• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/visibility_based_preconditioner.h"
32 
33 #include <algorithm>
34 #include <functional>
35 #include <iterator>
36 #include <set>
37 #include <utility>
38 #include <vector>
39 #include "Eigen/Dense"
40 #include "ceres/block_random_access_sparse_matrix.h"
41 #include "ceres/block_sparse_matrix.h"
42 #include "ceres/canonical_views_clustering.h"
43 #include "ceres/collections_port.h"
44 #include "ceres/detect_structure.h"
45 #include "ceres/graph.h"
46 #include "ceres/graph_algorithms.h"
47 #include "ceres/internal/scoped_ptr.h"
48 #include "ceres/linear_solver.h"
49 #include "ceres/schur_eliminator.h"
50 #include "ceres/visibility.h"
51 #include "glog/logging.h"
52 
53 namespace ceres {
54 namespace internal {
55 
56 // TODO(sameeragarwal): Currently these are magic weights for the
57 // preconditioner construction. Move these higher up into the Options
58 // struct and provide some guidelines for choosing them.
59 //
60 // This will require some more work on the clustering algorithm and
61 // possibly some more refactoring of the code.
62 static const double kSizePenaltyWeight = 3.0;
63 static const double kSimilarityPenaltyWeight = 0.0;
64 
65 #ifndef CERES_NO_SUITESPARSE
VisibilityBasedPreconditioner(const CompressedRowBlockStructure & bs,const LinearSolver::Options & options)66 VisibilityBasedPreconditioner::VisibilityBasedPreconditioner(
67     const CompressedRowBlockStructure& bs,
68     const LinearSolver::Options& options)
69     : options_(options),
70       num_blocks_(0),
71       num_clusters_(0),
72       factor_(NULL) {
73   CHECK_GT(options_.elimination_groups.size(), 1);
74   CHECK_GT(options_.elimination_groups[0], 0);
75   CHECK(options_.preconditioner_type == SCHUR_JACOBI ||
76         options_.preconditioner_type == CLUSTER_JACOBI ||
77         options_.preconditioner_type == CLUSTER_TRIDIAGONAL)
78       << "Unknown preconditioner type: " << options_.preconditioner_type;
79   num_blocks_ = bs.cols.size() - options_.elimination_groups[0];
80   CHECK_GT(num_blocks_, 0)
81       << "Jacobian should have atleast 1 f_block for "
82       << "visibility based preconditioning.";
83 
84   // Vector of camera block sizes
85   block_size_.resize(num_blocks_);
86   for (int i = 0; i < num_blocks_; ++i) {
87     block_size_[i] = bs.cols[i + options_.elimination_groups[0]].size;
88   }
89 
90   const time_t start_time = time(NULL);
91   switch (options_.preconditioner_type) {
92     case SCHUR_JACOBI:
93       ComputeSchurJacobiSparsity(bs);
94       break;
95     case CLUSTER_JACOBI:
96       ComputeClusterJacobiSparsity(bs);
97       break;
98     case CLUSTER_TRIDIAGONAL:
99       ComputeClusterTridiagonalSparsity(bs);
100       break;
101     default:
102       LOG(FATAL) << "Unknown preconditioner type";
103   }
104   const time_t structure_time = time(NULL);
105   InitStorage(bs);
106   const time_t storage_time = time(NULL);
107   InitEliminator(bs);
108   const time_t eliminator_time = time(NULL);
109 
110   // Allocate temporary storage for a vector used during
111   // RightMultiply.
112   tmp_rhs_ = CHECK_NOTNULL(ss_.CreateDenseVector(NULL,
113                                                  m_->num_rows(),
114                                                  m_->num_rows()));
115   const time_t init_time = time(NULL);
116   VLOG(2) << "init time: "
117           << init_time - start_time
118           << " structure time: " << structure_time - start_time
119           << " storage time:" << storage_time - structure_time
120           << " eliminator time: " << eliminator_time - storage_time;
121 }
122 
~VisibilityBasedPreconditioner()123 VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() {
124   if (factor_ != NULL) {
125     ss_.Free(factor_);
126     factor_ = NULL;
127   }
128   if (tmp_rhs_ != NULL) {
129     ss_.Free(tmp_rhs_);
130     tmp_rhs_ = NULL;
131   }
132 }
133 
134 // Determine the sparsity structure of the SCHUR_JACOBI
135 // preconditioner. SCHUR_JACOBI is an extreme case of a visibility
136 // based preconditioner where each camera block corresponds to a
137 // cluster and there is no interaction between clusters.
ComputeSchurJacobiSparsity(const CompressedRowBlockStructure & bs)138 void VisibilityBasedPreconditioner::ComputeSchurJacobiSparsity(
139     const CompressedRowBlockStructure& bs) {
140   num_clusters_ = num_blocks_;
141   cluster_membership_.resize(num_blocks_);
142   cluster_pairs_.clear();
143 
144   // Each camea block is a member of its own cluster and the only
145   // cluster pairs are the self edges (i,i).
146   for (int i = 0; i < num_clusters_; ++i) {
147     cluster_membership_[i] = i;
148     cluster_pairs_.insert(make_pair(i, i));
149   }
150 }
151 
152 // Determine the sparsity structure of the CLUSTER_JACOBI
153 // preconditioner. It clusters cameras using their scene
154 // visibility. The clusters form the diagonal blocks of the
155 // preconditioner matrix.
ComputeClusterJacobiSparsity(const CompressedRowBlockStructure & bs)156 void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity(
157     const CompressedRowBlockStructure& bs) {
158   vector<set<int> > visibility;
159   ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
160   CHECK_EQ(num_blocks_, visibility.size());
161   ClusterCameras(visibility);
162   cluster_pairs_.clear();
163   for (int i = 0; i < num_clusters_; ++i) {
164     cluster_pairs_.insert(make_pair(i, i));
165   }
166 }
167 
168 // Determine the sparsity structure of the CLUSTER_TRIDIAGONAL
169 // preconditioner. It clusters cameras using using the scene
170 // visibility and then finds the strongly interacting pairs of
171 // clusters by constructing another graph with the clusters as
172 // vertices and approximating it with a degree-2 maximum spanning
173 // forest. The set of edges in this forest are the cluster pairs.
ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure & bs)174 void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity(
175     const CompressedRowBlockStructure& bs) {
176   vector<set<int> > visibility;
177   ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
178   CHECK_EQ(num_blocks_, visibility.size());
179   ClusterCameras(visibility);
180 
181   // Construct a weighted graph on the set of clusters, where the
182   // edges are the number of 3D points/e_blocks visible in both the
183   // clusters at the ends of the edge. Return an approximate degree-2
184   // maximum spanning forest of this graph.
185   vector<set<int> > cluster_visibility;
186   ComputeClusterVisibility(visibility, &cluster_visibility);
187   scoped_ptr<Graph<int> > cluster_graph(
188       CHECK_NOTNULL(CreateClusterGraph(cluster_visibility)));
189   scoped_ptr<Graph<int> > forest(
190       CHECK_NOTNULL(Degree2MaximumSpanningForest(*cluster_graph)));
191   ForestToClusterPairs(*forest, &cluster_pairs_);
192 }
193 
194 // Allocate storage for the preconditioner matrix.
InitStorage(const CompressedRowBlockStructure & bs)195 void VisibilityBasedPreconditioner::InitStorage(
196     const CompressedRowBlockStructure& bs) {
197   ComputeBlockPairsInPreconditioner(bs);
198   m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_));
199 }
200 
201 // Call the canonical views algorithm and cluster the cameras based on
202 // their visibility sets. The visibility set of a camera is the set of
203 // e_blocks/3D points in the scene that are seen by it.
204 //
205 // The cluster_membership_ vector is updated to indicate cluster
206 // memberships for each camera block.
ClusterCameras(const vector<set<int>> & visibility)207 void VisibilityBasedPreconditioner::ClusterCameras(
208     const vector<set<int> >& visibility) {
209   scoped_ptr<Graph<int> > schur_complement_graph(
210       CHECK_NOTNULL(CreateSchurComplementGraph(visibility)));
211 
212   CanonicalViewsClusteringOptions options;
213   options.size_penalty_weight = kSizePenaltyWeight;
214   options.similarity_penalty_weight = kSimilarityPenaltyWeight;
215 
216   vector<int> centers;
217   HashMap<int, int> membership;
218   ComputeCanonicalViewsClustering(*schur_complement_graph,
219                                   options,
220                                   &centers,
221                                   &membership);
222   num_clusters_ = centers.size();
223   CHECK_GT(num_clusters_, 0);
224   VLOG(2) << "num_clusters: " << num_clusters_;
225   FlattenMembershipMap(membership, &cluster_membership_);
226 }
227 
228 // Compute the block sparsity structure of the Schur complement
229 // matrix. For each pair of cameras contributing a non-zero cell to
230 // the schur complement, determine if that cell is present in the
231 // preconditioner or not.
232 //
233 // A pair of cameras contribute a cell to the preconditioner if they
234 // are part of the same cluster or if the the two clusters that they
235 // belong have an edge connecting them in the degree-2 maximum
236 // spanning forest.
237 //
238 // For example, a camera pair (i,j) where i belonges to cluster1 and
239 // j belongs to cluster2 (assume that cluster1 < cluster2).
240 //
241 // The cell corresponding to (i,j) is present in the preconditioner
242 // if cluster1 == cluster2 or the pair (cluster1, cluster2) were
243 // connected by an edge in the degree-2 maximum spanning forest.
244 //
245 // Since we have already expanded the forest into a set of camera
246 // pairs/edges, including self edges, the check can be reduced to
247 // checking membership of (cluster1, cluster2) in cluster_pairs_.
ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure & bs)248 void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner(
249     const CompressedRowBlockStructure& bs) {
250   block_pairs_.clear();
251   for (int i = 0; i < num_blocks_; ++i) {
252     block_pairs_.insert(make_pair(i, i));
253   }
254 
255   int r = 0;
256   const int num_row_blocks = bs.rows.size();
257   const int num_eliminate_blocks = options_.elimination_groups[0];
258 
259   // Iterate over each row of the matrix. The block structure of the
260   // matrix is assumed to be sorted in order of the e_blocks/point
261   // blocks. Thus all row blocks containing an e_block/point occur
262   // contiguously. Further, if present, an e_block is always the first
263   // parameter block in each row block.  These structural assumptions
264   // are common to all Schur complement based solvers in Ceres.
265   //
266   // For each e_block/point block we identify the set of cameras
267   // seeing it. The cross product of this set with itself is the set
268   // of non-zero cells contibuted by this e_block.
269   //
270   // The time complexity of this is O(nm^2) where, n is the number of
271   // 3d points and m is the maximum number of cameras seeing any
272   // point, which for most scenes is a fairly small number.
273   while (r < num_row_blocks) {
274     int e_block_id = bs.rows[r].cells.front().block_id;
275     if (e_block_id >= num_eliminate_blocks) {
276       // Skip the rows whose first block is an f_block.
277       break;
278     }
279 
280     set<int> f_blocks;
281     for (; r < num_row_blocks; ++r) {
282       const CompressedRow& row = bs.rows[r];
283       if (row.cells.front().block_id != e_block_id) {
284         break;
285       }
286 
287       // Iterate over the blocks in the row, ignoring the first block
288       // since it is the one to be eliminated and adding the rest to
289       // the list of f_blocks associated with this e_block.
290       for (int c = 1; c < row.cells.size(); ++c) {
291         const Cell& cell = row.cells[c];
292         const int f_block_id = cell.block_id - num_eliminate_blocks;
293         CHECK_GE(f_block_id, 0);
294         f_blocks.insert(f_block_id);
295       }
296     }
297 
298     for (set<int>::const_iterator block1 = f_blocks.begin();
299          block1 != f_blocks.end();
300          ++block1) {
301       set<int>::const_iterator block2 = block1;
302       ++block2;
303       for (; block2 != f_blocks.end(); ++block2) {
304         if (IsBlockPairInPreconditioner(*block1, *block2)) {
305           block_pairs_.insert(make_pair(*block1, *block2));
306         }
307       }
308     }
309   }
310 
311   // The remaining rows which do not contain any e_blocks.
312   for (; r < num_row_blocks; ++r) {
313     const CompressedRow& row = bs.rows[r];
314     CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
315     for (int i = 0; i < row.cells.size(); ++i) {
316       const int block1 = row.cells[i].block_id - num_eliminate_blocks;
317       for (int j = 0; j < row.cells.size(); ++j) {
318         const int block2 = row.cells[j].block_id - num_eliminate_blocks;
319         if (block1 <= block2) {
320           if (IsBlockPairInPreconditioner(block1, block2)) {
321             block_pairs_.insert(make_pair(block1, block2));
322           }
323         }
324       }
325     }
326   }
327 
328   VLOG(1) << "Block pair stats: " << block_pairs_.size();
329 }
330 
331 // Initialize the SchurEliminator.
InitEliminator(const CompressedRowBlockStructure & bs)332 void VisibilityBasedPreconditioner::InitEliminator(
333     const CompressedRowBlockStructure& bs) {
334   LinearSolver::Options eliminator_options;
335 
336   eliminator_options.elimination_groups = options_.elimination_groups;
337   eliminator_options.num_threads = options_.num_threads;
338 
339   DetectStructure(bs, options_.elimination_groups[0],
340                   &eliminator_options.row_block_size,
341                   &eliminator_options.e_block_size,
342                   &eliminator_options.f_block_size);
343 
344   eliminator_.reset(SchurEliminatorBase::Create(eliminator_options));
345   eliminator_->Init(options_.elimination_groups[0], &bs);
346 }
347 
348 // Update the values of the preconditioner matrix and factorize it.
Update(const BlockSparseMatrixBase & A,const double * D)349 bool VisibilityBasedPreconditioner::Update(const BlockSparseMatrixBase& A,
350                                            const double* D) {
351   const time_t start_time = time(NULL);
352   const int num_rows = m_->num_rows();
353   CHECK_GT(num_rows, 0);
354 
355   // We need a dummy rhs vector and a dummy b vector since the Schur
356   // eliminator combines the computation of the reduced camera matrix
357   // with the computation of the right hand side of that linear
358   // system.
359   //
360   // TODO(sameeragarwal): Perhaps its worth refactoring the
361   // SchurEliminator::Eliminate function to allow NULL for the rhs. As
362   // of now it does not seem to be worth the effort.
363   Vector rhs = Vector::Zero(m_->num_rows());
364   Vector b = Vector::Zero(A.num_rows());
365 
366   // Compute a subset of the entries of the Schur complement.
367   eliminator_->Eliminate(&A, b.data(), D, m_.get(), rhs.data());
368 
369   // Try factorizing the matrix. For SCHUR_JACOBI and CLUSTER_JACOBI,
370   // this should always succeed modulo some numerical/conditioning
371   // problems. For CLUSTER_TRIDIAGONAL, in general the preconditioner
372   // matrix as constructed is not positive definite. However, we will
373   // go ahead and try factorizing it. If it works, great, otherwise we
374   // scale all the cells in the preconditioner corresponding to the
375   // edges in the degree-2 forest and that guarantees positive
376   // definiteness. The proof of this fact can be found in Lemma 1 in
377   // "Visibility Based Preconditioning for Bundle Adjustment".
378   //
379   // Doing the factorization like this saves us matrix mass when
380   // scaling is not needed, which is quite often in our experience.
381   bool status = Factorize();
382 
383   // The scaling only affects the tri-diagonal case, since
384   // ScaleOffDiagonalBlocks only pays attenion to the cells that
385   // belong to the edges of the degree-2 forest. In the SCHUR_JACOBI
386   // and the CLUSTER_JACOBI cases, the preconditioner is guaranteed to
387   // be positive semidefinite.
388   if (!status && options_.preconditioner_type == CLUSTER_TRIDIAGONAL) {
389     VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal "
390             << "scaling";
391     ScaleOffDiagonalCells();
392     status = Factorize();
393   }
394 
395   VLOG(2) << "Compute time: " << time(NULL) - start_time;
396   return status;
397 }
398 
399 // Consider the preconditioner matrix as meta-block matrix, whose
400 // blocks correspond to the clusters. Then cluster pairs corresponding
401 // to edges in the degree-2 forest are off diagonal entries of this
402 // matrix. Scaling these off-diagonal entries by 1/2 forces this
403 // matrix to be positive definite.
ScaleOffDiagonalCells()404 void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() {
405   for (set< pair<int, int> >::const_iterator it = block_pairs_.begin();
406        it != block_pairs_.end();
407        ++it) {
408     const int block1 = it->first;
409     const int block2 = it->second;
410     if (!IsBlockPairOffDiagonal(block1, block2)) {
411       continue;
412     }
413 
414     int r, c, row_stride, col_stride;
415     CellInfo* cell_info = m_->GetCell(block1, block2,
416                                       &r, &c,
417                                       &row_stride, &col_stride);
418     CHECK(cell_info != NULL)
419         << "Cell missing for block pair (" << block1 << "," << block2 << ")"
420         << " cluster pair (" << cluster_membership_[block1]
421         << " " << cluster_membership_[block2] << ")";
422 
423     // Ah the magic of tri-diagonal matrices and diagonal
424     // dominance. See Lemma 1 in "Visibility Based Preconditioning
425     // For Bundle Adjustment".
426     MatrixRef m(cell_info->values, row_stride, col_stride);
427     m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5;
428   }
429 }
430 
431 // Compute the sparse Cholesky factorization of the preconditioner
432 // matrix.
Factorize()433 bool VisibilityBasedPreconditioner::Factorize() {
434   // Extract the TripletSparseMatrix that is used for actually storing
435   // S and convert it into a cholmod_sparse object.
436   cholmod_sparse* lhs = ss_.CreateSparseMatrix(
437       down_cast<BlockRandomAccessSparseMatrix*>(
438           m_.get())->mutable_matrix());
439 
440   // The matrix is symmetric, and the upper triangular part of the
441   // matrix contains the values.
442   lhs->stype = 1;
443 
444   // Symbolic factorization is computed if we don't already have one handy.
445   if (factor_ == NULL) {
446     if (options_.use_block_amd) {
447       factor_ = ss_.BlockAnalyzeCholesky(lhs, block_size_, block_size_);
448     } else {
449       factor_ = ss_.AnalyzeCholesky(lhs);
450     }
451 
452     if (VLOG_IS_ON(2)) {
453       cholmod_print_common("Symbolic Analysis", ss_.mutable_cc());
454     }
455   }
456 
457   CHECK_NOTNULL(factor_);
458 
459   bool status = ss_.Cholesky(lhs, factor_);
460   ss_.Free(lhs);
461   return status;
462 }
463 
RightMultiply(const double * x,double * y) const464 void VisibilityBasedPreconditioner::RightMultiply(const double* x,
465                                                   double* y) const {
466   CHECK_NOTNULL(x);
467   CHECK_NOTNULL(y);
468   SuiteSparse* ss = const_cast<SuiteSparse*>(&ss_);
469 
470   const int num_rows = m_->num_rows();
471   memcpy(CHECK_NOTNULL(tmp_rhs_)->x, x, m_->num_rows() * sizeof(*x));
472   cholmod_dense* solution = CHECK_NOTNULL(ss->Solve(factor_, tmp_rhs_));
473   memcpy(y, solution->x, sizeof(*y) * num_rows);
474   ss->Free(solution);
475 }
476 
num_rows() const477 int VisibilityBasedPreconditioner::num_rows() const {
478   return m_->num_rows();
479 }
480 
481 // Classify camera/f_block pairs as in and out of the preconditioner,
482 // based on whether the cluster pair that they belong to is in the
483 // preconditioner or not.
IsBlockPairInPreconditioner(const int block1,const int block2) const484 bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner(
485     const int block1,
486     const int block2) const {
487   int cluster1 = cluster_membership_[block1];
488   int cluster2 = cluster_membership_[block2];
489   if (cluster1 > cluster2) {
490     std::swap(cluster1, cluster2);
491   }
492   return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0);
493 }
494 
IsBlockPairOffDiagonal(const int block1,const int block2) const495 bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal(
496     const int block1,
497     const int block2) const {
498   return (cluster_membership_[block1] != cluster_membership_[block2]);
499 }
500 
501 // Convert a graph into a list of edges that includes self edges for
502 // each vertex.
ForestToClusterPairs(const Graph<int> & forest,HashSet<pair<int,int>> * cluster_pairs) const503 void VisibilityBasedPreconditioner::ForestToClusterPairs(
504     const Graph<int>& forest,
505     HashSet<pair<int, int> >* cluster_pairs) const {
506   CHECK_NOTNULL(cluster_pairs)->clear();
507   const HashSet<int>& vertices = forest.vertices();
508   CHECK_EQ(vertices.size(), num_clusters_);
509 
510   // Add all the cluster pairs corresponding to the edges in the
511   // forest.
512   for (HashSet<int>::const_iterator it1 = vertices.begin();
513        it1 != vertices.end();
514        ++it1) {
515     const int cluster1 = *it1;
516     cluster_pairs->insert(make_pair(cluster1, cluster1));
517     const HashSet<int>& neighbors = forest.Neighbors(cluster1);
518     for (HashSet<int>::const_iterator it2 = neighbors.begin();
519          it2 != neighbors.end();
520          ++it2) {
521       const int cluster2 = *it2;
522       if (cluster1 < cluster2) {
523         cluster_pairs->insert(make_pair(cluster1, cluster2));
524       }
525     }
526   }
527 }
528 
529 // The visibilty set of a cluster is the union of the visibilty sets
530 // of all its cameras. In other words, the set of points visible to
531 // any camera in the cluster.
ComputeClusterVisibility(const vector<set<int>> & visibility,vector<set<int>> * cluster_visibility) const532 void VisibilityBasedPreconditioner::ComputeClusterVisibility(
533     const vector<set<int> >& visibility,
534     vector<set<int> >* cluster_visibility) const {
535   CHECK_NOTNULL(cluster_visibility)->resize(0);
536   cluster_visibility->resize(num_clusters_);
537   for (int i = 0; i < num_blocks_; ++i) {
538     const int cluster_id = cluster_membership_[i];
539     (*cluster_visibility)[cluster_id].insert(visibility[i].begin(),
540                                              visibility[i].end());
541   }
542 }
543 
544 // Construct a graph whose vertices are the clusters, and the edge
545 // weights are the number of 3D points visible to cameras in both the
546 // vertices.
CreateClusterGraph(const vector<set<int>> & cluster_visibility) const547 Graph<int>* VisibilityBasedPreconditioner::CreateClusterGraph(
548     const vector<set<int> >& cluster_visibility) const {
549   Graph<int>* cluster_graph = new Graph<int>;
550 
551   for (int i = 0; i < num_clusters_; ++i) {
552     cluster_graph->AddVertex(i);
553   }
554 
555   for (int i = 0; i < num_clusters_; ++i) {
556     const set<int>& cluster_i = cluster_visibility[i];
557     for (int j = i+1; j < num_clusters_; ++j) {
558       vector<int> intersection;
559       const set<int>& cluster_j = cluster_visibility[j];
560       set_intersection(cluster_i.begin(), cluster_i.end(),
561                        cluster_j.begin(), cluster_j.end(),
562                        back_inserter(intersection));
563 
564       if (intersection.size() > 0) {
565         // Clusters interact strongly when they share a large number
566         // of 3D points. The degree-2 maximum spanning forest
567         // alorithm, iterates on the edges in decreasing order of
568         // their weight, which is the number of points shared by the
569         // two cameras that it connects.
570         cluster_graph->AddEdge(i, j, intersection.size());
571       }
572     }
573   }
574   return cluster_graph;
575 }
576 
577 // Canonical views clustering returns a HashMap from vertices to
578 // cluster ids. Convert this into a flat array for quick lookup. It is
579 // possible that some of the vertices may not be associated with any
580 // cluster. In that case, randomly assign them to one of the clusters.
FlattenMembershipMap(const HashMap<int,int> & membership_map,vector<int> * membership_vector) const581 void VisibilityBasedPreconditioner::FlattenMembershipMap(
582     const HashMap<int, int>& membership_map,
583     vector<int>* membership_vector) const {
584   CHECK_NOTNULL(membership_vector)->resize(0);
585   membership_vector->resize(num_blocks_, -1);
586   // Iterate over the cluster membership map and update the
587   // cluster_membership_ vector assigning arbitrary cluster ids to
588   // the few cameras that have not been clustered.
589   for (HashMap<int, int>::const_iterator it = membership_map.begin();
590        it != membership_map.end();
591        ++it) {
592     const int camera_id = it->first;
593     int cluster_id = it->second;
594 
595     // If the view was not clustered, randomly assign it to one of the
596     // clusters. This preserves the mathematical correctness of the
597     // preconditioner. If there are too many views which are not
598     // clustered, it may lead to some quality degradation though.
599     //
600     // TODO(sameeragarwal): Check if a large number of views have not
601     // been clustered and deal with it?
602     if (cluster_id == -1) {
603       cluster_id = camera_id % num_clusters_;
604     }
605 
606     membership_vector->at(camera_id) = cluster_id;
607   }
608 }
609 
610 #endif  // CERES_NO_SUITESPARSE
611 
612 }  // namespace internal
613 }  // namespace ceres
614