• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * QEMU DMA emulation
3  *
4  * Copyright (c) 2003-2004 Vassili Karpov (malc)
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw.h"
25 #include "isa.h"
26 
27 /* #define DEBUG_DMA */
28 
29 #define dolog(...) fprintf (stderr, "dma: " __VA_ARGS__)
30 #ifdef DEBUG_DMA
31 #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__)
32 #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__)
33 #else
34 #define linfo(...)
35 #define ldebug(...)
36 #endif
37 
38 struct dma_regs {
39     int now[2];
40     uint16_t base[2];
41     uint8_t mode;
42     uint8_t page;
43     uint8_t pageh;
44     uint8_t dack;
45     uint8_t eop;
46     DMA_transfer_handler transfer_handler;
47     void *opaque;
48 };
49 
50 #define ADDR 0
51 #define COUNT 1
52 
53 static struct dma_cont {
54     uint8_t status;
55     uint8_t command;
56     uint8_t mask;
57     uint8_t flip_flop;
58     int dshift;
59     struct dma_regs regs[4];
60 } dma_controllers[2];
61 
62 enum {
63     CMD_MEMORY_TO_MEMORY = 0x01,
64     CMD_FIXED_ADDRESS    = 0x02,
65     CMD_BLOCK_CONTROLLER = 0x04,
66     CMD_COMPRESSED_TIME  = 0x08,
67     CMD_CYCLIC_PRIORITY  = 0x10,
68     CMD_EXTENDED_WRITE   = 0x20,
69     CMD_LOW_DREQ         = 0x40,
70     CMD_LOW_DACK         = 0x80,
71     CMD_NOT_SUPPORTED    = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS
72     | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE
73     | CMD_LOW_DREQ | CMD_LOW_DACK
74 
75 };
76 
77 static void DMA_run (void);
78 
79 static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
80 
write_page(void * opaque,uint32_t nport,uint32_t data)81 static void write_page (void *opaque, uint32_t nport, uint32_t data)
82 {
83     struct dma_cont *d = opaque;
84     int ichan;
85 
86     ichan = channels[nport & 7];
87     if (-1 == ichan) {
88         dolog ("invalid channel %#x %#x\n", nport, data);
89         return;
90     }
91     d->regs[ichan].page = data;
92 }
93 
write_pageh(void * opaque,uint32_t nport,uint32_t data)94 static void write_pageh (void *opaque, uint32_t nport, uint32_t data)
95 {
96     struct dma_cont *d = opaque;
97     int ichan;
98 
99     ichan = channels[nport & 7];
100     if (-1 == ichan) {
101         dolog ("invalid channel %#x %#x\n", nport, data);
102         return;
103     }
104     d->regs[ichan].pageh = data;
105 }
106 
read_page(void * opaque,uint32_t nport)107 static uint32_t read_page (void *opaque, uint32_t nport)
108 {
109     struct dma_cont *d = opaque;
110     int ichan;
111 
112     ichan = channels[nport & 7];
113     if (-1 == ichan) {
114         dolog ("invalid channel read %#x\n", nport);
115         return 0;
116     }
117     return d->regs[ichan].page;
118 }
119 
read_pageh(void * opaque,uint32_t nport)120 static uint32_t read_pageh (void *opaque, uint32_t nport)
121 {
122     struct dma_cont *d = opaque;
123     int ichan;
124 
125     ichan = channels[nport & 7];
126     if (-1 == ichan) {
127         dolog ("invalid channel read %#x\n", nport);
128         return 0;
129     }
130     return d->regs[ichan].pageh;
131 }
132 
init_chan(struct dma_cont * d,int ichan)133 static inline void init_chan (struct dma_cont *d, int ichan)
134 {
135     struct dma_regs *r;
136 
137     r = d->regs + ichan;
138     r->now[ADDR] = r->base[ADDR] << d->dshift;
139     r->now[COUNT] = 0;
140 }
141 
getff(struct dma_cont * d)142 static inline int getff (struct dma_cont *d)
143 {
144     int ff;
145 
146     ff = d->flip_flop;
147     d->flip_flop = !ff;
148     return ff;
149 }
150 
read_chan(void * opaque,uint32_t nport)151 static uint32_t read_chan (void *opaque, uint32_t nport)
152 {
153     struct dma_cont *d = opaque;
154     int ichan, nreg, iport, ff, val, dir;
155     struct dma_regs *r;
156 
157     iport = (nport >> d->dshift) & 0x0f;
158     ichan = iport >> 1;
159     nreg = iport & 1;
160     r = d->regs + ichan;
161 
162     dir = ((r->mode >> 5) & 1) ? -1 : 1;
163     ff = getff (d);
164     if (nreg)
165         val = (r->base[COUNT] << d->dshift) - r->now[COUNT];
166     else
167         val = r->now[ADDR] + r->now[COUNT] * dir;
168 
169     ldebug ("read_chan %#x -> %d\n", iport, val);
170     return (val >> (d->dshift + (ff << 3))) & 0xff;
171 }
172 
write_chan(void * opaque,uint32_t nport,uint32_t data)173 static void write_chan (void *opaque, uint32_t nport, uint32_t data)
174 {
175     struct dma_cont *d = opaque;
176     int iport, ichan, nreg;
177     struct dma_regs *r;
178 
179     iport = (nport >> d->dshift) & 0x0f;
180     ichan = iport >> 1;
181     nreg = iport & 1;
182     r = d->regs + ichan;
183     if (getff (d)) {
184         r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00);
185         init_chan (d, ichan);
186     } else {
187         r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff);
188     }
189 }
190 
write_cont(void * opaque,uint32_t nport,uint32_t data)191 static void write_cont (void *opaque, uint32_t nport, uint32_t data)
192 {
193     struct dma_cont *d = opaque;
194     int iport, ichan = 0;
195 
196     iport = (nport >> d->dshift) & 0x0f;
197     switch (iport) {
198     case 0x08:                  /* command */
199         if ((data != 0) && (data & CMD_NOT_SUPPORTED)) {
200             dolog ("command %#x not supported\n", data);
201             return;
202         }
203         d->command = data;
204         break;
205 
206     case 0x09:
207         ichan = data & 3;
208         if (data & 4) {
209             d->status |= 1 << (ichan + 4);
210         }
211         else {
212             d->status &= ~(1 << (ichan + 4));
213         }
214         d->status &= ~(1 << ichan);
215         DMA_run();
216         break;
217 
218     case 0x0a:                  /* single mask */
219         if (data & 4)
220             d->mask |= 1 << (data & 3);
221         else
222             d->mask &= ~(1 << (data & 3));
223         DMA_run();
224         break;
225 
226     case 0x0b:                  /* mode */
227         {
228             ichan = data & 3;
229 #ifdef DEBUG_DMA
230             {
231                 int op, ai, dir, opmode;
232                 op = (data >> 2) & 3;
233                 ai = (data >> 4) & 1;
234                 dir = (data >> 5) & 1;
235                 opmode = (data >> 6) & 3;
236 
237                 linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n",
238                        ichan, op, ai, dir, opmode);
239             }
240 #endif
241             d->regs[ichan].mode = data;
242             break;
243         }
244 
245     case 0x0c:                  /* clear flip flop */
246         d->flip_flop = 0;
247         break;
248 
249     case 0x0d:                  /* reset */
250         d->flip_flop = 0;
251         d->mask = ~0;
252         d->status = 0;
253         d->command = 0;
254         break;
255 
256     case 0x0e:                  /* clear mask for all channels */
257         d->mask = 0;
258         DMA_run();
259         break;
260 
261     case 0x0f:                  /* write mask for all channels */
262         d->mask = data;
263         DMA_run();
264         break;
265 
266     default:
267         dolog ("unknown iport %#x\n", iport);
268         break;
269     }
270 
271 #ifdef DEBUG_DMA
272     if (0xc != iport) {
273         linfo ("write_cont: nport %#06x, ichan % 2d, val %#06x\n",
274                nport, ichan, data);
275     }
276 #endif
277 }
278 
read_cont(void * opaque,uint32_t nport)279 static uint32_t read_cont (void *opaque, uint32_t nport)
280 {
281     struct dma_cont *d = opaque;
282     int iport, val;
283 
284     iport = (nport >> d->dshift) & 0x0f;
285     switch (iport) {
286     case 0x08:                  /* status */
287         val = d->status;
288         d->status &= 0xf0;
289         break;
290     case 0x0f:                  /* mask */
291         val = d->mask;
292         break;
293     default:
294         val = 0;
295         break;
296     }
297 
298     ldebug ("read_cont: nport %#06x, iport %#04x val %#x\n", nport, iport, val);
299     return val;
300 }
301 
DMA_get_channel_mode(int nchan)302 int DMA_get_channel_mode (int nchan)
303 {
304     return dma_controllers[nchan > 3].regs[nchan & 3].mode;
305 }
306 
DMA_hold_DREQ(int nchan)307 void DMA_hold_DREQ (int nchan)
308 {
309     int ncont, ichan;
310 
311     ncont = nchan > 3;
312     ichan = nchan & 3;
313     linfo ("held cont=%d chan=%d\n", ncont, ichan);
314     dma_controllers[ncont].status |= 1 << (ichan + 4);
315     DMA_run();
316 }
317 
DMA_release_DREQ(int nchan)318 void DMA_release_DREQ (int nchan)
319 {
320     int ncont, ichan;
321 
322     ncont = nchan > 3;
323     ichan = nchan & 3;
324     linfo ("released cont=%d chan=%d\n", ncont, ichan);
325     dma_controllers[ncont].status &= ~(1 << (ichan + 4));
326     DMA_run();
327 }
328 
channel_run(int ncont,int ichan)329 static void channel_run (int ncont, int ichan)
330 {
331     int n;
332     struct dma_regs *r = &dma_controllers[ncont].regs[ichan];
333 #ifdef DEBUG_DMA
334     int dir, opmode;
335 
336     dir = (r->mode >> 5) & 1;
337     opmode = (r->mode >> 6) & 3;
338 
339     if (dir) {
340         dolog ("DMA in address decrement mode\n");
341     }
342     if (opmode != 1) {
343         dolog ("DMA not in single mode select %#x\n", opmode);
344     }
345 #endif
346 
347     r = dma_controllers[ncont].regs + ichan;
348     if (r->transfer_handler) {
349         n = r->transfer_handler (r->opaque, ichan + (ncont << 2),
350                                  r->now[COUNT], (r->base[COUNT] + 1) << ncont);
351         r->now[COUNT] = n;
352     }
353     ldebug ("dma_pos %d size %d\n", n, (r->base[COUNT] + 1) << ncont);
354 }
355 
356 static QEMUBH *dma_bh;
357 
DMA_run(void)358 static void DMA_run (void)
359 {
360     struct dma_cont *d;
361     int icont, ichan;
362     int rearm = 0;
363 
364     d = dma_controllers;
365 
366     for (icont = 0; icont < 2; icont++, d++) {
367         for (ichan = 0; ichan < 4; ichan++) {
368             int mask;
369 
370             mask = 1 << ichan;
371 
372             if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4)))) {
373                 channel_run (icont, ichan);
374                 rearm = 1;
375             }
376         }
377     }
378 
379     if (rearm)
380         qemu_bh_schedule_idle(dma_bh);
381 }
382 
DMA_run_bh(void * unused)383 static void DMA_run_bh(void *unused)
384 {
385     DMA_run();
386 }
387 
DMA_register_channel(int nchan,DMA_transfer_handler transfer_handler,void * opaque)388 void DMA_register_channel (int nchan,
389                            DMA_transfer_handler transfer_handler,
390                            void *opaque)
391 {
392     struct dma_regs *r;
393     int ichan, ncont;
394 
395     ncont = nchan > 3;
396     ichan = nchan & 3;
397 
398     r = dma_controllers[ncont].regs + ichan;
399     r->transfer_handler = transfer_handler;
400     r->opaque = opaque;
401 }
402 
DMA_read_memory(int nchan,void * buf,int pos,int len)403 int DMA_read_memory (int nchan, void *buf, int pos, int len)
404 {
405     struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
406     target_phys_addr_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
407 
408     if (r->mode & 0x20) {
409         int i;
410         uint8_t *p = buf;
411 
412         cpu_physical_memory_read (addr - pos - len, buf, len);
413         /* What about 16bit transfers? */
414         for (i = 0; i < len >> 1; i++) {
415             uint8_t b = p[len - i - 1];
416             p[i] = b;
417         }
418     }
419     else
420         cpu_physical_memory_read (addr + pos, buf, len);
421 
422     return len;
423 }
424 
DMA_write_memory(int nchan,void * buf,int pos,int len)425 int DMA_write_memory (int nchan, void *buf, int pos, int len)
426 {
427     struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
428     target_phys_addr_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
429 
430     if (r->mode & 0x20) {
431         int i;
432         uint8_t *p = buf;
433 
434         cpu_physical_memory_write (addr - pos - len, buf, len);
435         /* What about 16bit transfers? */
436         for (i = 0; i < len; i++) {
437             uint8_t b = p[len - i - 1];
438             p[i] = b;
439         }
440     }
441     else
442         cpu_physical_memory_write (addr + pos, buf, len);
443 
444     return len;
445 }
446 
447 /* request the emulator to transfer a new DMA memory block ASAP */
DMA_schedule(int nchan)448 void DMA_schedule(int nchan)
449 {
450     CPUState *env = cpu_single_env;
451     if (env)
452         cpu_exit(env);
453 }
454 
dma_reset(void * opaque)455 static void dma_reset(void *opaque)
456 {
457     struct dma_cont *d = opaque;
458     write_cont (d, (0x0d << d->dshift), 0);
459 }
460 
dma_phony_handler(void * opaque,int nchan,int dma_pos,int dma_len)461 static int dma_phony_handler (void *opaque, int nchan, int dma_pos, int dma_len)
462 {
463     dolog ("unregistered DMA channel used nchan=%d dma_pos=%d dma_len=%d\n",
464            nchan, dma_pos, dma_len);
465     return dma_pos;
466 }
467 
468 /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */
dma_init2(struct dma_cont * d,int base,int dshift,int page_base,int pageh_base)469 static void dma_init2(struct dma_cont *d, int base, int dshift,
470                       int page_base, int pageh_base)
471 {
472     static const int page_port_list[] = { 0x1, 0x2, 0x3, 0x7 };
473     int i;
474 
475     d->dshift = dshift;
476     for (i = 0; i < 8; i++) {
477         register_ioport_write (base + (i << dshift), 1, 1, write_chan, d);
478         register_ioport_read (base + (i << dshift), 1, 1, read_chan, d);
479     }
480     for (i = 0; i < ARRAY_SIZE (page_port_list); i++) {
481         register_ioport_write (page_base + page_port_list[i], 1, 1,
482                                write_page, d);
483         register_ioport_read (page_base + page_port_list[i], 1, 1,
484                               read_page, d);
485         if (pageh_base >= 0) {
486             register_ioport_write (pageh_base + page_port_list[i], 1, 1,
487                                    write_pageh, d);
488             register_ioport_read (pageh_base + page_port_list[i], 1, 1,
489                                   read_pageh, d);
490         }
491     }
492     for (i = 0; i < 8; i++) {
493         register_ioport_write (base + ((i + 8) << dshift), 1, 1,
494                                write_cont, d);
495         register_ioport_read (base + ((i + 8) << dshift), 1, 1,
496                               read_cont, d);
497     }
498     qemu_register_reset(dma_reset, 0, d);
499     dma_reset(d);
500     for (i = 0; i < ARRAY_SIZE (d->regs); ++i) {
501         d->regs[i].transfer_handler = dma_phony_handler;
502     }
503 }
504 
dma_save(QEMUFile * f,void * opaque)505 static void dma_save (QEMUFile *f, void *opaque)
506 {
507     struct dma_cont *d = opaque;
508     int i;
509 
510     /* qemu_put_8s (f, &d->status); */
511     qemu_put_8s (f, &d->command);
512     qemu_put_8s (f, &d->mask);
513     qemu_put_8s (f, &d->flip_flop);
514     qemu_put_be32 (f, d->dshift);
515 
516     for (i = 0; i < 4; ++i) {
517         struct dma_regs *r = &d->regs[i];
518         qemu_put_be32 (f, r->now[0]);
519         qemu_put_be32 (f, r->now[1]);
520         qemu_put_be16s (f, &r->base[0]);
521         qemu_put_be16s (f, &r->base[1]);
522         qemu_put_8s (f, &r->mode);
523         qemu_put_8s (f, &r->page);
524         qemu_put_8s (f, &r->pageh);
525         qemu_put_8s (f, &r->dack);
526         qemu_put_8s (f, &r->eop);
527     }
528 }
529 
dma_load(QEMUFile * f,void * opaque,int version_id)530 static int dma_load (QEMUFile *f, void *opaque, int version_id)
531 {
532     struct dma_cont *d = opaque;
533     int i;
534 
535     if (version_id != 1)
536         return -EINVAL;
537 
538     /* qemu_get_8s (f, &d->status); */
539     qemu_get_8s (f, &d->command);
540     qemu_get_8s (f, &d->mask);
541     qemu_get_8s (f, &d->flip_flop);
542     d->dshift=qemu_get_be32 (f);
543 
544     for (i = 0; i < 4; ++i) {
545         struct dma_regs *r = &d->regs[i];
546         r->now[0]=qemu_get_be32 (f);
547         r->now[1]=qemu_get_be32 (f);
548         qemu_get_be16s (f, &r->base[0]);
549         qemu_get_be16s (f, &r->base[1]);
550         qemu_get_8s (f, &r->mode);
551         qemu_get_8s (f, &r->page);
552         qemu_get_8s (f, &r->pageh);
553         qemu_get_8s (f, &r->dack);
554         qemu_get_8s (f, &r->eop);
555     }
556 
557     DMA_run();
558 
559     return 0;
560 }
561 
DMA_init(int high_page_enable)562 void DMA_init (int high_page_enable)
563 {
564     dma_init2(&dma_controllers[0], 0x00, 0, 0x80,
565               high_page_enable ? 0x480 : -1);
566     dma_init2(&dma_controllers[1], 0xc0, 1, 0x88,
567               high_page_enable ? 0x488 : -1);
568     register_savevm ("dma", 0, 1, dma_save, dma_load, &dma_controllers[0]);
569     register_savevm ("dma", 1, 1, dma_save, dma_load, &dma_controllers[1]);
570 
571     dma_bh = qemu_bh_new(DMA_run_bh, NULL);
572 }
573