitCodeTarget(heap, this);
325   } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
326     StaticVisitor::VisitGlobalPropertyCell(heap, this);
327   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
328     StaticVisitor::VisitExternalReference(this);
329 #ifdef ENABLE_DEBUGGER_SUPPORT
330   } else if (heap->isolate()->debug()->has_break_points() &&
331              ((RelocInfo::IsJSReturn(mode) &&
332               IsPatchedReturnSequence()) ||
333              (RelocInfo::IsDebugBreakSlot(mode) &&
334               IsPatchedDebugBreakSlotSequence()))) {
335     StaticVisitor::VisitDebugTarget(heap, this);
336 #endif
337   } else if (mode == RelocInfo::RUNTIME_ENTRY) {
338     StaticVisitor::VisitRuntimeEntry(this);
339   }
340 }
341 
342 
343 // -----------------------------------------------------------------------------
344 // Assembler.
345 
346 
CheckBuffer()347 void Assembler::CheckBuffer() {
348   if (buffer_space() <= kGap) {
349     GrowBuffer();
350   }
351 }
352 
353 
CheckTrampolinePoolQuick()354 void Assembler::CheckTrampolinePoolQuick() {
355   if (pc_offset() >= next_buffer_check_) {
356     CheckTrampolinePool();
357   }
358 }
359 
360 
emit(Instr x)361 void Assembler::emit(Instr x) {
362   if (!is_buffer_growth_blocked()) {
363     CheckBuffer();
364   }
365   *reinterpret_cast<Instr*>(pc_) = x;
366   pc_ += kInstrSize;
367   CheckTrampolinePoolQuick();
368 }
369 
370 
371 } }  // namespace v8::internal
372 
373 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
374