1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineMemOperand.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/PseudoSourceValue.h"
19 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Target/TargetLowering.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include <cctype>
29 using namespace llvm;
30
31 static cl::opt<bool> DisableHazardRecognizer(
32 "disable-sched-hazard", cl::Hidden, cl::init(false),
33 cl::desc("Disable hazard detection during preRA scheduling"));
34
~TargetInstrInfo()35 TargetInstrInfo::~TargetInstrInfo() {
36 }
37
38 const TargetRegisterClass*
getRegClass(const MCInstrDesc & MCID,unsigned OpNum,const TargetRegisterInfo * TRI,const MachineFunction & MF) const39 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
40 const TargetRegisterInfo *TRI,
41 const MachineFunction &MF) const {
42 if (OpNum >= MCID.getNumOperands())
43 return 0;
44
45 short RegClass = MCID.OpInfo[OpNum].RegClass;
46 if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
47 return TRI->getPointerRegClass(MF, RegClass);
48
49 // Instructions like INSERT_SUBREG do not have fixed register classes.
50 if (RegClass < 0)
51 return 0;
52
53 // Otherwise just look it up normally.
54 return TRI->getRegClass(RegClass);
55 }
56
57 /// insertNoop - Insert a noop into the instruction stream at the specified
58 /// point.
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const59 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
60 MachineBasicBlock::iterator MI) const {
61 llvm_unreachable("Target didn't implement insertNoop!");
62 }
63
64 /// Measure the specified inline asm to determine an approximation of its
65 /// length.
66 /// Comments (which run till the next SeparatorString or newline) do not
67 /// count as an instruction.
68 /// Any other non-whitespace text is considered an instruction, with
69 /// multiple instructions separated by SeparatorString or newlines.
70 /// Variable-length instructions are not handled here; this function
71 /// may be overloaded in the target code to do that.
getInlineAsmLength(const char * Str,const MCAsmInfo & MAI) const72 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
73 const MCAsmInfo &MAI) const {
74
75
76 // Count the number of instructions in the asm.
77 bool atInsnStart = true;
78 unsigned Length = 0;
79 for (; *Str; ++Str) {
80 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
81 strlen(MAI.getSeparatorString())) == 0)
82 atInsnStart = true;
83 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
84 Length += MAI.getMaxInstLength();
85 atInsnStart = false;
86 }
87 if (atInsnStart && strncmp(Str, MAI.getCommentString(),
88 strlen(MAI.getCommentString())) == 0)
89 atInsnStart = false;
90 }
91
92 return Length;
93 }
94
95 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
96 /// after it, replacing it with an unconditional branch to NewDest.
97 void
ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,MachineBasicBlock * NewDest) const98 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
99 MachineBasicBlock *NewDest) const {
100 MachineBasicBlock *MBB = Tail->getParent();
101
102 // Remove all the old successors of MBB from the CFG.
103 while (!MBB->succ_empty())
104 MBB->removeSuccessor(MBB->succ_begin());
105
106 // Remove all the dead instructions from the end of MBB.
107 MBB->erase(Tail, MBB->end());
108
109 // If MBB isn't immediately before MBB, insert a branch to it.
110 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
111 InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
112 Tail->getDebugLoc());
113 MBB->addSuccessor(NewDest);
114 }
115
116 // commuteInstruction - The default implementation of this method just exchanges
117 // the two operands returned by findCommutedOpIndices.
commuteInstruction(MachineInstr * MI,bool NewMI) const118 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
119 bool NewMI) const {
120 const MCInstrDesc &MCID = MI->getDesc();
121 bool HasDef = MCID.getNumDefs();
122 if (HasDef && !MI->getOperand(0).isReg())
123 // No idea how to commute this instruction. Target should implement its own.
124 return 0;
125 unsigned Idx1, Idx2;
126 if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
127 std::string msg;
128 raw_string_ostream Msg(msg);
129 Msg << "Don't know how to commute: " << *MI;
130 report_fatal_error(Msg.str());
131 }
132
133 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
134 "This only knows how to commute register operands so far");
135 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
136 unsigned Reg1 = MI->getOperand(Idx1).getReg();
137 unsigned Reg2 = MI->getOperand(Idx2).getReg();
138 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
139 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
140 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
141 bool Reg1IsKill = MI->getOperand(Idx1).isKill();
142 bool Reg2IsKill = MI->getOperand(Idx2).isKill();
143 // If destination is tied to either of the commuted source register, then
144 // it must be updated.
145 if (HasDef && Reg0 == Reg1 &&
146 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
147 Reg2IsKill = false;
148 Reg0 = Reg2;
149 SubReg0 = SubReg2;
150 } else if (HasDef && Reg0 == Reg2 &&
151 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
152 Reg1IsKill = false;
153 Reg0 = Reg1;
154 SubReg0 = SubReg1;
155 }
156
157 if (NewMI) {
158 // Create a new instruction.
159 MachineFunction &MF = *MI->getParent()->getParent();
160 MI = MF.CloneMachineInstr(MI);
161 }
162
163 if (HasDef) {
164 MI->getOperand(0).setReg(Reg0);
165 MI->getOperand(0).setSubReg(SubReg0);
166 }
167 MI->getOperand(Idx2).setReg(Reg1);
168 MI->getOperand(Idx1).setReg(Reg2);
169 MI->getOperand(Idx2).setSubReg(SubReg1);
170 MI->getOperand(Idx1).setSubReg(SubReg2);
171 MI->getOperand(Idx2).setIsKill(Reg1IsKill);
172 MI->getOperand(Idx1).setIsKill(Reg2IsKill);
173 return MI;
174 }
175
176 /// findCommutedOpIndices - If specified MI is commutable, return the two
177 /// operand indices that would swap value. Return true if the instruction
178 /// is not in a form which this routine understands.
findCommutedOpIndices(MachineInstr * MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const179 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
180 unsigned &SrcOpIdx1,
181 unsigned &SrcOpIdx2) const {
182 assert(!MI->isBundle() &&
183 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
184
185 const MCInstrDesc &MCID = MI->getDesc();
186 if (!MCID.isCommutable())
187 return false;
188 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
189 // is not true, then the target must implement this.
190 SrcOpIdx1 = MCID.getNumDefs();
191 SrcOpIdx2 = SrcOpIdx1 + 1;
192 if (!MI->getOperand(SrcOpIdx1).isReg() ||
193 !MI->getOperand(SrcOpIdx2).isReg())
194 // No idea.
195 return false;
196 return true;
197 }
198
199
200 bool
isUnpredicatedTerminator(const MachineInstr * MI) const201 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
202 if (!MI->isTerminator()) return false;
203
204 // Conditional branch is a special case.
205 if (MI->isBranch() && !MI->isBarrier())
206 return true;
207 if (!MI->isPredicable())
208 return true;
209 return !isPredicated(MI);
210 }
211
212
PredicateInstruction(MachineInstr * MI,const SmallVectorImpl<MachineOperand> & Pred) const213 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI,
214 const SmallVectorImpl<MachineOperand> &Pred) const {
215 bool MadeChange = false;
216
217 assert(!MI->isBundle() &&
218 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
219
220 const MCInstrDesc &MCID = MI->getDesc();
221 if (!MI->isPredicable())
222 return false;
223
224 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
225 if (MCID.OpInfo[i].isPredicate()) {
226 MachineOperand &MO = MI->getOperand(i);
227 if (MO.isReg()) {
228 MO.setReg(Pred[j].getReg());
229 MadeChange = true;
230 } else if (MO.isImm()) {
231 MO.setImm(Pred[j].getImm());
232 MadeChange = true;
233 } else if (MO.isMBB()) {
234 MO.setMBB(Pred[j].getMBB());
235 MadeChange = true;
236 }
237 ++j;
238 }
239 }
240 return MadeChange;
241 }
242
hasLoadFromStackSlot(const MachineInstr * MI,const MachineMemOperand * & MMO,int & FrameIndex) const243 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
244 const MachineMemOperand *&MMO,
245 int &FrameIndex) const {
246 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
247 oe = MI->memoperands_end();
248 o != oe;
249 ++o) {
250 if ((*o)->isLoad() && (*o)->getValue())
251 if (const FixedStackPseudoSourceValue *Value =
252 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
253 FrameIndex = Value->getFrameIndex();
254 MMO = *o;
255 return true;
256 }
257 }
258 return false;
259 }
260
hasStoreToStackSlot(const MachineInstr * MI,const MachineMemOperand * & MMO,int & FrameIndex) const261 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
262 const MachineMemOperand *&MMO,
263 int &FrameIndex) const {
264 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
265 oe = MI->memoperands_end();
266 o != oe;
267 ++o) {
268 if ((*o)->isStore() && (*o)->getValue())
269 if (const FixedStackPseudoSourceValue *Value =
270 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
271 FrameIndex = Value->getFrameIndex();
272 MMO = *o;
273 return true;
274 }
275 }
276 return false;
277 }
278
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr * Orig,const TargetRegisterInfo & TRI) const279 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
280 MachineBasicBlock::iterator I,
281 unsigned DestReg,
282 unsigned SubIdx,
283 const MachineInstr *Orig,
284 const TargetRegisterInfo &TRI) const {
285 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
286 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
287 MBB.insert(I, MI);
288 }
289
290 bool
produceSameValue(const MachineInstr * MI0,const MachineInstr * MI1,const MachineRegisterInfo * MRI) const291 TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
292 const MachineInstr *MI1,
293 const MachineRegisterInfo *MRI) const {
294 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
295 }
296
duplicate(MachineInstr * Orig,MachineFunction & MF) const297 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
298 MachineFunction &MF) const {
299 assert(!Orig->isNotDuplicable() &&
300 "Instruction cannot be duplicated");
301 return MF.CloneMachineInstr(Orig);
302 }
303
304 // If the COPY instruction in MI can be folded to a stack operation, return
305 // the register class to use.
canFoldCopy(const MachineInstr * MI,unsigned FoldIdx)306 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
307 unsigned FoldIdx) {
308 assert(MI->isCopy() && "MI must be a COPY instruction");
309 if (MI->getNumOperands() != 2)
310 return 0;
311 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
312
313 const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
314 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
315
316 if (FoldOp.getSubReg() || LiveOp.getSubReg())
317 return 0;
318
319 unsigned FoldReg = FoldOp.getReg();
320 unsigned LiveReg = LiveOp.getReg();
321
322 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
323 "Cannot fold physregs");
324
325 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
326 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
327
328 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
329 return RC->contains(LiveOp.getReg()) ? RC : 0;
330
331 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
332 return RC;
333
334 // FIXME: Allow folding when register classes are memory compatible.
335 return 0;
336 }
337
338 bool TargetInstrInfo::
canFoldMemoryOperand(const MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops) const339 canFoldMemoryOperand(const MachineInstr *MI,
340 const SmallVectorImpl<unsigned> &Ops) const {
341 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
342 }
343
344 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
345 /// slot into the specified machine instruction for the specified operand(s).
346 /// If this is possible, a new instruction is returned with the specified
347 /// operand folded, otherwise NULL is returned. The client is responsible for
348 /// removing the old instruction and adding the new one in the instruction
349 /// stream.
350 MachineInstr*
foldMemoryOperand(MachineBasicBlock::iterator MI,const SmallVectorImpl<unsigned> & Ops,int FI) const351 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
352 const SmallVectorImpl<unsigned> &Ops,
353 int FI) const {
354 unsigned Flags = 0;
355 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
356 if (MI->getOperand(Ops[i]).isDef())
357 Flags |= MachineMemOperand::MOStore;
358 else
359 Flags |= MachineMemOperand::MOLoad;
360
361 MachineBasicBlock *MBB = MI->getParent();
362 assert(MBB && "foldMemoryOperand needs an inserted instruction");
363 MachineFunction &MF = *MBB->getParent();
364
365 // Ask the target to do the actual folding.
366 if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
367 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
368 assert((!(Flags & MachineMemOperand::MOStore) ||
369 NewMI->mayStore()) &&
370 "Folded a def to a non-store!");
371 assert((!(Flags & MachineMemOperand::MOLoad) ||
372 NewMI->mayLoad()) &&
373 "Folded a use to a non-load!");
374 const MachineFrameInfo &MFI = *MF.getFrameInfo();
375 assert(MFI.getObjectOffset(FI) != -1);
376 MachineMemOperand *MMO =
377 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
378 Flags, MFI.getObjectSize(FI),
379 MFI.getObjectAlignment(FI));
380 NewMI->addMemOperand(MF, MMO);
381
382 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
383 return MBB->insert(MI, NewMI);
384 }
385
386 // Straight COPY may fold as load/store.
387 if (!MI->isCopy() || Ops.size() != 1)
388 return 0;
389
390 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
391 if (!RC)
392 return 0;
393
394 const MachineOperand &MO = MI->getOperand(1-Ops[0]);
395 MachineBasicBlock::iterator Pos = MI;
396 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
397
398 if (Flags == MachineMemOperand::MOStore)
399 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
400 else
401 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
402 return --Pos;
403 }
404
405 /// foldMemoryOperand - Same as the previous version except it allows folding
406 /// of any load and store from / to any address, not just from a specific
407 /// stack slot.
408 MachineInstr*
foldMemoryOperand(MachineBasicBlock::iterator MI,const SmallVectorImpl<unsigned> & Ops,MachineInstr * LoadMI) const409 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
410 const SmallVectorImpl<unsigned> &Ops,
411 MachineInstr* LoadMI) const {
412 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
413 #ifndef NDEBUG
414 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
415 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
416 #endif
417 MachineBasicBlock &MBB = *MI->getParent();
418 MachineFunction &MF = *MBB.getParent();
419
420 // Ask the target to do the actual folding.
421 MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
422 if (!NewMI) return 0;
423
424 NewMI = MBB.insert(MI, NewMI);
425
426 // Copy the memoperands from the load to the folded instruction.
427 NewMI->setMemRefs(LoadMI->memoperands_begin(),
428 LoadMI->memoperands_end());
429
430 return NewMI;
431 }
432
433 bool TargetInstrInfo::
isReallyTriviallyReMaterializableGeneric(const MachineInstr * MI,AliasAnalysis * AA) const434 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
435 AliasAnalysis *AA) const {
436 const MachineFunction &MF = *MI->getParent()->getParent();
437 const MachineRegisterInfo &MRI = MF.getRegInfo();
438 const TargetMachine &TM = MF.getTarget();
439 const TargetInstrInfo &TII = *TM.getInstrInfo();
440
441 // Remat clients assume operand 0 is the defined register.
442 if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
443 return false;
444 unsigned DefReg = MI->getOperand(0).getReg();
445
446 // A sub-register definition can only be rematerialized if the instruction
447 // doesn't read the other parts of the register. Otherwise it is really a
448 // read-modify-write operation on the full virtual register which cannot be
449 // moved safely.
450 if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
451 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
452 return false;
453
454 // A load from a fixed stack slot can be rematerialized. This may be
455 // redundant with subsequent checks, but it's target-independent,
456 // simple, and a common case.
457 int FrameIdx = 0;
458 if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
459 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
460 return true;
461
462 // Avoid instructions obviously unsafe for remat.
463 if (MI->isNotDuplicable() || MI->mayStore() ||
464 MI->hasUnmodeledSideEffects())
465 return false;
466
467 // Don't remat inline asm. We have no idea how expensive it is
468 // even if it's side effect free.
469 if (MI->isInlineAsm())
470 return false;
471
472 // Avoid instructions which load from potentially varying memory.
473 if (MI->mayLoad() && !MI->isInvariantLoad(AA))
474 return false;
475
476 // If any of the registers accessed are non-constant, conservatively assume
477 // the instruction is not rematerializable.
478 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
479 const MachineOperand &MO = MI->getOperand(i);
480 if (!MO.isReg()) continue;
481 unsigned Reg = MO.getReg();
482 if (Reg == 0)
483 continue;
484
485 // Check for a well-behaved physical register.
486 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
487 if (MO.isUse()) {
488 // If the physreg has no defs anywhere, it's just an ambient register
489 // and we can freely move its uses. Alternatively, if it's allocatable,
490 // it could get allocated to something with a def during allocation.
491 if (!MRI.isConstantPhysReg(Reg, MF))
492 return false;
493 } else {
494 // A physreg def. We can't remat it.
495 return false;
496 }
497 continue;
498 }
499
500 // Only allow one virtual-register def. There may be multiple defs of the
501 // same virtual register, though.
502 if (MO.isDef() && Reg != DefReg)
503 return false;
504
505 // Don't allow any virtual-register uses. Rematting an instruction with
506 // virtual register uses would length the live ranges of the uses, which
507 // is not necessarily a good idea, certainly not "trivial".
508 if (MO.isUse())
509 return false;
510 }
511
512 // Everything checked out.
513 return true;
514 }
515
516 /// isSchedulingBoundary - Test if the given instruction should be
517 /// considered a scheduling boundary. This primarily includes labels
518 /// and terminators.
isSchedulingBoundary(const MachineInstr * MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const519 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
520 const MachineBasicBlock *MBB,
521 const MachineFunction &MF) const {
522 // Terminators and labels can't be scheduled around.
523 if (MI->isTerminator() || MI->isLabel())
524 return true;
525
526 // Don't attempt to schedule around any instruction that defines
527 // a stack-oriented pointer, as it's unlikely to be profitable. This
528 // saves compile time, because it doesn't require every single
529 // stack slot reference to depend on the instruction that does the
530 // modification.
531 const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
532 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
533 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
534 return true;
535
536 return false;
537 }
538
539 // Provide a global flag for disabling the PreRA hazard recognizer that targets
540 // may choose to honor.
usePreRAHazardRecognizer() const541 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
542 return !DisableHazardRecognizer;
543 }
544
545 // Default implementation of CreateTargetRAHazardRecognizer.
546 ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetHazardRecognizer(const TargetMachine * TM,const ScheduleDAG * DAG) const547 CreateTargetHazardRecognizer(const TargetMachine *TM,
548 const ScheduleDAG *DAG) const {
549 // Dummy hazard recognizer allows all instructions to issue.
550 return new ScheduleHazardRecognizer();
551 }
552
553 // Default implementation of CreateTargetMIHazardRecognizer.
554 ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetMIHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const555 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
556 const ScheduleDAG *DAG) const {
557 return (ScheduleHazardRecognizer *)
558 new ScoreboardHazardRecognizer(II, DAG, "misched");
559 }
560
561 // Default implementation of CreateTargetPostRAHazardRecognizer.
562 ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const563 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
564 const ScheduleDAG *DAG) const {
565 return (ScheduleHazardRecognizer *)
566 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
567 }
568
569 //===----------------------------------------------------------------------===//
570 // SelectionDAG latency interface.
571 //===----------------------------------------------------------------------===//
572
573 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const574 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
575 SDNode *DefNode, unsigned DefIdx,
576 SDNode *UseNode, unsigned UseIdx) const {
577 if (!ItinData || ItinData->isEmpty())
578 return -1;
579
580 if (!DefNode->isMachineOpcode())
581 return -1;
582
583 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
584 if (!UseNode->isMachineOpcode())
585 return ItinData->getOperandCycle(DefClass, DefIdx);
586 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
587 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
588 }
589
getInstrLatency(const InstrItineraryData * ItinData,SDNode * N) const590 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
591 SDNode *N) const {
592 if (!ItinData || ItinData->isEmpty())
593 return 1;
594
595 if (!N->isMachineOpcode())
596 return 1;
597
598 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
599 }
600
601 //===----------------------------------------------------------------------===//
602 // MachineInstr latency interface.
603 //===----------------------------------------------------------------------===//
604
605 unsigned
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr * MI) const606 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
607 const MachineInstr *MI) const {
608 if (!ItinData || ItinData->isEmpty())
609 return 1;
610
611 unsigned Class = MI->getDesc().getSchedClass();
612 int UOps = ItinData->Itineraries[Class].NumMicroOps;
613 if (UOps >= 0)
614 return UOps;
615
616 // The # of u-ops is dynamically determined. The specific target should
617 // override this function to return the right number.
618 return 1;
619 }
620
621 /// Return the default expected latency for a def based on it's opcode.
defaultDefLatency(const MCSchedModel * SchedModel,const MachineInstr * DefMI) const622 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
623 const MachineInstr *DefMI) const {
624 if (DefMI->isTransient())
625 return 0;
626 if (DefMI->mayLoad())
627 return SchedModel->LoadLatency;
628 if (isHighLatencyDef(DefMI->getOpcode()))
629 return SchedModel->HighLatency;
630 return 1;
631 }
632
633 unsigned TargetInstrInfo::
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr * MI,unsigned * PredCost) const634 getInstrLatency(const InstrItineraryData *ItinData,
635 const MachineInstr *MI,
636 unsigned *PredCost) const {
637 // Default to one cycle for no itinerary. However, an "empty" itinerary may
638 // still have a MinLatency property, which getStageLatency checks.
639 if (!ItinData)
640 return MI->mayLoad() ? 2 : 1;
641
642 return ItinData->getStageLatency(MI->getDesc().getSchedClass());
643 }
644
hasLowDefLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx) const645 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
646 const MachineInstr *DefMI,
647 unsigned DefIdx) const {
648 if (!ItinData || ItinData->isEmpty())
649 return false;
650
651 unsigned DefClass = DefMI->getDesc().getSchedClass();
652 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
653 return (DefCycle != -1 && DefCycle <= 1);
654 }
655
656 /// Both DefMI and UseMI must be valid. By default, call directly to the
657 /// itinerary. This may be overriden by the target.
658 int TargetInstrInfo::
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx) const659 getOperandLatency(const InstrItineraryData *ItinData,
660 const MachineInstr *DefMI, unsigned DefIdx,
661 const MachineInstr *UseMI, unsigned UseIdx) const {
662 unsigned DefClass = DefMI->getDesc().getSchedClass();
663 unsigned UseClass = UseMI->getDesc().getSchedClass();
664 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
665 }
666
667 /// If we can determine the operand latency from the def only, without itinerary
668 /// lookup, do so. Otherwise return -1.
computeDefOperandLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,bool FindMin) const669 int TargetInstrInfo::computeDefOperandLatency(
670 const InstrItineraryData *ItinData,
671 const MachineInstr *DefMI, bool FindMin) const {
672
673 // Let the target hook getInstrLatency handle missing itineraries.
674 if (!ItinData)
675 return getInstrLatency(ItinData, DefMI);
676
677 // Return a latency based on the itinerary properties and defining instruction
678 // if possible. Some common subtargets don't require per-operand latency,
679 // especially for minimum latencies.
680 if (FindMin) {
681 // If MinLatency is valid, call getInstrLatency. This uses Stage latency if
682 // it exists before defaulting to MinLatency.
683 if (ItinData->SchedModel->MinLatency >= 0)
684 return getInstrLatency(ItinData, DefMI);
685
686 // If MinLatency is invalid, OperandLatency is interpreted as MinLatency.
687 // For empty itineraries, short-cirtuit the check and default to one cycle.
688 if (ItinData->isEmpty())
689 return 1;
690 }
691 else if(ItinData->isEmpty())
692 return defaultDefLatency(ItinData->SchedModel, DefMI);
693
694 // ...operand lookup required
695 return -1;
696 }
697
698 /// computeOperandLatency - Compute and return the latency of the given data
699 /// dependent def and use when the operand indices are already known. UseMI may
700 /// be NULL for an unknown use.
701 ///
702 /// FindMin may be set to get the minimum vs. expected latency. Minimum
703 /// latency is used for scheduling groups, while expected latency is for
704 /// instruction cost and critical path.
705 ///
706 /// Depending on the subtarget's itinerary properties, this may or may not need
707 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
708 /// UseIdx to compute min latency.
709 unsigned TargetInstrInfo::
computeOperandLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx,bool FindMin) const710 computeOperandLatency(const InstrItineraryData *ItinData,
711 const MachineInstr *DefMI, unsigned DefIdx,
712 const MachineInstr *UseMI, unsigned UseIdx,
713 bool FindMin) const {
714
715 int DefLatency = computeDefOperandLatency(ItinData, DefMI, FindMin);
716 if (DefLatency >= 0)
717 return DefLatency;
718
719 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
720
721 int OperLatency = 0;
722 if (UseMI)
723 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
724 else {
725 unsigned DefClass = DefMI->getDesc().getSchedClass();
726 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
727 }
728 if (OperLatency >= 0)
729 return OperLatency;
730
731 // No operand latency was found.
732 unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
733
734 // Expected latency is the max of the stage latency and itinerary props.
735 if (!FindMin)
736 InstrLatency = std::max(InstrLatency,
737 defaultDefLatency(ItinData->SchedModel, DefMI));
738 return InstrLatency;
739 }
740