• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes implement wrappers around llvm::Value in order to
11 // fully represent the range of values for C L- and R- values.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef CLANG_CODEGEN_CGVALUE_H
16 #define CLANG_CODEGEN_CGVALUE_H
17 
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Type.h"
21 #include "llvm/IR/Value.h"
22 
23 namespace llvm {
24   class Constant;
25   class MDNode;
26 }
27 
28 namespace clang {
29 namespace CodeGen {
30   class AggValueSlot;
31   struct CGBitFieldInfo;
32 
33 /// RValue - This trivial value class is used to represent the result of an
34 /// expression that is evaluated.  It can be one of three things: either a
35 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
36 /// address of an aggregate value in memory.
37 class RValue {
38   enum Flavor { Scalar, Complex, Aggregate };
39 
40   // Stores first value and flavor.
41   llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
42   // Stores second value and volatility.
43   llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
44 
45 public:
isScalar()46   bool isScalar() const { return V1.getInt() == Scalar; }
isComplex()47   bool isComplex() const { return V1.getInt() == Complex; }
isAggregate()48   bool isAggregate() const { return V1.getInt() == Aggregate; }
49 
isVolatileQualified()50   bool isVolatileQualified() const { return V2.getInt(); }
51 
52   /// getScalarVal() - Return the Value* of this scalar value.
getScalarVal()53   llvm::Value *getScalarVal() const {
54     assert(isScalar() && "Not a scalar!");
55     return V1.getPointer();
56   }
57 
58   /// getComplexVal - Return the real/imag components of this complex value.
59   ///
getComplexVal()60   std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
61     return std::make_pair(V1.getPointer(), V2.getPointer());
62   }
63 
64   /// getAggregateAddr() - Return the Value* of the address of the aggregate.
getAggregateAddr()65   llvm::Value *getAggregateAddr() const {
66     assert(isAggregate() && "Not an aggregate!");
67     return V1.getPointer();
68   }
69 
get(llvm::Value * V)70   static RValue get(llvm::Value *V) {
71     RValue ER;
72     ER.V1.setPointer(V);
73     ER.V1.setInt(Scalar);
74     ER.V2.setInt(false);
75     return ER;
76   }
getComplex(llvm::Value * V1,llvm::Value * V2)77   static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
78     RValue ER;
79     ER.V1.setPointer(V1);
80     ER.V2.setPointer(V2);
81     ER.V1.setInt(Complex);
82     ER.V2.setInt(false);
83     return ER;
84   }
getComplex(const std::pair<llvm::Value *,llvm::Value * > & C)85   static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
86     return getComplex(C.first, C.second);
87   }
88   // FIXME: Aggregate rvalues need to retain information about whether they are
89   // volatile or not.  Remove default to find all places that probably get this
90   // wrong.
91   static RValue getAggregate(llvm::Value *V, bool Volatile = false) {
92     RValue ER;
93     ER.V1.setPointer(V);
94     ER.V1.setInt(Aggregate);
95     ER.V2.setInt(Volatile);
96     return ER;
97   }
98 };
99 
100 /// Does an ARC strong l-value have precise lifetime?
101 enum ARCPreciseLifetime_t {
102   ARCImpreciseLifetime, ARCPreciseLifetime
103 };
104 
105 /// LValue - This represents an lvalue references.  Because C/C++ allow
106 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
107 /// bitrange.
108 class LValue {
109   enum {
110     Simple,       // This is a normal l-value, use getAddress().
111     VectorElt,    // This is a vector element l-value (V[i]), use getVector*
112     BitField,     // This is a bitfield l-value, use getBitfield*.
113     ExtVectorElt  // This is an extended vector subset, use getExtVectorComp
114   } LVType;
115 
116   llvm::Value *V;
117 
118   union {
119     // Index into a vector subscript: V[i]
120     llvm::Value *VectorIdx;
121 
122     // ExtVector element subset: V.xyx
123     llvm::Constant *VectorElts;
124 
125     // BitField start bit and size
126     const CGBitFieldInfo *BitFieldInfo;
127   };
128 
129   QualType Type;
130 
131   // 'const' is unused here
132   Qualifiers Quals;
133 
134   // The alignment to use when accessing this lvalue.  (For vector elements,
135   // this is the alignment of the whole vector.)
136   int64_t Alignment;
137 
138   // objective-c's ivar
139   bool Ivar:1;
140 
141   // objective-c's ivar is an array
142   bool ObjIsArray:1;
143 
144   // LValue is non-gc'able for any reason, including being a parameter or local
145   // variable.
146   bool NonGC: 1;
147 
148   // Lvalue is a global reference of an objective-c object
149   bool GlobalObjCRef : 1;
150 
151   // Lvalue is a thread local reference
152   bool ThreadLocalRef : 1;
153 
154   // Lvalue has ARC imprecise lifetime.  We store this inverted to try
155   // to make the default bitfield pattern all-zeroes.
156   bool ImpreciseLifetime : 1;
157 
158   Expr *BaseIvarExp;
159 
160   /// TBAAInfo - TBAA information to attach to dereferences of this LValue.
161   llvm::MDNode *TBAAInfo;
162 
163 private:
164   void Initialize(QualType Type, Qualifiers Quals,
165                   CharUnits Alignment,
166                   llvm::MDNode *TBAAInfo = 0) {
167     this->Type = Type;
168     this->Quals = Quals;
169     this->Alignment = Alignment.getQuantity();
170     assert(this->Alignment == Alignment.getQuantity() &&
171            "Alignment exceeds allowed max!");
172 
173     // Initialize Objective-C flags.
174     this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
175     this->ImpreciseLifetime = false;
176     this->ThreadLocalRef = false;
177     this->BaseIvarExp = 0;
178     this->TBAAInfo = TBAAInfo;
179   }
180 
181 public:
isSimple()182   bool isSimple() const { return LVType == Simple; }
isVectorElt()183   bool isVectorElt() const { return LVType == VectorElt; }
isBitField()184   bool isBitField() const { return LVType == BitField; }
isExtVectorElt()185   bool isExtVectorElt() const { return LVType == ExtVectorElt; }
186 
isVolatileQualified()187   bool isVolatileQualified() const { return Quals.hasVolatile(); }
isRestrictQualified()188   bool isRestrictQualified() const { return Quals.hasRestrict(); }
getVRQualifiers()189   unsigned getVRQualifiers() const {
190     return Quals.getCVRQualifiers() & ~Qualifiers::Const;
191   }
192 
getType()193   QualType getType() const { return Type; }
194 
getObjCLifetime()195   Qualifiers::ObjCLifetime getObjCLifetime() const {
196     return Quals.getObjCLifetime();
197   }
198 
isObjCIvar()199   bool isObjCIvar() const { return Ivar; }
setObjCIvar(bool Value)200   void setObjCIvar(bool Value) { Ivar = Value; }
201 
isObjCArray()202   bool isObjCArray() const { return ObjIsArray; }
setObjCArray(bool Value)203   void setObjCArray(bool Value) { ObjIsArray = Value; }
204 
isNonGC()205   bool isNonGC () const { return NonGC; }
setNonGC(bool Value)206   void setNonGC(bool Value) { NonGC = Value; }
207 
isGlobalObjCRef()208   bool isGlobalObjCRef() const { return GlobalObjCRef; }
setGlobalObjCRef(bool Value)209   void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
210 
isThreadLocalRef()211   bool isThreadLocalRef() const { return ThreadLocalRef; }
setThreadLocalRef(bool Value)212   void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
213 
isARCPreciseLifetime()214   ARCPreciseLifetime_t isARCPreciseLifetime() const {
215     return ARCPreciseLifetime_t(!ImpreciseLifetime);
216   }
setARCPreciseLifetime(ARCPreciseLifetime_t value)217   void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
218     ImpreciseLifetime = (value == ARCImpreciseLifetime);
219   }
220 
isObjCWeak()221   bool isObjCWeak() const {
222     return Quals.getObjCGCAttr() == Qualifiers::Weak;
223   }
isObjCStrong()224   bool isObjCStrong() const {
225     return Quals.getObjCGCAttr() == Qualifiers::Strong;
226   }
227 
isVolatile()228   bool isVolatile() const {
229     return Quals.hasVolatile();
230   }
231 
getBaseIvarExp()232   Expr *getBaseIvarExp() const { return BaseIvarExp; }
setBaseIvarExp(Expr * V)233   void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
234 
getTBAAInfo()235   llvm::MDNode *getTBAAInfo() const { return TBAAInfo; }
setTBAAInfo(llvm::MDNode * N)236   void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; }
237 
getQuals()238   const Qualifiers &getQuals() const { return Quals; }
getQuals()239   Qualifiers &getQuals() { return Quals; }
240 
getAddressSpace()241   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
242 
getAlignment()243   CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
setAlignment(CharUnits A)244   void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
245 
246   // simple lvalue
getAddress()247   llvm::Value *getAddress() const { assert(isSimple()); return V; }
setAddress(llvm::Value * address)248   void setAddress(llvm::Value *address) {
249     assert(isSimple());
250     V = address;
251   }
252 
253   // vector elt lvalue
getVectorAddr()254   llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
getVectorIdx()255   llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
256 
257   // extended vector elements.
getExtVectorAddr()258   llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
getExtVectorElts()259   llvm::Constant *getExtVectorElts() const {
260     assert(isExtVectorElt());
261     return VectorElts;
262   }
263 
264   // bitfield lvalue
getBitFieldAddr()265   llvm::Value *getBitFieldAddr() const {
266     assert(isBitField());
267     return V;
268   }
getBitFieldInfo()269   const CGBitFieldInfo &getBitFieldInfo() const {
270     assert(isBitField());
271     return *BitFieldInfo;
272   }
273 
274   static LValue MakeAddr(llvm::Value *address, QualType type,
275                          CharUnits alignment, ASTContext &Context,
276                          llvm::MDNode *TBAAInfo = 0) {
277     Qualifiers qs = type.getQualifiers();
278     qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
279 
280     LValue R;
281     R.LVType = Simple;
282     R.V = address;
283     R.Initialize(type, qs, alignment, TBAAInfo);
284     return R;
285   }
286 
MakeVectorElt(llvm::Value * Vec,llvm::Value * Idx,QualType type,CharUnits Alignment)287   static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
288                               QualType type, CharUnits Alignment) {
289     LValue R;
290     R.LVType = VectorElt;
291     R.V = Vec;
292     R.VectorIdx = Idx;
293     R.Initialize(type, type.getQualifiers(), Alignment);
294     return R;
295   }
296 
MakeExtVectorElt(llvm::Value * Vec,llvm::Constant * Elts,QualType type,CharUnits Alignment)297   static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
298                                  QualType type, CharUnits Alignment) {
299     LValue R;
300     R.LVType = ExtVectorElt;
301     R.V = Vec;
302     R.VectorElts = Elts;
303     R.Initialize(type, type.getQualifiers(), Alignment);
304     return R;
305   }
306 
307   /// \brief Create a new object to represent a bit-field access.
308   ///
309   /// \param Addr - The base address of the bit-field sequence this
310   /// bit-field refers to.
311   /// \param Info - The information describing how to perform the bit-field
312   /// access.
MakeBitfield(llvm::Value * Addr,const CGBitFieldInfo & Info,QualType type,CharUnits Alignment)313   static LValue MakeBitfield(llvm::Value *Addr,
314                              const CGBitFieldInfo &Info,
315                              QualType type, CharUnits Alignment) {
316     LValue R;
317     R.LVType = BitField;
318     R.V = Addr;
319     R.BitFieldInfo = &Info;
320     R.Initialize(type, type.getQualifiers(), Alignment);
321     return R;
322   }
323 
asAggregateRValue()324   RValue asAggregateRValue() const {
325     // FIMXE: Alignment
326     return RValue::getAggregate(getAddress(), isVolatileQualified());
327   }
328 };
329 
330 /// An aggregate value slot.
331 class AggValueSlot {
332   /// The address.
333   llvm::Value *Addr;
334 
335   // Qualifiers
336   Qualifiers Quals;
337 
338   unsigned short Alignment;
339 
340   /// DestructedFlag - This is set to true if some external code is
341   /// responsible for setting up a destructor for the slot.  Otherwise
342   /// the code which constructs it should push the appropriate cleanup.
343   bool DestructedFlag : 1;
344 
345   /// ObjCGCFlag - This is set to true if writing to the memory in the
346   /// slot might require calling an appropriate Objective-C GC
347   /// barrier.  The exact interaction here is unnecessarily mysterious.
348   bool ObjCGCFlag : 1;
349 
350   /// ZeroedFlag - This is set to true if the memory in the slot is
351   /// known to be zero before the assignment into it.  This means that
352   /// zero fields don't need to be set.
353   bool ZeroedFlag : 1;
354 
355   /// AliasedFlag - This is set to true if the slot might be aliased
356   /// and it's not undefined behavior to access it through such an
357   /// alias.  Note that it's always undefined behavior to access a C++
358   /// object that's under construction through an alias derived from
359   /// outside the construction process.
360   ///
361   /// This flag controls whether calls that produce the aggregate
362   /// value may be evaluated directly into the slot, or whether they
363   /// must be evaluated into an unaliased temporary and then memcpy'ed
364   /// over.  Since it's invalid in general to memcpy a non-POD C++
365   /// object, it's important that this flag never be set when
366   /// evaluating an expression which constructs such an object.
367   bool AliasedFlag : 1;
368 
369   /// ValueOfAtomicFlag - This is set to true if the slot is the value
370   /// subobject of an object the size of an _Atomic(T).  The specific
371   /// guarantees this makes are:
372   ///   - the address is guaranteed to be a getelementptr into the
373   ///     padding struct and
374   ///   - it is okay to store something the width of an _Atomic(T)
375   ///     into the address.
376   /// Tracking this allows us to avoid some obviously unnecessary
377   /// memcpys.
378   bool ValueOfAtomicFlag : 1;
379 
380 public:
381   enum IsAliased_t { IsNotAliased, IsAliased };
382   enum IsDestructed_t { IsNotDestructed, IsDestructed };
383   enum IsZeroed_t { IsNotZeroed, IsZeroed };
384   enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
385   enum IsValueOfAtomic_t { IsNotValueOfAtomic, IsValueOfAtomic };
386 
387   /// ignored - Returns an aggregate value slot indicating that the
388   /// aggregate value is being ignored.
ignored()389   static AggValueSlot ignored() {
390     return forAddr(0, CharUnits(), Qualifiers(), IsNotDestructed,
391                    DoesNotNeedGCBarriers, IsNotAliased);
392   }
393 
394   /// forAddr - Make a slot for an aggregate value.
395   ///
396   /// \param quals - The qualifiers that dictate how the slot should
397   /// be initialied. Only 'volatile' and the Objective-C lifetime
398   /// qualifiers matter.
399   ///
400   /// \param isDestructed - true if something else is responsible
401   ///   for calling destructors on this object
402   /// \param needsGC - true if the slot is potentially located
403   ///   somewhere that ObjC GC calls should be emitted for
404   static AggValueSlot forAddr(llvm::Value *addr, CharUnits align,
405                               Qualifiers quals,
406                               IsDestructed_t isDestructed,
407                               NeedsGCBarriers_t needsGC,
408                               IsAliased_t isAliased,
409                               IsZeroed_t isZeroed = IsNotZeroed,
410                               IsValueOfAtomic_t isValueOfAtomic
411                                 = IsNotValueOfAtomic) {
412     AggValueSlot AV;
413     AV.Addr = addr;
414     AV.Alignment = align.getQuantity();
415     AV.Quals = quals;
416     AV.DestructedFlag = isDestructed;
417     AV.ObjCGCFlag = needsGC;
418     AV.ZeroedFlag = isZeroed;
419     AV.AliasedFlag = isAliased;
420     AV.ValueOfAtomicFlag = isValueOfAtomic;
421     return AV;
422   }
423 
424   static AggValueSlot forLValue(const LValue &LV,
425                                 IsDestructed_t isDestructed,
426                                 NeedsGCBarriers_t needsGC,
427                                 IsAliased_t isAliased,
428                                 IsZeroed_t isZeroed = IsNotZeroed,
429                                 IsValueOfAtomic_t isValueOfAtomic
430                                   = IsNotValueOfAtomic) {
431     return forAddr(LV.getAddress(), LV.getAlignment(),
432                    LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed,
433                    isValueOfAtomic);
434   }
435 
isExternallyDestructed()436   IsDestructed_t isExternallyDestructed() const {
437     return IsDestructed_t(DestructedFlag);
438   }
439   void setExternallyDestructed(bool destructed = true) {
440     DestructedFlag = destructed;
441   }
442 
getQualifiers()443   Qualifiers getQualifiers() const { return Quals; }
444 
isVolatile()445   bool isVolatile() const {
446     return Quals.hasVolatile();
447   }
448 
setVolatile(bool flag)449   void setVolatile(bool flag) {
450     Quals.setVolatile(flag);
451   }
452 
getObjCLifetime()453   Qualifiers::ObjCLifetime getObjCLifetime() const {
454     return Quals.getObjCLifetime();
455   }
456 
requiresGCollection()457   NeedsGCBarriers_t requiresGCollection() const {
458     return NeedsGCBarriers_t(ObjCGCFlag);
459   }
460 
getAddr()461   llvm::Value *getAddr() const {
462     return Addr;
463   }
464 
isValueOfAtomic()465   IsValueOfAtomic_t isValueOfAtomic() const {
466     return IsValueOfAtomic_t(ValueOfAtomicFlag);
467   }
468 
469   llvm::Value *getPaddedAtomicAddr() const;
470 
isIgnored()471   bool isIgnored() const {
472     return Addr == 0;
473   }
474 
getAlignment()475   CharUnits getAlignment() const {
476     return CharUnits::fromQuantity(Alignment);
477   }
478 
isPotentiallyAliased()479   IsAliased_t isPotentiallyAliased() const {
480     return IsAliased_t(AliasedFlag);
481   }
482 
483   // FIXME: Alignment?
asRValue()484   RValue asRValue() const {
485     return RValue::getAggregate(getAddr(), isVolatile());
486   }
487 
488   void setZeroed(bool V = true) { ZeroedFlag = V; }
isZeroed()489   IsZeroed_t isZeroed() const {
490     return IsZeroed_t(ZeroedFlag);
491   }
492 };
493 
494 }  // end namespace CodeGen
495 }  // end namespace clang
496 
497 #endif
498