1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/Support/ConstantRange.h"
28 #include "llvm/Support/GetElementPtrTypeIterator.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/PatternMatch.h"
31 #include <cstring>
32 using namespace llvm;
33 using namespace llvm::PatternMatch;
34
35 const unsigned MaxDepth = 6;
36
37 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38 /// unknown returns 0). For vector types, returns the element type's bitwidth.
getBitWidth(Type * Ty,const DataLayout * TD)39 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
40 if (unsigned BitWidth = Ty->getScalarSizeInBits())
41 return BitWidth;
42 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
43 return TD ? TD->getPointerSizeInBits() : 0;
44 }
45
ComputeMaskedBitsAddSub(bool Add,Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const DataLayout * TD,unsigned Depth)46 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
47 APInt &KnownZero, APInt &KnownOne,
48 APInt &KnownZero2, APInt &KnownOne2,
49 const DataLayout *TD, unsigned Depth) {
50 if (!Add) {
51 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
52 // We know that the top bits of C-X are clear if X contains less bits
53 // than C (i.e. no wrap-around can happen). For example, 20-X is
54 // positive if we can prove that X is >= 0 and < 16.
55 if (!CLHS->getValue().isNegative()) {
56 unsigned BitWidth = KnownZero.getBitWidth();
57 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
58 // NLZ can't be BitWidth with no sign bit
59 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
60 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
61
62 // If all of the MaskV bits are known to be zero, then we know the
63 // output top bits are zero, because we now know that the output is
64 // from [0-C].
65 if ((KnownZero2 & MaskV) == MaskV) {
66 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
67 // Top bits known zero.
68 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
69 }
70 }
71 }
72 }
73
74 unsigned BitWidth = KnownZero.getBitWidth();
75
76 // If one of the operands has trailing zeros, then the bits that the
77 // other operand has in those bit positions will be preserved in the
78 // result. For an add, this works with either operand. For a subtract,
79 // this only works if the known zeros are in the right operand.
80 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
81 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
82 assert((LHSKnownZero & LHSKnownOne) == 0 &&
83 "Bits known to be one AND zero?");
84 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
86 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
87 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
88 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
89
90 // Determine which operand has more trailing zeros, and use that
91 // many bits from the other operand.
92 if (LHSKnownZeroOut > RHSKnownZeroOut) {
93 if (Add) {
94 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
95 KnownZero |= KnownZero2 & Mask;
96 KnownOne |= KnownOne2 & Mask;
97 } else {
98 // If the known zeros are in the left operand for a subtract,
99 // fall back to the minimum known zeros in both operands.
100 KnownZero |= APInt::getLowBitsSet(BitWidth,
101 std::min(LHSKnownZeroOut,
102 RHSKnownZeroOut));
103 }
104 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
105 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
106 KnownZero |= LHSKnownZero & Mask;
107 KnownOne |= LHSKnownOne & Mask;
108 }
109
110 // Are we still trying to solve for the sign bit?
111 if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
112 if (NSW) {
113 if (Add) {
114 // Adding two positive numbers can't wrap into negative
115 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
116 KnownZero |= APInt::getSignBit(BitWidth);
117 // and adding two negative numbers can't wrap into positive.
118 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
119 KnownOne |= APInt::getSignBit(BitWidth);
120 } else {
121 // Subtracting a negative number from a positive one can't wrap
122 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
123 KnownZero |= APInt::getSignBit(BitWidth);
124 // neither can subtracting a positive number from a negative one.
125 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
126 KnownOne |= APInt::getSignBit(BitWidth);
127 }
128 }
129 }
130 }
131
ComputeMaskedBitsMul(Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const DataLayout * TD,unsigned Depth)132 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
133 APInt &KnownZero, APInt &KnownOne,
134 APInt &KnownZero2, APInt &KnownOne2,
135 const DataLayout *TD, unsigned Depth) {
136 unsigned BitWidth = KnownZero.getBitWidth();
137 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
138 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
139 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141
142 bool isKnownNegative = false;
143 bool isKnownNonNegative = false;
144 // If the multiplication is known not to overflow, compute the sign bit.
145 if (NSW) {
146 if (Op0 == Op1) {
147 // The product of a number with itself is non-negative.
148 isKnownNonNegative = true;
149 } else {
150 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
151 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
152 bool isKnownNegativeOp1 = KnownOne.isNegative();
153 bool isKnownNegativeOp0 = KnownOne2.isNegative();
154 // The product of two numbers with the same sign is non-negative.
155 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
156 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
157 // The product of a negative number and a non-negative number is either
158 // negative or zero.
159 if (!isKnownNonNegative)
160 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
161 isKnownNonZero(Op0, TD, Depth)) ||
162 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
163 isKnownNonZero(Op1, TD, Depth));
164 }
165 }
166
167 // If low bits are zero in either operand, output low known-0 bits.
168 // Also compute a conserative estimate for high known-0 bits.
169 // More trickiness is possible, but this is sufficient for the
170 // interesting case of alignment computation.
171 KnownOne.clearAllBits();
172 unsigned TrailZ = KnownZero.countTrailingOnes() +
173 KnownZero2.countTrailingOnes();
174 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
175 KnownZero2.countLeadingOnes(),
176 BitWidth) - BitWidth;
177
178 TrailZ = std::min(TrailZ, BitWidth);
179 LeadZ = std::min(LeadZ, BitWidth);
180 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181 APInt::getHighBitsSet(BitWidth, LeadZ);
182
183 // Only make use of no-wrap flags if we failed to compute the sign bit
184 // directly. This matters if the multiplication always overflows, in
185 // which case we prefer to follow the result of the direct computation,
186 // though as the program is invoking undefined behaviour we can choose
187 // whatever we like here.
188 if (isKnownNonNegative && !KnownOne.isNegative())
189 KnownZero.setBit(BitWidth - 1);
190 else if (isKnownNegative && !KnownZero.isNegative())
191 KnownOne.setBit(BitWidth - 1);
192 }
193
computeMaskedBitsLoad(const MDNode & Ranges,APInt & KnownZero)194 void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
195 unsigned BitWidth = KnownZero.getBitWidth();
196 unsigned NumRanges = Ranges.getNumOperands() / 2;
197 assert(NumRanges >= 1);
198
199 // Use the high end of the ranges to find leading zeros.
200 unsigned MinLeadingZeros = BitWidth;
201 for (unsigned i = 0; i < NumRanges; ++i) {
202 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
203 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
204 ConstantRange Range(Lower->getValue(), Upper->getValue());
205 if (Range.isWrappedSet())
206 MinLeadingZeros = 0; // -1 has no zeros
207 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
208 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
209 }
210
211 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
212 }
213 /// ComputeMaskedBits - Determine which of the bits are known to be either zero
214 /// or one and return them in the KnownZero/KnownOne bit sets.
215 ///
216 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
217 /// we cannot optimize based on the assumption that it is zero without changing
218 /// it to be an explicit zero. If we don't change it to zero, other code could
219 /// optimized based on the contradictory assumption that it is non-zero.
220 /// Because instcombine aggressively folds operations with undef args anyway,
221 /// this won't lose us code quality.
222 ///
223 /// This function is defined on values with integer type, values with pointer
224 /// type (but only if TD is non-null), and vectors of integers. In the case
225 /// where V is a vector, known zero, and known one values are the
226 /// same width as the vector element, and the bit is set only if it is true
227 /// for all of the elements in the vector.
ComputeMaskedBits(Value * V,APInt & KnownZero,APInt & KnownOne,const DataLayout * TD,unsigned Depth)228 void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
229 const DataLayout *TD, unsigned Depth) {
230 assert(V && "No Value?");
231 assert(Depth <= MaxDepth && "Limit Search Depth");
232 unsigned BitWidth = KnownZero.getBitWidth();
233
234 assert((V->getType()->isIntOrIntVectorTy() ||
235 V->getType()->getScalarType()->isPointerTy()) &&
236 "Not integer or pointer type!");
237 assert((!TD ||
238 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
239 (!V->getType()->isIntOrIntVectorTy() ||
240 V->getType()->getScalarSizeInBits() == BitWidth) &&
241 KnownZero.getBitWidth() == BitWidth &&
242 KnownOne.getBitWidth() == BitWidth &&
243 "V, Mask, KnownOne and KnownZero should have same BitWidth");
244
245 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246 // We know all of the bits for a constant!
247 KnownOne = CI->getValue();
248 KnownZero = ~KnownOne;
249 return;
250 }
251 // Null and aggregate-zero are all-zeros.
252 if (isa<ConstantPointerNull>(V) ||
253 isa<ConstantAggregateZero>(V)) {
254 KnownOne.clearAllBits();
255 KnownZero = APInt::getAllOnesValue(BitWidth);
256 return;
257 }
258 // Handle a constant vector by taking the intersection of the known bits of
259 // each element. There is no real need to handle ConstantVector here, because
260 // we don't handle undef in any particularly useful way.
261 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262 // We know that CDS must be a vector of integers. Take the intersection of
263 // each element.
264 KnownZero.setAllBits(); KnownOne.setAllBits();
265 APInt Elt(KnownZero.getBitWidth(), 0);
266 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
267 Elt = CDS->getElementAsInteger(i);
268 KnownZero &= ~Elt;
269 KnownOne &= Elt;
270 }
271 return;
272 }
273
274 // The address of an aligned GlobalValue has trailing zeros.
275 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276 unsigned Align = GV->getAlignment();
277 if (Align == 0 && TD) {
278 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279 Type *ObjectType = GVar->getType()->getElementType();
280 if (ObjectType->isSized()) {
281 // If the object is defined in the current Module, we'll be giving
282 // it the preferred alignment. Otherwise, we have to assume that it
283 // may only have the minimum ABI alignment.
284 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285 Align = TD->getPreferredAlignment(GVar);
286 else
287 Align = TD->getABITypeAlignment(ObjectType);
288 }
289 }
290 }
291 if (Align > 0)
292 KnownZero = APInt::getLowBitsSet(BitWidth,
293 CountTrailingZeros_32(Align));
294 else
295 KnownZero.clearAllBits();
296 KnownOne.clearAllBits();
297 return;
298 }
299 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300 // the bits of its aliasee.
301 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302 if (GA->mayBeOverridden()) {
303 KnownZero.clearAllBits(); KnownOne.clearAllBits();
304 } else {
305 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
306 }
307 return;
308 }
309
310 if (Argument *A = dyn_cast<Argument>(V)) {
311 unsigned Align = 0;
312
313 if (A->hasByValAttr()) {
314 // Get alignment information off byval arguments if specified in the IR.
315 Align = A->getParamAlignment();
316 } else if (TD && A->hasStructRetAttr()) {
317 // An sret parameter has at least the ABI alignment of the return type.
318 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319 if (EltTy->isSized())
320 Align = TD->getABITypeAlignment(EltTy);
321 }
322
323 if (Align)
324 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
325 return;
326 }
327
328 // Start out not knowing anything.
329 KnownZero.clearAllBits(); KnownOne.clearAllBits();
330
331 if (Depth == MaxDepth)
332 return; // Limit search depth.
333
334 Operator *I = dyn_cast<Operator>(V);
335 if (!I) return;
336
337 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
338 switch (I->getOpcode()) {
339 default: break;
340 case Instruction::Load:
341 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
342 computeMaskedBitsLoad(*MD, KnownZero);
343 return;
344 case Instruction::And: {
345 // If either the LHS or the RHS are Zero, the result is zero.
346 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
347 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
348 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
349 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
350
351 // Output known-1 bits are only known if set in both the LHS & RHS.
352 KnownOne &= KnownOne2;
353 // Output known-0 are known to be clear if zero in either the LHS | RHS.
354 KnownZero |= KnownZero2;
355 return;
356 }
357 case Instruction::Or: {
358 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
359 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
360 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
361 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
362
363 // Output known-0 bits are only known if clear in both the LHS & RHS.
364 KnownZero &= KnownZero2;
365 // Output known-1 are known to be set if set in either the LHS | RHS.
366 KnownOne |= KnownOne2;
367 return;
368 }
369 case Instruction::Xor: {
370 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
371 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
372 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
373 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
374
375 // Output known-0 bits are known if clear or set in both the LHS & RHS.
376 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
377 // Output known-1 are known to be set if set in only one of the LHS, RHS.
378 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
379 KnownZero = KnownZeroOut;
380 return;
381 }
382 case Instruction::Mul: {
383 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
384 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
385 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
386 break;
387 }
388 case Instruction::UDiv: {
389 // For the purposes of computing leading zeros we can conservatively
390 // treat a udiv as a logical right shift by the power of 2 known to
391 // be less than the denominator.
392 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
393 unsigned LeadZ = KnownZero2.countLeadingOnes();
394
395 KnownOne2.clearAllBits();
396 KnownZero2.clearAllBits();
397 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
398 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
399 if (RHSUnknownLeadingOnes != BitWidth)
400 LeadZ = std::min(BitWidth,
401 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
402
403 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
404 return;
405 }
406 case Instruction::Select:
407 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
408 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
409 Depth+1);
410 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
411 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
412
413 // Only known if known in both the LHS and RHS.
414 KnownOne &= KnownOne2;
415 KnownZero &= KnownZero2;
416 return;
417 case Instruction::FPTrunc:
418 case Instruction::FPExt:
419 case Instruction::FPToUI:
420 case Instruction::FPToSI:
421 case Instruction::SIToFP:
422 case Instruction::UIToFP:
423 return; // Can't work with floating point.
424 case Instruction::PtrToInt:
425 case Instruction::IntToPtr:
426 // We can't handle these if we don't know the pointer size.
427 if (!TD) return;
428 // FALL THROUGH and handle them the same as zext/trunc.
429 case Instruction::ZExt:
430 case Instruction::Trunc: {
431 Type *SrcTy = I->getOperand(0)->getType();
432
433 unsigned SrcBitWidth;
434 // Note that we handle pointer operands here because of inttoptr/ptrtoint
435 // which fall through here.
436 if(TD) {
437 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
438 } else {
439 SrcBitWidth = SrcTy->getScalarSizeInBits();
440 if (!SrcBitWidth) return;
441 }
442
443 assert(SrcBitWidth && "SrcBitWidth can't be zero");
444 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
445 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
446 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
447 KnownZero = KnownZero.zextOrTrunc(BitWidth);
448 KnownOne = KnownOne.zextOrTrunc(BitWidth);
449 // Any top bits are known to be zero.
450 if (BitWidth > SrcBitWidth)
451 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
452 return;
453 }
454 case Instruction::BitCast: {
455 Type *SrcTy = I->getOperand(0)->getType();
456 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
457 // TODO: For now, not handling conversions like:
458 // (bitcast i64 %x to <2 x i32>)
459 !I->getType()->isVectorTy()) {
460 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
461 return;
462 }
463 break;
464 }
465 case Instruction::SExt: {
466 // Compute the bits in the result that are not present in the input.
467 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
468
469 KnownZero = KnownZero.trunc(SrcBitWidth);
470 KnownOne = KnownOne.trunc(SrcBitWidth);
471 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
472 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
473 KnownZero = KnownZero.zext(BitWidth);
474 KnownOne = KnownOne.zext(BitWidth);
475
476 // If the sign bit of the input is known set or clear, then we know the
477 // top bits of the result.
478 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
479 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
480 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
481 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
482 return;
483 }
484 case Instruction::Shl:
485 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
486 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
487 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
488 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
489 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
490 KnownZero <<= ShiftAmt;
491 KnownOne <<= ShiftAmt;
492 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
493 return;
494 }
495 break;
496 case Instruction::LShr:
497 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
498 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
499 // Compute the new bits that are at the top now.
500 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
501
502 // Unsigned shift right.
503 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
504 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
505 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
506 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
507 // high bits known zero.
508 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
509 return;
510 }
511 break;
512 case Instruction::AShr:
513 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
514 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
515 // Compute the new bits that are at the top now.
516 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
517
518 // Signed shift right.
519 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
520 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
521 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
522 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
523
524 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
525 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
526 KnownZero |= HighBits;
527 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
528 KnownOne |= HighBits;
529 return;
530 }
531 break;
532 case Instruction::Sub: {
533 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
534 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
535 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
536 Depth);
537 break;
538 }
539 case Instruction::Add: {
540 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
541 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
542 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
543 Depth);
544 break;
545 }
546 case Instruction::SRem:
547 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
548 APInt RA = Rem->getValue().abs();
549 if (RA.isPowerOf2()) {
550 APInt LowBits = RA - 1;
551 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
552
553 // The low bits of the first operand are unchanged by the srem.
554 KnownZero = KnownZero2 & LowBits;
555 KnownOne = KnownOne2 & LowBits;
556
557 // If the first operand is non-negative or has all low bits zero, then
558 // the upper bits are all zero.
559 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
560 KnownZero |= ~LowBits;
561
562 // If the first operand is negative and not all low bits are zero, then
563 // the upper bits are all one.
564 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
565 KnownOne |= ~LowBits;
566
567 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
568 }
569 }
570
571 // The sign bit is the LHS's sign bit, except when the result of the
572 // remainder is zero.
573 if (KnownZero.isNonNegative()) {
574 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
575 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
576 Depth+1);
577 // If it's known zero, our sign bit is also zero.
578 if (LHSKnownZero.isNegative())
579 KnownZero.setBit(BitWidth - 1);
580 }
581
582 break;
583 case Instruction::URem: {
584 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
585 APInt RA = Rem->getValue();
586 if (RA.isPowerOf2()) {
587 APInt LowBits = (RA - 1);
588 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
589 Depth+1);
590 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
591 KnownZero |= ~LowBits;
592 KnownOne &= LowBits;
593 break;
594 }
595 }
596
597 // Since the result is less than or equal to either operand, any leading
598 // zero bits in either operand must also exist in the result.
599 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
600 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
601
602 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
603 KnownZero2.countLeadingOnes());
604 KnownOne.clearAllBits();
605 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
606 break;
607 }
608
609 case Instruction::Alloca: {
610 AllocaInst *AI = cast<AllocaInst>(V);
611 unsigned Align = AI->getAlignment();
612 if (Align == 0 && TD)
613 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
614
615 if (Align > 0)
616 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
617 break;
618 }
619 case Instruction::GetElementPtr: {
620 // Analyze all of the subscripts of this getelementptr instruction
621 // to determine if we can prove known low zero bits.
622 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
623 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
624 Depth+1);
625 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
626
627 gep_type_iterator GTI = gep_type_begin(I);
628 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
629 Value *Index = I->getOperand(i);
630 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
631 // Handle struct member offset arithmetic.
632 if (!TD) return;
633 const StructLayout *SL = TD->getStructLayout(STy);
634 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
635 uint64_t Offset = SL->getElementOffset(Idx);
636 TrailZ = std::min(TrailZ,
637 CountTrailingZeros_64(Offset));
638 } else {
639 // Handle array index arithmetic.
640 Type *IndexedTy = GTI.getIndexedType();
641 if (!IndexedTy->isSized()) return;
642 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
643 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
644 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
645 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
646 TrailZ = std::min(TrailZ,
647 unsigned(CountTrailingZeros_64(TypeSize) +
648 LocalKnownZero.countTrailingOnes()));
649 }
650 }
651
652 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
653 break;
654 }
655 case Instruction::PHI: {
656 PHINode *P = cast<PHINode>(I);
657 // Handle the case of a simple two-predecessor recurrence PHI.
658 // There's a lot more that could theoretically be done here, but
659 // this is sufficient to catch some interesting cases.
660 if (P->getNumIncomingValues() == 2) {
661 for (unsigned i = 0; i != 2; ++i) {
662 Value *L = P->getIncomingValue(i);
663 Value *R = P->getIncomingValue(!i);
664 Operator *LU = dyn_cast<Operator>(L);
665 if (!LU)
666 continue;
667 unsigned Opcode = LU->getOpcode();
668 // Check for operations that have the property that if
669 // both their operands have low zero bits, the result
670 // will have low zero bits.
671 if (Opcode == Instruction::Add ||
672 Opcode == Instruction::Sub ||
673 Opcode == Instruction::And ||
674 Opcode == Instruction::Or ||
675 Opcode == Instruction::Mul) {
676 Value *LL = LU->getOperand(0);
677 Value *LR = LU->getOperand(1);
678 // Find a recurrence.
679 if (LL == I)
680 L = LR;
681 else if (LR == I)
682 L = LL;
683 else
684 break;
685 // Ok, we have a PHI of the form L op= R. Check for low
686 // zero bits.
687 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
688
689 // We need to take the minimum number of known bits
690 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
691 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
692
693 KnownZero = APInt::getLowBitsSet(BitWidth,
694 std::min(KnownZero2.countTrailingOnes(),
695 KnownZero3.countTrailingOnes()));
696 break;
697 }
698 }
699 }
700
701 // Unreachable blocks may have zero-operand PHI nodes.
702 if (P->getNumIncomingValues() == 0)
703 return;
704
705 // Otherwise take the unions of the known bit sets of the operands,
706 // taking conservative care to avoid excessive recursion.
707 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
708 // Skip if every incoming value references to ourself.
709 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
710 break;
711
712 KnownZero = APInt::getAllOnesValue(BitWidth);
713 KnownOne = APInt::getAllOnesValue(BitWidth);
714 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
715 // Skip direct self references.
716 if (P->getIncomingValue(i) == P) continue;
717
718 KnownZero2 = APInt(BitWidth, 0);
719 KnownOne2 = APInt(BitWidth, 0);
720 // Recurse, but cap the recursion to one level, because we don't
721 // want to waste time spinning around in loops.
722 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
723 MaxDepth-1);
724 KnownZero &= KnownZero2;
725 KnownOne &= KnownOne2;
726 // If all bits have been ruled out, there's no need to check
727 // more operands.
728 if (!KnownZero && !KnownOne)
729 break;
730 }
731 }
732 break;
733 }
734 case Instruction::Call:
735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
736 switch (II->getIntrinsicID()) {
737 default: break;
738 case Intrinsic::ctlz:
739 case Intrinsic::cttz: {
740 unsigned LowBits = Log2_32(BitWidth)+1;
741 // If this call is undefined for 0, the result will be less than 2^n.
742 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
743 LowBits -= 1;
744 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
745 break;
746 }
747 case Intrinsic::ctpop: {
748 unsigned LowBits = Log2_32(BitWidth)+1;
749 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
750 break;
751 }
752 case Intrinsic::x86_sse42_crc32_64_8:
753 case Intrinsic::x86_sse42_crc32_64_64:
754 KnownZero = APInt::getHighBitsSet(64, 32);
755 break;
756 }
757 }
758 break;
759 case Instruction::ExtractValue:
760 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
761 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
762 if (EVI->getNumIndices() != 1) break;
763 if (EVI->getIndices()[0] == 0) {
764 switch (II->getIntrinsicID()) {
765 default: break;
766 case Intrinsic::uadd_with_overflow:
767 case Intrinsic::sadd_with_overflow:
768 ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
769 II->getArgOperand(1), false, KnownZero,
770 KnownOne, KnownZero2, KnownOne2, TD, Depth);
771 break;
772 case Intrinsic::usub_with_overflow:
773 case Intrinsic::ssub_with_overflow:
774 ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
775 II->getArgOperand(1), false, KnownZero,
776 KnownOne, KnownZero2, KnownOne2, TD, Depth);
777 break;
778 case Intrinsic::umul_with_overflow:
779 case Intrinsic::smul_with_overflow:
780 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
781 false, KnownZero, KnownOne,
782 KnownZero2, KnownOne2, TD, Depth);
783 break;
784 }
785 }
786 }
787 }
788 }
789
790 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
791 /// one. Convenience wrapper around ComputeMaskedBits.
ComputeSignBit(Value * V,bool & KnownZero,bool & KnownOne,const DataLayout * TD,unsigned Depth)792 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
793 const DataLayout *TD, unsigned Depth) {
794 unsigned BitWidth = getBitWidth(V->getType(), TD);
795 if (!BitWidth) {
796 KnownZero = false;
797 KnownOne = false;
798 return;
799 }
800 APInt ZeroBits(BitWidth, 0);
801 APInt OneBits(BitWidth, 0);
802 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
803 KnownOne = OneBits[BitWidth - 1];
804 KnownZero = ZeroBits[BitWidth - 1];
805 }
806
807 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
808 /// bit set when defined. For vectors return true if every element is known to
809 /// be a power of two when defined. Supports values with integer or pointer
810 /// types and vectors of integers.
isKnownToBeAPowerOfTwo(Value * V,bool OrZero,unsigned Depth)811 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
812 if (Constant *C = dyn_cast<Constant>(V)) {
813 if (C->isNullValue())
814 return OrZero;
815 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
816 return CI->getValue().isPowerOf2();
817 // TODO: Handle vector constants.
818 }
819
820 // 1 << X is clearly a power of two if the one is not shifted off the end. If
821 // it is shifted off the end then the result is undefined.
822 if (match(V, m_Shl(m_One(), m_Value())))
823 return true;
824
825 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
826 // bottom. If it is shifted off the bottom then the result is undefined.
827 if (match(V, m_LShr(m_SignBit(), m_Value())))
828 return true;
829
830 // The remaining tests are all recursive, so bail out if we hit the limit.
831 if (Depth++ == MaxDepth)
832 return false;
833
834 Value *X = 0, *Y = 0;
835 // A shift of a power of two is a power of two or zero.
836 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
837 match(V, m_Shr(m_Value(X), m_Value()))))
838 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
839
840 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
841 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
842
843 if (SelectInst *SI = dyn_cast<SelectInst>(V))
844 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
845 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
846
847 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
848 // A power of two and'd with anything is a power of two or zero.
849 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
850 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
851 return true;
852 // X & (-X) is always a power of two or zero.
853 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
854 return true;
855 return false;
856 }
857
858 // An exact divide or right shift can only shift off zero bits, so the result
859 // is a power of two only if the first operand is a power of two and not
860 // copying a sign bit (sdiv int_min, 2).
861 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
862 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
863 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
864 }
865
866 return false;
867 }
868
869 /// \brief Test whether a GEP's result is known to be non-null.
870 ///
871 /// Uses properties inherent in a GEP to try to determine whether it is known
872 /// to be non-null.
873 ///
874 /// Currently this routine does not support vector GEPs.
isGEPKnownNonNull(GEPOperator * GEP,const DataLayout * DL,unsigned Depth)875 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
876 unsigned Depth) {
877 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
878 return false;
879
880 // FIXME: Support vector-GEPs.
881 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
882
883 // If the base pointer is non-null, we cannot walk to a null address with an
884 // inbounds GEP in address space zero.
885 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
886 return true;
887
888 // Past this, if we don't have DataLayout, we can't do much.
889 if (!DL)
890 return false;
891
892 // Walk the GEP operands and see if any operand introduces a non-zero offset.
893 // If so, then the GEP cannot produce a null pointer, as doing so would
894 // inherently violate the inbounds contract within address space zero.
895 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
896 GTI != GTE; ++GTI) {
897 // Struct types are easy -- they must always be indexed by a constant.
898 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
899 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
900 unsigned ElementIdx = OpC->getZExtValue();
901 const StructLayout *SL = DL->getStructLayout(STy);
902 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
903 if (ElementOffset > 0)
904 return true;
905 continue;
906 }
907
908 // If we have a zero-sized type, the index doesn't matter. Keep looping.
909 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
910 continue;
911
912 // Fast path the constant operand case both for efficiency and so we don't
913 // increment Depth when just zipping down an all-constant GEP.
914 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
915 if (!OpC->isZero())
916 return true;
917 continue;
918 }
919
920 // We post-increment Depth here because while isKnownNonZero increments it
921 // as well, when we pop back up that increment won't persist. We don't want
922 // to recurse 10k times just because we have 10k GEP operands. We don't
923 // bail completely out because we want to handle constant GEPs regardless
924 // of depth.
925 if (Depth++ >= MaxDepth)
926 continue;
927
928 if (isKnownNonZero(GTI.getOperand(), DL, Depth))
929 return true;
930 }
931
932 return false;
933 }
934
935 /// isKnownNonZero - Return true if the given value is known to be non-zero
936 /// when defined. For vectors return true if every element is known to be
937 /// non-zero when defined. Supports values with integer or pointer type and
938 /// vectors of integers.
isKnownNonZero(Value * V,const DataLayout * TD,unsigned Depth)939 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
940 if (Constant *C = dyn_cast<Constant>(V)) {
941 if (C->isNullValue())
942 return false;
943 if (isa<ConstantInt>(C))
944 // Must be non-zero due to null test above.
945 return true;
946 // TODO: Handle vectors
947 return false;
948 }
949
950 // The remaining tests are all recursive, so bail out if we hit the limit.
951 if (Depth++ >= MaxDepth)
952 return false;
953
954 // Check for pointer simplifications.
955 if (V->getType()->isPointerTy()) {
956 if (isKnownNonNull(V))
957 return true;
958 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
959 if (isGEPKnownNonNull(GEP, TD, Depth))
960 return true;
961 }
962
963 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
964
965 // X | Y != 0 if X != 0 or Y != 0.
966 Value *X = 0, *Y = 0;
967 if (match(V, m_Or(m_Value(X), m_Value(Y))))
968 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
969
970 // ext X != 0 if X != 0.
971 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
972 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
973
974 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
975 // if the lowest bit is shifted off the end.
976 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
977 // shl nuw can't remove any non-zero bits.
978 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
979 if (BO->hasNoUnsignedWrap())
980 return isKnownNonZero(X, TD, Depth);
981
982 APInt KnownZero(BitWidth, 0);
983 APInt KnownOne(BitWidth, 0);
984 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
985 if (KnownOne[0])
986 return true;
987 }
988 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
989 // defined if the sign bit is shifted off the end.
990 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
991 // shr exact can only shift out zero bits.
992 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
993 if (BO->isExact())
994 return isKnownNonZero(X, TD, Depth);
995
996 bool XKnownNonNegative, XKnownNegative;
997 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
998 if (XKnownNegative)
999 return true;
1000 }
1001 // div exact can only produce a zero if the dividend is zero.
1002 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1003 return isKnownNonZero(X, TD, Depth);
1004 }
1005 // X + Y.
1006 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1007 bool XKnownNonNegative, XKnownNegative;
1008 bool YKnownNonNegative, YKnownNegative;
1009 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1010 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1011
1012 // If X and Y are both non-negative (as signed values) then their sum is not
1013 // zero unless both X and Y are zero.
1014 if (XKnownNonNegative && YKnownNonNegative)
1015 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1016 return true;
1017
1018 // If X and Y are both negative (as signed values) then their sum is not
1019 // zero unless both X and Y equal INT_MIN.
1020 if (BitWidth && XKnownNegative && YKnownNegative) {
1021 APInt KnownZero(BitWidth, 0);
1022 APInt KnownOne(BitWidth, 0);
1023 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1024 // The sign bit of X is set. If some other bit is set then X is not equal
1025 // to INT_MIN.
1026 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1027 if ((KnownOne & Mask) != 0)
1028 return true;
1029 // The sign bit of Y is set. If some other bit is set then Y is not equal
1030 // to INT_MIN.
1031 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
1032 if ((KnownOne & Mask) != 0)
1033 return true;
1034 }
1035
1036 // The sum of a non-negative number and a power of two is not zero.
1037 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
1038 return true;
1039 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
1040 return true;
1041 }
1042 // X * Y.
1043 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1044 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1045 // If X and Y are non-zero then so is X * Y as long as the multiplication
1046 // does not overflow.
1047 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1048 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1049 return true;
1050 }
1051 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1052 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1053 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1054 isKnownNonZero(SI->getFalseValue(), TD, Depth))
1055 return true;
1056 }
1057
1058 if (!BitWidth) return false;
1059 APInt KnownZero(BitWidth, 0);
1060 APInt KnownOne(BitWidth, 0);
1061 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1062 return KnownOne != 0;
1063 }
1064
1065 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1066 /// this predicate to simplify operations downstream. Mask is known to be zero
1067 /// for bits that V cannot have.
1068 ///
1069 /// This function is defined on values with integer type, values with pointer
1070 /// type (but only if TD is non-null), and vectors of integers. In the case
1071 /// where V is a vector, the mask, known zero, and known one values are the
1072 /// same width as the vector element, and the bit is set only if it is true
1073 /// for all of the elements in the vector.
MaskedValueIsZero(Value * V,const APInt & Mask,const DataLayout * TD,unsigned Depth)1074 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
1075 const DataLayout *TD, unsigned Depth) {
1076 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1077 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1078 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1079 return (KnownZero & Mask) == Mask;
1080 }
1081
1082
1083
1084 /// ComputeNumSignBits - Return the number of times the sign bit of the
1085 /// register is replicated into the other bits. We know that at least 1 bit
1086 /// is always equal to the sign bit (itself), but other cases can give us
1087 /// information. For example, immediately after an "ashr X, 2", we know that
1088 /// the top 3 bits are all equal to each other, so we return 3.
1089 ///
1090 /// 'Op' must have a scalar integer type.
1091 ///
ComputeNumSignBits(Value * V,const DataLayout * TD,unsigned Depth)1092 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
1093 unsigned Depth) {
1094 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1095 "ComputeNumSignBits requires a DataLayout object to operate "
1096 "on non-integer values!");
1097 Type *Ty = V->getType();
1098 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1099 Ty->getScalarSizeInBits();
1100 unsigned Tmp, Tmp2;
1101 unsigned FirstAnswer = 1;
1102
1103 // Note that ConstantInt is handled by the general ComputeMaskedBits case
1104 // below.
1105
1106 if (Depth == 6)
1107 return 1; // Limit search depth.
1108
1109 Operator *U = dyn_cast<Operator>(V);
1110 switch (Operator::getOpcode(V)) {
1111 default: break;
1112 case Instruction::SExt:
1113 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1114 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1115
1116 case Instruction::AShr: {
1117 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1118 // ashr X, C -> adds C sign bits. Vectors too.
1119 const APInt *ShAmt;
1120 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1121 Tmp += ShAmt->getZExtValue();
1122 if (Tmp > TyBits) Tmp = TyBits;
1123 }
1124 return Tmp;
1125 }
1126 case Instruction::Shl: {
1127 const APInt *ShAmt;
1128 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1129 // shl destroys sign bits.
1130 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1131 Tmp2 = ShAmt->getZExtValue();
1132 if (Tmp2 >= TyBits || // Bad shift.
1133 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1134 return Tmp - Tmp2;
1135 }
1136 break;
1137 }
1138 case Instruction::And:
1139 case Instruction::Or:
1140 case Instruction::Xor: // NOT is handled here.
1141 // Logical binary ops preserve the number of sign bits at the worst.
1142 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1143 if (Tmp != 1) {
1144 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1145 FirstAnswer = std::min(Tmp, Tmp2);
1146 // We computed what we know about the sign bits as our first
1147 // answer. Now proceed to the generic code that uses
1148 // ComputeMaskedBits, and pick whichever answer is better.
1149 }
1150 break;
1151
1152 case Instruction::Select:
1153 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1154 if (Tmp == 1) return 1; // Early out.
1155 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1156 return std::min(Tmp, Tmp2);
1157
1158 case Instruction::Add:
1159 // Add can have at most one carry bit. Thus we know that the output
1160 // is, at worst, one more bit than the inputs.
1161 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1162 if (Tmp == 1) return 1; // Early out.
1163
1164 // Special case decrementing a value (ADD X, -1):
1165 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1166 if (CRHS->isAllOnesValue()) {
1167 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1168 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1169
1170 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1171 // sign bits set.
1172 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1173 return TyBits;
1174
1175 // If we are subtracting one from a positive number, there is no carry
1176 // out of the result.
1177 if (KnownZero.isNegative())
1178 return Tmp;
1179 }
1180
1181 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1182 if (Tmp2 == 1) return 1;
1183 return std::min(Tmp, Tmp2)-1;
1184
1185 case Instruction::Sub:
1186 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1187 if (Tmp2 == 1) return 1;
1188
1189 // Handle NEG.
1190 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1191 if (CLHS->isNullValue()) {
1192 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1193 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1194 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1195 // sign bits set.
1196 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1197 return TyBits;
1198
1199 // If the input is known to be positive (the sign bit is known clear),
1200 // the output of the NEG has the same number of sign bits as the input.
1201 if (KnownZero.isNegative())
1202 return Tmp2;
1203
1204 // Otherwise, we treat this like a SUB.
1205 }
1206
1207 // Sub can have at most one carry bit. Thus we know that the output
1208 // is, at worst, one more bit than the inputs.
1209 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1210 if (Tmp == 1) return 1; // Early out.
1211 return std::min(Tmp, Tmp2)-1;
1212
1213 case Instruction::PHI: {
1214 PHINode *PN = cast<PHINode>(U);
1215 // Don't analyze large in-degree PHIs.
1216 if (PN->getNumIncomingValues() > 4) break;
1217
1218 // Take the minimum of all incoming values. This can't infinitely loop
1219 // because of our depth threshold.
1220 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1221 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1222 if (Tmp == 1) return Tmp;
1223 Tmp = std::min(Tmp,
1224 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1225 }
1226 return Tmp;
1227 }
1228
1229 case Instruction::Trunc:
1230 // FIXME: it's tricky to do anything useful for this, but it is an important
1231 // case for targets like X86.
1232 break;
1233 }
1234
1235 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1236 // use this information.
1237 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1238 APInt Mask;
1239 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1240
1241 if (KnownZero.isNegative()) { // sign bit is 0
1242 Mask = KnownZero;
1243 } else if (KnownOne.isNegative()) { // sign bit is 1;
1244 Mask = KnownOne;
1245 } else {
1246 // Nothing known.
1247 return FirstAnswer;
1248 }
1249
1250 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1251 // the number of identical bits in the top of the input value.
1252 Mask = ~Mask;
1253 Mask <<= Mask.getBitWidth()-TyBits;
1254 // Return # leading zeros. We use 'min' here in case Val was zero before
1255 // shifting. We don't want to return '64' as for an i32 "0".
1256 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1257 }
1258
1259 /// ComputeMultiple - This function computes the integer multiple of Base that
1260 /// equals V. If successful, it returns true and returns the multiple in
1261 /// Multiple. If unsuccessful, it returns false. It looks
1262 /// through SExt instructions only if LookThroughSExt is true.
ComputeMultiple(Value * V,unsigned Base,Value * & Multiple,bool LookThroughSExt,unsigned Depth)1263 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1264 bool LookThroughSExt, unsigned Depth) {
1265 const unsigned MaxDepth = 6;
1266
1267 assert(V && "No Value?");
1268 assert(Depth <= MaxDepth && "Limit Search Depth");
1269 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1270
1271 Type *T = V->getType();
1272
1273 ConstantInt *CI = dyn_cast<ConstantInt>(V);
1274
1275 if (Base == 0)
1276 return false;
1277
1278 if (Base == 1) {
1279 Multiple = V;
1280 return true;
1281 }
1282
1283 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1284 Constant *BaseVal = ConstantInt::get(T, Base);
1285 if (CO && CO == BaseVal) {
1286 // Multiple is 1.
1287 Multiple = ConstantInt::get(T, 1);
1288 return true;
1289 }
1290
1291 if (CI && CI->getZExtValue() % Base == 0) {
1292 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1293 return true;
1294 }
1295
1296 if (Depth == MaxDepth) return false; // Limit search depth.
1297
1298 Operator *I = dyn_cast<Operator>(V);
1299 if (!I) return false;
1300
1301 switch (I->getOpcode()) {
1302 default: break;
1303 case Instruction::SExt:
1304 if (!LookThroughSExt) return false;
1305 // otherwise fall through to ZExt
1306 case Instruction::ZExt:
1307 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1308 LookThroughSExt, Depth+1);
1309 case Instruction::Shl:
1310 case Instruction::Mul: {
1311 Value *Op0 = I->getOperand(0);
1312 Value *Op1 = I->getOperand(1);
1313
1314 if (I->getOpcode() == Instruction::Shl) {
1315 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1316 if (!Op1CI) return false;
1317 // Turn Op0 << Op1 into Op0 * 2^Op1
1318 APInt Op1Int = Op1CI->getValue();
1319 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1320 APInt API(Op1Int.getBitWidth(), 0);
1321 API.setBit(BitToSet);
1322 Op1 = ConstantInt::get(V->getContext(), API);
1323 }
1324
1325 Value *Mul0 = NULL;
1326 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1327 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1328 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1329 if (Op1C->getType()->getPrimitiveSizeInBits() <
1330 MulC->getType()->getPrimitiveSizeInBits())
1331 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1332 if (Op1C->getType()->getPrimitiveSizeInBits() >
1333 MulC->getType()->getPrimitiveSizeInBits())
1334 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1335
1336 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1337 Multiple = ConstantExpr::getMul(MulC, Op1C);
1338 return true;
1339 }
1340
1341 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1342 if (Mul0CI->getValue() == 1) {
1343 // V == Base * Op1, so return Op1
1344 Multiple = Op1;
1345 return true;
1346 }
1347 }
1348
1349 Value *Mul1 = NULL;
1350 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1351 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1352 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1353 if (Op0C->getType()->getPrimitiveSizeInBits() <
1354 MulC->getType()->getPrimitiveSizeInBits())
1355 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1356 if (Op0C->getType()->getPrimitiveSizeInBits() >
1357 MulC->getType()->getPrimitiveSizeInBits())
1358 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1359
1360 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1361 Multiple = ConstantExpr::getMul(MulC, Op0C);
1362 return true;
1363 }
1364
1365 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1366 if (Mul1CI->getValue() == 1) {
1367 // V == Base * Op0, so return Op0
1368 Multiple = Op0;
1369 return true;
1370 }
1371 }
1372 }
1373 }
1374
1375 // We could not determine if V is a multiple of Base.
1376 return false;
1377 }
1378
1379 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
1380 /// value is never equal to -0.0.
1381 ///
1382 /// NOTE: this function will need to be revisited when we support non-default
1383 /// rounding modes!
1384 ///
CannotBeNegativeZero(const Value * V,unsigned Depth)1385 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1386 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1387 return !CFP->getValueAPF().isNegZero();
1388
1389 if (Depth == 6)
1390 return 1; // Limit search depth.
1391
1392 const Operator *I = dyn_cast<Operator>(V);
1393 if (I == 0) return false;
1394
1395 // Check if the nsz fast-math flag is set
1396 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1397 if (FPO->hasNoSignedZeros())
1398 return true;
1399
1400 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1401 if (I->getOpcode() == Instruction::FAdd)
1402 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1403 if (CFP->isNullValue())
1404 return true;
1405
1406 // sitofp and uitofp turn into +0.0 for zero.
1407 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1408 return true;
1409
1410 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1411 // sqrt(-0.0) = -0.0, no other negative results are possible.
1412 if (II->getIntrinsicID() == Intrinsic::sqrt)
1413 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1414
1415 if (const CallInst *CI = dyn_cast<CallInst>(I))
1416 if (const Function *F = CI->getCalledFunction()) {
1417 if (F->isDeclaration()) {
1418 // abs(x) != -0.0
1419 if (F->getName() == "abs") return true;
1420 // fabs[lf](x) != -0.0
1421 if (F->getName() == "fabs") return true;
1422 if (F->getName() == "fabsf") return true;
1423 if (F->getName() == "fabsl") return true;
1424 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1425 F->getName() == "sqrtl")
1426 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1427 }
1428 }
1429
1430 return false;
1431 }
1432
1433 /// isBytewiseValue - If the specified value can be set by repeating the same
1434 /// byte in memory, return the i8 value that it is represented with. This is
1435 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1436 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1437 /// byte store (e.g. i16 0x1234), return null.
isBytewiseValue(Value * V)1438 Value *llvm::isBytewiseValue(Value *V) {
1439 // All byte-wide stores are splatable, even of arbitrary variables.
1440 if (V->getType()->isIntegerTy(8)) return V;
1441
1442 // Handle 'null' ConstantArrayZero etc.
1443 if (Constant *C = dyn_cast<Constant>(V))
1444 if (C->isNullValue())
1445 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1446
1447 // Constant float and double values can be handled as integer values if the
1448 // corresponding integer value is "byteable". An important case is 0.0.
1449 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1450 if (CFP->getType()->isFloatTy())
1451 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1452 if (CFP->getType()->isDoubleTy())
1453 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1454 // Don't handle long double formats, which have strange constraints.
1455 }
1456
1457 // We can handle constant integers that are power of two in size and a
1458 // multiple of 8 bits.
1459 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1460 unsigned Width = CI->getBitWidth();
1461 if (isPowerOf2_32(Width) && Width > 8) {
1462 // We can handle this value if the recursive binary decomposition is the
1463 // same at all levels.
1464 APInt Val = CI->getValue();
1465 APInt Val2;
1466 while (Val.getBitWidth() != 8) {
1467 unsigned NextWidth = Val.getBitWidth()/2;
1468 Val2 = Val.lshr(NextWidth);
1469 Val2 = Val2.trunc(Val.getBitWidth()/2);
1470 Val = Val.trunc(Val.getBitWidth()/2);
1471
1472 // If the top/bottom halves aren't the same, reject it.
1473 if (Val != Val2)
1474 return 0;
1475 }
1476 return ConstantInt::get(V->getContext(), Val);
1477 }
1478 }
1479
1480 // A ConstantDataArray/Vector is splatable if all its members are equal and
1481 // also splatable.
1482 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1483 Value *Elt = CA->getElementAsConstant(0);
1484 Value *Val = isBytewiseValue(Elt);
1485 if (!Val)
1486 return 0;
1487
1488 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1489 if (CA->getElementAsConstant(I) != Elt)
1490 return 0;
1491
1492 return Val;
1493 }
1494
1495 // Conceptually, we could handle things like:
1496 // %a = zext i8 %X to i16
1497 // %b = shl i16 %a, 8
1498 // %c = or i16 %a, %b
1499 // but until there is an example that actually needs this, it doesn't seem
1500 // worth worrying about.
1501 return 0;
1502 }
1503
1504
1505 // This is the recursive version of BuildSubAggregate. It takes a few different
1506 // arguments. Idxs is the index within the nested struct From that we are
1507 // looking at now (which is of type IndexedType). IdxSkip is the number of
1508 // indices from Idxs that should be left out when inserting into the resulting
1509 // struct. To is the result struct built so far, new insertvalue instructions
1510 // build on that.
BuildSubAggregate(Value * From,Value * To,Type * IndexedType,SmallVector<unsigned,10> & Idxs,unsigned IdxSkip,Instruction * InsertBefore)1511 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1512 SmallVector<unsigned, 10> &Idxs,
1513 unsigned IdxSkip,
1514 Instruction *InsertBefore) {
1515 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
1516 if (STy) {
1517 // Save the original To argument so we can modify it
1518 Value *OrigTo = To;
1519 // General case, the type indexed by Idxs is a struct
1520 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1521 // Process each struct element recursively
1522 Idxs.push_back(i);
1523 Value *PrevTo = To;
1524 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1525 InsertBefore);
1526 Idxs.pop_back();
1527 if (!To) {
1528 // Couldn't find any inserted value for this index? Cleanup
1529 while (PrevTo != OrigTo) {
1530 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1531 PrevTo = Del->getAggregateOperand();
1532 Del->eraseFromParent();
1533 }
1534 // Stop processing elements
1535 break;
1536 }
1537 }
1538 // If we successfully found a value for each of our subaggregates
1539 if (To)
1540 return To;
1541 }
1542 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1543 // the struct's elements had a value that was inserted directly. In the latter
1544 // case, perhaps we can't determine each of the subelements individually, but
1545 // we might be able to find the complete struct somewhere.
1546
1547 // Find the value that is at that particular spot
1548 Value *V = FindInsertedValue(From, Idxs);
1549
1550 if (!V)
1551 return NULL;
1552
1553 // Insert the value in the new (sub) aggregrate
1554 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1555 "tmp", InsertBefore);
1556 }
1557
1558 // This helper takes a nested struct and extracts a part of it (which is again a
1559 // struct) into a new value. For example, given the struct:
1560 // { a, { b, { c, d }, e } }
1561 // and the indices "1, 1" this returns
1562 // { c, d }.
1563 //
1564 // It does this by inserting an insertvalue for each element in the resulting
1565 // struct, as opposed to just inserting a single struct. This will only work if
1566 // each of the elements of the substruct are known (ie, inserted into From by an
1567 // insertvalue instruction somewhere).
1568 //
1569 // All inserted insertvalue instructions are inserted before InsertBefore
BuildSubAggregate(Value * From,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)1570 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1571 Instruction *InsertBefore) {
1572 assert(InsertBefore && "Must have someplace to insert!");
1573 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1574 idx_range);
1575 Value *To = UndefValue::get(IndexedType);
1576 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1577 unsigned IdxSkip = Idxs.size();
1578
1579 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1580 }
1581
1582 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1583 /// the scalar value indexed is already around as a register, for example if it
1584 /// were inserted directly into the aggregrate.
1585 ///
1586 /// If InsertBefore is not null, this function will duplicate (modified)
1587 /// insertvalues when a part of a nested struct is extracted.
FindInsertedValue(Value * V,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)1588 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1589 Instruction *InsertBefore) {
1590 // Nothing to index? Just return V then (this is useful at the end of our
1591 // recursion).
1592 if (idx_range.empty())
1593 return V;
1594 // We have indices, so V should have an indexable type.
1595 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1596 "Not looking at a struct or array?");
1597 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1598 "Invalid indices for type?");
1599
1600 if (Constant *C = dyn_cast<Constant>(V)) {
1601 C = C->getAggregateElement(idx_range[0]);
1602 if (C == 0) return 0;
1603 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1604 }
1605
1606 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1607 // Loop the indices for the insertvalue instruction in parallel with the
1608 // requested indices
1609 const unsigned *req_idx = idx_range.begin();
1610 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1611 i != e; ++i, ++req_idx) {
1612 if (req_idx == idx_range.end()) {
1613 // We can't handle this without inserting insertvalues
1614 if (!InsertBefore)
1615 return 0;
1616
1617 // The requested index identifies a part of a nested aggregate. Handle
1618 // this specially. For example,
1619 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1620 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1621 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1622 // This can be changed into
1623 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1624 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1625 // which allows the unused 0,0 element from the nested struct to be
1626 // removed.
1627 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1628 InsertBefore);
1629 }
1630
1631 // This insert value inserts something else than what we are looking for.
1632 // See if the (aggregrate) value inserted into has the value we are
1633 // looking for, then.
1634 if (*req_idx != *i)
1635 return FindInsertedValue(I->getAggregateOperand(), idx_range,
1636 InsertBefore);
1637 }
1638 // If we end up here, the indices of the insertvalue match with those
1639 // requested (though possibly only partially). Now we recursively look at
1640 // the inserted value, passing any remaining indices.
1641 return FindInsertedValue(I->getInsertedValueOperand(),
1642 makeArrayRef(req_idx, idx_range.end()),
1643 InsertBefore);
1644 }
1645
1646 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1647 // If we're extracting a value from an aggregrate that was extracted from
1648 // something else, we can extract from that something else directly instead.
1649 // However, we will need to chain I's indices with the requested indices.
1650
1651 // Calculate the number of indices required
1652 unsigned size = I->getNumIndices() + idx_range.size();
1653 // Allocate some space to put the new indices in
1654 SmallVector<unsigned, 5> Idxs;
1655 Idxs.reserve(size);
1656 // Add indices from the extract value instruction
1657 Idxs.append(I->idx_begin(), I->idx_end());
1658
1659 // Add requested indices
1660 Idxs.append(idx_range.begin(), idx_range.end());
1661
1662 assert(Idxs.size() == size
1663 && "Number of indices added not correct?");
1664
1665 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1666 }
1667 // Otherwise, we don't know (such as, extracting from a function return value
1668 // or load instruction)
1669 return 0;
1670 }
1671
1672 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1673 /// it can be expressed as a base pointer plus a constant offset. Return the
1674 /// base and offset to the caller.
GetPointerBaseWithConstantOffset(Value * Ptr,int64_t & Offset,const DataLayout * TD)1675 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1676 const DataLayout *TD) {
1677 // Without DataLayout, conservatively assume 64-bit offsets, which is
1678 // the widest we support.
1679 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
1680 APInt ByteOffset(BitWidth, 0);
1681 while (1) {
1682 if (Ptr->getType()->isVectorTy())
1683 break;
1684
1685 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1686 APInt GEPOffset(BitWidth, 0);
1687 if (TD && !GEP->accumulateConstantOffset(*TD, GEPOffset))
1688 break;
1689 ByteOffset += GEPOffset;
1690 Ptr = GEP->getPointerOperand();
1691 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1692 Ptr = cast<Operator>(Ptr)->getOperand(0);
1693 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1694 if (GA->mayBeOverridden())
1695 break;
1696 Ptr = GA->getAliasee();
1697 } else {
1698 break;
1699 }
1700 }
1701 Offset = ByteOffset.getSExtValue();
1702 return Ptr;
1703 }
1704
1705
1706 /// getConstantStringInfo - This function computes the length of a
1707 /// null-terminated C string pointed to by V. If successful, it returns true
1708 /// and returns the string in Str. If unsuccessful, it returns false.
getConstantStringInfo(const Value * V,StringRef & Str,uint64_t Offset,bool TrimAtNul)1709 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1710 uint64_t Offset, bool TrimAtNul) {
1711 assert(V);
1712
1713 // Look through bitcast instructions and geps.
1714 V = V->stripPointerCasts();
1715
1716 // If the value is a GEP instructionor constant expression, treat it as an
1717 // offset.
1718 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1719 // Make sure the GEP has exactly three arguments.
1720 if (GEP->getNumOperands() != 3)
1721 return false;
1722
1723 // Make sure the index-ee is a pointer to array of i8.
1724 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1725 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1726 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1727 return false;
1728
1729 // Check to make sure that the first operand of the GEP is an integer and
1730 // has value 0 so that we are sure we're indexing into the initializer.
1731 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1732 if (FirstIdx == 0 || !FirstIdx->isZero())
1733 return false;
1734
1735 // If the second index isn't a ConstantInt, then this is a variable index
1736 // into the array. If this occurs, we can't say anything meaningful about
1737 // the string.
1738 uint64_t StartIdx = 0;
1739 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1740 StartIdx = CI->getZExtValue();
1741 else
1742 return false;
1743 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1744 }
1745
1746 // The GEP instruction, constant or instruction, must reference a global
1747 // variable that is a constant and is initialized. The referenced constant
1748 // initializer is the array that we'll use for optimization.
1749 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1750 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1751 return false;
1752
1753 // Handle the all-zeros case
1754 if (GV->getInitializer()->isNullValue()) {
1755 // This is a degenerate case. The initializer is constant zero so the
1756 // length of the string must be zero.
1757 Str = "";
1758 return true;
1759 }
1760
1761 // Must be a Constant Array
1762 const ConstantDataArray *Array =
1763 dyn_cast<ConstantDataArray>(GV->getInitializer());
1764 if (Array == 0 || !Array->isString())
1765 return false;
1766
1767 // Get the number of elements in the array
1768 uint64_t NumElts = Array->getType()->getArrayNumElements();
1769
1770 // Start out with the entire array in the StringRef.
1771 Str = Array->getAsString();
1772
1773 if (Offset > NumElts)
1774 return false;
1775
1776 // Skip over 'offset' bytes.
1777 Str = Str.substr(Offset);
1778
1779 if (TrimAtNul) {
1780 // Trim off the \0 and anything after it. If the array is not nul
1781 // terminated, we just return the whole end of string. The client may know
1782 // some other way that the string is length-bound.
1783 Str = Str.substr(0, Str.find('\0'));
1784 }
1785 return true;
1786 }
1787
1788 // These next two are very similar to the above, but also look through PHI
1789 // nodes.
1790 // TODO: See if we can integrate these two together.
1791
1792 /// GetStringLengthH - If we can compute the length of the string pointed to by
1793 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLengthH(Value * V,SmallPtrSet<PHINode *,32> & PHIs)1794 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1795 // Look through noop bitcast instructions.
1796 V = V->stripPointerCasts();
1797
1798 // If this is a PHI node, there are two cases: either we have already seen it
1799 // or we haven't.
1800 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1801 if (!PHIs.insert(PN))
1802 return ~0ULL; // already in the set.
1803
1804 // If it was new, see if all the input strings are the same length.
1805 uint64_t LenSoFar = ~0ULL;
1806 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1807 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1808 if (Len == 0) return 0; // Unknown length -> unknown.
1809
1810 if (Len == ~0ULL) continue;
1811
1812 if (Len != LenSoFar && LenSoFar != ~0ULL)
1813 return 0; // Disagree -> unknown.
1814 LenSoFar = Len;
1815 }
1816
1817 // Success, all agree.
1818 return LenSoFar;
1819 }
1820
1821 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1822 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1823 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1824 if (Len1 == 0) return 0;
1825 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1826 if (Len2 == 0) return 0;
1827 if (Len1 == ~0ULL) return Len2;
1828 if (Len2 == ~0ULL) return Len1;
1829 if (Len1 != Len2) return 0;
1830 return Len1;
1831 }
1832
1833 // Otherwise, see if we can read the string.
1834 StringRef StrData;
1835 if (!getConstantStringInfo(V, StrData))
1836 return 0;
1837
1838 return StrData.size()+1;
1839 }
1840
1841 /// GetStringLength - If we can compute the length of the string pointed to by
1842 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLength(Value * V)1843 uint64_t llvm::GetStringLength(Value *V) {
1844 if (!V->getType()->isPointerTy()) return 0;
1845
1846 SmallPtrSet<PHINode*, 32> PHIs;
1847 uint64_t Len = GetStringLengthH(V, PHIs);
1848 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1849 // an empty string as a length.
1850 return Len == ~0ULL ? 1 : Len;
1851 }
1852
1853 Value *
GetUnderlyingObject(Value * V,const DataLayout * TD,unsigned MaxLookup)1854 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
1855 if (!V->getType()->isPointerTy())
1856 return V;
1857 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1858 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1859 V = GEP->getPointerOperand();
1860 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1861 V = cast<Operator>(V)->getOperand(0);
1862 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1863 if (GA->mayBeOverridden())
1864 return V;
1865 V = GA->getAliasee();
1866 } else {
1867 // See if InstructionSimplify knows any relevant tricks.
1868 if (Instruction *I = dyn_cast<Instruction>(V))
1869 // TODO: Acquire a DominatorTree and use it.
1870 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1871 V = Simplified;
1872 continue;
1873 }
1874
1875 return V;
1876 }
1877 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1878 }
1879 return V;
1880 }
1881
1882 void
GetUnderlyingObjects(Value * V,SmallVectorImpl<Value * > & Objects,const DataLayout * TD,unsigned MaxLookup)1883 llvm::GetUnderlyingObjects(Value *V,
1884 SmallVectorImpl<Value *> &Objects,
1885 const DataLayout *TD,
1886 unsigned MaxLookup) {
1887 SmallPtrSet<Value *, 4> Visited;
1888 SmallVector<Value *, 4> Worklist;
1889 Worklist.push_back(V);
1890 do {
1891 Value *P = Worklist.pop_back_val();
1892 P = GetUnderlyingObject(P, TD, MaxLookup);
1893
1894 if (!Visited.insert(P))
1895 continue;
1896
1897 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1898 Worklist.push_back(SI->getTrueValue());
1899 Worklist.push_back(SI->getFalseValue());
1900 continue;
1901 }
1902
1903 if (PHINode *PN = dyn_cast<PHINode>(P)) {
1904 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1905 Worklist.push_back(PN->getIncomingValue(i));
1906 continue;
1907 }
1908
1909 Objects.push_back(P);
1910 } while (!Worklist.empty());
1911 }
1912
1913 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1914 /// are lifetime markers.
1915 ///
onlyUsedByLifetimeMarkers(const Value * V)1916 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1917 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1918 UI != UE; ++UI) {
1919 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1920 if (!II) return false;
1921
1922 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1923 II->getIntrinsicID() != Intrinsic::lifetime_end)
1924 return false;
1925 }
1926 return true;
1927 }
1928
isSafeToSpeculativelyExecute(const Value * V,const DataLayout * TD)1929 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
1930 const DataLayout *TD) {
1931 const Operator *Inst = dyn_cast<Operator>(V);
1932 if (!Inst)
1933 return false;
1934
1935 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1936 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1937 if (C->canTrap())
1938 return false;
1939
1940 switch (Inst->getOpcode()) {
1941 default:
1942 return true;
1943 case Instruction::UDiv:
1944 case Instruction::URem:
1945 // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1946 return isKnownNonZero(Inst->getOperand(1), TD);
1947 case Instruction::SDiv:
1948 case Instruction::SRem: {
1949 Value *Op = Inst->getOperand(1);
1950 // x / y is undefined if y == 0
1951 if (!isKnownNonZero(Op, TD))
1952 return false;
1953 // x / y might be undefined if y == -1
1954 unsigned BitWidth = getBitWidth(Op->getType(), TD);
1955 if (BitWidth == 0)
1956 return false;
1957 APInt KnownZero(BitWidth, 0);
1958 APInt KnownOne(BitWidth, 0);
1959 ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
1960 return !!KnownZero;
1961 }
1962 case Instruction::Load: {
1963 const LoadInst *LI = cast<LoadInst>(Inst);
1964 if (!LI->isUnordered())
1965 return false;
1966 return LI->getPointerOperand()->isDereferenceablePointer();
1967 }
1968 case Instruction::Call: {
1969 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1970 switch (II->getIntrinsicID()) {
1971 // These synthetic intrinsics have no side-effects, and just mark
1972 // information about their operands.
1973 // FIXME: There are other no-op synthetic instructions that potentially
1974 // should be considered at least *safe* to speculate...
1975 case Intrinsic::dbg_declare:
1976 case Intrinsic::dbg_value:
1977 return true;
1978
1979 case Intrinsic::bswap:
1980 case Intrinsic::ctlz:
1981 case Intrinsic::ctpop:
1982 case Intrinsic::cttz:
1983 case Intrinsic::objectsize:
1984 case Intrinsic::sadd_with_overflow:
1985 case Intrinsic::smul_with_overflow:
1986 case Intrinsic::ssub_with_overflow:
1987 case Intrinsic::uadd_with_overflow:
1988 case Intrinsic::umul_with_overflow:
1989 case Intrinsic::usub_with_overflow:
1990 return true;
1991 // TODO: some fp intrinsics are marked as having the same error handling
1992 // as libm. They're safe to speculate when they won't error.
1993 // TODO: are convert_{from,to}_fp16 safe?
1994 // TODO: can we list target-specific intrinsics here?
1995 default: break;
1996 }
1997 }
1998 return false; // The called function could have undefined behavior or
1999 // side-effects, even if marked readnone nounwind.
2000 }
2001 case Instruction::VAArg:
2002 case Instruction::Alloca:
2003 case Instruction::Invoke:
2004 case Instruction::PHI:
2005 case Instruction::Store:
2006 case Instruction::Ret:
2007 case Instruction::Br:
2008 case Instruction::IndirectBr:
2009 case Instruction::Switch:
2010 case Instruction::Unreachable:
2011 case Instruction::Fence:
2012 case Instruction::LandingPad:
2013 case Instruction::AtomicRMW:
2014 case Instruction::AtomicCmpXchg:
2015 case Instruction::Resume:
2016 return false; // Misc instructions which have effects
2017 }
2018 }
2019
2020 /// isKnownNonNull - Return true if we know that the specified value is never
2021 /// null.
isKnownNonNull(const Value * V)2022 bool llvm::isKnownNonNull(const Value *V) {
2023 // Alloca never returns null, malloc might.
2024 if (isa<AllocaInst>(V)) return true;
2025
2026 // A byval argument is never null.
2027 if (const Argument *A = dyn_cast<Argument>(V))
2028 return A->hasByValAttr();
2029
2030 // Global values are not null unless extern weak.
2031 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2032 return !GV->hasExternalWeakLinkage();
2033 return false;
2034 }
2035