1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/PrettyPrinter.h"
24 #include "clang/AST/Stmt.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/Module.h"
29 #include "clang/Basic/Specifiers.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/type_traits.h"
33 #include <algorithm>
34
35 using namespace clang;
36
37 //===----------------------------------------------------------------------===//
38 // NamedDecl Implementation
39 //===----------------------------------------------------------------------===//
40
41 // Visibility rules aren't rigorously externally specified, but here
42 // are the basic principles behind what we implement:
43 //
44 // 1. An explicit visibility attribute is generally a direct expression
45 // of the user's intent and should be honored. Only the innermost
46 // visibility attribute applies. If no visibility attribute applies,
47 // global visibility settings are considered.
48 //
49 // 2. There is one caveat to the above: on or in a template pattern,
50 // an explicit visibility attribute is just a default rule, and
51 // visibility can be decreased by the visibility of template
52 // arguments. But this, too, has an exception: an attribute on an
53 // explicit specialization or instantiation causes all the visibility
54 // restrictions of the template arguments to be ignored.
55 //
56 // 3. A variable that does not otherwise have explicit visibility can
57 // be restricted by the visibility of its type.
58 //
59 // 4. A visibility restriction is explicit if it comes from an
60 // attribute (or something like it), not a global visibility setting.
61 // When emitting a reference to an external symbol, visibility
62 // restrictions are ignored unless they are explicit.
63 //
64 // 5. When computing the visibility of a non-type, including a
65 // non-type member of a class, only non-type visibility restrictions
66 // are considered: the 'visibility' attribute, global value-visibility
67 // settings, and a few special cases like __private_extern.
68 //
69 // 6. When computing the visibility of a type, including a type member
70 // of a class, only type visibility restrictions are considered:
71 // the 'type_visibility' attribute and global type-visibility settings.
72 // However, a 'visibility' attribute counts as a 'type_visibility'
73 // attribute on any declaration that only has the former.
74 //
75 // The visibility of a "secondary" entity, like a template argument,
76 // is computed using the kind of that entity, not the kind of the
77 // primary entity for which we are computing visibility. For example,
78 // the visibility of a specialization of either of these templates:
79 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
80 // template <class T, bool (&compare)(T, X)> class matcher;
81 // is restricted according to the type visibility of the argument 'T',
82 // the type visibility of 'bool(&)(T,X)', and the value visibility of
83 // the argument function 'compare'. That 'has_match' is a value
84 // and 'matcher' is a type only matters when looking for attributes
85 // and settings from the immediate context.
86
87 const unsigned IgnoreExplicitVisibilityBit = 2;
88
89 /// Kinds of LV computation. The linkage side of the computation is
90 /// always the same, but different things can change how visibility is
91 /// computed.
92 enum LVComputationKind {
93 /// Do an LV computation for, ultimately, a type.
94 /// Visibility may be restricted by type visibility settings and
95 /// the visibility of template arguments.
96 LVForType = NamedDecl::VisibilityForType,
97
98 /// Do an LV computation for, ultimately, a non-type declaration.
99 /// Visibility may be restricted by value visibility settings and
100 /// the visibility of template arguments.
101 LVForValue = NamedDecl::VisibilityForValue,
102
103 /// Do an LV computation for, ultimately, a type that already has
104 /// some sort of explicit visibility. Visibility may only be
105 /// restricted by the visibility of template arguments.
106 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
107
108 /// Do an LV computation for, ultimately, a non-type declaration
109 /// that already has some sort of explicit visibility. Visibility
110 /// may only be restricted by the visibility of template arguments.
111 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit)
112 };
113
114 /// Does this computation kind permit us to consider additional
115 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)116 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
117 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
118 }
119
120 /// Given an LVComputationKind, return one of the same type/value sort
121 /// that records that it already has explicit visibility.
122 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind)123 withExplicitVisibilityAlready(LVComputationKind oldKind) {
124 LVComputationKind newKind =
125 static_cast<LVComputationKind>(unsigned(oldKind) |
126 IgnoreExplicitVisibilityBit);
127 assert(oldKind != LVForType || newKind == LVForExplicitType);
128 assert(oldKind != LVForValue || newKind == LVForExplicitValue);
129 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType);
130 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
131 return newKind;
132 }
133
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)134 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
135 LVComputationKind kind) {
136 assert(!hasExplicitVisibilityAlready(kind) &&
137 "asking for explicit visibility when we shouldn't be");
138 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
139 }
140
141 /// Is the given declaration a "type" or a "value" for the purposes of
142 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)143 static bool usesTypeVisibility(const NamedDecl *D) {
144 return isa<TypeDecl>(D) ||
145 isa<ClassTemplateDecl>(D) ||
146 isa<ObjCInterfaceDecl>(D);
147 }
148
149 /// Does the given declaration have member specialization information,
150 /// and if so, is it an explicit specialization?
151 template <class T> static typename
152 llvm::enable_if_c<!llvm::is_base_of<RedeclarableTemplateDecl, T>::value,
153 bool>::type
isExplicitMemberSpecialization(const T * D)154 isExplicitMemberSpecialization(const T *D) {
155 if (const MemberSpecializationInfo *member =
156 D->getMemberSpecializationInfo()) {
157 return member->isExplicitSpecialization();
158 }
159 return false;
160 }
161
162 /// For templates, this question is easier: a member template can't be
163 /// explicitly instantiated, so there's a single bit indicating whether
164 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)165 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
166 return D->isMemberSpecialization();
167 }
168
169 /// Given a visibility attribute, return the explicit visibility
170 /// associated with it.
171 template <class T>
getVisibilityFromAttr(const T * attr)172 static Visibility getVisibilityFromAttr(const T *attr) {
173 switch (attr->getVisibility()) {
174 case T::Default:
175 return DefaultVisibility;
176 case T::Hidden:
177 return HiddenVisibility;
178 case T::Protected:
179 return ProtectedVisibility;
180 }
181 llvm_unreachable("bad visibility kind");
182 }
183
184 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)185 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
186 NamedDecl::ExplicitVisibilityKind kind) {
187 // If we're ultimately computing the visibility of a type, look for
188 // a 'type_visibility' attribute before looking for 'visibility'.
189 if (kind == NamedDecl::VisibilityForType) {
190 if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
191 return getVisibilityFromAttr(A);
192 }
193 }
194
195 // If this declaration has an explicit visibility attribute, use it.
196 if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
197 return getVisibilityFromAttr(A);
198 }
199
200 // If we're on Mac OS X, an 'availability' for Mac OS X attribute
201 // implies visibility(default).
202 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
203 for (specific_attr_iterator<AvailabilityAttr>
204 A = D->specific_attr_begin<AvailabilityAttr>(),
205 AEnd = D->specific_attr_end<AvailabilityAttr>();
206 A != AEnd; ++A)
207 if ((*A)->getPlatform()->getName().equals("macosx"))
208 return DefaultVisibility;
209 }
210
211 return None;
212 }
213
214 /// \brief Get the most restrictive linkage for the types in the given
215 /// template parameter list. For visibility purposes, template
216 /// parameters are part of the signature of a template.
217 static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList * params)218 getLVForTemplateParameterList(const TemplateParameterList *params) {
219 LinkageInfo LV;
220 for (TemplateParameterList::const_iterator P = params->begin(),
221 PEnd = params->end();
222 P != PEnd; ++P) {
223
224 // Template type parameters are the most common and never
225 // contribute to visibility, pack or not.
226 if (isa<TemplateTypeParmDecl>(*P))
227 continue;
228
229 // Non-type template parameters can be restricted by the value type, e.g.
230 // template <enum X> class A { ... };
231 // We have to be careful here, though, because we can be dealing with
232 // dependent types.
233 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
234 // Handle the non-pack case first.
235 if (!NTTP->isExpandedParameterPack()) {
236 if (!NTTP->getType()->isDependentType()) {
237 LV.merge(NTTP->getType()->getLinkageAndVisibility());
238 }
239 continue;
240 }
241
242 // Look at all the types in an expanded pack.
243 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
244 QualType type = NTTP->getExpansionType(i);
245 if (!type->isDependentType())
246 LV.merge(type->getLinkageAndVisibility());
247 }
248 continue;
249 }
250
251 // Template template parameters can be restricted by their
252 // template parameters, recursively.
253 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
254
255 // Handle the non-pack case first.
256 if (!TTP->isExpandedParameterPack()) {
257 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters()));
258 continue;
259 }
260
261 // Look at all expansions in an expanded pack.
262 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
263 i != n; ++i) {
264 LV.merge(getLVForTemplateParameterList(
265 TTP->getExpansionTemplateParameters(i)));
266 }
267 }
268
269 return LV;
270 }
271
272 /// getLVForDecl - Get the linkage and visibility for the given declaration.
273 static LinkageInfo getLVForDecl(const NamedDecl *D,
274 LVComputationKind computation);
275
276 /// \brief Get the most restrictive linkage for the types and
277 /// declarations in the given template argument list.
278 ///
279 /// Note that we don't take an LVComputationKind because we always
280 /// want to honor the visibility of template arguments in the same way.
281 static LinkageInfo
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args)282 getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args) {
283 LinkageInfo LV;
284
285 for (unsigned i = 0, e = args.size(); i != e; ++i) {
286 const TemplateArgument &arg = args[i];
287 switch (arg.getKind()) {
288 case TemplateArgument::Null:
289 case TemplateArgument::Integral:
290 case TemplateArgument::Expression:
291 continue;
292
293 case TemplateArgument::Type:
294 LV.merge(arg.getAsType()->getLinkageAndVisibility());
295 continue;
296
297 case TemplateArgument::Declaration:
298 if (NamedDecl *ND = dyn_cast<NamedDecl>(arg.getAsDecl())) {
299 assert(!usesTypeVisibility(ND));
300 LV.merge(getLVForDecl(ND, LVForValue));
301 }
302 continue;
303
304 case TemplateArgument::NullPtr:
305 LV.merge(arg.getNullPtrType()->getLinkageAndVisibility());
306 continue;
307
308 case TemplateArgument::Template:
309 case TemplateArgument::TemplateExpansion:
310 if (TemplateDecl *Template
311 = arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
312 LV.merge(getLVForDecl(Template, LVForValue));
313 continue;
314
315 case TemplateArgument::Pack:
316 LV.merge(getLVForTemplateArgumentList(arg.getPackAsArray()));
317 continue;
318 }
319 llvm_unreachable("bad template argument kind");
320 }
321
322 return LV;
323 }
324
325 static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs)326 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs) {
327 return getLVForTemplateArgumentList(TArgs.asArray());
328 }
329
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)330 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
331 const FunctionTemplateSpecializationInfo *specInfo) {
332 // Include visibility from the template parameters and arguments
333 // only if this is not an explicit instantiation or specialization
334 // with direct explicit visibility. (Implicit instantiations won't
335 // have a direct attribute.)
336 if (!specInfo->isExplicitInstantiationOrSpecialization())
337 return true;
338
339 return !fn->hasAttr<VisibilityAttr>();
340 }
341
342 /// Merge in template-related linkage and visibility for the given
343 /// function template specialization.
344 ///
345 /// We don't need a computation kind here because we can assume
346 /// LVForValue.
347 ///
348 /// \param[out] LV the computation to use for the parent
349 static void
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)350 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
351 const FunctionTemplateSpecializationInfo *specInfo) {
352 bool considerVisibility =
353 shouldConsiderTemplateVisibility(fn, specInfo);
354
355 // Merge information from the template parameters.
356 FunctionTemplateDecl *temp = specInfo->getTemplate();
357 LinkageInfo tempLV =
358 getLVForTemplateParameterList(temp->getTemplateParameters());
359 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
360
361 // Merge information from the template arguments.
362 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
363 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs);
364 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
365 }
366
367 /// Does the given declaration have a direct visibility attribute
368 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)369 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
370 LVComputationKind computation) {
371 switch (computation) {
372 case LVForType:
373 case LVForExplicitType:
374 if (D->hasAttr<TypeVisibilityAttr>())
375 return true;
376 // fallthrough
377 case LVForValue:
378 case LVForExplicitValue:
379 if (D->hasAttr<VisibilityAttr>())
380 return true;
381 return false;
382 }
383 llvm_unreachable("bad visibility computation kind");
384 }
385
386 /// Should we consider visibility associated with the template
387 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)388 static bool shouldConsiderTemplateVisibility(
389 const ClassTemplateSpecializationDecl *spec,
390 LVComputationKind computation) {
391 // Include visibility from the template parameters and arguments
392 // only if this is not an explicit instantiation or specialization
393 // with direct explicit visibility (and note that implicit
394 // instantiations won't have a direct attribute).
395 //
396 // Furthermore, we want to ignore template parameters and arguments
397 // for an explicit specialization when computing the visibility of a
398 // member thereof with explicit visibility.
399 //
400 // This is a bit complex; let's unpack it.
401 //
402 // An explicit class specialization is an independent, top-level
403 // declaration. As such, if it or any of its members has an
404 // explicit visibility attribute, that must directly express the
405 // user's intent, and we should honor it. The same logic applies to
406 // an explicit instantiation of a member of such a thing.
407
408 // Fast path: if this is not an explicit instantiation or
409 // specialization, we always want to consider template-related
410 // visibility restrictions.
411 if (!spec->isExplicitInstantiationOrSpecialization())
412 return true;
413
414 // This is the 'member thereof' check.
415 if (spec->isExplicitSpecialization() &&
416 hasExplicitVisibilityAlready(computation))
417 return false;
418
419 return !hasDirectVisibilityAttribute(spec, computation);
420 }
421
422 /// Merge in template-related linkage and visibility for the given
423 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)424 static void mergeTemplateLV(LinkageInfo &LV,
425 const ClassTemplateSpecializationDecl *spec,
426 LVComputationKind computation) {
427 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
428
429 // Merge information from the template parameters, but ignore
430 // visibility if we're only considering template arguments.
431
432 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
433 LinkageInfo tempLV =
434 getLVForTemplateParameterList(temp->getTemplateParameters());
435 LV.mergeMaybeWithVisibility(tempLV,
436 considerVisibility && !hasExplicitVisibilityAlready(computation));
437
438 // Merge information from the template arguments. We ignore
439 // template-argument visibility if we've got an explicit
440 // instantiation with a visibility attribute.
441 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
442 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs);
443 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
444 }
445
useInlineVisibilityHidden(const NamedDecl * D)446 static bool useInlineVisibilityHidden(const NamedDecl *D) {
447 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
448 const LangOptions &Opts = D->getASTContext().getLangOpts();
449 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
450 return false;
451
452 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
453 if (!FD)
454 return false;
455
456 TemplateSpecializationKind TSK = TSK_Undeclared;
457 if (FunctionTemplateSpecializationInfo *spec
458 = FD->getTemplateSpecializationInfo()) {
459 TSK = spec->getTemplateSpecializationKind();
460 } else if (MemberSpecializationInfo *MSI =
461 FD->getMemberSpecializationInfo()) {
462 TSK = MSI->getTemplateSpecializationKind();
463 }
464
465 const FunctionDecl *Def = 0;
466 // InlineVisibilityHidden only applies to definitions, and
467 // isInlined() only gives meaningful answers on definitions
468 // anyway.
469 return TSK != TSK_ExplicitInstantiationDeclaration &&
470 TSK != TSK_ExplicitInstantiationDefinition &&
471 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
472 }
473
isInExternCContext(T * D)474 template <typename T> static bool isInExternCContext(T *D) {
475 const T *First = D->getFirstDeclaration();
476 return First->getDeclContext()->isExternCContext();
477 }
478
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation)479 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
480 LVComputationKind computation) {
481 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
482 "Not a name having namespace scope");
483 ASTContext &Context = D->getASTContext();
484
485 // C++ [basic.link]p3:
486 // A name having namespace scope (3.3.6) has internal linkage if it
487 // is the name of
488 // - an object, reference, function or function template that is
489 // explicitly declared static; or,
490 // (This bullet corresponds to C99 6.2.2p3.)
491 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
492 // Explicitly declared static.
493 if (Var->getStorageClass() == SC_Static)
494 return LinkageInfo::internal();
495
496 // - a non-volatile object or reference that is explicitly declared const
497 // or constexpr and neither explicitly declared extern nor previously
498 // declared to have external linkage; or (there is no equivalent in C99)
499 if (Context.getLangOpts().CPlusPlus &&
500 Var->getType().isConstQualified() &&
501 !Var->getType().isVolatileQualified() &&
502 Var->getStorageClass() != SC_Extern &&
503 Var->getStorageClass() != SC_PrivateExtern) {
504 bool FoundExtern = false;
505 for (const VarDecl *PrevVar = Var->getPreviousDecl();
506 PrevVar && !FoundExtern;
507 PrevVar = PrevVar->getPreviousDecl())
508 if (isExternalLinkage(PrevVar->getLinkage()))
509 FoundExtern = true;
510
511 if (!FoundExtern)
512 return LinkageInfo::internal();
513 }
514 if (Var->getStorageClass() == SC_None) {
515 const VarDecl *PrevVar = Var->getPreviousDecl();
516 for (; PrevVar; PrevVar = PrevVar->getPreviousDecl())
517 if (PrevVar->getStorageClass() == SC_PrivateExtern)
518 break;
519 if (PrevVar)
520 return PrevVar->getLinkageAndVisibility();
521 }
522 } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
523 // C++ [temp]p4:
524 // A non-member function template can have internal linkage; any
525 // other template name shall have external linkage.
526 const FunctionDecl *Function = 0;
527 if (const FunctionTemplateDecl *FunTmpl
528 = dyn_cast<FunctionTemplateDecl>(D))
529 Function = FunTmpl->getTemplatedDecl();
530 else
531 Function = cast<FunctionDecl>(D);
532
533 // Explicitly declared static.
534 if (Function->getStorageClass() == SC_Static)
535 return LinkageInfo(InternalLinkage, DefaultVisibility, false);
536 } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
537 // - a data member of an anonymous union.
538 if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
539 return LinkageInfo::internal();
540 }
541
542 if (D->isInAnonymousNamespace()) {
543 const VarDecl *Var = dyn_cast<VarDecl>(D);
544 const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
545 if ((!Var || !isInExternCContext(Var)) &&
546 (!Func || !isInExternCContext(Func)))
547 return LinkageInfo::uniqueExternal();
548 }
549
550 // Set up the defaults.
551
552 // C99 6.2.2p5:
553 // If the declaration of an identifier for an object has file
554 // scope and no storage-class specifier, its linkage is
555 // external.
556 LinkageInfo LV;
557
558 if (!hasExplicitVisibilityAlready(computation)) {
559 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
560 LV.mergeVisibility(*Vis, true);
561 } else {
562 // If we're declared in a namespace with a visibility attribute,
563 // use that namespace's visibility, and it still counts as explicit.
564 for (const DeclContext *DC = D->getDeclContext();
565 !isa<TranslationUnitDecl>(DC);
566 DC = DC->getParent()) {
567 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
568 if (!ND) continue;
569 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
570 LV.mergeVisibility(*Vis, true);
571 break;
572 }
573 }
574 }
575
576 // Add in global settings if the above didn't give us direct visibility.
577 if (!LV.isVisibilityExplicit()) {
578 // Use global type/value visibility as appropriate.
579 Visibility globalVisibility;
580 if (computation == LVForValue) {
581 globalVisibility = Context.getLangOpts().getValueVisibilityMode();
582 } else {
583 assert(computation == LVForType);
584 globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
585 }
586 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
587
588 // If we're paying attention to global visibility, apply
589 // -finline-visibility-hidden if this is an inline method.
590 if (useInlineVisibilityHidden(D))
591 LV.mergeVisibility(HiddenVisibility, true);
592 }
593 }
594
595 // C++ [basic.link]p4:
596
597 // A name having namespace scope has external linkage if it is the
598 // name of
599 //
600 // - an object or reference, unless it has internal linkage; or
601 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
602 // GCC applies the following optimization to variables and static
603 // data members, but not to functions:
604 //
605 // Modify the variable's LV by the LV of its type unless this is
606 // C or extern "C". This follows from [basic.link]p9:
607 // A type without linkage shall not be used as the type of a
608 // variable or function with external linkage unless
609 // - the entity has C language linkage, or
610 // - the entity is declared within an unnamed namespace, or
611 // - the entity is not used or is defined in the same
612 // translation unit.
613 // and [basic.link]p10:
614 // ...the types specified by all declarations referring to a
615 // given variable or function shall be identical...
616 // C does not have an equivalent rule.
617 //
618 // Ignore this if we've got an explicit attribute; the user
619 // probably knows what they're doing.
620 //
621 // Note that we don't want to make the variable non-external
622 // because of this, but unique-external linkage suits us.
623 if (Context.getLangOpts().CPlusPlus && !isInExternCContext(Var)) {
624 LinkageInfo TypeLV = Var->getType()->getLinkageAndVisibility();
625 if (TypeLV.getLinkage() != ExternalLinkage)
626 return LinkageInfo::uniqueExternal();
627 if (!LV.isVisibilityExplicit())
628 LV.mergeVisibility(TypeLV);
629 }
630
631 if (Var->getStorageClass() == SC_PrivateExtern)
632 LV.mergeVisibility(HiddenVisibility, true);
633
634 // Note that Sema::MergeVarDecl already takes care of implementing
635 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
636 // to do it here.
637
638 // - a function, unless it has internal linkage; or
639 } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
640 // In theory, we can modify the function's LV by the LV of its
641 // type unless it has C linkage (see comment above about variables
642 // for justification). In practice, GCC doesn't do this, so it's
643 // just too painful to make work.
644
645 if (Function->getStorageClass() == SC_PrivateExtern)
646 LV.mergeVisibility(HiddenVisibility, true);
647
648 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
649 // merging storage classes and visibility attributes, so we don't have to
650 // look at previous decls in here.
651
652 // In C++, then if the type of the function uses a type with
653 // unique-external linkage, it's not legally usable from outside
654 // this translation unit. However, we should use the C linkage
655 // rules instead for extern "C" declarations.
656 if (Context.getLangOpts().CPlusPlus &&
657 !Function->getDeclContext()->isExternCContext() &&
658 Function->getType()->getLinkage() == UniqueExternalLinkage)
659 return LinkageInfo::uniqueExternal();
660
661 // Consider LV from the template and the template arguments.
662 // We're at file scope, so we do not need to worry about nested
663 // specializations.
664 if (FunctionTemplateSpecializationInfo *specInfo
665 = Function->getTemplateSpecializationInfo()) {
666 mergeTemplateLV(LV, Function, specInfo);
667 }
668
669 // - a named class (Clause 9), or an unnamed class defined in a
670 // typedef declaration in which the class has the typedef name
671 // for linkage purposes (7.1.3); or
672 // - a named enumeration (7.2), or an unnamed enumeration
673 // defined in a typedef declaration in which the enumeration
674 // has the typedef name for linkage purposes (7.1.3); or
675 } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
676 // Unnamed tags have no linkage.
677 if (!Tag->hasNameForLinkage())
678 return LinkageInfo::none();
679
680 // If this is a class template specialization, consider the
681 // linkage of the template and template arguments. We're at file
682 // scope, so we do not need to worry about nested specializations.
683 if (const ClassTemplateSpecializationDecl *spec
684 = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
685 mergeTemplateLV(LV, spec, computation);
686 }
687
688 // - an enumerator belonging to an enumeration with external linkage;
689 } else if (isa<EnumConstantDecl>(D)) {
690 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
691 computation);
692 if (!isExternalLinkage(EnumLV.getLinkage()))
693 return LinkageInfo::none();
694 LV.merge(EnumLV);
695
696 // - a template, unless it is a function template that has
697 // internal linkage (Clause 14);
698 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
699 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
700 LinkageInfo tempLV =
701 getLVForTemplateParameterList(temp->getTemplateParameters());
702 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
703
704 // - a namespace (7.3), unless it is declared within an unnamed
705 // namespace.
706 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
707 return LV;
708
709 // By extension, we assign external linkage to Objective-C
710 // interfaces.
711 } else if (isa<ObjCInterfaceDecl>(D)) {
712 // fallout
713
714 // Everything not covered here has no linkage.
715 } else {
716 return LinkageInfo::none();
717 }
718
719 // If we ended up with non-external linkage, visibility should
720 // always be default.
721 if (LV.getLinkage() != ExternalLinkage)
722 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
723
724 return LV;
725 }
726
getLVForClassMember(const NamedDecl * D,LVComputationKind computation)727 static LinkageInfo getLVForClassMember(const NamedDecl *D,
728 LVComputationKind computation) {
729 // Only certain class members have linkage. Note that fields don't
730 // really have linkage, but it's convenient to say they do for the
731 // purposes of calculating linkage of pointer-to-data-member
732 // template arguments.
733 if (!(isa<CXXMethodDecl>(D) ||
734 isa<VarDecl>(D) ||
735 isa<FieldDecl>(D) ||
736 isa<TagDecl>(D)))
737 return LinkageInfo::none();
738
739 LinkageInfo LV;
740
741 // If we have an explicit visibility attribute, merge that in.
742 if (!hasExplicitVisibilityAlready(computation)) {
743 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
744 LV.mergeVisibility(*Vis, true);
745 // If we're paying attention to global visibility, apply
746 // -finline-visibility-hidden if this is an inline method.
747 //
748 // Note that we do this before merging information about
749 // the class visibility.
750 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
751 LV.mergeVisibility(HiddenVisibility, true);
752 }
753
754 // If this class member has an explicit visibility attribute, the only
755 // thing that can change its visibility is the template arguments, so
756 // only look for them when processing the class.
757 LVComputationKind classComputation = computation;
758 if (LV.isVisibilityExplicit())
759 classComputation = withExplicitVisibilityAlready(computation);
760
761 LinkageInfo classLV =
762 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
763 if (!isExternalLinkage(classLV.getLinkage()))
764 return LinkageInfo::none();
765
766 // If the class already has unique-external linkage, we can't improve.
767 if (classLV.getLinkage() == UniqueExternalLinkage)
768 return LinkageInfo::uniqueExternal();
769
770 // Otherwise, don't merge in classLV yet, because in certain cases
771 // we need to completely ignore the visibility from it.
772
773 // Specifically, if this decl exists and has an explicit attribute.
774 const NamedDecl *explicitSpecSuppressor = 0;
775
776 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
777 // If the type of the function uses a type with unique-external
778 // linkage, it's not legally usable from outside this translation unit.
779 if (MD->getType()->getLinkage() == UniqueExternalLinkage)
780 return LinkageInfo::uniqueExternal();
781
782 // If this is a method template specialization, use the linkage for
783 // the template parameters and arguments.
784 if (FunctionTemplateSpecializationInfo *spec
785 = MD->getTemplateSpecializationInfo()) {
786 mergeTemplateLV(LV, MD, spec);
787 if (spec->isExplicitSpecialization()) {
788 explicitSpecSuppressor = MD;
789 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
790 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
791 }
792 } else if (isExplicitMemberSpecialization(MD)) {
793 explicitSpecSuppressor = MD;
794 }
795
796 } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
797 if (const ClassTemplateSpecializationDecl *spec
798 = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
799 mergeTemplateLV(LV, spec, computation);
800 if (spec->isExplicitSpecialization()) {
801 explicitSpecSuppressor = spec;
802 } else {
803 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
804 if (isExplicitMemberSpecialization(temp)) {
805 explicitSpecSuppressor = temp->getTemplatedDecl();
806 }
807 }
808 } else if (isExplicitMemberSpecialization(RD)) {
809 explicitSpecSuppressor = RD;
810 }
811
812 // Static data members.
813 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
814 // Modify the variable's linkage by its type, but ignore the
815 // type's visibility unless it's a definition.
816 LinkageInfo typeLV = VD->getType()->getLinkageAndVisibility();
817 LV.mergeMaybeWithVisibility(typeLV,
818 !LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit());
819
820 if (isExplicitMemberSpecialization(VD)) {
821 explicitSpecSuppressor = VD;
822 }
823
824 // Template members.
825 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
826 bool considerVisibility =
827 (!LV.isVisibilityExplicit() &&
828 !classLV.isVisibilityExplicit() &&
829 !hasExplicitVisibilityAlready(computation));
830 LinkageInfo tempLV =
831 getLVForTemplateParameterList(temp->getTemplateParameters());
832 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
833
834 if (const RedeclarableTemplateDecl *redeclTemp =
835 dyn_cast<RedeclarableTemplateDecl>(temp)) {
836 if (isExplicitMemberSpecialization(redeclTemp)) {
837 explicitSpecSuppressor = temp->getTemplatedDecl();
838 }
839 }
840 }
841
842 // We should never be looking for an attribute directly on a template.
843 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
844
845 // If this member is an explicit member specialization, and it has
846 // an explicit attribute, ignore visibility from the parent.
847 bool considerClassVisibility = true;
848 if (explicitSpecSuppressor &&
849 // optimization: hasDVA() is true only with explicit visibility.
850 LV.isVisibilityExplicit() &&
851 classLV.getVisibility() != DefaultVisibility &&
852 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
853 considerClassVisibility = false;
854 }
855
856 // Finally, merge in information from the class.
857 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
858 return LV;
859 }
860
anchor()861 void NamedDecl::anchor() { }
862
isLinkageValid() const863 bool NamedDecl::isLinkageValid() const {
864 if (!HasCachedLinkage)
865 return true;
866
867 return getLVForDecl(this, LVForExplicitValue).getLinkage() ==
868 Linkage(CachedLinkage);
869 }
870
getLinkage() const871 Linkage NamedDecl::getLinkage() const {
872 if (HasCachedLinkage)
873 return Linkage(CachedLinkage);
874
875 // We don't care about visibility here, so ask for the cheapest
876 // possible visibility analysis.
877 CachedLinkage = getLVForDecl(this, LVForExplicitValue).getLinkage();
878 HasCachedLinkage = 1;
879
880 #ifndef NDEBUG
881 verifyLinkage();
882 #endif
883
884 return Linkage(CachedLinkage);
885 }
886
getLinkageAndVisibility() const887 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
888 LVComputationKind computation =
889 (usesTypeVisibility(this) ? LVForType : LVForValue);
890 LinkageInfo LI = getLVForDecl(this, computation);
891 if (HasCachedLinkage) {
892 assert(Linkage(CachedLinkage) == LI.getLinkage());
893 return LI;
894 }
895 HasCachedLinkage = 1;
896 CachedLinkage = LI.getLinkage();
897
898 #ifndef NDEBUG
899 verifyLinkage();
900 #endif
901
902 return LI;
903 }
904
verifyLinkage() const905 void NamedDecl::verifyLinkage() const {
906 // In C (because of gnu inline) and in c++ with microsoft extensions an
907 // static can follow an extern, so we can have two decls with different
908 // linkages.
909 const LangOptions &Opts = getASTContext().getLangOpts();
910 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
911 return;
912
913 // We have just computed the linkage for this decl. By induction we know
914 // that all other computed linkages match, check that the one we just computed
915 // also does.
916 NamedDecl *D = NULL;
917 for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
918 NamedDecl *T = cast<NamedDecl>(*I);
919 if (T == this)
920 continue;
921 if (T->HasCachedLinkage != 0) {
922 D = T;
923 break;
924 }
925 }
926 assert(!D || D->CachedLinkage == CachedLinkage);
927 }
928
929 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const930 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
931 // Check the declaration itself first.
932 if (Optional<Visibility> V = getVisibilityOf(this, kind))
933 return V;
934
935 // If this is a member class of a specialization of a class template
936 // and the corresponding decl has explicit visibility, use that.
937 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) {
938 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
939 if (InstantiatedFrom)
940 return getVisibilityOf(InstantiatedFrom, kind);
941 }
942
943 // If there wasn't explicit visibility there, and this is a
944 // specialization of a class template, check for visibility
945 // on the pattern.
946 if (const ClassTemplateSpecializationDecl *spec
947 = dyn_cast<ClassTemplateSpecializationDecl>(this))
948 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
949 kind);
950
951 // Use the most recent declaration.
952 const NamedDecl *MostRecent = cast<NamedDecl>(this->getMostRecentDecl());
953 if (MostRecent != this)
954 return MostRecent->getExplicitVisibility(kind);
955
956 if (const VarDecl *Var = dyn_cast<VarDecl>(this)) {
957 if (Var->isStaticDataMember()) {
958 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
959 if (InstantiatedFrom)
960 return getVisibilityOf(InstantiatedFrom, kind);
961 }
962
963 return None;
964 }
965 // Also handle function template specializations.
966 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
967 // If the function is a specialization of a template with an
968 // explicit visibility attribute, use that.
969 if (FunctionTemplateSpecializationInfo *templateInfo
970 = fn->getTemplateSpecializationInfo())
971 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
972 kind);
973
974 // If the function is a member of a specialization of a class template
975 // and the corresponding decl has explicit visibility, use that.
976 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
977 if (InstantiatedFrom)
978 return getVisibilityOf(InstantiatedFrom, kind);
979
980 return None;
981 }
982
983 // The visibility of a template is stored in the templated decl.
984 if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this))
985 return getVisibilityOf(TD->getTemplatedDecl(), kind);
986
987 return None;
988 }
989
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)990 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
991 LVComputationKind computation) {
992 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
993 if (Function->isInAnonymousNamespace() &&
994 !Function->getDeclContext()->isExternCContext())
995 return LinkageInfo::uniqueExternal();
996
997 // This is a "void f();" which got merged with a file static.
998 if (Function->getStorageClass() == SC_Static)
999 return LinkageInfo::internal();
1000
1001 LinkageInfo LV;
1002 if (!hasExplicitVisibilityAlready(computation)) {
1003 if (Optional<Visibility> Vis =
1004 getExplicitVisibility(Function, computation))
1005 LV.mergeVisibility(*Vis, true);
1006 }
1007
1008 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1009 // merging storage classes and visibility attributes, so we don't have to
1010 // look at previous decls in here.
1011
1012 return LV;
1013 }
1014
1015 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1016 if (Var->hasExternalStorageAsWritten()) {
1017 if (Var->isInAnonymousNamespace() &&
1018 !Var->getDeclContext()->isExternCContext())
1019 return LinkageInfo::uniqueExternal();
1020
1021 // This is an "extern int foo;" which got merged with a file static.
1022 if (Var->getStorageClass() == SC_Static)
1023 return LinkageInfo::internal();
1024
1025 LinkageInfo LV;
1026 if (Var->getStorageClass() == SC_PrivateExtern)
1027 LV.mergeVisibility(HiddenVisibility, true);
1028 else if (!hasExplicitVisibilityAlready(computation)) {
1029 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1030 LV.mergeVisibility(*Vis, true);
1031 }
1032
1033 // Note that Sema::MergeVarDecl already takes care of implementing
1034 // C99 6.2.2p4 and propagating the visibility attribute, so we don't
1035 // have to do it here.
1036 return LV;
1037 }
1038 }
1039
1040 return LinkageInfo::none();
1041 }
1042
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1043 static LinkageInfo getLVForDecl(const NamedDecl *D,
1044 LVComputationKind computation) {
1045 // Objective-C: treat all Objective-C declarations as having external
1046 // linkage.
1047 switch (D->getKind()) {
1048 default:
1049 break;
1050 case Decl::ParmVar:
1051 return LinkageInfo::none();
1052 case Decl::TemplateTemplateParm: // count these as external
1053 case Decl::NonTypeTemplateParm:
1054 case Decl::ObjCAtDefsField:
1055 case Decl::ObjCCategory:
1056 case Decl::ObjCCategoryImpl:
1057 case Decl::ObjCCompatibleAlias:
1058 case Decl::ObjCImplementation:
1059 case Decl::ObjCMethod:
1060 case Decl::ObjCProperty:
1061 case Decl::ObjCPropertyImpl:
1062 case Decl::ObjCProtocol:
1063 return LinkageInfo::external();
1064
1065 case Decl::CXXRecord: {
1066 const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1067 if (Record->isLambda()) {
1068 if (!Record->getLambdaManglingNumber()) {
1069 // This lambda has no mangling number, so it's internal.
1070 return LinkageInfo::internal();
1071 }
1072
1073 // This lambda has its linkage/visibility determined by its owner.
1074 const DeclContext *DC = D->getDeclContext()->getRedeclContext();
1075 if (Decl *ContextDecl = Record->getLambdaContextDecl()) {
1076 if (isa<ParmVarDecl>(ContextDecl))
1077 DC = ContextDecl->getDeclContext()->getRedeclContext();
1078 else
1079 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1080 }
1081
1082 if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1083 return getLVForDecl(ND, computation);
1084
1085 return LinkageInfo::external();
1086 }
1087
1088 break;
1089 }
1090 }
1091
1092 // Handle linkage for namespace-scope names.
1093 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1094 return getLVForNamespaceScopeDecl(D, computation);
1095
1096 // C++ [basic.link]p5:
1097 // In addition, a member function, static data member, a named
1098 // class or enumeration of class scope, or an unnamed class or
1099 // enumeration defined in a class-scope typedef declaration such
1100 // that the class or enumeration has the typedef name for linkage
1101 // purposes (7.1.3), has external linkage if the name of the class
1102 // has external linkage.
1103 if (D->getDeclContext()->isRecord())
1104 return getLVForClassMember(D, computation);
1105
1106 // C++ [basic.link]p6:
1107 // The name of a function declared in block scope and the name of
1108 // an object declared by a block scope extern declaration have
1109 // linkage. If there is a visible declaration of an entity with
1110 // linkage having the same name and type, ignoring entities
1111 // declared outside the innermost enclosing namespace scope, the
1112 // block scope declaration declares that same entity and receives
1113 // the linkage of the previous declaration. If there is more than
1114 // one such matching entity, the program is ill-formed. Otherwise,
1115 // if no matching entity is found, the block scope entity receives
1116 // external linkage.
1117 if (D->getDeclContext()->isFunctionOrMethod())
1118 return getLVForLocalDecl(D, computation);
1119
1120 // C++ [basic.link]p6:
1121 // Names not covered by these rules have no linkage.
1122 return LinkageInfo::none();
1123 }
1124
getQualifiedNameAsString() const1125 std::string NamedDecl::getQualifiedNameAsString() const {
1126 return getQualifiedNameAsString(getASTContext().getPrintingPolicy());
1127 }
1128
getQualifiedNameAsString(const PrintingPolicy & P) const1129 std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
1130 std::string QualName;
1131 llvm::raw_string_ostream OS(QualName);
1132 printQualifiedName(OS, P);
1133 return OS.str();
1134 }
1135
printQualifiedName(raw_ostream & OS) const1136 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1137 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1138 }
1139
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1140 void NamedDecl::printQualifiedName(raw_ostream &OS,
1141 const PrintingPolicy &P) const {
1142 const DeclContext *Ctx = getDeclContext();
1143
1144 if (Ctx->isFunctionOrMethod()) {
1145 printName(OS);
1146 return;
1147 }
1148
1149 typedef SmallVector<const DeclContext *, 8> ContextsTy;
1150 ContextsTy Contexts;
1151
1152 // Collect contexts.
1153 while (Ctx && isa<NamedDecl>(Ctx)) {
1154 Contexts.push_back(Ctx);
1155 Ctx = Ctx->getParent();
1156 }
1157
1158 for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1159 I != E; ++I) {
1160 if (const ClassTemplateSpecializationDecl *Spec
1161 = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1162 OS << Spec->getName();
1163 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1164 TemplateSpecializationType::PrintTemplateArgumentList(OS,
1165 TemplateArgs.data(),
1166 TemplateArgs.size(),
1167 P);
1168 } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1169 if (ND->isAnonymousNamespace())
1170 OS << "<anonymous namespace>";
1171 else
1172 OS << *ND;
1173 } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1174 if (!RD->getIdentifier())
1175 OS << "<anonymous " << RD->getKindName() << '>';
1176 else
1177 OS << *RD;
1178 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1179 const FunctionProtoType *FT = 0;
1180 if (FD->hasWrittenPrototype())
1181 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1182
1183 OS << *FD << '(';
1184 if (FT) {
1185 unsigned NumParams = FD->getNumParams();
1186 for (unsigned i = 0; i < NumParams; ++i) {
1187 if (i)
1188 OS << ", ";
1189 OS << FD->getParamDecl(i)->getType().stream(P);
1190 }
1191
1192 if (FT->isVariadic()) {
1193 if (NumParams > 0)
1194 OS << ", ";
1195 OS << "...";
1196 }
1197 }
1198 OS << ')';
1199 } else {
1200 OS << *cast<NamedDecl>(*I);
1201 }
1202 OS << "::";
1203 }
1204
1205 if (getDeclName())
1206 OS << *this;
1207 else
1208 OS << "<anonymous>";
1209 }
1210
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1211 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1212 const PrintingPolicy &Policy,
1213 bool Qualified) const {
1214 if (Qualified)
1215 printQualifiedName(OS, Policy);
1216 else
1217 printName(OS);
1218 }
1219
declarationReplaces(NamedDecl * OldD) const1220 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
1221 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1222
1223 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1224 // We want to keep it, unless it nominates same namespace.
1225 if (getKind() == Decl::UsingDirective) {
1226 return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
1227 ->getOriginalNamespace() ==
1228 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1229 ->getOriginalNamespace();
1230 }
1231
1232 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1233 // For function declarations, we keep track of redeclarations.
1234 return FD->getPreviousDecl() == OldD;
1235
1236 // For function templates, the underlying function declarations are linked.
1237 if (const FunctionTemplateDecl *FunctionTemplate
1238 = dyn_cast<FunctionTemplateDecl>(this))
1239 if (const FunctionTemplateDecl *OldFunctionTemplate
1240 = dyn_cast<FunctionTemplateDecl>(OldD))
1241 return FunctionTemplate->getTemplatedDecl()
1242 ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
1243
1244 // For method declarations, we keep track of redeclarations.
1245 if (isa<ObjCMethodDecl>(this))
1246 return false;
1247
1248 if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
1249 return true;
1250
1251 if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
1252 return cast<UsingShadowDecl>(this)->getTargetDecl() ==
1253 cast<UsingShadowDecl>(OldD)->getTargetDecl();
1254
1255 if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
1256 ASTContext &Context = getASTContext();
1257 return Context.getCanonicalNestedNameSpecifier(
1258 cast<UsingDecl>(this)->getQualifier()) ==
1259 Context.getCanonicalNestedNameSpecifier(
1260 cast<UsingDecl>(OldD)->getQualifier());
1261 }
1262
1263 // A typedef of an Objective-C class type can replace an Objective-C class
1264 // declaration or definition, and vice versa.
1265 if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
1266 (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
1267 return true;
1268
1269 // For non-function declarations, if the declarations are of the
1270 // same kind then this must be a redeclaration, or semantic analysis
1271 // would not have given us the new declaration.
1272 return this->getKind() == OldD->getKind();
1273 }
1274
hasLinkage() const1275 bool NamedDecl::hasLinkage() const {
1276 return getLinkage() != NoLinkage;
1277 }
1278
getUnderlyingDeclImpl()1279 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1280 NamedDecl *ND = this;
1281 while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1282 ND = UD->getTargetDecl();
1283
1284 if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1285 return AD->getClassInterface();
1286
1287 return ND;
1288 }
1289
isCXXInstanceMember() const1290 bool NamedDecl::isCXXInstanceMember() const {
1291 if (!isCXXClassMember())
1292 return false;
1293
1294 const NamedDecl *D = this;
1295 if (isa<UsingShadowDecl>(D))
1296 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1297
1298 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
1299 return true;
1300 if (isa<CXXMethodDecl>(D))
1301 return cast<CXXMethodDecl>(D)->isInstance();
1302 if (isa<FunctionTemplateDecl>(D))
1303 return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
1304 ->getTemplatedDecl())->isInstance();
1305 return false;
1306 }
1307
1308 //===----------------------------------------------------------------------===//
1309 // DeclaratorDecl Implementation
1310 //===----------------------------------------------------------------------===//
1311
1312 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1313 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1314 if (decl->getNumTemplateParameterLists() > 0)
1315 return decl->getTemplateParameterList(0)->getTemplateLoc();
1316 else
1317 return decl->getInnerLocStart();
1318 }
1319
getTypeSpecStartLoc() const1320 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1321 TypeSourceInfo *TSI = getTypeSourceInfo();
1322 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1323 return SourceLocation();
1324 }
1325
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1326 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1327 if (QualifierLoc) {
1328 // Make sure the extended decl info is allocated.
1329 if (!hasExtInfo()) {
1330 // Save (non-extended) type source info pointer.
1331 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1332 // Allocate external info struct.
1333 DeclInfo = new (getASTContext()) ExtInfo;
1334 // Restore savedTInfo into (extended) decl info.
1335 getExtInfo()->TInfo = savedTInfo;
1336 }
1337 // Set qualifier info.
1338 getExtInfo()->QualifierLoc = QualifierLoc;
1339 } else {
1340 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1341 if (hasExtInfo()) {
1342 if (getExtInfo()->NumTemplParamLists == 0) {
1343 // Save type source info pointer.
1344 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1345 // Deallocate the extended decl info.
1346 getASTContext().Deallocate(getExtInfo());
1347 // Restore savedTInfo into (non-extended) decl info.
1348 DeclInfo = savedTInfo;
1349 }
1350 else
1351 getExtInfo()->QualifierLoc = QualifierLoc;
1352 }
1353 }
1354 }
1355
1356 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1357 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1358 unsigned NumTPLists,
1359 TemplateParameterList **TPLists) {
1360 assert(NumTPLists > 0);
1361 // Make sure the extended decl info is allocated.
1362 if (!hasExtInfo()) {
1363 // Save (non-extended) type source info pointer.
1364 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1365 // Allocate external info struct.
1366 DeclInfo = new (getASTContext()) ExtInfo;
1367 // Restore savedTInfo into (extended) decl info.
1368 getExtInfo()->TInfo = savedTInfo;
1369 }
1370 // Set the template parameter lists info.
1371 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1372 }
1373
getOuterLocStart() const1374 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1375 return getTemplateOrInnerLocStart(this);
1376 }
1377
1378 namespace {
1379
1380 // Helper function: returns true if QT is or contains a type
1381 // having a postfix component.
typeIsPostfix(clang::QualType QT)1382 bool typeIsPostfix(clang::QualType QT) {
1383 while (true) {
1384 const Type* T = QT.getTypePtr();
1385 switch (T->getTypeClass()) {
1386 default:
1387 return false;
1388 case Type::Pointer:
1389 QT = cast<PointerType>(T)->getPointeeType();
1390 break;
1391 case Type::BlockPointer:
1392 QT = cast<BlockPointerType>(T)->getPointeeType();
1393 break;
1394 case Type::MemberPointer:
1395 QT = cast<MemberPointerType>(T)->getPointeeType();
1396 break;
1397 case Type::LValueReference:
1398 case Type::RValueReference:
1399 QT = cast<ReferenceType>(T)->getPointeeType();
1400 break;
1401 case Type::PackExpansion:
1402 QT = cast<PackExpansionType>(T)->getPattern();
1403 break;
1404 case Type::Paren:
1405 case Type::ConstantArray:
1406 case Type::DependentSizedArray:
1407 case Type::IncompleteArray:
1408 case Type::VariableArray:
1409 case Type::FunctionProto:
1410 case Type::FunctionNoProto:
1411 return true;
1412 }
1413 }
1414 }
1415
1416 } // namespace
1417
getSourceRange() const1418 SourceRange DeclaratorDecl::getSourceRange() const {
1419 SourceLocation RangeEnd = getLocation();
1420 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1421 if (typeIsPostfix(TInfo->getType()))
1422 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1423 }
1424 return SourceRange(getOuterLocStart(), RangeEnd);
1425 }
1426
1427 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1428 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1429 unsigned NumTPLists,
1430 TemplateParameterList **TPLists) {
1431 assert((NumTPLists == 0 || TPLists != 0) &&
1432 "Empty array of template parameters with positive size!");
1433
1434 // Free previous template parameters (if any).
1435 if (NumTemplParamLists > 0) {
1436 Context.Deallocate(TemplParamLists);
1437 TemplParamLists = 0;
1438 NumTemplParamLists = 0;
1439 }
1440 // Set info on matched template parameter lists (if any).
1441 if (NumTPLists > 0) {
1442 TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1443 NumTemplParamLists = NumTPLists;
1444 for (unsigned i = NumTPLists; i-- > 0; )
1445 TemplParamLists[i] = TPLists[i];
1446 }
1447 }
1448
1449 //===----------------------------------------------------------------------===//
1450 // VarDecl Implementation
1451 //===----------------------------------------------------------------------===//
1452
getStorageClassSpecifierString(StorageClass SC)1453 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1454 switch (SC) {
1455 case SC_None: break;
1456 case SC_Auto: return "auto";
1457 case SC_Extern: return "extern";
1458 case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1459 case SC_PrivateExtern: return "__private_extern__";
1460 case SC_Register: return "register";
1461 case SC_Static: return "static";
1462 }
1463
1464 llvm_unreachable("Invalid storage class");
1465 }
1466
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,StorageClass SCAsWritten)1467 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1468 SourceLocation StartL, SourceLocation IdL,
1469 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1470 StorageClass S, StorageClass SCAsWritten) {
1471 return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S, SCAsWritten);
1472 }
1473
CreateDeserialized(ASTContext & C,unsigned ID)1474 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1475 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
1476 return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,
1477 QualType(), 0, SC_None, SC_None);
1478 }
1479
setStorageClass(StorageClass SC)1480 void VarDecl::setStorageClass(StorageClass SC) {
1481 assert(isLegalForVariable(SC));
1482 if (getStorageClass() != SC)
1483 assert(isLinkageValid());
1484
1485 VarDeclBits.SClass = SC;
1486 }
1487
getSourceRange() const1488 SourceRange VarDecl::getSourceRange() const {
1489 if (const Expr *Init = getInit()) {
1490 SourceLocation InitEnd = Init->getLocEnd();
1491 // If Init is implicit, ignore its source range and fallback on
1492 // DeclaratorDecl::getSourceRange() to handle postfix elements.
1493 if (InitEnd.isValid() && InitEnd != getLocation())
1494 return SourceRange(getOuterLocStart(), InitEnd);
1495 }
1496 return DeclaratorDecl::getSourceRange();
1497 }
1498
1499 template<typename T>
getLanguageLinkageTemplate(const T & D)1500 static LanguageLinkage getLanguageLinkageTemplate(const T &D) {
1501 // C++ [dcl.link]p1: All function types, function names with external linkage,
1502 // and variable names with external linkage have a language linkage.
1503 if (!isExternalLinkage(D.getLinkage()))
1504 return NoLanguageLinkage;
1505
1506 // Language linkage is a C++ concept, but saying that everything else in C has
1507 // C language linkage fits the implementation nicely.
1508 ASTContext &Context = D.getASTContext();
1509 if (!Context.getLangOpts().CPlusPlus)
1510 return CLanguageLinkage;
1511
1512 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1513 // language linkage of the names of class members and the function type of
1514 // class member functions.
1515 const DeclContext *DC = D.getDeclContext();
1516 if (DC->isRecord())
1517 return CXXLanguageLinkage;
1518
1519 // If the first decl is in an extern "C" context, any other redeclaration
1520 // will have C language linkage. If the first one is not in an extern "C"
1521 // context, we would have reported an error for any other decl being in one.
1522 const T *First = D.getFirstDeclaration();
1523 if (First->getDeclContext()->isExternCContext())
1524 return CLanguageLinkage;
1525 return CXXLanguageLinkage;
1526 }
1527
1528 template<typename T>
isExternCTemplate(const T & D)1529 static bool isExternCTemplate(const T &D) {
1530 // Since the context is ignored for class members, they can only have C++
1531 // language linkage or no language linkage.
1532 const DeclContext *DC = D.getDeclContext();
1533 if (DC->isRecord()) {
1534 assert(D.getASTContext().getLangOpts().CPlusPlus);
1535 return false;
1536 }
1537
1538 return D.getLanguageLinkage() == CLanguageLinkage;
1539 }
1540
getLanguageLinkage() const1541 LanguageLinkage VarDecl::getLanguageLinkage() const {
1542 return getLanguageLinkageTemplate(*this);
1543 }
1544
isExternC() const1545 bool VarDecl::isExternC() const {
1546 return isExternCTemplate(*this);
1547 }
1548
getCanonicalDecl()1549 VarDecl *VarDecl::getCanonicalDecl() {
1550 return getFirstDeclaration();
1551 }
1552
isThisDeclarationADefinition(ASTContext & C) const1553 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
1554 ASTContext &C) const
1555 {
1556 // C++ [basic.def]p2:
1557 // A declaration is a definition unless [...] it contains the 'extern'
1558 // specifier or a linkage-specification and neither an initializer [...],
1559 // it declares a static data member in a class declaration [...].
1560 // C++ [temp.expl.spec]p15:
1561 // An explicit specialization of a static data member of a template is a
1562 // definition if the declaration includes an initializer; otherwise, it is
1563 // a declaration.
1564 if (isStaticDataMember()) {
1565 if (isOutOfLine() && (hasInit() ||
1566 getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
1567 return Definition;
1568 else
1569 return DeclarationOnly;
1570 }
1571 // C99 6.7p5:
1572 // A definition of an identifier is a declaration for that identifier that
1573 // [...] causes storage to be reserved for that object.
1574 // Note: that applies for all non-file-scope objects.
1575 // C99 6.9.2p1:
1576 // If the declaration of an identifier for an object has file scope and an
1577 // initializer, the declaration is an external definition for the identifier
1578 if (hasInit())
1579 return Definition;
1580 // AST for 'extern "C" int foo;' is annotated with 'extern'.
1581 if (hasExternalStorage())
1582 return DeclarationOnly;
1583
1584 if (hasExternalStorageAsWritten()) {
1585 for (const VarDecl *PrevVar = getPreviousDecl();
1586 PrevVar; PrevVar = PrevVar->getPreviousDecl()) {
1587 if (PrevVar->getLinkage() == InternalLinkage)
1588 return DeclarationOnly;
1589 }
1590 }
1591 // C99 6.9.2p2:
1592 // A declaration of an object that has file scope without an initializer,
1593 // and without a storage class specifier or the scs 'static', constitutes
1594 // a tentative definition.
1595 // No such thing in C++.
1596 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1597 return TentativeDefinition;
1598
1599 // What's left is (in C, block-scope) declarations without initializers or
1600 // external storage. These are definitions.
1601 return Definition;
1602 }
1603
getActingDefinition()1604 VarDecl *VarDecl::getActingDefinition() {
1605 DefinitionKind Kind = isThisDeclarationADefinition();
1606 if (Kind != TentativeDefinition)
1607 return 0;
1608
1609 VarDecl *LastTentative = 0;
1610 VarDecl *First = getFirstDeclaration();
1611 for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1612 I != E; ++I) {
1613 Kind = (*I)->isThisDeclarationADefinition();
1614 if (Kind == Definition)
1615 return 0;
1616 else if (Kind == TentativeDefinition)
1617 LastTentative = *I;
1618 }
1619 return LastTentative;
1620 }
1621
isTentativeDefinitionNow() const1622 bool VarDecl::isTentativeDefinitionNow() const {
1623 DefinitionKind Kind = isThisDeclarationADefinition();
1624 if (Kind != TentativeDefinition)
1625 return false;
1626
1627 for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1628 if ((*I)->isThisDeclarationADefinition() == Definition)
1629 return false;
1630 }
1631 return true;
1632 }
1633
getDefinition(ASTContext & C)1634 VarDecl *VarDecl::getDefinition(ASTContext &C) {
1635 VarDecl *First = getFirstDeclaration();
1636 for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1637 I != E; ++I) {
1638 if ((*I)->isThisDeclarationADefinition(C) == Definition)
1639 return *I;
1640 }
1641 return 0;
1642 }
1643
hasDefinition(ASTContext & C) const1644 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1645 DefinitionKind Kind = DeclarationOnly;
1646
1647 const VarDecl *First = getFirstDeclaration();
1648 for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1649 I != E; ++I) {
1650 Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C));
1651 if (Kind == Definition)
1652 break;
1653 }
1654
1655 return Kind;
1656 }
1657
getAnyInitializer(const VarDecl * & D) const1658 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1659 redecl_iterator I = redecls_begin(), E = redecls_end();
1660 while (I != E && !I->getInit())
1661 ++I;
1662
1663 if (I != E) {
1664 D = *I;
1665 return I->getInit();
1666 }
1667 return 0;
1668 }
1669
isOutOfLine() const1670 bool VarDecl::isOutOfLine() const {
1671 if (Decl::isOutOfLine())
1672 return true;
1673
1674 if (!isStaticDataMember())
1675 return false;
1676
1677 // If this static data member was instantiated from a static data member of
1678 // a class template, check whether that static data member was defined
1679 // out-of-line.
1680 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
1681 return VD->isOutOfLine();
1682
1683 return false;
1684 }
1685
getOutOfLineDefinition()1686 VarDecl *VarDecl::getOutOfLineDefinition() {
1687 if (!isStaticDataMember())
1688 return 0;
1689
1690 for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
1691 RD != RDEnd; ++RD) {
1692 if (RD->getLexicalDeclContext()->isFileContext())
1693 return *RD;
1694 }
1695
1696 return 0;
1697 }
1698
setInit(Expr * I)1699 void VarDecl::setInit(Expr *I) {
1700 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
1701 Eval->~EvaluatedStmt();
1702 getASTContext().Deallocate(Eval);
1703 }
1704
1705 Init = I;
1706 }
1707
isUsableInConstantExpressions(ASTContext & C) const1708 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
1709 const LangOptions &Lang = C.getLangOpts();
1710
1711 if (!Lang.CPlusPlus)
1712 return false;
1713
1714 // In C++11, any variable of reference type can be used in a constant
1715 // expression if it is initialized by a constant expression.
1716 if (Lang.CPlusPlus11 && getType()->isReferenceType())
1717 return true;
1718
1719 // Only const objects can be used in constant expressions in C++. C++98 does
1720 // not require the variable to be non-volatile, but we consider this to be a
1721 // defect.
1722 if (!getType().isConstQualified() || getType().isVolatileQualified())
1723 return false;
1724
1725 // In C++, const, non-volatile variables of integral or enumeration types
1726 // can be used in constant expressions.
1727 if (getType()->isIntegralOrEnumerationType())
1728 return true;
1729
1730 // Additionally, in C++11, non-volatile constexpr variables can be used in
1731 // constant expressions.
1732 return Lang.CPlusPlus11 && isConstexpr();
1733 }
1734
1735 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
1736 /// form, which contains extra information on the evaluated value of the
1737 /// initializer.
ensureEvaluatedStmt() const1738 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
1739 EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
1740 if (!Eval) {
1741 Stmt *S = Init.get<Stmt *>();
1742 Eval = new (getASTContext()) EvaluatedStmt;
1743 Eval->Value = S;
1744 Init = Eval;
1745 }
1746 return Eval;
1747 }
1748
evaluateValue() const1749 APValue *VarDecl::evaluateValue() const {
1750 SmallVector<PartialDiagnosticAt, 8> Notes;
1751 return evaluateValue(Notes);
1752 }
1753
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const1754 APValue *VarDecl::evaluateValue(
1755 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
1756 EvaluatedStmt *Eval = ensureEvaluatedStmt();
1757
1758 // We only produce notes indicating why an initializer is non-constant the
1759 // first time it is evaluated. FIXME: The notes won't always be emitted the
1760 // first time we try evaluation, so might not be produced at all.
1761 if (Eval->WasEvaluated)
1762 return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
1763
1764 const Expr *Init = cast<Expr>(Eval->Value);
1765 assert(!Init->isValueDependent());
1766
1767 if (Eval->IsEvaluating) {
1768 // FIXME: Produce a diagnostic for self-initialization.
1769 Eval->CheckedICE = true;
1770 Eval->IsICE = false;
1771 return 0;
1772 }
1773
1774 Eval->IsEvaluating = true;
1775
1776 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
1777 this, Notes);
1778
1779 // Ensure the result is an uninitialized APValue if evaluation fails.
1780 if (!Result)
1781 Eval->Evaluated = APValue();
1782
1783 Eval->IsEvaluating = false;
1784 Eval->WasEvaluated = true;
1785
1786 // In C++11, we have determined whether the initializer was a constant
1787 // expression as a side-effect.
1788 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
1789 Eval->CheckedICE = true;
1790 Eval->IsICE = Result && Notes.empty();
1791 }
1792
1793 return Result ? &Eval->Evaluated : 0;
1794 }
1795
checkInitIsICE() const1796 bool VarDecl::checkInitIsICE() const {
1797 // Initializers of weak variables are never ICEs.
1798 if (isWeak())
1799 return false;
1800
1801 EvaluatedStmt *Eval = ensureEvaluatedStmt();
1802 if (Eval->CheckedICE)
1803 // We have already checked whether this subexpression is an
1804 // integral constant expression.
1805 return Eval->IsICE;
1806
1807 const Expr *Init = cast<Expr>(Eval->Value);
1808 assert(!Init->isValueDependent());
1809
1810 // In C++11, evaluate the initializer to check whether it's a constant
1811 // expression.
1812 if (getASTContext().getLangOpts().CPlusPlus11) {
1813 SmallVector<PartialDiagnosticAt, 8> Notes;
1814 evaluateValue(Notes);
1815 return Eval->IsICE;
1816 }
1817
1818 // It's an ICE whether or not the definition we found is
1819 // out-of-line. See DR 721 and the discussion in Clang PR
1820 // 6206 for details.
1821
1822 if (Eval->CheckingICE)
1823 return false;
1824 Eval->CheckingICE = true;
1825
1826 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
1827 Eval->CheckingICE = false;
1828 Eval->CheckedICE = true;
1829 return Eval->IsICE;
1830 }
1831
extendsLifetimeOfTemporary() const1832 bool VarDecl::extendsLifetimeOfTemporary() const {
1833 assert(getType()->isReferenceType() &&"Non-references never extend lifetime");
1834
1835 const Expr *E = getInit();
1836 if (!E)
1837 return false;
1838
1839 if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(E))
1840 E = Cleanups->getSubExpr();
1841
1842 return isa<MaterializeTemporaryExpr>(E);
1843 }
1844
getInstantiatedFromStaticDataMember() const1845 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
1846 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1847 return cast<VarDecl>(MSI->getInstantiatedFrom());
1848
1849 return 0;
1850 }
1851
getTemplateSpecializationKind() const1852 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
1853 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1854 return MSI->getTemplateSpecializationKind();
1855
1856 return TSK_Undeclared;
1857 }
1858
getMemberSpecializationInfo() const1859 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
1860 return getASTContext().getInstantiatedFromStaticDataMember(this);
1861 }
1862
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1863 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1864 SourceLocation PointOfInstantiation) {
1865 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
1866 assert(MSI && "Not an instantiated static data member?");
1867 MSI->setTemplateSpecializationKind(TSK);
1868 if (TSK != TSK_ExplicitSpecialization &&
1869 PointOfInstantiation.isValid() &&
1870 MSI->getPointOfInstantiation().isInvalid())
1871 MSI->setPointOfInstantiation(PointOfInstantiation);
1872 }
1873
1874 //===----------------------------------------------------------------------===//
1875 // ParmVarDecl Implementation
1876 //===----------------------------------------------------------------------===//
1877
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,StorageClass SCAsWritten,Expr * DefArg)1878 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
1879 SourceLocation StartLoc,
1880 SourceLocation IdLoc, IdentifierInfo *Id,
1881 QualType T, TypeSourceInfo *TInfo,
1882 StorageClass S, StorageClass SCAsWritten,
1883 Expr *DefArg) {
1884 return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
1885 S, SCAsWritten, DefArg);
1886 }
1887
CreateDeserialized(ASTContext & C,unsigned ID)1888 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1889 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
1890 return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
1891 0, QualType(), 0, SC_None, SC_None, 0);
1892 }
1893
getSourceRange() const1894 SourceRange ParmVarDecl::getSourceRange() const {
1895 if (!hasInheritedDefaultArg()) {
1896 SourceRange ArgRange = getDefaultArgRange();
1897 if (ArgRange.isValid())
1898 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
1899 }
1900
1901 return DeclaratorDecl::getSourceRange();
1902 }
1903
getDefaultArg()1904 Expr *ParmVarDecl::getDefaultArg() {
1905 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
1906 assert(!hasUninstantiatedDefaultArg() &&
1907 "Default argument is not yet instantiated!");
1908
1909 Expr *Arg = getInit();
1910 if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
1911 return E->getSubExpr();
1912
1913 return Arg;
1914 }
1915
getDefaultArgRange() const1916 SourceRange ParmVarDecl::getDefaultArgRange() const {
1917 if (const Expr *E = getInit())
1918 return E->getSourceRange();
1919
1920 if (hasUninstantiatedDefaultArg())
1921 return getUninstantiatedDefaultArg()->getSourceRange();
1922
1923 return SourceRange();
1924 }
1925
isParameterPack() const1926 bool ParmVarDecl::isParameterPack() const {
1927 return isa<PackExpansionType>(getType());
1928 }
1929
setParameterIndexLarge(unsigned parameterIndex)1930 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
1931 getASTContext().setParameterIndex(this, parameterIndex);
1932 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
1933 }
1934
getParameterIndexLarge() const1935 unsigned ParmVarDecl::getParameterIndexLarge() const {
1936 return getASTContext().getParameterIndex(this);
1937 }
1938
1939 //===----------------------------------------------------------------------===//
1940 // FunctionDecl Implementation
1941 //===----------------------------------------------------------------------===//
1942
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1943 void FunctionDecl::getNameForDiagnostic(
1944 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
1945 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
1946 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
1947 if (TemplateArgs)
1948 TemplateSpecializationType::PrintTemplateArgumentList(
1949 OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
1950 }
1951
isVariadic() const1952 bool FunctionDecl::isVariadic() const {
1953 if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
1954 return FT->isVariadic();
1955 return false;
1956 }
1957
hasBody(const FunctionDecl * & Definition) const1958 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
1959 for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1960 if (I->Body || I->IsLateTemplateParsed) {
1961 Definition = *I;
1962 return true;
1963 }
1964 }
1965
1966 return false;
1967 }
1968
hasTrivialBody() const1969 bool FunctionDecl::hasTrivialBody() const
1970 {
1971 Stmt *S = getBody();
1972 if (!S) {
1973 // Since we don't have a body for this function, we don't know if it's
1974 // trivial or not.
1975 return false;
1976 }
1977
1978 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
1979 return true;
1980 return false;
1981 }
1982
isDefined(const FunctionDecl * & Definition) const1983 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
1984 for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1985 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) {
1986 Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
1987 return true;
1988 }
1989 }
1990
1991 return false;
1992 }
1993
getBody(const FunctionDecl * & Definition) const1994 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
1995 for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1996 if (I->Body) {
1997 Definition = *I;
1998 return I->Body.get(getASTContext().getExternalSource());
1999 } else if (I->IsLateTemplateParsed) {
2000 Definition = *I;
2001 return 0;
2002 }
2003 }
2004
2005 return 0;
2006 }
2007
setBody(Stmt * B)2008 void FunctionDecl::setBody(Stmt *B) {
2009 Body = B;
2010 if (B)
2011 EndRangeLoc = B->getLocEnd();
2012 }
2013
setPure(bool P)2014 void FunctionDecl::setPure(bool P) {
2015 IsPure = P;
2016 if (P)
2017 if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2018 Parent->markedVirtualFunctionPure();
2019 }
2020
isMain() const2021 bool FunctionDecl::isMain() const {
2022 const TranslationUnitDecl *tunit =
2023 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2024 return tunit &&
2025 !tunit->getASTContext().getLangOpts().Freestanding &&
2026 getIdentifier() &&
2027 getIdentifier()->isStr("main");
2028 }
2029
isReservedGlobalPlacementOperator() const2030 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2031 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2032 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2033 getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2034 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2035 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2036
2037 if (isa<CXXRecordDecl>(getDeclContext())) return false;
2038 assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
2039
2040 const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2041 if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
2042
2043 ASTContext &Context =
2044 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2045 ->getASTContext();
2046
2047 // The result type and first argument type are constant across all
2048 // these operators. The second argument must be exactly void*.
2049 return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
2050 }
2051
getLanguageLinkage() const2052 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2053 // Users expect to be able to write
2054 // extern "C" void *__builtin_alloca (size_t);
2055 // so consider builtins as having C language linkage.
2056 if (getBuiltinID())
2057 return CLanguageLinkage;
2058
2059 return getLanguageLinkageTemplate(*this);
2060 }
2061
isExternC() const2062 bool FunctionDecl::isExternC() const {
2063 return isExternCTemplate(*this);
2064 }
2065
isGlobal() const2066 bool FunctionDecl::isGlobal() const {
2067 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2068 return Method->isStatic();
2069
2070 if (getStorageClass() == SC_Static)
2071 return false;
2072
2073 for (const DeclContext *DC = getDeclContext();
2074 DC->isNamespace();
2075 DC = DC->getParent()) {
2076 if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2077 if (!Namespace->getDeclName())
2078 return false;
2079 break;
2080 }
2081 }
2082
2083 return true;
2084 }
2085
isNoReturn() const2086 bool FunctionDecl::isNoReturn() const {
2087 return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2088 hasAttr<C11NoReturnAttr>() ||
2089 getType()->getAs<FunctionType>()->getNoReturnAttr();
2090 }
2091
2092 void
setPreviousDeclaration(FunctionDecl * PrevDecl)2093 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2094 redeclarable_base::setPreviousDeclaration(PrevDecl);
2095
2096 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2097 FunctionTemplateDecl *PrevFunTmpl
2098 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
2099 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2100 FunTmpl->setPreviousDeclaration(PrevFunTmpl);
2101 }
2102
2103 if (PrevDecl && PrevDecl->IsInline)
2104 IsInline = true;
2105 }
2106
getCanonicalDecl() const2107 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
2108 return getFirstDeclaration();
2109 }
2110
getCanonicalDecl()2111 FunctionDecl *FunctionDecl::getCanonicalDecl() {
2112 return getFirstDeclaration();
2113 }
2114
setStorageClass(StorageClass SC)2115 void FunctionDecl::setStorageClass(StorageClass SC) {
2116 assert(isLegalForFunction(SC));
2117 if (getStorageClass() != SC)
2118 assert(isLinkageValid());
2119
2120 SClass = SC;
2121 }
2122
2123 /// \brief Returns a value indicating whether this function
2124 /// corresponds to a builtin function.
2125 ///
2126 /// The function corresponds to a built-in function if it is
2127 /// declared at translation scope or within an extern "C" block and
2128 /// its name matches with the name of a builtin. The returned value
2129 /// will be 0 for functions that do not correspond to a builtin, a
2130 /// value of type \c Builtin::ID if in the target-independent range
2131 /// \c [1,Builtin::First), or a target-specific builtin value.
getBuiltinID() const2132 unsigned FunctionDecl::getBuiltinID() const {
2133 if (!getIdentifier())
2134 return 0;
2135
2136 unsigned BuiltinID = getIdentifier()->getBuiltinID();
2137 if (!BuiltinID)
2138 return 0;
2139
2140 ASTContext &Context = getASTContext();
2141 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2142 return BuiltinID;
2143
2144 // This function has the name of a known C library
2145 // function. Determine whether it actually refers to the C library
2146 // function or whether it just has the same name.
2147
2148 // If this is a static function, it's not a builtin.
2149 if (getStorageClass() == SC_Static)
2150 return 0;
2151
2152 // If this function is at translation-unit scope and we're not in
2153 // C++, it refers to the C library function.
2154 if (!Context.getLangOpts().CPlusPlus &&
2155 getDeclContext()->isTranslationUnit())
2156 return BuiltinID;
2157
2158 // If the function is in an extern "C" linkage specification and is
2159 // not marked "overloadable", it's the real function.
2160 if (isa<LinkageSpecDecl>(getDeclContext()) &&
2161 cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
2162 == LinkageSpecDecl::lang_c &&
2163 !getAttr<OverloadableAttr>())
2164 return BuiltinID;
2165
2166 // Not a builtin
2167 return 0;
2168 }
2169
2170
2171 /// getNumParams - Return the number of parameters this function must have
2172 /// based on its FunctionType. This is the length of the ParamInfo array
2173 /// after it has been created.
getNumParams() const2174 unsigned FunctionDecl::getNumParams() const {
2175 const FunctionType *FT = getType()->castAs<FunctionType>();
2176 if (isa<FunctionNoProtoType>(FT))
2177 return 0;
2178 return cast<FunctionProtoType>(FT)->getNumArgs();
2179
2180 }
2181
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)2182 void FunctionDecl::setParams(ASTContext &C,
2183 ArrayRef<ParmVarDecl *> NewParamInfo) {
2184 assert(ParamInfo == 0 && "Already has param info!");
2185 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2186
2187 // Zero params -> null pointer.
2188 if (!NewParamInfo.empty()) {
2189 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2190 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2191 }
2192 }
2193
setDeclsInPrototypeScope(ArrayRef<NamedDecl * > NewDecls)2194 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2195 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2196
2197 if (!NewDecls.empty()) {
2198 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2199 std::copy(NewDecls.begin(), NewDecls.end(), A);
2200 DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size());
2201 }
2202 }
2203
2204 /// getMinRequiredArguments - Returns the minimum number of arguments
2205 /// needed to call this function. This may be fewer than the number of
2206 /// function parameters, if some of the parameters have default
2207 /// arguments (in C++) or the last parameter is a parameter pack.
getMinRequiredArguments() const2208 unsigned FunctionDecl::getMinRequiredArguments() const {
2209 if (!getASTContext().getLangOpts().CPlusPlus)
2210 return getNumParams();
2211
2212 unsigned NumRequiredArgs = getNumParams();
2213
2214 // If the last parameter is a parameter pack, we don't need an argument for
2215 // it.
2216 if (NumRequiredArgs > 0 &&
2217 getParamDecl(NumRequiredArgs - 1)->isParameterPack())
2218 --NumRequiredArgs;
2219
2220 // If this parameter has a default argument, we don't need an argument for
2221 // it.
2222 while (NumRequiredArgs > 0 &&
2223 getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
2224 --NumRequiredArgs;
2225
2226 // We might have parameter packs before the end. These can't be deduced,
2227 // but they can still handle multiple arguments.
2228 unsigned ArgIdx = NumRequiredArgs;
2229 while (ArgIdx > 0) {
2230 if (getParamDecl(ArgIdx - 1)->isParameterPack())
2231 NumRequiredArgs = ArgIdx;
2232
2233 --ArgIdx;
2234 }
2235
2236 return NumRequiredArgs;
2237 }
2238
RedeclForcesDefC99(const FunctionDecl * Redecl)2239 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2240 // Only consider file-scope declarations in this test.
2241 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2242 return false;
2243
2244 // Only consider explicit declarations; the presence of a builtin for a
2245 // libcall shouldn't affect whether a definition is externally visible.
2246 if (Redecl->isImplicit())
2247 return false;
2248
2249 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2250 return true; // Not an inline definition
2251
2252 return false;
2253 }
2254
2255 /// \brief For a function declaration in C or C++, determine whether this
2256 /// declaration causes the definition to be externally visible.
2257 ///
2258 /// Specifically, this determines if adding the current declaration to the set
2259 /// of redeclarations of the given functions causes
2260 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const2261 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2262 assert(!doesThisDeclarationHaveABody() &&
2263 "Must have a declaration without a body.");
2264
2265 ASTContext &Context = getASTContext();
2266
2267 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2268 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2269 // an externally visible definition.
2270 //
2271 // FIXME: What happens if gnu_inline gets added on after the first
2272 // declaration?
2273 if (!isInlineSpecified() || getStorageClassAsWritten() == SC_Extern)
2274 return false;
2275
2276 const FunctionDecl *Prev = this;
2277 bool FoundBody = false;
2278 while ((Prev = Prev->getPreviousDecl())) {
2279 FoundBody |= Prev->Body;
2280
2281 if (Prev->Body) {
2282 // If it's not the case that both 'inline' and 'extern' are
2283 // specified on the definition, then it is always externally visible.
2284 if (!Prev->isInlineSpecified() ||
2285 Prev->getStorageClassAsWritten() != SC_Extern)
2286 return false;
2287 } else if (Prev->isInlineSpecified() &&
2288 Prev->getStorageClassAsWritten() != SC_Extern) {
2289 return false;
2290 }
2291 }
2292 return FoundBody;
2293 }
2294
2295 if (Context.getLangOpts().CPlusPlus)
2296 return false;
2297
2298 // C99 6.7.4p6:
2299 // [...] If all of the file scope declarations for a function in a
2300 // translation unit include the inline function specifier without extern,
2301 // then the definition in that translation unit is an inline definition.
2302 if (isInlineSpecified() && getStorageClass() != SC_Extern)
2303 return false;
2304 const FunctionDecl *Prev = this;
2305 bool FoundBody = false;
2306 while ((Prev = Prev->getPreviousDecl())) {
2307 FoundBody |= Prev->Body;
2308 if (RedeclForcesDefC99(Prev))
2309 return false;
2310 }
2311 return FoundBody;
2312 }
2313
2314 /// \brief For an inline function definition in C, or for a gnu_inline function
2315 /// in C++, determine whether the definition will be externally visible.
2316 ///
2317 /// Inline function definitions are always available for inlining optimizations.
2318 /// However, depending on the language dialect, declaration specifiers, and
2319 /// attributes, the definition of an inline function may or may not be
2320 /// "externally" visible to other translation units in the program.
2321 ///
2322 /// In C99, inline definitions are not externally visible by default. However,
2323 /// if even one of the global-scope declarations is marked "extern inline", the
2324 /// inline definition becomes externally visible (C99 6.7.4p6).
2325 ///
2326 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2327 /// definition, we use the GNU semantics for inline, which are nearly the
2328 /// opposite of C99 semantics. In particular, "inline" by itself will create
2329 /// an externally visible symbol, but "extern inline" will not create an
2330 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const2331 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2332 assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2333 assert(isInlined() && "Function must be inline");
2334 ASTContext &Context = getASTContext();
2335
2336 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2337 // Note: If you change the logic here, please change
2338 // doesDeclarationForceExternallyVisibleDefinition as well.
2339 //
2340 // If it's not the case that both 'inline' and 'extern' are
2341 // specified on the definition, then this inline definition is
2342 // externally visible.
2343 if (!(isInlineSpecified() && getStorageClassAsWritten() == SC_Extern))
2344 return true;
2345
2346 // If any declaration is 'inline' but not 'extern', then this definition
2347 // is externally visible.
2348 for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2349 Redecl != RedeclEnd;
2350 ++Redecl) {
2351 if (Redecl->isInlineSpecified() &&
2352 Redecl->getStorageClassAsWritten() != SC_Extern)
2353 return true;
2354 }
2355
2356 return false;
2357 }
2358
2359 // The rest of this function is C-only.
2360 assert(!Context.getLangOpts().CPlusPlus &&
2361 "should not use C inline rules in C++");
2362
2363 // C99 6.7.4p6:
2364 // [...] If all of the file scope declarations for a function in a
2365 // translation unit include the inline function specifier without extern,
2366 // then the definition in that translation unit is an inline definition.
2367 for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2368 Redecl != RedeclEnd;
2369 ++Redecl) {
2370 if (RedeclForcesDefC99(*Redecl))
2371 return true;
2372 }
2373
2374 // C99 6.7.4p6:
2375 // An inline definition does not provide an external definition for the
2376 // function, and does not forbid an external definition in another
2377 // translation unit.
2378 return false;
2379 }
2380
2381 /// getOverloadedOperator - Which C++ overloaded operator this
2382 /// function represents, if any.
getOverloadedOperator() const2383 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2384 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2385 return getDeclName().getCXXOverloadedOperator();
2386 else
2387 return OO_None;
2388 }
2389
2390 /// getLiteralIdentifier - The literal suffix identifier this function
2391 /// represents, if any.
getLiteralIdentifier() const2392 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2393 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2394 return getDeclName().getCXXLiteralIdentifier();
2395 else
2396 return 0;
2397 }
2398
getTemplatedKind() const2399 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2400 if (TemplateOrSpecialization.isNull())
2401 return TK_NonTemplate;
2402 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2403 return TK_FunctionTemplate;
2404 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2405 return TK_MemberSpecialization;
2406 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2407 return TK_FunctionTemplateSpecialization;
2408 if (TemplateOrSpecialization.is
2409 <DependentFunctionTemplateSpecializationInfo*>())
2410 return TK_DependentFunctionTemplateSpecialization;
2411
2412 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2413 }
2414
getInstantiatedFromMemberFunction() const2415 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2416 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2417 return cast<FunctionDecl>(Info->getInstantiatedFrom());
2418
2419 return 0;
2420 }
2421
2422 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)2423 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2424 FunctionDecl *FD,
2425 TemplateSpecializationKind TSK) {
2426 assert(TemplateOrSpecialization.isNull() &&
2427 "Member function is already a specialization");
2428 MemberSpecializationInfo *Info
2429 = new (C) MemberSpecializationInfo(FD, TSK);
2430 TemplateOrSpecialization = Info;
2431 }
2432
isImplicitlyInstantiable() const2433 bool FunctionDecl::isImplicitlyInstantiable() const {
2434 // If the function is invalid, it can't be implicitly instantiated.
2435 if (isInvalidDecl())
2436 return false;
2437
2438 switch (getTemplateSpecializationKind()) {
2439 case TSK_Undeclared:
2440 case TSK_ExplicitInstantiationDefinition:
2441 return false;
2442
2443 case TSK_ImplicitInstantiation:
2444 return true;
2445
2446 // It is possible to instantiate TSK_ExplicitSpecialization kind
2447 // if the FunctionDecl has a class scope specialization pattern.
2448 case TSK_ExplicitSpecialization:
2449 return getClassScopeSpecializationPattern() != 0;
2450
2451 case TSK_ExplicitInstantiationDeclaration:
2452 // Handled below.
2453 break;
2454 }
2455
2456 // Find the actual template from which we will instantiate.
2457 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2458 bool HasPattern = false;
2459 if (PatternDecl)
2460 HasPattern = PatternDecl->hasBody(PatternDecl);
2461
2462 // C++0x [temp.explicit]p9:
2463 // Except for inline functions, other explicit instantiation declarations
2464 // have the effect of suppressing the implicit instantiation of the entity
2465 // to which they refer.
2466 if (!HasPattern || !PatternDecl)
2467 return true;
2468
2469 return PatternDecl->isInlined();
2470 }
2471
isTemplateInstantiation() const2472 bool FunctionDecl::isTemplateInstantiation() const {
2473 switch (getTemplateSpecializationKind()) {
2474 case TSK_Undeclared:
2475 case TSK_ExplicitSpecialization:
2476 return false;
2477 case TSK_ImplicitInstantiation:
2478 case TSK_ExplicitInstantiationDeclaration:
2479 case TSK_ExplicitInstantiationDefinition:
2480 return true;
2481 }
2482 llvm_unreachable("All TSK values handled.");
2483 }
2484
getTemplateInstantiationPattern() const2485 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
2486 // Handle class scope explicit specialization special case.
2487 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
2488 return getClassScopeSpecializationPattern();
2489
2490 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
2491 while (Primary->getInstantiatedFromMemberTemplate()) {
2492 // If we have hit a point where the user provided a specialization of
2493 // this template, we're done looking.
2494 if (Primary->isMemberSpecialization())
2495 break;
2496
2497 Primary = Primary->getInstantiatedFromMemberTemplate();
2498 }
2499
2500 return Primary->getTemplatedDecl();
2501 }
2502
2503 return getInstantiatedFromMemberFunction();
2504 }
2505
getPrimaryTemplate() const2506 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
2507 if (FunctionTemplateSpecializationInfo *Info
2508 = TemplateOrSpecialization
2509 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2510 return Info->Template.getPointer();
2511 }
2512 return 0;
2513 }
2514
getClassScopeSpecializationPattern() const2515 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
2516 return getASTContext().getClassScopeSpecializationPattern(this);
2517 }
2518
2519 const TemplateArgumentList *
getTemplateSpecializationArgs() const2520 FunctionDecl::getTemplateSpecializationArgs() const {
2521 if (FunctionTemplateSpecializationInfo *Info
2522 = TemplateOrSpecialization
2523 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2524 return Info->TemplateArguments;
2525 }
2526 return 0;
2527 }
2528
2529 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const2530 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
2531 if (FunctionTemplateSpecializationInfo *Info
2532 = TemplateOrSpecialization
2533 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2534 return Info->TemplateArgumentsAsWritten;
2535 }
2536 return 0;
2537 }
2538
2539 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)2540 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
2541 FunctionTemplateDecl *Template,
2542 const TemplateArgumentList *TemplateArgs,
2543 void *InsertPos,
2544 TemplateSpecializationKind TSK,
2545 const TemplateArgumentListInfo *TemplateArgsAsWritten,
2546 SourceLocation PointOfInstantiation) {
2547 assert(TSK != TSK_Undeclared &&
2548 "Must specify the type of function template specialization");
2549 FunctionTemplateSpecializationInfo *Info
2550 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2551 if (!Info)
2552 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
2553 TemplateArgs,
2554 TemplateArgsAsWritten,
2555 PointOfInstantiation);
2556 TemplateOrSpecialization = Info;
2557 Template->addSpecialization(Info, InsertPos);
2558 }
2559
2560 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)2561 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
2562 const UnresolvedSetImpl &Templates,
2563 const TemplateArgumentListInfo &TemplateArgs) {
2564 assert(TemplateOrSpecialization.isNull());
2565 size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
2566 Size += Templates.size() * sizeof(FunctionTemplateDecl*);
2567 Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
2568 void *Buffer = Context.Allocate(Size);
2569 DependentFunctionTemplateSpecializationInfo *Info =
2570 new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
2571 TemplateArgs);
2572 TemplateOrSpecialization = Info;
2573 }
2574
2575 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)2576 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
2577 const TemplateArgumentListInfo &TArgs)
2578 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
2579
2580 d.NumTemplates = Ts.size();
2581 d.NumArgs = TArgs.size();
2582
2583 FunctionTemplateDecl **TsArray =
2584 const_cast<FunctionTemplateDecl**>(getTemplates());
2585 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
2586 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
2587
2588 TemplateArgumentLoc *ArgsArray =
2589 const_cast<TemplateArgumentLoc*>(getTemplateArgs());
2590 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
2591 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
2592 }
2593
getTemplateSpecializationKind() const2594 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
2595 // For a function template specialization, query the specialization
2596 // information object.
2597 FunctionTemplateSpecializationInfo *FTSInfo
2598 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2599 if (FTSInfo)
2600 return FTSInfo->getTemplateSpecializationKind();
2601
2602 MemberSpecializationInfo *MSInfo
2603 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
2604 if (MSInfo)
2605 return MSInfo->getTemplateSpecializationKind();
2606
2607 return TSK_Undeclared;
2608 }
2609
2610 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2611 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2612 SourceLocation PointOfInstantiation) {
2613 if (FunctionTemplateSpecializationInfo *FTSInfo
2614 = TemplateOrSpecialization.dyn_cast<
2615 FunctionTemplateSpecializationInfo*>()) {
2616 FTSInfo->setTemplateSpecializationKind(TSK);
2617 if (TSK != TSK_ExplicitSpecialization &&
2618 PointOfInstantiation.isValid() &&
2619 FTSInfo->getPointOfInstantiation().isInvalid())
2620 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
2621 } else if (MemberSpecializationInfo *MSInfo
2622 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
2623 MSInfo->setTemplateSpecializationKind(TSK);
2624 if (TSK != TSK_ExplicitSpecialization &&
2625 PointOfInstantiation.isValid() &&
2626 MSInfo->getPointOfInstantiation().isInvalid())
2627 MSInfo->setPointOfInstantiation(PointOfInstantiation);
2628 } else
2629 llvm_unreachable("Function cannot have a template specialization kind");
2630 }
2631
getPointOfInstantiation() const2632 SourceLocation FunctionDecl::getPointOfInstantiation() const {
2633 if (FunctionTemplateSpecializationInfo *FTSInfo
2634 = TemplateOrSpecialization.dyn_cast<
2635 FunctionTemplateSpecializationInfo*>())
2636 return FTSInfo->getPointOfInstantiation();
2637 else if (MemberSpecializationInfo *MSInfo
2638 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
2639 return MSInfo->getPointOfInstantiation();
2640
2641 return SourceLocation();
2642 }
2643
isOutOfLine() const2644 bool FunctionDecl::isOutOfLine() const {
2645 if (Decl::isOutOfLine())
2646 return true;
2647
2648 // If this function was instantiated from a member function of a
2649 // class template, check whether that member function was defined out-of-line.
2650 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
2651 const FunctionDecl *Definition;
2652 if (FD->hasBody(Definition))
2653 return Definition->isOutOfLine();
2654 }
2655
2656 // If this function was instantiated from a function template,
2657 // check whether that function template was defined out-of-line.
2658 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
2659 const FunctionDecl *Definition;
2660 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
2661 return Definition->isOutOfLine();
2662 }
2663
2664 return false;
2665 }
2666
getSourceRange() const2667 SourceRange FunctionDecl::getSourceRange() const {
2668 return SourceRange(getOuterLocStart(), EndRangeLoc);
2669 }
2670
getMemoryFunctionKind() const2671 unsigned FunctionDecl::getMemoryFunctionKind() const {
2672 IdentifierInfo *FnInfo = getIdentifier();
2673
2674 if (!FnInfo)
2675 return 0;
2676
2677 // Builtin handling.
2678 switch (getBuiltinID()) {
2679 case Builtin::BI__builtin_memset:
2680 case Builtin::BI__builtin___memset_chk:
2681 case Builtin::BImemset:
2682 return Builtin::BImemset;
2683
2684 case Builtin::BI__builtin_memcpy:
2685 case Builtin::BI__builtin___memcpy_chk:
2686 case Builtin::BImemcpy:
2687 return Builtin::BImemcpy;
2688
2689 case Builtin::BI__builtin_memmove:
2690 case Builtin::BI__builtin___memmove_chk:
2691 case Builtin::BImemmove:
2692 return Builtin::BImemmove;
2693
2694 case Builtin::BIstrlcpy:
2695 return Builtin::BIstrlcpy;
2696 case Builtin::BIstrlcat:
2697 return Builtin::BIstrlcat;
2698
2699 case Builtin::BI__builtin_memcmp:
2700 case Builtin::BImemcmp:
2701 return Builtin::BImemcmp;
2702
2703 case Builtin::BI__builtin_strncpy:
2704 case Builtin::BI__builtin___strncpy_chk:
2705 case Builtin::BIstrncpy:
2706 return Builtin::BIstrncpy;
2707
2708 case Builtin::BI__builtin_strncmp:
2709 case Builtin::BIstrncmp:
2710 return Builtin::BIstrncmp;
2711
2712 case Builtin::BI__builtin_strncasecmp:
2713 case Builtin::BIstrncasecmp:
2714 return Builtin::BIstrncasecmp;
2715
2716 case Builtin::BI__builtin_strncat:
2717 case Builtin::BI__builtin___strncat_chk:
2718 case Builtin::BIstrncat:
2719 return Builtin::BIstrncat;
2720
2721 case Builtin::BI__builtin_strndup:
2722 case Builtin::BIstrndup:
2723 return Builtin::BIstrndup;
2724
2725 case Builtin::BI__builtin_strlen:
2726 case Builtin::BIstrlen:
2727 return Builtin::BIstrlen;
2728
2729 default:
2730 if (isExternC()) {
2731 if (FnInfo->isStr("memset"))
2732 return Builtin::BImemset;
2733 else if (FnInfo->isStr("memcpy"))
2734 return Builtin::BImemcpy;
2735 else if (FnInfo->isStr("memmove"))
2736 return Builtin::BImemmove;
2737 else if (FnInfo->isStr("memcmp"))
2738 return Builtin::BImemcmp;
2739 else if (FnInfo->isStr("strncpy"))
2740 return Builtin::BIstrncpy;
2741 else if (FnInfo->isStr("strncmp"))
2742 return Builtin::BIstrncmp;
2743 else if (FnInfo->isStr("strncasecmp"))
2744 return Builtin::BIstrncasecmp;
2745 else if (FnInfo->isStr("strncat"))
2746 return Builtin::BIstrncat;
2747 else if (FnInfo->isStr("strndup"))
2748 return Builtin::BIstrndup;
2749 else if (FnInfo->isStr("strlen"))
2750 return Builtin::BIstrlen;
2751 }
2752 break;
2753 }
2754 return 0;
2755 }
2756
2757 //===----------------------------------------------------------------------===//
2758 // FieldDecl Implementation
2759 //===----------------------------------------------------------------------===//
2760
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)2761 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
2762 SourceLocation StartLoc, SourceLocation IdLoc,
2763 IdentifierInfo *Id, QualType T,
2764 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2765 InClassInitStyle InitStyle) {
2766 return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
2767 BW, Mutable, InitStyle);
2768 }
2769
CreateDeserialized(ASTContext & C,unsigned ID)2770 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2771 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
2772 return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
2773 0, QualType(), 0, 0, false, ICIS_NoInit);
2774 }
2775
isAnonymousStructOrUnion() const2776 bool FieldDecl::isAnonymousStructOrUnion() const {
2777 if (!isImplicit() || getDeclName())
2778 return false;
2779
2780 if (const RecordType *Record = getType()->getAs<RecordType>())
2781 return Record->getDecl()->isAnonymousStructOrUnion();
2782
2783 return false;
2784 }
2785
getBitWidthValue(const ASTContext & Ctx) const2786 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
2787 assert(isBitField() && "not a bitfield");
2788 Expr *BitWidth = InitializerOrBitWidth.getPointer();
2789 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
2790 }
2791
getFieldIndex() const2792 unsigned FieldDecl::getFieldIndex() const {
2793 if (CachedFieldIndex) return CachedFieldIndex - 1;
2794
2795 unsigned Index = 0;
2796 const RecordDecl *RD = getParent();
2797 const FieldDecl *LastFD = 0;
2798 bool IsMsStruct = RD->isMsStruct(getASTContext());
2799
2800 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
2801 I != E; ++I, ++Index) {
2802 I->CachedFieldIndex = Index + 1;
2803
2804 if (IsMsStruct) {
2805 // Zero-length bitfields following non-bitfield members are ignored.
2806 if (getASTContext().ZeroBitfieldFollowsNonBitfield(*I, LastFD)) {
2807 --Index;
2808 continue;
2809 }
2810 LastFD = *I;
2811 }
2812 }
2813
2814 assert(CachedFieldIndex && "failed to find field in parent");
2815 return CachedFieldIndex - 1;
2816 }
2817
getSourceRange() const2818 SourceRange FieldDecl::getSourceRange() const {
2819 if (const Expr *E = InitializerOrBitWidth.getPointer())
2820 return SourceRange(getInnerLocStart(), E->getLocEnd());
2821 return DeclaratorDecl::getSourceRange();
2822 }
2823
setBitWidth(Expr * Width)2824 void FieldDecl::setBitWidth(Expr *Width) {
2825 assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
2826 "bit width or initializer already set");
2827 InitializerOrBitWidth.setPointer(Width);
2828 }
2829
setInClassInitializer(Expr * Init)2830 void FieldDecl::setInClassInitializer(Expr *Init) {
2831 assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
2832 "bit width or initializer already set");
2833 InitializerOrBitWidth.setPointer(Init);
2834 }
2835
2836 //===----------------------------------------------------------------------===//
2837 // TagDecl Implementation
2838 //===----------------------------------------------------------------------===//
2839
getOuterLocStart() const2840 SourceLocation TagDecl::getOuterLocStart() const {
2841 return getTemplateOrInnerLocStart(this);
2842 }
2843
getSourceRange() const2844 SourceRange TagDecl::getSourceRange() const {
2845 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
2846 return SourceRange(getOuterLocStart(), E);
2847 }
2848
getCanonicalDecl()2849 TagDecl* TagDecl::getCanonicalDecl() {
2850 return getFirstDeclaration();
2851 }
2852
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)2853 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
2854 TypedefNameDeclOrQualifier = TDD;
2855 if (TypeForDecl)
2856 assert(TypeForDecl->isLinkageValid());
2857 assert(isLinkageValid());
2858 }
2859
startDefinition()2860 void TagDecl::startDefinition() {
2861 IsBeingDefined = true;
2862
2863 if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
2864 struct CXXRecordDecl::DefinitionData *Data =
2865 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
2866 for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
2867 cast<CXXRecordDecl>(*I)->DefinitionData = Data;
2868 }
2869 }
2870
completeDefinition()2871 void TagDecl::completeDefinition() {
2872 assert((!isa<CXXRecordDecl>(this) ||
2873 cast<CXXRecordDecl>(this)->hasDefinition()) &&
2874 "definition completed but not started");
2875
2876 IsCompleteDefinition = true;
2877 IsBeingDefined = false;
2878
2879 if (ASTMutationListener *L = getASTMutationListener())
2880 L->CompletedTagDefinition(this);
2881 }
2882
getDefinition() const2883 TagDecl *TagDecl::getDefinition() const {
2884 if (isCompleteDefinition())
2885 return const_cast<TagDecl *>(this);
2886
2887 // If it's possible for us to have an out-of-date definition, check now.
2888 if (MayHaveOutOfDateDef) {
2889 if (IdentifierInfo *II = getIdentifier()) {
2890 if (II->isOutOfDate()) {
2891 updateOutOfDate(*II);
2892 }
2893 }
2894 }
2895
2896 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
2897 return CXXRD->getDefinition();
2898
2899 for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
2900 R != REnd; ++R)
2901 if (R->isCompleteDefinition())
2902 return *R;
2903
2904 return 0;
2905 }
2906
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)2907 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
2908 if (QualifierLoc) {
2909 // Make sure the extended qualifier info is allocated.
2910 if (!hasExtInfo())
2911 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
2912 // Set qualifier info.
2913 getExtInfo()->QualifierLoc = QualifierLoc;
2914 } else {
2915 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
2916 if (hasExtInfo()) {
2917 if (getExtInfo()->NumTemplParamLists == 0) {
2918 getASTContext().Deallocate(getExtInfo());
2919 TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0;
2920 }
2921 else
2922 getExtInfo()->QualifierLoc = QualifierLoc;
2923 }
2924 }
2925 }
2926
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)2927 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
2928 unsigned NumTPLists,
2929 TemplateParameterList **TPLists) {
2930 assert(NumTPLists > 0);
2931 // Make sure the extended decl info is allocated.
2932 if (!hasExtInfo())
2933 // Allocate external info struct.
2934 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
2935 // Set the template parameter lists info.
2936 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
2937 }
2938
2939 //===----------------------------------------------------------------------===//
2940 // EnumDecl Implementation
2941 //===----------------------------------------------------------------------===//
2942
anchor()2943 void EnumDecl::anchor() { }
2944
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)2945 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
2946 SourceLocation StartLoc, SourceLocation IdLoc,
2947 IdentifierInfo *Id,
2948 EnumDecl *PrevDecl, bool IsScoped,
2949 bool IsScopedUsingClassTag, bool IsFixed) {
2950 EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
2951 IsScoped, IsScopedUsingClassTag, IsFixed);
2952 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
2953 C.getTypeDeclType(Enum, PrevDecl);
2954 return Enum;
2955 }
2956
CreateDeserialized(ASTContext & C,unsigned ID)2957 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2958 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
2959 EnumDecl *Enum = new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(),
2960 0, 0, false, false, false);
2961 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
2962 return Enum;
2963 }
2964
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)2965 void EnumDecl::completeDefinition(QualType NewType,
2966 QualType NewPromotionType,
2967 unsigned NumPositiveBits,
2968 unsigned NumNegativeBits) {
2969 assert(!isCompleteDefinition() && "Cannot redefine enums!");
2970 if (!IntegerType)
2971 IntegerType = NewType.getTypePtr();
2972 PromotionType = NewPromotionType;
2973 setNumPositiveBits(NumPositiveBits);
2974 setNumNegativeBits(NumNegativeBits);
2975 TagDecl::completeDefinition();
2976 }
2977
getTemplateSpecializationKind() const2978 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
2979 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2980 return MSI->getTemplateSpecializationKind();
2981
2982 return TSK_Undeclared;
2983 }
2984
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2985 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2986 SourceLocation PointOfInstantiation) {
2987 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
2988 assert(MSI && "Not an instantiated member enumeration?");
2989 MSI->setTemplateSpecializationKind(TSK);
2990 if (TSK != TSK_ExplicitSpecialization &&
2991 PointOfInstantiation.isValid() &&
2992 MSI->getPointOfInstantiation().isInvalid())
2993 MSI->setPointOfInstantiation(PointOfInstantiation);
2994 }
2995
getInstantiatedFromMemberEnum() const2996 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
2997 if (SpecializationInfo)
2998 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
2999
3000 return 0;
3001 }
3002
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)3003 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3004 TemplateSpecializationKind TSK) {
3005 assert(!SpecializationInfo && "Member enum is already a specialization");
3006 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3007 }
3008
3009 //===----------------------------------------------------------------------===//
3010 // RecordDecl Implementation
3011 //===----------------------------------------------------------------------===//
3012
RecordDecl(Kind DK,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3013 RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
3014 SourceLocation StartLoc, SourceLocation IdLoc,
3015 IdentifierInfo *Id, RecordDecl *PrevDecl)
3016 : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
3017 HasFlexibleArrayMember = false;
3018 AnonymousStructOrUnion = false;
3019 HasObjectMember = false;
3020 HasVolatileMember = false;
3021 LoadedFieldsFromExternalStorage = false;
3022 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3023 }
3024
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3025 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3026 SourceLocation StartLoc, SourceLocation IdLoc,
3027 IdentifierInfo *Id, RecordDecl* PrevDecl) {
3028 RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
3029 PrevDecl);
3030 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3031
3032 C.getTypeDeclType(R, PrevDecl);
3033 return R;
3034 }
3035
CreateDeserialized(const ASTContext & C,unsigned ID)3036 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3037 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
3038 RecordDecl *R = new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
3039 SourceLocation(), 0, 0);
3040 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3041 return R;
3042 }
3043
isInjectedClassName() const3044 bool RecordDecl::isInjectedClassName() const {
3045 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3046 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3047 }
3048
field_begin() const3049 RecordDecl::field_iterator RecordDecl::field_begin() const {
3050 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3051 LoadFieldsFromExternalStorage();
3052
3053 return field_iterator(decl_iterator(FirstDecl));
3054 }
3055
3056 /// completeDefinition - Notes that the definition of this type is now
3057 /// complete.
completeDefinition()3058 void RecordDecl::completeDefinition() {
3059 assert(!isCompleteDefinition() && "Cannot redefine record!");
3060 TagDecl::completeDefinition();
3061 }
3062
3063 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3064 /// This which can be turned on with an attribute, pragma, or the
3065 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const3066 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3067 return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
3068 }
3069
isFieldOrIndirectField(Decl::Kind K)3070 static bool isFieldOrIndirectField(Decl::Kind K) {
3071 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3072 }
3073
LoadFieldsFromExternalStorage() const3074 void RecordDecl::LoadFieldsFromExternalStorage() const {
3075 ExternalASTSource *Source = getASTContext().getExternalSource();
3076 assert(hasExternalLexicalStorage() && Source && "No external storage?");
3077
3078 // Notify that we have a RecordDecl doing some initialization.
3079 ExternalASTSource::Deserializing TheFields(Source);
3080
3081 SmallVector<Decl*, 64> Decls;
3082 LoadedFieldsFromExternalStorage = true;
3083 switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
3084 Decls)) {
3085 case ELR_Success:
3086 break;
3087
3088 case ELR_AlreadyLoaded:
3089 case ELR_Failure:
3090 return;
3091 }
3092
3093 #ifndef NDEBUG
3094 // Check that all decls we got were FieldDecls.
3095 for (unsigned i=0, e=Decls.size(); i != e; ++i)
3096 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3097 #endif
3098
3099 if (Decls.empty())
3100 return;
3101
3102 llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3103 /*FieldsAlreadyLoaded=*/false);
3104 }
3105
3106 //===----------------------------------------------------------------------===//
3107 // BlockDecl Implementation
3108 //===----------------------------------------------------------------------===//
3109
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)3110 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3111 assert(ParamInfo == 0 && "Already has param info!");
3112
3113 // Zero params -> null pointer.
3114 if (!NewParamInfo.empty()) {
3115 NumParams = NewParamInfo.size();
3116 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3117 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3118 }
3119 }
3120
setCaptures(ASTContext & Context,const Capture * begin,const Capture * end,bool capturesCXXThis)3121 void BlockDecl::setCaptures(ASTContext &Context,
3122 const Capture *begin,
3123 const Capture *end,
3124 bool capturesCXXThis) {
3125 CapturesCXXThis = capturesCXXThis;
3126
3127 if (begin == end) {
3128 NumCaptures = 0;
3129 Captures = 0;
3130 return;
3131 }
3132
3133 NumCaptures = end - begin;
3134
3135 // Avoid new Capture[] because we don't want to provide a default
3136 // constructor.
3137 size_t allocationSize = NumCaptures * sizeof(Capture);
3138 void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
3139 memcpy(buffer, begin, allocationSize);
3140 Captures = static_cast<Capture*>(buffer);
3141 }
3142
capturesVariable(const VarDecl * variable) const3143 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3144 for (capture_const_iterator
3145 i = capture_begin(), e = capture_end(); i != e; ++i)
3146 // Only auto vars can be captured, so no redeclaration worries.
3147 if (i->getVariable() == variable)
3148 return true;
3149
3150 return false;
3151 }
3152
getSourceRange() const3153 SourceRange BlockDecl::getSourceRange() const {
3154 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3155 }
3156
3157 //===----------------------------------------------------------------------===//
3158 // Other Decl Allocation/Deallocation Method Implementations
3159 //===----------------------------------------------------------------------===//
3160
anchor()3161 void TranslationUnitDecl::anchor() { }
3162
Create(ASTContext & C)3163 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3164 return new (C) TranslationUnitDecl(C);
3165 }
3166
anchor()3167 void LabelDecl::anchor() { }
3168
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)3169 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3170 SourceLocation IdentL, IdentifierInfo *II) {
3171 return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
3172 }
3173
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)3174 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3175 SourceLocation IdentL, IdentifierInfo *II,
3176 SourceLocation GnuLabelL) {
3177 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3178 return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
3179 }
3180
CreateDeserialized(ASTContext & C,unsigned ID)3181 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3182 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
3183 return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
3184 }
3185
anchor()3186 void ValueDecl::anchor() { }
3187
isWeak() const3188 bool ValueDecl::isWeak() const {
3189 for (attr_iterator I = attr_begin(), E = attr_end(); I != E; ++I)
3190 if (isa<WeakAttr>(*I) || isa<WeakRefAttr>(*I))
3191 return true;
3192
3193 return isWeakImported();
3194 }
3195
anchor()3196 void ImplicitParamDecl::anchor() { }
3197
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type)3198 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3199 SourceLocation IdLoc,
3200 IdentifierInfo *Id,
3201 QualType Type) {
3202 return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
3203 }
3204
CreateDeserialized(ASTContext & C,unsigned ID)3205 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3206 unsigned ID) {
3207 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
3208 return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
3209 }
3210
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,StorageClass SCAsWritten,bool isInlineSpecified,bool hasWrittenPrototype,bool isConstexprSpecified)3211 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3212 SourceLocation StartLoc,
3213 const DeclarationNameInfo &NameInfo,
3214 QualType T, TypeSourceInfo *TInfo,
3215 StorageClass SC, StorageClass SCAsWritten,
3216 bool isInlineSpecified,
3217 bool hasWrittenPrototype,
3218 bool isConstexprSpecified) {
3219 FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
3220 T, TInfo, SC, SCAsWritten,
3221 isInlineSpecified,
3222 isConstexprSpecified);
3223 New->HasWrittenPrototype = hasWrittenPrototype;
3224 return New;
3225 }
3226
CreateDeserialized(ASTContext & C,unsigned ID)3227 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3228 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
3229 return new (Mem) FunctionDecl(Function, 0, SourceLocation(),
3230 DeclarationNameInfo(), QualType(), 0,
3231 SC_None, SC_None, false, false);
3232 }
3233
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3234 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3235 return new (C) BlockDecl(DC, L);
3236 }
3237
CreateDeserialized(ASTContext & C,unsigned ID)3238 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3239 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
3240 return new (Mem) BlockDecl(0, SourceLocation());
3241 }
3242
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3243 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3244 SourceLocation L,
3245 IdentifierInfo *Id, QualType T,
3246 Expr *E, const llvm::APSInt &V) {
3247 return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
3248 }
3249
3250 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3251 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3252 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
3253 return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,
3254 llvm::APSInt());
3255 }
3256
anchor()3257 void IndirectFieldDecl::anchor() { }
3258
3259 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,NamedDecl ** CH,unsigned CHS)3260 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3261 IdentifierInfo *Id, QualType T, NamedDecl **CH,
3262 unsigned CHS) {
3263 return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3264 }
3265
CreateDeserialized(ASTContext & C,unsigned ID)3266 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3267 unsigned ID) {
3268 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
3269 return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
3270 QualType(), 0, 0);
3271 }
3272
getSourceRange() const3273 SourceRange EnumConstantDecl::getSourceRange() const {
3274 SourceLocation End = getLocation();
3275 if (Init)
3276 End = Init->getLocEnd();
3277 return SourceRange(getLocation(), End);
3278 }
3279
anchor()3280 void TypeDecl::anchor() { }
3281
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3282 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3283 SourceLocation StartLoc, SourceLocation IdLoc,
3284 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3285 return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
3286 }
3287
anchor()3288 void TypedefNameDecl::anchor() { }
3289
CreateDeserialized(ASTContext & C,unsigned ID)3290 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3291 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
3292 return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
3293 }
3294
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3295 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3296 SourceLocation StartLoc,
3297 SourceLocation IdLoc, IdentifierInfo *Id,
3298 TypeSourceInfo *TInfo) {
3299 return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
3300 }
3301
CreateDeserialized(ASTContext & C,unsigned ID)3302 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3303 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
3304 return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
3305 }
3306
getSourceRange() const3307 SourceRange TypedefDecl::getSourceRange() const {
3308 SourceLocation RangeEnd = getLocation();
3309 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3310 if (typeIsPostfix(TInfo->getType()))
3311 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3312 }
3313 return SourceRange(getLocStart(), RangeEnd);
3314 }
3315
getSourceRange() const3316 SourceRange TypeAliasDecl::getSourceRange() const {
3317 SourceLocation RangeEnd = getLocStart();
3318 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3319 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3320 return SourceRange(getLocStart(), RangeEnd);
3321 }
3322
anchor()3323 void FileScopeAsmDecl::anchor() { }
3324
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)3325 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3326 StringLiteral *Str,
3327 SourceLocation AsmLoc,
3328 SourceLocation RParenLoc) {
3329 return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3330 }
3331
CreateDeserialized(ASTContext & C,unsigned ID)3332 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3333 unsigned ID) {
3334 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
3335 return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
3336 }
3337
anchor()3338 void EmptyDecl::anchor() {}
3339
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3340 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3341 return new (C) EmptyDecl(DC, L);
3342 }
3343
CreateDeserialized(ASTContext & C,unsigned ID)3344 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3345 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EmptyDecl));
3346 return new (Mem) EmptyDecl(0, SourceLocation());
3347 }
3348
3349 //===----------------------------------------------------------------------===//
3350 // ImportDecl Implementation
3351 //===----------------------------------------------------------------------===//
3352
3353 /// \brief Retrieve the number of module identifiers needed to name the given
3354 /// module.
getNumModuleIdentifiers(Module * Mod)3355 static unsigned getNumModuleIdentifiers(Module *Mod) {
3356 unsigned Result = 1;
3357 while (Mod->Parent) {
3358 Mod = Mod->Parent;
3359 ++Result;
3360 }
3361 return Result;
3362 }
3363
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)3364 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3365 Module *Imported,
3366 ArrayRef<SourceLocation> IdentifierLocs)
3367 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
3368 NextLocalImport()
3369 {
3370 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
3371 SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
3372 memcpy(StoredLocs, IdentifierLocs.data(),
3373 IdentifierLocs.size() * sizeof(SourceLocation));
3374 }
3375
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)3376 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3377 Module *Imported, SourceLocation EndLoc)
3378 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
3379 NextLocalImport()
3380 {
3381 *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
3382 }
3383
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)3384 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
3385 SourceLocation StartLoc, Module *Imported,
3386 ArrayRef<SourceLocation> IdentifierLocs) {
3387 void *Mem = C.Allocate(sizeof(ImportDecl) +
3388 IdentifierLocs.size() * sizeof(SourceLocation));
3389 return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
3390 }
3391
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)3392 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
3393 SourceLocation StartLoc,
3394 Module *Imported,
3395 SourceLocation EndLoc) {
3396 void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
3397 ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
3398 Import->setImplicit();
3399 return Import;
3400 }
3401
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)3402 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3403 unsigned NumLocations) {
3404 void *Mem = AllocateDeserializedDecl(C, ID,
3405 (sizeof(ImportDecl) +
3406 NumLocations * sizeof(SourceLocation)));
3407 return new (Mem) ImportDecl(EmptyShell());
3408 }
3409
getIdentifierLocs() const3410 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
3411 if (!ImportedAndComplete.getInt())
3412 return ArrayRef<SourceLocation>();
3413
3414 const SourceLocation *StoredLocs
3415 = reinterpret_cast<const SourceLocation *>(this + 1);
3416 return ArrayRef<SourceLocation>(StoredLocs,
3417 getNumModuleIdentifiers(getImportedModule()));
3418 }
3419
getSourceRange() const3420 SourceRange ImportDecl::getSourceRange() const {
3421 if (!ImportedAndComplete.getInt())
3422 return SourceRange(getLocation(),
3423 *reinterpret_cast<const SourceLocation *>(this + 1));
3424
3425 return SourceRange(getLocation(), getIdentifierLocs().back());
3426 }
3427