1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #include "ceres/dogleg_strategy.h"
32
33 #include <cmath>
34 #include "Eigen/Dense"
35 #include "ceres/array_utils.h"
36 #include "ceres/internal/eigen.h"
37 #include "ceres/linear_solver.h"
38 #include "ceres/polynomial_solver.h"
39 #include "ceres/sparse_matrix.h"
40 #include "ceres/trust_region_strategy.h"
41 #include "ceres/types.h"
42 #include "glog/logging.h"
43
44 namespace ceres {
45 namespace internal {
46 namespace {
47 const double kMaxMu = 1.0;
48 const double kMinMu = 1e-8;
49 }
50
DoglegStrategy(const TrustRegionStrategy::Options & options)51 DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options)
52 : linear_solver_(options.linear_solver),
53 radius_(options.initial_radius),
54 max_radius_(options.max_radius),
55 min_diagonal_(options.lm_min_diagonal),
56 max_diagonal_(options.lm_max_diagonal),
57 mu_(kMinMu),
58 min_mu_(kMinMu),
59 max_mu_(kMaxMu),
60 mu_increase_factor_(10.0),
61 increase_threshold_(0.75),
62 decrease_threshold_(0.25),
63 dogleg_step_norm_(0.0),
64 reuse_(false),
65 dogleg_type_(options.dogleg_type) {
66 CHECK_NOTNULL(linear_solver_);
67 CHECK_GT(min_diagonal_, 0.0);
68 CHECK_LE(min_diagonal_, max_diagonal_);
69 CHECK_GT(max_radius_, 0.0);
70 }
71
72 // If the reuse_ flag is not set, then the Cauchy point (scaled
73 // gradient) and the new Gauss-Newton step are computed from
74 // scratch. The Dogleg step is then computed as interpolation of these
75 // two vectors.
ComputeStep(const TrustRegionStrategy::PerSolveOptions & per_solve_options,SparseMatrix * jacobian,const double * residuals,double * step)76 TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
77 const TrustRegionStrategy::PerSolveOptions& per_solve_options,
78 SparseMatrix* jacobian,
79 const double* residuals,
80 double* step) {
81 CHECK_NOTNULL(jacobian);
82 CHECK_NOTNULL(residuals);
83 CHECK_NOTNULL(step);
84
85 const int n = jacobian->num_cols();
86 if (reuse_) {
87 // Gauss-Newton and gradient vectors are always available, only a
88 // new interpolant need to be computed. For the subspace case,
89 // the subspace and the two-dimensional model are also still valid.
90 switch(dogleg_type_) {
91 case TRADITIONAL_DOGLEG:
92 ComputeTraditionalDoglegStep(step);
93 break;
94
95 case SUBSPACE_DOGLEG:
96 ComputeSubspaceDoglegStep(step);
97 break;
98 }
99 TrustRegionStrategy::Summary summary;
100 summary.num_iterations = 0;
101 summary.termination_type = TOLERANCE;
102 return summary;
103 }
104
105 reuse_ = true;
106 // Check that we have the storage needed to hold the various
107 // temporary vectors.
108 if (diagonal_.rows() != n) {
109 diagonal_.resize(n, 1);
110 gradient_.resize(n, 1);
111 gauss_newton_step_.resize(n, 1);
112 }
113
114 // Vector used to form the diagonal matrix that is used to
115 // regularize the Gauss-Newton solve and that defines the
116 // elliptical trust region
117 //
118 // || D * step || <= radius_ .
119 //
120 jacobian->SquaredColumnNorm(diagonal_.data());
121 for (int i = 0; i < n; ++i) {
122 diagonal_[i] = min(max(diagonal_[i], min_diagonal_), max_diagonal_);
123 }
124 diagonal_ = diagonal_.array().sqrt();
125
126 ComputeGradient(jacobian, residuals);
127 ComputeCauchyPoint(jacobian);
128
129 LinearSolver::Summary linear_solver_summary =
130 ComputeGaussNewtonStep(jacobian, residuals);
131
132 TrustRegionStrategy::Summary summary;
133 summary.residual_norm = linear_solver_summary.residual_norm;
134 summary.num_iterations = linear_solver_summary.num_iterations;
135 summary.termination_type = linear_solver_summary.termination_type;
136
137 if (linear_solver_summary.termination_type != FAILURE) {
138 switch(dogleg_type_) {
139 // Interpolate the Cauchy point and the Gauss-Newton step.
140 case TRADITIONAL_DOGLEG:
141 ComputeTraditionalDoglegStep(step);
142 break;
143
144 // Find the minimum in the subspace defined by the
145 // Cauchy point and the (Gauss-)Newton step.
146 case SUBSPACE_DOGLEG:
147 if (!ComputeSubspaceModel(jacobian)) {
148 summary.termination_type = FAILURE;
149 break;
150 }
151 ComputeSubspaceDoglegStep(step);
152 break;
153 }
154 }
155
156 return summary;
157 }
158
159 // The trust region is assumed to be elliptical with the
160 // diagonal scaling matrix D defined by sqrt(diagonal_).
161 // It is implemented by substituting step' = D * step.
162 // The trust region for step' is spherical.
163 // The gradient, the Gauss-Newton step, the Cauchy point,
164 // and all calculations involving the Jacobian have to
165 // be adjusted accordingly.
ComputeGradient(SparseMatrix * jacobian,const double * residuals)166 void DoglegStrategy::ComputeGradient(
167 SparseMatrix* jacobian,
168 const double* residuals) {
169 gradient_.setZero();
170 jacobian->LeftMultiply(residuals, gradient_.data());
171 gradient_.array() /= diagonal_.array();
172 }
173
174 // The Cauchy point is the global minimizer of the quadratic model
175 // along the one-dimensional subspace spanned by the gradient.
ComputeCauchyPoint(SparseMatrix * jacobian)176 void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) {
177 // alpha * -gradient is the Cauchy point.
178 Vector Jg(jacobian->num_rows());
179 Jg.setZero();
180 // The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g))
181 // instead of (J * D^-1) * (D^-1 * g).
182 Vector scaled_gradient =
183 (gradient_.array() / diagonal_.array()).matrix();
184 jacobian->RightMultiply(scaled_gradient.data(), Jg.data());
185 alpha_ = gradient_.squaredNorm() / Jg.squaredNorm();
186 }
187
188 // The dogleg step is defined as the intersection of the trust region
189 // boundary with the piecewise linear path from the origin to the Cauchy
190 // point and then from there to the Gauss-Newton point (global minimizer
191 // of the model function). The Gauss-Newton point is taken if it lies
192 // within the trust region.
ComputeTraditionalDoglegStep(double * dogleg)193 void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) {
194 VectorRef dogleg_step(dogleg, gradient_.rows());
195
196 // Case 1. The Gauss-Newton step lies inside the trust region, and
197 // is therefore the optimal solution to the trust-region problem.
198 const double gradient_norm = gradient_.norm();
199 const double gauss_newton_norm = gauss_newton_step_.norm();
200 if (gauss_newton_norm <= radius_) {
201 dogleg_step = gauss_newton_step_;
202 dogleg_step_norm_ = gauss_newton_norm;
203 dogleg_step.array() /= diagonal_.array();
204 VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
205 << " radius: " << radius_;
206 return;
207 }
208
209 // Case 2. The Cauchy point and the Gauss-Newton steps lie outside
210 // the trust region. Rescale the Cauchy point to the trust region
211 // and return.
212 if (gradient_norm * alpha_ >= radius_) {
213 dogleg_step = -(radius_ / gradient_norm) * gradient_;
214 dogleg_step_norm_ = radius_;
215 dogleg_step.array() /= diagonal_.array();
216 VLOG(3) << "Cauchy step size: " << dogleg_step_norm_
217 << " radius: " << radius_;
218 return;
219 }
220
221 // Case 3. The Cauchy point is inside the trust region and the
222 // Gauss-Newton step is outside. Compute the line joining the two
223 // points and the point on it which intersects the trust region
224 // boundary.
225
226 // a = alpha * -gradient
227 // b = gauss_newton_step
228 const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_);
229 const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0);
230 const double b_minus_a_squared_norm =
231 a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2);
232
233 // c = a' (b - a)
234 // = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2
235 const double c = b_dot_a - a_squared_norm;
236 const double d = sqrt(c * c + b_minus_a_squared_norm *
237 (pow(radius_, 2.0) - a_squared_norm));
238
239 double beta =
240 (c <= 0)
241 ? (d - c) / b_minus_a_squared_norm
242 : (radius_ * radius_ - a_squared_norm) / (d + c);
243 dogleg_step = (-alpha_ * (1.0 - beta)) * gradient_
244 + beta * gauss_newton_step_;
245 dogleg_step_norm_ = dogleg_step.norm();
246 dogleg_step.array() /= diagonal_.array();
247 VLOG(3) << "Dogleg step size: " << dogleg_step_norm_
248 << " radius: " << radius_;
249 }
250
251 // The subspace method finds the minimum of the two-dimensional problem
252 //
253 // min. 1/2 x' B' H B x + g' B x
254 // s.t. || B x ||^2 <= r^2
255 //
256 // where r is the trust region radius and B is the matrix with unit columns
257 // spanning the subspace defined by the steepest descent and Newton direction.
258 // This subspace by definition includes the Gauss-Newton point, which is
259 // therefore taken if it lies within the trust region.
ComputeSubspaceDoglegStep(double * dogleg)260 void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) {
261 VectorRef dogleg_step(dogleg, gradient_.rows());
262
263 // The Gauss-Newton point is inside the trust region if |GN| <= radius_.
264 // This test is valid even though radius_ is a length in the two-dimensional
265 // subspace while gauss_newton_step_ is expressed in the (scaled)
266 // higher dimensional original space. This is because
267 //
268 // 1. gauss_newton_step_ by definition lies in the subspace, and
269 // 2. the subspace basis is orthonormal.
270 //
271 // As a consequence, the norm of the gauss_newton_step_ in the subspace is
272 // the same as its norm in the original space.
273 const double gauss_newton_norm = gauss_newton_step_.norm();
274 if (gauss_newton_norm <= radius_) {
275 dogleg_step = gauss_newton_step_;
276 dogleg_step_norm_ = gauss_newton_norm;
277 dogleg_step.array() /= diagonal_.array();
278 VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
279 << " radius: " << radius_;
280 return;
281 }
282
283 // The optimum lies on the boundary of the trust region. The above problem
284 // therefore becomes
285 //
286 // min. 1/2 x^T B^T H B x + g^T B x
287 // s.t. || B x ||^2 = r^2
288 //
289 // Notice the equality in the constraint.
290 //
291 // This can be solved by forming the Lagrangian, solving for x(y), where
292 // y is the Lagrange multiplier, using the gradient of the objective, and
293 // putting x(y) back into the constraint. This results in a fourth order
294 // polynomial in y, which can be solved using e.g. the companion matrix.
295 // See the description of MakePolynomialForBoundaryConstrainedProblem for
296 // details. The result is up to four real roots y*, not all of which
297 // correspond to feasible points. The feasible points x(y*) have to be
298 // tested for optimality.
299
300 if (subspace_is_one_dimensional_) {
301 // The subspace is one-dimensional, so both the gradient and
302 // the Gauss-Newton step point towards the same direction.
303 // In this case, we move along the gradient until we reach the trust
304 // region boundary.
305 dogleg_step = -(radius_ / gradient_.norm()) * gradient_;
306 dogleg_step_norm_ = radius_;
307 dogleg_step.array() /= diagonal_.array();
308 VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_
309 << " radius: " << radius_;
310 return;
311 }
312
313 Vector2d minimum(0.0, 0.0);
314 if (!FindMinimumOnTrustRegionBoundary(&minimum)) {
315 // For the positive semi-definite case, a traditional dogleg step
316 // is taken in this case.
317 LOG(WARNING) << "Failed to compute polynomial roots. "
318 << "Taking traditional dogleg step instead.";
319 ComputeTraditionalDoglegStep(dogleg);
320 return;
321 }
322
323 // Test first order optimality at the minimum.
324 // The first order KKT conditions state that the minimum x*
325 // has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within
326 // the trust region), or
327 //
328 // (B x* + g) + y x* = 0
329 //
330 // for some positive scalar y.
331 // Here, as it is already known that the minimum lies on the boundary, the
332 // latter condition is tested. To allow for small imprecisions, we test if
333 // the angle between (B x* + g) and -x* is smaller than acos(0.99).
334 // The exact value of the cosine is arbitrary but should be close to 1.
335 //
336 // This condition should not be violated. If it is, the minimum was not
337 // correctly determined.
338 const double kCosineThreshold = 0.99;
339 const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_;
340 const double cosine_angle = -minimum.dot(grad_minimum) /
341 (minimum.norm() * grad_minimum.norm());
342 if (cosine_angle < kCosineThreshold) {
343 LOG(WARNING) << "First order optimality seems to be violated "
344 << "in the subspace method!\n"
345 << "Cosine of angle between x and B x + g is "
346 << cosine_angle << ".\n"
347 << "Taking a regular dogleg step instead.\n"
348 << "Please consider filing a bug report if this "
349 << "happens frequently or consistently.\n";
350 ComputeTraditionalDoglegStep(dogleg);
351 return;
352 }
353
354 // Create the full step from the optimal 2d solution.
355 dogleg_step = subspace_basis_ * minimum;
356 dogleg_step_norm_ = radius_;
357 dogleg_step.array() /= diagonal_.array();
358 VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_
359 << " radius: " << radius_;
360 }
361
362 // Build the polynomial that defines the optimal Lagrange multipliers.
363 // Let the Lagrangian be
364 //
365 // L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2). (1)
366 //
367 // Stationary points of the Lagrangian are given by
368 //
369 // 0 = d L(x, y) / dx = Bx + g + y x (2)
370 // 0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2 (3)
371 //
372 // For any given y, we can solve (2) for x as
373 //
374 // x(y) = -(B + y I)^-1 g . (4)
375 //
376 // As B + y I is 2x2, we form the inverse explicitly:
377 //
378 // (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I) (5)
379 //
380 // where adj() denotes adjugation. This should be safe, as B is positive
381 // semi-definite and y is necessarily positive, so (B + y I) is indeed
382 // invertible.
383 // Plugging (5) into (4) and the result into (3), then dividing by 0.5 we
384 // obtain
385 //
386 // 0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2
387 // (6)
388 //
389 // or
390 //
391 // det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g (7a)
392 // = g^T adj(B)^T adj(B) g
393 // + 2 y g^T adj(B)^T g + y^2 g^T g (7b)
394 //
395 // as
396 //
397 // adj(B + y I) = adj(B) + y I = adj(B)^T + y I . (8)
398 //
399 // The left hand side can be expressed explicitly using
400 //
401 // det(B + y I) = det(B) + y tr(B) + y^2 . (9)
402 //
403 // So (7) is a polynomial in y of degree four.
404 // Bringing everything back to the left hand side, the coefficients can
405 // be read off as
406 //
407 // y^4 r^2
408 // + y^3 2 r^2 tr(B)
409 // + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g)
410 // + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g)
411 // + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g)
412 //
MakePolynomialForBoundaryConstrainedProblem() const413 Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const {
414 const double detB = subspace_B_.determinant();
415 const double trB = subspace_B_.trace();
416 const double r2 = radius_ * radius_;
417 Matrix2d B_adj;
418 B_adj << subspace_B_(1,1) , -subspace_B_(0,1),
419 -subspace_B_(1,0) , subspace_B_(0,0);
420
421 Vector polynomial(5);
422 polynomial(0) = r2;
423 polynomial(1) = 2.0 * r2 * trB;
424 polynomial(2) = r2 * ( trB * trB + 2.0 * detB ) - subspace_g_.squaredNorm();
425 polynomial(3) = -2.0 * ( subspace_g_.transpose() * B_adj * subspace_g_
426 - r2 * detB * trB );
427 polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
428
429 return polynomial;
430 }
431
432 // Given a Lagrange multiplier y that corresponds to a stationary point
433 // of the Lagrangian L(x, y), compute the corresponding x from the
434 // equation
435 //
436 // 0 = d L(x, y) / dx
437 // = B * x + g + y * x
438 // = (B + y * I) * x + g
439 //
ComputeSubspaceStepFromRoot(double y) const440 DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot(
441 double y) const {
442 const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity();
443 return -B_i.partialPivLu().solve(subspace_g_);
444 }
445
446 // This function evaluates the quadratic model at a point x in the
447 // subspace spanned by subspace_basis_.
EvaluateSubspaceModel(const Vector2d & x) const448 double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const {
449 return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x);
450 }
451
452 // This function attempts to solve the boundary-constrained subspace problem
453 //
454 // min. 1/2 x^T B^T H B x + g^T B x
455 // s.t. || B x ||^2 = r^2
456 //
457 // where B is an orthonormal subspace basis and r is the trust-region radius.
458 //
459 // This is done by finding the roots of a fourth degree polynomial. If the
460 // root finding fails, the function returns false and minimum will be set
461 // to (0, 0). If it succeeds, true is returned.
462 //
463 // In the failure case, another step should be taken, such as the traditional
464 // dogleg step.
FindMinimumOnTrustRegionBoundary(Vector2d * minimum) const465 bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const {
466 CHECK_NOTNULL(minimum);
467
468 // Return (0, 0) in all error cases.
469 minimum->setZero();
470
471 // Create the fourth-degree polynomial that is a necessary condition for
472 // optimality.
473 const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem();
474
475 // Find the real parts y_i of its roots (not only the real roots).
476 Vector roots_real;
477 if (!FindPolynomialRoots(polynomial, &roots_real, NULL)) {
478 // Failed to find the roots of the polynomial, i.e. the candidate
479 // solutions of the constrained problem. Report this back to the caller.
480 return false;
481 }
482
483 // For each root y, compute B x(y) and check for feasibility.
484 // Notice that there should always be four roots, as the leading term of
485 // the polynomial is r^2 and therefore non-zero. However, as some roots
486 // may be complex, the real parts are not necessarily unique.
487 double minimum_value = std::numeric_limits<double>::max();
488 bool valid_root_found = false;
489 for (int i = 0; i < roots_real.size(); ++i) {
490 const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i));
491
492 // Not all roots correspond to points on the trust region boundary.
493 // There are at most four candidate solutions. As we are interested
494 // in the minimum, it is safe to consider all of them after projecting
495 // them onto the trust region boundary.
496 if (x_i.norm() > 0) {
497 const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i);
498 valid_root_found = true;
499 if (f_i < minimum_value) {
500 minimum_value = f_i;
501 *minimum = x_i;
502 }
503 }
504 }
505
506 return valid_root_found;
507 }
508
ComputeGaussNewtonStep(SparseMatrix * jacobian,const double * residuals)509 LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep(
510 SparseMatrix* jacobian,
511 const double* residuals) {
512 const int n = jacobian->num_cols();
513 LinearSolver::Summary linear_solver_summary;
514 linear_solver_summary.termination_type = FAILURE;
515
516 // The Jacobian matrix is often quite poorly conditioned. Thus it is
517 // necessary to add a diagonal matrix at the bottom to prevent the
518 // linear solver from failing.
519 //
520 // We do this by computing the same diagonal matrix as the one used
521 // by Levenberg-Marquardt (other choices are possible), and scaling
522 // it by a small constant (independent of the trust region radius).
523 //
524 // If the solve fails, the multiplier to the diagonal is increased
525 // up to max_mu_ by a factor of mu_increase_factor_ every time. If
526 // the linear solver is still not successful, the strategy returns
527 // with FAILURE.
528 //
529 // Next time when a new Gauss-Newton step is requested, the
530 // multiplier starts out from the last successful solve.
531 //
532 // When a step is declared successful, the multiplier is decreased
533 // by half of mu_increase_factor_.
534
535 while (mu_ < max_mu_) {
536 // Dogleg, as far as I (sameeragarwal) understand it, requires a
537 // reasonably good estimate of the Gauss-Newton step. This means
538 // that we need to solve the normal equations more or less
539 // exactly. This is reflected in the values of the tolerances set
540 // below.
541 //
542 // For now, this strategy should only be used with exact
543 // factorization based solvers, for which these tolerances are
544 // automatically satisfied.
545 //
546 // The right way to combine inexact solves with trust region
547 // methods is to use Stiehaug's method.
548 LinearSolver::PerSolveOptions solve_options;
549 solve_options.q_tolerance = 0.0;
550 solve_options.r_tolerance = 0.0;
551
552 lm_diagonal_ = diagonal_ * std::sqrt(mu_);
553 solve_options.D = lm_diagonal_.data();
554
555 // As in the LevenbergMarquardtStrategy, solve Jy = r instead
556 // of Jx = -r and later set x = -y to avoid having to modify
557 // either jacobian or residuals.
558 InvalidateArray(n, gauss_newton_step_.data());
559 linear_solver_summary = linear_solver_->Solve(jacobian,
560 residuals,
561 solve_options,
562 gauss_newton_step_.data());
563
564 if (linear_solver_summary.termination_type == FAILURE ||
565 !IsArrayValid(n, gauss_newton_step_.data())) {
566 mu_ *= mu_increase_factor_;
567 VLOG(2) << "Increasing mu " << mu_;
568 linear_solver_summary.termination_type = FAILURE;
569 continue;
570 }
571 break;
572 }
573
574 if (linear_solver_summary.termination_type != FAILURE) {
575 // The scaled Gauss-Newton step is D * GN:
576 //
577 // - (D^-1 J^T J D^-1)^-1 (D^-1 g)
578 // = - D (J^T J)^-1 D D^-1 g
579 // = D -(J^T J)^-1 g
580 //
581 gauss_newton_step_.array() *= -diagonal_.array();
582 }
583
584 return linear_solver_summary;
585 }
586
StepAccepted(double step_quality)587 void DoglegStrategy::StepAccepted(double step_quality) {
588 CHECK_GT(step_quality, 0.0);
589
590 if (step_quality < decrease_threshold_) {
591 radius_ *= 0.5;
592 }
593
594 if (step_quality > increase_threshold_) {
595 radius_ = max(radius_, 3.0 * dogleg_step_norm_);
596 }
597
598 // Reduce the regularization multiplier, in the hope that whatever
599 // was causing the rank deficiency has gone away and we can return
600 // to doing a pure Gauss-Newton solve.
601 mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_ );
602 reuse_ = false;
603 }
604
StepRejected(double step_quality)605 void DoglegStrategy::StepRejected(double step_quality) {
606 radius_ *= 0.5;
607 reuse_ = true;
608 }
609
StepIsInvalid()610 void DoglegStrategy::StepIsInvalid() {
611 mu_ *= mu_increase_factor_;
612 reuse_ = false;
613 }
614
Radius() const615 double DoglegStrategy::Radius() const {
616 return radius_;
617 }
618
ComputeSubspaceModel(SparseMatrix * jacobian)619 bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) {
620 // Compute an orthogonal basis for the subspace using QR decomposition.
621 Matrix basis_vectors(jacobian->num_cols(), 2);
622 basis_vectors.col(0) = gradient_;
623 basis_vectors.col(1) = gauss_newton_step_;
624 Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors);
625
626 switch (basis_qr.rank()) {
627 case 0:
628 // This should never happen, as it implies that both the gradient
629 // and the Gauss-Newton step are zero. In this case, the minimizer should
630 // have stopped due to the gradient being too small.
631 LOG(ERROR) << "Rank of subspace basis is 0. "
632 << "This means that the gradient at the current iterate is "
633 << "zero but the optimization has not been terminated. "
634 << "You may have found a bug in Ceres.";
635 return false;
636
637 case 1:
638 // Gradient and Gauss-Newton step coincide, so we lie on one of the
639 // major axes of the quadratic problem. In this case, we simply move
640 // along the gradient until we reach the trust region boundary.
641 subspace_is_one_dimensional_ = true;
642 return true;
643
644 case 2:
645 subspace_is_one_dimensional_ = false;
646 break;
647
648 default:
649 LOG(ERROR) << "Rank of the subspace basis matrix is reported to be "
650 << "greater than 2. As the matrix contains only two "
651 << "columns this cannot be true and is indicative of "
652 << "a bug.";
653 return false;
654 }
655
656 // The subspace is two-dimensional, so compute the subspace model.
657 // Given the basis U, this is
658 //
659 // subspace_g_ = g_scaled^T U
660 //
661 // and
662 //
663 // subspace_B_ = U^T (J_scaled^T J_scaled) U
664 //
665 // As J_scaled = J * D^-1, the latter becomes
666 //
667 // subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U))
668 // = (J (D^-1 U))^T (J (D^-1 U))
669
670 subspace_basis_ =
671 basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2);
672
673 subspace_g_ = subspace_basis_.transpose() * gradient_;
674
675 Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor>
676 Jb(2, jacobian->num_rows());
677 Jb.setZero();
678
679 Vector tmp;
680 tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix();
681 jacobian->RightMultiply(tmp.data(), Jb.row(0).data());
682 tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix();
683 jacobian->RightMultiply(tmp.data(), Jb.row(1).data());
684
685 subspace_B_ = Jb * Jb.transpose();
686
687 return true;
688 }
689
690 } // namespace internal
691 } // namespace ceres
692