• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/dogleg_strategy.h"
32 
33 #include <cmath>
34 #include "Eigen/Dense"
35 #include "ceres/array_utils.h"
36 #include "ceres/internal/eigen.h"
37 #include "ceres/linear_solver.h"
38 #include "ceres/polynomial_solver.h"
39 #include "ceres/sparse_matrix.h"
40 #include "ceres/trust_region_strategy.h"
41 #include "ceres/types.h"
42 #include "glog/logging.h"
43 
44 namespace ceres {
45 namespace internal {
46 namespace {
47 const double kMaxMu = 1.0;
48 const double kMinMu = 1e-8;
49 }
50 
DoglegStrategy(const TrustRegionStrategy::Options & options)51 DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options)
52     : linear_solver_(options.linear_solver),
53       radius_(options.initial_radius),
54       max_radius_(options.max_radius),
55       min_diagonal_(options.lm_min_diagonal),
56       max_diagonal_(options.lm_max_diagonal),
57       mu_(kMinMu),
58       min_mu_(kMinMu),
59       max_mu_(kMaxMu),
60       mu_increase_factor_(10.0),
61       increase_threshold_(0.75),
62       decrease_threshold_(0.25),
63       dogleg_step_norm_(0.0),
64       reuse_(false),
65       dogleg_type_(options.dogleg_type) {
66   CHECK_NOTNULL(linear_solver_);
67   CHECK_GT(min_diagonal_, 0.0);
68   CHECK_LE(min_diagonal_, max_diagonal_);
69   CHECK_GT(max_radius_, 0.0);
70 }
71 
72 // If the reuse_ flag is not set, then the Cauchy point (scaled
73 // gradient) and the new Gauss-Newton step are computed from
74 // scratch. The Dogleg step is then computed as interpolation of these
75 // two vectors.
ComputeStep(const TrustRegionStrategy::PerSolveOptions & per_solve_options,SparseMatrix * jacobian,const double * residuals,double * step)76 TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
77     const TrustRegionStrategy::PerSolveOptions& per_solve_options,
78     SparseMatrix* jacobian,
79     const double* residuals,
80     double* step) {
81   CHECK_NOTNULL(jacobian);
82   CHECK_NOTNULL(residuals);
83   CHECK_NOTNULL(step);
84 
85   const int n = jacobian->num_cols();
86   if (reuse_) {
87     // Gauss-Newton and gradient vectors are always available, only a
88     // new interpolant need to be computed. For the subspace case,
89     // the subspace and the two-dimensional model are also still valid.
90     switch(dogleg_type_) {
91       case TRADITIONAL_DOGLEG:
92         ComputeTraditionalDoglegStep(step);
93         break;
94 
95       case SUBSPACE_DOGLEG:
96         ComputeSubspaceDoglegStep(step);
97         break;
98     }
99     TrustRegionStrategy::Summary summary;
100     summary.num_iterations = 0;
101     summary.termination_type = TOLERANCE;
102     return summary;
103   }
104 
105   reuse_ = true;
106   // Check that we have the storage needed to hold the various
107   // temporary vectors.
108   if (diagonal_.rows() != n) {
109     diagonal_.resize(n, 1);
110     gradient_.resize(n, 1);
111     gauss_newton_step_.resize(n, 1);
112   }
113 
114   // Vector used to form the diagonal matrix that is used to
115   // regularize the Gauss-Newton solve and that defines the
116   // elliptical trust region
117   //
118   //   || D * step || <= radius_ .
119   //
120   jacobian->SquaredColumnNorm(diagonal_.data());
121   for (int i = 0; i < n; ++i) {
122     diagonal_[i] = min(max(diagonal_[i], min_diagonal_), max_diagonal_);
123   }
124   diagonal_ = diagonal_.array().sqrt();
125 
126   ComputeGradient(jacobian, residuals);
127   ComputeCauchyPoint(jacobian);
128 
129   LinearSolver::Summary linear_solver_summary =
130       ComputeGaussNewtonStep(jacobian, residuals);
131 
132   TrustRegionStrategy::Summary summary;
133   summary.residual_norm = linear_solver_summary.residual_norm;
134   summary.num_iterations = linear_solver_summary.num_iterations;
135   summary.termination_type = linear_solver_summary.termination_type;
136 
137   if (linear_solver_summary.termination_type != FAILURE) {
138     switch(dogleg_type_) {
139       // Interpolate the Cauchy point and the Gauss-Newton step.
140       case TRADITIONAL_DOGLEG:
141         ComputeTraditionalDoglegStep(step);
142         break;
143 
144       // Find the minimum in the subspace defined by the
145       // Cauchy point and the (Gauss-)Newton step.
146       case SUBSPACE_DOGLEG:
147         if (!ComputeSubspaceModel(jacobian)) {
148           summary.termination_type = FAILURE;
149           break;
150         }
151         ComputeSubspaceDoglegStep(step);
152         break;
153     }
154   }
155 
156   return summary;
157 }
158 
159 // The trust region is assumed to be elliptical with the
160 // diagonal scaling matrix D defined by sqrt(diagonal_).
161 // It is implemented by substituting step' = D * step.
162 // The trust region for step' is spherical.
163 // The gradient, the Gauss-Newton step, the Cauchy point,
164 // and all calculations involving the Jacobian have to
165 // be adjusted accordingly.
ComputeGradient(SparseMatrix * jacobian,const double * residuals)166 void DoglegStrategy::ComputeGradient(
167     SparseMatrix* jacobian,
168     const double* residuals) {
169   gradient_.setZero();
170   jacobian->LeftMultiply(residuals, gradient_.data());
171   gradient_.array() /= diagonal_.array();
172 }
173 
174 // The Cauchy point is the global minimizer of the quadratic model
175 // along the one-dimensional subspace spanned by the gradient.
ComputeCauchyPoint(SparseMatrix * jacobian)176 void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) {
177   // alpha * -gradient is the Cauchy point.
178   Vector Jg(jacobian->num_rows());
179   Jg.setZero();
180   // The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g))
181   // instead of (J * D^-1) * (D^-1 * g).
182   Vector scaled_gradient =
183       (gradient_.array() / diagonal_.array()).matrix();
184   jacobian->RightMultiply(scaled_gradient.data(), Jg.data());
185   alpha_ = gradient_.squaredNorm() / Jg.squaredNorm();
186 }
187 
188 // The dogleg step is defined as the intersection of the trust region
189 // boundary with the piecewise linear path from the origin to the Cauchy
190 // point and then from there to the Gauss-Newton point (global minimizer
191 // of the model function). The Gauss-Newton point is taken if it lies
192 // within the trust region.
ComputeTraditionalDoglegStep(double * dogleg)193 void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) {
194   VectorRef dogleg_step(dogleg, gradient_.rows());
195 
196   // Case 1. The Gauss-Newton step lies inside the trust region, and
197   // is therefore the optimal solution to the trust-region problem.
198   const double gradient_norm = gradient_.norm();
199   const double gauss_newton_norm = gauss_newton_step_.norm();
200   if (gauss_newton_norm <= radius_) {
201     dogleg_step = gauss_newton_step_;
202     dogleg_step_norm_ = gauss_newton_norm;
203     dogleg_step.array() /= diagonal_.array();
204     VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
205             << " radius: " << radius_;
206     return;
207   }
208 
209   // Case 2. The Cauchy point and the Gauss-Newton steps lie outside
210   // the trust region. Rescale the Cauchy point to the trust region
211   // and return.
212   if  (gradient_norm * alpha_ >= radius_) {
213     dogleg_step = -(radius_ / gradient_norm) * gradient_;
214     dogleg_step_norm_ = radius_;
215     dogleg_step.array() /= diagonal_.array();
216     VLOG(3) << "Cauchy step size: " << dogleg_step_norm_
217             << " radius: " << radius_;
218     return;
219   }
220 
221   // Case 3. The Cauchy point is inside the trust region and the
222   // Gauss-Newton step is outside. Compute the line joining the two
223   // points and the point on it which intersects the trust region
224   // boundary.
225 
226   // a = alpha * -gradient
227   // b = gauss_newton_step
228   const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_);
229   const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0);
230   const double b_minus_a_squared_norm =
231       a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2);
232 
233   // c = a' (b - a)
234   //   = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2
235   const double c = b_dot_a - a_squared_norm;
236   const double d = sqrt(c * c + b_minus_a_squared_norm *
237                         (pow(radius_, 2.0) - a_squared_norm));
238 
239   double beta =
240       (c <= 0)
241       ? (d - c) /  b_minus_a_squared_norm
242       : (radius_ * radius_ - a_squared_norm) / (d + c);
243   dogleg_step = (-alpha_ * (1.0 - beta)) * gradient_
244       + beta * gauss_newton_step_;
245   dogleg_step_norm_ = dogleg_step.norm();
246   dogleg_step.array() /= diagonal_.array();
247   VLOG(3) << "Dogleg step size: " << dogleg_step_norm_
248           << " radius: " << radius_;
249 }
250 
251 // The subspace method finds the minimum of the two-dimensional problem
252 //
253 //   min. 1/2 x' B' H B x + g' B x
254 //   s.t. || B x ||^2 <= r^2
255 //
256 // where r is the trust region radius and B is the matrix with unit columns
257 // spanning the subspace defined by the steepest descent and Newton direction.
258 // This subspace by definition includes the Gauss-Newton point, which is
259 // therefore taken if it lies within the trust region.
ComputeSubspaceDoglegStep(double * dogleg)260 void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) {
261   VectorRef dogleg_step(dogleg, gradient_.rows());
262 
263   // The Gauss-Newton point is inside the trust region if |GN| <= radius_.
264   // This test is valid even though radius_ is a length in the two-dimensional
265   // subspace while gauss_newton_step_ is expressed in the (scaled)
266   // higher dimensional original space. This is because
267   //
268   //   1. gauss_newton_step_ by definition lies in the subspace, and
269   //   2. the subspace basis is orthonormal.
270   //
271   // As a consequence, the norm of the gauss_newton_step_ in the subspace is
272   // the same as its norm in the original space.
273   const double gauss_newton_norm = gauss_newton_step_.norm();
274   if (gauss_newton_norm <= radius_) {
275     dogleg_step = gauss_newton_step_;
276     dogleg_step_norm_ = gauss_newton_norm;
277     dogleg_step.array() /= diagonal_.array();
278     VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
279             << " radius: " << radius_;
280     return;
281   }
282 
283   // The optimum lies on the boundary of the trust region. The above problem
284   // therefore becomes
285   //
286   //   min. 1/2 x^T B^T H B x + g^T B x
287   //   s.t. || B x ||^2 = r^2
288   //
289   // Notice the equality in the constraint.
290   //
291   // This can be solved by forming the Lagrangian, solving for x(y), where
292   // y is the Lagrange multiplier, using the gradient of the objective, and
293   // putting x(y) back into the constraint. This results in a fourth order
294   // polynomial in y, which can be solved using e.g. the companion matrix.
295   // See the description of MakePolynomialForBoundaryConstrainedProblem for
296   // details. The result is up to four real roots y*, not all of which
297   // correspond to feasible points. The feasible points x(y*) have to be
298   // tested for optimality.
299 
300   if (subspace_is_one_dimensional_) {
301     // The subspace is one-dimensional, so both the gradient and
302     // the Gauss-Newton step point towards the same direction.
303     // In this case, we move along the gradient until we reach the trust
304     // region boundary.
305     dogleg_step = -(radius_ / gradient_.norm()) * gradient_;
306     dogleg_step_norm_ = radius_;
307     dogleg_step.array() /= diagonal_.array();
308     VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_
309             << " radius: " << radius_;
310     return;
311   }
312 
313   Vector2d minimum(0.0, 0.0);
314   if (!FindMinimumOnTrustRegionBoundary(&minimum)) {
315     // For the positive semi-definite case, a traditional dogleg step
316     // is taken in this case.
317     LOG(WARNING) << "Failed to compute polynomial roots. "
318                  << "Taking traditional dogleg step instead.";
319     ComputeTraditionalDoglegStep(dogleg);
320     return;
321   }
322 
323   // Test first order optimality at the minimum.
324   // The first order KKT conditions state that the minimum x*
325   // has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within
326   // the trust region), or
327   //
328   //   (B x* + g) + y x* = 0
329   //
330   // for some positive scalar y.
331   // Here, as it is already known that the minimum lies on the boundary, the
332   // latter condition is tested. To allow for small imprecisions, we test if
333   // the angle between (B x* + g) and -x* is smaller than acos(0.99).
334   // The exact value of the cosine is arbitrary but should be close to 1.
335   //
336   // This condition should not be violated. If it is, the minimum was not
337   // correctly determined.
338   const double kCosineThreshold = 0.99;
339   const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_;
340   const double cosine_angle = -minimum.dot(grad_minimum) /
341       (minimum.norm() * grad_minimum.norm());
342   if (cosine_angle < kCosineThreshold) {
343     LOG(WARNING) << "First order optimality seems to be violated "
344                  << "in the subspace method!\n"
345                  << "Cosine of angle between x and B x + g is "
346                  << cosine_angle << ".\n"
347                  << "Taking a regular dogleg step instead.\n"
348                  << "Please consider filing a bug report if this "
349                  << "happens frequently or consistently.\n";
350     ComputeTraditionalDoglegStep(dogleg);
351     return;
352   }
353 
354   // Create the full step from the optimal 2d solution.
355   dogleg_step = subspace_basis_ * minimum;
356   dogleg_step_norm_ = radius_;
357   dogleg_step.array() /= diagonal_.array();
358   VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_
359           << " radius: " << radius_;
360 }
361 
362 // Build the polynomial that defines the optimal Lagrange multipliers.
363 // Let the Lagrangian be
364 //
365 //   L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2).       (1)
366 //
367 // Stationary points of the Lagrangian are given by
368 //
369 //   0 = d L(x, y) / dx = Bx + g + y x                              (2)
370 //   0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2                       (3)
371 //
372 // For any given y, we can solve (2) for x as
373 //
374 //   x(y) = -(B + y I)^-1 g .                                       (4)
375 //
376 // As B + y I is 2x2, we form the inverse explicitly:
377 //
378 //   (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I)                 (5)
379 //
380 // where adj() denotes adjugation. This should be safe, as B is positive
381 // semi-definite and y is necessarily positive, so (B + y I) is indeed
382 // invertible.
383 // Plugging (5) into (4) and the result into (3), then dividing by 0.5 we
384 // obtain
385 //
386 //   0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2
387 //                                                                  (6)
388 //
389 // or
390 //
391 //   det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g         (7a)
392 //                      = g^T adj(B)^T adj(B) g
393 //                           + 2 y g^T adj(B)^T g + y^2 g^T g       (7b)
394 //
395 // as
396 //
397 //   adj(B + y I) = adj(B) + y I = adj(B)^T + y I .                 (8)
398 //
399 // The left hand side can be expressed explicitly using
400 //
401 //   det(B + y I) = det(B) + y tr(B) + y^2 .                        (9)
402 //
403 // So (7) is a polynomial in y of degree four.
404 // Bringing everything back to the left hand side, the coefficients can
405 // be read off as
406 //
407 //     y^4  r^2
408 //   + y^3  2 r^2 tr(B)
409 //   + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g)
410 //   + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g)
411 //   + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g)
412 //
MakePolynomialForBoundaryConstrainedProblem() const413 Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const {
414   const double detB = subspace_B_.determinant();
415   const double trB = subspace_B_.trace();
416   const double r2 = radius_ * radius_;
417   Matrix2d B_adj;
418   B_adj <<  subspace_B_(1,1) , -subspace_B_(0,1),
419             -subspace_B_(1,0) ,  subspace_B_(0,0);
420 
421   Vector polynomial(5);
422   polynomial(0) = r2;
423   polynomial(1) = 2.0 * r2 * trB;
424   polynomial(2) = r2 * ( trB * trB + 2.0 * detB ) - subspace_g_.squaredNorm();
425   polynomial(3) = -2.0 * ( subspace_g_.transpose() * B_adj * subspace_g_
426       - r2 * detB * trB );
427   polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
428 
429   return polynomial;
430 }
431 
432 // Given a Lagrange multiplier y that corresponds to a stationary point
433 // of the Lagrangian L(x, y), compute the corresponding x from the
434 // equation
435 //
436 //   0 = d L(x, y) / dx
437 //     = B * x + g + y * x
438 //     = (B + y * I) * x + g
439 //
ComputeSubspaceStepFromRoot(double y) const440 DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot(
441     double y) const {
442   const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity();
443   return -B_i.partialPivLu().solve(subspace_g_);
444 }
445 
446 // This function evaluates the quadratic model at a point x in the
447 // subspace spanned by subspace_basis_.
EvaluateSubspaceModel(const Vector2d & x) const448 double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const {
449   return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x);
450 }
451 
452 // This function attempts to solve the boundary-constrained subspace problem
453 //
454 //   min. 1/2 x^T B^T H B x + g^T B x
455 //   s.t. || B x ||^2 = r^2
456 //
457 // where B is an orthonormal subspace basis and r is the trust-region radius.
458 //
459 // This is done by finding the roots of a fourth degree polynomial. If the
460 // root finding fails, the function returns false and minimum will be set
461 // to (0, 0). If it succeeds, true is returned.
462 //
463 // In the failure case, another step should be taken, such as the traditional
464 // dogleg step.
FindMinimumOnTrustRegionBoundary(Vector2d * minimum) const465 bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const {
466   CHECK_NOTNULL(minimum);
467 
468   // Return (0, 0) in all error cases.
469   minimum->setZero();
470 
471   // Create the fourth-degree polynomial that is a necessary condition for
472   // optimality.
473   const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem();
474 
475   // Find the real parts y_i of its roots (not only the real roots).
476   Vector roots_real;
477   if (!FindPolynomialRoots(polynomial, &roots_real, NULL)) {
478     // Failed to find the roots of the polynomial, i.e. the candidate
479     // solutions of the constrained problem. Report this back to the caller.
480     return false;
481   }
482 
483   // For each root y, compute B x(y) and check for feasibility.
484   // Notice that there should always be four roots, as the leading term of
485   // the polynomial is r^2 and therefore non-zero. However, as some roots
486   // may be complex, the real parts are not necessarily unique.
487   double minimum_value = std::numeric_limits<double>::max();
488   bool valid_root_found = false;
489   for (int i = 0; i < roots_real.size(); ++i) {
490     const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i));
491 
492     // Not all roots correspond to points on the trust region boundary.
493     // There are at most four candidate solutions. As we are interested
494     // in the minimum, it is safe to consider all of them after projecting
495     // them onto the trust region boundary.
496     if (x_i.norm() > 0) {
497       const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i);
498       valid_root_found = true;
499       if (f_i < minimum_value) {
500         minimum_value = f_i;
501         *minimum = x_i;
502       }
503     }
504   }
505 
506   return valid_root_found;
507 }
508 
ComputeGaussNewtonStep(SparseMatrix * jacobian,const double * residuals)509 LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep(
510     SparseMatrix* jacobian,
511     const double* residuals) {
512   const int n = jacobian->num_cols();
513   LinearSolver::Summary linear_solver_summary;
514   linear_solver_summary.termination_type = FAILURE;
515 
516   // The Jacobian matrix is often quite poorly conditioned. Thus it is
517   // necessary to add a diagonal matrix at the bottom to prevent the
518   // linear solver from failing.
519   //
520   // We do this by computing the same diagonal matrix as the one used
521   // by Levenberg-Marquardt (other choices are possible), and scaling
522   // it by a small constant (independent of the trust region radius).
523   //
524   // If the solve fails, the multiplier to the diagonal is increased
525   // up to max_mu_ by a factor of mu_increase_factor_ every time. If
526   // the linear solver is still not successful, the strategy returns
527   // with FAILURE.
528   //
529   // Next time when a new Gauss-Newton step is requested, the
530   // multiplier starts out from the last successful solve.
531   //
532   // When a step is declared successful, the multiplier is decreased
533   // by half of mu_increase_factor_.
534 
535   while (mu_ < max_mu_) {
536     // Dogleg, as far as I (sameeragarwal) understand it, requires a
537     // reasonably good estimate of the Gauss-Newton step. This means
538     // that we need to solve the normal equations more or less
539     // exactly. This is reflected in the values of the tolerances set
540     // below.
541     //
542     // For now, this strategy should only be used with exact
543     // factorization based solvers, for which these tolerances are
544     // automatically satisfied.
545     //
546     // The right way to combine inexact solves with trust region
547     // methods is to use Stiehaug's method.
548     LinearSolver::PerSolveOptions solve_options;
549     solve_options.q_tolerance = 0.0;
550     solve_options.r_tolerance = 0.0;
551 
552     lm_diagonal_ = diagonal_ * std::sqrt(mu_);
553     solve_options.D = lm_diagonal_.data();
554 
555     // As in the LevenbergMarquardtStrategy, solve Jy = r instead
556     // of Jx = -r and later set x = -y to avoid having to modify
557     // either jacobian or residuals.
558     InvalidateArray(n, gauss_newton_step_.data());
559     linear_solver_summary = linear_solver_->Solve(jacobian,
560                                                   residuals,
561                                                   solve_options,
562                                                   gauss_newton_step_.data());
563 
564     if (linear_solver_summary.termination_type == FAILURE ||
565         !IsArrayValid(n, gauss_newton_step_.data())) {
566       mu_ *= mu_increase_factor_;
567       VLOG(2) << "Increasing mu " << mu_;
568       linear_solver_summary.termination_type = FAILURE;
569       continue;
570     }
571     break;
572   }
573 
574   if (linear_solver_summary.termination_type != FAILURE) {
575     // The scaled Gauss-Newton step is D * GN:
576     //
577     //     - (D^-1 J^T J D^-1)^-1 (D^-1 g)
578     //   = - D (J^T J)^-1 D D^-1 g
579     //   = D -(J^T J)^-1 g
580     //
581     gauss_newton_step_.array() *= -diagonal_.array();
582   }
583 
584   return linear_solver_summary;
585 }
586 
StepAccepted(double step_quality)587 void DoglegStrategy::StepAccepted(double step_quality) {
588   CHECK_GT(step_quality, 0.0);
589 
590   if (step_quality < decrease_threshold_) {
591     radius_ *= 0.5;
592   }
593 
594   if (step_quality > increase_threshold_) {
595     radius_ = max(radius_, 3.0 * dogleg_step_norm_);
596   }
597 
598   // Reduce the regularization multiplier, in the hope that whatever
599   // was causing the rank deficiency has gone away and we can return
600   // to doing a pure Gauss-Newton solve.
601   mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_ );
602   reuse_ = false;
603 }
604 
StepRejected(double step_quality)605 void DoglegStrategy::StepRejected(double step_quality) {
606   radius_ *= 0.5;
607   reuse_ = true;
608 }
609 
StepIsInvalid()610 void DoglegStrategy::StepIsInvalid() {
611   mu_ *= mu_increase_factor_;
612   reuse_ = false;
613 }
614 
Radius() const615 double DoglegStrategy::Radius() const {
616   return radius_;
617 }
618 
ComputeSubspaceModel(SparseMatrix * jacobian)619 bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) {
620   // Compute an orthogonal basis for the subspace using QR decomposition.
621   Matrix basis_vectors(jacobian->num_cols(), 2);
622   basis_vectors.col(0) = gradient_;
623   basis_vectors.col(1) = gauss_newton_step_;
624   Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors);
625 
626   switch (basis_qr.rank()) {
627     case 0:
628       // This should never happen, as it implies that both the gradient
629       // and the Gauss-Newton step are zero. In this case, the minimizer should
630       // have stopped due to the gradient being too small.
631       LOG(ERROR) << "Rank of subspace basis is 0. "
632                  << "This means that the gradient at the current iterate is "
633                  << "zero but the optimization has not been terminated. "
634                  << "You may have found a bug in Ceres.";
635       return false;
636 
637     case 1:
638       // Gradient and Gauss-Newton step coincide, so we lie on one of the
639       // major axes of the quadratic problem. In this case, we simply move
640       // along the gradient until we reach the trust region boundary.
641       subspace_is_one_dimensional_ = true;
642       return true;
643 
644     case 2:
645       subspace_is_one_dimensional_ = false;
646       break;
647 
648     default:
649       LOG(ERROR) << "Rank of the subspace basis matrix is reported to be "
650                  << "greater than 2. As the matrix contains only two "
651                  << "columns this cannot be true and is indicative of "
652                  << "a bug.";
653       return false;
654   }
655 
656   // The subspace is two-dimensional, so compute the subspace model.
657   // Given the basis U, this is
658   //
659   //   subspace_g_ = g_scaled^T U
660   //
661   // and
662   //
663   //   subspace_B_ = U^T (J_scaled^T J_scaled) U
664   //
665   // As J_scaled = J * D^-1, the latter becomes
666   //
667   //   subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U))
668   //               = (J (D^-1 U))^T (J (D^-1 U))
669 
670   subspace_basis_ =
671       basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2);
672 
673   subspace_g_ = subspace_basis_.transpose() * gradient_;
674 
675   Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor>
676       Jb(2, jacobian->num_rows());
677   Jb.setZero();
678 
679   Vector tmp;
680   tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix();
681   jacobian->RightMultiply(tmp.data(), Jb.row(0).data());
682   tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix();
683   jacobian->RightMultiply(tmp.data(), Jb.row(1).data());
684 
685   subspace_B_ = Jb * Jb.transpose();
686 
687   return true;
688 }
689 
690 }  // namespace internal
691 }  // namespace ceres
692