1 //===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing DWARF exception info into asm files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "DwarfException.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCSection.h"
28 #include "llvm/MC/MCStreamer.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/Dwarf.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/FormattedStream.h"
33 #include "llvm/Target/Mangler.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetLoweringObjectFile.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 using namespace llvm;
39
DwarfException(AsmPrinter * A)40 DwarfException::DwarfException(AsmPrinter *A)
41 : Asm(A), MMI(Asm->MMI) {}
42
~DwarfException()43 DwarfException::~DwarfException() {}
44
45 /// SharedTypeIds - How many leading type ids two landing pads have in common.
SharedTypeIds(const LandingPadInfo * L,const LandingPadInfo * R)46 unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
47 const LandingPadInfo *R) {
48 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
49 unsigned LSize = LIds.size(), RSize = RIds.size();
50 unsigned MinSize = LSize < RSize ? LSize : RSize;
51 unsigned Count = 0;
52
53 for (; Count != MinSize; ++Count)
54 if (LIds[Count] != RIds[Count])
55 return Count;
56
57 return Count;
58 }
59
60 /// PadLT - Order landing pads lexicographically by type id.
PadLT(const LandingPadInfo * L,const LandingPadInfo * R)61 bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
62 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
63 unsigned LSize = LIds.size(), RSize = RIds.size();
64 unsigned MinSize = LSize < RSize ? LSize : RSize;
65
66 for (unsigned i = 0; i != MinSize; ++i)
67 if (LIds[i] != RIds[i])
68 return LIds[i] < RIds[i];
69
70 return LSize < RSize;
71 }
72
73 /// ComputeActionsTable - Compute the actions table and gather the first action
74 /// index for each landing pad site.
75 unsigned DwarfException::
ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo * > & LandingPads,SmallVectorImpl<ActionEntry> & Actions,SmallVectorImpl<unsigned> & FirstActions)76 ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
77 SmallVectorImpl<ActionEntry> &Actions,
78 SmallVectorImpl<unsigned> &FirstActions) {
79
80 // The action table follows the call-site table in the LSDA. The individual
81 // records are of two types:
82 //
83 // * Catch clause
84 // * Exception specification
85 //
86 // The two record kinds have the same format, with only small differences.
87 // They are distinguished by the "switch value" field: Catch clauses
88 // (TypeInfos) have strictly positive switch values, and exception
89 // specifications (FilterIds) have strictly negative switch values. Value 0
90 // indicates a catch-all clause.
91 //
92 // Negative type IDs index into FilterIds. Positive type IDs index into
93 // TypeInfos. The value written for a positive type ID is just the type ID
94 // itself. For a negative type ID, however, the value written is the
95 // (negative) byte offset of the corresponding FilterIds entry. The byte
96 // offset is usually equal to the type ID (because the FilterIds entries are
97 // written using a variable width encoding, which outputs one byte per entry
98 // as long as the value written is not too large) but can differ. This kind
99 // of complication does not occur for positive type IDs because type infos are
100 // output using a fixed width encoding. FilterOffsets[i] holds the byte
101 // offset corresponding to FilterIds[i].
102
103 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
104 SmallVector<int, 16> FilterOffsets;
105 FilterOffsets.reserve(FilterIds.size());
106 int Offset = -1;
107
108 for (std::vector<unsigned>::const_iterator
109 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
110 FilterOffsets.push_back(Offset);
111 Offset -= MCAsmInfo::getULEB128Size(*I);
112 }
113
114 FirstActions.reserve(LandingPads.size());
115
116 int FirstAction = 0;
117 unsigned SizeActions = 0;
118 const LandingPadInfo *PrevLPI = 0;
119
120 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
121 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
122 const LandingPadInfo *LPI = *I;
123 const std::vector<int> &TypeIds = LPI->TypeIds;
124 unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
125 unsigned SizeSiteActions = 0;
126
127 if (NumShared < TypeIds.size()) {
128 unsigned SizeAction = 0;
129 unsigned PrevAction = (unsigned)-1;
130
131 if (NumShared) {
132 unsigned SizePrevIds = PrevLPI->TypeIds.size();
133 assert(Actions.size());
134 PrevAction = Actions.size() - 1;
135 SizeAction =
136 MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) +
137 MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
138
139 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
140 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
141 SizeAction -=
142 MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
143 SizeAction += -Actions[PrevAction].NextAction;
144 PrevAction = Actions[PrevAction].Previous;
145 }
146 }
147
148 // Compute the actions.
149 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
150 int TypeID = TypeIds[J];
151 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
152 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
153 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
154
155 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
156 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
157 SizeSiteActions += SizeAction;
158
159 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
160 Actions.push_back(Action);
161 PrevAction = Actions.size() - 1;
162 }
163
164 // Record the first action of the landing pad site.
165 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
166 } // else identical - re-use previous FirstAction
167
168 // Information used when created the call-site table. The action record
169 // field of the call site record is the offset of the first associated
170 // action record, relative to the start of the actions table. This value is
171 // biased by 1 (1 indicating the start of the actions table), and 0
172 // indicates that there are no actions.
173 FirstActions.push_back(FirstAction);
174
175 // Compute this sites contribution to size.
176 SizeActions += SizeSiteActions;
177
178 PrevLPI = LPI;
179 }
180
181 return SizeActions;
182 }
183
184 /// CallToNoUnwindFunction - Return `true' if this is a call to a function
185 /// marked `nounwind'. Return `false' otherwise.
CallToNoUnwindFunction(const MachineInstr * MI)186 bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
187 assert(MI->isCall() && "This should be a call instruction!");
188
189 bool MarkedNoUnwind = false;
190 bool SawFunc = false;
191
192 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
193 const MachineOperand &MO = MI->getOperand(I);
194
195 if (!MO.isGlobal()) continue;
196
197 const Function *F = dyn_cast<Function>(MO.getGlobal());
198 if (F == 0) continue;
199
200 if (SawFunc) {
201 // Be conservative. If we have more than one function operand for this
202 // call, then we can't make the assumption that it's the callee and
203 // not a parameter to the call.
204 //
205 // FIXME: Determine if there's a way to say that `F' is the callee or
206 // parameter.
207 MarkedNoUnwind = false;
208 break;
209 }
210
211 MarkedNoUnwind = F->doesNotThrow();
212 SawFunc = true;
213 }
214
215 return MarkedNoUnwind;
216 }
217
218 /// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke
219 /// has a try-range containing the call, a non-zero landing pad, and an
220 /// appropriate action. The entry for an ordinary call has a try-range
221 /// containing the call and zero for the landing pad and the action. Calls
222 /// marked 'nounwind' have no entry and must not be contained in the try-range
223 /// of any entry - they form gaps in the table. Entries must be ordered by
224 /// try-range address.
225 void DwarfException::
ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> & CallSites,const RangeMapType & PadMap,const SmallVectorImpl<const LandingPadInfo * > & LandingPads,const SmallVectorImpl<unsigned> & FirstActions)226 ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
227 const RangeMapType &PadMap,
228 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
229 const SmallVectorImpl<unsigned> &FirstActions) {
230 // The end label of the previous invoke or nounwind try-range.
231 MCSymbol *LastLabel = 0;
232
233 // Whether there is a potentially throwing instruction (currently this means
234 // an ordinary call) between the end of the previous try-range and now.
235 bool SawPotentiallyThrowing = false;
236
237 // Whether the last CallSite entry was for an invoke.
238 bool PreviousIsInvoke = false;
239
240 // Visit all instructions in order of address.
241 for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
242 I != E; ++I) {
243 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
244 MI != E; ++MI) {
245 if (!MI->isLabel()) {
246 if (MI->isCall())
247 SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
248 continue;
249 }
250
251 // End of the previous try-range?
252 MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
253 if (BeginLabel == LastLabel)
254 SawPotentiallyThrowing = false;
255
256 // Beginning of a new try-range?
257 RangeMapType::const_iterator L = PadMap.find(BeginLabel);
258 if (L == PadMap.end())
259 // Nope, it was just some random label.
260 continue;
261
262 const PadRange &P = L->second;
263 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
264 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
265 "Inconsistent landing pad map!");
266
267 // For Dwarf exception handling (SjLj handling doesn't use this). If some
268 // instruction between the previous try-range and this one may throw,
269 // create a call-site entry with no landing pad for the region between the
270 // try-ranges.
271 if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
272 CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
273 CallSites.push_back(Site);
274 PreviousIsInvoke = false;
275 }
276
277 LastLabel = LandingPad->EndLabels[P.RangeIndex];
278 assert(BeginLabel && LastLabel && "Invalid landing pad!");
279
280 if (!LandingPad->LandingPadLabel) {
281 // Create a gap.
282 PreviousIsInvoke = false;
283 } else {
284 // This try-range is for an invoke.
285 CallSiteEntry Site = {
286 BeginLabel,
287 LastLabel,
288 LandingPad->LandingPadLabel,
289 FirstActions[P.PadIndex]
290 };
291
292 // Try to merge with the previous call-site. SJLJ doesn't do this
293 if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
294 CallSiteEntry &Prev = CallSites.back();
295 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
296 // Extend the range of the previous entry.
297 Prev.EndLabel = Site.EndLabel;
298 continue;
299 }
300 }
301
302 // Otherwise, create a new call-site.
303 if (Asm->MAI->isExceptionHandlingDwarf())
304 CallSites.push_back(Site);
305 else {
306 // SjLj EH must maintain the call sites in the order assigned
307 // to them by the SjLjPrepare pass.
308 unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
309 if (CallSites.size() < SiteNo)
310 CallSites.resize(SiteNo);
311 CallSites[SiteNo - 1] = Site;
312 }
313 PreviousIsInvoke = true;
314 }
315 }
316 }
317
318 // If some instruction between the previous try-range and the end of the
319 // function may throw, create a call-site entry with no landing pad for the
320 // region following the try-range.
321 if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
322 CallSiteEntry Site = { LastLabel, 0, 0, 0 };
323 CallSites.push_back(Site);
324 }
325 }
326
327 /// EmitExceptionTable - Emit landing pads and actions.
328 ///
329 /// The general organization of the table is complex, but the basic concepts are
330 /// easy. First there is a header which describes the location and organization
331 /// of the three components that follow.
332 ///
333 /// 1. The landing pad site information describes the range of code covered by
334 /// the try. In our case it's an accumulation of the ranges covered by the
335 /// invokes in the try. There is also a reference to the landing pad that
336 /// handles the exception once processed. Finally an index into the actions
337 /// table.
338 /// 2. The action table, in our case, is composed of pairs of type IDs and next
339 /// action offset. Starting with the action index from the landing pad
340 /// site, each type ID is checked for a match to the current exception. If
341 /// it matches then the exception and type id are passed on to the landing
342 /// pad. Otherwise the next action is looked up. This chain is terminated
343 /// with a next action of zero. If no type id is found then the frame is
344 /// unwound and handling continues.
345 /// 3. Type ID table contains references to all the C++ typeinfo for all
346 /// catches in the function. This tables is reverse indexed base 1.
EmitExceptionTable()347 void DwarfException::EmitExceptionTable() {
348 const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
349 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
350 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
351
352 // Sort the landing pads in order of their type ids. This is used to fold
353 // duplicate actions.
354 SmallVector<const LandingPadInfo *, 64> LandingPads;
355 LandingPads.reserve(PadInfos.size());
356
357 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
358 LandingPads.push_back(&PadInfos[i]);
359
360 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
361
362 // Compute the actions table and gather the first action index for each
363 // landing pad site.
364 SmallVector<ActionEntry, 32> Actions;
365 SmallVector<unsigned, 64> FirstActions;
366 unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions);
367
368 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
369 // by try-range labels when lowered). Ordinary calls do not, so appropriate
370 // try-ranges for them need be deduced when using DWARF exception handling.
371 RangeMapType PadMap;
372 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
373 const LandingPadInfo *LandingPad = LandingPads[i];
374 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
375 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
376 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
377 PadRange P = { i, j };
378 PadMap[BeginLabel] = P;
379 }
380 }
381
382 // Compute the call-site table.
383 SmallVector<CallSiteEntry, 64> CallSites;
384 ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
385
386 // Final tallies.
387
388 // Call sites.
389 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
390 bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
391
392 unsigned CallSiteTableLength;
393 if (IsSJLJ)
394 CallSiteTableLength = 0;
395 else {
396 unsigned SiteStartSize = 4; // dwarf::DW_EH_PE_udata4
397 unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
398 unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
399 CallSiteTableLength =
400 CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
401 }
402
403 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
404 CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action);
405 if (IsSJLJ)
406 CallSiteTableLength += MCAsmInfo::getULEB128Size(i);
407 }
408
409 // Type infos.
410 const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
411 unsigned TTypeEncoding;
412 unsigned TypeFormatSize;
413
414 if (!HaveTTData) {
415 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
416 // that we're omitting that bit.
417 TTypeEncoding = dwarf::DW_EH_PE_omit;
418 // dwarf::DW_EH_PE_absptr
419 TypeFormatSize = Asm->getDataLayout().getPointerSize();
420 } else {
421 // Okay, we have actual filters or typeinfos to emit. As such, we need to
422 // pick a type encoding for them. We're about to emit a list of pointers to
423 // typeinfo objects at the end of the LSDA. However, unless we're in static
424 // mode, this reference will require a relocation by the dynamic linker.
425 //
426 // Because of this, we have a couple of options:
427 //
428 // 1) If we are in -static mode, we can always use an absolute reference
429 // from the LSDA, because the static linker will resolve it.
430 //
431 // 2) Otherwise, if the LSDA section is writable, we can output the direct
432 // reference to the typeinfo and allow the dynamic linker to relocate
433 // it. Since it is in a writable section, the dynamic linker won't
434 // have a problem.
435 //
436 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
437 // we need to use some form of indirection. For example, on Darwin,
438 // we can output a statically-relocatable reference to a dyld stub. The
439 // offset to the stub is constant, but the contents are in a section
440 // that is updated by the dynamic linker. This is easy enough, but we
441 // need to tell the personality function of the unwinder to indirect
442 // through the dyld stub.
443 //
444 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
445 // somewhere. This predicate should be moved to a shared location that is
446 // in target-independent code.
447 //
448 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
449 TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
450 }
451
452 // Begin the exception table.
453 // Sometimes we want not to emit the data into separate section (e.g. ARM
454 // EHABI). In this case LSDASection will be NULL.
455 if (LSDASection)
456 Asm->OutStreamer.SwitchSection(LSDASection);
457 Asm->EmitAlignment(2);
458
459 // Emit the LSDA.
460 MCSymbol *GCCETSym =
461 Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
462 Twine(Asm->getFunctionNumber()));
463 Asm->OutStreamer.EmitLabel(GCCETSym);
464 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
465 Asm->getFunctionNumber()));
466
467 if (IsSJLJ)
468 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
469 Asm->getFunctionNumber()));
470
471 // Emit the LSDA header.
472 Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
473 Asm->EmitEncodingByte(TTypeEncoding, "@TType");
474
475 // The type infos need to be aligned. GCC does this by inserting padding just
476 // before the type infos. However, this changes the size of the exception
477 // table, so you need to take this into account when you output the exception
478 // table size. However, the size is output using a variable length encoding.
479 // So by increasing the size by inserting padding, you may increase the number
480 // of bytes used for writing the size. If it increases, say by one byte, then
481 // you now need to output one less byte of padding to get the type infos
482 // aligned. However this decreases the size of the exception table. This
483 // changes the value you have to output for the exception table size. Due to
484 // the variable length encoding, the number of bytes used for writing the
485 // length may decrease. If so, you then have to increase the amount of
486 // padding. And so on. If you look carefully at the GCC code you will see that
487 // it indeed does this in a loop, going on and on until the values stabilize.
488 // We chose another solution: don't output padding inside the table like GCC
489 // does, instead output it before the table.
490 unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
491 unsigned CallSiteTableLengthSize =
492 MCAsmInfo::getULEB128Size(CallSiteTableLength);
493 unsigned TTypeBaseOffset =
494 sizeof(int8_t) + // Call site format
495 CallSiteTableLengthSize + // Call site table length size
496 CallSiteTableLength + // Call site table length
497 SizeActions + // Actions size
498 SizeTypes;
499 unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset);
500 unsigned TotalSize =
501 sizeof(int8_t) + // LPStart format
502 sizeof(int8_t) + // TType format
503 (HaveTTData ? TTypeBaseOffsetSize : 0) + // TType base offset size
504 TTypeBaseOffset; // TType base offset
505 unsigned SizeAlign = (4 - TotalSize) & 3;
506
507 if (HaveTTData) {
508 // Account for any extra padding that will be added to the call site table
509 // length.
510 Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
511 SizeAlign = 0;
512 }
513
514 bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
515
516 // SjLj Exception handling
517 if (IsSJLJ) {
518 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
519
520 // Add extra padding if it wasn't added to the TType base offset.
521 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
522
523 // Emit the landing pad site information.
524 unsigned idx = 0;
525 for (SmallVectorImpl<CallSiteEntry>::const_iterator
526 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
527 const CallSiteEntry &S = *I;
528
529 // Offset of the landing pad, counted in 16-byte bundles relative to the
530 // @LPStart address.
531 if (VerboseAsm) {
532 Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
533 Asm->OutStreamer.AddComment(" On exception at call site "+Twine(idx));
534 }
535 Asm->EmitULEB128(idx);
536
537 // Offset of the first associated action record, relative to the start of
538 // the action table. This value is biased by 1 (1 indicates the start of
539 // the action table), and 0 indicates that there are no actions.
540 if (VerboseAsm) {
541 if (S.Action == 0)
542 Asm->OutStreamer.AddComment(" Action: cleanup");
543 else
544 Asm->OutStreamer.AddComment(" Action: " +
545 Twine((S.Action - 1) / 2 + 1));
546 }
547 Asm->EmitULEB128(S.Action);
548 }
549 } else {
550 // DWARF Exception handling
551 assert(Asm->MAI->isExceptionHandlingDwarf());
552
553 // The call-site table is a list of all call sites that may throw an
554 // exception (including C++ 'throw' statements) in the procedure
555 // fragment. It immediately follows the LSDA header. Each entry indicates,
556 // for a given call, the first corresponding action record and corresponding
557 // landing pad.
558 //
559 // The table begins with the number of bytes, stored as an LEB128
560 // compressed, unsigned integer. The records immediately follow the record
561 // count. They are sorted in increasing call-site address. Each record
562 // indicates:
563 //
564 // * The position of the call-site.
565 // * The position of the landing pad.
566 // * The first action record for that call site.
567 //
568 // A missing entry in the call-site table indicates that a call is not
569 // supposed to throw.
570
571 // Emit the landing pad call site table.
572 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
573
574 // Add extra padding if it wasn't added to the TType base offset.
575 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
576
577 unsigned Entry = 0;
578 for (SmallVectorImpl<CallSiteEntry>::const_iterator
579 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
580 const CallSiteEntry &S = *I;
581
582 MCSymbol *EHFuncBeginSym =
583 Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
584
585 MCSymbol *BeginLabel = S.BeginLabel;
586 if (BeginLabel == 0)
587 BeginLabel = EHFuncBeginSym;
588 MCSymbol *EndLabel = S.EndLabel;
589 if (EndLabel == 0)
590 EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
591
592
593 // Offset of the call site relative to the previous call site, counted in
594 // number of 16-byte bundles. The first call site is counted relative to
595 // the start of the procedure fragment.
596 if (VerboseAsm)
597 Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
598 Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
599 if (VerboseAsm)
600 Asm->OutStreamer.AddComment(Twine(" Call between ") +
601 BeginLabel->getName() + " and " +
602 EndLabel->getName());
603 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
604
605 // Offset of the landing pad, counted in 16-byte bundles relative to the
606 // @LPStart address.
607 if (!S.PadLabel) {
608 if (VerboseAsm)
609 Asm->OutStreamer.AddComment(" has no landing pad");
610 Asm->OutStreamer.EmitIntValue(0, 4/*size*/);
611 } else {
612 if (VerboseAsm)
613 Asm->OutStreamer.AddComment(Twine(" jumps to ") +
614 S.PadLabel->getName());
615 Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
616 }
617
618 // Offset of the first associated action record, relative to the start of
619 // the action table. This value is biased by 1 (1 indicates the start of
620 // the action table), and 0 indicates that there are no actions.
621 if (VerboseAsm) {
622 if (S.Action == 0)
623 Asm->OutStreamer.AddComment(" On action: cleanup");
624 else
625 Asm->OutStreamer.AddComment(" On action: " +
626 Twine((S.Action - 1) / 2 + 1));
627 }
628 Asm->EmitULEB128(S.Action);
629 }
630 }
631
632 // Emit the Action Table.
633 int Entry = 0;
634 for (SmallVectorImpl<ActionEntry>::const_iterator
635 I = Actions.begin(), E = Actions.end(); I != E; ++I) {
636 const ActionEntry &Action = *I;
637
638 if (VerboseAsm) {
639 // Emit comments that decode the action table.
640 Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
641 }
642
643 // Type Filter
644 //
645 // Used by the runtime to match the type of the thrown exception to the
646 // type of the catch clauses or the types in the exception specification.
647 if (VerboseAsm) {
648 if (Action.ValueForTypeID > 0)
649 Asm->OutStreamer.AddComment(" Catch TypeInfo " +
650 Twine(Action.ValueForTypeID));
651 else if (Action.ValueForTypeID < 0)
652 Asm->OutStreamer.AddComment(" Filter TypeInfo " +
653 Twine(Action.ValueForTypeID));
654 else
655 Asm->OutStreamer.AddComment(" Cleanup");
656 }
657 Asm->EmitSLEB128(Action.ValueForTypeID);
658
659 // Action Record
660 //
661 // Self-relative signed displacement in bytes of the next action record,
662 // or 0 if there is no next action record.
663 if (VerboseAsm) {
664 if (Action.NextAction == 0) {
665 Asm->OutStreamer.AddComment(" No further actions");
666 } else {
667 unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
668 Asm->OutStreamer.AddComment(" Continue to action "+Twine(NextAction));
669 }
670 }
671 Asm->EmitSLEB128(Action.NextAction);
672 }
673
674 EmitTypeInfos(TTypeEncoding);
675
676 Asm->EmitAlignment(2);
677 }
678
EmitTypeInfos(unsigned TTypeEncoding)679 void DwarfException::EmitTypeInfos(unsigned TTypeEncoding) {
680 const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
681 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
682
683 bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
684
685 int Entry = 0;
686 // Emit the Catch TypeInfos.
687 if (VerboseAsm && !TypeInfos.empty()) {
688 Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
689 Asm->OutStreamer.AddBlankLine();
690 Entry = TypeInfos.size();
691 }
692
693 for (std::vector<const GlobalVariable *>::const_reverse_iterator
694 I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
695 const GlobalVariable *GV = *I;
696 if (VerboseAsm)
697 Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
698 Asm->EmitTTypeReference(GV, TTypeEncoding);
699 }
700
701 // Emit the Exception Specifications.
702 if (VerboseAsm && !FilterIds.empty()) {
703 Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
704 Asm->OutStreamer.AddBlankLine();
705 Entry = 0;
706 }
707 for (std::vector<unsigned>::const_iterator
708 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
709 unsigned TypeID = *I;
710 if (VerboseAsm) {
711 --Entry;
712 if (TypeID != 0)
713 Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
714 }
715
716 Asm->EmitULEB128(TypeID);
717 }
718 }
719
720 /// EndModule - Emit all exception information that should come after the
721 /// content.
EndModule()722 void DwarfException::EndModule() {
723 llvm_unreachable("Should be implemented");
724 }
725
726 /// BeginFunction - Gather pre-function exception information. Assumes it's
727 /// being emitted immediately after the function entry point.
BeginFunction(const MachineFunction * MF)728 void DwarfException::BeginFunction(const MachineFunction *MF) {
729 llvm_unreachable("Should be implemented");
730 }
731
732 /// EndFunction - Gather and emit post-function exception information.
733 ///
EndFunction()734 void DwarfException::EndFunction() {
735 llvm_unreachable("Should be implemented");
736 }
737