1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
16
17 #include "llvm/IR/Use.h"
18 #include "llvm/Support/Casting.h"
19 #include "llvm/Support/Compiler.h"
20
21 namespace llvm {
22
23 class Constant;
24 class Argument;
25 class Instruction;
26 class BasicBlock;
27 class GlobalValue;
28 class Function;
29 class GlobalVariable;
30 class GlobalAlias;
31 class InlineAsm;
32 class ValueSymbolTable;
33 template<typename ValueTy> class StringMapEntry;
34 typedef StringMapEntry<Value*> ValueName;
35 class raw_ostream;
36 class AssemblyAnnotationWriter;
37 class ValueHandleBase;
38 class LLVMContext;
39 class Twine;
40 class MDNode;
41 class Type;
42 class StringRef;
43
44 //===----------------------------------------------------------------------===//
45 // Value Class
46 //===----------------------------------------------------------------------===//
47
48 /// This is a very important LLVM class. It is the base class of all values
49 /// computed by a program that may be used as operands to other values. Value is
50 /// the super class of other important classes such as Instruction and Function.
51 /// All Values have a Type. Type is not a subclass of Value. Some values can
52 /// have a name and they belong to some Module. Setting the name on the Value
53 /// automatically updates the module's symbol table.
54 ///
55 /// Every value has a "use list" that keeps track of which other Values are
56 /// using this Value. A Value can also have an arbitrary number of ValueHandle
57 /// objects that watch it and listen to RAUW and Destroy events. See
58 /// llvm/Support/ValueHandle.h for details.
59 ///
60 /// @brief LLVM Value Representation
61 class Value {
62 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
63 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
64 protected:
65 /// SubclassOptionalData - This member is similar to SubclassData, however it
66 /// is for holding information which may be used to aid optimization, but
67 /// which may be cleared to zero without affecting conservative
68 /// interpretation.
69 unsigned char SubclassOptionalData : 7;
70
71 private:
72 /// SubclassData - This member is defined by this class, but is not used for
73 /// anything. Subclasses can use it to hold whatever state they find useful.
74 /// This field is initialized to zero by the ctor.
75 unsigned short SubclassData;
76
77 Type *VTy;
78 Use *UseList;
79
80 friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
81 friend class ValueHandleBase;
82 ValueName *Name;
83
84 void operator=(const Value &) LLVM_DELETED_FUNCTION;
85 Value(const Value &) LLVM_DELETED_FUNCTION;
86
87 protected:
88 /// printCustom - Value subclasses can override this to implement custom
89 /// printing behavior.
90 virtual void printCustom(raw_ostream &O) const;
91
92 Value(Type *Ty, unsigned scid);
93 public:
94 virtual ~Value();
95
96 /// dump - Support for debugging, callable in GDB: V->dump()
97 //
98 void dump() const;
99
100 /// print - Implement operator<< on Value.
101 ///
102 void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
103
104 /// All values are typed, get the type of this value.
105 ///
getType()106 Type *getType() const { return VTy; }
107
108 /// All values hold a context through their type.
109 LLVMContext &getContext() const;
110
111 // All values can potentially be named.
hasName()112 bool hasName() const { return Name != 0 && SubclassID != MDStringVal; }
getValueName()113 ValueName *getValueName() const { return Name; }
setValueName(ValueName * VN)114 void setValueName(ValueName *VN) { Name = VN; }
115
116 /// getName() - Return a constant reference to the value's name. This is cheap
117 /// and guaranteed to return the same reference as long as the value is not
118 /// modified.
119 StringRef getName() const;
120
121 /// setName() - Change the name of the value, choosing a new unique name if
122 /// the provided name is taken.
123 ///
124 /// \param Name The new name; or "" if the value's name should be removed.
125 void setName(const Twine &Name);
126
127
128 /// takeName - transfer the name from V to this value, setting V's name to
129 /// empty. It is an error to call V->takeName(V).
130 void takeName(Value *V);
131
132 /// replaceAllUsesWith - Go through the uses list for this definition and make
133 /// each use point to "V" instead of "this". After this completes, 'this's
134 /// use list is guaranteed to be empty.
135 ///
136 void replaceAllUsesWith(Value *V);
137
138 //----------------------------------------------------------------------
139 // Methods for handling the chain of uses of this Value.
140 //
141 typedef value_use_iterator<User> use_iterator;
142 typedef value_use_iterator<const User> const_use_iterator;
143
use_empty()144 bool use_empty() const { return UseList == 0; }
use_begin()145 use_iterator use_begin() { return use_iterator(UseList); }
use_begin()146 const_use_iterator use_begin() const { return const_use_iterator(UseList); }
use_end()147 use_iterator use_end() { return use_iterator(0); }
use_end()148 const_use_iterator use_end() const { return const_use_iterator(0); }
use_back()149 User *use_back() { return *use_begin(); }
use_back()150 const User *use_back() const { return *use_begin(); }
151
152 /// hasOneUse - Return true if there is exactly one user of this value. This
153 /// is specialized because it is a common request and does not require
154 /// traversing the whole use list.
155 ///
hasOneUse()156 bool hasOneUse() const {
157 const_use_iterator I = use_begin(), E = use_end();
158 if (I == E) return false;
159 return ++I == E;
160 }
161
162 /// hasNUses - Return true if this Value has exactly N users.
163 ///
164 bool hasNUses(unsigned N) const;
165
166 /// hasNUsesOrMore - Return true if this value has N users or more. This is
167 /// logically equivalent to getNumUses() >= N.
168 ///
169 bool hasNUsesOrMore(unsigned N) const;
170
171 bool isUsedInBasicBlock(const BasicBlock *BB) const;
172
173 /// getNumUses - This method computes the number of uses of this Value. This
174 /// is a linear time operation. Use hasOneUse, hasNUses, or hasNUsesOrMore
175 /// to check for specific values.
176 unsigned getNumUses() const;
177
178 /// addUse - This method should only be used by the Use class.
179 ///
addUse(Use & U)180 void addUse(Use &U) { U.addToList(&UseList); }
181
182 /// An enumeration for keeping track of the concrete subclass of Value that
183 /// is actually instantiated. Values of this enumeration are kept in the
184 /// Value classes SubclassID field. They are used for concrete type
185 /// identification.
186 enum ValueTy {
187 ArgumentVal, // This is an instance of Argument
188 BasicBlockVal, // This is an instance of BasicBlock
189 FunctionVal, // This is an instance of Function
190 GlobalAliasVal, // This is an instance of GlobalAlias
191 GlobalVariableVal, // This is an instance of GlobalVariable
192 UndefValueVal, // This is an instance of UndefValue
193 BlockAddressVal, // This is an instance of BlockAddress
194 ConstantExprVal, // This is an instance of ConstantExpr
195 ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
196 ConstantDataArrayVal, // This is an instance of ConstantDataArray
197 ConstantDataVectorVal, // This is an instance of ConstantDataVector
198 ConstantIntVal, // This is an instance of ConstantInt
199 ConstantFPVal, // This is an instance of ConstantFP
200 ConstantArrayVal, // This is an instance of ConstantArray
201 ConstantStructVal, // This is an instance of ConstantStruct
202 ConstantVectorVal, // This is an instance of ConstantVector
203 ConstantPointerNullVal, // This is an instance of ConstantPointerNull
204 MDNodeVal, // This is an instance of MDNode
205 MDStringVal, // This is an instance of MDString
206 InlineAsmVal, // This is an instance of InlineAsm
207 PseudoSourceValueVal, // This is an instance of PseudoSourceValue
208 FixedStackPseudoSourceValueVal, // This is an instance of
209 // FixedStackPseudoSourceValue
210 InstructionVal, // This is an instance of Instruction
211 // Enum values starting at InstructionVal are used for Instructions;
212 // don't add new values here!
213
214 // Markers:
215 ConstantFirstVal = FunctionVal,
216 ConstantLastVal = ConstantPointerNullVal
217 };
218
219 /// getValueID - Return an ID for the concrete type of this object. This is
220 /// used to implement the classof checks. This should not be used for any
221 /// other purpose, as the values may change as LLVM evolves. Also, note that
222 /// for instructions, the Instruction's opcode is added to InstructionVal. So
223 /// this means three things:
224 /// # there is no value with code InstructionVal (no opcode==0).
225 /// # there are more possible values for the value type than in ValueTy enum.
226 /// # the InstructionVal enumerator must be the highest valued enumerator in
227 /// the ValueTy enum.
getValueID()228 unsigned getValueID() const {
229 return SubclassID;
230 }
231
232 /// getRawSubclassOptionalData - Return the raw optional flags value
233 /// contained in this value. This should only be used when testing two
234 /// Values for equivalence.
getRawSubclassOptionalData()235 unsigned getRawSubclassOptionalData() const {
236 return SubclassOptionalData;
237 }
238
239 /// clearSubclassOptionalData - Clear the optional flags contained in
240 /// this value.
clearSubclassOptionalData()241 void clearSubclassOptionalData() {
242 SubclassOptionalData = 0;
243 }
244
245 /// hasSameSubclassOptionalData - Test whether the optional flags contained
246 /// in this value are equal to the optional flags in the given value.
hasSameSubclassOptionalData(const Value * V)247 bool hasSameSubclassOptionalData(const Value *V) const {
248 return SubclassOptionalData == V->SubclassOptionalData;
249 }
250
251 /// intersectOptionalDataWith - Clear any optional flags in this value
252 /// that are not also set in the given value.
intersectOptionalDataWith(const Value * V)253 void intersectOptionalDataWith(const Value *V) {
254 SubclassOptionalData &= V->SubclassOptionalData;
255 }
256
257 /// hasValueHandle - Return true if there is a value handle associated with
258 /// this value.
hasValueHandle()259 bool hasValueHandle() const { return HasValueHandle; }
260
261 /// stripPointerCasts - This method strips off any unneeded pointer casts and
262 /// all-zero GEPs from the specified value, returning the original uncasted
263 /// value. If this is called on a non-pointer value, it returns 'this'.
264 Value *stripPointerCasts();
stripPointerCasts()265 const Value *stripPointerCasts() const {
266 return const_cast<Value*>(this)->stripPointerCasts();
267 }
268
269 /// stripInBoundsConstantOffsets - This method strips off unneeded pointer casts and
270 /// all-constant GEPs from the specified value, returning the original
271 /// pointer value. If this is called on a non-pointer value, it returns
272 /// 'this'.
273 Value *stripInBoundsConstantOffsets();
stripInBoundsConstantOffsets()274 const Value *stripInBoundsConstantOffsets() const {
275 return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
276 }
277
278 /// stripInBoundsOffsets - This method strips off unneeded pointer casts and
279 /// any in-bounds Offsets from the specified value, returning the original
280 /// pointer value. If this is called on a non-pointer value, it returns
281 /// 'this'.
282 Value *stripInBoundsOffsets();
stripInBoundsOffsets()283 const Value *stripInBoundsOffsets() const {
284 return const_cast<Value*>(this)->stripInBoundsOffsets();
285 }
286
287 /// isDereferenceablePointer - Test if this value is always a pointer to
288 /// allocated and suitably aligned memory for a simple load or store.
289 bool isDereferenceablePointer() const;
290
291 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
292 /// return the value in the PHI node corresponding to PredBB. If not, return
293 /// ourself. This is useful if you want to know the value something has in a
294 /// predecessor block.
295 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
296
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)297 const Value *DoPHITranslation(const BasicBlock *CurBB,
298 const BasicBlock *PredBB) const{
299 return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
300 }
301
302 /// MaximumAlignment - This is the greatest alignment value supported by
303 /// load, store, and alloca instructions, and global values.
304 static const unsigned MaximumAlignment = 1u << 29;
305
306 /// mutateType - Mutate the type of this Value to be of the specified type.
307 /// Note that this is an extremely dangerous operation which can create
308 /// completely invalid IR very easily. It is strongly recommended that you
309 /// recreate IR objects with the right types instead of mutating them in
310 /// place.
mutateType(Type * Ty)311 void mutateType(Type *Ty) {
312 VTy = Ty;
313 }
314
315 protected:
getSubclassDataFromValue()316 unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)317 void setValueSubclassData(unsigned short D) { SubclassData = D; }
318 };
319
320 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
321 V.print(OS);
322 return OS;
323 }
324
set(Value * V)325 void Use::set(Value *V) {
326 if (Val) removeFromList();
327 Val = V;
328 if (V) V->addUse(*this);
329 }
330
331
332 // isa - Provide some specializations of isa so that we don't have to include
333 // the subtype header files to test to see if the value is a subclass...
334 //
335 template <> struct isa_impl<Constant, Value> {
336 static inline bool doit(const Value &Val) {
337 return Val.getValueID() >= Value::ConstantFirstVal &&
338 Val.getValueID() <= Value::ConstantLastVal;
339 }
340 };
341
342 template <> struct isa_impl<Argument, Value> {
343 static inline bool doit (const Value &Val) {
344 return Val.getValueID() == Value::ArgumentVal;
345 }
346 };
347
348 template <> struct isa_impl<InlineAsm, Value> {
349 static inline bool doit(const Value &Val) {
350 return Val.getValueID() == Value::InlineAsmVal;
351 }
352 };
353
354 template <> struct isa_impl<Instruction, Value> {
355 static inline bool doit(const Value &Val) {
356 return Val.getValueID() >= Value::InstructionVal;
357 }
358 };
359
360 template <> struct isa_impl<BasicBlock, Value> {
361 static inline bool doit(const Value &Val) {
362 return Val.getValueID() == Value::BasicBlockVal;
363 }
364 };
365
366 template <> struct isa_impl<Function, Value> {
367 static inline bool doit(const Value &Val) {
368 return Val.getValueID() == Value::FunctionVal;
369 }
370 };
371
372 template <> struct isa_impl<GlobalVariable, Value> {
373 static inline bool doit(const Value &Val) {
374 return Val.getValueID() == Value::GlobalVariableVal;
375 }
376 };
377
378 template <> struct isa_impl<GlobalAlias, Value> {
379 static inline bool doit(const Value &Val) {
380 return Val.getValueID() == Value::GlobalAliasVal;
381 }
382 };
383
384 template <> struct isa_impl<GlobalValue, Value> {
385 static inline bool doit(const Value &Val) {
386 return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
387 isa<GlobalAlias>(Val);
388 }
389 };
390
391 template <> struct isa_impl<MDNode, Value> {
392 static inline bool doit(const Value &Val) {
393 return Val.getValueID() == Value::MDNodeVal;
394 }
395 };
396
397 // Value* is only 4-byte aligned.
398 template<>
399 class PointerLikeTypeTraits<Value*> {
400 typedef Value* PT;
401 public:
402 static inline void *getAsVoidPointer(PT P) { return P; }
403 static inline PT getFromVoidPointer(void *P) {
404 return static_cast<PT>(P);
405 }
406 enum { NumLowBitsAvailable = 2 };
407 };
408
409 } // End llvm namespace
410
411 #endif
412