• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for C++ declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclVisitor.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/CXXFieldCollector.h"
32 #include "clang/Sema/DeclSpec.h"
33 #include "clang/Sema/Initialization.h"
34 #include "clang/Sema/Lookup.h"
35 #include "clang/Sema/ParsedTemplate.h"
36 #include "clang/Sema/Scope.h"
37 #include "clang/Sema/ScopeInfo.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallString.h"
40 #include <map>
41 #include <set>
42 
43 using namespace clang;
44 
45 //===----------------------------------------------------------------------===//
46 // CheckDefaultArgumentVisitor
47 //===----------------------------------------------------------------------===//
48 
49 namespace {
50   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51   /// the default argument of a parameter to determine whether it
52   /// contains any ill-formed subexpressions. For example, this will
53   /// diagnose the use of local variables or parameters within the
54   /// default argument expression.
55   class CheckDefaultArgumentVisitor
56     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57     Expr *DefaultArg;
58     Sema *S;
59 
60   public:
CheckDefaultArgumentVisitor(Expr * defarg,Sema * s)61     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62       : DefaultArg(defarg), S(s) {}
63 
64     bool VisitExpr(Expr *Node);
65     bool VisitDeclRefExpr(DeclRefExpr *DRE);
66     bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67     bool VisitLambdaExpr(LambdaExpr *Lambda);
68   };
69 
70   /// VisitExpr - Visit all of the children of this expression.
VisitExpr(Expr * Node)71   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
72     bool IsInvalid = false;
73     for (Stmt::child_range I = Node->children(); I; ++I)
74       IsInvalid |= Visit(*I);
75     return IsInvalid;
76   }
77 
78   /// VisitDeclRefExpr - Visit a reference to a declaration, to
79   /// determine whether this declaration can be used in the default
80   /// argument expression.
VisitDeclRefExpr(DeclRefExpr * DRE)81   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
82     NamedDecl *Decl = DRE->getDecl();
83     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
84       // C++ [dcl.fct.default]p9
85       //   Default arguments are evaluated each time the function is
86       //   called. The order of evaluation of function arguments is
87       //   unspecified. Consequently, parameters of a function shall not
88       //   be used in default argument expressions, even if they are not
89       //   evaluated. Parameters of a function declared before a default
90       //   argument expression are in scope and can hide namespace and
91       //   class member names.
92       return S->Diag(DRE->getLocStart(),
93                      diag::err_param_default_argument_references_param)
94          << Param->getDeclName() << DefaultArg->getSourceRange();
95     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
96       // C++ [dcl.fct.default]p7
97       //   Local variables shall not be used in default argument
98       //   expressions.
99       if (VDecl->isLocalVarDecl())
100         return S->Diag(DRE->getLocStart(),
101                        diag::err_param_default_argument_references_local)
102           << VDecl->getDeclName() << DefaultArg->getSourceRange();
103     }
104 
105     return false;
106   }
107 
108   /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(CXXThisExpr * ThisE)109   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
110     // C++ [dcl.fct.default]p8:
111     //   The keyword this shall not be used in a default argument of a
112     //   member function.
113     return S->Diag(ThisE->getLocStart(),
114                    diag::err_param_default_argument_references_this)
115                << ThisE->getSourceRange();
116   }
117 
VisitLambdaExpr(LambdaExpr * Lambda)118   bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
119     // C++11 [expr.lambda.prim]p13:
120     //   A lambda-expression appearing in a default argument shall not
121     //   implicitly or explicitly capture any entity.
122     if (Lambda->capture_begin() == Lambda->capture_end())
123       return false;
124 
125     return S->Diag(Lambda->getLocStart(),
126                    diag::err_lambda_capture_default_arg);
127   }
128 }
129 
CalledDecl(SourceLocation CallLoc,CXXMethodDecl * Method)130 void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
131                                                       CXXMethodDecl *Method) {
132   // If we have an MSAny spec already, don't bother.
133   if (!Method || ComputedEST == EST_MSAny)
134     return;
135 
136   const FunctionProtoType *Proto
137     = Method->getType()->getAs<FunctionProtoType>();
138   Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
139   if (!Proto)
140     return;
141 
142   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
143 
144   // If this function can throw any exceptions, make a note of that.
145   if (EST == EST_MSAny || EST == EST_None) {
146     ClearExceptions();
147     ComputedEST = EST;
148     return;
149   }
150 
151   // FIXME: If the call to this decl is using any of its default arguments, we
152   // need to search them for potentially-throwing calls.
153 
154   // If this function has a basic noexcept, it doesn't affect the outcome.
155   if (EST == EST_BasicNoexcept)
156     return;
157 
158   // If we have a throw-all spec at this point, ignore the function.
159   if (ComputedEST == EST_None)
160     return;
161 
162   // If we're still at noexcept(true) and there's a nothrow() callee,
163   // change to that specification.
164   if (EST == EST_DynamicNone) {
165     if (ComputedEST == EST_BasicNoexcept)
166       ComputedEST = EST_DynamicNone;
167     return;
168   }
169 
170   // Check out noexcept specs.
171   if (EST == EST_ComputedNoexcept) {
172     FunctionProtoType::NoexceptResult NR =
173         Proto->getNoexceptSpec(Self->Context);
174     assert(NR != FunctionProtoType::NR_NoNoexcept &&
175            "Must have noexcept result for EST_ComputedNoexcept.");
176     assert(NR != FunctionProtoType::NR_Dependent &&
177            "Should not generate implicit declarations for dependent cases, "
178            "and don't know how to handle them anyway.");
179 
180     // noexcept(false) -> no spec on the new function
181     if (NR == FunctionProtoType::NR_Throw) {
182       ClearExceptions();
183       ComputedEST = EST_None;
184     }
185     // noexcept(true) won't change anything either.
186     return;
187   }
188 
189   assert(EST == EST_Dynamic && "EST case not considered earlier.");
190   assert(ComputedEST != EST_None &&
191          "Shouldn't collect exceptions when throw-all is guaranteed.");
192   ComputedEST = EST_Dynamic;
193   // Record the exceptions in this function's exception specification.
194   for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
195                                           EEnd = Proto->exception_end();
196        E != EEnd; ++E)
197     if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
198       Exceptions.push_back(*E);
199 }
200 
CalledExpr(Expr * E)201 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
202   if (!E || ComputedEST == EST_MSAny)
203     return;
204 
205   // FIXME:
206   //
207   // C++0x [except.spec]p14:
208   //   [An] implicit exception-specification specifies the type-id T if and
209   // only if T is allowed by the exception-specification of a function directly
210   // invoked by f's implicit definition; f shall allow all exceptions if any
211   // function it directly invokes allows all exceptions, and f shall allow no
212   // exceptions if every function it directly invokes allows no exceptions.
213   //
214   // Note in particular that if an implicit exception-specification is generated
215   // for a function containing a throw-expression, that specification can still
216   // be noexcept(true).
217   //
218   // Note also that 'directly invoked' is not defined in the standard, and there
219   // is no indication that we should only consider potentially-evaluated calls.
220   //
221   // Ultimately we should implement the intent of the standard: the exception
222   // specification should be the set of exceptions which can be thrown by the
223   // implicit definition. For now, we assume that any non-nothrow expression can
224   // throw any exception.
225 
226   if (Self->canThrow(E))
227     ComputedEST = EST_None;
228 }
229 
230 bool
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)231 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
232                               SourceLocation EqualLoc) {
233   if (RequireCompleteType(Param->getLocation(), Param->getType(),
234                           diag::err_typecheck_decl_incomplete_type)) {
235     Param->setInvalidDecl();
236     return true;
237   }
238 
239   // C++ [dcl.fct.default]p5
240   //   A default argument expression is implicitly converted (clause
241   //   4) to the parameter type. The default argument expression has
242   //   the same semantic constraints as the initializer expression in
243   //   a declaration of a variable of the parameter type, using the
244   //   copy-initialization semantics (8.5).
245   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
246                                                                     Param);
247   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
248                                                            EqualLoc);
249   InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
250   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
251   if (Result.isInvalid())
252     return true;
253   Arg = Result.takeAs<Expr>();
254 
255   CheckCompletedExpr(Arg, EqualLoc);
256   Arg = MaybeCreateExprWithCleanups(Arg);
257 
258   // Okay: add the default argument to the parameter
259   Param->setDefaultArg(Arg);
260 
261   // We have already instantiated this parameter; provide each of the
262   // instantiations with the uninstantiated default argument.
263   UnparsedDefaultArgInstantiationsMap::iterator InstPos
264     = UnparsedDefaultArgInstantiations.find(Param);
265   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
266     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
267       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
268 
269     // We're done tracking this parameter's instantiations.
270     UnparsedDefaultArgInstantiations.erase(InstPos);
271   }
272 
273   return false;
274 }
275 
276 /// ActOnParamDefaultArgument - Check whether the default argument
277 /// provided for a function parameter is well-formed. If so, attach it
278 /// to the parameter declaration.
279 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)280 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
281                                 Expr *DefaultArg) {
282   if (!param || !DefaultArg)
283     return;
284 
285   ParmVarDecl *Param = cast<ParmVarDecl>(param);
286   UnparsedDefaultArgLocs.erase(Param);
287 
288   // Default arguments are only permitted in C++
289   if (!getLangOpts().CPlusPlus) {
290     Diag(EqualLoc, diag::err_param_default_argument)
291       << DefaultArg->getSourceRange();
292     Param->setInvalidDecl();
293     return;
294   }
295 
296   // Check for unexpanded parameter packs.
297   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
298     Param->setInvalidDecl();
299     return;
300   }
301 
302   // Check that the default argument is well-formed
303   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
304   if (DefaultArgChecker.Visit(DefaultArg)) {
305     Param->setInvalidDecl();
306     return;
307   }
308 
309   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
310 }
311 
312 /// ActOnParamUnparsedDefaultArgument - We've seen a default
313 /// argument for a function parameter, but we can't parse it yet
314 /// because we're inside a class definition. Note that this default
315 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)316 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
317                                              SourceLocation EqualLoc,
318                                              SourceLocation ArgLoc) {
319   if (!param)
320     return;
321 
322   ParmVarDecl *Param = cast<ParmVarDecl>(param);
323   if (Param)
324     Param->setUnparsedDefaultArg();
325 
326   UnparsedDefaultArgLocs[Param] = ArgLoc;
327 }
328 
329 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
330 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param)331 void Sema::ActOnParamDefaultArgumentError(Decl *param) {
332   if (!param)
333     return;
334 
335   ParmVarDecl *Param = cast<ParmVarDecl>(param);
336 
337   Param->setInvalidDecl();
338 
339   UnparsedDefaultArgLocs.erase(Param);
340 }
341 
342 /// CheckExtraCXXDefaultArguments - Check for any extra default
343 /// arguments in the declarator, which is not a function declaration
344 /// or definition and therefore is not permitted to have default
345 /// arguments. This routine should be invoked for every declarator
346 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)347 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
348   // C++ [dcl.fct.default]p3
349   //   A default argument expression shall be specified only in the
350   //   parameter-declaration-clause of a function declaration or in a
351   //   template-parameter (14.1). It shall not be specified for a
352   //   parameter pack. If it is specified in a
353   //   parameter-declaration-clause, it shall not occur within a
354   //   declarator or abstract-declarator of a parameter-declaration.
355   bool MightBeFunction = D.isFunctionDeclarationContext();
356   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
357     DeclaratorChunk &chunk = D.getTypeObject(i);
358     if (chunk.Kind == DeclaratorChunk::Function) {
359       if (MightBeFunction) {
360         // This is a function declaration. It can have default arguments, but
361         // keep looking in case its return type is a function type with default
362         // arguments.
363         MightBeFunction = false;
364         continue;
365       }
366       for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
367         ParmVarDecl *Param =
368           cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
369         if (Param->hasUnparsedDefaultArg()) {
370           CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
371           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
372             << SourceRange((*Toks)[1].getLocation(),
373                            Toks->back().getLocation());
374           delete Toks;
375           chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
376         } else if (Param->getDefaultArg()) {
377           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
378             << Param->getDefaultArg()->getSourceRange();
379           Param->setDefaultArg(0);
380         }
381       }
382     } else if (chunk.Kind != DeclaratorChunk::Paren) {
383       MightBeFunction = false;
384     }
385   }
386 }
387 
388 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
389 /// function, once we already know that they have the same
390 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
391 /// error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)392 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
393                                 Scope *S) {
394   bool Invalid = false;
395 
396   // C++ [dcl.fct.default]p4:
397   //   For non-template functions, default arguments can be added in
398   //   later declarations of a function in the same
399   //   scope. Declarations in different scopes have completely
400   //   distinct sets of default arguments. That is, declarations in
401   //   inner scopes do not acquire default arguments from
402   //   declarations in outer scopes, and vice versa. In a given
403   //   function declaration, all parameters subsequent to a
404   //   parameter with a default argument shall have default
405   //   arguments supplied in this or previous declarations. A
406   //   default argument shall not be redefined by a later
407   //   declaration (not even to the same value).
408   //
409   // C++ [dcl.fct.default]p6:
410   //   Except for member functions of class templates, the default arguments
411   //   in a member function definition that appears outside of the class
412   //   definition are added to the set of default arguments provided by the
413   //   member function declaration in the class definition.
414   for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
415     ParmVarDecl *OldParam = Old->getParamDecl(p);
416     ParmVarDecl *NewParam = New->getParamDecl(p);
417 
418     bool OldParamHasDfl = OldParam->hasDefaultArg();
419     bool NewParamHasDfl = NewParam->hasDefaultArg();
420 
421     NamedDecl *ND = Old;
422     if (S && !isDeclInScope(ND, New->getDeclContext(), S))
423       // Ignore default parameters of old decl if they are not in
424       // the same scope.
425       OldParamHasDfl = false;
426 
427     if (OldParamHasDfl && NewParamHasDfl) {
428 
429       unsigned DiagDefaultParamID =
430         diag::err_param_default_argument_redefinition;
431 
432       // MSVC accepts that default parameters be redefined for member functions
433       // of template class. The new default parameter's value is ignored.
434       Invalid = true;
435       if (getLangOpts().MicrosoftExt) {
436         CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
437         if (MD && MD->getParent()->getDescribedClassTemplate()) {
438           // Merge the old default argument into the new parameter.
439           NewParam->setHasInheritedDefaultArg();
440           if (OldParam->hasUninstantiatedDefaultArg())
441             NewParam->setUninstantiatedDefaultArg(
442                                       OldParam->getUninstantiatedDefaultArg());
443           else
444             NewParam->setDefaultArg(OldParam->getInit());
445           DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
446           Invalid = false;
447         }
448       }
449 
450       // FIXME: If we knew where the '=' was, we could easily provide a fix-it
451       // hint here. Alternatively, we could walk the type-source information
452       // for NewParam to find the last source location in the type... but it
453       // isn't worth the effort right now. This is the kind of test case that
454       // is hard to get right:
455       //   int f(int);
456       //   void g(int (*fp)(int) = f);
457       //   void g(int (*fp)(int) = &f);
458       Diag(NewParam->getLocation(), DiagDefaultParamID)
459         << NewParam->getDefaultArgRange();
460 
461       // Look for the function declaration where the default argument was
462       // actually written, which may be a declaration prior to Old.
463       for (FunctionDecl *Older = Old->getPreviousDecl();
464            Older; Older = Older->getPreviousDecl()) {
465         if (!Older->getParamDecl(p)->hasDefaultArg())
466           break;
467 
468         OldParam = Older->getParamDecl(p);
469       }
470 
471       Diag(OldParam->getLocation(), diag::note_previous_definition)
472         << OldParam->getDefaultArgRange();
473     } else if (OldParamHasDfl) {
474       // Merge the old default argument into the new parameter.
475       // It's important to use getInit() here;  getDefaultArg()
476       // strips off any top-level ExprWithCleanups.
477       NewParam->setHasInheritedDefaultArg();
478       if (OldParam->hasUninstantiatedDefaultArg())
479         NewParam->setUninstantiatedDefaultArg(
480                                       OldParam->getUninstantiatedDefaultArg());
481       else
482         NewParam->setDefaultArg(OldParam->getInit());
483     } else if (NewParamHasDfl) {
484       if (New->getDescribedFunctionTemplate()) {
485         // Paragraph 4, quoted above, only applies to non-template functions.
486         Diag(NewParam->getLocation(),
487              diag::err_param_default_argument_template_redecl)
488           << NewParam->getDefaultArgRange();
489         Diag(Old->getLocation(), diag::note_template_prev_declaration)
490           << false;
491       } else if (New->getTemplateSpecializationKind()
492                    != TSK_ImplicitInstantiation &&
493                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
494         // C++ [temp.expr.spec]p21:
495         //   Default function arguments shall not be specified in a declaration
496         //   or a definition for one of the following explicit specializations:
497         //     - the explicit specialization of a function template;
498         //     - the explicit specialization of a member function template;
499         //     - the explicit specialization of a member function of a class
500         //       template where the class template specialization to which the
501         //       member function specialization belongs is implicitly
502         //       instantiated.
503         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
504           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
505           << New->getDeclName()
506           << NewParam->getDefaultArgRange();
507       } else if (New->getDeclContext()->isDependentContext()) {
508         // C++ [dcl.fct.default]p6 (DR217):
509         //   Default arguments for a member function of a class template shall
510         //   be specified on the initial declaration of the member function
511         //   within the class template.
512         //
513         // Reading the tea leaves a bit in DR217 and its reference to DR205
514         // leads me to the conclusion that one cannot add default function
515         // arguments for an out-of-line definition of a member function of a
516         // dependent type.
517         int WhichKind = 2;
518         if (CXXRecordDecl *Record
519               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
520           if (Record->getDescribedClassTemplate())
521             WhichKind = 0;
522           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
523             WhichKind = 1;
524           else
525             WhichKind = 2;
526         }
527 
528         Diag(NewParam->getLocation(),
529              diag::err_param_default_argument_member_template_redecl)
530           << WhichKind
531           << NewParam->getDefaultArgRange();
532       }
533     }
534   }
535 
536   // DR1344: If a default argument is added outside a class definition and that
537   // default argument makes the function a special member function, the program
538   // is ill-formed. This can only happen for constructors.
539   if (isa<CXXConstructorDecl>(New) &&
540       New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
541     CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
542                      OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
543     if (NewSM != OldSM) {
544       ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
545       assert(NewParam->hasDefaultArg());
546       Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
547         << NewParam->getDefaultArgRange() << NewSM;
548       Diag(Old->getLocation(), diag::note_previous_declaration);
549     }
550   }
551 
552   // C++11 [dcl.constexpr]p1: If any declaration of a function or function
553   // template has a constexpr specifier then all its declarations shall
554   // contain the constexpr specifier.
555   if (New->isConstexpr() != Old->isConstexpr()) {
556     Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
557       << New << New->isConstexpr();
558     Diag(Old->getLocation(), diag::note_previous_declaration);
559     Invalid = true;
560   }
561 
562   if (CheckEquivalentExceptionSpec(Old, New))
563     Invalid = true;
564 
565   return Invalid;
566 }
567 
568 /// \brief Merge the exception specifications of two variable declarations.
569 ///
570 /// This is called when there's a redeclaration of a VarDecl. The function
571 /// checks if the redeclaration might have an exception specification and
572 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)573 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
574   // Shortcut if exceptions are disabled.
575   if (!getLangOpts().CXXExceptions)
576     return;
577 
578   assert(Context.hasSameType(New->getType(), Old->getType()) &&
579          "Should only be called if types are otherwise the same.");
580 
581   QualType NewType = New->getType();
582   QualType OldType = Old->getType();
583 
584   // We're only interested in pointers and references to functions, as well
585   // as pointers to member functions.
586   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
587     NewType = R->getPointeeType();
588     OldType = OldType->getAs<ReferenceType>()->getPointeeType();
589   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
590     NewType = P->getPointeeType();
591     OldType = OldType->getAs<PointerType>()->getPointeeType();
592   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
593     NewType = M->getPointeeType();
594     OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
595   }
596 
597   if (!NewType->isFunctionProtoType())
598     return;
599 
600   // There's lots of special cases for functions. For function pointers, system
601   // libraries are hopefully not as broken so that we don't need these
602   // workarounds.
603   if (CheckEquivalentExceptionSpec(
604         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
605         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
606     New->setInvalidDecl();
607   }
608 }
609 
610 /// CheckCXXDefaultArguments - Verify that the default arguments for a
611 /// function declaration are well-formed according to C++
612 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)613 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
614   unsigned NumParams = FD->getNumParams();
615   unsigned p;
616 
617   bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
618                   isa<CXXMethodDecl>(FD) &&
619                   cast<CXXMethodDecl>(FD)->getParent()->isLambda();
620 
621   // Find first parameter with a default argument
622   for (p = 0; p < NumParams; ++p) {
623     ParmVarDecl *Param = FD->getParamDecl(p);
624     if (Param->hasDefaultArg()) {
625       // C++11 [expr.prim.lambda]p5:
626       //   [...] Default arguments (8.3.6) shall not be specified in the
627       //   parameter-declaration-clause of a lambda-declarator.
628       //
629       // FIXME: Core issue 974 strikes this sentence, we only provide an
630       // extension warning.
631       if (IsLambda)
632         Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
633           << Param->getDefaultArgRange();
634       break;
635     }
636   }
637 
638   // C++ [dcl.fct.default]p4:
639   //   In a given function declaration, all parameters
640   //   subsequent to a parameter with a default argument shall
641   //   have default arguments supplied in this or previous
642   //   declarations. A default argument shall not be redefined
643   //   by a later declaration (not even to the same value).
644   unsigned LastMissingDefaultArg = 0;
645   for (; p < NumParams; ++p) {
646     ParmVarDecl *Param = FD->getParamDecl(p);
647     if (!Param->hasDefaultArg()) {
648       if (Param->isInvalidDecl())
649         /* We already complained about this parameter. */;
650       else if (Param->getIdentifier())
651         Diag(Param->getLocation(),
652              diag::err_param_default_argument_missing_name)
653           << Param->getIdentifier();
654       else
655         Diag(Param->getLocation(),
656              diag::err_param_default_argument_missing);
657 
658       LastMissingDefaultArg = p;
659     }
660   }
661 
662   if (LastMissingDefaultArg > 0) {
663     // Some default arguments were missing. Clear out all of the
664     // default arguments up to (and including) the last missing
665     // default argument, so that we leave the function parameters
666     // in a semantically valid state.
667     for (p = 0; p <= LastMissingDefaultArg; ++p) {
668       ParmVarDecl *Param = FD->getParamDecl(p);
669       if (Param->hasDefaultArg()) {
670         Param->setDefaultArg(0);
671       }
672     }
673   }
674 }
675 
676 // CheckConstexprParameterTypes - Check whether a function's parameter types
677 // are all literal types. If so, return true. If not, produce a suitable
678 // diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD)679 static bool CheckConstexprParameterTypes(Sema &SemaRef,
680                                          const FunctionDecl *FD) {
681   unsigned ArgIndex = 0;
682   const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
683   for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
684        e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
685     const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
686     SourceLocation ParamLoc = PD->getLocation();
687     if (!(*i)->isDependentType() &&
688         SemaRef.RequireLiteralType(ParamLoc, *i,
689                                    diag::err_constexpr_non_literal_param,
690                                    ArgIndex+1, PD->getSourceRange(),
691                                    isa<CXXConstructorDecl>(FD)))
692       return false;
693   }
694   return true;
695 }
696 
697 /// \brief Get diagnostic %select index for tag kind for
698 /// record diagnostic message.
699 /// WARNING: Indexes apply to particular diagnostics only!
700 ///
701 /// \returns diagnostic %select index.
getRecordDiagFromTagKind(TagTypeKind Tag)702 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
703   switch (Tag) {
704   case TTK_Struct: return 0;
705   case TTK_Interface: return 1;
706   case TTK_Class:  return 2;
707   default: llvm_unreachable("Invalid tag kind for record diagnostic!");
708   }
709 }
710 
711 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
712 // the requirements of a constexpr function definition or a constexpr
713 // constructor definition. If so, return true. If not, produce appropriate
714 // diagnostics and return false.
715 //
716 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDecl(const FunctionDecl * NewFD)717 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
718   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
719   if (MD && MD->isInstance()) {
720     // C++11 [dcl.constexpr]p4:
721     //  The definition of a constexpr constructor shall satisfy the following
722     //  constraints:
723     //  - the class shall not have any virtual base classes;
724     const CXXRecordDecl *RD = MD->getParent();
725     if (RD->getNumVBases()) {
726       Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
727         << isa<CXXConstructorDecl>(NewFD)
728         << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
729       for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
730              E = RD->vbases_end(); I != E; ++I)
731         Diag(I->getLocStart(),
732              diag::note_constexpr_virtual_base_here) << I->getSourceRange();
733       return false;
734     }
735   }
736 
737   if (!isa<CXXConstructorDecl>(NewFD)) {
738     // C++11 [dcl.constexpr]p3:
739     //  The definition of a constexpr function shall satisfy the following
740     //  constraints:
741     // - it shall not be virtual;
742     const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
743     if (Method && Method->isVirtual()) {
744       Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
745 
746       // If it's not obvious why this function is virtual, find an overridden
747       // function which uses the 'virtual' keyword.
748       const CXXMethodDecl *WrittenVirtual = Method;
749       while (!WrittenVirtual->isVirtualAsWritten())
750         WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
751       if (WrittenVirtual != Method)
752         Diag(WrittenVirtual->getLocation(),
753              diag::note_overridden_virtual_function);
754       return false;
755     }
756 
757     // - its return type shall be a literal type;
758     QualType RT = NewFD->getResultType();
759     if (!RT->isDependentType() &&
760         RequireLiteralType(NewFD->getLocation(), RT,
761                            diag::err_constexpr_non_literal_return))
762       return false;
763   }
764 
765   // - each of its parameter types shall be a literal type;
766   if (!CheckConstexprParameterTypes(*this, NewFD))
767     return false;
768 
769   return true;
770 }
771 
772 /// Check the given declaration statement is legal within a constexpr function
773 /// body. C++0x [dcl.constexpr]p3,p4.
774 ///
775 /// \return true if the body is OK, false if we have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS)776 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
777                                    DeclStmt *DS) {
778   // C++0x [dcl.constexpr]p3 and p4:
779   //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
780   //  contain only
781   for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
782          DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
783     switch ((*DclIt)->getKind()) {
784     case Decl::StaticAssert:
785     case Decl::Using:
786     case Decl::UsingShadow:
787     case Decl::UsingDirective:
788     case Decl::UnresolvedUsingTypename:
789       //   - static_assert-declarations
790       //   - using-declarations,
791       //   - using-directives,
792       continue;
793 
794     case Decl::Typedef:
795     case Decl::TypeAlias: {
796       //   - typedef declarations and alias-declarations that do not define
797       //     classes or enumerations,
798       TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
799       if (TN->getUnderlyingType()->isVariablyModifiedType()) {
800         // Don't allow variably-modified types in constexpr functions.
801         TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
802         SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
803           << TL.getSourceRange() << TL.getType()
804           << isa<CXXConstructorDecl>(Dcl);
805         return false;
806       }
807       continue;
808     }
809 
810     case Decl::Enum:
811     case Decl::CXXRecord:
812       // As an extension, we allow the declaration (but not the definition) of
813       // classes and enumerations in all declarations, not just in typedef and
814       // alias declarations.
815       if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
816         SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
817           << isa<CXXConstructorDecl>(Dcl);
818         return false;
819       }
820       continue;
821 
822     case Decl::Var:
823       SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
824         << isa<CXXConstructorDecl>(Dcl);
825       return false;
826 
827     default:
828       SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
829         << isa<CXXConstructorDecl>(Dcl);
830       return false;
831     }
832   }
833 
834   return true;
835 }
836 
837 /// Check that the given field is initialized within a constexpr constructor.
838 ///
839 /// \param Dcl The constexpr constructor being checked.
840 /// \param Field The field being checked. This may be a member of an anonymous
841 ///        struct or union nested within the class being checked.
842 /// \param Inits All declarations, including anonymous struct/union members and
843 ///        indirect members, for which any initialization was provided.
844 /// \param Diagnosed Set to true if an error is produced.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed)845 static void CheckConstexprCtorInitializer(Sema &SemaRef,
846                                           const FunctionDecl *Dcl,
847                                           FieldDecl *Field,
848                                           llvm::SmallSet<Decl*, 16> &Inits,
849                                           bool &Diagnosed) {
850   if (Field->isUnnamedBitfield())
851     return;
852 
853   if (Field->isAnonymousStructOrUnion() &&
854       Field->getType()->getAsCXXRecordDecl()->isEmpty())
855     return;
856 
857   if (!Inits.count(Field)) {
858     if (!Diagnosed) {
859       SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
860       Diagnosed = true;
861     }
862     SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
863   } else if (Field->isAnonymousStructOrUnion()) {
864     const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
865     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
866          I != E; ++I)
867       // If an anonymous union contains an anonymous struct of which any member
868       // is initialized, all members must be initialized.
869       if (!RD->isUnion() || Inits.count(*I))
870         CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
871   }
872 }
873 
874 /// Check the body for the given constexpr function declaration only contains
875 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
876 ///
877 /// \return true if the body is OK, false if we have diagnosed a problem.
CheckConstexprFunctionBody(const FunctionDecl * Dcl,Stmt * Body)878 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
879   if (isa<CXXTryStmt>(Body)) {
880     // C++11 [dcl.constexpr]p3:
881     //  The definition of a constexpr function shall satisfy the following
882     //  constraints: [...]
883     // - its function-body shall be = delete, = default, or a
884     //   compound-statement
885     //
886     // C++11 [dcl.constexpr]p4:
887     //  In the definition of a constexpr constructor, [...]
888     // - its function-body shall not be a function-try-block;
889     Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
890       << isa<CXXConstructorDecl>(Dcl);
891     return false;
892   }
893 
894   // - its function-body shall be [...] a compound-statement that contains only
895   CompoundStmt *CompBody = cast<CompoundStmt>(Body);
896 
897   SmallVector<SourceLocation, 4> ReturnStmts;
898   for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
899          BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
900     switch ((*BodyIt)->getStmtClass()) {
901     case Stmt::NullStmtClass:
902       //   - null statements,
903       continue;
904 
905     case Stmt::DeclStmtClass:
906       //   - static_assert-declarations
907       //   - using-declarations,
908       //   - using-directives,
909       //   - typedef declarations and alias-declarations that do not define
910       //     classes or enumerations,
911       if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
912         return false;
913       continue;
914 
915     case Stmt::ReturnStmtClass:
916       //   - and exactly one return statement;
917       if (isa<CXXConstructorDecl>(Dcl))
918         break;
919 
920       ReturnStmts.push_back((*BodyIt)->getLocStart());
921       continue;
922 
923     default:
924       break;
925     }
926 
927     Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
928       << isa<CXXConstructorDecl>(Dcl);
929     return false;
930   }
931 
932   if (const CXXConstructorDecl *Constructor
933         = dyn_cast<CXXConstructorDecl>(Dcl)) {
934     const CXXRecordDecl *RD = Constructor->getParent();
935     // DR1359:
936     // - every non-variant non-static data member and base class sub-object
937     //   shall be initialized;
938     // - if the class is a non-empty union, or for each non-empty anonymous
939     //   union member of a non-union class, exactly one non-static data member
940     //   shall be initialized;
941     if (RD->isUnion()) {
942       if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
943         Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
944         return false;
945       }
946     } else if (!Constructor->isDependentContext() &&
947                !Constructor->isDelegatingConstructor()) {
948       assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
949 
950       // Skip detailed checking if we have enough initializers, and we would
951       // allow at most one initializer per member.
952       bool AnyAnonStructUnionMembers = false;
953       unsigned Fields = 0;
954       for (CXXRecordDecl::field_iterator I = RD->field_begin(),
955            E = RD->field_end(); I != E; ++I, ++Fields) {
956         if (I->isAnonymousStructOrUnion()) {
957           AnyAnonStructUnionMembers = true;
958           break;
959         }
960       }
961       if (AnyAnonStructUnionMembers ||
962           Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
963         // Check initialization of non-static data members. Base classes are
964         // always initialized so do not need to be checked. Dependent bases
965         // might not have initializers in the member initializer list.
966         llvm::SmallSet<Decl*, 16> Inits;
967         for (CXXConstructorDecl::init_const_iterator
968                I = Constructor->init_begin(), E = Constructor->init_end();
969              I != E; ++I) {
970           if (FieldDecl *FD = (*I)->getMember())
971             Inits.insert(FD);
972           else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
973             Inits.insert(ID->chain_begin(), ID->chain_end());
974         }
975 
976         bool Diagnosed = false;
977         for (CXXRecordDecl::field_iterator I = RD->field_begin(),
978              E = RD->field_end(); I != E; ++I)
979           CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
980         if (Diagnosed)
981           return false;
982       }
983     }
984   } else {
985     if (ReturnStmts.empty()) {
986       Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
987       return false;
988     }
989     if (ReturnStmts.size() > 1) {
990       Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
991       for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
992         Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
993       return false;
994     }
995   }
996 
997   // C++11 [dcl.constexpr]p5:
998   //   if no function argument values exist such that the function invocation
999   //   substitution would produce a constant expression, the program is
1000   //   ill-formed; no diagnostic required.
1001   // C++11 [dcl.constexpr]p3:
1002   //   - every constructor call and implicit conversion used in initializing the
1003   //     return value shall be one of those allowed in a constant expression.
1004   // C++11 [dcl.constexpr]p4:
1005   //   - every constructor involved in initializing non-static data members and
1006   //     base class sub-objects shall be a constexpr constructor.
1007   SmallVector<PartialDiagnosticAt, 8> Diags;
1008   if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1009     Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1010       << isa<CXXConstructorDecl>(Dcl);
1011     for (size_t I = 0, N = Diags.size(); I != N; ++I)
1012       Diag(Diags[I].first, Diags[I].second);
1013     // Don't return false here: we allow this for compatibility in
1014     // system headers.
1015   }
1016 
1017   return true;
1018 }
1019 
1020 /// isCurrentClassName - Determine whether the identifier II is the
1021 /// name of the class type currently being defined. In the case of
1022 /// nested classes, this will only return true if II is the name of
1023 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope *,const CXXScopeSpec * SS)1024 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1025                               const CXXScopeSpec *SS) {
1026   assert(getLangOpts().CPlusPlus && "No class names in C!");
1027 
1028   CXXRecordDecl *CurDecl;
1029   if (SS && SS->isSet() && !SS->isInvalid()) {
1030     DeclContext *DC = computeDeclContext(*SS, true);
1031     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1032   } else
1033     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1034 
1035   if (CurDecl && CurDecl->getIdentifier())
1036     return &II == CurDecl->getIdentifier();
1037   else
1038     return false;
1039 }
1040 
1041 /// \brief Determine whether the given class is a base class of the given
1042 /// class, including looking at dependent bases.
findCircularInheritance(const CXXRecordDecl * Class,const CXXRecordDecl * Current)1043 static bool findCircularInheritance(const CXXRecordDecl *Class,
1044                                     const CXXRecordDecl *Current) {
1045   SmallVector<const CXXRecordDecl*, 8> Queue;
1046 
1047   Class = Class->getCanonicalDecl();
1048   while (true) {
1049     for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1050                                                   E = Current->bases_end();
1051          I != E; ++I) {
1052       CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1053       if (!Base)
1054         continue;
1055 
1056       Base = Base->getDefinition();
1057       if (!Base)
1058         continue;
1059 
1060       if (Base->getCanonicalDecl() == Class)
1061         return true;
1062 
1063       Queue.push_back(Base);
1064     }
1065 
1066     if (Queue.empty())
1067       return false;
1068 
1069     Current = Queue.back();
1070     Queue.pop_back();
1071   }
1072 
1073   return false;
1074 }
1075 
1076 /// \brief Check the validity of a C++ base class specifier.
1077 ///
1078 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1079 /// and returns NULL otherwise.
1080 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)1081 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1082                          SourceRange SpecifierRange,
1083                          bool Virtual, AccessSpecifier Access,
1084                          TypeSourceInfo *TInfo,
1085                          SourceLocation EllipsisLoc) {
1086   QualType BaseType = TInfo->getType();
1087 
1088   // C++ [class.union]p1:
1089   //   A union shall not have base classes.
1090   if (Class->isUnion()) {
1091     Diag(Class->getLocation(), diag::err_base_clause_on_union)
1092       << SpecifierRange;
1093     return 0;
1094   }
1095 
1096   if (EllipsisLoc.isValid() &&
1097       !TInfo->getType()->containsUnexpandedParameterPack()) {
1098     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1099       << TInfo->getTypeLoc().getSourceRange();
1100     EllipsisLoc = SourceLocation();
1101   }
1102 
1103   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1104 
1105   if (BaseType->isDependentType()) {
1106     // Make sure that we don't have circular inheritance among our dependent
1107     // bases. For non-dependent bases, the check for completeness below handles
1108     // this.
1109     if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1110       if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1111           ((BaseDecl = BaseDecl->getDefinition()) &&
1112            findCircularInheritance(Class, BaseDecl))) {
1113         Diag(BaseLoc, diag::err_circular_inheritance)
1114           << BaseType << Context.getTypeDeclType(Class);
1115 
1116         if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1117           Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1118             << BaseType;
1119 
1120         return 0;
1121       }
1122     }
1123 
1124     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1125                                           Class->getTagKind() == TTK_Class,
1126                                           Access, TInfo, EllipsisLoc);
1127   }
1128 
1129   // Base specifiers must be record types.
1130   if (!BaseType->isRecordType()) {
1131     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1132     return 0;
1133   }
1134 
1135   // C++ [class.union]p1:
1136   //   A union shall not be used as a base class.
1137   if (BaseType->isUnionType()) {
1138     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1139     return 0;
1140   }
1141 
1142   // C++ [class.derived]p2:
1143   //   The class-name in a base-specifier shall not be an incompletely
1144   //   defined class.
1145   if (RequireCompleteType(BaseLoc, BaseType,
1146                           diag::err_incomplete_base_class, SpecifierRange)) {
1147     Class->setInvalidDecl();
1148     return 0;
1149   }
1150 
1151   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1152   RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1153   assert(BaseDecl && "Record type has no declaration");
1154   BaseDecl = BaseDecl->getDefinition();
1155   assert(BaseDecl && "Base type is not incomplete, but has no definition");
1156   CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1157   assert(CXXBaseDecl && "Base type is not a C++ type");
1158 
1159   // C++ [class]p3:
1160   //   If a class is marked final and it appears as a base-type-specifier in
1161   //   base-clause, the program is ill-formed.
1162   if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1163     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1164       << CXXBaseDecl->getDeclName();
1165     Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1166       << CXXBaseDecl->getDeclName();
1167     return 0;
1168   }
1169 
1170   if (BaseDecl->isInvalidDecl())
1171     Class->setInvalidDecl();
1172 
1173   // Create the base specifier.
1174   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1175                                         Class->getTagKind() == TTK_Class,
1176                                         Access, TInfo, EllipsisLoc);
1177 }
1178 
1179 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1180 /// one entry in the base class list of a class specifier, for
1181 /// example:
1182 ///    class foo : public bar, virtual private baz {
1183 /// 'public bar' and 'virtual private baz' are each base-specifiers.
1184 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,ParsedAttributes & Attributes,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)1185 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1186                          ParsedAttributes &Attributes,
1187                          bool Virtual, AccessSpecifier Access,
1188                          ParsedType basetype, SourceLocation BaseLoc,
1189                          SourceLocation EllipsisLoc) {
1190   if (!classdecl)
1191     return true;
1192 
1193   AdjustDeclIfTemplate(classdecl);
1194   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1195   if (!Class)
1196     return true;
1197 
1198   // We do not support any C++11 attributes on base-specifiers yet.
1199   // Diagnose any attributes we see.
1200   if (!Attributes.empty()) {
1201     for (AttributeList *Attr = Attributes.getList(); Attr;
1202          Attr = Attr->getNext()) {
1203       if (Attr->isInvalid() ||
1204           Attr->getKind() == AttributeList::IgnoredAttribute)
1205         continue;
1206       Diag(Attr->getLoc(),
1207            Attr->getKind() == AttributeList::UnknownAttribute
1208              ? diag::warn_unknown_attribute_ignored
1209              : diag::err_base_specifier_attribute)
1210         << Attr->getName();
1211     }
1212   }
1213 
1214   TypeSourceInfo *TInfo = 0;
1215   GetTypeFromParser(basetype, &TInfo);
1216 
1217   if (EllipsisLoc.isInvalid() &&
1218       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1219                                       UPPC_BaseType))
1220     return true;
1221 
1222   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1223                                                       Virtual, Access, TInfo,
1224                                                       EllipsisLoc))
1225     return BaseSpec;
1226   else
1227     Class->setInvalidDecl();
1228 
1229   return true;
1230 }
1231 
1232 /// \brief Performs the actual work of attaching the given base class
1233 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,CXXBaseSpecifier ** Bases,unsigned NumBases)1234 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1235                                 unsigned NumBases) {
1236  if (NumBases == 0)
1237     return false;
1238 
1239   // Used to keep track of which base types we have already seen, so
1240   // that we can properly diagnose redundant direct base types. Note
1241   // that the key is always the unqualified canonical type of the base
1242   // class.
1243   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1244 
1245   // Copy non-redundant base specifiers into permanent storage.
1246   unsigned NumGoodBases = 0;
1247   bool Invalid = false;
1248   for (unsigned idx = 0; idx < NumBases; ++idx) {
1249     QualType NewBaseType
1250       = Context.getCanonicalType(Bases[idx]->getType());
1251     NewBaseType = NewBaseType.getLocalUnqualifiedType();
1252 
1253     CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1254     if (KnownBase) {
1255       // C++ [class.mi]p3:
1256       //   A class shall not be specified as a direct base class of a
1257       //   derived class more than once.
1258       Diag(Bases[idx]->getLocStart(),
1259            diag::err_duplicate_base_class)
1260         << KnownBase->getType()
1261         << Bases[idx]->getSourceRange();
1262 
1263       // Delete the duplicate base class specifier; we're going to
1264       // overwrite its pointer later.
1265       Context.Deallocate(Bases[idx]);
1266 
1267       Invalid = true;
1268     } else {
1269       // Okay, add this new base class.
1270       KnownBase = Bases[idx];
1271       Bases[NumGoodBases++] = Bases[idx];
1272       if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1273         const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1274         if (Class->isInterface() &&
1275               (!RD->isInterface() ||
1276                KnownBase->getAccessSpecifier() != AS_public)) {
1277           // The Microsoft extension __interface does not permit bases that
1278           // are not themselves public interfaces.
1279           Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1280             << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1281             << RD->getSourceRange();
1282           Invalid = true;
1283         }
1284         if (RD->hasAttr<WeakAttr>())
1285           Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1286       }
1287     }
1288   }
1289 
1290   // Attach the remaining base class specifiers to the derived class.
1291   Class->setBases(Bases, NumGoodBases);
1292 
1293   // Delete the remaining (good) base class specifiers, since their
1294   // data has been copied into the CXXRecordDecl.
1295   for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1296     Context.Deallocate(Bases[idx]);
1297 
1298   return Invalid;
1299 }
1300 
1301 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
1302 /// class, after checking whether there are any duplicate base
1303 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,CXXBaseSpecifier ** Bases,unsigned NumBases)1304 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1305                                unsigned NumBases) {
1306   if (!ClassDecl || !Bases || !NumBases)
1307     return;
1308 
1309   AdjustDeclIfTemplate(ClassDecl);
1310   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1311                        (CXXBaseSpecifier**)(Bases), NumBases);
1312 }
1313 
GetClassForType(QualType T)1314 static CXXRecordDecl *GetClassForType(QualType T) {
1315   if (const RecordType *RT = T->getAs<RecordType>())
1316     return cast<CXXRecordDecl>(RT->getDecl());
1317   else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1318     return ICT->getDecl();
1319   else
1320     return 0;
1321 }
1322 
1323 /// \brief Determine whether the type \p Derived is a C++ class that is
1324 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base)1325 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1326   if (!getLangOpts().CPlusPlus)
1327     return false;
1328 
1329   CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1330   if (!DerivedRD)
1331     return false;
1332 
1333   CXXRecordDecl *BaseRD = GetClassForType(Base);
1334   if (!BaseRD)
1335     return false;
1336 
1337   // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1338   return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1339 }
1340 
1341 /// \brief Determine whether the type \p Derived is a C++ class that is
1342 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base,CXXBasePaths & Paths)1343 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1344   if (!getLangOpts().CPlusPlus)
1345     return false;
1346 
1347   CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1348   if (!DerivedRD)
1349     return false;
1350 
1351   CXXRecordDecl *BaseRD = GetClassForType(Base);
1352   if (!BaseRD)
1353     return false;
1354 
1355   return DerivedRD->isDerivedFrom(BaseRD, Paths);
1356 }
1357 
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)1358 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1359                               CXXCastPath &BasePathArray) {
1360   assert(BasePathArray.empty() && "Base path array must be empty!");
1361   assert(Paths.isRecordingPaths() && "Must record paths!");
1362 
1363   const CXXBasePath &Path = Paths.front();
1364 
1365   // We first go backward and check if we have a virtual base.
1366   // FIXME: It would be better if CXXBasePath had the base specifier for
1367   // the nearest virtual base.
1368   unsigned Start = 0;
1369   for (unsigned I = Path.size(); I != 0; --I) {
1370     if (Path[I - 1].Base->isVirtual()) {
1371       Start = I - 1;
1372       break;
1373     }
1374   }
1375 
1376   // Now add all bases.
1377   for (unsigned I = Start, E = Path.size(); I != E; ++I)
1378     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1379 }
1380 
1381 /// \brief Determine whether the given base path includes a virtual
1382 /// base class.
BasePathInvolvesVirtualBase(const CXXCastPath & BasePath)1383 bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1384   for (CXXCastPath::const_iterator B = BasePath.begin(),
1385                                 BEnd = BasePath.end();
1386        B != BEnd; ++B)
1387     if ((*B)->isVirtual())
1388       return true;
1389 
1390   return false;
1391 }
1392 
1393 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1394 /// conversion (where Derived and Base are class types) is
1395 /// well-formed, meaning that the conversion is unambiguous (and
1396 /// that all of the base classes are accessible). Returns true
1397 /// and emits a diagnostic if the code is ill-formed, returns false
1398 /// otherwise. Loc is the location where this routine should point to
1399 /// if there is an error, and Range is the source range to highlight
1400 /// if there is an error.
1401 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbigiousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath)1402 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1403                                    unsigned InaccessibleBaseID,
1404                                    unsigned AmbigiousBaseConvID,
1405                                    SourceLocation Loc, SourceRange Range,
1406                                    DeclarationName Name,
1407                                    CXXCastPath *BasePath) {
1408   // First, determine whether the path from Derived to Base is
1409   // ambiguous. This is slightly more expensive than checking whether
1410   // the Derived to Base conversion exists, because here we need to
1411   // explore multiple paths to determine if there is an ambiguity.
1412   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1413                      /*DetectVirtual=*/false);
1414   bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1415   assert(DerivationOkay &&
1416          "Can only be used with a derived-to-base conversion");
1417   (void)DerivationOkay;
1418 
1419   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1420     if (InaccessibleBaseID) {
1421       // Check that the base class can be accessed.
1422       switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1423                                    InaccessibleBaseID)) {
1424         case AR_inaccessible:
1425           return true;
1426         case AR_accessible:
1427         case AR_dependent:
1428         case AR_delayed:
1429           break;
1430       }
1431     }
1432 
1433     // Build a base path if necessary.
1434     if (BasePath)
1435       BuildBasePathArray(Paths, *BasePath);
1436     return false;
1437   }
1438 
1439   // We know that the derived-to-base conversion is ambiguous, and
1440   // we're going to produce a diagnostic. Perform the derived-to-base
1441   // search just one more time to compute all of the possible paths so
1442   // that we can print them out. This is more expensive than any of
1443   // the previous derived-to-base checks we've done, but at this point
1444   // performance isn't as much of an issue.
1445   Paths.clear();
1446   Paths.setRecordingPaths(true);
1447   bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1448   assert(StillOkay && "Can only be used with a derived-to-base conversion");
1449   (void)StillOkay;
1450 
1451   // Build up a textual representation of the ambiguous paths, e.g.,
1452   // D -> B -> A, that will be used to illustrate the ambiguous
1453   // conversions in the diagnostic. We only print one of the paths
1454   // to each base class subobject.
1455   std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1456 
1457   Diag(Loc, AmbigiousBaseConvID)
1458   << Derived << Base << PathDisplayStr << Range << Name;
1459   return true;
1460 }
1461 
1462 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)1463 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1464                                    SourceLocation Loc, SourceRange Range,
1465                                    CXXCastPath *BasePath,
1466                                    bool IgnoreAccess) {
1467   return CheckDerivedToBaseConversion(Derived, Base,
1468                                       IgnoreAccess ? 0
1469                                        : diag::err_upcast_to_inaccessible_base,
1470                                       diag::err_ambiguous_derived_to_base_conv,
1471                                       Loc, Range, DeclarationName(),
1472                                       BasePath);
1473 }
1474 
1475 
1476 /// @brief Builds a string representing ambiguous paths from a
1477 /// specific derived class to different subobjects of the same base
1478 /// class.
1479 ///
1480 /// This function builds a string that can be used in error messages
1481 /// to show the different paths that one can take through the
1482 /// inheritance hierarchy to go from the derived class to different
1483 /// subobjects of a base class. The result looks something like this:
1484 /// @code
1485 /// struct D -> struct B -> struct A
1486 /// struct D -> struct C -> struct A
1487 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)1488 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1489   std::string PathDisplayStr;
1490   std::set<unsigned> DisplayedPaths;
1491   for (CXXBasePaths::paths_iterator Path = Paths.begin();
1492        Path != Paths.end(); ++Path) {
1493     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1494       // We haven't displayed a path to this particular base
1495       // class subobject yet.
1496       PathDisplayStr += "\n    ";
1497       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1498       for (CXXBasePath::const_iterator Element = Path->begin();
1499            Element != Path->end(); ++Element)
1500         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1501     }
1502   }
1503 
1504   return PathDisplayStr;
1505 }
1506 
1507 //===----------------------------------------------------------------------===//
1508 // C++ class member Handling
1509 //===----------------------------------------------------------------------===//
1510 
1511 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,AttributeList * Attrs)1512 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1513                                 SourceLocation ASLoc,
1514                                 SourceLocation ColonLoc,
1515                                 AttributeList *Attrs) {
1516   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1517   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1518                                                   ASLoc, ColonLoc);
1519   CurContext->addHiddenDecl(ASDecl);
1520   return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1521 }
1522 
1523 /// CheckOverrideControl - Check C++11 override control semantics.
CheckOverrideControl(Decl * D)1524 void Sema::CheckOverrideControl(Decl *D) {
1525   if (D->isInvalidDecl())
1526     return;
1527 
1528   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1529 
1530   // Do we know which functions this declaration might be overriding?
1531   bool OverridesAreKnown = !MD ||
1532       (!MD->getParent()->hasAnyDependentBases() &&
1533        !MD->getType()->isDependentType());
1534 
1535   if (!MD || !MD->isVirtual()) {
1536     if (OverridesAreKnown) {
1537       if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1538         Diag(OA->getLocation(),
1539              diag::override_keyword_only_allowed_on_virtual_member_functions)
1540           << "override" << FixItHint::CreateRemoval(OA->getLocation());
1541         D->dropAttr<OverrideAttr>();
1542       }
1543       if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1544         Diag(FA->getLocation(),
1545              diag::override_keyword_only_allowed_on_virtual_member_functions)
1546           << "final" << FixItHint::CreateRemoval(FA->getLocation());
1547         D->dropAttr<FinalAttr>();
1548       }
1549     }
1550     return;
1551   }
1552 
1553   if (!OverridesAreKnown)
1554     return;
1555 
1556   // C++11 [class.virtual]p5:
1557   //   If a virtual function is marked with the virt-specifier override and
1558   //   does not override a member function of a base class, the program is
1559   //   ill-formed.
1560   bool HasOverriddenMethods =
1561     MD->begin_overridden_methods() != MD->end_overridden_methods();
1562   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1563     Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1564       << MD->getDeclName();
1565 }
1566 
1567 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1568 /// function overrides a virtual member function marked 'final', according to
1569 /// C++11 [class.virtual]p4.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)1570 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1571                                                   const CXXMethodDecl *Old) {
1572   if (!Old->hasAttr<FinalAttr>())
1573     return false;
1574 
1575   Diag(New->getLocation(), diag::err_final_function_overridden)
1576     << New->getDeclName();
1577   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1578   return true;
1579 }
1580 
InitializationHasSideEffects(const FieldDecl & FD)1581 static bool InitializationHasSideEffects(const FieldDecl &FD) {
1582   const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1583   // FIXME: Destruction of ObjC lifetime types has side-effects.
1584   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1585     return !RD->isCompleteDefinition() ||
1586            !RD->hasTrivialDefaultConstructor() ||
1587            !RD->hasTrivialDestructor();
1588   return false;
1589 }
1590 
1591 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1592 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1593 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
1594 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1595 /// present (but parsing it has been deferred).
1596 NamedDecl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,InClassInitStyle InitStyle)1597 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1598                                MultiTemplateParamsArg TemplateParameterLists,
1599                                Expr *BW, const VirtSpecifiers &VS,
1600                                InClassInitStyle InitStyle) {
1601   const DeclSpec &DS = D.getDeclSpec();
1602   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1603   DeclarationName Name = NameInfo.getName();
1604   SourceLocation Loc = NameInfo.getLoc();
1605 
1606   // For anonymous bitfields, the location should point to the type.
1607   if (Loc.isInvalid())
1608     Loc = D.getLocStart();
1609 
1610   Expr *BitWidth = static_cast<Expr*>(BW);
1611 
1612   assert(isa<CXXRecordDecl>(CurContext));
1613   assert(!DS.isFriendSpecified());
1614 
1615   bool isFunc = D.isDeclarationOfFunction();
1616 
1617   if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1618     // The Microsoft extension __interface only permits public member functions
1619     // and prohibits constructors, destructors, operators, non-public member
1620     // functions, static methods and data members.
1621     unsigned InvalidDecl;
1622     bool ShowDeclName = true;
1623     if (!isFunc)
1624       InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1625     else if (AS != AS_public)
1626       InvalidDecl = 2;
1627     else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1628       InvalidDecl = 3;
1629     else switch (Name.getNameKind()) {
1630       case DeclarationName::CXXConstructorName:
1631         InvalidDecl = 4;
1632         ShowDeclName = false;
1633         break;
1634 
1635       case DeclarationName::CXXDestructorName:
1636         InvalidDecl = 5;
1637         ShowDeclName = false;
1638         break;
1639 
1640       case DeclarationName::CXXOperatorName:
1641       case DeclarationName::CXXConversionFunctionName:
1642         InvalidDecl = 6;
1643         break;
1644 
1645       default:
1646         InvalidDecl = 0;
1647         break;
1648     }
1649 
1650     if (InvalidDecl) {
1651       if (ShowDeclName)
1652         Diag(Loc, diag::err_invalid_member_in_interface)
1653           << (InvalidDecl-1) << Name;
1654       else
1655         Diag(Loc, diag::err_invalid_member_in_interface)
1656           << (InvalidDecl-1) << "";
1657       return 0;
1658     }
1659   }
1660 
1661   // C++ 9.2p6: A member shall not be declared to have automatic storage
1662   // duration (auto, register) or with the extern storage-class-specifier.
1663   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1664   // data members and cannot be applied to names declared const or static,
1665   // and cannot be applied to reference members.
1666   switch (DS.getStorageClassSpec()) {
1667     case DeclSpec::SCS_unspecified:
1668     case DeclSpec::SCS_typedef:
1669     case DeclSpec::SCS_static:
1670       // FALL THROUGH.
1671       break;
1672     case DeclSpec::SCS_mutable:
1673       if (isFunc) {
1674         if (DS.getStorageClassSpecLoc().isValid())
1675           Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1676         else
1677           Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1678 
1679         // FIXME: It would be nicer if the keyword was ignored only for this
1680         // declarator. Otherwise we could get follow-up errors.
1681         D.getMutableDeclSpec().ClearStorageClassSpecs();
1682       }
1683       break;
1684     default:
1685       if (DS.getStorageClassSpecLoc().isValid())
1686         Diag(DS.getStorageClassSpecLoc(),
1687              diag::err_storageclass_invalid_for_member);
1688       else
1689         Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1690       D.getMutableDeclSpec().ClearStorageClassSpecs();
1691   }
1692 
1693   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1694                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1695                       !isFunc);
1696 
1697   if (DS.isConstexprSpecified() && isInstField) {
1698     SemaDiagnosticBuilder B =
1699         Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1700     SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1701     if (InitStyle == ICIS_NoInit) {
1702       B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1703       D.getMutableDeclSpec().ClearConstexprSpec();
1704       const char *PrevSpec;
1705       unsigned DiagID;
1706       bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1707                                          PrevSpec, DiagID, getLangOpts());
1708       (void)Failed;
1709       assert(!Failed && "Making a constexpr member const shouldn't fail");
1710     } else {
1711       B << 1;
1712       const char *PrevSpec;
1713       unsigned DiagID;
1714       if (D.getMutableDeclSpec().SetStorageClassSpec(
1715           *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1716         assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1717                "This is the only DeclSpec that should fail to be applied");
1718         B << 1;
1719       } else {
1720         B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1721         isInstField = false;
1722       }
1723     }
1724   }
1725 
1726   NamedDecl *Member;
1727   if (isInstField) {
1728     CXXScopeSpec &SS = D.getCXXScopeSpec();
1729 
1730     // Data members must have identifiers for names.
1731     if (!Name.isIdentifier()) {
1732       Diag(Loc, diag::err_bad_variable_name)
1733         << Name;
1734       return 0;
1735     }
1736 
1737     IdentifierInfo *II = Name.getAsIdentifierInfo();
1738 
1739     // Member field could not be with "template" keyword.
1740     // So TemplateParameterLists should be empty in this case.
1741     if (TemplateParameterLists.size()) {
1742       TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1743       if (TemplateParams->size()) {
1744         // There is no such thing as a member field template.
1745         Diag(D.getIdentifierLoc(), diag::err_template_member)
1746             << II
1747             << SourceRange(TemplateParams->getTemplateLoc(),
1748                 TemplateParams->getRAngleLoc());
1749       } else {
1750         // There is an extraneous 'template<>' for this member.
1751         Diag(TemplateParams->getTemplateLoc(),
1752             diag::err_template_member_noparams)
1753             << II
1754             << SourceRange(TemplateParams->getTemplateLoc(),
1755                 TemplateParams->getRAngleLoc());
1756       }
1757       return 0;
1758     }
1759 
1760     if (SS.isSet() && !SS.isInvalid()) {
1761       // The user provided a superfluous scope specifier inside a class
1762       // definition:
1763       //
1764       // class X {
1765       //   int X::member;
1766       // };
1767       if (DeclContext *DC = computeDeclContext(SS, false))
1768         diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1769       else
1770         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1771           << Name << SS.getRange();
1772 
1773       SS.clear();
1774     }
1775 
1776     Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1777                          InitStyle, AS);
1778     assert(Member && "HandleField never returns null");
1779   } else {
1780     assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1781 
1782     Member = HandleDeclarator(S, D, TemplateParameterLists);
1783     if (!Member) {
1784       return 0;
1785     }
1786 
1787     // Non-instance-fields can't have a bitfield.
1788     if (BitWidth) {
1789       if (Member->isInvalidDecl()) {
1790         // don't emit another diagnostic.
1791       } else if (isa<VarDecl>(Member)) {
1792         // C++ 9.6p3: A bit-field shall not be a static member.
1793         // "static member 'A' cannot be a bit-field"
1794         Diag(Loc, diag::err_static_not_bitfield)
1795           << Name << BitWidth->getSourceRange();
1796       } else if (isa<TypedefDecl>(Member)) {
1797         // "typedef member 'x' cannot be a bit-field"
1798         Diag(Loc, diag::err_typedef_not_bitfield)
1799           << Name << BitWidth->getSourceRange();
1800       } else {
1801         // A function typedef ("typedef int f(); f a;").
1802         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1803         Diag(Loc, diag::err_not_integral_type_bitfield)
1804           << Name << cast<ValueDecl>(Member)->getType()
1805           << BitWidth->getSourceRange();
1806       }
1807 
1808       BitWidth = 0;
1809       Member->setInvalidDecl();
1810     }
1811 
1812     Member->setAccess(AS);
1813 
1814     // If we have declared a member function template, set the access of the
1815     // templated declaration as well.
1816     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1817       FunTmpl->getTemplatedDecl()->setAccess(AS);
1818   }
1819 
1820   if (VS.isOverrideSpecified())
1821     Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1822   if (VS.isFinalSpecified())
1823     Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1824 
1825   if (VS.getLastLocation().isValid()) {
1826     // Update the end location of a method that has a virt-specifiers.
1827     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1828       MD->setRangeEnd(VS.getLastLocation());
1829   }
1830 
1831   CheckOverrideControl(Member);
1832 
1833   assert((Name || isInstField) && "No identifier for non-field ?");
1834 
1835   if (isInstField) {
1836     FieldDecl *FD = cast<FieldDecl>(Member);
1837     FieldCollector->Add(FD);
1838 
1839     if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1840                                  FD->getLocation())
1841           != DiagnosticsEngine::Ignored) {
1842       // Remember all explicit private FieldDecls that have a name, no side
1843       // effects and are not part of a dependent type declaration.
1844       if (!FD->isImplicit() && FD->getDeclName() &&
1845           FD->getAccess() == AS_private &&
1846           !FD->hasAttr<UnusedAttr>() &&
1847           !FD->getParent()->isDependentContext() &&
1848           !InitializationHasSideEffects(*FD))
1849         UnusedPrivateFields.insert(FD);
1850     }
1851   }
1852 
1853   return Member;
1854 }
1855 
1856 namespace {
1857   class UninitializedFieldVisitor
1858       : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1859     Sema &S;
1860     ValueDecl *VD;
1861   public:
1862     typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
UninitializedFieldVisitor(Sema & S,ValueDecl * VD)1863     UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1864                                                         S(S) {
1865       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
1866         this->VD = IFD->getAnonField();
1867       else
1868         this->VD = VD;
1869     }
1870 
HandleExpr(Expr * E)1871     void HandleExpr(Expr *E) {
1872       if (!E) return;
1873 
1874       // Expressions like x(x) sometimes lack the surrounding expressions
1875       // but need to be checked anyways.
1876       HandleValue(E);
1877       Visit(E);
1878     }
1879 
HandleValue(Expr * E)1880     void HandleValue(Expr *E) {
1881       E = E->IgnoreParens();
1882 
1883       if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1884         if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1885           return;
1886 
1887         // FieldME is the inner-most MemberExpr that is not an anonymous struct
1888         // or union.
1889         MemberExpr *FieldME = ME;
1890 
1891         Expr *Base = E;
1892         while (isa<MemberExpr>(Base)) {
1893           ME = cast<MemberExpr>(Base);
1894 
1895           if (isa<VarDecl>(ME->getMemberDecl()))
1896             return;
1897 
1898           if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1899             if (!FD->isAnonymousStructOrUnion())
1900               FieldME = ME;
1901 
1902           Base = ME->getBase();
1903         }
1904 
1905         if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1906           unsigned diag = VD->getType()->isReferenceType()
1907               ? diag::warn_reference_field_is_uninit
1908               : diag::warn_field_is_uninit;
1909           S.Diag(FieldME->getExprLoc(), diag) << VD;
1910         }
1911         return;
1912       }
1913 
1914       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1915         HandleValue(CO->getTrueExpr());
1916         HandleValue(CO->getFalseExpr());
1917         return;
1918       }
1919 
1920       if (BinaryConditionalOperator *BCO =
1921               dyn_cast<BinaryConditionalOperator>(E)) {
1922         HandleValue(BCO->getCommon());
1923         HandleValue(BCO->getFalseExpr());
1924         return;
1925       }
1926 
1927       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1928         switch (BO->getOpcode()) {
1929         default:
1930           return;
1931         case(BO_PtrMemD):
1932         case(BO_PtrMemI):
1933           HandleValue(BO->getLHS());
1934           return;
1935         case(BO_Comma):
1936           HandleValue(BO->getRHS());
1937           return;
1938         }
1939       }
1940     }
1941 
VisitImplicitCastExpr(ImplicitCastExpr * E)1942     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1943       if (E->getCastKind() == CK_LValueToRValue)
1944         HandleValue(E->getSubExpr());
1945 
1946       Inherited::VisitImplicitCastExpr(E);
1947     }
1948 
VisitCXXMemberCallExpr(CXXMemberCallExpr * E)1949     void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1950       Expr *Callee = E->getCallee();
1951       if (isa<MemberExpr>(Callee))
1952         HandleValue(Callee);
1953 
1954       Inherited::VisitCXXMemberCallExpr(E);
1955     }
1956   };
CheckInitExprContainsUninitializedFields(Sema & S,Expr * E,ValueDecl * VD)1957   static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1958                                                        ValueDecl *VD) {
1959     UninitializedFieldVisitor(S, VD).HandleExpr(E);
1960   }
1961 } // namespace
1962 
1963 /// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1964 /// in-class initializer for a non-static C++ class member, and after
1965 /// instantiating an in-class initializer in a class template. Such actions
1966 /// are deferred until the class is complete.
1967 void
ActOnCXXInClassMemberInitializer(Decl * D,SourceLocation InitLoc,Expr * InitExpr)1968 Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1969                                        Expr *InitExpr) {
1970   FieldDecl *FD = cast<FieldDecl>(D);
1971   assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1972          "must set init style when field is created");
1973 
1974   if (!InitExpr) {
1975     FD->setInvalidDecl();
1976     FD->removeInClassInitializer();
1977     return;
1978   }
1979 
1980   if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1981     FD->setInvalidDecl();
1982     FD->removeInClassInitializer();
1983     return;
1984   }
1985 
1986   if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
1987       != DiagnosticsEngine::Ignored) {
1988     CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
1989   }
1990 
1991   ExprResult Init = InitExpr;
1992   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1993     if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1994       Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1995         << /*at end of ctor*/1 << InitExpr->getSourceRange();
1996     }
1997     Expr **Inits = &InitExpr;
1998     unsigned NumInits = 1;
1999     InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2000     InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2001         ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2002         : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2003     InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
2004     Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
2005     if (Init.isInvalid()) {
2006       FD->setInvalidDecl();
2007       return;
2008     }
2009   }
2010 
2011   // C++11 [class.base.init]p7:
2012   //   The initialization of each base and member constitutes a
2013   //   full-expression.
2014   Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2015   if (Init.isInvalid()) {
2016     FD->setInvalidDecl();
2017     return;
2018   }
2019 
2020   InitExpr = Init.release();
2021 
2022   FD->setInClassInitializer(InitExpr);
2023 }
2024 
2025 /// \brief Find the direct and/or virtual base specifiers that
2026 /// correspond to the given base type, for use in base initialization
2027 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)2028 static bool FindBaseInitializer(Sema &SemaRef,
2029                                 CXXRecordDecl *ClassDecl,
2030                                 QualType BaseType,
2031                                 const CXXBaseSpecifier *&DirectBaseSpec,
2032                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
2033   // First, check for a direct base class.
2034   DirectBaseSpec = 0;
2035   for (CXXRecordDecl::base_class_const_iterator Base
2036          = ClassDecl->bases_begin();
2037        Base != ClassDecl->bases_end(); ++Base) {
2038     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2039       // We found a direct base of this type. That's what we're
2040       // initializing.
2041       DirectBaseSpec = &*Base;
2042       break;
2043     }
2044   }
2045 
2046   // Check for a virtual base class.
2047   // FIXME: We might be able to short-circuit this if we know in advance that
2048   // there are no virtual bases.
2049   VirtualBaseSpec = 0;
2050   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2051     // We haven't found a base yet; search the class hierarchy for a
2052     // virtual base class.
2053     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2054                        /*DetectVirtual=*/false);
2055     if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2056                               BaseType, Paths)) {
2057       for (CXXBasePaths::paths_iterator Path = Paths.begin();
2058            Path != Paths.end(); ++Path) {
2059         if (Path->back().Base->isVirtual()) {
2060           VirtualBaseSpec = Path->back().Base;
2061           break;
2062         }
2063       }
2064     }
2065   }
2066 
2067   return DirectBaseSpec || VirtualBaseSpec;
2068 }
2069 
2070 /// \brief Handle a C++ member initializer using braced-init-list syntax.
2071 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)2072 Sema::ActOnMemInitializer(Decl *ConstructorD,
2073                           Scope *S,
2074                           CXXScopeSpec &SS,
2075                           IdentifierInfo *MemberOrBase,
2076                           ParsedType TemplateTypeTy,
2077                           const DeclSpec &DS,
2078                           SourceLocation IdLoc,
2079                           Expr *InitList,
2080                           SourceLocation EllipsisLoc) {
2081   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2082                              DS, IdLoc, InitList,
2083                              EllipsisLoc);
2084 }
2085 
2086 /// \brief Handle a C++ member initializer using parentheses syntax.
2087 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,SourceLocation EllipsisLoc)2088 Sema::ActOnMemInitializer(Decl *ConstructorD,
2089                           Scope *S,
2090                           CXXScopeSpec &SS,
2091                           IdentifierInfo *MemberOrBase,
2092                           ParsedType TemplateTypeTy,
2093                           const DeclSpec &DS,
2094                           SourceLocation IdLoc,
2095                           SourceLocation LParenLoc,
2096                           Expr **Args, unsigned NumArgs,
2097                           SourceLocation RParenLoc,
2098                           SourceLocation EllipsisLoc) {
2099   Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2100                                            llvm::makeArrayRef(Args, NumArgs),
2101                                            RParenLoc);
2102   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2103                              DS, IdLoc, List, EllipsisLoc);
2104 }
2105 
2106 namespace {
2107 
2108 // Callback to only accept typo corrections that can be a valid C++ member
2109 // intializer: either a non-static field member or a base class.
2110 class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2111  public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)2112   explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2113       : ClassDecl(ClassDecl) {}
2114 
ValidateCandidate(const TypoCorrection & candidate)2115   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2116     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2117       if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2118         return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2119       else
2120         return isa<TypeDecl>(ND);
2121     }
2122     return false;
2123   }
2124 
2125  private:
2126   CXXRecordDecl *ClassDecl;
2127 };
2128 
2129 }
2130 
2131 /// \brief Handle a C++ member initializer.
2132 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)2133 Sema::BuildMemInitializer(Decl *ConstructorD,
2134                           Scope *S,
2135                           CXXScopeSpec &SS,
2136                           IdentifierInfo *MemberOrBase,
2137                           ParsedType TemplateTypeTy,
2138                           const DeclSpec &DS,
2139                           SourceLocation IdLoc,
2140                           Expr *Init,
2141                           SourceLocation EllipsisLoc) {
2142   if (!ConstructorD)
2143     return true;
2144 
2145   AdjustDeclIfTemplate(ConstructorD);
2146 
2147   CXXConstructorDecl *Constructor
2148     = dyn_cast<CXXConstructorDecl>(ConstructorD);
2149   if (!Constructor) {
2150     // The user wrote a constructor initializer on a function that is
2151     // not a C++ constructor. Ignore the error for now, because we may
2152     // have more member initializers coming; we'll diagnose it just
2153     // once in ActOnMemInitializers.
2154     return true;
2155   }
2156 
2157   CXXRecordDecl *ClassDecl = Constructor->getParent();
2158 
2159   // C++ [class.base.init]p2:
2160   //   Names in a mem-initializer-id are looked up in the scope of the
2161   //   constructor's class and, if not found in that scope, are looked
2162   //   up in the scope containing the constructor's definition.
2163   //   [Note: if the constructor's class contains a member with the
2164   //   same name as a direct or virtual base class of the class, a
2165   //   mem-initializer-id naming the member or base class and composed
2166   //   of a single identifier refers to the class member. A
2167   //   mem-initializer-id for the hidden base class may be specified
2168   //   using a qualified name. ]
2169   if (!SS.getScopeRep() && !TemplateTypeTy) {
2170     // Look for a member, first.
2171     DeclContext::lookup_result Result
2172       = ClassDecl->lookup(MemberOrBase);
2173     if (!Result.empty()) {
2174       ValueDecl *Member;
2175       if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2176           (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2177         if (EllipsisLoc.isValid())
2178           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2179             << MemberOrBase
2180             << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2181 
2182         return BuildMemberInitializer(Member, Init, IdLoc);
2183       }
2184     }
2185   }
2186   // It didn't name a member, so see if it names a class.
2187   QualType BaseType;
2188   TypeSourceInfo *TInfo = 0;
2189 
2190   if (TemplateTypeTy) {
2191     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2192   } else if (DS.getTypeSpecType() == TST_decltype) {
2193     BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2194   } else {
2195     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2196     LookupParsedName(R, S, &SS);
2197 
2198     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2199     if (!TyD) {
2200       if (R.isAmbiguous()) return true;
2201 
2202       // We don't want access-control diagnostics here.
2203       R.suppressDiagnostics();
2204 
2205       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2206         bool NotUnknownSpecialization = false;
2207         DeclContext *DC = computeDeclContext(SS, false);
2208         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2209           NotUnknownSpecialization = !Record->hasAnyDependentBases();
2210 
2211         if (!NotUnknownSpecialization) {
2212           // When the scope specifier can refer to a member of an unknown
2213           // specialization, we take it as a type name.
2214           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2215                                        SS.getWithLocInContext(Context),
2216                                        *MemberOrBase, IdLoc);
2217           if (BaseType.isNull())
2218             return true;
2219 
2220           R.clear();
2221           R.setLookupName(MemberOrBase);
2222         }
2223       }
2224 
2225       // If no results were found, try to correct typos.
2226       TypoCorrection Corr;
2227       MemInitializerValidatorCCC Validator(ClassDecl);
2228       if (R.empty() && BaseType.isNull() &&
2229           (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2230                               Validator, ClassDecl))) {
2231         std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2232         std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2233         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2234           // We have found a non-static data member with a similar
2235           // name to what was typed; complain and initialize that
2236           // member.
2237           Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2238             << MemberOrBase << true << CorrectedQuotedStr
2239             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2240           Diag(Member->getLocation(), diag::note_previous_decl)
2241             << CorrectedQuotedStr;
2242 
2243           return BuildMemberInitializer(Member, Init, IdLoc);
2244         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2245           const CXXBaseSpecifier *DirectBaseSpec;
2246           const CXXBaseSpecifier *VirtualBaseSpec;
2247           if (FindBaseInitializer(*this, ClassDecl,
2248                                   Context.getTypeDeclType(Type),
2249                                   DirectBaseSpec, VirtualBaseSpec)) {
2250             // We have found a direct or virtual base class with a
2251             // similar name to what was typed; complain and initialize
2252             // that base class.
2253             Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2254               << MemberOrBase << false << CorrectedQuotedStr
2255               << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2256 
2257             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2258                                                              : VirtualBaseSpec;
2259             Diag(BaseSpec->getLocStart(),
2260                  diag::note_base_class_specified_here)
2261               << BaseSpec->getType()
2262               << BaseSpec->getSourceRange();
2263 
2264             TyD = Type;
2265           }
2266         }
2267       }
2268 
2269       if (!TyD && BaseType.isNull()) {
2270         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2271           << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2272         return true;
2273       }
2274     }
2275 
2276     if (BaseType.isNull()) {
2277       BaseType = Context.getTypeDeclType(TyD);
2278       if (SS.isSet()) {
2279         NestedNameSpecifier *Qualifier =
2280           static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2281 
2282         // FIXME: preserve source range information
2283         BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2284       }
2285     }
2286   }
2287 
2288   if (!TInfo)
2289     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2290 
2291   return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2292 }
2293 
2294 /// Checks a member initializer expression for cases where reference (or
2295 /// pointer) members are bound to by-value parameters (or their addresses).
CheckForDanglingReferenceOrPointer(Sema & S,ValueDecl * Member,Expr * Init,SourceLocation IdLoc)2296 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2297                                                Expr *Init,
2298                                                SourceLocation IdLoc) {
2299   QualType MemberTy = Member->getType();
2300 
2301   // We only handle pointers and references currently.
2302   // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2303   if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2304     return;
2305 
2306   const bool IsPointer = MemberTy->isPointerType();
2307   if (IsPointer) {
2308     if (const UnaryOperator *Op
2309           = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2310       // The only case we're worried about with pointers requires taking the
2311       // address.
2312       if (Op->getOpcode() != UO_AddrOf)
2313         return;
2314 
2315       Init = Op->getSubExpr();
2316     } else {
2317       // We only handle address-of expression initializers for pointers.
2318       return;
2319     }
2320   }
2321 
2322   if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2323     // Taking the address of a temporary will be diagnosed as a hard error.
2324     if (IsPointer)
2325       return;
2326 
2327     S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2328       << Member << Init->getSourceRange();
2329   } else if (const DeclRefExpr *DRE
2330                = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2331     // We only warn when referring to a non-reference parameter declaration.
2332     const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2333     if (!Parameter || Parameter->getType()->isReferenceType())
2334       return;
2335 
2336     S.Diag(Init->getExprLoc(),
2337            IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2338                      : diag::warn_bind_ref_member_to_parameter)
2339       << Member << Parameter << Init->getSourceRange();
2340   } else {
2341     // Other initializers are fine.
2342     return;
2343   }
2344 
2345   S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2346     << (unsigned)IsPointer;
2347 }
2348 
2349 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)2350 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2351                              SourceLocation IdLoc) {
2352   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2353   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2354   assert((DirectMember || IndirectMember) &&
2355          "Member must be a FieldDecl or IndirectFieldDecl");
2356 
2357   if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2358     return true;
2359 
2360   if (Member->isInvalidDecl())
2361     return true;
2362 
2363   // Diagnose value-uses of fields to initialize themselves, e.g.
2364   //   foo(foo)
2365   // where foo is not also a parameter to the constructor.
2366   // TODO: implement -Wuninitialized and fold this into that framework.
2367   Expr **Args;
2368   unsigned NumArgs;
2369   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2370     Args = ParenList->getExprs();
2371     NumArgs = ParenList->getNumExprs();
2372   } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2373     Args = InitList->getInits();
2374     NumArgs = InitList->getNumInits();
2375   } else {
2376     // Template instantiation doesn't reconstruct ParenListExprs for us.
2377     Args = &Init;
2378     NumArgs = 1;
2379   }
2380 
2381   if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2382         != DiagnosticsEngine::Ignored)
2383     for (unsigned i = 0; i < NumArgs; ++i)
2384       // FIXME: Warn about the case when other fields are used before being
2385       // initialized. For example, let this field be the i'th field. When
2386       // initializing the i'th field, throw a warning if any of the >= i'th
2387       // fields are used, as they are not yet initialized.
2388       // Right now we are only handling the case where the i'th field uses
2389       // itself in its initializer.
2390       // Also need to take into account that some fields may be initialized by
2391       // in-class initializers, see C++11 [class.base.init]p9.
2392       CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2393 
2394   SourceRange InitRange = Init->getSourceRange();
2395 
2396   if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2397     // Can't check initialization for a member of dependent type or when
2398     // any of the arguments are type-dependent expressions.
2399     DiscardCleanupsInEvaluationContext();
2400   } else {
2401     bool InitList = false;
2402     if (isa<InitListExpr>(Init)) {
2403       InitList = true;
2404       Args = &Init;
2405       NumArgs = 1;
2406 
2407       if (isStdInitializerList(Member->getType(), 0)) {
2408         Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2409             << /*at end of ctor*/1 << InitRange;
2410       }
2411     }
2412 
2413     // Initialize the member.
2414     InitializedEntity MemberEntity =
2415       DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2416                    : InitializedEntity::InitializeMember(IndirectMember, 0);
2417     InitializationKind Kind =
2418       InitList ? InitializationKind::CreateDirectList(IdLoc)
2419                : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2420                                                   InitRange.getEnd());
2421 
2422     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2423     ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2424                                             MultiExprArg(Args, NumArgs),
2425                                             0);
2426     if (MemberInit.isInvalid())
2427       return true;
2428 
2429     // C++11 [class.base.init]p7:
2430     //   The initialization of each base and member constitutes a
2431     //   full-expression.
2432     MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2433     if (MemberInit.isInvalid())
2434       return true;
2435 
2436     Init = MemberInit.get();
2437     CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2438   }
2439 
2440   if (DirectMember) {
2441     return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2442                                             InitRange.getBegin(), Init,
2443                                             InitRange.getEnd());
2444   } else {
2445     return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2446                                             InitRange.getBegin(), Init,
2447                                             InitRange.getEnd());
2448   }
2449 }
2450 
2451 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)2452 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2453                                  CXXRecordDecl *ClassDecl) {
2454   SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2455   if (!LangOpts.CPlusPlus11)
2456     return Diag(NameLoc, diag::err_delegating_ctor)
2457       << TInfo->getTypeLoc().getLocalSourceRange();
2458   Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2459 
2460   bool InitList = true;
2461   Expr **Args = &Init;
2462   unsigned NumArgs = 1;
2463   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2464     InitList = false;
2465     Args = ParenList->getExprs();
2466     NumArgs = ParenList->getNumExprs();
2467   }
2468 
2469   SourceRange InitRange = Init->getSourceRange();
2470   // Initialize the object.
2471   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2472                                      QualType(ClassDecl->getTypeForDecl(), 0));
2473   InitializationKind Kind =
2474     InitList ? InitializationKind::CreateDirectList(NameLoc)
2475              : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2476                                                 InitRange.getEnd());
2477   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2478   ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2479                                               MultiExprArg(Args, NumArgs),
2480                                               0);
2481   if (DelegationInit.isInvalid())
2482     return true;
2483 
2484   assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2485          "Delegating constructor with no target?");
2486 
2487   // C++11 [class.base.init]p7:
2488   //   The initialization of each base and member constitutes a
2489   //   full-expression.
2490   DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2491                                        InitRange.getBegin());
2492   if (DelegationInit.isInvalid())
2493     return true;
2494 
2495   // If we are in a dependent context, template instantiation will
2496   // perform this type-checking again. Just save the arguments that we
2497   // received in a ParenListExpr.
2498   // FIXME: This isn't quite ideal, since our ASTs don't capture all
2499   // of the information that we have about the base
2500   // initializer. However, deconstructing the ASTs is a dicey process,
2501   // and this approach is far more likely to get the corner cases right.
2502   if (CurContext->isDependentContext())
2503     DelegationInit = Owned(Init);
2504 
2505   return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2506                                           DelegationInit.takeAs<Expr>(),
2507                                           InitRange.getEnd());
2508 }
2509 
2510 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)2511 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2512                            Expr *Init, CXXRecordDecl *ClassDecl,
2513                            SourceLocation EllipsisLoc) {
2514   SourceLocation BaseLoc
2515     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2516 
2517   if (!BaseType->isDependentType() && !BaseType->isRecordType())
2518     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2519              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2520 
2521   // C++ [class.base.init]p2:
2522   //   [...] Unless the mem-initializer-id names a nonstatic data
2523   //   member of the constructor's class or a direct or virtual base
2524   //   of that class, the mem-initializer is ill-formed. A
2525   //   mem-initializer-list can initialize a base class using any
2526   //   name that denotes that base class type.
2527   bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2528 
2529   SourceRange InitRange = Init->getSourceRange();
2530   if (EllipsisLoc.isValid()) {
2531     // This is a pack expansion.
2532     if (!BaseType->containsUnexpandedParameterPack())  {
2533       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2534         << SourceRange(BaseLoc, InitRange.getEnd());
2535 
2536       EllipsisLoc = SourceLocation();
2537     }
2538   } else {
2539     // Check for any unexpanded parameter packs.
2540     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2541       return true;
2542 
2543     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2544       return true;
2545   }
2546 
2547   // Check for direct and virtual base classes.
2548   const CXXBaseSpecifier *DirectBaseSpec = 0;
2549   const CXXBaseSpecifier *VirtualBaseSpec = 0;
2550   if (!Dependent) {
2551     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2552                                        BaseType))
2553       return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2554 
2555     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2556                         VirtualBaseSpec);
2557 
2558     // C++ [base.class.init]p2:
2559     // Unless the mem-initializer-id names a nonstatic data member of the
2560     // constructor's class or a direct or virtual base of that class, the
2561     // mem-initializer is ill-formed.
2562     if (!DirectBaseSpec && !VirtualBaseSpec) {
2563       // If the class has any dependent bases, then it's possible that
2564       // one of those types will resolve to the same type as
2565       // BaseType. Therefore, just treat this as a dependent base
2566       // class initialization.  FIXME: Should we try to check the
2567       // initialization anyway? It seems odd.
2568       if (ClassDecl->hasAnyDependentBases())
2569         Dependent = true;
2570       else
2571         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2572           << BaseType << Context.getTypeDeclType(ClassDecl)
2573           << BaseTInfo->getTypeLoc().getLocalSourceRange();
2574     }
2575   }
2576 
2577   if (Dependent) {
2578     DiscardCleanupsInEvaluationContext();
2579 
2580     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2581                                             /*IsVirtual=*/false,
2582                                             InitRange.getBegin(), Init,
2583                                             InitRange.getEnd(), EllipsisLoc);
2584   }
2585 
2586   // C++ [base.class.init]p2:
2587   //   If a mem-initializer-id is ambiguous because it designates both
2588   //   a direct non-virtual base class and an inherited virtual base
2589   //   class, the mem-initializer is ill-formed.
2590   if (DirectBaseSpec && VirtualBaseSpec)
2591     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2592       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2593 
2594   CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2595   if (!BaseSpec)
2596     BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2597 
2598   // Initialize the base.
2599   bool InitList = true;
2600   Expr **Args = &Init;
2601   unsigned NumArgs = 1;
2602   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2603     InitList = false;
2604     Args = ParenList->getExprs();
2605     NumArgs = ParenList->getNumExprs();
2606   }
2607 
2608   InitializedEntity BaseEntity =
2609     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2610   InitializationKind Kind =
2611     InitList ? InitializationKind::CreateDirectList(BaseLoc)
2612              : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2613                                                 InitRange.getEnd());
2614   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2615   ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2616                                         MultiExprArg(Args, NumArgs), 0);
2617   if (BaseInit.isInvalid())
2618     return true;
2619 
2620   // C++11 [class.base.init]p7:
2621   //   The initialization of each base and member constitutes a
2622   //   full-expression.
2623   BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2624   if (BaseInit.isInvalid())
2625     return true;
2626 
2627   // If we are in a dependent context, template instantiation will
2628   // perform this type-checking again. Just save the arguments that we
2629   // received in a ParenListExpr.
2630   // FIXME: This isn't quite ideal, since our ASTs don't capture all
2631   // of the information that we have about the base
2632   // initializer. However, deconstructing the ASTs is a dicey process,
2633   // and this approach is far more likely to get the corner cases right.
2634   if (CurContext->isDependentContext())
2635     BaseInit = Owned(Init);
2636 
2637   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2638                                           BaseSpec->isVirtual(),
2639                                           InitRange.getBegin(),
2640                                           BaseInit.takeAs<Expr>(),
2641                                           InitRange.getEnd(), EllipsisLoc);
2642 }
2643 
2644 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E,QualType T=QualType ())2645 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2646   if (T.isNull()) T = E->getType();
2647   QualType TargetType = SemaRef.BuildReferenceType(
2648       T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2649   SourceLocation ExprLoc = E->getLocStart();
2650   TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2651       TargetType, ExprLoc);
2652 
2653   return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2654                                    SourceRange(ExprLoc, ExprLoc),
2655                                    E->getSourceRange()).take();
2656 }
2657 
2658 /// ImplicitInitializerKind - How an implicit base or member initializer should
2659 /// initialize its base or member.
2660 enum ImplicitInitializerKind {
2661   IIK_Default,
2662   IIK_Copy,
2663   IIK_Move,
2664   IIK_Inherit
2665 };
2666 
2667 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)2668 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2669                              ImplicitInitializerKind ImplicitInitKind,
2670                              CXXBaseSpecifier *BaseSpec,
2671                              bool IsInheritedVirtualBase,
2672                              CXXCtorInitializer *&CXXBaseInit) {
2673   InitializedEntity InitEntity
2674     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2675                                         IsInheritedVirtualBase);
2676 
2677   ExprResult BaseInit;
2678 
2679   switch (ImplicitInitKind) {
2680   case IIK_Inherit: {
2681     const CXXRecordDecl *Inherited =
2682         Constructor->getInheritedConstructor()->getParent();
2683     const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2684     if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2685       // C++11 [class.inhctor]p8:
2686       //   Each expression in the expression-list is of the form
2687       //   static_cast<T&&>(p), where p is the name of the corresponding
2688       //   constructor parameter and T is the declared type of p.
2689       SmallVector<Expr*, 16> Args;
2690       for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2691         ParmVarDecl *PD = Constructor->getParamDecl(I);
2692         ExprResult ArgExpr =
2693             SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2694                                      VK_LValue, SourceLocation());
2695         if (ArgExpr.isInvalid())
2696           return true;
2697         Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2698       }
2699 
2700       InitializationKind InitKind = InitializationKind::CreateDirect(
2701           Constructor->getLocation(), SourceLocation(), SourceLocation());
2702       InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2703                                      Args.data(), Args.size());
2704       BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2705       break;
2706     }
2707   }
2708   // Fall through.
2709   case IIK_Default: {
2710     InitializationKind InitKind
2711       = InitializationKind::CreateDefault(Constructor->getLocation());
2712     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2713     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2714     break;
2715   }
2716 
2717   case IIK_Move:
2718   case IIK_Copy: {
2719     bool Moving = ImplicitInitKind == IIK_Move;
2720     ParmVarDecl *Param = Constructor->getParamDecl(0);
2721     QualType ParamType = Param->getType().getNonReferenceType();
2722 
2723     Expr *CopyCtorArg =
2724       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2725                           SourceLocation(), Param, false,
2726                           Constructor->getLocation(), ParamType,
2727                           VK_LValue, 0);
2728 
2729     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2730 
2731     // Cast to the base class to avoid ambiguities.
2732     QualType ArgTy =
2733       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2734                                        ParamType.getQualifiers());
2735 
2736     if (Moving) {
2737       CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2738     }
2739 
2740     CXXCastPath BasePath;
2741     BasePath.push_back(BaseSpec);
2742     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2743                                             CK_UncheckedDerivedToBase,
2744                                             Moving ? VK_XValue : VK_LValue,
2745                                             &BasePath).take();
2746 
2747     InitializationKind InitKind
2748       = InitializationKind::CreateDirect(Constructor->getLocation(),
2749                                          SourceLocation(), SourceLocation());
2750     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2751                                    &CopyCtorArg, 1);
2752     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2753                                MultiExprArg(&CopyCtorArg, 1));
2754     break;
2755   }
2756   }
2757 
2758   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2759   if (BaseInit.isInvalid())
2760     return true;
2761 
2762   CXXBaseInit =
2763     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2764                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2765                                                         SourceLocation()),
2766                                              BaseSpec->isVirtual(),
2767                                              SourceLocation(),
2768                                              BaseInit.takeAs<Expr>(),
2769                                              SourceLocation(),
2770                                              SourceLocation());
2771 
2772   return false;
2773 }
2774 
RefersToRValueRef(Expr * MemRef)2775 static bool RefersToRValueRef(Expr *MemRef) {
2776   ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2777   return Referenced->getType()->isRValueReferenceType();
2778 }
2779 
2780 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)2781 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2782                                ImplicitInitializerKind ImplicitInitKind,
2783                                FieldDecl *Field, IndirectFieldDecl *Indirect,
2784                                CXXCtorInitializer *&CXXMemberInit) {
2785   if (Field->isInvalidDecl())
2786     return true;
2787 
2788   SourceLocation Loc = Constructor->getLocation();
2789 
2790   if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2791     bool Moving = ImplicitInitKind == IIK_Move;
2792     ParmVarDecl *Param = Constructor->getParamDecl(0);
2793     QualType ParamType = Param->getType().getNonReferenceType();
2794 
2795     // Suppress copying zero-width bitfields.
2796     if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2797       return false;
2798 
2799     Expr *MemberExprBase =
2800       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2801                           SourceLocation(), Param, false,
2802                           Loc, ParamType, VK_LValue, 0);
2803 
2804     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2805 
2806     if (Moving) {
2807       MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2808     }
2809 
2810     // Build a reference to this field within the parameter.
2811     CXXScopeSpec SS;
2812     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2813                               Sema::LookupMemberName);
2814     MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2815                                   : cast<ValueDecl>(Field), AS_public);
2816     MemberLookup.resolveKind();
2817     ExprResult CtorArg
2818       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2819                                          ParamType, Loc,
2820                                          /*IsArrow=*/false,
2821                                          SS,
2822                                          /*TemplateKWLoc=*/SourceLocation(),
2823                                          /*FirstQualifierInScope=*/0,
2824                                          MemberLookup,
2825                                          /*TemplateArgs=*/0);
2826     if (CtorArg.isInvalid())
2827       return true;
2828 
2829     // C++11 [class.copy]p15:
2830     //   - if a member m has rvalue reference type T&&, it is direct-initialized
2831     //     with static_cast<T&&>(x.m);
2832     if (RefersToRValueRef(CtorArg.get())) {
2833       CtorArg = CastForMoving(SemaRef, CtorArg.take());
2834     }
2835 
2836     // When the field we are copying is an array, create index variables for
2837     // each dimension of the array. We use these index variables to subscript
2838     // the source array, and other clients (e.g., CodeGen) will perform the
2839     // necessary iteration with these index variables.
2840     SmallVector<VarDecl *, 4> IndexVariables;
2841     QualType BaseType = Field->getType();
2842     QualType SizeType = SemaRef.Context.getSizeType();
2843     bool InitializingArray = false;
2844     while (const ConstantArrayType *Array
2845                           = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2846       InitializingArray = true;
2847       // Create the iteration variable for this array index.
2848       IdentifierInfo *IterationVarName = 0;
2849       {
2850         SmallString<8> Str;
2851         llvm::raw_svector_ostream OS(Str);
2852         OS << "__i" << IndexVariables.size();
2853         IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2854       }
2855       VarDecl *IterationVar
2856         = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2857                           IterationVarName, SizeType,
2858                         SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2859                           SC_None, SC_None);
2860       IndexVariables.push_back(IterationVar);
2861 
2862       // Create a reference to the iteration variable.
2863       ExprResult IterationVarRef
2864         = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2865       assert(!IterationVarRef.isInvalid() &&
2866              "Reference to invented variable cannot fail!");
2867       IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2868       assert(!IterationVarRef.isInvalid() &&
2869              "Conversion of invented variable cannot fail!");
2870 
2871       // Subscript the array with this iteration variable.
2872       CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2873                                                         IterationVarRef.take(),
2874                                                         Loc);
2875       if (CtorArg.isInvalid())
2876         return true;
2877 
2878       BaseType = Array->getElementType();
2879     }
2880 
2881     // The array subscript expression is an lvalue, which is wrong for moving.
2882     if (Moving && InitializingArray)
2883       CtorArg = CastForMoving(SemaRef, CtorArg.take());
2884 
2885     // Construct the entity that we will be initializing. For an array, this
2886     // will be first element in the array, which may require several levels
2887     // of array-subscript entities.
2888     SmallVector<InitializedEntity, 4> Entities;
2889     Entities.reserve(1 + IndexVariables.size());
2890     if (Indirect)
2891       Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2892     else
2893       Entities.push_back(InitializedEntity::InitializeMember(Field));
2894     for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2895       Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2896                                                               0,
2897                                                               Entities.back()));
2898 
2899     // Direct-initialize to use the copy constructor.
2900     InitializationKind InitKind =
2901       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2902 
2903     Expr *CtorArgE = CtorArg.takeAs<Expr>();
2904     InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2905                                    &CtorArgE, 1);
2906 
2907     ExprResult MemberInit
2908       = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2909                         MultiExprArg(&CtorArgE, 1));
2910     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2911     if (MemberInit.isInvalid())
2912       return true;
2913 
2914     if (Indirect) {
2915       assert(IndexVariables.size() == 0 &&
2916              "Indirect field improperly initialized");
2917       CXXMemberInit
2918         = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2919                                                    Loc, Loc,
2920                                                    MemberInit.takeAs<Expr>(),
2921                                                    Loc);
2922     } else
2923       CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2924                                                  Loc, MemberInit.takeAs<Expr>(),
2925                                                  Loc,
2926                                                  IndexVariables.data(),
2927                                                  IndexVariables.size());
2928     return false;
2929   }
2930 
2931   assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
2932          "Unhandled implicit init kind!");
2933 
2934   QualType FieldBaseElementType =
2935     SemaRef.Context.getBaseElementType(Field->getType());
2936 
2937   if (FieldBaseElementType->isRecordType()) {
2938     InitializedEntity InitEntity
2939       = Indirect? InitializedEntity::InitializeMember(Indirect)
2940                 : InitializedEntity::InitializeMember(Field);
2941     InitializationKind InitKind =
2942       InitializationKind::CreateDefault(Loc);
2943 
2944     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2945     ExprResult MemberInit =
2946       InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2947 
2948     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2949     if (MemberInit.isInvalid())
2950       return true;
2951 
2952     if (Indirect)
2953       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2954                                                                Indirect, Loc,
2955                                                                Loc,
2956                                                                MemberInit.get(),
2957                                                                Loc);
2958     else
2959       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2960                                                                Field, Loc, Loc,
2961                                                                MemberInit.get(),
2962                                                                Loc);
2963     return false;
2964   }
2965 
2966   if (!Field->getParent()->isUnion()) {
2967     if (FieldBaseElementType->isReferenceType()) {
2968       SemaRef.Diag(Constructor->getLocation(),
2969                    diag::err_uninitialized_member_in_ctor)
2970       << (int)Constructor->isImplicit()
2971       << SemaRef.Context.getTagDeclType(Constructor->getParent())
2972       << 0 << Field->getDeclName();
2973       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2974       return true;
2975     }
2976 
2977     if (FieldBaseElementType.isConstQualified()) {
2978       SemaRef.Diag(Constructor->getLocation(),
2979                    diag::err_uninitialized_member_in_ctor)
2980       << (int)Constructor->isImplicit()
2981       << SemaRef.Context.getTagDeclType(Constructor->getParent())
2982       << 1 << Field->getDeclName();
2983       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2984       return true;
2985     }
2986   }
2987 
2988   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2989       FieldBaseElementType->isObjCRetainableType() &&
2990       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2991       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2992     // ARC:
2993     //   Default-initialize Objective-C pointers to NULL.
2994     CXXMemberInit
2995       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2996                                                  Loc, Loc,
2997                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2998                                                  Loc);
2999     return false;
3000   }
3001 
3002   // Nothing to initialize.
3003   CXXMemberInit = 0;
3004   return false;
3005 }
3006 
3007 namespace {
3008 struct BaseAndFieldInfo {
3009   Sema &S;
3010   CXXConstructorDecl *Ctor;
3011   bool AnyErrorsInInits;
3012   ImplicitInitializerKind IIK;
3013   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3014   SmallVector<CXXCtorInitializer*, 8> AllToInit;
3015 
BaseAndFieldInfo__anon53c188c80411::BaseAndFieldInfo3016   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3017     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3018     bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3019     if (Generated && Ctor->isCopyConstructor())
3020       IIK = IIK_Copy;
3021     else if (Generated && Ctor->isMoveConstructor())
3022       IIK = IIK_Move;
3023     else if (Ctor->getInheritedConstructor())
3024       IIK = IIK_Inherit;
3025     else
3026       IIK = IIK_Default;
3027   }
3028 
isImplicitCopyOrMove__anon53c188c80411::BaseAndFieldInfo3029   bool isImplicitCopyOrMove() const {
3030     switch (IIK) {
3031     case IIK_Copy:
3032     case IIK_Move:
3033       return true;
3034 
3035     case IIK_Default:
3036     case IIK_Inherit:
3037       return false;
3038     }
3039 
3040     llvm_unreachable("Invalid ImplicitInitializerKind!");
3041   }
3042 
addFieldInitializer__anon53c188c80411::BaseAndFieldInfo3043   bool addFieldInitializer(CXXCtorInitializer *Init) {
3044     AllToInit.push_back(Init);
3045 
3046     // Check whether this initializer makes the field "used".
3047     if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
3048       S.UnusedPrivateFields.remove(Init->getAnyMember());
3049 
3050     return false;
3051   }
3052 };
3053 }
3054 
3055 /// \brief Determine whether the given indirect field declaration is somewhere
3056 /// within an anonymous union.
isWithinAnonymousUnion(IndirectFieldDecl * F)3057 static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3058   for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3059                                       CEnd = F->chain_end();
3060        C != CEnd; ++C)
3061     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3062       if (Record->isUnion())
3063         return true;
3064 
3065   return false;
3066 }
3067 
3068 /// \brief Determine whether the given type is an incomplete or zero-lenfgth
3069 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)3070 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3071   if (T->isIncompleteArrayType())
3072     return true;
3073 
3074   while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3075     if (!ArrayT->getSize())
3076       return true;
3077 
3078     T = ArrayT->getElementType();
3079   }
3080 
3081   return false;
3082 }
3083 
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=0)3084 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3085                                     FieldDecl *Field,
3086                                     IndirectFieldDecl *Indirect = 0) {
3087 
3088   // Overwhelmingly common case: we have a direct initializer for this field.
3089   if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3090     return Info.addFieldInitializer(Init);
3091 
3092   // C++11 [class.base.init]p8: if the entity is a non-static data member that
3093   // has a brace-or-equal-initializer, the entity is initialized as specified
3094   // in [dcl.init].
3095   if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3096     CXXCtorInitializer *Init;
3097     if (Indirect)
3098       Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3099                                                       SourceLocation(),
3100                                                       SourceLocation(), 0,
3101                                                       SourceLocation());
3102     else
3103       Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3104                                                       SourceLocation(),
3105                                                       SourceLocation(), 0,
3106                                                       SourceLocation());
3107     return Info.addFieldInitializer(Init);
3108   }
3109 
3110   // Don't build an implicit initializer for union members if none was
3111   // explicitly specified.
3112   if (Field->getParent()->isUnion() ||
3113       (Indirect && isWithinAnonymousUnion(Indirect)))
3114     return false;
3115 
3116   // Don't initialize incomplete or zero-length arrays.
3117   if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3118     return false;
3119 
3120   // Don't try to build an implicit initializer if there were semantic
3121   // errors in any of the initializers (and therefore we might be
3122   // missing some that the user actually wrote).
3123   if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3124     return false;
3125 
3126   CXXCtorInitializer *Init = 0;
3127   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3128                                      Indirect, Init))
3129     return true;
3130 
3131   if (!Init)
3132     return false;
3133 
3134   return Info.addFieldInitializer(Init);
3135 }
3136 
3137 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)3138 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3139                                CXXCtorInitializer *Initializer) {
3140   assert(Initializer->isDelegatingInitializer());
3141   Constructor->setNumCtorInitializers(1);
3142   CXXCtorInitializer **initializer =
3143     new (Context) CXXCtorInitializer*[1];
3144   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3145   Constructor->setCtorInitializers(initializer);
3146 
3147   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3148     MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3149     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3150   }
3151 
3152   DelegatingCtorDecls.push_back(Constructor);
3153 
3154   return false;
3155 }
3156 
SetCtorInitializers(CXXConstructorDecl * Constructor,bool AnyErrors,ArrayRef<CXXCtorInitializer * > Initializers)3157 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3158                                ArrayRef<CXXCtorInitializer *> Initializers) {
3159   if (Constructor->isDependentContext()) {
3160     // Just store the initializers as written, they will be checked during
3161     // instantiation.
3162     if (!Initializers.empty()) {
3163       Constructor->setNumCtorInitializers(Initializers.size());
3164       CXXCtorInitializer **baseOrMemberInitializers =
3165         new (Context) CXXCtorInitializer*[Initializers.size()];
3166       memcpy(baseOrMemberInitializers, Initializers.data(),
3167              Initializers.size() * sizeof(CXXCtorInitializer*));
3168       Constructor->setCtorInitializers(baseOrMemberInitializers);
3169     }
3170 
3171     // Let template instantiation know whether we had errors.
3172     if (AnyErrors)
3173       Constructor->setInvalidDecl();
3174 
3175     return false;
3176   }
3177 
3178   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3179 
3180   // We need to build the initializer AST according to order of construction
3181   // and not what user specified in the Initializers list.
3182   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3183   if (!ClassDecl)
3184     return true;
3185 
3186   bool HadError = false;
3187 
3188   for (unsigned i = 0; i < Initializers.size(); i++) {
3189     CXXCtorInitializer *Member = Initializers[i];
3190 
3191     if (Member->isBaseInitializer())
3192       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3193     else
3194       Info.AllBaseFields[Member->getAnyMember()] = Member;
3195   }
3196 
3197   // Keep track of the direct virtual bases.
3198   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3199   for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3200        E = ClassDecl->bases_end(); I != E; ++I) {
3201     if (I->isVirtual())
3202       DirectVBases.insert(I);
3203   }
3204 
3205   // Push virtual bases before others.
3206   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3207        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3208 
3209     if (CXXCtorInitializer *Value
3210         = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3211       Info.AllToInit.push_back(Value);
3212     } else if (!AnyErrors) {
3213       bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3214       CXXCtorInitializer *CXXBaseInit;
3215       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3216                                        VBase, IsInheritedVirtualBase,
3217                                        CXXBaseInit)) {
3218         HadError = true;
3219         continue;
3220       }
3221 
3222       Info.AllToInit.push_back(CXXBaseInit);
3223     }
3224   }
3225 
3226   // Non-virtual bases.
3227   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3228        E = ClassDecl->bases_end(); Base != E; ++Base) {
3229     // Virtuals are in the virtual base list and already constructed.
3230     if (Base->isVirtual())
3231       continue;
3232 
3233     if (CXXCtorInitializer *Value
3234           = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3235       Info.AllToInit.push_back(Value);
3236     } else if (!AnyErrors) {
3237       CXXCtorInitializer *CXXBaseInit;
3238       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3239                                        Base, /*IsInheritedVirtualBase=*/false,
3240                                        CXXBaseInit)) {
3241         HadError = true;
3242         continue;
3243       }
3244 
3245       Info.AllToInit.push_back(CXXBaseInit);
3246     }
3247   }
3248 
3249   // Fields.
3250   for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3251                                MemEnd = ClassDecl->decls_end();
3252        Mem != MemEnd; ++Mem) {
3253     if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3254       // C++ [class.bit]p2:
3255       //   A declaration for a bit-field that omits the identifier declares an
3256       //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3257       //   initialized.
3258       if (F->isUnnamedBitfield())
3259         continue;
3260 
3261       // If we're not generating the implicit copy/move constructor, then we'll
3262       // handle anonymous struct/union fields based on their individual
3263       // indirect fields.
3264       if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3265         continue;
3266 
3267       if (CollectFieldInitializer(*this, Info, F))
3268         HadError = true;
3269       continue;
3270     }
3271 
3272     // Beyond this point, we only consider default initialization.
3273     if (Info.isImplicitCopyOrMove())
3274       continue;
3275 
3276     if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3277       if (F->getType()->isIncompleteArrayType()) {
3278         assert(ClassDecl->hasFlexibleArrayMember() &&
3279                "Incomplete array type is not valid");
3280         continue;
3281       }
3282 
3283       // Initialize each field of an anonymous struct individually.
3284       if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3285         HadError = true;
3286 
3287       continue;
3288     }
3289   }
3290 
3291   unsigned NumInitializers = Info.AllToInit.size();
3292   if (NumInitializers > 0) {
3293     Constructor->setNumCtorInitializers(NumInitializers);
3294     CXXCtorInitializer **baseOrMemberInitializers =
3295       new (Context) CXXCtorInitializer*[NumInitializers];
3296     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3297            NumInitializers * sizeof(CXXCtorInitializer*));
3298     Constructor->setCtorInitializers(baseOrMemberInitializers);
3299 
3300     // Constructors implicitly reference the base and member
3301     // destructors.
3302     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3303                                            Constructor->getParent());
3304   }
3305 
3306   return HadError;
3307 }
3308 
PopulateKeysForFields(FieldDecl * Field,SmallVectorImpl<const void * > & IdealInits)3309 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3310   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3311     const RecordDecl *RD = RT->getDecl();
3312     if (RD->isAnonymousStructOrUnion()) {
3313       for (RecordDecl::field_iterator Field = RD->field_begin(),
3314           E = RD->field_end(); Field != E; ++Field)
3315         PopulateKeysForFields(*Field, IdealInits);
3316       return;
3317     }
3318   }
3319   IdealInits.push_back(Field);
3320 }
3321 
GetKeyForBase(ASTContext & Context,QualType BaseType)3322 static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3323   return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3324 }
3325 
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)3326 static void *GetKeyForMember(ASTContext &Context,
3327                              CXXCtorInitializer *Member) {
3328   if (!Member->isAnyMemberInitializer())
3329     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3330 
3331   return Member->getAnyMember();
3332 }
3333 
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,ArrayRef<CXXCtorInitializer * > Inits)3334 static void DiagnoseBaseOrMemInitializerOrder(
3335     Sema &SemaRef, const CXXConstructorDecl *Constructor,
3336     ArrayRef<CXXCtorInitializer *> Inits) {
3337   if (Constructor->getDeclContext()->isDependentContext())
3338     return;
3339 
3340   // Don't check initializers order unless the warning is enabled at the
3341   // location of at least one initializer.
3342   bool ShouldCheckOrder = false;
3343   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3344     CXXCtorInitializer *Init = Inits[InitIndex];
3345     if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3346                                          Init->getSourceLocation())
3347           != DiagnosticsEngine::Ignored) {
3348       ShouldCheckOrder = true;
3349       break;
3350     }
3351   }
3352   if (!ShouldCheckOrder)
3353     return;
3354 
3355   // Build the list of bases and members in the order that they'll
3356   // actually be initialized.  The explicit initializers should be in
3357   // this same order but may be missing things.
3358   SmallVector<const void*, 32> IdealInitKeys;
3359 
3360   const CXXRecordDecl *ClassDecl = Constructor->getParent();
3361 
3362   // 1. Virtual bases.
3363   for (CXXRecordDecl::base_class_const_iterator VBase =
3364        ClassDecl->vbases_begin(),
3365        E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3366     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3367 
3368   // 2. Non-virtual bases.
3369   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3370        E = ClassDecl->bases_end(); Base != E; ++Base) {
3371     if (Base->isVirtual())
3372       continue;
3373     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3374   }
3375 
3376   // 3. Direct fields.
3377   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3378        E = ClassDecl->field_end(); Field != E; ++Field) {
3379     if (Field->isUnnamedBitfield())
3380       continue;
3381 
3382     PopulateKeysForFields(*Field, IdealInitKeys);
3383   }
3384 
3385   unsigned NumIdealInits = IdealInitKeys.size();
3386   unsigned IdealIndex = 0;
3387 
3388   CXXCtorInitializer *PrevInit = 0;
3389   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3390     CXXCtorInitializer *Init = Inits[InitIndex];
3391     void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3392 
3393     // Scan forward to try to find this initializer in the idealized
3394     // initializers list.
3395     for (; IdealIndex != NumIdealInits; ++IdealIndex)
3396       if (InitKey == IdealInitKeys[IdealIndex])
3397         break;
3398 
3399     // If we didn't find this initializer, it must be because we
3400     // scanned past it on a previous iteration.  That can only
3401     // happen if we're out of order;  emit a warning.
3402     if (IdealIndex == NumIdealInits && PrevInit) {
3403       Sema::SemaDiagnosticBuilder D =
3404         SemaRef.Diag(PrevInit->getSourceLocation(),
3405                      diag::warn_initializer_out_of_order);
3406 
3407       if (PrevInit->isAnyMemberInitializer())
3408         D << 0 << PrevInit->getAnyMember()->getDeclName();
3409       else
3410         D << 1 << PrevInit->getTypeSourceInfo()->getType();
3411 
3412       if (Init->isAnyMemberInitializer())
3413         D << 0 << Init->getAnyMember()->getDeclName();
3414       else
3415         D << 1 << Init->getTypeSourceInfo()->getType();
3416 
3417       // Move back to the initializer's location in the ideal list.
3418       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3419         if (InitKey == IdealInitKeys[IdealIndex])
3420           break;
3421 
3422       assert(IdealIndex != NumIdealInits &&
3423              "initializer not found in initializer list");
3424     }
3425 
3426     PrevInit = Init;
3427   }
3428 }
3429 
3430 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)3431 bool CheckRedundantInit(Sema &S,
3432                         CXXCtorInitializer *Init,
3433                         CXXCtorInitializer *&PrevInit) {
3434   if (!PrevInit) {
3435     PrevInit = Init;
3436     return false;
3437   }
3438 
3439   if (FieldDecl *Field = Init->getMember())
3440     S.Diag(Init->getSourceLocation(),
3441            diag::err_multiple_mem_initialization)
3442       << Field->getDeclName()
3443       << Init->getSourceRange();
3444   else {
3445     const Type *BaseClass = Init->getBaseClass();
3446     assert(BaseClass && "neither field nor base");
3447     S.Diag(Init->getSourceLocation(),
3448            diag::err_multiple_base_initialization)
3449       << QualType(BaseClass, 0)
3450       << Init->getSourceRange();
3451   }
3452   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3453     << 0 << PrevInit->getSourceRange();
3454 
3455   return true;
3456 }
3457 
3458 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3459 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3460 
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)3461 bool CheckRedundantUnionInit(Sema &S,
3462                              CXXCtorInitializer *Init,
3463                              RedundantUnionMap &Unions) {
3464   FieldDecl *Field = Init->getAnyMember();
3465   RecordDecl *Parent = Field->getParent();
3466   NamedDecl *Child = Field;
3467 
3468   while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3469     if (Parent->isUnion()) {
3470       UnionEntry &En = Unions[Parent];
3471       if (En.first && En.first != Child) {
3472         S.Diag(Init->getSourceLocation(),
3473                diag::err_multiple_mem_union_initialization)
3474           << Field->getDeclName()
3475           << Init->getSourceRange();
3476         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3477           << 0 << En.second->getSourceRange();
3478         return true;
3479       }
3480       if (!En.first) {
3481         En.first = Child;
3482         En.second = Init;
3483       }
3484       if (!Parent->isAnonymousStructOrUnion())
3485         return false;
3486     }
3487 
3488     Child = Parent;
3489     Parent = cast<RecordDecl>(Parent->getDeclContext());
3490   }
3491 
3492   return false;
3493 }
3494 }
3495 
3496 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,ArrayRef<CXXCtorInitializer * > MemInits,bool AnyErrors)3497 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3498                                 SourceLocation ColonLoc,
3499                                 ArrayRef<CXXCtorInitializer*> MemInits,
3500                                 bool AnyErrors) {
3501   if (!ConstructorDecl)
3502     return;
3503 
3504   AdjustDeclIfTemplate(ConstructorDecl);
3505 
3506   CXXConstructorDecl *Constructor
3507     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3508 
3509   if (!Constructor) {
3510     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3511     return;
3512   }
3513 
3514   // Mapping for the duplicate initializers check.
3515   // For member initializers, this is keyed with a FieldDecl*.
3516   // For base initializers, this is keyed with a Type*.
3517   llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3518 
3519   // Mapping for the inconsistent anonymous-union initializers check.
3520   RedundantUnionMap MemberUnions;
3521 
3522   bool HadError = false;
3523   for (unsigned i = 0; i < MemInits.size(); i++) {
3524     CXXCtorInitializer *Init = MemInits[i];
3525 
3526     // Set the source order index.
3527     Init->setSourceOrder(i);
3528 
3529     if (Init->isAnyMemberInitializer()) {
3530       FieldDecl *Field = Init->getAnyMember();
3531       if (CheckRedundantInit(*this, Init, Members[Field]) ||
3532           CheckRedundantUnionInit(*this, Init, MemberUnions))
3533         HadError = true;
3534     } else if (Init->isBaseInitializer()) {
3535       void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3536       if (CheckRedundantInit(*this, Init, Members[Key]))
3537         HadError = true;
3538     } else {
3539       assert(Init->isDelegatingInitializer());
3540       // This must be the only initializer
3541       if (MemInits.size() != 1) {
3542         Diag(Init->getSourceLocation(),
3543              diag::err_delegating_initializer_alone)
3544           << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3545         // We will treat this as being the only initializer.
3546       }
3547       SetDelegatingInitializer(Constructor, MemInits[i]);
3548       // Return immediately as the initializer is set.
3549       return;
3550     }
3551   }
3552 
3553   if (HadError)
3554     return;
3555 
3556   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3557 
3558   SetCtorInitializers(Constructor, AnyErrors, MemInits);
3559 }
3560 
3561 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)3562 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3563                                              CXXRecordDecl *ClassDecl) {
3564   // Ignore dependent contexts. Also ignore unions, since their members never
3565   // have destructors implicitly called.
3566   if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3567     return;
3568 
3569   // FIXME: all the access-control diagnostics are positioned on the
3570   // field/base declaration.  That's probably good; that said, the
3571   // user might reasonably want to know why the destructor is being
3572   // emitted, and we currently don't say.
3573 
3574   // Non-static data members.
3575   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3576        E = ClassDecl->field_end(); I != E; ++I) {
3577     FieldDecl *Field = *I;
3578     if (Field->isInvalidDecl())
3579       continue;
3580 
3581     // Don't destroy incomplete or zero-length arrays.
3582     if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3583       continue;
3584 
3585     QualType FieldType = Context.getBaseElementType(Field->getType());
3586 
3587     const RecordType* RT = FieldType->getAs<RecordType>();
3588     if (!RT)
3589       continue;
3590 
3591     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3592     if (FieldClassDecl->isInvalidDecl())
3593       continue;
3594     if (FieldClassDecl->hasIrrelevantDestructor())
3595       continue;
3596     // The destructor for an implicit anonymous union member is never invoked.
3597     if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3598       continue;
3599 
3600     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3601     assert(Dtor && "No dtor found for FieldClassDecl!");
3602     CheckDestructorAccess(Field->getLocation(), Dtor,
3603                           PDiag(diag::err_access_dtor_field)
3604                             << Field->getDeclName()
3605                             << FieldType);
3606 
3607     MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3608     DiagnoseUseOfDecl(Dtor, Location);
3609   }
3610 
3611   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3612 
3613   // Bases.
3614   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3615        E = ClassDecl->bases_end(); Base != E; ++Base) {
3616     // Bases are always records in a well-formed non-dependent class.
3617     const RecordType *RT = Base->getType()->getAs<RecordType>();
3618 
3619     // Remember direct virtual bases.
3620     if (Base->isVirtual())
3621       DirectVirtualBases.insert(RT);
3622 
3623     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3624     // If our base class is invalid, we probably can't get its dtor anyway.
3625     if (BaseClassDecl->isInvalidDecl())
3626       continue;
3627     if (BaseClassDecl->hasIrrelevantDestructor())
3628       continue;
3629 
3630     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3631     assert(Dtor && "No dtor found for BaseClassDecl!");
3632 
3633     // FIXME: caret should be on the start of the class name
3634     CheckDestructorAccess(Base->getLocStart(), Dtor,
3635                           PDiag(diag::err_access_dtor_base)
3636                             << Base->getType()
3637                             << Base->getSourceRange(),
3638                           Context.getTypeDeclType(ClassDecl));
3639 
3640     MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3641     DiagnoseUseOfDecl(Dtor, Location);
3642   }
3643 
3644   // Virtual bases.
3645   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3646        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3647 
3648     // Bases are always records in a well-formed non-dependent class.
3649     const RecordType *RT = VBase->getType()->castAs<RecordType>();
3650 
3651     // Ignore direct virtual bases.
3652     if (DirectVirtualBases.count(RT))
3653       continue;
3654 
3655     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3656     // If our base class is invalid, we probably can't get its dtor anyway.
3657     if (BaseClassDecl->isInvalidDecl())
3658       continue;
3659     if (BaseClassDecl->hasIrrelevantDestructor())
3660       continue;
3661 
3662     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3663     assert(Dtor && "No dtor found for BaseClassDecl!");
3664     CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3665                           PDiag(diag::err_access_dtor_vbase)
3666                             << VBase->getType(),
3667                           Context.getTypeDeclType(ClassDecl));
3668 
3669     MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3670     DiagnoseUseOfDecl(Dtor, Location);
3671   }
3672 }
3673 
ActOnDefaultCtorInitializers(Decl * CDtorDecl)3674 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3675   if (!CDtorDecl)
3676     return;
3677 
3678   if (CXXConstructorDecl *Constructor
3679       = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3680     SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3681 }
3682 
RequireNonAbstractType(SourceLocation Loc,QualType T,unsigned DiagID,AbstractDiagSelID SelID)3683 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3684                                   unsigned DiagID, AbstractDiagSelID SelID) {
3685   class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3686     unsigned DiagID;
3687     AbstractDiagSelID SelID;
3688 
3689   public:
3690     NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3691       : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3692 
3693     virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3694       if (Suppressed) return;
3695       if (SelID == -1)
3696         S.Diag(Loc, DiagID) << T;
3697       else
3698         S.Diag(Loc, DiagID) << SelID << T;
3699     }
3700   } Diagnoser(DiagID, SelID);
3701 
3702   return RequireNonAbstractType(Loc, T, Diagnoser);
3703 }
3704 
RequireNonAbstractType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)3705 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3706                                   TypeDiagnoser &Diagnoser) {
3707   if (!getLangOpts().CPlusPlus)
3708     return false;
3709 
3710   if (const ArrayType *AT = Context.getAsArrayType(T))
3711     return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3712 
3713   if (const PointerType *PT = T->getAs<PointerType>()) {
3714     // Find the innermost pointer type.
3715     while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3716       PT = T;
3717 
3718     if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3719       return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3720   }
3721 
3722   const RecordType *RT = T->getAs<RecordType>();
3723   if (!RT)
3724     return false;
3725 
3726   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3727 
3728   // We can't answer whether something is abstract until it has a
3729   // definition.  If it's currently being defined, we'll walk back
3730   // over all the declarations when we have a full definition.
3731   const CXXRecordDecl *Def = RD->getDefinition();
3732   if (!Def || Def->isBeingDefined())
3733     return false;
3734 
3735   if (!RD->isAbstract())
3736     return false;
3737 
3738   Diagnoser.diagnose(*this, Loc, T);
3739   DiagnoseAbstractType(RD);
3740 
3741   return true;
3742 }
3743 
DiagnoseAbstractType(const CXXRecordDecl * RD)3744 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3745   // Check if we've already emitted the list of pure virtual functions
3746   // for this class.
3747   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3748     return;
3749 
3750   CXXFinalOverriderMap FinalOverriders;
3751   RD->getFinalOverriders(FinalOverriders);
3752 
3753   // Keep a set of seen pure methods so we won't diagnose the same method
3754   // more than once.
3755   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3756 
3757   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3758                                    MEnd = FinalOverriders.end();
3759        M != MEnd;
3760        ++M) {
3761     for (OverridingMethods::iterator SO = M->second.begin(),
3762                                   SOEnd = M->second.end();
3763          SO != SOEnd; ++SO) {
3764       // C++ [class.abstract]p4:
3765       //   A class is abstract if it contains or inherits at least one
3766       //   pure virtual function for which the final overrider is pure
3767       //   virtual.
3768 
3769       //
3770       if (SO->second.size() != 1)
3771         continue;
3772 
3773       if (!SO->second.front().Method->isPure())
3774         continue;
3775 
3776       if (!SeenPureMethods.insert(SO->second.front().Method))
3777         continue;
3778 
3779       Diag(SO->second.front().Method->getLocation(),
3780            diag::note_pure_virtual_function)
3781         << SO->second.front().Method->getDeclName() << RD->getDeclName();
3782     }
3783   }
3784 
3785   if (!PureVirtualClassDiagSet)
3786     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3787   PureVirtualClassDiagSet->insert(RD);
3788 }
3789 
3790 namespace {
3791 struct AbstractUsageInfo {
3792   Sema &S;
3793   CXXRecordDecl *Record;
3794   CanQualType AbstractType;
3795   bool Invalid;
3796 
AbstractUsageInfo__anon53c188c80611::AbstractUsageInfo3797   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3798     : S(S), Record(Record),
3799       AbstractType(S.Context.getCanonicalType(
3800                    S.Context.getTypeDeclType(Record))),
3801       Invalid(false) {}
3802 
DiagnoseAbstractType__anon53c188c80611::AbstractUsageInfo3803   void DiagnoseAbstractType() {
3804     if (Invalid) return;
3805     S.DiagnoseAbstractType(Record);
3806     Invalid = true;
3807   }
3808 
3809   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3810 };
3811 
3812 struct CheckAbstractUsage {
3813   AbstractUsageInfo &Info;
3814   const NamedDecl *Ctx;
3815 
CheckAbstractUsage__anon53c188c80611::CheckAbstractUsage3816   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3817     : Info(Info), Ctx(Ctx) {}
3818 
Visit__anon53c188c80611::CheckAbstractUsage3819   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3820     switch (TL.getTypeLocClass()) {
3821 #define ABSTRACT_TYPELOC(CLASS, PARENT)
3822 #define TYPELOC(CLASS, PARENT) \
3823     case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
3824 #include "clang/AST/TypeLocNodes.def"
3825     }
3826   }
3827 
Check__anon53c188c80611::CheckAbstractUsage3828   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3829     Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3830     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3831       if (!TL.getArg(I))
3832         continue;
3833 
3834       TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3835       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3836     }
3837   }
3838 
Check__anon53c188c80611::CheckAbstractUsage3839   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3840     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3841   }
3842 
Check__anon53c188c80611::CheckAbstractUsage3843   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3844     // Visit the type parameters from a permissive context.
3845     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3846       TemplateArgumentLoc TAL = TL.getArgLoc(I);
3847       if (TAL.getArgument().getKind() == TemplateArgument::Type)
3848         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3849           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3850       // TODO: other template argument types?
3851     }
3852   }
3853 
3854   // Visit pointee types from a permissive context.
3855 #define CheckPolymorphic(Type) \
3856   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3857     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3858   }
3859   CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anon53c188c80611::CheckAbstractUsage3860   CheckPolymorphic(ReferenceTypeLoc)
3861   CheckPolymorphic(MemberPointerTypeLoc)
3862   CheckPolymorphic(BlockPointerTypeLoc)
3863   CheckPolymorphic(AtomicTypeLoc)
3864 
3865   /// Handle all the types we haven't given a more specific
3866   /// implementation for above.
3867   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3868     // Every other kind of type that we haven't called out already
3869     // that has an inner type is either (1) sugar or (2) contains that
3870     // inner type in some way as a subobject.
3871     if (TypeLoc Next = TL.getNextTypeLoc())
3872       return Visit(Next, Sel);
3873 
3874     // If there's no inner type and we're in a permissive context,
3875     // don't diagnose.
3876     if (Sel == Sema::AbstractNone) return;
3877 
3878     // Check whether the type matches the abstract type.
3879     QualType T = TL.getType();
3880     if (T->isArrayType()) {
3881       Sel = Sema::AbstractArrayType;
3882       T = Info.S.Context.getBaseElementType(T);
3883     }
3884     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3885     if (CT != Info.AbstractType) return;
3886 
3887     // It matched; do some magic.
3888     if (Sel == Sema::AbstractArrayType) {
3889       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3890         << T << TL.getSourceRange();
3891     } else {
3892       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3893         << Sel << T << TL.getSourceRange();
3894     }
3895     Info.DiagnoseAbstractType();
3896   }
3897 };
3898 
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)3899 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3900                                   Sema::AbstractDiagSelID Sel) {
3901   CheckAbstractUsage(*this, D).Visit(TL, Sel);
3902 }
3903 
3904 }
3905 
3906 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)3907 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3908                                     CXXMethodDecl *MD) {
3909   // No need to do the check on definitions, which require that
3910   // the return/param types be complete.
3911   if (MD->doesThisDeclarationHaveABody())
3912     return;
3913 
3914   // For safety's sake, just ignore it if we don't have type source
3915   // information.  This should never happen for non-implicit methods,
3916   // but...
3917   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3918     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3919 }
3920 
3921 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)3922 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3923                                     CXXRecordDecl *RD) {
3924   for (CXXRecordDecl::decl_iterator
3925          I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3926     Decl *D = *I;
3927     if (D->isImplicit()) continue;
3928 
3929     // Methods and method templates.
3930     if (isa<CXXMethodDecl>(D)) {
3931       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3932     } else if (isa<FunctionTemplateDecl>(D)) {
3933       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3934       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3935 
3936     // Fields and static variables.
3937     } else if (isa<FieldDecl>(D)) {
3938       FieldDecl *FD = cast<FieldDecl>(D);
3939       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3940         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3941     } else if (isa<VarDecl>(D)) {
3942       VarDecl *VD = cast<VarDecl>(D);
3943       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3944         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3945 
3946     // Nested classes and class templates.
3947     } else if (isa<CXXRecordDecl>(D)) {
3948       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3949     } else if (isa<ClassTemplateDecl>(D)) {
3950       CheckAbstractClassUsage(Info,
3951                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3952     }
3953   }
3954 }
3955 
3956 /// \brief Perform semantic checks on a class definition that has been
3957 /// completing, introducing implicitly-declared members, checking for
3958 /// abstract types, etc.
CheckCompletedCXXClass(CXXRecordDecl * Record)3959 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3960   if (!Record)
3961     return;
3962 
3963   if (Record->isAbstract() && !Record->isInvalidDecl()) {
3964     AbstractUsageInfo Info(*this, Record);
3965     CheckAbstractClassUsage(Info, Record);
3966   }
3967 
3968   // If this is not an aggregate type and has no user-declared constructor,
3969   // complain about any non-static data members of reference or const scalar
3970   // type, since they will never get initializers.
3971   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3972       !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3973       !Record->isLambda()) {
3974     bool Complained = false;
3975     for (RecordDecl::field_iterator F = Record->field_begin(),
3976                                  FEnd = Record->field_end();
3977          F != FEnd; ++F) {
3978       if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3979         continue;
3980 
3981       if (F->getType()->isReferenceType() ||
3982           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3983         if (!Complained) {
3984           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3985             << Record->getTagKind() << Record;
3986           Complained = true;
3987         }
3988 
3989         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3990           << F->getType()->isReferenceType()
3991           << F->getDeclName();
3992       }
3993     }
3994   }
3995 
3996   if (Record->isDynamicClass() && !Record->isDependentType())
3997     DynamicClasses.push_back(Record);
3998 
3999   if (Record->getIdentifier()) {
4000     // C++ [class.mem]p13:
4001     //   If T is the name of a class, then each of the following shall have a
4002     //   name different from T:
4003     //     - every member of every anonymous union that is a member of class T.
4004     //
4005     // C++ [class.mem]p14:
4006     //   In addition, if class T has a user-declared constructor (12.1), every
4007     //   non-static data member of class T shall have a name different from T.
4008     DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4009     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4010          ++I) {
4011       NamedDecl *D = *I;
4012       if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4013           isa<IndirectFieldDecl>(D)) {
4014         Diag(D->getLocation(), diag::err_member_name_of_class)
4015           << D->getDeclName();
4016         break;
4017       }
4018     }
4019   }
4020 
4021   // Warn if the class has virtual methods but non-virtual public destructor.
4022   if (Record->isPolymorphic() && !Record->isDependentType()) {
4023     CXXDestructorDecl *dtor = Record->getDestructor();
4024     if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4025       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4026            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4027   }
4028 
4029   if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4030     Diag(Record->getLocation(), diag::warn_abstract_final_class);
4031     DiagnoseAbstractType(Record);
4032   }
4033 
4034   if (!Record->isDependentType()) {
4035     for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4036                                      MEnd = Record->method_end();
4037          M != MEnd; ++M) {
4038       // See if a method overloads virtual methods in a base
4039       // class without overriding any.
4040       if (!M->isStatic())
4041         DiagnoseHiddenVirtualMethods(Record, *M);
4042 
4043       // Check whether the explicitly-defaulted special members are valid.
4044       if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4045         CheckExplicitlyDefaultedSpecialMember(*M);
4046 
4047       // For an explicitly defaulted or deleted special member, we defer
4048       // determining triviality until the class is complete. That time is now!
4049       if (!M->isImplicit() && !M->isUserProvided()) {
4050         CXXSpecialMember CSM = getSpecialMember(*M);
4051         if (CSM != CXXInvalid) {
4052           M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4053 
4054           // Inform the class that we've finished declaring this member.
4055           Record->finishedDefaultedOrDeletedMember(*M);
4056         }
4057       }
4058     }
4059   }
4060 
4061   // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4062   // function that is not a constructor declares that member function to be
4063   // const. [...] The class of which that function is a member shall be
4064   // a literal type.
4065   //
4066   // If the class has virtual bases, any constexpr members will already have
4067   // been diagnosed by the checks performed on the member declaration, so
4068   // suppress this (less useful) diagnostic.
4069   //
4070   // We delay this until we know whether an explicitly-defaulted (or deleted)
4071   // destructor for the class is trivial.
4072   if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4073       !Record->isLiteral() && !Record->getNumVBases()) {
4074     for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4075                                      MEnd = Record->method_end();
4076          M != MEnd; ++M) {
4077       if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4078         switch (Record->getTemplateSpecializationKind()) {
4079         case TSK_ImplicitInstantiation:
4080         case TSK_ExplicitInstantiationDeclaration:
4081         case TSK_ExplicitInstantiationDefinition:
4082           // If a template instantiates to a non-literal type, but its members
4083           // instantiate to constexpr functions, the template is technically
4084           // ill-formed, but we allow it for sanity.
4085           continue;
4086 
4087         case TSK_Undeclared:
4088         case TSK_ExplicitSpecialization:
4089           RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4090                              diag::err_constexpr_method_non_literal);
4091           break;
4092         }
4093 
4094         // Only produce one error per class.
4095         break;
4096       }
4097     }
4098   }
4099 
4100   // Declare inheriting constructors. We do this eagerly here because:
4101   // - The standard requires an eager diagnostic for conflicting inheriting
4102   //   constructors from different classes.
4103   // - The lazy declaration of the other implicit constructors is so as to not
4104   //   waste space and performance on classes that are not meant to be
4105   //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4106   //   have inheriting constructors.
4107   DeclareInheritingConstructors(Record);
4108 }
4109 
4110 /// Is the special member function which would be selected to perform the
4111 /// specified operation on the specified class type a constexpr constructor?
specialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg)4112 static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4113                                      Sema::CXXSpecialMember CSM,
4114                                      bool ConstArg) {
4115   Sema::SpecialMemberOverloadResult *SMOR =
4116       S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4117                             false, false, false, false);
4118   if (!SMOR || !SMOR->getMethod())
4119     // A constructor we wouldn't select can't be "involved in initializing"
4120     // anything.
4121     return true;
4122   return SMOR->getMethod()->isConstexpr();
4123 }
4124 
4125 /// Determine whether the specified special member function would be constexpr
4126 /// if it were implicitly defined.
defaultedSpecialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg)4127 static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4128                                               Sema::CXXSpecialMember CSM,
4129                                               bool ConstArg) {
4130   if (!S.getLangOpts().CPlusPlus11)
4131     return false;
4132 
4133   // C++11 [dcl.constexpr]p4:
4134   // In the definition of a constexpr constructor [...]
4135   switch (CSM) {
4136   case Sema::CXXDefaultConstructor:
4137     // Since default constructor lookup is essentially trivial (and cannot
4138     // involve, for instance, template instantiation), we compute whether a
4139     // defaulted default constructor is constexpr directly within CXXRecordDecl.
4140     //
4141     // This is important for performance; we need to know whether the default
4142     // constructor is constexpr to determine whether the type is a literal type.
4143     return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4144 
4145   case Sema::CXXCopyConstructor:
4146   case Sema::CXXMoveConstructor:
4147     // For copy or move constructors, we need to perform overload resolution.
4148     break;
4149 
4150   case Sema::CXXCopyAssignment:
4151   case Sema::CXXMoveAssignment:
4152   case Sema::CXXDestructor:
4153   case Sema::CXXInvalid:
4154     return false;
4155   }
4156 
4157   //   -- if the class is a non-empty union, or for each non-empty anonymous
4158   //      union member of a non-union class, exactly one non-static data member
4159   //      shall be initialized; [DR1359]
4160   //
4161   // If we squint, this is guaranteed, since exactly one non-static data member
4162   // will be initialized (if the constructor isn't deleted), we just don't know
4163   // which one.
4164   if (ClassDecl->isUnion())
4165     return true;
4166 
4167   //   -- the class shall not have any virtual base classes;
4168   if (ClassDecl->getNumVBases())
4169     return false;
4170 
4171   //   -- every constructor involved in initializing [...] base class
4172   //      sub-objects shall be a constexpr constructor;
4173   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4174                                        BEnd = ClassDecl->bases_end();
4175        B != BEnd; ++B) {
4176     const RecordType *BaseType = B->getType()->getAs<RecordType>();
4177     if (!BaseType) continue;
4178 
4179     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4180     if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4181       return false;
4182   }
4183 
4184   //   -- every constructor involved in initializing non-static data members
4185   //      [...] shall be a constexpr constructor;
4186   //   -- every non-static data member and base class sub-object shall be
4187   //      initialized
4188   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4189                                FEnd = ClassDecl->field_end();
4190        F != FEnd; ++F) {
4191     if (F->isInvalidDecl())
4192       continue;
4193     if (const RecordType *RecordTy =
4194             S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4195       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4196       if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4197         return false;
4198     }
4199   }
4200 
4201   // All OK, it's constexpr!
4202   return true;
4203 }
4204 
4205 static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema & S,SourceLocation Loc,CXXMethodDecl * MD)4206 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4207   switch (S.getSpecialMember(MD)) {
4208   case Sema::CXXDefaultConstructor:
4209     return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4210   case Sema::CXXCopyConstructor:
4211     return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4212   case Sema::CXXCopyAssignment:
4213     return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4214   case Sema::CXXMoveConstructor:
4215     return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4216   case Sema::CXXMoveAssignment:
4217     return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4218   case Sema::CXXDestructor:
4219     return S.ComputeDefaultedDtorExceptionSpec(MD);
4220   case Sema::CXXInvalid:
4221     break;
4222   }
4223   assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4224          "only special members have implicit exception specs");
4225   return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4226 }
4227 
4228 static void
updateExceptionSpec(Sema & S,FunctionDecl * FD,const FunctionProtoType * FPT,const Sema::ImplicitExceptionSpecification & ExceptSpec)4229 updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4230                     const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4231   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4232   ExceptSpec.getEPI(EPI);
4233   const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4234       S.Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(), EPI));
4235   FD->setType(QualType(NewFPT, 0));
4236 }
4237 
EvaluateImplicitExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)4238 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4239   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4240   if (FPT->getExceptionSpecType() != EST_Unevaluated)
4241     return;
4242 
4243   // Evaluate the exception specification.
4244   ImplicitExceptionSpecification ExceptSpec =
4245       computeImplicitExceptionSpec(*this, Loc, MD);
4246 
4247   // Update the type of the special member to use it.
4248   updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4249 
4250   // A user-provided destructor can be defined outside the class. When that
4251   // happens, be sure to update the exception specification on both
4252   // declarations.
4253   const FunctionProtoType *CanonicalFPT =
4254     MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4255   if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4256     updateExceptionSpec(*this, MD->getCanonicalDecl(),
4257                         CanonicalFPT, ExceptSpec);
4258 }
4259 
CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl * MD)4260 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4261   CXXRecordDecl *RD = MD->getParent();
4262   CXXSpecialMember CSM = getSpecialMember(MD);
4263 
4264   assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4265          "not an explicitly-defaulted special member");
4266 
4267   // Whether this was the first-declared instance of the constructor.
4268   // This affects whether we implicitly add an exception spec and constexpr.
4269   bool First = MD == MD->getCanonicalDecl();
4270 
4271   bool HadError = false;
4272 
4273   // C++11 [dcl.fct.def.default]p1:
4274   //   A function that is explicitly defaulted shall
4275   //     -- be a special member function (checked elsewhere),
4276   //     -- have the same type (except for ref-qualifiers, and except that a
4277   //        copy operation can take a non-const reference) as an implicit
4278   //        declaration, and
4279   //     -- not have default arguments.
4280   unsigned ExpectedParams = 1;
4281   if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4282     ExpectedParams = 0;
4283   if (MD->getNumParams() != ExpectedParams) {
4284     // This also checks for default arguments: a copy or move constructor with a
4285     // default argument is classified as a default constructor, and assignment
4286     // operations and destructors can't have default arguments.
4287     Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4288       << CSM << MD->getSourceRange();
4289     HadError = true;
4290   } else if (MD->isVariadic()) {
4291     Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4292       << CSM << MD->getSourceRange();
4293     HadError = true;
4294   }
4295 
4296   const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4297 
4298   bool CanHaveConstParam = false;
4299   if (CSM == CXXCopyConstructor)
4300     CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4301   else if (CSM == CXXCopyAssignment)
4302     CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4303 
4304   QualType ReturnType = Context.VoidTy;
4305   if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4306     // Check for return type matching.
4307     ReturnType = Type->getResultType();
4308     QualType ExpectedReturnType =
4309         Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4310     if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4311       Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4312         << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4313       HadError = true;
4314     }
4315 
4316     // A defaulted special member cannot have cv-qualifiers.
4317     if (Type->getTypeQuals()) {
4318       Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4319         << (CSM == CXXMoveAssignment);
4320       HadError = true;
4321     }
4322   }
4323 
4324   // Check for parameter type matching.
4325   QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4326   bool HasConstParam = false;
4327   if (ExpectedParams && ArgType->isReferenceType()) {
4328     // Argument must be reference to possibly-const T.
4329     QualType ReferentType = ArgType->getPointeeType();
4330     HasConstParam = ReferentType.isConstQualified();
4331 
4332     if (ReferentType.isVolatileQualified()) {
4333       Diag(MD->getLocation(),
4334            diag::err_defaulted_special_member_volatile_param) << CSM;
4335       HadError = true;
4336     }
4337 
4338     if (HasConstParam && !CanHaveConstParam) {
4339       if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4340         Diag(MD->getLocation(),
4341              diag::err_defaulted_special_member_copy_const_param)
4342           << (CSM == CXXCopyAssignment);
4343         // FIXME: Explain why this special member can't be const.
4344       } else {
4345         Diag(MD->getLocation(),
4346              diag::err_defaulted_special_member_move_const_param)
4347           << (CSM == CXXMoveAssignment);
4348       }
4349       HadError = true;
4350     }
4351   } else if (ExpectedParams) {
4352     // A copy assignment operator can take its argument by value, but a
4353     // defaulted one cannot.
4354     assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4355     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4356     HadError = true;
4357   }
4358 
4359   // C++11 [dcl.fct.def.default]p2:
4360   //   An explicitly-defaulted function may be declared constexpr only if it
4361   //   would have been implicitly declared as constexpr,
4362   // Do not apply this rule to members of class templates, since core issue 1358
4363   // makes such functions always instantiate to constexpr functions. For
4364   // non-constructors, this is checked elsewhere.
4365   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4366                                                      HasConstParam);
4367   if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4368       MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4369     Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4370     // FIXME: Explain why the constructor can't be constexpr.
4371     HadError = true;
4372   }
4373 
4374   //   and may have an explicit exception-specification only if it is compatible
4375   //   with the exception-specification on the implicit declaration.
4376   if (Type->hasExceptionSpec()) {
4377     // Delay the check if this is the first declaration of the special member,
4378     // since we may not have parsed some necessary in-class initializers yet.
4379     if (First)
4380       DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4381     else
4382       CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4383   }
4384 
4385   //   If a function is explicitly defaulted on its first declaration,
4386   if (First) {
4387     //  -- it is implicitly considered to be constexpr if the implicit
4388     //     definition would be,
4389     MD->setConstexpr(Constexpr);
4390 
4391     //  -- it is implicitly considered to have the same exception-specification
4392     //     as if it had been implicitly declared,
4393     FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4394     EPI.ExceptionSpecType = EST_Unevaluated;
4395     EPI.ExceptionSpecDecl = MD;
4396     MD->setType(Context.getFunctionType(ReturnType,
4397                                         ArrayRef<QualType>(&ArgType,
4398                                                            ExpectedParams),
4399                                         EPI));
4400   }
4401 
4402   if (ShouldDeleteSpecialMember(MD, CSM)) {
4403     if (First) {
4404       MD->setDeletedAsWritten();
4405     } else {
4406       // C++11 [dcl.fct.def.default]p4:
4407       //   [For a] user-provided explicitly-defaulted function [...] if such a
4408       //   function is implicitly defined as deleted, the program is ill-formed.
4409       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4410       HadError = true;
4411     }
4412   }
4413 
4414   if (HadError)
4415     MD->setInvalidDecl();
4416 }
4417 
4418 /// Check whether the exception specification provided for an
4419 /// explicitly-defaulted special member matches the exception specification
4420 /// that would have been generated for an implicit special member, per
4421 /// C++11 [dcl.fct.def.default]p2.
CheckExplicitlyDefaultedMemberExceptionSpec(CXXMethodDecl * MD,const FunctionProtoType * SpecifiedType)4422 void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4423     CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4424   // Compute the implicit exception specification.
4425   FunctionProtoType::ExtProtoInfo EPI;
4426   computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4427   const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4428     Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI));
4429 
4430   // Ensure that it matches.
4431   CheckEquivalentExceptionSpec(
4432     PDiag(diag::err_incorrect_defaulted_exception_spec)
4433       << getSpecialMember(MD), PDiag(),
4434     ImplicitType, SourceLocation(),
4435     SpecifiedType, MD->getLocation());
4436 }
4437 
CheckDelayedExplicitlyDefaultedMemberExceptionSpecs()4438 void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4439   for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4440        I != N; ++I)
4441     CheckExplicitlyDefaultedMemberExceptionSpec(
4442       DelayedDefaultedMemberExceptionSpecs[I].first,
4443       DelayedDefaultedMemberExceptionSpecs[I].second);
4444 
4445   DelayedDefaultedMemberExceptionSpecs.clear();
4446 }
4447 
4448 namespace {
4449 struct SpecialMemberDeletionInfo {
4450   Sema &S;
4451   CXXMethodDecl *MD;
4452   Sema::CXXSpecialMember CSM;
4453   bool Diagnose;
4454 
4455   // Properties of the special member, computed for convenience.
4456   bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4457   SourceLocation Loc;
4458 
4459   bool AllFieldsAreConst;
4460 
SpecialMemberDeletionInfo__anon53c188c80711::SpecialMemberDeletionInfo4461   SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4462                             Sema::CXXSpecialMember CSM, bool Diagnose)
4463     : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4464       IsConstructor(false), IsAssignment(false), IsMove(false),
4465       ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4466       AllFieldsAreConst(true) {
4467     switch (CSM) {
4468       case Sema::CXXDefaultConstructor:
4469       case Sema::CXXCopyConstructor:
4470         IsConstructor = true;
4471         break;
4472       case Sema::CXXMoveConstructor:
4473         IsConstructor = true;
4474         IsMove = true;
4475         break;
4476       case Sema::CXXCopyAssignment:
4477         IsAssignment = true;
4478         break;
4479       case Sema::CXXMoveAssignment:
4480         IsAssignment = true;
4481         IsMove = true;
4482         break;
4483       case Sema::CXXDestructor:
4484         break;
4485       case Sema::CXXInvalid:
4486         llvm_unreachable("invalid special member kind");
4487     }
4488 
4489     if (MD->getNumParams()) {
4490       ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4491       VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4492     }
4493   }
4494 
inUnion__anon53c188c80711::SpecialMemberDeletionInfo4495   bool inUnion() const { return MD->getParent()->isUnion(); }
4496 
4497   /// Look up the corresponding special member in the given class.
lookupIn__anon53c188c80711::SpecialMemberDeletionInfo4498   Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4499                                               unsigned Quals) {
4500     unsigned TQ = MD->getTypeQualifiers();
4501     // cv-qualifiers on class members don't affect default ctor / dtor calls.
4502     if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4503       Quals = 0;
4504     return S.LookupSpecialMember(Class, CSM,
4505                                  ConstArg || (Quals & Qualifiers::Const),
4506                                  VolatileArg || (Quals & Qualifiers::Volatile),
4507                                  MD->getRefQualifier() == RQ_RValue,
4508                                  TQ & Qualifiers::Const,
4509                                  TQ & Qualifiers::Volatile);
4510   }
4511 
4512   typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4513 
4514   bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4515   bool shouldDeleteForField(FieldDecl *FD);
4516   bool shouldDeleteForAllConstMembers();
4517 
4518   bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4519                                      unsigned Quals);
4520   bool shouldDeleteForSubobjectCall(Subobject Subobj,
4521                                     Sema::SpecialMemberOverloadResult *SMOR,
4522                                     bool IsDtorCallInCtor);
4523 
4524   bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4525 };
4526 }
4527 
4528 /// Is the given special member inaccessible when used on the given
4529 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)4530 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4531                                              CXXMethodDecl *target) {
4532   /// If we're operating on a base class, the object type is the
4533   /// type of this special member.
4534   QualType objectTy;
4535   AccessSpecifier access = target->getAccess();
4536   if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4537     objectTy = S.Context.getTypeDeclType(MD->getParent());
4538     access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4539 
4540   // If we're operating on a field, the object type is the type of the field.
4541   } else {
4542     objectTy = S.Context.getTypeDeclType(target->getParent());
4543   }
4544 
4545   return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4546 }
4547 
4548 /// Check whether we should delete a special member due to the implicit
4549 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult * SMOR,bool IsDtorCallInCtor)4550 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4551     Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4552     bool IsDtorCallInCtor) {
4553   CXXMethodDecl *Decl = SMOR->getMethod();
4554   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4555 
4556   int DiagKind = -1;
4557 
4558   if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4559     DiagKind = !Decl ? 0 : 1;
4560   else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4561     DiagKind = 2;
4562   else if (!isAccessible(Subobj, Decl))
4563     DiagKind = 3;
4564   else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4565            !Decl->isTrivial()) {
4566     // A member of a union must have a trivial corresponding special member.
4567     // As a weird special case, a destructor call from a union's constructor
4568     // must be accessible and non-deleted, but need not be trivial. Such a
4569     // destructor is never actually called, but is semantically checked as
4570     // if it were.
4571     DiagKind = 4;
4572   }
4573 
4574   if (DiagKind == -1)
4575     return false;
4576 
4577   if (Diagnose) {
4578     if (Field) {
4579       S.Diag(Field->getLocation(),
4580              diag::note_deleted_special_member_class_subobject)
4581         << CSM << MD->getParent() << /*IsField*/true
4582         << Field << DiagKind << IsDtorCallInCtor;
4583     } else {
4584       CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4585       S.Diag(Base->getLocStart(),
4586              diag::note_deleted_special_member_class_subobject)
4587         << CSM << MD->getParent() << /*IsField*/false
4588         << Base->getType() << DiagKind << IsDtorCallInCtor;
4589     }
4590 
4591     if (DiagKind == 1)
4592       S.NoteDeletedFunction(Decl);
4593     // FIXME: Explain inaccessibility if DiagKind == 3.
4594   }
4595 
4596   return true;
4597 }
4598 
4599 /// Check whether we should delete a special member function due to having a
4600 /// direct or virtual base class or non-static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)4601 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4602     CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4603   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4604 
4605   // C++11 [class.ctor]p5:
4606   // -- any direct or virtual base class, or non-static data member with no
4607   //    brace-or-equal-initializer, has class type M (or array thereof) and
4608   //    either M has no default constructor or overload resolution as applied
4609   //    to M's default constructor results in an ambiguity or in a function
4610   //    that is deleted or inaccessible
4611   // C++11 [class.copy]p11, C++11 [class.copy]p23:
4612   // -- a direct or virtual base class B that cannot be copied/moved because
4613   //    overload resolution, as applied to B's corresponding special member,
4614   //    results in an ambiguity or a function that is deleted or inaccessible
4615   //    from the defaulted special member
4616   // C++11 [class.dtor]p5:
4617   // -- any direct or virtual base class [...] has a type with a destructor
4618   //    that is deleted or inaccessible
4619   if (!(CSM == Sema::CXXDefaultConstructor &&
4620         Field && Field->hasInClassInitializer()) &&
4621       shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4622     return true;
4623 
4624   // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4625   // -- any direct or virtual base class or non-static data member has a
4626   //    type with a destructor that is deleted or inaccessible
4627   if (IsConstructor) {
4628     Sema::SpecialMemberOverloadResult *SMOR =
4629         S.LookupSpecialMember(Class, Sema::CXXDestructor,
4630                               false, false, false, false, false);
4631     if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4632       return true;
4633   }
4634 
4635   return false;
4636 }
4637 
4638 /// Check whether we should delete a special member function due to the class
4639 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)4640 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4641   CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4642   return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4643 }
4644 
4645 /// Check whether we should delete a special member function due to the class
4646 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)4647 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4648   QualType FieldType = S.Context.getBaseElementType(FD->getType());
4649   CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4650 
4651   if (CSM == Sema::CXXDefaultConstructor) {
4652     // For a default constructor, all references must be initialized in-class
4653     // and, if a union, it must have a non-const member.
4654     if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4655       if (Diagnose)
4656         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4657           << MD->getParent() << FD << FieldType << /*Reference*/0;
4658       return true;
4659     }
4660     // C++11 [class.ctor]p5: any non-variant non-static data member of
4661     // const-qualified type (or array thereof) with no
4662     // brace-or-equal-initializer does not have a user-provided default
4663     // constructor.
4664     if (!inUnion() && FieldType.isConstQualified() &&
4665         !FD->hasInClassInitializer() &&
4666         (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4667       if (Diagnose)
4668         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4669           << MD->getParent() << FD << FD->getType() << /*Const*/1;
4670       return true;
4671     }
4672 
4673     if (inUnion() && !FieldType.isConstQualified())
4674       AllFieldsAreConst = false;
4675   } else if (CSM == Sema::CXXCopyConstructor) {
4676     // For a copy constructor, data members must not be of rvalue reference
4677     // type.
4678     if (FieldType->isRValueReferenceType()) {
4679       if (Diagnose)
4680         S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4681           << MD->getParent() << FD << FieldType;
4682       return true;
4683     }
4684   } else if (IsAssignment) {
4685     // For an assignment operator, data members must not be of reference type.
4686     if (FieldType->isReferenceType()) {
4687       if (Diagnose)
4688         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4689           << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4690       return true;
4691     }
4692     if (!FieldRecord && FieldType.isConstQualified()) {
4693       // C++11 [class.copy]p23:
4694       // -- a non-static data member of const non-class type (or array thereof)
4695       if (Diagnose)
4696         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4697           << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4698       return true;
4699     }
4700   }
4701 
4702   if (FieldRecord) {
4703     // Some additional restrictions exist on the variant members.
4704     if (!inUnion() && FieldRecord->isUnion() &&
4705         FieldRecord->isAnonymousStructOrUnion()) {
4706       bool AllVariantFieldsAreConst = true;
4707 
4708       // FIXME: Handle anonymous unions declared within anonymous unions.
4709       for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4710                                          UE = FieldRecord->field_end();
4711            UI != UE; ++UI) {
4712         QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4713 
4714         if (!UnionFieldType.isConstQualified())
4715           AllVariantFieldsAreConst = false;
4716 
4717         CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4718         if (UnionFieldRecord &&
4719             shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4720                                           UnionFieldType.getCVRQualifiers()))
4721           return true;
4722       }
4723 
4724       // At least one member in each anonymous union must be non-const
4725       if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4726           FieldRecord->field_begin() != FieldRecord->field_end()) {
4727         if (Diagnose)
4728           S.Diag(FieldRecord->getLocation(),
4729                  diag::note_deleted_default_ctor_all_const)
4730             << MD->getParent() << /*anonymous union*/1;
4731         return true;
4732       }
4733 
4734       // Don't check the implicit member of the anonymous union type.
4735       // This is technically non-conformant, but sanity demands it.
4736       return false;
4737     }
4738 
4739     if (shouldDeleteForClassSubobject(FieldRecord, FD,
4740                                       FieldType.getCVRQualifiers()))
4741       return true;
4742   }
4743 
4744   return false;
4745 }
4746 
4747 /// C++11 [class.ctor] p5:
4748 ///   A defaulted default constructor for a class X is defined as deleted if
4749 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()4750 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4751   // This is a silly definition, because it gives an empty union a deleted
4752   // default constructor. Don't do that.
4753   if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4754       (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4755     if (Diagnose)
4756       S.Diag(MD->getParent()->getLocation(),
4757              diag::note_deleted_default_ctor_all_const)
4758         << MD->getParent() << /*not anonymous union*/0;
4759     return true;
4760   }
4761   return false;
4762 }
4763 
4764 /// Determine whether a defaulted special member function should be defined as
4765 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4766 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)4767 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4768                                      bool Diagnose) {
4769   if (MD->isInvalidDecl())
4770     return false;
4771   CXXRecordDecl *RD = MD->getParent();
4772   assert(!RD->isDependentType() && "do deletion after instantiation");
4773   if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4774     return false;
4775 
4776   // C++11 [expr.lambda.prim]p19:
4777   //   The closure type associated with a lambda-expression has a
4778   //   deleted (8.4.3) default constructor and a deleted copy
4779   //   assignment operator.
4780   if (RD->isLambda() &&
4781       (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4782     if (Diagnose)
4783       Diag(RD->getLocation(), diag::note_lambda_decl);
4784     return true;
4785   }
4786 
4787   // For an anonymous struct or union, the copy and assignment special members
4788   // will never be used, so skip the check. For an anonymous union declared at
4789   // namespace scope, the constructor and destructor are used.
4790   if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4791       RD->isAnonymousStructOrUnion())
4792     return false;
4793 
4794   // C++11 [class.copy]p7, p18:
4795   //   If the class definition declares a move constructor or move assignment
4796   //   operator, an implicitly declared copy constructor or copy assignment
4797   //   operator is defined as deleted.
4798   if (MD->isImplicit() &&
4799       (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4800     CXXMethodDecl *UserDeclaredMove = 0;
4801 
4802     // In Microsoft mode, a user-declared move only causes the deletion of the
4803     // corresponding copy operation, not both copy operations.
4804     if (RD->hasUserDeclaredMoveConstructor() &&
4805         (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4806       if (!Diagnose) return true;
4807 
4808       // Find any user-declared move constructor.
4809       for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4810                                         E = RD->ctor_end(); I != E; ++I) {
4811         if (I->isMoveConstructor()) {
4812           UserDeclaredMove = *I;
4813           break;
4814         }
4815       }
4816       assert(UserDeclaredMove);
4817     } else if (RD->hasUserDeclaredMoveAssignment() &&
4818                (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4819       if (!Diagnose) return true;
4820 
4821       // Find any user-declared move assignment operator.
4822       for (CXXRecordDecl::method_iterator I = RD->method_begin(),
4823                                           E = RD->method_end(); I != E; ++I) {
4824         if (I->isMoveAssignmentOperator()) {
4825           UserDeclaredMove = *I;
4826           break;
4827         }
4828       }
4829       assert(UserDeclaredMove);
4830     }
4831 
4832     if (UserDeclaredMove) {
4833       Diag(UserDeclaredMove->getLocation(),
4834            diag::note_deleted_copy_user_declared_move)
4835         << (CSM == CXXCopyAssignment) << RD
4836         << UserDeclaredMove->isMoveAssignmentOperator();
4837       return true;
4838     }
4839   }
4840 
4841   // Do access control from the special member function
4842   ContextRAII MethodContext(*this, MD);
4843 
4844   // C++11 [class.dtor]p5:
4845   // -- for a virtual destructor, lookup of the non-array deallocation function
4846   //    results in an ambiguity or in a function that is deleted or inaccessible
4847   if (CSM == CXXDestructor && MD->isVirtual()) {
4848     FunctionDecl *OperatorDelete = 0;
4849     DeclarationName Name =
4850       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4851     if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4852                                  OperatorDelete, false)) {
4853       if (Diagnose)
4854         Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4855       return true;
4856     }
4857   }
4858 
4859   SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4860 
4861   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4862                                           BE = RD->bases_end(); BI != BE; ++BI)
4863     if (!BI->isVirtual() &&
4864         SMI.shouldDeleteForBase(BI))
4865       return true;
4866 
4867   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4868                                           BE = RD->vbases_end(); BI != BE; ++BI)
4869     if (SMI.shouldDeleteForBase(BI))
4870       return true;
4871 
4872   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4873                                      FE = RD->field_end(); FI != FE; ++FI)
4874     if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4875         SMI.shouldDeleteForField(*FI))
4876       return true;
4877 
4878   if (SMI.shouldDeleteForAllConstMembers())
4879     return true;
4880 
4881   return false;
4882 }
4883 
4884 /// Perform lookup for a special member of the specified kind, and determine
4885 /// whether it is trivial. If the triviality can be determined without the
4886 /// lookup, skip it. This is intended for use when determining whether a
4887 /// special member of a containing object is trivial, and thus does not ever
4888 /// perform overload resolution for default constructors.
4889 ///
4890 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
4891 /// member that was most likely to be intended to be trivial, if any.
findTrivialSpecialMember(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,unsigned Quals,CXXMethodDecl ** Selected)4892 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
4893                                      Sema::CXXSpecialMember CSM, unsigned Quals,
4894                                      CXXMethodDecl **Selected) {
4895   if (Selected)
4896     *Selected = 0;
4897 
4898   switch (CSM) {
4899   case Sema::CXXInvalid:
4900     llvm_unreachable("not a special member");
4901 
4902   case Sema::CXXDefaultConstructor:
4903     // C++11 [class.ctor]p5:
4904     //   A default constructor is trivial if:
4905     //    - all the [direct subobjects] have trivial default constructors
4906     //
4907     // Note, no overload resolution is performed in this case.
4908     if (RD->hasTrivialDefaultConstructor())
4909       return true;
4910 
4911     if (Selected) {
4912       // If there's a default constructor which could have been trivial, dig it
4913       // out. Otherwise, if there's any user-provided default constructor, point
4914       // to that as an example of why there's not a trivial one.
4915       CXXConstructorDecl *DefCtor = 0;
4916       if (RD->needsImplicitDefaultConstructor())
4917         S.DeclareImplicitDefaultConstructor(RD);
4918       for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
4919                                         CE = RD->ctor_end(); CI != CE; ++CI) {
4920         if (!CI->isDefaultConstructor())
4921           continue;
4922         DefCtor = *CI;
4923         if (!DefCtor->isUserProvided())
4924           break;
4925       }
4926 
4927       *Selected = DefCtor;
4928     }
4929 
4930     return false;
4931 
4932   case Sema::CXXDestructor:
4933     // C++11 [class.dtor]p5:
4934     //   A destructor is trivial if:
4935     //    - all the direct [subobjects] have trivial destructors
4936     if (RD->hasTrivialDestructor())
4937       return true;
4938 
4939     if (Selected) {
4940       if (RD->needsImplicitDestructor())
4941         S.DeclareImplicitDestructor(RD);
4942       *Selected = RD->getDestructor();
4943     }
4944 
4945     return false;
4946 
4947   case Sema::CXXCopyConstructor:
4948     // C++11 [class.copy]p12:
4949     //   A copy constructor is trivial if:
4950     //    - the constructor selected to copy each direct [subobject] is trivial
4951     if (RD->hasTrivialCopyConstructor()) {
4952       if (Quals == Qualifiers::Const)
4953         // We must either select the trivial copy constructor or reach an
4954         // ambiguity; no need to actually perform overload resolution.
4955         return true;
4956     } else if (!Selected) {
4957       return false;
4958     }
4959     // In C++98, we are not supposed to perform overload resolution here, but we
4960     // treat that as a language defect, as suggested on cxx-abi-dev, to treat
4961     // cases like B as having a non-trivial copy constructor:
4962     //   struct A { template<typename T> A(T&); };
4963     //   struct B { mutable A a; };
4964     goto NeedOverloadResolution;
4965 
4966   case Sema::CXXCopyAssignment:
4967     // C++11 [class.copy]p25:
4968     //   A copy assignment operator is trivial if:
4969     //    - the assignment operator selected to copy each direct [subobject] is
4970     //      trivial
4971     if (RD->hasTrivialCopyAssignment()) {
4972       if (Quals == Qualifiers::Const)
4973         return true;
4974     } else if (!Selected) {
4975       return false;
4976     }
4977     // In C++98, we are not supposed to perform overload resolution here, but we
4978     // treat that as a language defect.
4979     goto NeedOverloadResolution;
4980 
4981   case Sema::CXXMoveConstructor:
4982   case Sema::CXXMoveAssignment:
4983   NeedOverloadResolution:
4984     Sema::SpecialMemberOverloadResult *SMOR =
4985       S.LookupSpecialMember(RD, CSM,
4986                             Quals & Qualifiers::Const,
4987                             Quals & Qualifiers::Volatile,
4988                             /*RValueThis*/false, /*ConstThis*/false,
4989                             /*VolatileThis*/false);
4990 
4991     // The standard doesn't describe how to behave if the lookup is ambiguous.
4992     // We treat it as not making the member non-trivial, just like the standard
4993     // mandates for the default constructor. This should rarely matter, because
4994     // the member will also be deleted.
4995     if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4996       return true;
4997 
4998     if (!SMOR->getMethod()) {
4999       assert(SMOR->getKind() ==
5000              Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5001       return false;
5002     }
5003 
5004     // We deliberately don't check if we found a deleted special member. We're
5005     // not supposed to!
5006     if (Selected)
5007       *Selected = SMOR->getMethod();
5008     return SMOR->getMethod()->isTrivial();
5009   }
5010 
5011   llvm_unreachable("unknown special method kind");
5012 }
5013 
findUserDeclaredCtor(CXXRecordDecl * RD)5014 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5015   for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5016        CI != CE; ++CI)
5017     if (!CI->isImplicit())
5018       return *CI;
5019 
5020   // Look for constructor templates.
5021   typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5022   for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5023     if (CXXConstructorDecl *CD =
5024           dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5025       return CD;
5026   }
5027 
5028   return 0;
5029 }
5030 
5031 /// The kind of subobject we are checking for triviality. The values of this
5032 /// enumeration are used in diagnostics.
5033 enum TrivialSubobjectKind {
5034   /// The subobject is a base class.
5035   TSK_BaseClass,
5036   /// The subobject is a non-static data member.
5037   TSK_Field,
5038   /// The object is actually the complete object.
5039   TSK_CompleteObject
5040 };
5041 
5042 /// Check whether the special member selected for a given type would be trivial.
checkTrivialSubobjectCall(Sema & S,SourceLocation SubobjLoc,QualType SubType,Sema::CXXSpecialMember CSM,TrivialSubobjectKind Kind,bool Diagnose)5043 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5044                                       QualType SubType,
5045                                       Sema::CXXSpecialMember CSM,
5046                                       TrivialSubobjectKind Kind,
5047                                       bool Diagnose) {
5048   CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5049   if (!SubRD)
5050     return true;
5051 
5052   CXXMethodDecl *Selected;
5053   if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5054                                Diagnose ? &Selected : 0))
5055     return true;
5056 
5057   if (Diagnose) {
5058     if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5059       S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5060         << Kind << SubType.getUnqualifiedType();
5061       if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5062         S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5063     } else if (!Selected)
5064       S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5065         << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5066     else if (Selected->isUserProvided()) {
5067       if (Kind == TSK_CompleteObject)
5068         S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5069           << Kind << SubType.getUnqualifiedType() << CSM;
5070       else {
5071         S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5072           << Kind << SubType.getUnqualifiedType() << CSM;
5073         S.Diag(Selected->getLocation(), diag::note_declared_at);
5074       }
5075     } else {
5076       if (Kind != TSK_CompleteObject)
5077         S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5078           << Kind << SubType.getUnqualifiedType() << CSM;
5079 
5080       // Explain why the defaulted or deleted special member isn't trivial.
5081       S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5082     }
5083   }
5084 
5085   return false;
5086 }
5087 
5088 /// Check whether the members of a class type allow a special member to be
5089 /// trivial.
checkTrivialClassMembers(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,bool ConstArg,bool Diagnose)5090 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5091                                      Sema::CXXSpecialMember CSM,
5092                                      bool ConstArg, bool Diagnose) {
5093   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5094                                      FE = RD->field_end(); FI != FE; ++FI) {
5095     if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5096       continue;
5097 
5098     QualType FieldType = S.Context.getBaseElementType(FI->getType());
5099 
5100     // Pretend anonymous struct or union members are members of this class.
5101     if (FI->isAnonymousStructOrUnion()) {
5102       if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5103                                     CSM, ConstArg, Diagnose))
5104         return false;
5105       continue;
5106     }
5107 
5108     // C++11 [class.ctor]p5:
5109     //   A default constructor is trivial if [...]
5110     //    -- no non-static data member of its class has a
5111     //       brace-or-equal-initializer
5112     if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5113       if (Diagnose)
5114         S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5115       return false;
5116     }
5117 
5118     // Objective C ARC 4.3.5:
5119     //   [...] nontrivally ownership-qualified types are [...] not trivially
5120     //   default constructible, copy constructible, move constructible, copy
5121     //   assignable, move assignable, or destructible [...]
5122     if (S.getLangOpts().ObjCAutoRefCount &&
5123         FieldType.hasNonTrivialObjCLifetime()) {
5124       if (Diagnose)
5125         S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5126           << RD << FieldType.getObjCLifetime();
5127       return false;
5128     }
5129 
5130     if (ConstArg && !FI->isMutable())
5131       FieldType.addConst();
5132     if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5133                                    TSK_Field, Diagnose))
5134       return false;
5135   }
5136 
5137   return true;
5138 }
5139 
5140 /// Diagnose why the specified class does not have a trivial special member of
5141 /// the given kind.
DiagnoseNontrivial(const CXXRecordDecl * RD,CXXSpecialMember CSM)5142 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5143   QualType Ty = Context.getRecordType(RD);
5144   if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5145     Ty.addConst();
5146 
5147   checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5148                             TSK_CompleteObject, /*Diagnose*/true);
5149 }
5150 
5151 /// Determine whether a defaulted or deleted special member function is trivial,
5152 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5153 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
SpecialMemberIsTrivial(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)5154 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5155                                   bool Diagnose) {
5156   assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5157 
5158   CXXRecordDecl *RD = MD->getParent();
5159 
5160   bool ConstArg = false;
5161 
5162   // C++11 [class.copy]p12, p25:
5163   //   A [special member] is trivial if its declared parameter type is the same
5164   //   as if it had been implicitly declared [...]
5165   switch (CSM) {
5166   case CXXDefaultConstructor:
5167   case CXXDestructor:
5168     // Trivial default constructors and destructors cannot have parameters.
5169     break;
5170 
5171   case CXXCopyConstructor:
5172   case CXXCopyAssignment: {
5173     // Trivial copy operations always have const, non-volatile parameter types.
5174     ConstArg = true;
5175     const ParmVarDecl *Param0 = MD->getParamDecl(0);
5176     const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5177     if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5178       if (Diagnose)
5179         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5180           << Param0->getSourceRange() << Param0->getType()
5181           << Context.getLValueReferenceType(
5182                Context.getRecordType(RD).withConst());
5183       return false;
5184     }
5185     break;
5186   }
5187 
5188   case CXXMoveConstructor:
5189   case CXXMoveAssignment: {
5190     // Trivial move operations always have non-cv-qualified parameters.
5191     const ParmVarDecl *Param0 = MD->getParamDecl(0);
5192     const RValueReferenceType *RT =
5193       Param0->getType()->getAs<RValueReferenceType>();
5194     if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5195       if (Diagnose)
5196         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5197           << Param0->getSourceRange() << Param0->getType()
5198           << Context.getRValueReferenceType(Context.getRecordType(RD));
5199       return false;
5200     }
5201     break;
5202   }
5203 
5204   case CXXInvalid:
5205     llvm_unreachable("not a special member");
5206   }
5207 
5208   // FIXME: We require that the parameter-declaration-clause is equivalent to
5209   // that of an implicit declaration, not just that the declared parameter type
5210   // matches, in order to prevent absuridities like a function simultaneously
5211   // being a trivial copy constructor and a non-trivial default constructor.
5212   // This issue has not yet been assigned a core issue number.
5213   if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5214     if (Diagnose)
5215       Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5216            diag::note_nontrivial_default_arg)
5217         << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5218     return false;
5219   }
5220   if (MD->isVariadic()) {
5221     if (Diagnose)
5222       Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5223     return false;
5224   }
5225 
5226   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5227   //   A copy/move [constructor or assignment operator] is trivial if
5228   //    -- the [member] selected to copy/move each direct base class subobject
5229   //       is trivial
5230   //
5231   // C++11 [class.copy]p12, C++11 [class.copy]p25:
5232   //   A [default constructor or destructor] is trivial if
5233   //    -- all the direct base classes have trivial [default constructors or
5234   //       destructors]
5235   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5236                                           BE = RD->bases_end(); BI != BE; ++BI)
5237     if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5238                                    ConstArg ? BI->getType().withConst()
5239                                             : BI->getType(),
5240                                    CSM, TSK_BaseClass, Diagnose))
5241       return false;
5242 
5243   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5244   //   A copy/move [constructor or assignment operator] for a class X is
5245   //   trivial if
5246   //    -- for each non-static data member of X that is of class type (or array
5247   //       thereof), the constructor selected to copy/move that member is
5248   //       trivial
5249   //
5250   // C++11 [class.copy]p12, C++11 [class.copy]p25:
5251   //   A [default constructor or destructor] is trivial if
5252   //    -- for all of the non-static data members of its class that are of class
5253   //       type (or array thereof), each such class has a trivial [default
5254   //       constructor or destructor]
5255   if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5256     return false;
5257 
5258   // C++11 [class.dtor]p5:
5259   //   A destructor is trivial if [...]
5260   //    -- the destructor is not virtual
5261   if (CSM == CXXDestructor && MD->isVirtual()) {
5262     if (Diagnose)
5263       Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5264     return false;
5265   }
5266 
5267   // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5268   //   A [special member] for class X is trivial if [...]
5269   //    -- class X has no virtual functions and no virtual base classes
5270   if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5271     if (!Diagnose)
5272       return false;
5273 
5274     if (RD->getNumVBases()) {
5275       // Check for virtual bases. We already know that the corresponding
5276       // member in all bases is trivial, so vbases must all be direct.
5277       CXXBaseSpecifier &BS = *RD->vbases_begin();
5278       assert(BS.isVirtual());
5279       Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5280       return false;
5281     }
5282 
5283     // Must have a virtual method.
5284     for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5285                                         ME = RD->method_end(); MI != ME; ++MI) {
5286       if (MI->isVirtual()) {
5287         SourceLocation MLoc = MI->getLocStart();
5288         Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5289         return false;
5290       }
5291     }
5292 
5293     llvm_unreachable("dynamic class with no vbases and no virtual functions");
5294   }
5295 
5296   // Looks like it's trivial!
5297   return true;
5298 }
5299 
5300 /// \brief Data used with FindHiddenVirtualMethod
5301 namespace {
5302   struct FindHiddenVirtualMethodData {
5303     Sema *S;
5304     CXXMethodDecl *Method;
5305     llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5306     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5307   };
5308 }
5309 
5310 /// \brief Check whether any most overriden method from MD in Methods
CheckMostOverridenMethods(const CXXMethodDecl * MD,const llvm::SmallPtrSet<const CXXMethodDecl *,8> & Methods)5311 static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5312                    const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5313   if (MD->size_overridden_methods() == 0)
5314     return Methods.count(MD->getCanonicalDecl());
5315   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5316                                       E = MD->end_overridden_methods();
5317        I != E; ++I)
5318     if (CheckMostOverridenMethods(*I, Methods))
5319       return true;
5320   return false;
5321 }
5322 
5323 /// \brief Member lookup function that determines whether a given C++
5324 /// method overloads virtual methods in a base class without overriding any,
5325 /// to be used with CXXRecordDecl::lookupInBases().
FindHiddenVirtualMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)5326 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5327                                     CXXBasePath &Path,
5328                                     void *UserData) {
5329   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5330 
5331   FindHiddenVirtualMethodData &Data
5332     = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5333 
5334   DeclarationName Name = Data.Method->getDeclName();
5335   assert(Name.getNameKind() == DeclarationName::Identifier);
5336 
5337   bool foundSameNameMethod = false;
5338   SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5339   for (Path.Decls = BaseRecord->lookup(Name);
5340        !Path.Decls.empty();
5341        Path.Decls = Path.Decls.slice(1)) {
5342     NamedDecl *D = Path.Decls.front();
5343     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5344       MD = MD->getCanonicalDecl();
5345       foundSameNameMethod = true;
5346       // Interested only in hidden virtual methods.
5347       if (!MD->isVirtual())
5348         continue;
5349       // If the method we are checking overrides a method from its base
5350       // don't warn about the other overloaded methods.
5351       if (!Data.S->IsOverload(Data.Method, MD, false))
5352         return true;
5353       // Collect the overload only if its hidden.
5354       if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5355         overloadedMethods.push_back(MD);
5356     }
5357   }
5358 
5359   if (foundSameNameMethod)
5360     Data.OverloadedMethods.append(overloadedMethods.begin(),
5361                                    overloadedMethods.end());
5362   return foundSameNameMethod;
5363 }
5364 
5365 /// \brief Add the most overriden methods from MD to Methods
AddMostOverridenMethods(const CXXMethodDecl * MD,llvm::SmallPtrSet<const CXXMethodDecl *,8> & Methods)5366 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5367                          llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5368   if (MD->size_overridden_methods() == 0)
5369     Methods.insert(MD->getCanonicalDecl());
5370   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5371                                       E = MD->end_overridden_methods();
5372        I != E; ++I)
5373     AddMostOverridenMethods(*I, Methods);
5374 }
5375 
5376 /// \brief See if a method overloads virtual methods in a base class without
5377 /// overriding any.
DiagnoseHiddenVirtualMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)5378 void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5379   if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5380                                MD->getLocation()) == DiagnosticsEngine::Ignored)
5381     return;
5382   if (!MD->getDeclName().isIdentifier())
5383     return;
5384 
5385   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5386                      /*bool RecordPaths=*/false,
5387                      /*bool DetectVirtual=*/false);
5388   FindHiddenVirtualMethodData Data;
5389   Data.Method = MD;
5390   Data.S = this;
5391 
5392   // Keep the base methods that were overriden or introduced in the subclass
5393   // by 'using' in a set. A base method not in this set is hidden.
5394   DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5395   for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5396     NamedDecl *ND = *I;
5397     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5398       ND = shad->getTargetDecl();
5399     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5400       AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5401   }
5402 
5403   if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5404       !Data.OverloadedMethods.empty()) {
5405     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5406       << MD << (Data.OverloadedMethods.size() > 1);
5407 
5408     for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5409       CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5410       Diag(overloadedMD->getLocation(),
5411            diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5412     }
5413   }
5414 }
5415 
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,AttributeList * AttrList)5416 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5417                                              Decl *TagDecl,
5418                                              SourceLocation LBrac,
5419                                              SourceLocation RBrac,
5420                                              AttributeList *AttrList) {
5421   if (!TagDecl)
5422     return;
5423 
5424   AdjustDeclIfTemplate(TagDecl);
5425 
5426   for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5427     if (l->getKind() != AttributeList::AT_Visibility)
5428       continue;
5429     l->setInvalid();
5430     Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5431       l->getName();
5432   }
5433 
5434   ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5435               // strict aliasing violation!
5436               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5437               FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5438 
5439   CheckCompletedCXXClass(
5440                         dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5441 }
5442 
5443 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5444 /// special functions, such as the default constructor, copy
5445 /// constructor, or destructor, to the given C++ class (C++
5446 /// [special]p1).  This routine can only be executed just before the
5447 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)5448 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5449   if (!ClassDecl->hasUserDeclaredConstructor())
5450     ++ASTContext::NumImplicitDefaultConstructors;
5451 
5452   if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5453     ++ASTContext::NumImplicitCopyConstructors;
5454 
5455     // If the properties or semantics of the copy constructor couldn't be
5456     // determined while the class was being declared, force a declaration
5457     // of it now.
5458     if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5459       DeclareImplicitCopyConstructor(ClassDecl);
5460   }
5461 
5462   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5463     ++ASTContext::NumImplicitMoveConstructors;
5464 
5465     if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5466       DeclareImplicitMoveConstructor(ClassDecl);
5467   }
5468 
5469   if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5470     ++ASTContext::NumImplicitCopyAssignmentOperators;
5471 
5472     // If we have a dynamic class, then the copy assignment operator may be
5473     // virtual, so we have to declare it immediately. This ensures that, e.g.,
5474     // it shows up in the right place in the vtable and that we diagnose
5475     // problems with the implicit exception specification.
5476     if (ClassDecl->isDynamicClass() ||
5477         ClassDecl->needsOverloadResolutionForCopyAssignment())
5478       DeclareImplicitCopyAssignment(ClassDecl);
5479   }
5480 
5481   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5482     ++ASTContext::NumImplicitMoveAssignmentOperators;
5483 
5484     // Likewise for the move assignment operator.
5485     if (ClassDecl->isDynamicClass() ||
5486         ClassDecl->needsOverloadResolutionForMoveAssignment())
5487       DeclareImplicitMoveAssignment(ClassDecl);
5488   }
5489 
5490   if (!ClassDecl->hasUserDeclaredDestructor()) {
5491     ++ASTContext::NumImplicitDestructors;
5492 
5493     // If we have a dynamic class, then the destructor may be virtual, so we
5494     // have to declare the destructor immediately. This ensures that, e.g., it
5495     // shows up in the right place in the vtable and that we diagnose problems
5496     // with the implicit exception specification.
5497     if (ClassDecl->isDynamicClass() ||
5498         ClassDecl->needsOverloadResolutionForDestructor())
5499       DeclareImplicitDestructor(ClassDecl);
5500   }
5501 }
5502 
ActOnReenterDeclaratorTemplateScope(Scope * S,DeclaratorDecl * D)5503 void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5504   if (!D)
5505     return;
5506 
5507   int NumParamList = D->getNumTemplateParameterLists();
5508   for (int i = 0; i < NumParamList; i++) {
5509     TemplateParameterList* Params = D->getTemplateParameterList(i);
5510     for (TemplateParameterList::iterator Param = Params->begin(),
5511                                       ParamEnd = Params->end();
5512           Param != ParamEnd; ++Param) {
5513       NamedDecl *Named = cast<NamedDecl>(*Param);
5514       if (Named->getDeclName()) {
5515         S->AddDecl(Named);
5516         IdResolver.AddDecl(Named);
5517       }
5518     }
5519   }
5520 }
5521 
ActOnReenterTemplateScope(Scope * S,Decl * D)5522 void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5523   if (!D)
5524     return;
5525 
5526   TemplateParameterList *Params = 0;
5527   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5528     Params = Template->getTemplateParameters();
5529   else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5530            = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5531     Params = PartialSpec->getTemplateParameters();
5532   else
5533     return;
5534 
5535   for (TemplateParameterList::iterator Param = Params->begin(),
5536                                     ParamEnd = Params->end();
5537        Param != ParamEnd; ++Param) {
5538     NamedDecl *Named = cast<NamedDecl>(*Param);
5539     if (Named->getDeclName()) {
5540       S->AddDecl(Named);
5541       IdResolver.AddDecl(Named);
5542     }
5543   }
5544 }
5545 
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)5546 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5547   if (!RecordD) return;
5548   AdjustDeclIfTemplate(RecordD);
5549   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5550   PushDeclContext(S, Record);
5551 }
5552 
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)5553 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5554   if (!RecordD) return;
5555   PopDeclContext();
5556 }
5557 
5558 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
5559 /// parsing a top-level (non-nested) C++ class, and we are now
5560 /// parsing those parts of the given Method declaration that could
5561 /// not be parsed earlier (C++ [class.mem]p2), such as default
5562 /// arguments. This action should enter the scope of the given
5563 /// Method declaration as if we had just parsed the qualified method
5564 /// name. However, it should not bring the parameters into scope;
5565 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)5566 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5567 }
5568 
5569 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
5570 /// C++ method declaration. We're (re-)introducing the given
5571 /// function parameter into scope for use in parsing later parts of
5572 /// the method declaration. For example, we could see an
5573 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)5574 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5575   if (!ParamD)
5576     return;
5577 
5578   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5579 
5580   // If this parameter has an unparsed default argument, clear it out
5581   // to make way for the parsed default argument.
5582   if (Param->hasUnparsedDefaultArg())
5583     Param->setDefaultArg(0);
5584 
5585   S->AddDecl(Param);
5586   if (Param->getDeclName())
5587     IdResolver.AddDecl(Param);
5588 }
5589 
5590 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5591 /// processing the delayed method declaration for Method. The method
5592 /// declaration is now considered finished. There may be a separate
5593 /// ActOnStartOfFunctionDef action later (not necessarily
5594 /// immediately!) for this method, if it was also defined inside the
5595 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)5596 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5597   if (!MethodD)
5598     return;
5599 
5600   AdjustDeclIfTemplate(MethodD);
5601 
5602   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5603 
5604   // Now that we have our default arguments, check the constructor
5605   // again. It could produce additional diagnostics or affect whether
5606   // the class has implicitly-declared destructors, among other
5607   // things.
5608   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5609     CheckConstructor(Constructor);
5610 
5611   // Check the default arguments, which we may have added.
5612   if (!Method->isInvalidDecl())
5613     CheckCXXDefaultArguments(Method);
5614 }
5615 
5616 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5617 /// the well-formedness of the constructor declarator @p D with type @p
5618 /// R. If there are any errors in the declarator, this routine will
5619 /// emit diagnostics and set the invalid bit to true.  In any case, the type
5620 /// will be updated to reflect a well-formed type for the constructor and
5621 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)5622 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5623                                           StorageClass &SC) {
5624   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5625 
5626   // C++ [class.ctor]p3:
5627   //   A constructor shall not be virtual (10.3) or static (9.4). A
5628   //   constructor can be invoked for a const, volatile or const
5629   //   volatile object. A constructor shall not be declared const,
5630   //   volatile, or const volatile (9.3.2).
5631   if (isVirtual) {
5632     if (!D.isInvalidType())
5633       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5634         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5635         << SourceRange(D.getIdentifierLoc());
5636     D.setInvalidType();
5637   }
5638   if (SC == SC_Static) {
5639     if (!D.isInvalidType())
5640       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5641         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5642         << SourceRange(D.getIdentifierLoc());
5643     D.setInvalidType();
5644     SC = SC_None;
5645   }
5646 
5647   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5648   if (FTI.TypeQuals != 0) {
5649     if (FTI.TypeQuals & Qualifiers::Const)
5650       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5651         << "const" << SourceRange(D.getIdentifierLoc());
5652     if (FTI.TypeQuals & Qualifiers::Volatile)
5653       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5654         << "volatile" << SourceRange(D.getIdentifierLoc());
5655     if (FTI.TypeQuals & Qualifiers::Restrict)
5656       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5657         << "restrict" << SourceRange(D.getIdentifierLoc());
5658     D.setInvalidType();
5659   }
5660 
5661   // C++0x [class.ctor]p4:
5662   //   A constructor shall not be declared with a ref-qualifier.
5663   if (FTI.hasRefQualifier()) {
5664     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5665       << FTI.RefQualifierIsLValueRef
5666       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5667     D.setInvalidType();
5668   }
5669 
5670   // Rebuild the function type "R" without any type qualifiers (in
5671   // case any of the errors above fired) and with "void" as the
5672   // return type, since constructors don't have return types.
5673   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5674   if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5675     return R;
5676 
5677   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5678   EPI.TypeQuals = 0;
5679   EPI.RefQualifier = RQ_None;
5680 
5681   return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5682 }
5683 
5684 /// CheckConstructor - Checks a fully-formed constructor for
5685 /// well-formedness, issuing any diagnostics required. Returns true if
5686 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)5687 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5688   CXXRecordDecl *ClassDecl
5689     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5690   if (!ClassDecl)
5691     return Constructor->setInvalidDecl();
5692 
5693   // C++ [class.copy]p3:
5694   //   A declaration of a constructor for a class X is ill-formed if
5695   //   its first parameter is of type (optionally cv-qualified) X and
5696   //   either there are no other parameters or else all other
5697   //   parameters have default arguments.
5698   if (!Constructor->isInvalidDecl() &&
5699       ((Constructor->getNumParams() == 1) ||
5700        (Constructor->getNumParams() > 1 &&
5701         Constructor->getParamDecl(1)->hasDefaultArg())) &&
5702       Constructor->getTemplateSpecializationKind()
5703                                               != TSK_ImplicitInstantiation) {
5704     QualType ParamType = Constructor->getParamDecl(0)->getType();
5705     QualType ClassTy = Context.getTagDeclType(ClassDecl);
5706     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5707       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5708       const char *ConstRef
5709         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5710                                                         : " const &";
5711       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5712         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5713 
5714       // FIXME: Rather that making the constructor invalid, we should endeavor
5715       // to fix the type.
5716       Constructor->setInvalidDecl();
5717     }
5718   }
5719 }
5720 
5721 /// CheckDestructor - Checks a fully-formed destructor definition for
5722 /// well-formedness, issuing any diagnostics required.  Returns true
5723 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)5724 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5725   CXXRecordDecl *RD = Destructor->getParent();
5726 
5727   if (Destructor->isVirtual()) {
5728     SourceLocation Loc;
5729 
5730     if (!Destructor->isImplicit())
5731       Loc = Destructor->getLocation();
5732     else
5733       Loc = RD->getLocation();
5734 
5735     // If we have a virtual destructor, look up the deallocation function
5736     FunctionDecl *OperatorDelete = 0;
5737     DeclarationName Name =
5738     Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5739     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5740       return true;
5741 
5742     MarkFunctionReferenced(Loc, OperatorDelete);
5743 
5744     Destructor->setOperatorDelete(OperatorDelete);
5745   }
5746 
5747   return false;
5748 }
5749 
5750 static inline bool
FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo & FTI)5751 FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5752   return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5753           FTI.ArgInfo[0].Param &&
5754           cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5755 }
5756 
5757 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5758 /// the well-formednes of the destructor declarator @p D with type @p
5759 /// R. If there are any errors in the declarator, this routine will
5760 /// emit diagnostics and set the declarator to invalid.  Even if this happens,
5761 /// will be updated to reflect a well-formed type for the destructor and
5762 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)5763 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5764                                          StorageClass& SC) {
5765   // C++ [class.dtor]p1:
5766   //   [...] A typedef-name that names a class is a class-name
5767   //   (7.1.3); however, a typedef-name that names a class shall not
5768   //   be used as the identifier in the declarator for a destructor
5769   //   declaration.
5770   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5771   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5772     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5773       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5774   else if (const TemplateSpecializationType *TST =
5775              DeclaratorType->getAs<TemplateSpecializationType>())
5776     if (TST->isTypeAlias())
5777       Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5778         << DeclaratorType << 1;
5779 
5780   // C++ [class.dtor]p2:
5781   //   A destructor is used to destroy objects of its class type. A
5782   //   destructor takes no parameters, and no return type can be
5783   //   specified for it (not even void). The address of a destructor
5784   //   shall not be taken. A destructor shall not be static. A
5785   //   destructor can be invoked for a const, volatile or const
5786   //   volatile object. A destructor shall not be declared const,
5787   //   volatile or const volatile (9.3.2).
5788   if (SC == SC_Static) {
5789     if (!D.isInvalidType())
5790       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5791         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5792         << SourceRange(D.getIdentifierLoc())
5793         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5794 
5795     SC = SC_None;
5796   }
5797   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5798     // Destructors don't have return types, but the parser will
5799     // happily parse something like:
5800     //
5801     //   class X {
5802     //     float ~X();
5803     //   };
5804     //
5805     // The return type will be eliminated later.
5806     Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5807       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5808       << SourceRange(D.getIdentifierLoc());
5809   }
5810 
5811   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5812   if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5813     if (FTI.TypeQuals & Qualifiers::Const)
5814       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5815         << "const" << SourceRange(D.getIdentifierLoc());
5816     if (FTI.TypeQuals & Qualifiers::Volatile)
5817       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5818         << "volatile" << SourceRange(D.getIdentifierLoc());
5819     if (FTI.TypeQuals & Qualifiers::Restrict)
5820       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5821         << "restrict" << SourceRange(D.getIdentifierLoc());
5822     D.setInvalidType();
5823   }
5824 
5825   // C++0x [class.dtor]p2:
5826   //   A destructor shall not be declared with a ref-qualifier.
5827   if (FTI.hasRefQualifier()) {
5828     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5829       << FTI.RefQualifierIsLValueRef
5830       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5831     D.setInvalidType();
5832   }
5833 
5834   // Make sure we don't have any parameters.
5835   if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5836     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5837 
5838     // Delete the parameters.
5839     FTI.freeArgs();
5840     D.setInvalidType();
5841   }
5842 
5843   // Make sure the destructor isn't variadic.
5844   if (FTI.isVariadic) {
5845     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5846     D.setInvalidType();
5847   }
5848 
5849   // Rebuild the function type "R" without any type qualifiers or
5850   // parameters (in case any of the errors above fired) and with
5851   // "void" as the return type, since destructors don't have return
5852   // types.
5853   if (!D.isInvalidType())
5854     return R;
5855 
5856   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5857   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5858   EPI.Variadic = false;
5859   EPI.TypeQuals = 0;
5860   EPI.RefQualifier = RQ_None;
5861   return Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI);
5862 }
5863 
5864 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5865 /// well-formednes of the conversion function declarator @p D with
5866 /// type @p R. If there are any errors in the declarator, this routine
5867 /// will emit diagnostics and return true. Otherwise, it will return
5868 /// false. Either way, the type @p R will be updated to reflect a
5869 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)5870 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5871                                      StorageClass& SC) {
5872   // C++ [class.conv.fct]p1:
5873   //   Neither parameter types nor return type can be specified. The
5874   //   type of a conversion function (8.3.5) is "function taking no
5875   //   parameter returning conversion-type-id."
5876   if (SC == SC_Static) {
5877     if (!D.isInvalidType())
5878       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5879         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5880         << SourceRange(D.getIdentifierLoc());
5881     D.setInvalidType();
5882     SC = SC_None;
5883   }
5884 
5885   QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5886 
5887   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5888     // Conversion functions don't have return types, but the parser will
5889     // happily parse something like:
5890     //
5891     //   class X {
5892     //     float operator bool();
5893     //   };
5894     //
5895     // The return type will be changed later anyway.
5896     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5897       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5898       << SourceRange(D.getIdentifierLoc());
5899     D.setInvalidType();
5900   }
5901 
5902   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5903 
5904   // Make sure we don't have any parameters.
5905   if (Proto->getNumArgs() > 0) {
5906     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5907 
5908     // Delete the parameters.
5909     D.getFunctionTypeInfo().freeArgs();
5910     D.setInvalidType();
5911   } else if (Proto->isVariadic()) {
5912     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5913     D.setInvalidType();
5914   }
5915 
5916   // Diagnose "&operator bool()" and other such nonsense.  This
5917   // is actually a gcc extension which we don't support.
5918   if (Proto->getResultType() != ConvType) {
5919     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5920       << Proto->getResultType();
5921     D.setInvalidType();
5922     ConvType = Proto->getResultType();
5923   }
5924 
5925   // C++ [class.conv.fct]p4:
5926   //   The conversion-type-id shall not represent a function type nor
5927   //   an array type.
5928   if (ConvType->isArrayType()) {
5929     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5930     ConvType = Context.getPointerType(ConvType);
5931     D.setInvalidType();
5932   } else if (ConvType->isFunctionType()) {
5933     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5934     ConvType = Context.getPointerType(ConvType);
5935     D.setInvalidType();
5936   }
5937 
5938   // Rebuild the function type "R" without any parameters (in case any
5939   // of the errors above fired) and with the conversion type as the
5940   // return type.
5941   if (D.isInvalidType())
5942     R = Context.getFunctionType(ConvType, ArrayRef<QualType>(),
5943                                 Proto->getExtProtoInfo());
5944 
5945   // C++0x explicit conversion operators.
5946   if (D.getDeclSpec().isExplicitSpecified())
5947     Diag(D.getDeclSpec().getExplicitSpecLoc(),
5948          getLangOpts().CPlusPlus11 ?
5949            diag::warn_cxx98_compat_explicit_conversion_functions :
5950            diag::ext_explicit_conversion_functions)
5951       << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5952 }
5953 
5954 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5955 /// the declaration of the given C++ conversion function. This routine
5956 /// is responsible for recording the conversion function in the C++
5957 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)5958 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5959   assert(Conversion && "Expected to receive a conversion function declaration");
5960 
5961   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5962 
5963   // Make sure we aren't redeclaring the conversion function.
5964   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5965 
5966   // C++ [class.conv.fct]p1:
5967   //   [...] A conversion function is never used to convert a
5968   //   (possibly cv-qualified) object to the (possibly cv-qualified)
5969   //   same object type (or a reference to it), to a (possibly
5970   //   cv-qualified) base class of that type (or a reference to it),
5971   //   or to (possibly cv-qualified) void.
5972   // FIXME: Suppress this warning if the conversion function ends up being a
5973   // virtual function that overrides a virtual function in a base class.
5974   QualType ClassType
5975     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5976   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5977     ConvType = ConvTypeRef->getPointeeType();
5978   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5979       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5980     /* Suppress diagnostics for instantiations. */;
5981   else if (ConvType->isRecordType()) {
5982     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5983     if (ConvType == ClassType)
5984       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5985         << ClassType;
5986     else if (IsDerivedFrom(ClassType, ConvType))
5987       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5988         <<  ClassType << ConvType;
5989   } else if (ConvType->isVoidType()) {
5990     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5991       << ClassType << ConvType;
5992   }
5993 
5994   if (FunctionTemplateDecl *ConversionTemplate
5995                                 = Conversion->getDescribedFunctionTemplate())
5996     return ConversionTemplate;
5997 
5998   return Conversion;
5999 }
6000 
6001 //===----------------------------------------------------------------------===//
6002 // Namespace Handling
6003 //===----------------------------------------------------------------------===//
6004 
6005 /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6006 /// reopened.
DiagnoseNamespaceInlineMismatch(Sema & S,SourceLocation KeywordLoc,SourceLocation Loc,IdentifierInfo * II,bool * IsInline,NamespaceDecl * PrevNS)6007 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6008                                             SourceLocation Loc,
6009                                             IdentifierInfo *II, bool *IsInline,
6010                                             NamespaceDecl *PrevNS) {
6011   assert(*IsInline != PrevNS->isInline());
6012 
6013   // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6014   // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6015   // inline namespaces, with the intention of bringing names into namespace std.
6016   //
6017   // We support this just well enough to get that case working; this is not
6018   // sufficient to support reopening namespaces as inline in general.
6019   if (*IsInline && II && II->getName().startswith("__atomic") &&
6020       S.getSourceManager().isInSystemHeader(Loc)) {
6021     // Mark all prior declarations of the namespace as inline.
6022     for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6023          NS = NS->getPreviousDecl())
6024       NS->setInline(*IsInline);
6025     // Patch up the lookup table for the containing namespace. This isn't really
6026     // correct, but it's good enough for this particular case.
6027     for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6028                                     E = PrevNS->decls_end(); I != E; ++I)
6029       if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6030         PrevNS->getParent()->makeDeclVisibleInContext(ND);
6031     return;
6032   }
6033 
6034   if (PrevNS->isInline())
6035     // The user probably just forgot the 'inline', so suggest that it
6036     // be added back.
6037     S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6038       << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6039   else
6040     S.Diag(Loc, diag::err_inline_namespace_mismatch)
6041       << IsInline;
6042 
6043   S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6044   *IsInline = PrevNS->isInline();
6045 }
6046 
6047 /// ActOnStartNamespaceDef - This is called at the start of a namespace
6048 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,AttributeList * AttrList)6049 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6050                                    SourceLocation InlineLoc,
6051                                    SourceLocation NamespaceLoc,
6052                                    SourceLocation IdentLoc,
6053                                    IdentifierInfo *II,
6054                                    SourceLocation LBrace,
6055                                    AttributeList *AttrList) {
6056   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6057   // For anonymous namespace, take the location of the left brace.
6058   SourceLocation Loc = II ? IdentLoc : LBrace;
6059   bool IsInline = InlineLoc.isValid();
6060   bool IsInvalid = false;
6061   bool IsStd = false;
6062   bool AddToKnown = false;
6063   Scope *DeclRegionScope = NamespcScope->getParent();
6064 
6065   NamespaceDecl *PrevNS = 0;
6066   if (II) {
6067     // C++ [namespace.def]p2:
6068     //   The identifier in an original-namespace-definition shall not
6069     //   have been previously defined in the declarative region in
6070     //   which the original-namespace-definition appears. The
6071     //   identifier in an original-namespace-definition is the name of
6072     //   the namespace. Subsequently in that declarative region, it is
6073     //   treated as an original-namespace-name.
6074     //
6075     // Since namespace names are unique in their scope, and we don't
6076     // look through using directives, just look for any ordinary names.
6077 
6078     const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6079     Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6080     Decl::IDNS_Namespace;
6081     NamedDecl *PrevDecl = 0;
6082     DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6083     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6084          ++I) {
6085       if ((*I)->getIdentifierNamespace() & IDNS) {
6086         PrevDecl = *I;
6087         break;
6088       }
6089     }
6090 
6091     PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6092 
6093     if (PrevNS) {
6094       // This is an extended namespace definition.
6095       if (IsInline != PrevNS->isInline())
6096         DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6097                                         &IsInline, PrevNS);
6098     } else if (PrevDecl) {
6099       // This is an invalid name redefinition.
6100       Diag(Loc, diag::err_redefinition_different_kind)
6101         << II;
6102       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6103       IsInvalid = true;
6104       // Continue on to push Namespc as current DeclContext and return it.
6105     } else if (II->isStr("std") &&
6106                CurContext->getRedeclContext()->isTranslationUnit()) {
6107       // This is the first "real" definition of the namespace "std", so update
6108       // our cache of the "std" namespace to point at this definition.
6109       PrevNS = getStdNamespace();
6110       IsStd = true;
6111       AddToKnown = !IsInline;
6112     } else {
6113       // We've seen this namespace for the first time.
6114       AddToKnown = !IsInline;
6115     }
6116   } else {
6117     // Anonymous namespaces.
6118 
6119     // Determine whether the parent already has an anonymous namespace.
6120     DeclContext *Parent = CurContext->getRedeclContext();
6121     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6122       PrevNS = TU->getAnonymousNamespace();
6123     } else {
6124       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6125       PrevNS = ND->getAnonymousNamespace();
6126     }
6127 
6128     if (PrevNS && IsInline != PrevNS->isInline())
6129       DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6130                                       &IsInline, PrevNS);
6131   }
6132 
6133   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6134                                                  StartLoc, Loc, II, PrevNS);
6135   if (IsInvalid)
6136     Namespc->setInvalidDecl();
6137 
6138   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6139 
6140   // FIXME: Should we be merging attributes?
6141   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6142     PushNamespaceVisibilityAttr(Attr, Loc);
6143 
6144   if (IsStd)
6145     StdNamespace = Namespc;
6146   if (AddToKnown)
6147     KnownNamespaces[Namespc] = false;
6148 
6149   if (II) {
6150     PushOnScopeChains(Namespc, DeclRegionScope);
6151   } else {
6152     // Link the anonymous namespace into its parent.
6153     DeclContext *Parent = CurContext->getRedeclContext();
6154     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6155       TU->setAnonymousNamespace(Namespc);
6156     } else {
6157       cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6158     }
6159 
6160     CurContext->addDecl(Namespc);
6161 
6162     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6163     //   behaves as if it were replaced by
6164     //     namespace unique { /* empty body */ }
6165     //     using namespace unique;
6166     //     namespace unique { namespace-body }
6167     //   where all occurrences of 'unique' in a translation unit are
6168     //   replaced by the same identifier and this identifier differs
6169     //   from all other identifiers in the entire program.
6170 
6171     // We just create the namespace with an empty name and then add an
6172     // implicit using declaration, just like the standard suggests.
6173     //
6174     // CodeGen enforces the "universally unique" aspect by giving all
6175     // declarations semantically contained within an anonymous
6176     // namespace internal linkage.
6177 
6178     if (!PrevNS) {
6179       UsingDirectiveDecl* UD
6180         = UsingDirectiveDecl::Create(Context, Parent,
6181                                      /* 'using' */ LBrace,
6182                                      /* 'namespace' */ SourceLocation(),
6183                                      /* qualifier */ NestedNameSpecifierLoc(),
6184                                      /* identifier */ SourceLocation(),
6185                                      Namespc,
6186                                      /* Ancestor */ Parent);
6187       UD->setImplicit();
6188       Parent->addDecl(UD);
6189     }
6190   }
6191 
6192   ActOnDocumentableDecl(Namespc);
6193 
6194   // Although we could have an invalid decl (i.e. the namespace name is a
6195   // redefinition), push it as current DeclContext and try to continue parsing.
6196   // FIXME: We should be able to push Namespc here, so that the each DeclContext
6197   // for the namespace has the declarations that showed up in that particular
6198   // namespace definition.
6199   PushDeclContext(NamespcScope, Namespc);
6200   return Namespc;
6201 }
6202 
6203 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6204 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)6205 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6206   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6207     return AD->getNamespace();
6208   return dyn_cast_or_null<NamespaceDecl>(D);
6209 }
6210 
6211 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
6212 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)6213 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6214   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6215   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6216   Namespc->setRBraceLoc(RBrace);
6217   PopDeclContext();
6218   if (Namespc->hasAttr<VisibilityAttr>())
6219     PopPragmaVisibility(true, RBrace);
6220 }
6221 
getStdBadAlloc() const6222 CXXRecordDecl *Sema::getStdBadAlloc() const {
6223   return cast_or_null<CXXRecordDecl>(
6224                                   StdBadAlloc.get(Context.getExternalSource()));
6225 }
6226 
getStdNamespace() const6227 NamespaceDecl *Sema::getStdNamespace() const {
6228   return cast_or_null<NamespaceDecl>(
6229                                  StdNamespace.get(Context.getExternalSource()));
6230 }
6231 
6232 /// \brief Retrieve the special "std" namespace, which may require us to
6233 /// implicitly define the namespace.
getOrCreateStdNamespace()6234 NamespaceDecl *Sema::getOrCreateStdNamespace() {
6235   if (!StdNamespace) {
6236     // The "std" namespace has not yet been defined, so build one implicitly.
6237     StdNamespace = NamespaceDecl::Create(Context,
6238                                          Context.getTranslationUnitDecl(),
6239                                          /*Inline=*/false,
6240                                          SourceLocation(), SourceLocation(),
6241                                          &PP.getIdentifierTable().get("std"),
6242                                          /*PrevDecl=*/0);
6243     getStdNamespace()->setImplicit(true);
6244   }
6245 
6246   return getStdNamespace();
6247 }
6248 
isStdInitializerList(QualType Ty,QualType * Element)6249 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6250   assert(getLangOpts().CPlusPlus &&
6251          "Looking for std::initializer_list outside of C++.");
6252 
6253   // We're looking for implicit instantiations of
6254   // template <typename E> class std::initializer_list.
6255 
6256   if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6257     return false;
6258 
6259   ClassTemplateDecl *Template = 0;
6260   const TemplateArgument *Arguments = 0;
6261 
6262   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6263 
6264     ClassTemplateSpecializationDecl *Specialization =
6265         dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6266     if (!Specialization)
6267       return false;
6268 
6269     Template = Specialization->getSpecializedTemplate();
6270     Arguments = Specialization->getTemplateArgs().data();
6271   } else if (const TemplateSpecializationType *TST =
6272                  Ty->getAs<TemplateSpecializationType>()) {
6273     Template = dyn_cast_or_null<ClassTemplateDecl>(
6274         TST->getTemplateName().getAsTemplateDecl());
6275     Arguments = TST->getArgs();
6276   }
6277   if (!Template)
6278     return false;
6279 
6280   if (!StdInitializerList) {
6281     // Haven't recognized std::initializer_list yet, maybe this is it.
6282     CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6283     if (TemplateClass->getIdentifier() !=
6284             &PP.getIdentifierTable().get("initializer_list") ||
6285         !getStdNamespace()->InEnclosingNamespaceSetOf(
6286             TemplateClass->getDeclContext()))
6287       return false;
6288     // This is a template called std::initializer_list, but is it the right
6289     // template?
6290     TemplateParameterList *Params = Template->getTemplateParameters();
6291     if (Params->getMinRequiredArguments() != 1)
6292       return false;
6293     if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6294       return false;
6295 
6296     // It's the right template.
6297     StdInitializerList = Template;
6298   }
6299 
6300   if (Template != StdInitializerList)
6301     return false;
6302 
6303   // This is an instance of std::initializer_list. Find the argument type.
6304   if (Element)
6305     *Element = Arguments[0].getAsType();
6306   return true;
6307 }
6308 
LookupStdInitializerList(Sema & S,SourceLocation Loc)6309 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6310   NamespaceDecl *Std = S.getStdNamespace();
6311   if (!Std) {
6312     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6313     return 0;
6314   }
6315 
6316   LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6317                       Loc, Sema::LookupOrdinaryName);
6318   if (!S.LookupQualifiedName(Result, Std)) {
6319     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6320     return 0;
6321   }
6322   ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6323   if (!Template) {
6324     Result.suppressDiagnostics();
6325     // We found something weird. Complain about the first thing we found.
6326     NamedDecl *Found = *Result.begin();
6327     S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6328     return 0;
6329   }
6330 
6331   // We found some template called std::initializer_list. Now verify that it's
6332   // correct.
6333   TemplateParameterList *Params = Template->getTemplateParameters();
6334   if (Params->getMinRequiredArguments() != 1 ||
6335       !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6336     S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6337     return 0;
6338   }
6339 
6340   return Template;
6341 }
6342 
BuildStdInitializerList(QualType Element,SourceLocation Loc)6343 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6344   if (!StdInitializerList) {
6345     StdInitializerList = LookupStdInitializerList(*this, Loc);
6346     if (!StdInitializerList)
6347       return QualType();
6348   }
6349 
6350   TemplateArgumentListInfo Args(Loc, Loc);
6351   Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6352                                        Context.getTrivialTypeSourceInfo(Element,
6353                                                                         Loc)));
6354   return Context.getCanonicalType(
6355       CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6356 }
6357 
isInitListConstructor(const CXXConstructorDecl * Ctor)6358 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6359   // C++ [dcl.init.list]p2:
6360   //   A constructor is an initializer-list constructor if its first parameter
6361   //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6362   //   std::initializer_list<E> for some type E, and either there are no other
6363   //   parameters or else all other parameters have default arguments.
6364   if (Ctor->getNumParams() < 1 ||
6365       (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6366     return false;
6367 
6368   QualType ArgType = Ctor->getParamDecl(0)->getType();
6369   if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6370     ArgType = RT->getPointeeType().getUnqualifiedType();
6371 
6372   return isStdInitializerList(ArgType, 0);
6373 }
6374 
6375 /// \brief Determine whether a using statement is in a context where it will be
6376 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)6377 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6378   switch (CurContext->getDeclKind()) {
6379     case Decl::TranslationUnit:
6380       return true;
6381     case Decl::LinkageSpec:
6382       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6383     default:
6384       return false;
6385   }
6386 }
6387 
6388 namespace {
6389 
6390 // Callback to only accept typo corrections that are namespaces.
6391 class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6392  public:
ValidateCandidate(const TypoCorrection & candidate)6393   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6394     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6395       return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6396     }
6397     return false;
6398   }
6399 };
6400 
6401 }
6402 
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)6403 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6404                                        CXXScopeSpec &SS,
6405                                        SourceLocation IdentLoc,
6406                                        IdentifierInfo *Ident) {
6407   NamespaceValidatorCCC Validator;
6408   R.clear();
6409   if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6410                                                R.getLookupKind(), Sc, &SS,
6411                                                Validator)) {
6412     std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6413     std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6414     if (DeclContext *DC = S.computeDeclContext(SS, false))
6415       S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6416         << Ident << DC << CorrectedQuotedStr << SS.getRange()
6417         << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6418                                         CorrectedStr);
6419     else
6420       S.Diag(IdentLoc, diag::err_using_directive_suggest)
6421         << Ident << CorrectedQuotedStr
6422         << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6423 
6424     S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6425          diag::note_namespace_defined_here) << CorrectedQuotedStr;
6426 
6427     R.addDecl(Corrected.getCorrectionDecl());
6428     return true;
6429   }
6430   return false;
6431 }
6432 
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,AttributeList * AttrList)6433 Decl *Sema::ActOnUsingDirective(Scope *S,
6434                                           SourceLocation UsingLoc,
6435                                           SourceLocation NamespcLoc,
6436                                           CXXScopeSpec &SS,
6437                                           SourceLocation IdentLoc,
6438                                           IdentifierInfo *NamespcName,
6439                                           AttributeList *AttrList) {
6440   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6441   assert(NamespcName && "Invalid NamespcName.");
6442   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6443 
6444   // This can only happen along a recovery path.
6445   while (S->getFlags() & Scope::TemplateParamScope)
6446     S = S->getParent();
6447   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6448 
6449   UsingDirectiveDecl *UDir = 0;
6450   NestedNameSpecifier *Qualifier = 0;
6451   if (SS.isSet())
6452     Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6453 
6454   // Lookup namespace name.
6455   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6456   LookupParsedName(R, S, &SS);
6457   if (R.isAmbiguous())
6458     return 0;
6459 
6460   if (R.empty()) {
6461     R.clear();
6462     // Allow "using namespace std;" or "using namespace ::std;" even if
6463     // "std" hasn't been defined yet, for GCC compatibility.
6464     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6465         NamespcName->isStr("std")) {
6466       Diag(IdentLoc, diag::ext_using_undefined_std);
6467       R.addDecl(getOrCreateStdNamespace());
6468       R.resolveKind();
6469     }
6470     // Otherwise, attempt typo correction.
6471     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6472   }
6473 
6474   if (!R.empty()) {
6475     NamedDecl *Named = R.getFoundDecl();
6476     assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6477         && "expected namespace decl");
6478     // C++ [namespace.udir]p1:
6479     //   A using-directive specifies that the names in the nominated
6480     //   namespace can be used in the scope in which the
6481     //   using-directive appears after the using-directive. During
6482     //   unqualified name lookup (3.4.1), the names appear as if they
6483     //   were declared in the nearest enclosing namespace which
6484     //   contains both the using-directive and the nominated
6485     //   namespace. [Note: in this context, "contains" means "contains
6486     //   directly or indirectly". ]
6487 
6488     // Find enclosing context containing both using-directive and
6489     // nominated namespace.
6490     NamespaceDecl *NS = getNamespaceDecl(Named);
6491     DeclContext *CommonAncestor = cast<DeclContext>(NS);
6492     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6493       CommonAncestor = CommonAncestor->getParent();
6494 
6495     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6496                                       SS.getWithLocInContext(Context),
6497                                       IdentLoc, Named, CommonAncestor);
6498 
6499     if (IsUsingDirectiveInToplevelContext(CurContext) &&
6500         !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6501       Diag(IdentLoc, diag::warn_using_directive_in_header);
6502     }
6503 
6504     PushUsingDirective(S, UDir);
6505   } else {
6506     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6507   }
6508 
6509   if (UDir)
6510     ProcessDeclAttributeList(S, UDir, AttrList);
6511 
6512   return UDir;
6513 }
6514 
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)6515 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6516   // If the scope has an associated entity and the using directive is at
6517   // namespace or translation unit scope, add the UsingDirectiveDecl into
6518   // its lookup structure so qualified name lookup can find it.
6519   DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6520   if (Ctx && !Ctx->isFunctionOrMethod())
6521     Ctx->addDecl(UDir);
6522   else
6523     // Otherwise, it is at block sope. The using-directives will affect lookup
6524     // only to the end of the scope.
6525     S->PushUsingDirective(UDir);
6526 }
6527 
6528 
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,bool HasUsingKeyword,SourceLocation UsingLoc,CXXScopeSpec & SS,UnqualifiedId & Name,AttributeList * AttrList,bool IsTypeName,SourceLocation TypenameLoc)6529 Decl *Sema::ActOnUsingDeclaration(Scope *S,
6530                                   AccessSpecifier AS,
6531                                   bool HasUsingKeyword,
6532                                   SourceLocation UsingLoc,
6533                                   CXXScopeSpec &SS,
6534                                   UnqualifiedId &Name,
6535                                   AttributeList *AttrList,
6536                                   bool IsTypeName,
6537                                   SourceLocation TypenameLoc) {
6538   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6539 
6540   switch (Name.getKind()) {
6541   case UnqualifiedId::IK_ImplicitSelfParam:
6542   case UnqualifiedId::IK_Identifier:
6543   case UnqualifiedId::IK_OperatorFunctionId:
6544   case UnqualifiedId::IK_LiteralOperatorId:
6545   case UnqualifiedId::IK_ConversionFunctionId:
6546     break;
6547 
6548   case UnqualifiedId::IK_ConstructorName:
6549   case UnqualifiedId::IK_ConstructorTemplateId:
6550     // C++11 inheriting constructors.
6551     Diag(Name.getLocStart(),
6552          getLangOpts().CPlusPlus11 ?
6553            diag::warn_cxx98_compat_using_decl_constructor :
6554            diag::err_using_decl_constructor)
6555       << SS.getRange();
6556 
6557     if (getLangOpts().CPlusPlus11) break;
6558 
6559     return 0;
6560 
6561   case UnqualifiedId::IK_DestructorName:
6562     Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6563       << SS.getRange();
6564     return 0;
6565 
6566   case UnqualifiedId::IK_TemplateId:
6567     Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6568       << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6569     return 0;
6570   }
6571 
6572   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6573   DeclarationName TargetName = TargetNameInfo.getName();
6574   if (!TargetName)
6575     return 0;
6576 
6577   // Warn about access declarations.
6578   // TODO: store that the declaration was written without 'using' and
6579   // talk about access decls instead of using decls in the
6580   // diagnostics.
6581   if (!HasUsingKeyword) {
6582     UsingLoc = Name.getLocStart();
6583 
6584     Diag(UsingLoc, diag::warn_access_decl_deprecated)
6585       << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6586   }
6587 
6588   if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6589       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6590     return 0;
6591 
6592   NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6593                                         TargetNameInfo, AttrList,
6594                                         /* IsInstantiation */ false,
6595                                         IsTypeName, TypenameLoc);
6596   if (UD)
6597     PushOnScopeChains(UD, S, /*AddToContext*/ false);
6598 
6599   return UD;
6600 }
6601 
6602 /// \brief Determine whether a using declaration considers the given
6603 /// declarations as "equivalent", e.g., if they are redeclarations of
6604 /// the same entity or are both typedefs of the same type.
6605 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2,bool & SuppressRedeclaration)6606 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6607                          bool &SuppressRedeclaration) {
6608   if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6609     SuppressRedeclaration = false;
6610     return true;
6611   }
6612 
6613   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6614     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6615       SuppressRedeclaration = true;
6616       return Context.hasSameType(TD1->getUnderlyingType(),
6617                                  TD2->getUnderlyingType());
6618     }
6619 
6620   return false;
6621 }
6622 
6623 
6624 /// Determines whether to create a using shadow decl for a particular
6625 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous)6626 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6627                                 const LookupResult &Previous) {
6628   // Diagnose finding a decl which is not from a base class of the
6629   // current class.  We do this now because there are cases where this
6630   // function will silently decide not to build a shadow decl, which
6631   // will pre-empt further diagnostics.
6632   //
6633   // We don't need to do this in C++0x because we do the check once on
6634   // the qualifier.
6635   //
6636   // FIXME: diagnose the following if we care enough:
6637   //   struct A { int foo; };
6638   //   struct B : A { using A::foo; };
6639   //   template <class T> struct C : A {};
6640   //   template <class T> struct D : C<T> { using B::foo; } // <---
6641   // This is invalid (during instantiation) in C++03 because B::foo
6642   // resolves to the using decl in B, which is not a base class of D<T>.
6643   // We can't diagnose it immediately because C<T> is an unknown
6644   // specialization.  The UsingShadowDecl in D<T> then points directly
6645   // to A::foo, which will look well-formed when we instantiate.
6646   // The right solution is to not collapse the shadow-decl chain.
6647   if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6648     DeclContext *OrigDC = Orig->getDeclContext();
6649 
6650     // Handle enums and anonymous structs.
6651     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6652     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6653     while (OrigRec->isAnonymousStructOrUnion())
6654       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6655 
6656     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6657       if (OrigDC == CurContext) {
6658         Diag(Using->getLocation(),
6659              diag::err_using_decl_nested_name_specifier_is_current_class)
6660           << Using->getQualifierLoc().getSourceRange();
6661         Diag(Orig->getLocation(), diag::note_using_decl_target);
6662         return true;
6663       }
6664 
6665       Diag(Using->getQualifierLoc().getBeginLoc(),
6666            diag::err_using_decl_nested_name_specifier_is_not_base_class)
6667         << Using->getQualifier()
6668         << cast<CXXRecordDecl>(CurContext)
6669         << Using->getQualifierLoc().getSourceRange();
6670       Diag(Orig->getLocation(), diag::note_using_decl_target);
6671       return true;
6672     }
6673   }
6674 
6675   if (Previous.empty()) return false;
6676 
6677   NamedDecl *Target = Orig;
6678   if (isa<UsingShadowDecl>(Target))
6679     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6680 
6681   // If the target happens to be one of the previous declarations, we
6682   // don't have a conflict.
6683   //
6684   // FIXME: but we might be increasing its access, in which case we
6685   // should redeclare it.
6686   NamedDecl *NonTag = 0, *Tag = 0;
6687   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6688          I != E; ++I) {
6689     NamedDecl *D = (*I)->getUnderlyingDecl();
6690     bool Result;
6691     if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6692       return Result;
6693 
6694     (isa<TagDecl>(D) ? Tag : NonTag) = D;
6695   }
6696 
6697   if (Target->isFunctionOrFunctionTemplate()) {
6698     FunctionDecl *FD;
6699     if (isa<FunctionTemplateDecl>(Target))
6700       FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6701     else
6702       FD = cast<FunctionDecl>(Target);
6703 
6704     NamedDecl *OldDecl = 0;
6705     switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6706     case Ovl_Overload:
6707       return false;
6708 
6709     case Ovl_NonFunction:
6710       Diag(Using->getLocation(), diag::err_using_decl_conflict);
6711       break;
6712 
6713     // We found a decl with the exact signature.
6714     case Ovl_Match:
6715       // If we're in a record, we want to hide the target, so we
6716       // return true (without a diagnostic) to tell the caller not to
6717       // build a shadow decl.
6718       if (CurContext->isRecord())
6719         return true;
6720 
6721       // If we're not in a record, this is an error.
6722       Diag(Using->getLocation(), diag::err_using_decl_conflict);
6723       break;
6724     }
6725 
6726     Diag(Target->getLocation(), diag::note_using_decl_target);
6727     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6728     return true;
6729   }
6730 
6731   // Target is not a function.
6732 
6733   if (isa<TagDecl>(Target)) {
6734     // No conflict between a tag and a non-tag.
6735     if (!Tag) return false;
6736 
6737     Diag(Using->getLocation(), diag::err_using_decl_conflict);
6738     Diag(Target->getLocation(), diag::note_using_decl_target);
6739     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6740     return true;
6741   }
6742 
6743   // No conflict between a tag and a non-tag.
6744   if (!NonTag) return false;
6745 
6746   Diag(Using->getLocation(), diag::err_using_decl_conflict);
6747   Diag(Target->getLocation(), diag::note_using_decl_target);
6748   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6749   return true;
6750 }
6751 
6752 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig)6753 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6754                                             UsingDecl *UD,
6755                                             NamedDecl *Orig) {
6756 
6757   // If we resolved to another shadow declaration, just coalesce them.
6758   NamedDecl *Target = Orig;
6759   if (isa<UsingShadowDecl>(Target)) {
6760     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6761     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6762   }
6763 
6764   UsingShadowDecl *Shadow
6765     = UsingShadowDecl::Create(Context, CurContext,
6766                               UD->getLocation(), UD, Target);
6767   UD->addShadowDecl(Shadow);
6768 
6769   Shadow->setAccess(UD->getAccess());
6770   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6771     Shadow->setInvalidDecl();
6772 
6773   if (S)
6774     PushOnScopeChains(Shadow, S);
6775   else
6776     CurContext->addDecl(Shadow);
6777 
6778 
6779   return Shadow;
6780 }
6781 
6782 /// Hides a using shadow declaration.  This is required by the current
6783 /// using-decl implementation when a resolvable using declaration in a
6784 /// class is followed by a declaration which would hide or override
6785 /// one or more of the using decl's targets; for example:
6786 ///
6787 ///   struct Base { void foo(int); };
6788 ///   struct Derived : Base {
6789 ///     using Base::foo;
6790 ///     void foo(int);
6791 ///   };
6792 ///
6793 /// The governing language is C++03 [namespace.udecl]p12:
6794 ///
6795 ///   When a using-declaration brings names from a base class into a
6796 ///   derived class scope, member functions in the derived class
6797 ///   override and/or hide member functions with the same name and
6798 ///   parameter types in a base class (rather than conflicting).
6799 ///
6800 /// There are two ways to implement this:
6801 ///   (1) optimistically create shadow decls when they're not hidden
6802 ///       by existing declarations, or
6803 ///   (2) don't create any shadow decls (or at least don't make them
6804 ///       visible) until we've fully parsed/instantiated the class.
6805 /// The problem with (1) is that we might have to retroactively remove
6806 /// a shadow decl, which requires several O(n) operations because the
6807 /// decl structures are (very reasonably) not designed for removal.
6808 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)6809 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6810   if (Shadow->getDeclName().getNameKind() ==
6811         DeclarationName::CXXConversionFunctionName)
6812     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6813 
6814   // Remove it from the DeclContext...
6815   Shadow->getDeclContext()->removeDecl(Shadow);
6816 
6817   // ...and the scope, if applicable...
6818   if (S) {
6819     S->RemoveDecl(Shadow);
6820     IdResolver.RemoveDecl(Shadow);
6821   }
6822 
6823   // ...and the using decl.
6824   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6825 
6826   // TODO: complain somehow if Shadow was used.  It shouldn't
6827   // be possible for this to happen, because...?
6828 }
6829 
6830 /// Builds a using declaration.
6831 ///
6832 /// \param IsInstantiation - Whether this call arises from an
6833 ///   instantiation of an unresolved using declaration.  We treat
6834 ///   the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,AttributeList * AttrList,bool IsInstantiation,bool IsTypeName,SourceLocation TypenameLoc)6835 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6836                                        SourceLocation UsingLoc,
6837                                        CXXScopeSpec &SS,
6838                                        const DeclarationNameInfo &NameInfo,
6839                                        AttributeList *AttrList,
6840                                        bool IsInstantiation,
6841                                        bool IsTypeName,
6842                                        SourceLocation TypenameLoc) {
6843   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6844   SourceLocation IdentLoc = NameInfo.getLoc();
6845   assert(IdentLoc.isValid() && "Invalid TargetName location.");
6846 
6847   // FIXME: We ignore attributes for now.
6848 
6849   if (SS.isEmpty()) {
6850     Diag(IdentLoc, diag::err_using_requires_qualname);
6851     return 0;
6852   }
6853 
6854   // Do the redeclaration lookup in the current scope.
6855   LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6856                         ForRedeclaration);
6857   Previous.setHideTags(false);
6858   if (S) {
6859     LookupName(Previous, S);
6860 
6861     // It is really dumb that we have to do this.
6862     LookupResult::Filter F = Previous.makeFilter();
6863     while (F.hasNext()) {
6864       NamedDecl *D = F.next();
6865       if (!isDeclInScope(D, CurContext, S))
6866         F.erase();
6867     }
6868     F.done();
6869   } else {
6870     assert(IsInstantiation && "no scope in non-instantiation");
6871     assert(CurContext->isRecord() && "scope not record in instantiation");
6872     LookupQualifiedName(Previous, CurContext);
6873   }
6874 
6875   // Check for invalid redeclarations.
6876   if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6877     return 0;
6878 
6879   // Check for bad qualifiers.
6880   if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6881     return 0;
6882 
6883   DeclContext *LookupContext = computeDeclContext(SS);
6884   NamedDecl *D;
6885   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6886   if (!LookupContext) {
6887     if (IsTypeName) {
6888       // FIXME: not all declaration name kinds are legal here
6889       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6890                                               UsingLoc, TypenameLoc,
6891                                               QualifierLoc,
6892                                               IdentLoc, NameInfo.getName());
6893     } else {
6894       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6895                                            QualifierLoc, NameInfo);
6896     }
6897   } else {
6898     D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6899                           NameInfo, IsTypeName);
6900   }
6901   D->setAccess(AS);
6902   CurContext->addDecl(D);
6903 
6904   if (!LookupContext) return D;
6905   UsingDecl *UD = cast<UsingDecl>(D);
6906 
6907   if (RequireCompleteDeclContext(SS, LookupContext)) {
6908     UD->setInvalidDecl();
6909     return UD;
6910   }
6911 
6912   // The normal rules do not apply to inheriting constructor declarations.
6913   if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6914     if (CheckInheritingConstructorUsingDecl(UD))
6915       UD->setInvalidDecl();
6916     return UD;
6917   }
6918 
6919   // Otherwise, look up the target name.
6920 
6921   LookupResult R(*this, NameInfo, LookupOrdinaryName);
6922 
6923   // Unlike most lookups, we don't always want to hide tag
6924   // declarations: tag names are visible through the using declaration
6925   // even if hidden by ordinary names, *except* in a dependent context
6926   // where it's important for the sanity of two-phase lookup.
6927   if (!IsInstantiation)
6928     R.setHideTags(false);
6929 
6930   // For the purposes of this lookup, we have a base object type
6931   // equal to that of the current context.
6932   if (CurContext->isRecord()) {
6933     R.setBaseObjectType(
6934                    Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6935   }
6936 
6937   LookupQualifiedName(R, LookupContext);
6938 
6939   if (R.empty()) {
6940     Diag(IdentLoc, diag::err_no_member)
6941       << NameInfo.getName() << LookupContext << SS.getRange();
6942     UD->setInvalidDecl();
6943     return UD;
6944   }
6945 
6946   if (R.isAmbiguous()) {
6947     UD->setInvalidDecl();
6948     return UD;
6949   }
6950 
6951   if (IsTypeName) {
6952     // If we asked for a typename and got a non-type decl, error out.
6953     if (!R.getAsSingle<TypeDecl>()) {
6954       Diag(IdentLoc, diag::err_using_typename_non_type);
6955       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6956         Diag((*I)->getUnderlyingDecl()->getLocation(),
6957              diag::note_using_decl_target);
6958       UD->setInvalidDecl();
6959       return UD;
6960     }
6961   } else {
6962     // If we asked for a non-typename and we got a type, error out,
6963     // but only if this is an instantiation of an unresolved using
6964     // decl.  Otherwise just silently find the type name.
6965     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6966       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6967       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6968       UD->setInvalidDecl();
6969       return UD;
6970     }
6971   }
6972 
6973   // C++0x N2914 [namespace.udecl]p6:
6974   // A using-declaration shall not name a namespace.
6975   if (R.getAsSingle<NamespaceDecl>()) {
6976     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6977       << SS.getRange();
6978     UD->setInvalidDecl();
6979     return UD;
6980   }
6981 
6982   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6983     if (!CheckUsingShadowDecl(UD, *I, Previous))
6984       BuildUsingShadowDecl(S, UD, *I);
6985   }
6986 
6987   return UD;
6988 }
6989 
6990 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)6991 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6992   assert(!UD->isTypeName() && "expecting a constructor name");
6993 
6994   const Type *SourceType = UD->getQualifier()->getAsType();
6995   assert(SourceType &&
6996          "Using decl naming constructor doesn't have type in scope spec.");
6997   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6998 
6999   // Check whether the named type is a direct base class.
7000   CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7001   CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7002   for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7003        BaseIt != BaseE; ++BaseIt) {
7004     CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7005     if (CanonicalSourceType == BaseType)
7006       break;
7007     if (BaseIt->getType()->isDependentType())
7008       break;
7009   }
7010 
7011   if (BaseIt == BaseE) {
7012     // Did not find SourceType in the bases.
7013     Diag(UD->getUsingLocation(),
7014          diag::err_using_decl_constructor_not_in_direct_base)
7015       << UD->getNameInfo().getSourceRange()
7016       << QualType(SourceType, 0) << TargetClass;
7017     return true;
7018   }
7019 
7020   if (!CurContext->isDependentContext())
7021     BaseIt->setInheritConstructors();
7022 
7023   return false;
7024 }
7025 
7026 /// Checks that the given using declaration is not an invalid
7027 /// redeclaration.  Note that this is checking only for the using decl
7028 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool isTypeName,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)7029 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7030                                        bool isTypeName,
7031                                        const CXXScopeSpec &SS,
7032                                        SourceLocation NameLoc,
7033                                        const LookupResult &Prev) {
7034   // C++03 [namespace.udecl]p8:
7035   // C++0x [namespace.udecl]p10:
7036   //   A using-declaration is a declaration and can therefore be used
7037   //   repeatedly where (and only where) multiple declarations are
7038   //   allowed.
7039   //
7040   // That's in non-member contexts.
7041   if (!CurContext->getRedeclContext()->isRecord())
7042     return false;
7043 
7044   NestedNameSpecifier *Qual
7045     = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7046 
7047   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7048     NamedDecl *D = *I;
7049 
7050     bool DTypename;
7051     NestedNameSpecifier *DQual;
7052     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7053       DTypename = UD->isTypeName();
7054       DQual = UD->getQualifier();
7055     } else if (UnresolvedUsingValueDecl *UD
7056                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7057       DTypename = false;
7058       DQual = UD->getQualifier();
7059     } else if (UnresolvedUsingTypenameDecl *UD
7060                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7061       DTypename = true;
7062       DQual = UD->getQualifier();
7063     } else continue;
7064 
7065     // using decls differ if one says 'typename' and the other doesn't.
7066     // FIXME: non-dependent using decls?
7067     if (isTypeName != DTypename) continue;
7068 
7069     // using decls differ if they name different scopes (but note that
7070     // template instantiation can cause this check to trigger when it
7071     // didn't before instantiation).
7072     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7073         Context.getCanonicalNestedNameSpecifier(DQual))
7074       continue;
7075 
7076     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7077     Diag(D->getLocation(), diag::note_using_decl) << 1;
7078     return true;
7079   }
7080 
7081   return false;
7082 }
7083 
7084 
7085 /// Checks that the given nested-name qualifier used in a using decl
7086 /// in the current context is appropriately related to the current
7087 /// scope.  If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,const CXXScopeSpec & SS,SourceLocation NameLoc)7088 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7089                                    const CXXScopeSpec &SS,
7090                                    SourceLocation NameLoc) {
7091   DeclContext *NamedContext = computeDeclContext(SS);
7092 
7093   if (!CurContext->isRecord()) {
7094     // C++03 [namespace.udecl]p3:
7095     // C++0x [namespace.udecl]p8:
7096     //   A using-declaration for a class member shall be a member-declaration.
7097 
7098     // If we weren't able to compute a valid scope, it must be a
7099     // dependent class scope.
7100     if (!NamedContext || NamedContext->isRecord()) {
7101       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7102         << SS.getRange();
7103       return true;
7104     }
7105 
7106     // Otherwise, everything is known to be fine.
7107     return false;
7108   }
7109 
7110   // The current scope is a record.
7111 
7112   // If the named context is dependent, we can't decide much.
7113   if (!NamedContext) {
7114     // FIXME: in C++0x, we can diagnose if we can prove that the
7115     // nested-name-specifier does not refer to a base class, which is
7116     // still possible in some cases.
7117 
7118     // Otherwise we have to conservatively report that things might be
7119     // okay.
7120     return false;
7121   }
7122 
7123   if (!NamedContext->isRecord()) {
7124     // Ideally this would point at the last name in the specifier,
7125     // but we don't have that level of source info.
7126     Diag(SS.getRange().getBegin(),
7127          diag::err_using_decl_nested_name_specifier_is_not_class)
7128       << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7129     return true;
7130   }
7131 
7132   if (!NamedContext->isDependentContext() &&
7133       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7134     return true;
7135 
7136   if (getLangOpts().CPlusPlus11) {
7137     // C++0x [namespace.udecl]p3:
7138     //   In a using-declaration used as a member-declaration, the
7139     //   nested-name-specifier shall name a base class of the class
7140     //   being defined.
7141 
7142     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7143                                  cast<CXXRecordDecl>(NamedContext))) {
7144       if (CurContext == NamedContext) {
7145         Diag(NameLoc,
7146              diag::err_using_decl_nested_name_specifier_is_current_class)
7147           << SS.getRange();
7148         return true;
7149       }
7150 
7151       Diag(SS.getRange().getBegin(),
7152            diag::err_using_decl_nested_name_specifier_is_not_base_class)
7153         << (NestedNameSpecifier*) SS.getScopeRep()
7154         << cast<CXXRecordDecl>(CurContext)
7155         << SS.getRange();
7156       return true;
7157     }
7158 
7159     return false;
7160   }
7161 
7162   // C++03 [namespace.udecl]p4:
7163   //   A using-declaration used as a member-declaration shall refer
7164   //   to a member of a base class of the class being defined [etc.].
7165 
7166   // Salient point: SS doesn't have to name a base class as long as
7167   // lookup only finds members from base classes.  Therefore we can
7168   // diagnose here only if we can prove that that can't happen,
7169   // i.e. if the class hierarchies provably don't intersect.
7170 
7171   // TODO: it would be nice if "definitely valid" results were cached
7172   // in the UsingDecl and UsingShadowDecl so that these checks didn't
7173   // need to be repeated.
7174 
7175   struct UserData {
7176     llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7177 
7178     static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7179       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7180       Data->Bases.insert(Base);
7181       return true;
7182     }
7183 
7184     bool hasDependentBases(const CXXRecordDecl *Class) {
7185       return !Class->forallBases(collect, this);
7186     }
7187 
7188     /// Returns true if the base is dependent or is one of the
7189     /// accumulated base classes.
7190     static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7191       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7192       return !Data->Bases.count(Base);
7193     }
7194 
7195     bool mightShareBases(const CXXRecordDecl *Class) {
7196       return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7197     }
7198   };
7199 
7200   UserData Data;
7201 
7202   // Returns false if we find a dependent base.
7203   if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7204     return false;
7205 
7206   // Returns false if the class has a dependent base or if it or one
7207   // of its bases is present in the base set of the current context.
7208   if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7209     return false;
7210 
7211   Diag(SS.getRange().getBegin(),
7212        diag::err_using_decl_nested_name_specifier_is_not_base_class)
7213     << (NestedNameSpecifier*) SS.getScopeRep()
7214     << cast<CXXRecordDecl>(CurContext)
7215     << SS.getRange();
7216 
7217   return true;
7218 }
7219 
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,AttributeList * AttrList,TypeResult Type)7220 Decl *Sema::ActOnAliasDeclaration(Scope *S,
7221                                   AccessSpecifier AS,
7222                                   MultiTemplateParamsArg TemplateParamLists,
7223                                   SourceLocation UsingLoc,
7224                                   UnqualifiedId &Name,
7225                                   AttributeList *AttrList,
7226                                   TypeResult Type) {
7227   // Skip up to the relevant declaration scope.
7228   while (S->getFlags() & Scope::TemplateParamScope)
7229     S = S->getParent();
7230   assert((S->getFlags() & Scope::DeclScope) &&
7231          "got alias-declaration outside of declaration scope");
7232 
7233   if (Type.isInvalid())
7234     return 0;
7235 
7236   bool Invalid = false;
7237   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7238   TypeSourceInfo *TInfo = 0;
7239   GetTypeFromParser(Type.get(), &TInfo);
7240 
7241   if (DiagnoseClassNameShadow(CurContext, NameInfo))
7242     return 0;
7243 
7244   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7245                                       UPPC_DeclarationType)) {
7246     Invalid = true;
7247     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7248                                              TInfo->getTypeLoc().getBeginLoc());
7249   }
7250 
7251   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7252   LookupName(Previous, S);
7253 
7254   // Warn about shadowing the name of a template parameter.
7255   if (Previous.isSingleResult() &&
7256       Previous.getFoundDecl()->isTemplateParameter()) {
7257     DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7258     Previous.clear();
7259   }
7260 
7261   assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7262          "name in alias declaration must be an identifier");
7263   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7264                                                Name.StartLocation,
7265                                                Name.Identifier, TInfo);
7266 
7267   NewTD->setAccess(AS);
7268 
7269   if (Invalid)
7270     NewTD->setInvalidDecl();
7271 
7272   ProcessDeclAttributeList(S, NewTD, AttrList);
7273 
7274   CheckTypedefForVariablyModifiedType(S, NewTD);
7275   Invalid |= NewTD->isInvalidDecl();
7276 
7277   bool Redeclaration = false;
7278 
7279   NamedDecl *NewND;
7280   if (TemplateParamLists.size()) {
7281     TypeAliasTemplateDecl *OldDecl = 0;
7282     TemplateParameterList *OldTemplateParams = 0;
7283 
7284     if (TemplateParamLists.size() != 1) {
7285       Diag(UsingLoc, diag::err_alias_template_extra_headers)
7286         << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7287          TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7288     }
7289     TemplateParameterList *TemplateParams = TemplateParamLists[0];
7290 
7291     // Only consider previous declarations in the same scope.
7292     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7293                          /*ExplicitInstantiationOrSpecialization*/false);
7294     if (!Previous.empty()) {
7295       Redeclaration = true;
7296 
7297       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7298       if (!OldDecl && !Invalid) {
7299         Diag(UsingLoc, diag::err_redefinition_different_kind)
7300           << Name.Identifier;
7301 
7302         NamedDecl *OldD = Previous.getRepresentativeDecl();
7303         if (OldD->getLocation().isValid())
7304           Diag(OldD->getLocation(), diag::note_previous_definition);
7305 
7306         Invalid = true;
7307       }
7308 
7309       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7310         if (TemplateParameterListsAreEqual(TemplateParams,
7311                                            OldDecl->getTemplateParameters(),
7312                                            /*Complain=*/true,
7313                                            TPL_TemplateMatch))
7314           OldTemplateParams = OldDecl->getTemplateParameters();
7315         else
7316           Invalid = true;
7317 
7318         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7319         if (!Invalid &&
7320             !Context.hasSameType(OldTD->getUnderlyingType(),
7321                                  NewTD->getUnderlyingType())) {
7322           // FIXME: The C++0x standard does not clearly say this is ill-formed,
7323           // but we can't reasonably accept it.
7324           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7325             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7326           if (OldTD->getLocation().isValid())
7327             Diag(OldTD->getLocation(), diag::note_previous_definition);
7328           Invalid = true;
7329         }
7330       }
7331     }
7332 
7333     // Merge any previous default template arguments into our parameters,
7334     // and check the parameter list.
7335     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7336                                    TPC_TypeAliasTemplate))
7337       return 0;
7338 
7339     TypeAliasTemplateDecl *NewDecl =
7340       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7341                                     Name.Identifier, TemplateParams,
7342                                     NewTD);
7343 
7344     NewDecl->setAccess(AS);
7345 
7346     if (Invalid)
7347       NewDecl->setInvalidDecl();
7348     else if (OldDecl)
7349       NewDecl->setPreviousDeclaration(OldDecl);
7350 
7351     NewND = NewDecl;
7352   } else {
7353     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7354     NewND = NewTD;
7355   }
7356 
7357   if (!Redeclaration)
7358     PushOnScopeChains(NewND, S);
7359 
7360   ActOnDocumentableDecl(NewND);
7361   return NewND;
7362 }
7363 
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)7364 Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7365                                              SourceLocation NamespaceLoc,
7366                                              SourceLocation AliasLoc,
7367                                              IdentifierInfo *Alias,
7368                                              CXXScopeSpec &SS,
7369                                              SourceLocation IdentLoc,
7370                                              IdentifierInfo *Ident) {
7371 
7372   // Lookup the namespace name.
7373   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7374   LookupParsedName(R, S, &SS);
7375 
7376   // Check if we have a previous declaration with the same name.
7377   NamedDecl *PrevDecl
7378     = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7379                        ForRedeclaration);
7380   if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7381     PrevDecl = 0;
7382 
7383   if (PrevDecl) {
7384     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7385       // We already have an alias with the same name that points to the same
7386       // namespace, so don't create a new one.
7387       // FIXME: At some point, we'll want to create the (redundant)
7388       // declaration to maintain better source information.
7389       if (!R.isAmbiguous() && !R.empty() &&
7390           AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7391         return 0;
7392     }
7393 
7394     unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7395       diag::err_redefinition_different_kind;
7396     Diag(AliasLoc, DiagID) << Alias;
7397     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7398     return 0;
7399   }
7400 
7401   if (R.isAmbiguous())
7402     return 0;
7403 
7404   if (R.empty()) {
7405     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7406       Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7407       return 0;
7408     }
7409   }
7410 
7411   NamespaceAliasDecl *AliasDecl =
7412     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7413                                Alias, SS.getWithLocInContext(Context),
7414                                IdentLoc, R.getFoundDecl());
7415 
7416   PushOnScopeChains(AliasDecl, S);
7417   return AliasDecl;
7418 }
7419 
7420 Sema::ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)7421 Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7422                                                CXXMethodDecl *MD) {
7423   CXXRecordDecl *ClassDecl = MD->getParent();
7424 
7425   // C++ [except.spec]p14:
7426   //   An implicitly declared special member function (Clause 12) shall have an
7427   //   exception-specification. [...]
7428   ImplicitExceptionSpecification ExceptSpec(*this);
7429   if (ClassDecl->isInvalidDecl())
7430     return ExceptSpec;
7431 
7432   // Direct base-class constructors.
7433   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7434                                        BEnd = ClassDecl->bases_end();
7435        B != BEnd; ++B) {
7436     if (B->isVirtual()) // Handled below.
7437       continue;
7438 
7439     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7440       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7441       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7442       // If this is a deleted function, add it anyway. This might be conformant
7443       // with the standard. This might not. I'm not sure. It might not matter.
7444       if (Constructor)
7445         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7446     }
7447   }
7448 
7449   // Virtual base-class constructors.
7450   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7451                                        BEnd = ClassDecl->vbases_end();
7452        B != BEnd; ++B) {
7453     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7454       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7455       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7456       // If this is a deleted function, add it anyway. This might be conformant
7457       // with the standard. This might not. I'm not sure. It might not matter.
7458       if (Constructor)
7459         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7460     }
7461   }
7462 
7463   // Field constructors.
7464   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7465                                FEnd = ClassDecl->field_end();
7466        F != FEnd; ++F) {
7467     if (F->hasInClassInitializer()) {
7468       if (Expr *E = F->getInClassInitializer())
7469         ExceptSpec.CalledExpr(E);
7470       else if (!F->isInvalidDecl())
7471         // DR1351:
7472         //   If the brace-or-equal-initializer of a non-static data member
7473         //   invokes a defaulted default constructor of its class or of an
7474         //   enclosing class in a potentially evaluated subexpression, the
7475         //   program is ill-formed.
7476         //
7477         // This resolution is unworkable: the exception specification of the
7478         // default constructor can be needed in an unevaluated context, in
7479         // particular, in the operand of a noexcept-expression, and we can be
7480         // unable to compute an exception specification for an enclosed class.
7481         //
7482         // We do not allow an in-class initializer to require the evaluation
7483         // of the exception specification for any in-class initializer whose
7484         // definition is not lexically complete.
7485         Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7486     } else if (const RecordType *RecordTy
7487               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7488       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7489       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7490       // If this is a deleted function, add it anyway. This might be conformant
7491       // with the standard. This might not. I'm not sure. It might not matter.
7492       // In particular, the problem is that this function never gets called. It
7493       // might just be ill-formed because this function attempts to refer to
7494       // a deleted function here.
7495       if (Constructor)
7496         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7497     }
7498   }
7499 
7500   return ExceptSpec;
7501 }
7502 
7503 Sema::ImplicitExceptionSpecification
ComputeInheritingCtorExceptionSpec(CXXMethodDecl * MD)7504 Sema::ComputeInheritingCtorExceptionSpec(CXXMethodDecl *MD) {
7505   ImplicitExceptionSpecification ExceptSpec(*this);
7506   // FIXME: Compute the exception spec.
7507   return ExceptSpec;
7508 }
7509 
7510 namespace {
7511 /// RAII object to register a special member as being currently declared.
7512 struct DeclaringSpecialMember {
7513   Sema &S;
7514   Sema::SpecialMemberDecl D;
7515   bool WasAlreadyBeingDeclared;
7516 
DeclaringSpecialMember__anon53c188c80a11::DeclaringSpecialMember7517   DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7518     : S(S), D(RD, CSM) {
7519     WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7520     if (WasAlreadyBeingDeclared)
7521       // This almost never happens, but if it does, ensure that our cache
7522       // doesn't contain a stale result.
7523       S.SpecialMemberCache.clear();
7524 
7525     // FIXME: Register a note to be produced if we encounter an error while
7526     // declaring the special member.
7527   }
~DeclaringSpecialMember__anon53c188c80a11::DeclaringSpecialMember7528   ~DeclaringSpecialMember() {
7529     if (!WasAlreadyBeingDeclared)
7530       S.SpecialMembersBeingDeclared.erase(D);
7531   }
7532 
7533   /// \brief Are we already trying to declare this special member?
isAlreadyBeingDeclared__anon53c188c80a11::DeclaringSpecialMember7534   bool isAlreadyBeingDeclared() const {
7535     return WasAlreadyBeingDeclared;
7536   }
7537 };
7538 }
7539 
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)7540 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7541                                                      CXXRecordDecl *ClassDecl) {
7542   // C++ [class.ctor]p5:
7543   //   A default constructor for a class X is a constructor of class X
7544   //   that can be called without an argument. If there is no
7545   //   user-declared constructor for class X, a default constructor is
7546   //   implicitly declared. An implicitly-declared default constructor
7547   //   is an inline public member of its class.
7548   assert(ClassDecl->needsImplicitDefaultConstructor() &&
7549          "Should not build implicit default constructor!");
7550 
7551   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7552   if (DSM.isAlreadyBeingDeclared())
7553     return 0;
7554 
7555   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7556                                                      CXXDefaultConstructor,
7557                                                      false);
7558 
7559   // Create the actual constructor declaration.
7560   CanQualType ClassType
7561     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7562   SourceLocation ClassLoc = ClassDecl->getLocation();
7563   DeclarationName Name
7564     = Context.DeclarationNames.getCXXConstructorName(ClassType);
7565   DeclarationNameInfo NameInfo(Name, ClassLoc);
7566   CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7567       Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7568       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7569       Constexpr);
7570   DefaultCon->setAccess(AS_public);
7571   DefaultCon->setDefaulted();
7572   DefaultCon->setImplicit();
7573 
7574   // Build an exception specification pointing back at this constructor.
7575   FunctionProtoType::ExtProtoInfo EPI;
7576   EPI.ExceptionSpecType = EST_Unevaluated;
7577   EPI.ExceptionSpecDecl = DefaultCon;
7578   DefaultCon->setType(Context.getFunctionType(Context.VoidTy,
7579                                               ArrayRef<QualType>(),
7580                                               EPI));
7581 
7582   // We don't need to use SpecialMemberIsTrivial here; triviality for default
7583   // constructors is easy to compute.
7584   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7585 
7586   if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7587     DefaultCon->setDeletedAsWritten();
7588 
7589   // Note that we have declared this constructor.
7590   ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7591 
7592   if (Scope *S = getScopeForContext(ClassDecl))
7593     PushOnScopeChains(DefaultCon, S, false);
7594   ClassDecl->addDecl(DefaultCon);
7595 
7596   return DefaultCon;
7597 }
7598 
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)7599 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7600                                             CXXConstructorDecl *Constructor) {
7601   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7602           !Constructor->doesThisDeclarationHaveABody() &&
7603           !Constructor->isDeleted()) &&
7604     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7605 
7606   CXXRecordDecl *ClassDecl = Constructor->getParent();
7607   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7608 
7609   SynthesizedFunctionScope Scope(*this, Constructor);
7610   DiagnosticErrorTrap Trap(Diags);
7611   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7612       Trap.hasErrorOccurred()) {
7613     Diag(CurrentLocation, diag::note_member_synthesized_at)
7614       << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7615     Constructor->setInvalidDecl();
7616     return;
7617   }
7618 
7619   SourceLocation Loc = Constructor->getLocation();
7620   Constructor->setBody(new (Context) CompoundStmt(Loc));
7621 
7622   Constructor->setUsed();
7623   MarkVTableUsed(CurrentLocation, ClassDecl);
7624 
7625   if (ASTMutationListener *L = getASTMutationListener()) {
7626     L->CompletedImplicitDefinition(Constructor);
7627   }
7628 }
7629 
ActOnFinishDelayedMemberInitializers(Decl * D)7630 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7631   // Check that any explicitly-defaulted methods have exception specifications
7632   // compatible with their implicit exception specifications.
7633   CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7634 }
7635 
DeclareInheritingConstructors(CXXRecordDecl * ClassDecl)7636 void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
7637   // We start with an initial pass over the base classes to collect those that
7638   // inherit constructors from. If there are none, we can forgo all further
7639   // processing.
7640   typedef SmallVector<const RecordType *, 4> BasesVector;
7641   BasesVector BasesToInheritFrom;
7642   for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7643                                           BaseE = ClassDecl->bases_end();
7644          BaseIt != BaseE; ++BaseIt) {
7645     if (BaseIt->getInheritConstructors()) {
7646       QualType Base = BaseIt->getType();
7647       if (Base->isDependentType()) {
7648         // If we inherit constructors from anything that is dependent, just
7649         // abort processing altogether. We'll get another chance for the
7650         // instantiations.
7651         // FIXME: We need to ensure that any call to a constructor of this class
7652         // is considered instantiation-dependent in this case.
7653         return;
7654       }
7655       BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7656     }
7657   }
7658   if (BasesToInheritFrom.empty())
7659     return;
7660 
7661   // FIXME: Constructor templates.
7662 
7663   // Now collect the constructors that we already have in the current class.
7664   // Those take precedence over inherited constructors.
7665   // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7666   //   unless there is a user-declared constructor with the same signature in
7667   //   the class where the using-declaration appears.
7668   llvm::SmallSet<const Type *, 8> ExistingConstructors;
7669   for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7670                                     CtorE = ClassDecl->ctor_end();
7671        CtorIt != CtorE; ++CtorIt)
7672     ExistingConstructors.insert(
7673         Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7674 
7675   DeclarationName CreatedCtorName =
7676       Context.DeclarationNames.getCXXConstructorName(
7677           ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7678 
7679   // Now comes the true work.
7680   // First, we keep a map from constructor types to the base that introduced
7681   // them. Needed for finding conflicting constructors. We also keep the
7682   // actually inserted declarations in there, for pretty diagnostics.
7683   typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7684   typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7685   ConstructorToSourceMap InheritedConstructors;
7686   for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7687                              BaseE = BasesToInheritFrom.end();
7688        BaseIt != BaseE; ++BaseIt) {
7689     const RecordType *Base = *BaseIt;
7690     CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7691     CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7692     for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7693                                       CtorE = BaseDecl->ctor_end();
7694          CtorIt != CtorE; ++CtorIt) {
7695       // Find the using declaration for inheriting this base's constructors.
7696       // FIXME: Don't perform name lookup just to obtain a source location!
7697       DeclarationName Name =
7698           Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7699       LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7700       LookupQualifiedName(Result, CurContext);
7701       UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7702       SourceLocation UsingLoc = UD ? UD->getLocation() :
7703                                      ClassDecl->getLocation();
7704 
7705       // C++11 [class.inhctor]p1:
7706       //   The candidate set of inherited constructors from the class X named in
7707       //   the using-declaration consists of actual constructors and notional
7708       //   constructors that result from the transformation of defaulted
7709       //   parameters as follows:
7710       //   - all non-template constructors of X, and
7711       //   - for each non-template constructor of X that has at least one
7712       //     parameter with a default argument, the set of constructors that
7713       //     results from omitting any ellipsis parameter specification and
7714       //     successively omitting parameters with a default argument from the
7715       //     end of the parameter-type-list, and
7716       // FIXME: ...also constructor templates.
7717       CXXConstructorDecl *BaseCtor = *CtorIt;
7718       bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7719       const FunctionProtoType *BaseCtorType =
7720           BaseCtor->getType()->getAs<FunctionProtoType>();
7721 
7722       // Determine whether this would be a copy or move constructor for the
7723       // derived class.
7724       if (BaseCtorType->getNumArgs() >= 1 &&
7725           BaseCtorType->getArgType(0)->isReferenceType() &&
7726           Context.hasSameUnqualifiedType(
7727             BaseCtorType->getArgType(0)->getPointeeType(),
7728             Context.getTagDeclType(ClassDecl)))
7729         CanBeCopyOrMove = true;
7730 
7731       ArrayRef<QualType> ArgTypes(BaseCtorType->getArgTypes());
7732       FunctionProtoType::ExtProtoInfo EPI = BaseCtorType->getExtProtoInfo();
7733       // Core issue (no number yet): the ellipsis is always discarded.
7734       if (EPI.Variadic) {
7735         Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
7736         Diag(BaseCtor->getLocation(),
7737              diag::note_using_decl_constructor_ellipsis);
7738         EPI.Variadic = false;
7739       }
7740 
7741       for (unsigned Params = BaseCtor->getMinRequiredArguments(),
7742                     MaxParams = BaseCtor->getNumParams();
7743            Params <= MaxParams; ++Params) {
7744         // Skip default constructors. They're never inherited.
7745         if (Params == 0)
7746           continue;
7747 
7748         // Skip copy and move constructors for both base and derived class
7749         // for the same reason.
7750         if (CanBeCopyOrMove && Params == 1)
7751           continue;
7752 
7753         // Build up a function type for this particular constructor.
7754         QualType NewCtorType =
7755             Context.getFunctionType(Context.VoidTy, ArgTypes.slice(0, Params),
7756                                     EPI);
7757         const Type *CanonicalNewCtorType =
7758             Context.getCanonicalType(NewCtorType).getTypePtr();
7759 
7760         // C++11 [class.inhctor]p3:
7761         //   ... a constructor is implicitly declared with the same constructor
7762         //   characteristics unless there is a user-declared constructor with
7763         //   the same signature in the class where the using-declaration appears
7764         if (ExistingConstructors.count(CanonicalNewCtorType))
7765           continue;
7766 
7767         // C++11 [class.inhctor]p7:
7768         //   If two using-declarations declare inheriting constructors with the
7769         //   same signature, the program is ill-formed
7770         std::pair<ConstructorToSourceMap::iterator, bool> result =
7771             InheritedConstructors.insert(std::make_pair(
7772                 CanonicalNewCtorType,
7773                 std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7774         if (!result.second) {
7775           // Already in the map. If it came from a different class, that's an
7776           // error. Not if it's from the same.
7777           CanQualType PreviousBase = result.first->second.first;
7778           if (CanonicalBase != PreviousBase) {
7779             const CXXConstructorDecl *PrevCtor = result.first->second.second;
7780             const CXXConstructorDecl *PrevBaseCtor =
7781                 PrevCtor->getInheritedConstructor();
7782             assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7783 
7784             Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7785             Diag(BaseCtor->getLocation(),
7786                  diag::note_using_decl_constructor_conflict_current_ctor);
7787             Diag(PrevBaseCtor->getLocation(),
7788                  diag::note_using_decl_constructor_conflict_previous_ctor);
7789             Diag(PrevCtor->getLocation(),
7790                  diag::note_using_decl_constructor_conflict_previous_using);
7791           } else {
7792             // Core issue (no number): if the same inheriting constructor is
7793             // produced by multiple base class constructors from the same base
7794             // class, the inheriting constructor is defined as deleted.
7795             result.first->second.second->setDeletedAsWritten();
7796           }
7797           continue;
7798         }
7799 
7800         // OK, we're there, now add the constructor.
7801         DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7802         CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7803             Context, ClassDecl, UsingLoc, DNI, NewCtorType,
7804             /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7805             /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
7806         NewCtor->setAccess(BaseCtor->getAccess());
7807 
7808         // Build an unevaluated exception specification for this constructor.
7809         EPI.ExceptionSpecType = EST_Unevaluated;
7810         EPI.ExceptionSpecDecl = NewCtor;
7811         NewCtor->setType(Context.getFunctionType(Context.VoidTy,
7812                                                  ArgTypes.slice(0, Params),
7813                                                  EPI));
7814 
7815         // Build up the parameter decls and add them.
7816         SmallVector<ParmVarDecl *, 16> ParamDecls;
7817         for (unsigned i = 0; i < Params; ++i) {
7818           ParmVarDecl *PD = ParmVarDecl::Create(Context, NewCtor,
7819                                                 UsingLoc, UsingLoc,
7820                                                 /*IdentifierInfo=*/0,
7821                                                 BaseCtorType->getArgType(i),
7822                                                 /*TInfo=*/0, SC_None,
7823                                                 SC_None, /*DefaultArg=*/0);
7824           PD->setScopeInfo(0, i);
7825           PD->setImplicit();
7826           ParamDecls.push_back(PD);
7827         }
7828         NewCtor->setParams(ParamDecls);
7829         NewCtor->setInheritedConstructor(BaseCtor);
7830         if (BaseCtor->isDeleted())
7831           NewCtor->setDeletedAsWritten();
7832 
7833         ClassDecl->addDecl(NewCtor);
7834         result.first->second.second = NewCtor;
7835       }
7836     }
7837   }
7838 }
7839 
DefineInheritingConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)7840 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
7841                                        CXXConstructorDecl *Constructor) {
7842   CXXRecordDecl *ClassDecl = Constructor->getParent();
7843   assert(Constructor->getInheritedConstructor() &&
7844          !Constructor->doesThisDeclarationHaveABody() &&
7845          !Constructor->isDeleted());
7846 
7847   SynthesizedFunctionScope Scope(*this, Constructor);
7848   DiagnosticErrorTrap Trap(Diags);
7849   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7850       Trap.hasErrorOccurred()) {
7851     Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
7852       << Context.getTagDeclType(ClassDecl);
7853     Constructor->setInvalidDecl();
7854     return;
7855   }
7856 
7857   SourceLocation Loc = Constructor->getLocation();
7858   Constructor->setBody(new (Context) CompoundStmt(Loc));
7859 
7860   Constructor->setUsed();
7861   MarkVTableUsed(CurrentLocation, ClassDecl);
7862 
7863   if (ASTMutationListener *L = getASTMutationListener()) {
7864     L->CompletedImplicitDefinition(Constructor);
7865   }
7866 }
7867 
7868 
7869 Sema::ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXMethodDecl * MD)7870 Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7871   CXXRecordDecl *ClassDecl = MD->getParent();
7872 
7873   // C++ [except.spec]p14:
7874   //   An implicitly declared special member function (Clause 12) shall have
7875   //   an exception-specification.
7876   ImplicitExceptionSpecification ExceptSpec(*this);
7877   if (ClassDecl->isInvalidDecl())
7878     return ExceptSpec;
7879 
7880   // Direct base-class destructors.
7881   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7882                                        BEnd = ClassDecl->bases_end();
7883        B != BEnd; ++B) {
7884     if (B->isVirtual()) // Handled below.
7885       continue;
7886 
7887     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7888       ExceptSpec.CalledDecl(B->getLocStart(),
7889                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7890   }
7891 
7892   // Virtual base-class destructors.
7893   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7894                                        BEnd = ClassDecl->vbases_end();
7895        B != BEnd; ++B) {
7896     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7897       ExceptSpec.CalledDecl(B->getLocStart(),
7898                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7899   }
7900 
7901   // Field destructors.
7902   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7903                                FEnd = ClassDecl->field_end();
7904        F != FEnd; ++F) {
7905     if (const RecordType *RecordTy
7906         = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7907       ExceptSpec.CalledDecl(F->getLocation(),
7908                   LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7909   }
7910 
7911   return ExceptSpec;
7912 }
7913 
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)7914 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7915   // C++ [class.dtor]p2:
7916   //   If a class has no user-declared destructor, a destructor is
7917   //   declared implicitly. An implicitly-declared destructor is an
7918   //   inline public member of its class.
7919   assert(ClassDecl->needsImplicitDestructor());
7920 
7921   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
7922   if (DSM.isAlreadyBeingDeclared())
7923     return 0;
7924 
7925   // Create the actual destructor declaration.
7926   CanQualType ClassType
7927     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7928   SourceLocation ClassLoc = ClassDecl->getLocation();
7929   DeclarationName Name
7930     = Context.DeclarationNames.getCXXDestructorName(ClassType);
7931   DeclarationNameInfo NameInfo(Name, ClassLoc);
7932   CXXDestructorDecl *Destructor
7933       = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7934                                   QualType(), 0, /*isInline=*/true,
7935                                   /*isImplicitlyDeclared=*/true);
7936   Destructor->setAccess(AS_public);
7937   Destructor->setDefaulted();
7938   Destructor->setImplicit();
7939 
7940   // Build an exception specification pointing back at this destructor.
7941   FunctionProtoType::ExtProtoInfo EPI;
7942   EPI.ExceptionSpecType = EST_Unevaluated;
7943   EPI.ExceptionSpecDecl = Destructor;
7944   Destructor->setType(Context.getFunctionType(Context.VoidTy,
7945                                               ArrayRef<QualType>(),
7946                                               EPI));
7947 
7948   AddOverriddenMethods(ClassDecl, Destructor);
7949 
7950   // We don't need to use SpecialMemberIsTrivial here; triviality for
7951   // destructors is easy to compute.
7952   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7953 
7954   if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7955     Destructor->setDeletedAsWritten();
7956 
7957   // Note that we have declared this destructor.
7958   ++ASTContext::NumImplicitDestructorsDeclared;
7959 
7960   // Introduce this destructor into its scope.
7961   if (Scope *S = getScopeForContext(ClassDecl))
7962     PushOnScopeChains(Destructor, S, false);
7963   ClassDecl->addDecl(Destructor);
7964 
7965   return Destructor;
7966 }
7967 
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)7968 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7969                                     CXXDestructorDecl *Destructor) {
7970   assert((Destructor->isDefaulted() &&
7971           !Destructor->doesThisDeclarationHaveABody() &&
7972           !Destructor->isDeleted()) &&
7973          "DefineImplicitDestructor - call it for implicit default dtor");
7974   CXXRecordDecl *ClassDecl = Destructor->getParent();
7975   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7976 
7977   if (Destructor->isInvalidDecl())
7978     return;
7979 
7980   SynthesizedFunctionScope Scope(*this, Destructor);
7981 
7982   DiagnosticErrorTrap Trap(Diags);
7983   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7984                                          Destructor->getParent());
7985 
7986   if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7987     Diag(CurrentLocation, diag::note_member_synthesized_at)
7988       << CXXDestructor << Context.getTagDeclType(ClassDecl);
7989 
7990     Destructor->setInvalidDecl();
7991     return;
7992   }
7993 
7994   SourceLocation Loc = Destructor->getLocation();
7995   Destructor->setBody(new (Context) CompoundStmt(Loc));
7996   Destructor->setImplicitlyDefined(true);
7997   Destructor->setUsed();
7998   MarkVTableUsed(CurrentLocation, ClassDecl);
7999 
8000   if (ASTMutationListener *L = getASTMutationListener()) {
8001     L->CompletedImplicitDefinition(Destructor);
8002   }
8003 }
8004 
8005 /// \brief Perform any semantic analysis which needs to be delayed until all
8006 /// pending class member declarations have been parsed.
ActOnFinishCXXMemberDecls()8007 void Sema::ActOnFinishCXXMemberDecls() {
8008   // If the context is an invalid C++ class, just suppress these checks.
8009   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8010     if (Record->isInvalidDecl()) {
8011       DelayedDestructorExceptionSpecChecks.clear();
8012       return;
8013     }
8014   }
8015 
8016   // Perform any deferred checking of exception specifications for virtual
8017   // destructors.
8018   for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8019        i != e; ++i) {
8020     const CXXDestructorDecl *Dtor =
8021         DelayedDestructorExceptionSpecChecks[i].first;
8022     assert(!Dtor->getParent()->isDependentType() &&
8023            "Should not ever add destructors of templates into the list.");
8024     CheckOverridingFunctionExceptionSpec(Dtor,
8025         DelayedDestructorExceptionSpecChecks[i].second);
8026   }
8027   DelayedDestructorExceptionSpecChecks.clear();
8028 }
8029 
AdjustDestructorExceptionSpec(CXXRecordDecl * ClassDecl,CXXDestructorDecl * Destructor)8030 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8031                                          CXXDestructorDecl *Destructor) {
8032   assert(getLangOpts().CPlusPlus11 &&
8033          "adjusting dtor exception specs was introduced in c++11");
8034 
8035   // C++11 [class.dtor]p3:
8036   //   A declaration of a destructor that does not have an exception-
8037   //   specification is implicitly considered to have the same exception-
8038   //   specification as an implicit declaration.
8039   const FunctionProtoType *DtorType = Destructor->getType()->
8040                                         getAs<FunctionProtoType>();
8041   if (DtorType->hasExceptionSpec())
8042     return;
8043 
8044   // Replace the destructor's type, building off the existing one. Fortunately,
8045   // the only thing of interest in the destructor type is its extended info.
8046   // The return and arguments are fixed.
8047   FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8048   EPI.ExceptionSpecType = EST_Unevaluated;
8049   EPI.ExceptionSpecDecl = Destructor;
8050   Destructor->setType(Context.getFunctionType(Context.VoidTy,
8051                                               ArrayRef<QualType>(),
8052                                               EPI));
8053 
8054   // FIXME: If the destructor has a body that could throw, and the newly created
8055   // spec doesn't allow exceptions, we should emit a warning, because this
8056   // change in behavior can break conforming C++03 programs at runtime.
8057   // However, we don't have a body or an exception specification yet, so it
8058   // needs to be done somewhere else.
8059 }
8060 
8061 /// When generating a defaulted copy or move assignment operator, if a field
8062 /// should be copied with __builtin_memcpy rather than via explicit assignments,
8063 /// do so. This optimization only applies for arrays of scalars, and for arrays
8064 /// of class type where the selected copy/move-assignment operator is trivial.
8065 static StmtResult
buildMemcpyForAssignmentOp(Sema & S,SourceLocation Loc,QualType T,Expr * To,Expr * From)8066 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8067                            Expr *To, Expr *From) {
8068   // Compute the size of the memory buffer to be copied.
8069   QualType SizeType = S.Context.getSizeType();
8070   llvm::APInt Size(S.Context.getTypeSize(SizeType),
8071                    S.Context.getTypeSizeInChars(T).getQuantity());
8072 
8073   // Take the address of the field references for "from" and "to". We
8074   // directly construct UnaryOperators here because semantic analysis
8075   // does not permit us to take the address of an xvalue.
8076   From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8077                          S.Context.getPointerType(From->getType()),
8078                          VK_RValue, OK_Ordinary, Loc);
8079   To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8080                        S.Context.getPointerType(To->getType()),
8081                        VK_RValue, OK_Ordinary, Loc);
8082 
8083   const Type *E = T->getBaseElementTypeUnsafe();
8084   bool NeedsCollectableMemCpy =
8085     E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8086 
8087   // Create a reference to the __builtin_objc_memmove_collectable function
8088   StringRef MemCpyName = NeedsCollectableMemCpy ?
8089     "__builtin_objc_memmove_collectable" :
8090     "__builtin_memcpy";
8091   LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8092                  Sema::LookupOrdinaryName);
8093   S.LookupName(R, S.TUScope, true);
8094 
8095   FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8096   if (!MemCpy)
8097     // Something went horribly wrong earlier, and we will have complained
8098     // about it.
8099     return StmtError();
8100 
8101   ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8102                                             VK_RValue, Loc, 0);
8103   assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8104 
8105   Expr *CallArgs[] = {
8106     To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8107   };
8108   ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8109                                     Loc, CallArgs, Loc);
8110 
8111   assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8112   return S.Owned(Call.takeAs<Stmt>());
8113 }
8114 
8115 /// \brief Builds a statement that copies/moves the given entity from \p From to
8116 /// \c To.
8117 ///
8118 /// This routine is used to copy/move the members of a class with an
8119 /// implicitly-declared copy/move assignment operator. When the entities being
8120 /// copied are arrays, this routine builds for loops to copy them.
8121 ///
8122 /// \param S The Sema object used for type-checking.
8123 ///
8124 /// \param Loc The location where the implicit copy/move is being generated.
8125 ///
8126 /// \param T The type of the expressions being copied/moved. Both expressions
8127 /// must have this type.
8128 ///
8129 /// \param To The expression we are copying/moving to.
8130 ///
8131 /// \param From The expression we are copying/moving from.
8132 ///
8133 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8134 /// Otherwise, it's a non-static member subobject.
8135 ///
8136 /// \param Copying Whether we're copying or moving.
8137 ///
8138 /// \param Depth Internal parameter recording the depth of the recursion.
8139 ///
8140 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8141 /// if a memcpy should be used instead.
8142 static StmtResult
buildSingleCopyAssignRecursively(Sema & S,SourceLocation Loc,QualType T,Expr * To,Expr * From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)8143 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8144                                  Expr *To, Expr *From,
8145                                  bool CopyingBaseSubobject, bool Copying,
8146                                  unsigned Depth = 0) {
8147   // C++11 [class.copy]p28:
8148   //   Each subobject is assigned in the manner appropriate to its type:
8149   //
8150   //     - if the subobject is of class type, as if by a call to operator= with
8151   //       the subobject as the object expression and the corresponding
8152   //       subobject of x as a single function argument (as if by explicit
8153   //       qualification; that is, ignoring any possible virtual overriding
8154   //       functions in more derived classes);
8155   //
8156   // C++03 [class.copy]p13:
8157   //     - if the subobject is of class type, the copy assignment operator for
8158   //       the class is used (as if by explicit qualification; that is,
8159   //       ignoring any possible virtual overriding functions in more derived
8160   //       classes);
8161   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8162     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8163 
8164     // Look for operator=.
8165     DeclarationName Name
8166       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8167     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8168     S.LookupQualifiedName(OpLookup, ClassDecl, false);
8169 
8170     // Prior to C++11, filter out any result that isn't a copy/move-assignment
8171     // operator.
8172     if (!S.getLangOpts().CPlusPlus11) {
8173       LookupResult::Filter F = OpLookup.makeFilter();
8174       while (F.hasNext()) {
8175         NamedDecl *D = F.next();
8176         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8177           if (Method->isCopyAssignmentOperator() ||
8178               (!Copying && Method->isMoveAssignmentOperator()))
8179             continue;
8180 
8181         F.erase();
8182       }
8183       F.done();
8184     }
8185 
8186     // Suppress the protected check (C++ [class.protected]) for each of the
8187     // assignment operators we found. This strange dance is required when
8188     // we're assigning via a base classes's copy-assignment operator. To
8189     // ensure that we're getting the right base class subobject (without
8190     // ambiguities), we need to cast "this" to that subobject type; to
8191     // ensure that we don't go through the virtual call mechanism, we need
8192     // to qualify the operator= name with the base class (see below). However,
8193     // this means that if the base class has a protected copy assignment
8194     // operator, the protected member access check will fail. So, we
8195     // rewrite "protected" access to "public" access in this case, since we
8196     // know by construction that we're calling from a derived class.
8197     if (CopyingBaseSubobject) {
8198       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8199            L != LEnd; ++L) {
8200         if (L.getAccess() == AS_protected)
8201           L.setAccess(AS_public);
8202       }
8203     }
8204 
8205     // Create the nested-name-specifier that will be used to qualify the
8206     // reference to operator=; this is required to suppress the virtual
8207     // call mechanism.
8208     CXXScopeSpec SS;
8209     const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8210     SS.MakeTrivial(S.Context,
8211                    NestedNameSpecifier::Create(S.Context, 0, false,
8212                                                CanonicalT),
8213                    Loc);
8214 
8215     // Create the reference to operator=.
8216     ExprResult OpEqualRef
8217       = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8218                                    /*TemplateKWLoc=*/SourceLocation(),
8219                                    /*FirstQualifierInScope=*/0,
8220                                    OpLookup,
8221                                    /*TemplateArgs=*/0,
8222                                    /*SuppressQualifierCheck=*/true);
8223     if (OpEqualRef.isInvalid())
8224       return StmtError();
8225 
8226     // Build the call to the assignment operator.
8227 
8228     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8229                                                   OpEqualRef.takeAs<Expr>(),
8230                                                   Loc, &From, 1, Loc);
8231     if (Call.isInvalid())
8232       return StmtError();
8233 
8234     // If we built a call to a trivial 'operator=' while copying an array,
8235     // bail out. We'll replace the whole shebang with a memcpy.
8236     CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8237     if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8238       return StmtResult((Stmt*)0);
8239 
8240     // Convert to an expression-statement, and clean up any produced
8241     // temporaries.
8242     return S.ActOnExprStmt(Call);
8243   }
8244 
8245   //     - if the subobject is of scalar type, the built-in assignment
8246   //       operator is used.
8247   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8248   if (!ArrayTy) {
8249     ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8250     if (Assignment.isInvalid())
8251       return StmtError();
8252     return S.ActOnExprStmt(Assignment);
8253   }
8254 
8255   //     - if the subobject is an array, each element is assigned, in the
8256   //       manner appropriate to the element type;
8257 
8258   // Construct a loop over the array bounds, e.g.,
8259   //
8260   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8261   //
8262   // that will copy each of the array elements.
8263   QualType SizeType = S.Context.getSizeType();
8264 
8265   // Create the iteration variable.
8266   IdentifierInfo *IterationVarName = 0;
8267   {
8268     SmallString<8> Str;
8269     llvm::raw_svector_ostream OS(Str);
8270     OS << "__i" << Depth;
8271     IterationVarName = &S.Context.Idents.get(OS.str());
8272   }
8273   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8274                                           IterationVarName, SizeType,
8275                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8276                                           SC_None, SC_None);
8277 
8278   // Initialize the iteration variable to zero.
8279   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8280   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8281 
8282   // Create a reference to the iteration variable; we'll use this several
8283   // times throughout.
8284   Expr *IterationVarRef
8285     = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8286   assert(IterationVarRef && "Reference to invented variable cannot fail!");
8287   Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8288   assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8289 
8290   // Create the DeclStmt that holds the iteration variable.
8291   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8292 
8293   // Subscript the "from" and "to" expressions with the iteration variable.
8294   From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8295                                                          IterationVarRefRVal,
8296                                                          Loc));
8297   To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8298                                                        IterationVarRefRVal,
8299                                                        Loc));
8300   if (!Copying) // Cast to rvalue
8301     From = CastForMoving(S, From);
8302 
8303   // Build the copy/move for an individual element of the array.
8304   StmtResult Copy =
8305     buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8306                                      To, From, CopyingBaseSubobject,
8307                                      Copying, Depth + 1);
8308   // Bail out if copying fails or if we determined that we should use memcpy.
8309   if (Copy.isInvalid() || !Copy.get())
8310     return Copy;
8311 
8312   // Create the comparison against the array bound.
8313   llvm::APInt Upper
8314     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8315   Expr *Comparison
8316     = new (S.Context) BinaryOperator(IterationVarRefRVal,
8317                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8318                                      BO_NE, S.Context.BoolTy,
8319                                      VK_RValue, OK_Ordinary, Loc, false);
8320 
8321   // Create the pre-increment of the iteration variable.
8322   Expr *Increment
8323     = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8324                                     VK_LValue, OK_Ordinary, Loc);
8325 
8326   // Construct the loop that copies all elements of this array.
8327   return S.ActOnForStmt(Loc, Loc, InitStmt,
8328                         S.MakeFullExpr(Comparison),
8329                         0, S.MakeFullDiscardedValueExpr(Increment),
8330                         Loc, Copy.take());
8331 }
8332 
8333 static StmtResult
buildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,Expr * To,Expr * From,bool CopyingBaseSubobject,bool Copying)8334 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8335                       Expr *To, Expr *From,
8336                       bool CopyingBaseSubobject, bool Copying) {
8337   // Maybe we should use a memcpy?
8338   if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8339       T.isTriviallyCopyableType(S.Context))
8340     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8341 
8342   StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8343                                                      CopyingBaseSubobject,
8344                                                      Copying, 0));
8345 
8346   // If we ended up picking a trivial assignment operator for an array of a
8347   // non-trivially-copyable class type, just emit a memcpy.
8348   if (!Result.isInvalid() && !Result.get())
8349     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8350 
8351   return Result;
8352 }
8353 
8354 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl * MD)8355 Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8356   CXXRecordDecl *ClassDecl = MD->getParent();
8357 
8358   ImplicitExceptionSpecification ExceptSpec(*this);
8359   if (ClassDecl->isInvalidDecl())
8360     return ExceptSpec;
8361 
8362   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8363   assert(T->getNumArgs() == 1 && "not a copy assignment op");
8364   unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8365 
8366   // C++ [except.spec]p14:
8367   //   An implicitly declared special member function (Clause 12) shall have an
8368   //   exception-specification. [...]
8369 
8370   // It is unspecified whether or not an implicit copy assignment operator
8371   // attempts to deduplicate calls to assignment operators of virtual bases are
8372   // made. As such, this exception specification is effectively unspecified.
8373   // Based on a similar decision made for constness in C++0x, we're erring on
8374   // the side of assuming such calls to be made regardless of whether they
8375   // actually happen.
8376   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8377                                        BaseEnd = ClassDecl->bases_end();
8378        Base != BaseEnd; ++Base) {
8379     if (Base->isVirtual())
8380       continue;
8381 
8382     CXXRecordDecl *BaseClassDecl
8383       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8384     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8385                                                             ArgQuals, false, 0))
8386       ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8387   }
8388 
8389   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8390                                        BaseEnd = ClassDecl->vbases_end();
8391        Base != BaseEnd; ++Base) {
8392     CXXRecordDecl *BaseClassDecl
8393       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8394     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8395                                                             ArgQuals, false, 0))
8396       ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8397   }
8398 
8399   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8400                                   FieldEnd = ClassDecl->field_end();
8401        Field != FieldEnd;
8402        ++Field) {
8403     QualType FieldType = Context.getBaseElementType(Field->getType());
8404     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8405       if (CXXMethodDecl *CopyAssign =
8406           LookupCopyingAssignment(FieldClassDecl,
8407                                   ArgQuals | FieldType.getCVRQualifiers(),
8408                                   false, 0))
8409         ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8410     }
8411   }
8412 
8413   return ExceptSpec;
8414 }
8415 
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)8416 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8417   // Note: The following rules are largely analoguous to the copy
8418   // constructor rules. Note that virtual bases are not taken into account
8419   // for determining the argument type of the operator. Note also that
8420   // operators taking an object instead of a reference are allowed.
8421   assert(ClassDecl->needsImplicitCopyAssignment());
8422 
8423   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8424   if (DSM.isAlreadyBeingDeclared())
8425     return 0;
8426 
8427   QualType ArgType = Context.getTypeDeclType(ClassDecl);
8428   QualType RetType = Context.getLValueReferenceType(ArgType);
8429   if (ClassDecl->implicitCopyAssignmentHasConstParam())
8430     ArgType = ArgType.withConst();
8431   ArgType = Context.getLValueReferenceType(ArgType);
8432 
8433   //   An implicitly-declared copy assignment operator is an inline public
8434   //   member of its class.
8435   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8436   SourceLocation ClassLoc = ClassDecl->getLocation();
8437   DeclarationNameInfo NameInfo(Name, ClassLoc);
8438   CXXMethodDecl *CopyAssignment
8439     = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8440                             /*TInfo=*/0, /*isStatic=*/false,
8441                             /*StorageClassAsWritten=*/SC_None,
8442                             /*isInline=*/true, /*isConstexpr=*/false,
8443                             SourceLocation());
8444   CopyAssignment->setAccess(AS_public);
8445   CopyAssignment->setDefaulted();
8446   CopyAssignment->setImplicit();
8447 
8448   // Build an exception specification pointing back at this member.
8449   FunctionProtoType::ExtProtoInfo EPI;
8450   EPI.ExceptionSpecType = EST_Unevaluated;
8451   EPI.ExceptionSpecDecl = CopyAssignment;
8452   CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8453 
8454   // Add the parameter to the operator.
8455   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8456                                                ClassLoc, ClassLoc, /*Id=*/0,
8457                                                ArgType, /*TInfo=*/0,
8458                                                SC_None,
8459                                                SC_None, 0);
8460   CopyAssignment->setParams(FromParam);
8461 
8462   AddOverriddenMethods(ClassDecl, CopyAssignment);
8463 
8464   CopyAssignment->setTrivial(
8465     ClassDecl->needsOverloadResolutionForCopyAssignment()
8466       ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8467       : ClassDecl->hasTrivialCopyAssignment());
8468 
8469   // C++0x [class.copy]p19:
8470   //   ....  If the class definition does not explicitly declare a copy
8471   //   assignment operator, there is no user-declared move constructor, and
8472   //   there is no user-declared move assignment operator, a copy assignment
8473   //   operator is implicitly declared as defaulted.
8474   if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8475     CopyAssignment->setDeletedAsWritten();
8476 
8477   // Note that we have added this copy-assignment operator.
8478   ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8479 
8480   if (Scope *S = getScopeForContext(ClassDecl))
8481     PushOnScopeChains(CopyAssignment, S, false);
8482   ClassDecl->addDecl(CopyAssignment);
8483 
8484   return CopyAssignment;
8485 }
8486 
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)8487 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8488                                         CXXMethodDecl *CopyAssignOperator) {
8489   assert((CopyAssignOperator->isDefaulted() &&
8490           CopyAssignOperator->isOverloadedOperator() &&
8491           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8492           !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8493           !CopyAssignOperator->isDeleted()) &&
8494          "DefineImplicitCopyAssignment called for wrong function");
8495 
8496   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8497 
8498   if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8499     CopyAssignOperator->setInvalidDecl();
8500     return;
8501   }
8502 
8503   CopyAssignOperator->setUsed();
8504 
8505   SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8506   DiagnosticErrorTrap Trap(Diags);
8507 
8508   // C++0x [class.copy]p30:
8509   //   The implicitly-defined or explicitly-defaulted copy assignment operator
8510   //   for a non-union class X performs memberwise copy assignment of its
8511   //   subobjects. The direct base classes of X are assigned first, in the
8512   //   order of their declaration in the base-specifier-list, and then the
8513   //   immediate non-static data members of X are assigned, in the order in
8514   //   which they were declared in the class definition.
8515 
8516   // The statements that form the synthesized function body.
8517   SmallVector<Stmt*, 8> Statements;
8518 
8519   // The parameter for the "other" object, which we are copying from.
8520   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8521   Qualifiers OtherQuals = Other->getType().getQualifiers();
8522   QualType OtherRefType = Other->getType();
8523   if (const LValueReferenceType *OtherRef
8524                                 = OtherRefType->getAs<LValueReferenceType>()) {
8525     OtherRefType = OtherRef->getPointeeType();
8526     OtherQuals = OtherRefType.getQualifiers();
8527   }
8528 
8529   // Our location for everything implicitly-generated.
8530   SourceLocation Loc = CopyAssignOperator->getLocation();
8531 
8532   // Construct a reference to the "other" object. We'll be using this
8533   // throughout the generated ASTs.
8534   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8535   assert(OtherRef && "Reference to parameter cannot fail!");
8536 
8537   // Construct the "this" pointer. We'll be using this throughout the generated
8538   // ASTs.
8539   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8540   assert(This && "Reference to this cannot fail!");
8541 
8542   // Assign base classes.
8543   bool Invalid = false;
8544   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8545        E = ClassDecl->bases_end(); Base != E; ++Base) {
8546     // Form the assignment:
8547     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8548     QualType BaseType = Base->getType().getUnqualifiedType();
8549     if (!BaseType->isRecordType()) {
8550       Invalid = true;
8551       continue;
8552     }
8553 
8554     CXXCastPath BasePath;
8555     BasePath.push_back(Base);
8556 
8557     // Construct the "from" expression, which is an implicit cast to the
8558     // appropriately-qualified base type.
8559     Expr *From = OtherRef;
8560     From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8561                              CK_UncheckedDerivedToBase,
8562                              VK_LValue, &BasePath).take();
8563 
8564     // Dereference "this".
8565     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8566 
8567     // Implicitly cast "this" to the appropriately-qualified base type.
8568     To = ImpCastExprToType(To.take(),
8569                            Context.getCVRQualifiedType(BaseType,
8570                                      CopyAssignOperator->getTypeQualifiers()),
8571                            CK_UncheckedDerivedToBase,
8572                            VK_LValue, &BasePath);
8573 
8574     // Build the copy.
8575     StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8576                                             To.get(), From,
8577                                             /*CopyingBaseSubobject=*/true,
8578                                             /*Copying=*/true);
8579     if (Copy.isInvalid()) {
8580       Diag(CurrentLocation, diag::note_member_synthesized_at)
8581         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8582       CopyAssignOperator->setInvalidDecl();
8583       return;
8584     }
8585 
8586     // Success! Record the copy.
8587     Statements.push_back(Copy.takeAs<Expr>());
8588   }
8589 
8590   // Assign non-static members.
8591   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8592                                   FieldEnd = ClassDecl->field_end();
8593        Field != FieldEnd; ++Field) {
8594     if (Field->isUnnamedBitfield())
8595       continue;
8596 
8597     // Check for members of reference type; we can't copy those.
8598     if (Field->getType()->isReferenceType()) {
8599       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8600         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8601       Diag(Field->getLocation(), diag::note_declared_at);
8602       Diag(CurrentLocation, diag::note_member_synthesized_at)
8603         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8604       Invalid = true;
8605       continue;
8606     }
8607 
8608     // Check for members of const-qualified, non-class type.
8609     QualType BaseType = Context.getBaseElementType(Field->getType());
8610     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8611       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8612         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8613       Diag(Field->getLocation(), diag::note_declared_at);
8614       Diag(CurrentLocation, diag::note_member_synthesized_at)
8615         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8616       Invalid = true;
8617       continue;
8618     }
8619 
8620     // Suppress assigning zero-width bitfields.
8621     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8622       continue;
8623 
8624     QualType FieldType = Field->getType().getNonReferenceType();
8625     if (FieldType->isIncompleteArrayType()) {
8626       assert(ClassDecl->hasFlexibleArrayMember() &&
8627              "Incomplete array type is not valid");
8628       continue;
8629     }
8630 
8631     // Build references to the field in the object we're copying from and to.
8632     CXXScopeSpec SS; // Intentionally empty
8633     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8634                               LookupMemberName);
8635     MemberLookup.addDecl(*Field);
8636     MemberLookup.resolveKind();
8637     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8638                                                Loc, /*IsArrow=*/false,
8639                                                SS, SourceLocation(), 0,
8640                                                MemberLookup, 0);
8641     ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8642                                              Loc, /*IsArrow=*/true,
8643                                              SS, SourceLocation(), 0,
8644                                              MemberLookup, 0);
8645     assert(!From.isInvalid() && "Implicit field reference cannot fail");
8646     assert(!To.isInvalid() && "Implicit field reference cannot fail");
8647 
8648     // Build the copy of this field.
8649     StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8650                                             To.get(), From.get(),
8651                                             /*CopyingBaseSubobject=*/false,
8652                                             /*Copying=*/true);
8653     if (Copy.isInvalid()) {
8654       Diag(CurrentLocation, diag::note_member_synthesized_at)
8655         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8656       CopyAssignOperator->setInvalidDecl();
8657       return;
8658     }
8659 
8660     // Success! Record the copy.
8661     Statements.push_back(Copy.takeAs<Stmt>());
8662   }
8663 
8664   if (!Invalid) {
8665     // Add a "return *this;"
8666     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8667 
8668     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8669     if (Return.isInvalid())
8670       Invalid = true;
8671     else {
8672       Statements.push_back(Return.takeAs<Stmt>());
8673 
8674       if (Trap.hasErrorOccurred()) {
8675         Diag(CurrentLocation, diag::note_member_synthesized_at)
8676           << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8677         Invalid = true;
8678       }
8679     }
8680   }
8681 
8682   if (Invalid) {
8683     CopyAssignOperator->setInvalidDecl();
8684     return;
8685   }
8686 
8687   StmtResult Body;
8688   {
8689     CompoundScopeRAII CompoundScope(*this);
8690     Body = ActOnCompoundStmt(Loc, Loc, Statements,
8691                              /*isStmtExpr=*/false);
8692     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8693   }
8694   CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8695 
8696   if (ASTMutationListener *L = getASTMutationListener()) {
8697     L->CompletedImplicitDefinition(CopyAssignOperator);
8698   }
8699 }
8700 
8701 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl * MD)8702 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8703   CXXRecordDecl *ClassDecl = MD->getParent();
8704 
8705   ImplicitExceptionSpecification ExceptSpec(*this);
8706   if (ClassDecl->isInvalidDecl())
8707     return ExceptSpec;
8708 
8709   // C++0x [except.spec]p14:
8710   //   An implicitly declared special member function (Clause 12) shall have an
8711   //   exception-specification. [...]
8712 
8713   // It is unspecified whether or not an implicit move assignment operator
8714   // attempts to deduplicate calls to assignment operators of virtual bases are
8715   // made. As such, this exception specification is effectively unspecified.
8716   // Based on a similar decision made for constness in C++0x, we're erring on
8717   // the side of assuming such calls to be made regardless of whether they
8718   // actually happen.
8719   // Note that a move constructor is not implicitly declared when there are
8720   // virtual bases, but it can still be user-declared and explicitly defaulted.
8721   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8722                                        BaseEnd = ClassDecl->bases_end();
8723        Base != BaseEnd; ++Base) {
8724     if (Base->isVirtual())
8725       continue;
8726 
8727     CXXRecordDecl *BaseClassDecl
8728       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8729     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8730                                                            0, false, 0))
8731       ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8732   }
8733 
8734   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8735                                        BaseEnd = ClassDecl->vbases_end();
8736        Base != BaseEnd; ++Base) {
8737     CXXRecordDecl *BaseClassDecl
8738       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8739     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8740                                                            0, false, 0))
8741       ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8742   }
8743 
8744   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8745                                   FieldEnd = ClassDecl->field_end();
8746        Field != FieldEnd;
8747        ++Field) {
8748     QualType FieldType = Context.getBaseElementType(Field->getType());
8749     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8750       if (CXXMethodDecl *MoveAssign =
8751               LookupMovingAssignment(FieldClassDecl,
8752                                      FieldType.getCVRQualifiers(),
8753                                      false, 0))
8754         ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8755     }
8756   }
8757 
8758   return ExceptSpec;
8759 }
8760 
8761 /// Determine whether the class type has any direct or indirect virtual base
8762 /// classes which have a non-trivial move assignment operator.
8763 static bool
hasVirtualBaseWithNonTrivialMoveAssignment(Sema & S,CXXRecordDecl * ClassDecl)8764 hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8765   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8766                                           BaseEnd = ClassDecl->vbases_end();
8767        Base != BaseEnd; ++Base) {
8768     CXXRecordDecl *BaseClass =
8769         cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8770 
8771     // Try to declare the move assignment. If it would be deleted, then the
8772     // class does not have a non-trivial move assignment.
8773     if (BaseClass->needsImplicitMoveAssignment())
8774       S.DeclareImplicitMoveAssignment(BaseClass);
8775 
8776     if (BaseClass->hasNonTrivialMoveAssignment())
8777       return true;
8778   }
8779 
8780   return false;
8781 }
8782 
8783 /// Determine whether the given type either has a move constructor or is
8784 /// trivially copyable.
8785 static bool
hasMoveOrIsTriviallyCopyable(Sema & S,QualType Type,bool IsConstructor)8786 hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8787   Type = S.Context.getBaseElementType(Type);
8788 
8789   // FIXME: Technically, non-trivially-copyable non-class types, such as
8790   // reference types, are supposed to return false here, but that appears
8791   // to be a standard defect.
8792   CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8793   if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8794     return true;
8795 
8796   if (Type.isTriviallyCopyableType(S.Context))
8797     return true;
8798 
8799   if (IsConstructor) {
8800     // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
8801     // give the right answer.
8802     if (ClassDecl->needsImplicitMoveConstructor())
8803       S.DeclareImplicitMoveConstructor(ClassDecl);
8804     return ClassDecl->hasMoveConstructor();
8805   }
8806 
8807   // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
8808   // give the right answer.
8809   if (ClassDecl->needsImplicitMoveAssignment())
8810     S.DeclareImplicitMoveAssignment(ClassDecl);
8811   return ClassDecl->hasMoveAssignment();
8812 }
8813 
8814 /// Determine whether all non-static data members and direct or virtual bases
8815 /// of class \p ClassDecl have either a move operation, or are trivially
8816 /// copyable.
subobjectsHaveMoveOrTrivialCopy(Sema & S,CXXRecordDecl * ClassDecl,bool IsConstructor)8817 static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8818                                             bool IsConstructor) {
8819   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8820                                           BaseEnd = ClassDecl->bases_end();
8821        Base != BaseEnd; ++Base) {
8822     if (Base->isVirtual())
8823       continue;
8824 
8825     if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8826       return false;
8827   }
8828 
8829   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8830                                           BaseEnd = ClassDecl->vbases_end();
8831        Base != BaseEnd; ++Base) {
8832     if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8833       return false;
8834   }
8835 
8836   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8837                                      FieldEnd = ClassDecl->field_end();
8838        Field != FieldEnd; ++Field) {
8839     if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8840       return false;
8841   }
8842 
8843   return true;
8844 }
8845 
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)8846 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8847   // C++11 [class.copy]p20:
8848   //   If the definition of a class X does not explicitly declare a move
8849   //   assignment operator, one will be implicitly declared as defaulted
8850   //   if and only if:
8851   //
8852   //   - [first 4 bullets]
8853   assert(ClassDecl->needsImplicitMoveAssignment());
8854 
8855   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
8856   if (DSM.isAlreadyBeingDeclared())
8857     return 0;
8858 
8859   // [Checked after we build the declaration]
8860   //   - the move assignment operator would not be implicitly defined as
8861   //     deleted,
8862 
8863   // [DR1402]:
8864   //   - X has no direct or indirect virtual base class with a non-trivial
8865   //     move assignment operator, and
8866   //   - each of X's non-static data members and direct or virtual base classes
8867   //     has a type that either has a move assignment operator or is trivially
8868   //     copyable.
8869   if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8870       !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8871     ClassDecl->setFailedImplicitMoveAssignment();
8872     return 0;
8873   }
8874 
8875   // Note: The following rules are largely analoguous to the move
8876   // constructor rules.
8877 
8878   QualType ArgType = Context.getTypeDeclType(ClassDecl);
8879   QualType RetType = Context.getLValueReferenceType(ArgType);
8880   ArgType = Context.getRValueReferenceType(ArgType);
8881 
8882   //   An implicitly-declared move assignment operator is an inline public
8883   //   member of its class.
8884   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8885   SourceLocation ClassLoc = ClassDecl->getLocation();
8886   DeclarationNameInfo NameInfo(Name, ClassLoc);
8887   CXXMethodDecl *MoveAssignment
8888     = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8889                             /*TInfo=*/0, /*isStatic=*/false,
8890                             /*StorageClassAsWritten=*/SC_None,
8891                             /*isInline=*/true,
8892                             /*isConstexpr=*/false,
8893                             SourceLocation());
8894   MoveAssignment->setAccess(AS_public);
8895   MoveAssignment->setDefaulted();
8896   MoveAssignment->setImplicit();
8897 
8898   // Build an exception specification pointing back at this member.
8899   FunctionProtoType::ExtProtoInfo EPI;
8900   EPI.ExceptionSpecType = EST_Unevaluated;
8901   EPI.ExceptionSpecDecl = MoveAssignment;
8902   MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8903 
8904   // Add the parameter to the operator.
8905   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8906                                                ClassLoc, ClassLoc, /*Id=*/0,
8907                                                ArgType, /*TInfo=*/0,
8908                                                SC_None,
8909                                                SC_None, 0);
8910   MoveAssignment->setParams(FromParam);
8911 
8912   AddOverriddenMethods(ClassDecl, MoveAssignment);
8913 
8914   MoveAssignment->setTrivial(
8915     ClassDecl->needsOverloadResolutionForMoveAssignment()
8916       ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
8917       : ClassDecl->hasTrivialMoveAssignment());
8918 
8919   // C++0x [class.copy]p9:
8920   //   If the definition of a class X does not explicitly declare a move
8921   //   assignment operator, one will be implicitly declared as defaulted if and
8922   //   only if:
8923   //   [...]
8924   //   - the move assignment operator would not be implicitly defined as
8925   //     deleted.
8926   if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8927     // Cache this result so that we don't try to generate this over and over
8928     // on every lookup, leaking memory and wasting time.
8929     ClassDecl->setFailedImplicitMoveAssignment();
8930     return 0;
8931   }
8932 
8933   // Note that we have added this copy-assignment operator.
8934   ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8935 
8936   if (Scope *S = getScopeForContext(ClassDecl))
8937     PushOnScopeChains(MoveAssignment, S, false);
8938   ClassDecl->addDecl(MoveAssignment);
8939 
8940   return MoveAssignment;
8941 }
8942 
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)8943 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8944                                         CXXMethodDecl *MoveAssignOperator) {
8945   assert((MoveAssignOperator->isDefaulted() &&
8946           MoveAssignOperator->isOverloadedOperator() &&
8947           MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8948           !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8949           !MoveAssignOperator->isDeleted()) &&
8950          "DefineImplicitMoveAssignment called for wrong function");
8951 
8952   CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8953 
8954   if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8955     MoveAssignOperator->setInvalidDecl();
8956     return;
8957   }
8958 
8959   MoveAssignOperator->setUsed();
8960 
8961   SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
8962   DiagnosticErrorTrap Trap(Diags);
8963 
8964   // C++0x [class.copy]p28:
8965   //   The implicitly-defined or move assignment operator for a non-union class
8966   //   X performs memberwise move assignment of its subobjects. The direct base
8967   //   classes of X are assigned first, in the order of their declaration in the
8968   //   base-specifier-list, and then the immediate non-static data members of X
8969   //   are assigned, in the order in which they were declared in the class
8970   //   definition.
8971 
8972   // The statements that form the synthesized function body.
8973   SmallVector<Stmt*, 8> Statements;
8974 
8975   // The parameter for the "other" object, which we are move from.
8976   ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8977   QualType OtherRefType = Other->getType()->
8978       getAs<RValueReferenceType>()->getPointeeType();
8979   assert(OtherRefType.getQualifiers() == 0 &&
8980          "Bad argument type of defaulted move assignment");
8981 
8982   // Our location for everything implicitly-generated.
8983   SourceLocation Loc = MoveAssignOperator->getLocation();
8984 
8985   // Construct a reference to the "other" object. We'll be using this
8986   // throughout the generated ASTs.
8987   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8988   assert(OtherRef && "Reference to parameter cannot fail!");
8989   // Cast to rvalue.
8990   OtherRef = CastForMoving(*this, OtherRef);
8991 
8992   // Construct the "this" pointer. We'll be using this throughout the generated
8993   // ASTs.
8994   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8995   assert(This && "Reference to this cannot fail!");
8996 
8997   // Assign base classes.
8998   bool Invalid = false;
8999   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9000        E = ClassDecl->bases_end(); Base != E; ++Base) {
9001     // Form the assignment:
9002     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9003     QualType BaseType = Base->getType().getUnqualifiedType();
9004     if (!BaseType->isRecordType()) {
9005       Invalid = true;
9006       continue;
9007     }
9008 
9009     CXXCastPath BasePath;
9010     BasePath.push_back(Base);
9011 
9012     // Construct the "from" expression, which is an implicit cast to the
9013     // appropriately-qualified base type.
9014     Expr *From = OtherRef;
9015     From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9016                              VK_XValue, &BasePath).take();
9017 
9018     // Dereference "this".
9019     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9020 
9021     // Implicitly cast "this" to the appropriately-qualified base type.
9022     To = ImpCastExprToType(To.take(),
9023                            Context.getCVRQualifiedType(BaseType,
9024                                      MoveAssignOperator->getTypeQualifiers()),
9025                            CK_UncheckedDerivedToBase,
9026                            VK_LValue, &BasePath);
9027 
9028     // Build the move.
9029     StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9030                                             To.get(), From,
9031                                             /*CopyingBaseSubobject=*/true,
9032                                             /*Copying=*/false);
9033     if (Move.isInvalid()) {
9034       Diag(CurrentLocation, diag::note_member_synthesized_at)
9035         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9036       MoveAssignOperator->setInvalidDecl();
9037       return;
9038     }
9039 
9040     // Success! Record the move.
9041     Statements.push_back(Move.takeAs<Expr>());
9042   }
9043 
9044   // Assign non-static members.
9045   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9046                                   FieldEnd = ClassDecl->field_end();
9047        Field != FieldEnd; ++Field) {
9048     if (Field->isUnnamedBitfield())
9049       continue;
9050 
9051     // Check for members of reference type; we can't move those.
9052     if (Field->getType()->isReferenceType()) {
9053       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9054         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9055       Diag(Field->getLocation(), diag::note_declared_at);
9056       Diag(CurrentLocation, diag::note_member_synthesized_at)
9057         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9058       Invalid = true;
9059       continue;
9060     }
9061 
9062     // Check for members of const-qualified, non-class type.
9063     QualType BaseType = Context.getBaseElementType(Field->getType());
9064     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9065       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9066         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9067       Diag(Field->getLocation(), diag::note_declared_at);
9068       Diag(CurrentLocation, diag::note_member_synthesized_at)
9069         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9070       Invalid = true;
9071       continue;
9072     }
9073 
9074     // Suppress assigning zero-width bitfields.
9075     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9076       continue;
9077 
9078     QualType FieldType = Field->getType().getNonReferenceType();
9079     if (FieldType->isIncompleteArrayType()) {
9080       assert(ClassDecl->hasFlexibleArrayMember() &&
9081              "Incomplete array type is not valid");
9082       continue;
9083     }
9084 
9085     // Build references to the field in the object we're copying from and to.
9086     CXXScopeSpec SS; // Intentionally empty
9087     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9088                               LookupMemberName);
9089     MemberLookup.addDecl(*Field);
9090     MemberLookup.resolveKind();
9091     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9092                                                Loc, /*IsArrow=*/false,
9093                                                SS, SourceLocation(), 0,
9094                                                MemberLookup, 0);
9095     ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9096                                              Loc, /*IsArrow=*/true,
9097                                              SS, SourceLocation(), 0,
9098                                              MemberLookup, 0);
9099     assert(!From.isInvalid() && "Implicit field reference cannot fail");
9100     assert(!To.isInvalid() && "Implicit field reference cannot fail");
9101 
9102     assert(!From.get()->isLValue() && // could be xvalue or prvalue
9103         "Member reference with rvalue base must be rvalue except for reference "
9104         "members, which aren't allowed for move assignment.");
9105 
9106     // Build the move of this field.
9107     StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9108                                             To.get(), From.get(),
9109                                             /*CopyingBaseSubobject=*/false,
9110                                             /*Copying=*/false);
9111     if (Move.isInvalid()) {
9112       Diag(CurrentLocation, diag::note_member_synthesized_at)
9113         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9114       MoveAssignOperator->setInvalidDecl();
9115       return;
9116     }
9117 
9118     // Success! Record the copy.
9119     Statements.push_back(Move.takeAs<Stmt>());
9120   }
9121 
9122   if (!Invalid) {
9123     // Add a "return *this;"
9124     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9125 
9126     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9127     if (Return.isInvalid())
9128       Invalid = true;
9129     else {
9130       Statements.push_back(Return.takeAs<Stmt>());
9131 
9132       if (Trap.hasErrorOccurred()) {
9133         Diag(CurrentLocation, diag::note_member_synthesized_at)
9134           << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9135         Invalid = true;
9136       }
9137     }
9138   }
9139 
9140   if (Invalid) {
9141     MoveAssignOperator->setInvalidDecl();
9142     return;
9143   }
9144 
9145   StmtResult Body;
9146   {
9147     CompoundScopeRAII CompoundScope(*this);
9148     Body = ActOnCompoundStmt(Loc, Loc, Statements,
9149                              /*isStmtExpr=*/false);
9150     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9151   }
9152   MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9153 
9154   if (ASTMutationListener *L = getASTMutationListener()) {
9155     L->CompletedImplicitDefinition(MoveAssignOperator);
9156   }
9157 }
9158 
9159 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl * MD)9160 Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9161   CXXRecordDecl *ClassDecl = MD->getParent();
9162 
9163   ImplicitExceptionSpecification ExceptSpec(*this);
9164   if (ClassDecl->isInvalidDecl())
9165     return ExceptSpec;
9166 
9167   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9168   assert(T->getNumArgs() >= 1 && "not a copy ctor");
9169   unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9170 
9171   // C++ [except.spec]p14:
9172   //   An implicitly declared special member function (Clause 12) shall have an
9173   //   exception-specification. [...]
9174   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9175                                        BaseEnd = ClassDecl->bases_end();
9176        Base != BaseEnd;
9177        ++Base) {
9178     // Virtual bases are handled below.
9179     if (Base->isVirtual())
9180       continue;
9181 
9182     CXXRecordDecl *BaseClassDecl
9183       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9184     if (CXXConstructorDecl *CopyConstructor =
9185           LookupCopyingConstructor(BaseClassDecl, Quals))
9186       ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9187   }
9188   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9189                                        BaseEnd = ClassDecl->vbases_end();
9190        Base != BaseEnd;
9191        ++Base) {
9192     CXXRecordDecl *BaseClassDecl
9193       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9194     if (CXXConstructorDecl *CopyConstructor =
9195           LookupCopyingConstructor(BaseClassDecl, Quals))
9196       ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9197   }
9198   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9199                                   FieldEnd = ClassDecl->field_end();
9200        Field != FieldEnd;
9201        ++Field) {
9202     QualType FieldType = Context.getBaseElementType(Field->getType());
9203     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9204       if (CXXConstructorDecl *CopyConstructor =
9205               LookupCopyingConstructor(FieldClassDecl,
9206                                        Quals | FieldType.getCVRQualifiers()))
9207       ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9208     }
9209   }
9210 
9211   return ExceptSpec;
9212 }
9213 
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)9214 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9215                                                     CXXRecordDecl *ClassDecl) {
9216   // C++ [class.copy]p4:
9217   //   If the class definition does not explicitly declare a copy
9218   //   constructor, one is declared implicitly.
9219   assert(ClassDecl->needsImplicitCopyConstructor());
9220 
9221   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9222   if (DSM.isAlreadyBeingDeclared())
9223     return 0;
9224 
9225   QualType ClassType = Context.getTypeDeclType(ClassDecl);
9226   QualType ArgType = ClassType;
9227   bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9228   if (Const)
9229     ArgType = ArgType.withConst();
9230   ArgType = Context.getLValueReferenceType(ArgType);
9231 
9232   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9233                                                      CXXCopyConstructor,
9234                                                      Const);
9235 
9236   DeclarationName Name
9237     = Context.DeclarationNames.getCXXConstructorName(
9238                                            Context.getCanonicalType(ClassType));
9239   SourceLocation ClassLoc = ClassDecl->getLocation();
9240   DeclarationNameInfo NameInfo(Name, ClassLoc);
9241 
9242   //   An implicitly-declared copy constructor is an inline public
9243   //   member of its class.
9244   CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9245       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9246       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9247       Constexpr);
9248   CopyConstructor->setAccess(AS_public);
9249   CopyConstructor->setDefaulted();
9250 
9251   // Build an exception specification pointing back at this member.
9252   FunctionProtoType::ExtProtoInfo EPI;
9253   EPI.ExceptionSpecType = EST_Unevaluated;
9254   EPI.ExceptionSpecDecl = CopyConstructor;
9255   CopyConstructor->setType(
9256       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9257 
9258   // Add the parameter to the constructor.
9259   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9260                                                ClassLoc, ClassLoc,
9261                                                /*IdentifierInfo=*/0,
9262                                                ArgType, /*TInfo=*/0,
9263                                                SC_None,
9264                                                SC_None, 0);
9265   CopyConstructor->setParams(FromParam);
9266 
9267   CopyConstructor->setTrivial(
9268     ClassDecl->needsOverloadResolutionForCopyConstructor()
9269       ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9270       : ClassDecl->hasTrivialCopyConstructor());
9271 
9272   // C++11 [class.copy]p8:
9273   //   ... If the class definition does not explicitly declare a copy
9274   //   constructor, there is no user-declared move constructor, and there is no
9275   //   user-declared move assignment operator, a copy constructor is implicitly
9276   //   declared as defaulted.
9277   if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9278     CopyConstructor->setDeletedAsWritten();
9279 
9280   // Note that we have declared this constructor.
9281   ++ASTContext::NumImplicitCopyConstructorsDeclared;
9282 
9283   if (Scope *S = getScopeForContext(ClassDecl))
9284     PushOnScopeChains(CopyConstructor, S, false);
9285   ClassDecl->addDecl(CopyConstructor);
9286 
9287   return CopyConstructor;
9288 }
9289 
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)9290 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9291                                    CXXConstructorDecl *CopyConstructor) {
9292   assert((CopyConstructor->isDefaulted() &&
9293           CopyConstructor->isCopyConstructor() &&
9294           !CopyConstructor->doesThisDeclarationHaveABody() &&
9295           !CopyConstructor->isDeleted()) &&
9296          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9297 
9298   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9299   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9300 
9301   SynthesizedFunctionScope Scope(*this, CopyConstructor);
9302   DiagnosticErrorTrap Trap(Diags);
9303 
9304   if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9305       Trap.hasErrorOccurred()) {
9306     Diag(CurrentLocation, diag::note_member_synthesized_at)
9307       << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9308     CopyConstructor->setInvalidDecl();
9309   }  else {
9310     Sema::CompoundScopeRAII CompoundScope(*this);
9311     CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9312                                                CopyConstructor->getLocation(),
9313                                                MultiStmtArg(),
9314                                                /*isStmtExpr=*/false)
9315                                                               .takeAs<Stmt>());
9316     CopyConstructor->setImplicitlyDefined(true);
9317   }
9318 
9319   CopyConstructor->setUsed();
9320   if (ASTMutationListener *L = getASTMutationListener()) {
9321     L->CompletedImplicitDefinition(CopyConstructor);
9322   }
9323 }
9324 
9325 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl * MD)9326 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9327   CXXRecordDecl *ClassDecl = MD->getParent();
9328 
9329   // C++ [except.spec]p14:
9330   //   An implicitly declared special member function (Clause 12) shall have an
9331   //   exception-specification. [...]
9332   ImplicitExceptionSpecification ExceptSpec(*this);
9333   if (ClassDecl->isInvalidDecl())
9334     return ExceptSpec;
9335 
9336   // Direct base-class constructors.
9337   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9338                                        BEnd = ClassDecl->bases_end();
9339        B != BEnd; ++B) {
9340     if (B->isVirtual()) // Handled below.
9341       continue;
9342 
9343     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9344       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9345       CXXConstructorDecl *Constructor =
9346           LookupMovingConstructor(BaseClassDecl, 0);
9347       // If this is a deleted function, add it anyway. This might be conformant
9348       // with the standard. This might not. I'm not sure. It might not matter.
9349       if (Constructor)
9350         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9351     }
9352   }
9353 
9354   // Virtual base-class constructors.
9355   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9356                                        BEnd = ClassDecl->vbases_end();
9357        B != BEnd; ++B) {
9358     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9359       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9360       CXXConstructorDecl *Constructor =
9361           LookupMovingConstructor(BaseClassDecl, 0);
9362       // If this is a deleted function, add it anyway. This might be conformant
9363       // with the standard. This might not. I'm not sure. It might not matter.
9364       if (Constructor)
9365         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9366     }
9367   }
9368 
9369   // Field constructors.
9370   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9371                                FEnd = ClassDecl->field_end();
9372        F != FEnd; ++F) {
9373     QualType FieldType = Context.getBaseElementType(F->getType());
9374     if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9375       CXXConstructorDecl *Constructor =
9376           LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9377       // If this is a deleted function, add it anyway. This might be conformant
9378       // with the standard. This might not. I'm not sure. It might not matter.
9379       // In particular, the problem is that this function never gets called. It
9380       // might just be ill-formed because this function attempts to refer to
9381       // a deleted function here.
9382       if (Constructor)
9383         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9384     }
9385   }
9386 
9387   return ExceptSpec;
9388 }
9389 
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)9390 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9391                                                     CXXRecordDecl *ClassDecl) {
9392   // C++11 [class.copy]p9:
9393   //   If the definition of a class X does not explicitly declare a move
9394   //   constructor, one will be implicitly declared as defaulted if and only if:
9395   //
9396   //   - [first 4 bullets]
9397   assert(ClassDecl->needsImplicitMoveConstructor());
9398 
9399   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9400   if (DSM.isAlreadyBeingDeclared())
9401     return 0;
9402 
9403   // [Checked after we build the declaration]
9404   //   - the move assignment operator would not be implicitly defined as
9405   //     deleted,
9406 
9407   // [DR1402]:
9408   //   - each of X's non-static data members and direct or virtual base classes
9409   //     has a type that either has a move constructor or is trivially copyable.
9410   if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9411     ClassDecl->setFailedImplicitMoveConstructor();
9412     return 0;
9413   }
9414 
9415   QualType ClassType = Context.getTypeDeclType(ClassDecl);
9416   QualType ArgType = Context.getRValueReferenceType(ClassType);
9417 
9418   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9419                                                      CXXMoveConstructor,
9420                                                      false);
9421 
9422   DeclarationName Name
9423     = Context.DeclarationNames.getCXXConstructorName(
9424                                            Context.getCanonicalType(ClassType));
9425   SourceLocation ClassLoc = ClassDecl->getLocation();
9426   DeclarationNameInfo NameInfo(Name, ClassLoc);
9427 
9428   // C++0x [class.copy]p11:
9429   //   An implicitly-declared copy/move constructor is an inline public
9430   //   member of its class.
9431   CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9432       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9433       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9434       Constexpr);
9435   MoveConstructor->setAccess(AS_public);
9436   MoveConstructor->setDefaulted();
9437 
9438   // Build an exception specification pointing back at this member.
9439   FunctionProtoType::ExtProtoInfo EPI;
9440   EPI.ExceptionSpecType = EST_Unevaluated;
9441   EPI.ExceptionSpecDecl = MoveConstructor;
9442   MoveConstructor->setType(
9443       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9444 
9445   // Add the parameter to the constructor.
9446   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9447                                                ClassLoc, ClassLoc,
9448                                                /*IdentifierInfo=*/0,
9449                                                ArgType, /*TInfo=*/0,
9450                                                SC_None,
9451                                                SC_None, 0);
9452   MoveConstructor->setParams(FromParam);
9453 
9454   MoveConstructor->setTrivial(
9455     ClassDecl->needsOverloadResolutionForMoveConstructor()
9456       ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9457       : ClassDecl->hasTrivialMoveConstructor());
9458 
9459   // C++0x [class.copy]p9:
9460   //   If the definition of a class X does not explicitly declare a move
9461   //   constructor, one will be implicitly declared as defaulted if and only if:
9462   //   [...]
9463   //   - the move constructor would not be implicitly defined as deleted.
9464   if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9465     // Cache this result so that we don't try to generate this over and over
9466     // on every lookup, leaking memory and wasting time.
9467     ClassDecl->setFailedImplicitMoveConstructor();
9468     return 0;
9469   }
9470 
9471   // Note that we have declared this constructor.
9472   ++ASTContext::NumImplicitMoveConstructorsDeclared;
9473 
9474   if (Scope *S = getScopeForContext(ClassDecl))
9475     PushOnScopeChains(MoveConstructor, S, false);
9476   ClassDecl->addDecl(MoveConstructor);
9477 
9478   return MoveConstructor;
9479 }
9480 
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)9481 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9482                                    CXXConstructorDecl *MoveConstructor) {
9483   assert((MoveConstructor->isDefaulted() &&
9484           MoveConstructor->isMoveConstructor() &&
9485           !MoveConstructor->doesThisDeclarationHaveABody() &&
9486           !MoveConstructor->isDeleted()) &&
9487          "DefineImplicitMoveConstructor - call it for implicit move ctor");
9488 
9489   CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9490   assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9491 
9492   SynthesizedFunctionScope Scope(*this, MoveConstructor);
9493   DiagnosticErrorTrap Trap(Diags);
9494 
9495   if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9496       Trap.hasErrorOccurred()) {
9497     Diag(CurrentLocation, diag::note_member_synthesized_at)
9498       << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9499     MoveConstructor->setInvalidDecl();
9500   }  else {
9501     Sema::CompoundScopeRAII CompoundScope(*this);
9502     MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9503                                                MoveConstructor->getLocation(),
9504                                                MultiStmtArg(),
9505                                                /*isStmtExpr=*/false)
9506                                                               .takeAs<Stmt>());
9507     MoveConstructor->setImplicitlyDefined(true);
9508   }
9509 
9510   MoveConstructor->setUsed();
9511 
9512   if (ASTMutationListener *L = getASTMutationListener()) {
9513     L->CompletedImplicitDefinition(MoveConstructor);
9514   }
9515 }
9516 
isImplicitlyDeleted(FunctionDecl * FD)9517 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9518   return FD->isDeleted() &&
9519          (FD->isDefaulted() || FD->isImplicit()) &&
9520          isa<CXXMethodDecl>(FD);
9521 }
9522 
9523 /// \brief Mark the call operator of the given lambda closure type as "used".
markLambdaCallOperatorUsed(Sema & S,CXXRecordDecl * Lambda)9524 static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9525   CXXMethodDecl *CallOperator
9526     = cast<CXXMethodDecl>(
9527         Lambda->lookup(
9528           S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9529   CallOperator->setReferenced();
9530   CallOperator->setUsed();
9531 }
9532 
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)9533 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9534        SourceLocation CurrentLocation,
9535        CXXConversionDecl *Conv)
9536 {
9537   CXXRecordDecl *Lambda = Conv->getParent();
9538 
9539   // Make sure that the lambda call operator is marked used.
9540   markLambdaCallOperatorUsed(*this, Lambda);
9541 
9542   Conv->setUsed();
9543 
9544   SynthesizedFunctionScope Scope(*this, Conv);
9545   DiagnosticErrorTrap Trap(Diags);
9546 
9547   // Return the address of the __invoke function.
9548   DeclarationName InvokeName = &Context.Idents.get("__invoke");
9549   CXXMethodDecl *Invoke
9550     = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9551   Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9552                                        VK_LValue, Conv->getLocation()).take();
9553   assert(FunctionRef && "Can't refer to __invoke function?");
9554   Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9555   Conv->setBody(new (Context) CompoundStmt(Context, Return,
9556                                            Conv->getLocation(),
9557                                            Conv->getLocation()));
9558 
9559   // Fill in the __invoke function with a dummy implementation. IR generation
9560   // will fill in the actual details.
9561   Invoke->setUsed();
9562   Invoke->setReferenced();
9563   Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9564 
9565   if (ASTMutationListener *L = getASTMutationListener()) {
9566     L->CompletedImplicitDefinition(Conv);
9567     L->CompletedImplicitDefinition(Invoke);
9568   }
9569 }
9570 
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)9571 void Sema::DefineImplicitLambdaToBlockPointerConversion(
9572        SourceLocation CurrentLocation,
9573        CXXConversionDecl *Conv)
9574 {
9575   Conv->setUsed();
9576 
9577   SynthesizedFunctionScope Scope(*this, Conv);
9578   DiagnosticErrorTrap Trap(Diags);
9579 
9580   // Copy-initialize the lambda object as needed to capture it.
9581   Expr *This = ActOnCXXThis(CurrentLocation).take();
9582   Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9583 
9584   ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9585                                                         Conv->getLocation(),
9586                                                         Conv, DerefThis);
9587 
9588   // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9589   // behavior.  Note that only the general conversion function does this
9590   // (since it's unusable otherwise); in the case where we inline the
9591   // block literal, it has block literal lifetime semantics.
9592   if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9593     BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9594                                           CK_CopyAndAutoreleaseBlockObject,
9595                                           BuildBlock.get(), 0, VK_RValue);
9596 
9597   if (BuildBlock.isInvalid()) {
9598     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9599     Conv->setInvalidDecl();
9600     return;
9601   }
9602 
9603   // Create the return statement that returns the block from the conversion
9604   // function.
9605   StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9606   if (Return.isInvalid()) {
9607     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9608     Conv->setInvalidDecl();
9609     return;
9610   }
9611 
9612   // Set the body of the conversion function.
9613   Stmt *ReturnS = Return.take();
9614   Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
9615                                            Conv->getLocation(),
9616                                            Conv->getLocation()));
9617 
9618   // We're done; notify the mutation listener, if any.
9619   if (ASTMutationListener *L = getASTMutationListener()) {
9620     L->CompletedImplicitDefinition(Conv);
9621   }
9622 }
9623 
9624 /// \brief Determine whether the given list arguments contains exactly one
9625 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)9626 static bool hasOneRealArgument(MultiExprArg Args) {
9627   switch (Args.size()) {
9628   case 0:
9629     return false;
9630 
9631   default:
9632     if (!Args[1]->isDefaultArgument())
9633       return false;
9634 
9635     // fall through
9636   case 1:
9637     return !Args[0]->isDefaultArgument();
9638   }
9639 
9640   return false;
9641 }
9642 
9643 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)9644 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9645                             CXXConstructorDecl *Constructor,
9646                             MultiExprArg ExprArgs,
9647                             bool HadMultipleCandidates,
9648                             bool IsListInitialization,
9649                             bool RequiresZeroInit,
9650                             unsigned ConstructKind,
9651                             SourceRange ParenRange) {
9652   bool Elidable = false;
9653 
9654   // C++0x [class.copy]p34:
9655   //   When certain criteria are met, an implementation is allowed to
9656   //   omit the copy/move construction of a class object, even if the
9657   //   copy/move constructor and/or destructor for the object have
9658   //   side effects. [...]
9659   //     - when a temporary class object that has not been bound to a
9660   //       reference (12.2) would be copied/moved to a class object
9661   //       with the same cv-unqualified type, the copy/move operation
9662   //       can be omitted by constructing the temporary object
9663   //       directly into the target of the omitted copy/move
9664   if (ConstructKind == CXXConstructExpr::CK_Complete &&
9665       Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9666     Expr *SubExpr = ExprArgs[0];
9667     Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9668   }
9669 
9670   return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9671                                Elidable, ExprArgs, HadMultipleCandidates,
9672                                IsListInitialization, RequiresZeroInit,
9673                                ConstructKind, ParenRange);
9674 }
9675 
9676 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
9677 /// including handling of its default argument expressions.
9678 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)9679 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9680                             CXXConstructorDecl *Constructor, bool Elidable,
9681                             MultiExprArg ExprArgs,
9682                             bool HadMultipleCandidates,
9683                             bool IsListInitialization,
9684                             bool RequiresZeroInit,
9685                             unsigned ConstructKind,
9686                             SourceRange ParenRange) {
9687   MarkFunctionReferenced(ConstructLoc, Constructor);
9688   return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9689                                         Constructor, Elidable, ExprArgs,
9690                                         HadMultipleCandidates,
9691                                         IsListInitialization, RequiresZeroInit,
9692               static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9693                                         ParenRange));
9694 }
9695 
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)9696 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9697   if (VD->isInvalidDecl()) return;
9698 
9699   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9700   if (ClassDecl->isInvalidDecl()) return;
9701   if (ClassDecl->hasIrrelevantDestructor()) return;
9702   if (ClassDecl->isDependentContext()) return;
9703 
9704   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9705   MarkFunctionReferenced(VD->getLocation(), Destructor);
9706   CheckDestructorAccess(VD->getLocation(), Destructor,
9707                         PDiag(diag::err_access_dtor_var)
9708                         << VD->getDeclName()
9709                         << VD->getType());
9710   DiagnoseUseOfDecl(Destructor, VD->getLocation());
9711 
9712   if (!VD->hasGlobalStorage()) return;
9713 
9714   // Emit warning for non-trivial dtor in global scope (a real global,
9715   // class-static, function-static).
9716   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9717 
9718   // TODO: this should be re-enabled for static locals by !CXAAtExit
9719   if (!VD->isStaticLocal())
9720     Diag(VD->getLocation(), diag::warn_global_destructor);
9721 }
9722 
9723 /// \brief Given a constructor and the set of arguments provided for the
9724 /// constructor, convert the arguments and add any required default arguments
9725 /// to form a proper call to this constructor.
9726 ///
9727 /// \returns true if an error occurred, false otherwise.
9728 bool
CompleteConstructorCall(CXXConstructorDecl * Constructor,MultiExprArg ArgsPtr,SourceLocation Loc,SmallVectorImpl<Expr * > & ConvertedArgs,bool AllowExplicit,bool IsListInitialization)9729 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9730                               MultiExprArg ArgsPtr,
9731                               SourceLocation Loc,
9732                               SmallVectorImpl<Expr*> &ConvertedArgs,
9733                               bool AllowExplicit,
9734                               bool IsListInitialization) {
9735   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9736   unsigned NumArgs = ArgsPtr.size();
9737   Expr **Args = ArgsPtr.data();
9738 
9739   const FunctionProtoType *Proto
9740     = Constructor->getType()->getAs<FunctionProtoType>();
9741   assert(Proto && "Constructor without a prototype?");
9742   unsigned NumArgsInProto = Proto->getNumArgs();
9743 
9744   // If too few arguments are available, we'll fill in the rest with defaults.
9745   if (NumArgs < NumArgsInProto)
9746     ConvertedArgs.reserve(NumArgsInProto);
9747   else
9748     ConvertedArgs.reserve(NumArgs);
9749 
9750   VariadicCallType CallType =
9751     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9752   SmallVector<Expr *, 8> AllArgs;
9753   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9754                                         Proto, 0, Args, NumArgs, AllArgs,
9755                                         CallType, AllowExplicit,
9756                                         IsListInitialization);
9757   ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9758 
9759   DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9760 
9761   CheckConstructorCall(Constructor,
9762                        llvm::makeArrayRef<const Expr *>(AllArgs.data(),
9763                                                         AllArgs.size()),
9764                        Proto, Loc);
9765 
9766   return Invalid;
9767 }
9768 
9769 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)9770 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9771                                        const FunctionDecl *FnDecl) {
9772   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9773   if (isa<NamespaceDecl>(DC)) {
9774     return SemaRef.Diag(FnDecl->getLocation(),
9775                         diag::err_operator_new_delete_declared_in_namespace)
9776       << FnDecl->getDeclName();
9777   }
9778 
9779   if (isa<TranslationUnitDecl>(DC) &&
9780       FnDecl->getStorageClass() == SC_Static) {
9781     return SemaRef.Diag(FnDecl->getLocation(),
9782                         diag::err_operator_new_delete_declared_static)
9783       << FnDecl->getDeclName();
9784   }
9785 
9786   return false;
9787 }
9788 
9789 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)9790 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9791                             CanQualType ExpectedResultType,
9792                             CanQualType ExpectedFirstParamType,
9793                             unsigned DependentParamTypeDiag,
9794                             unsigned InvalidParamTypeDiag) {
9795   QualType ResultType =
9796     FnDecl->getType()->getAs<FunctionType>()->getResultType();
9797 
9798   // Check that the result type is not dependent.
9799   if (ResultType->isDependentType())
9800     return SemaRef.Diag(FnDecl->getLocation(),
9801                         diag::err_operator_new_delete_dependent_result_type)
9802     << FnDecl->getDeclName() << ExpectedResultType;
9803 
9804   // Check that the result type is what we expect.
9805   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9806     return SemaRef.Diag(FnDecl->getLocation(),
9807                         diag::err_operator_new_delete_invalid_result_type)
9808     << FnDecl->getDeclName() << ExpectedResultType;
9809 
9810   // A function template must have at least 2 parameters.
9811   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9812     return SemaRef.Diag(FnDecl->getLocation(),
9813                       diag::err_operator_new_delete_template_too_few_parameters)
9814         << FnDecl->getDeclName();
9815 
9816   // The function decl must have at least 1 parameter.
9817   if (FnDecl->getNumParams() == 0)
9818     return SemaRef.Diag(FnDecl->getLocation(),
9819                         diag::err_operator_new_delete_too_few_parameters)
9820       << FnDecl->getDeclName();
9821 
9822   // Check the first parameter type is not dependent.
9823   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9824   if (FirstParamType->isDependentType())
9825     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9826       << FnDecl->getDeclName() << ExpectedFirstParamType;
9827 
9828   // Check that the first parameter type is what we expect.
9829   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9830       ExpectedFirstParamType)
9831     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9832     << FnDecl->getDeclName() << ExpectedFirstParamType;
9833 
9834   return false;
9835 }
9836 
9837 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)9838 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9839   // C++ [basic.stc.dynamic.allocation]p1:
9840   //   A program is ill-formed if an allocation function is declared in a
9841   //   namespace scope other than global scope or declared static in global
9842   //   scope.
9843   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9844     return true;
9845 
9846   CanQualType SizeTy =
9847     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9848 
9849   // C++ [basic.stc.dynamic.allocation]p1:
9850   //  The return type shall be void*. The first parameter shall have type
9851   //  std::size_t.
9852   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9853                                   SizeTy,
9854                                   diag::err_operator_new_dependent_param_type,
9855                                   diag::err_operator_new_param_type))
9856     return true;
9857 
9858   // C++ [basic.stc.dynamic.allocation]p1:
9859   //  The first parameter shall not have an associated default argument.
9860   if (FnDecl->getParamDecl(0)->hasDefaultArg())
9861     return SemaRef.Diag(FnDecl->getLocation(),
9862                         diag::err_operator_new_default_arg)
9863       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9864 
9865   return false;
9866 }
9867 
9868 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,FunctionDecl * FnDecl)9869 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
9870   // C++ [basic.stc.dynamic.deallocation]p1:
9871   //   A program is ill-formed if deallocation functions are declared in a
9872   //   namespace scope other than global scope or declared static in global
9873   //   scope.
9874   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9875     return true;
9876 
9877   // C++ [basic.stc.dynamic.deallocation]p2:
9878   //   Each deallocation function shall return void and its first parameter
9879   //   shall be void*.
9880   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9881                                   SemaRef.Context.VoidPtrTy,
9882                                  diag::err_operator_delete_dependent_param_type,
9883                                  diag::err_operator_delete_param_type))
9884     return true;
9885 
9886   return false;
9887 }
9888 
9889 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
9890 /// of this overloaded operator is well-formed. If so, returns false;
9891 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)9892 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9893   assert(FnDecl && FnDecl->isOverloadedOperator() &&
9894          "Expected an overloaded operator declaration");
9895 
9896   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9897 
9898   // C++ [over.oper]p5:
9899   //   The allocation and deallocation functions, operator new,
9900   //   operator new[], operator delete and operator delete[], are
9901   //   described completely in 3.7.3. The attributes and restrictions
9902   //   found in the rest of this subclause do not apply to them unless
9903   //   explicitly stated in 3.7.3.
9904   if (Op == OO_Delete || Op == OO_Array_Delete)
9905     return CheckOperatorDeleteDeclaration(*this, FnDecl);
9906 
9907   if (Op == OO_New || Op == OO_Array_New)
9908     return CheckOperatorNewDeclaration(*this, FnDecl);
9909 
9910   // C++ [over.oper]p6:
9911   //   An operator function shall either be a non-static member
9912   //   function or be a non-member function and have at least one
9913   //   parameter whose type is a class, a reference to a class, an
9914   //   enumeration, or a reference to an enumeration.
9915   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9916     if (MethodDecl->isStatic())
9917       return Diag(FnDecl->getLocation(),
9918                   diag::err_operator_overload_static) << FnDecl->getDeclName();
9919   } else {
9920     bool ClassOrEnumParam = false;
9921     for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9922                                    ParamEnd = FnDecl->param_end();
9923          Param != ParamEnd; ++Param) {
9924       QualType ParamType = (*Param)->getType().getNonReferenceType();
9925       if (ParamType->isDependentType() || ParamType->isRecordType() ||
9926           ParamType->isEnumeralType()) {
9927         ClassOrEnumParam = true;
9928         break;
9929       }
9930     }
9931 
9932     if (!ClassOrEnumParam)
9933       return Diag(FnDecl->getLocation(),
9934                   diag::err_operator_overload_needs_class_or_enum)
9935         << FnDecl->getDeclName();
9936   }
9937 
9938   // C++ [over.oper]p8:
9939   //   An operator function cannot have default arguments (8.3.6),
9940   //   except where explicitly stated below.
9941   //
9942   // Only the function-call operator allows default arguments
9943   // (C++ [over.call]p1).
9944   if (Op != OO_Call) {
9945     for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9946          Param != FnDecl->param_end(); ++Param) {
9947       if ((*Param)->hasDefaultArg())
9948         return Diag((*Param)->getLocation(),
9949                     diag::err_operator_overload_default_arg)
9950           << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9951     }
9952   }
9953 
9954   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9955     { false, false, false }
9956 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9957     , { Unary, Binary, MemberOnly }
9958 #include "clang/Basic/OperatorKinds.def"
9959   };
9960 
9961   bool CanBeUnaryOperator = OperatorUses[Op][0];
9962   bool CanBeBinaryOperator = OperatorUses[Op][1];
9963   bool MustBeMemberOperator = OperatorUses[Op][2];
9964 
9965   // C++ [over.oper]p8:
9966   //   [...] Operator functions cannot have more or fewer parameters
9967   //   than the number required for the corresponding operator, as
9968   //   described in the rest of this subclause.
9969   unsigned NumParams = FnDecl->getNumParams()
9970                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9971   if (Op != OO_Call &&
9972       ((NumParams == 1 && !CanBeUnaryOperator) ||
9973        (NumParams == 2 && !CanBeBinaryOperator) ||
9974        (NumParams < 1) || (NumParams > 2))) {
9975     // We have the wrong number of parameters.
9976     unsigned ErrorKind;
9977     if (CanBeUnaryOperator && CanBeBinaryOperator) {
9978       ErrorKind = 2;  // 2 -> unary or binary.
9979     } else if (CanBeUnaryOperator) {
9980       ErrorKind = 0;  // 0 -> unary
9981     } else {
9982       assert(CanBeBinaryOperator &&
9983              "All non-call overloaded operators are unary or binary!");
9984       ErrorKind = 1;  // 1 -> binary
9985     }
9986 
9987     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9988       << FnDecl->getDeclName() << NumParams << ErrorKind;
9989   }
9990 
9991   // Overloaded operators other than operator() cannot be variadic.
9992   if (Op != OO_Call &&
9993       FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9994     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9995       << FnDecl->getDeclName();
9996   }
9997 
9998   // Some operators must be non-static member functions.
9999   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10000     return Diag(FnDecl->getLocation(),
10001                 diag::err_operator_overload_must_be_member)
10002       << FnDecl->getDeclName();
10003   }
10004 
10005   // C++ [over.inc]p1:
10006   //   The user-defined function called operator++ implements the
10007   //   prefix and postfix ++ operator. If this function is a member
10008   //   function with no parameters, or a non-member function with one
10009   //   parameter of class or enumeration type, it defines the prefix
10010   //   increment operator ++ for objects of that type. If the function
10011   //   is a member function with one parameter (which shall be of type
10012   //   int) or a non-member function with two parameters (the second
10013   //   of which shall be of type int), it defines the postfix
10014   //   increment operator ++ for objects of that type.
10015   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10016     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10017     bool ParamIsInt = false;
10018     if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10019       ParamIsInt = BT->getKind() == BuiltinType::Int;
10020 
10021     if (!ParamIsInt)
10022       return Diag(LastParam->getLocation(),
10023                   diag::err_operator_overload_post_incdec_must_be_int)
10024         << LastParam->getType() << (Op == OO_MinusMinus);
10025   }
10026 
10027   return false;
10028 }
10029 
10030 /// CheckLiteralOperatorDeclaration - Check whether the declaration
10031 /// of this literal operator function is well-formed. If so, returns
10032 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)10033 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10034   if (isa<CXXMethodDecl>(FnDecl)) {
10035     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10036       << FnDecl->getDeclName();
10037     return true;
10038   }
10039 
10040   if (FnDecl->isExternC()) {
10041     Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10042     return true;
10043   }
10044 
10045   bool Valid = false;
10046 
10047   // This might be the definition of a literal operator template.
10048   FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10049   // This might be a specialization of a literal operator template.
10050   if (!TpDecl)
10051     TpDecl = FnDecl->getPrimaryTemplate();
10052 
10053   // template <char...> type operator "" name() is the only valid template
10054   // signature, and the only valid signature with no parameters.
10055   if (TpDecl) {
10056     if (FnDecl->param_size() == 0) {
10057       // Must have only one template parameter
10058       TemplateParameterList *Params = TpDecl->getTemplateParameters();
10059       if (Params->size() == 1) {
10060         NonTypeTemplateParmDecl *PmDecl =
10061           dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10062 
10063         // The template parameter must be a char parameter pack.
10064         if (PmDecl && PmDecl->isTemplateParameterPack() &&
10065             Context.hasSameType(PmDecl->getType(), Context.CharTy))
10066           Valid = true;
10067       }
10068     }
10069   } else if (FnDecl->param_size()) {
10070     // Check the first parameter
10071     FunctionDecl::param_iterator Param = FnDecl->param_begin();
10072 
10073     QualType T = (*Param)->getType().getUnqualifiedType();
10074 
10075     // unsigned long long int, long double, and any character type are allowed
10076     // as the only parameters.
10077     if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10078         Context.hasSameType(T, Context.LongDoubleTy) ||
10079         Context.hasSameType(T, Context.CharTy) ||
10080         Context.hasSameType(T, Context.WCharTy) ||
10081         Context.hasSameType(T, Context.Char16Ty) ||
10082         Context.hasSameType(T, Context.Char32Ty)) {
10083       if (++Param == FnDecl->param_end())
10084         Valid = true;
10085       goto FinishedParams;
10086     }
10087 
10088     // Otherwise it must be a pointer to const; let's strip those qualifiers.
10089     const PointerType *PT = T->getAs<PointerType>();
10090     if (!PT)
10091       goto FinishedParams;
10092     T = PT->getPointeeType();
10093     if (!T.isConstQualified() || T.isVolatileQualified())
10094       goto FinishedParams;
10095     T = T.getUnqualifiedType();
10096 
10097     // Move on to the second parameter;
10098     ++Param;
10099 
10100     // If there is no second parameter, the first must be a const char *
10101     if (Param == FnDecl->param_end()) {
10102       if (Context.hasSameType(T, Context.CharTy))
10103         Valid = true;
10104       goto FinishedParams;
10105     }
10106 
10107     // const char *, const wchar_t*, const char16_t*, and const char32_t*
10108     // are allowed as the first parameter to a two-parameter function
10109     if (!(Context.hasSameType(T, Context.CharTy) ||
10110           Context.hasSameType(T, Context.WCharTy) ||
10111           Context.hasSameType(T, Context.Char16Ty) ||
10112           Context.hasSameType(T, Context.Char32Ty)))
10113       goto FinishedParams;
10114 
10115     // The second and final parameter must be an std::size_t
10116     T = (*Param)->getType().getUnqualifiedType();
10117     if (Context.hasSameType(T, Context.getSizeType()) &&
10118         ++Param == FnDecl->param_end())
10119       Valid = true;
10120   }
10121 
10122   // FIXME: This diagnostic is absolutely terrible.
10123 FinishedParams:
10124   if (!Valid) {
10125     Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10126       << FnDecl->getDeclName();
10127     return true;
10128   }
10129 
10130   // A parameter-declaration-clause containing a default argument is not
10131   // equivalent to any of the permitted forms.
10132   for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10133                                     ParamEnd = FnDecl->param_end();
10134        Param != ParamEnd; ++Param) {
10135     if ((*Param)->hasDefaultArg()) {
10136       Diag((*Param)->getDefaultArgRange().getBegin(),
10137            diag::err_literal_operator_default_argument)
10138         << (*Param)->getDefaultArgRange();
10139       break;
10140     }
10141   }
10142 
10143   StringRef LiteralName
10144     = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10145   if (LiteralName[0] != '_') {
10146     // C++11 [usrlit.suffix]p1:
10147     //   Literal suffix identifiers that do not start with an underscore
10148     //   are reserved for future standardization.
10149     Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10150   }
10151 
10152   return false;
10153 }
10154 
10155 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10156 /// linkage specification, including the language and (if present)
10157 /// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10158 /// the location of the language string literal, which is provided
10159 /// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10160 /// the '{' brace. Otherwise, this linkage specification does not
10161 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,SourceLocation LangLoc,StringRef Lang,SourceLocation LBraceLoc)10162 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10163                                            SourceLocation LangLoc,
10164                                            StringRef Lang,
10165                                            SourceLocation LBraceLoc) {
10166   LinkageSpecDecl::LanguageIDs Language;
10167   if (Lang == "\"C\"")
10168     Language = LinkageSpecDecl::lang_c;
10169   else if (Lang == "\"C++\"")
10170     Language = LinkageSpecDecl::lang_cxx;
10171   else {
10172     Diag(LangLoc, diag::err_bad_language);
10173     return 0;
10174   }
10175 
10176   // FIXME: Add all the various semantics of linkage specifications
10177 
10178   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10179                                                ExternLoc, LangLoc, Language);
10180   CurContext->addDecl(D);
10181   PushDeclContext(S, D);
10182   return D;
10183 }
10184 
10185 /// ActOnFinishLinkageSpecification - Complete the definition of
10186 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
10187 /// valid, it's the position of the closing '}' brace in a linkage
10188 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)10189 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10190                                             Decl *LinkageSpec,
10191                                             SourceLocation RBraceLoc) {
10192   if (LinkageSpec) {
10193     if (RBraceLoc.isValid()) {
10194       LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10195       LSDecl->setRBraceLoc(RBraceLoc);
10196     }
10197     PopDeclContext();
10198   }
10199   return LinkageSpec;
10200 }
10201 
ActOnEmptyDeclaration(Scope * S,AttributeList * AttrList,SourceLocation SemiLoc)10202 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10203                                   AttributeList *AttrList,
10204                                   SourceLocation SemiLoc) {
10205   Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10206   // Attribute declarations appertain to empty declaration so we handle
10207   // them here.
10208   if (AttrList)
10209     ProcessDeclAttributeList(S, ED, AttrList);
10210 
10211   CurContext->addDecl(ED);
10212   return ED;
10213 }
10214 
10215 /// \brief Perform semantic analysis for the variable declaration that
10216 /// occurs within a C++ catch clause, returning the newly-created
10217 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)10218 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10219                                          TypeSourceInfo *TInfo,
10220                                          SourceLocation StartLoc,
10221                                          SourceLocation Loc,
10222                                          IdentifierInfo *Name) {
10223   bool Invalid = false;
10224   QualType ExDeclType = TInfo->getType();
10225 
10226   // Arrays and functions decay.
10227   if (ExDeclType->isArrayType())
10228     ExDeclType = Context.getArrayDecayedType(ExDeclType);
10229   else if (ExDeclType->isFunctionType())
10230     ExDeclType = Context.getPointerType(ExDeclType);
10231 
10232   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10233   // The exception-declaration shall not denote a pointer or reference to an
10234   // incomplete type, other than [cv] void*.
10235   // N2844 forbids rvalue references.
10236   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10237     Diag(Loc, diag::err_catch_rvalue_ref);
10238     Invalid = true;
10239   }
10240 
10241   QualType BaseType = ExDeclType;
10242   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10243   unsigned DK = diag::err_catch_incomplete;
10244   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10245     BaseType = Ptr->getPointeeType();
10246     Mode = 1;
10247     DK = diag::err_catch_incomplete_ptr;
10248   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10249     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10250     BaseType = Ref->getPointeeType();
10251     Mode = 2;
10252     DK = diag::err_catch_incomplete_ref;
10253   }
10254   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10255       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10256     Invalid = true;
10257 
10258   if (!Invalid && !ExDeclType->isDependentType() &&
10259       RequireNonAbstractType(Loc, ExDeclType,
10260                              diag::err_abstract_type_in_decl,
10261                              AbstractVariableType))
10262     Invalid = true;
10263 
10264   // Only the non-fragile NeXT runtime currently supports C++ catches
10265   // of ObjC types, and no runtime supports catching ObjC types by value.
10266   if (!Invalid && getLangOpts().ObjC1) {
10267     QualType T = ExDeclType;
10268     if (const ReferenceType *RT = T->getAs<ReferenceType>())
10269       T = RT->getPointeeType();
10270 
10271     if (T->isObjCObjectType()) {
10272       Diag(Loc, diag::err_objc_object_catch);
10273       Invalid = true;
10274     } else if (T->isObjCObjectPointerType()) {
10275       // FIXME: should this be a test for macosx-fragile specifically?
10276       if (getLangOpts().ObjCRuntime.isFragile())
10277         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10278     }
10279   }
10280 
10281   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10282                                     ExDeclType, TInfo, SC_None, SC_None);
10283   ExDecl->setExceptionVariable(true);
10284 
10285   // In ARC, infer 'retaining' for variables of retainable type.
10286   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10287     Invalid = true;
10288 
10289   if (!Invalid && !ExDeclType->isDependentType()) {
10290     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10291       // C++ [except.handle]p16:
10292       //   The object declared in an exception-declaration or, if the
10293       //   exception-declaration does not specify a name, a temporary (12.2) is
10294       //   copy-initialized (8.5) from the exception object. [...]
10295       //   The object is destroyed when the handler exits, after the destruction
10296       //   of any automatic objects initialized within the handler.
10297       //
10298       // We just pretend to initialize the object with itself, then make sure
10299       // it can be destroyed later.
10300       QualType initType = ExDeclType;
10301 
10302       InitializedEntity entity =
10303         InitializedEntity::InitializeVariable(ExDecl);
10304       InitializationKind initKind =
10305         InitializationKind::CreateCopy(Loc, SourceLocation());
10306 
10307       Expr *opaqueValue =
10308         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10309       InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
10310       ExprResult result = sequence.Perform(*this, entity, initKind,
10311                                            MultiExprArg(&opaqueValue, 1));
10312       if (result.isInvalid())
10313         Invalid = true;
10314       else {
10315         // If the constructor used was non-trivial, set this as the
10316         // "initializer".
10317         CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10318         if (!construct->getConstructor()->isTrivial()) {
10319           Expr *init = MaybeCreateExprWithCleanups(construct);
10320           ExDecl->setInit(init);
10321         }
10322 
10323         // And make sure it's destructable.
10324         FinalizeVarWithDestructor(ExDecl, recordType);
10325       }
10326     }
10327   }
10328 
10329   if (Invalid)
10330     ExDecl->setInvalidDecl();
10331 
10332   return ExDecl;
10333 }
10334 
10335 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10336 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)10337 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10338   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10339   bool Invalid = D.isInvalidType();
10340 
10341   // Check for unexpanded parameter packs.
10342   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10343                                       UPPC_ExceptionType)) {
10344     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10345                                              D.getIdentifierLoc());
10346     Invalid = true;
10347   }
10348 
10349   IdentifierInfo *II = D.getIdentifier();
10350   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10351                                              LookupOrdinaryName,
10352                                              ForRedeclaration)) {
10353     // The scope should be freshly made just for us. There is just no way
10354     // it contains any previous declaration.
10355     assert(!S->isDeclScope(PrevDecl));
10356     if (PrevDecl->isTemplateParameter()) {
10357       // Maybe we will complain about the shadowed template parameter.
10358       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10359       PrevDecl = 0;
10360     }
10361   }
10362 
10363   if (D.getCXXScopeSpec().isSet() && !Invalid) {
10364     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10365       << D.getCXXScopeSpec().getRange();
10366     Invalid = true;
10367   }
10368 
10369   VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10370                                               D.getLocStart(),
10371                                               D.getIdentifierLoc(),
10372                                               D.getIdentifier());
10373   if (Invalid)
10374     ExDecl->setInvalidDecl();
10375 
10376   // Add the exception declaration into this scope.
10377   if (II)
10378     PushOnScopeChains(ExDecl, S);
10379   else
10380     CurContext->addDecl(ExDecl);
10381 
10382   ProcessDeclAttributes(S, ExDecl, D);
10383   return ExDecl;
10384 }
10385 
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr,SourceLocation RParenLoc)10386 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10387                                          Expr *AssertExpr,
10388                                          Expr *AssertMessageExpr,
10389                                          SourceLocation RParenLoc) {
10390   StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10391 
10392   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10393     return 0;
10394 
10395   return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10396                                       AssertMessage, RParenLoc, false);
10397 }
10398 
BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * AssertMessage,SourceLocation RParenLoc,bool Failed)10399 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10400                                          Expr *AssertExpr,
10401                                          StringLiteral *AssertMessage,
10402                                          SourceLocation RParenLoc,
10403                                          bool Failed) {
10404   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10405       !Failed) {
10406     // In a static_assert-declaration, the constant-expression shall be a
10407     // constant expression that can be contextually converted to bool.
10408     ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10409     if (Converted.isInvalid())
10410       Failed = true;
10411 
10412     llvm::APSInt Cond;
10413     if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10414           diag::err_static_assert_expression_is_not_constant,
10415           /*AllowFold=*/false).isInvalid())
10416       Failed = true;
10417 
10418     if (!Failed && !Cond) {
10419       SmallString<256> MsgBuffer;
10420       llvm::raw_svector_ostream Msg(MsgBuffer);
10421       AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10422       Diag(StaticAssertLoc, diag::err_static_assert_failed)
10423         << Msg.str() << AssertExpr->getSourceRange();
10424       Failed = true;
10425     }
10426   }
10427 
10428   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10429                                         AssertExpr, AssertMessage, RParenLoc,
10430                                         Failed);
10431 
10432   CurContext->addDecl(Decl);
10433   return Decl;
10434 }
10435 
10436 /// \brief Perform semantic analysis of the given friend type declaration.
10437 ///
10438 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation LocStart,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)10439 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10440                                       SourceLocation FriendLoc,
10441                                       TypeSourceInfo *TSInfo) {
10442   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10443 
10444   QualType T = TSInfo->getType();
10445   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10446 
10447   // C++03 [class.friend]p2:
10448   //   An elaborated-type-specifier shall be used in a friend declaration
10449   //   for a class.*
10450   //
10451   //   * The class-key of the elaborated-type-specifier is required.
10452   if (!ActiveTemplateInstantiations.empty()) {
10453     // Do not complain about the form of friend template types during
10454     // template instantiation; we will already have complained when the
10455     // template was declared.
10456   } else {
10457     if (!T->isElaboratedTypeSpecifier()) {
10458       // If we evaluated the type to a record type, suggest putting
10459       // a tag in front.
10460       if (const RecordType *RT = T->getAs<RecordType>()) {
10461         RecordDecl *RD = RT->getDecl();
10462 
10463         std::string InsertionText = std::string(" ") + RD->getKindName();
10464 
10465         Diag(TypeRange.getBegin(),
10466              getLangOpts().CPlusPlus11 ?
10467                diag::warn_cxx98_compat_unelaborated_friend_type :
10468                diag::ext_unelaborated_friend_type)
10469           << (unsigned) RD->getTagKind()
10470           << T
10471           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10472                                         InsertionText);
10473       } else {
10474         Diag(FriendLoc,
10475              getLangOpts().CPlusPlus11 ?
10476                diag::warn_cxx98_compat_nonclass_type_friend :
10477                diag::ext_nonclass_type_friend)
10478           << T
10479           << TypeRange;
10480       }
10481     } else if (T->getAs<EnumType>()) {
10482       Diag(FriendLoc,
10483            getLangOpts().CPlusPlus11 ?
10484              diag::warn_cxx98_compat_enum_friend :
10485              diag::ext_enum_friend)
10486         << T
10487         << TypeRange;
10488     }
10489 
10490     // C++11 [class.friend]p3:
10491     //   A friend declaration that does not declare a function shall have one
10492     //   of the following forms:
10493     //     friend elaborated-type-specifier ;
10494     //     friend simple-type-specifier ;
10495     //     friend typename-specifier ;
10496     if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10497       Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10498   }
10499 
10500   //   If the type specifier in a friend declaration designates a (possibly
10501   //   cv-qualified) class type, that class is declared as a friend; otherwise,
10502   //   the friend declaration is ignored.
10503   return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10504 }
10505 
10506 /// Handle a friend tag declaration where the scope specifier was
10507 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,MultiTemplateParamsArg TempParamLists)10508 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10509                                     unsigned TagSpec, SourceLocation TagLoc,
10510                                     CXXScopeSpec &SS,
10511                                     IdentifierInfo *Name,
10512                                     SourceLocation NameLoc,
10513                                     AttributeList *Attr,
10514                                     MultiTemplateParamsArg TempParamLists) {
10515   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10516 
10517   bool isExplicitSpecialization = false;
10518   bool Invalid = false;
10519 
10520   if (TemplateParameterList *TemplateParams
10521         = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10522                                                   TempParamLists.data(),
10523                                                   TempParamLists.size(),
10524                                                   /*friend*/ true,
10525                                                   isExplicitSpecialization,
10526                                                   Invalid)) {
10527     if (TemplateParams->size() > 0) {
10528       // This is a declaration of a class template.
10529       if (Invalid)
10530         return 0;
10531 
10532       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10533                                 SS, Name, NameLoc, Attr,
10534                                 TemplateParams, AS_public,
10535                                 /*ModulePrivateLoc=*/SourceLocation(),
10536                                 TempParamLists.size() - 1,
10537                                 TempParamLists.data()).take();
10538     } else {
10539       // The "template<>" header is extraneous.
10540       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10541         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10542       isExplicitSpecialization = true;
10543     }
10544   }
10545 
10546   if (Invalid) return 0;
10547 
10548   bool isAllExplicitSpecializations = true;
10549   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10550     if (TempParamLists[I]->size()) {
10551       isAllExplicitSpecializations = false;
10552       break;
10553     }
10554   }
10555 
10556   // FIXME: don't ignore attributes.
10557 
10558   // If it's explicit specializations all the way down, just forget
10559   // about the template header and build an appropriate non-templated
10560   // friend.  TODO: for source fidelity, remember the headers.
10561   if (isAllExplicitSpecializations) {
10562     if (SS.isEmpty()) {
10563       bool Owned = false;
10564       bool IsDependent = false;
10565       return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10566                       Attr, AS_public,
10567                       /*ModulePrivateLoc=*/SourceLocation(),
10568                       MultiTemplateParamsArg(), Owned, IsDependent,
10569                       /*ScopedEnumKWLoc=*/SourceLocation(),
10570                       /*ScopedEnumUsesClassTag=*/false,
10571                       /*UnderlyingType=*/TypeResult());
10572     }
10573 
10574     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10575     ElaboratedTypeKeyword Keyword
10576       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10577     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10578                                    *Name, NameLoc);
10579     if (T.isNull())
10580       return 0;
10581 
10582     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10583     if (isa<DependentNameType>(T)) {
10584       DependentNameTypeLoc TL =
10585           TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10586       TL.setElaboratedKeywordLoc(TagLoc);
10587       TL.setQualifierLoc(QualifierLoc);
10588       TL.setNameLoc(NameLoc);
10589     } else {
10590       ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
10591       TL.setElaboratedKeywordLoc(TagLoc);
10592       TL.setQualifierLoc(QualifierLoc);
10593       TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
10594     }
10595 
10596     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10597                                             TSI, FriendLoc, TempParamLists);
10598     Friend->setAccess(AS_public);
10599     CurContext->addDecl(Friend);
10600     return Friend;
10601   }
10602 
10603   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10604 
10605 
10606 
10607   // Handle the case of a templated-scope friend class.  e.g.
10608   //   template <class T> class A<T>::B;
10609   // FIXME: we don't support these right now.
10610   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10611   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10612   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10613   DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10614   TL.setElaboratedKeywordLoc(TagLoc);
10615   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10616   TL.setNameLoc(NameLoc);
10617 
10618   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10619                                           TSI, FriendLoc, TempParamLists);
10620   Friend->setAccess(AS_public);
10621   Friend->setUnsupportedFriend(true);
10622   CurContext->addDecl(Friend);
10623   return Friend;
10624 }
10625 
10626 
10627 /// Handle a friend type declaration.  This works in tandem with
10628 /// ActOnTag.
10629 ///
10630 /// Notes on friend class templates:
10631 ///
10632 /// We generally treat friend class declarations as if they were
10633 /// declaring a class.  So, for example, the elaborated type specifier
10634 /// in a friend declaration is required to obey the restrictions of a
10635 /// class-head (i.e. no typedefs in the scope chain), template
10636 /// parameters are required to match up with simple template-ids, &c.
10637 /// However, unlike when declaring a template specialization, it's
10638 /// okay to refer to a template specialization without an empty
10639 /// template parameter declaration, e.g.
10640 ///   friend class A<T>::B<unsigned>;
10641 /// We permit this as a special case; if there are any template
10642 /// parameters present at all, require proper matching, i.e.
10643 ///   template <> template \<class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)10644 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10645                                 MultiTemplateParamsArg TempParams) {
10646   SourceLocation Loc = DS.getLocStart();
10647 
10648   assert(DS.isFriendSpecified());
10649   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10650 
10651   // Try to convert the decl specifier to a type.  This works for
10652   // friend templates because ActOnTag never produces a ClassTemplateDecl
10653   // for a TUK_Friend.
10654   Declarator TheDeclarator(DS, Declarator::MemberContext);
10655   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10656   QualType T = TSI->getType();
10657   if (TheDeclarator.isInvalidType())
10658     return 0;
10659 
10660   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10661     return 0;
10662 
10663   // This is definitely an error in C++98.  It's probably meant to
10664   // be forbidden in C++0x, too, but the specification is just
10665   // poorly written.
10666   //
10667   // The problem is with declarations like the following:
10668   //   template <T> friend A<T>::foo;
10669   // where deciding whether a class C is a friend or not now hinges
10670   // on whether there exists an instantiation of A that causes
10671   // 'foo' to equal C.  There are restrictions on class-heads
10672   // (which we declare (by fiat) elaborated friend declarations to
10673   // be) that makes this tractable.
10674   //
10675   // FIXME: handle "template <> friend class A<T>;", which
10676   // is possibly well-formed?  Who even knows?
10677   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10678     Diag(Loc, diag::err_tagless_friend_type_template)
10679       << DS.getSourceRange();
10680     return 0;
10681   }
10682 
10683   // C++98 [class.friend]p1: A friend of a class is a function
10684   //   or class that is not a member of the class . . .
10685   // This is fixed in DR77, which just barely didn't make the C++03
10686   // deadline.  It's also a very silly restriction that seriously
10687   // affects inner classes and which nobody else seems to implement;
10688   // thus we never diagnose it, not even in -pedantic.
10689   //
10690   // But note that we could warn about it: it's always useless to
10691   // friend one of your own members (it's not, however, worthless to
10692   // friend a member of an arbitrary specialization of your template).
10693 
10694   Decl *D;
10695   if (unsigned NumTempParamLists = TempParams.size())
10696     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10697                                    NumTempParamLists,
10698                                    TempParams.data(),
10699                                    TSI,
10700                                    DS.getFriendSpecLoc());
10701   else
10702     D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10703 
10704   if (!D)
10705     return 0;
10706 
10707   D->setAccess(AS_public);
10708   CurContext->addDecl(D);
10709 
10710   return D;
10711 }
10712 
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)10713 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10714                                         MultiTemplateParamsArg TemplateParams) {
10715   const DeclSpec &DS = D.getDeclSpec();
10716 
10717   assert(DS.isFriendSpecified());
10718   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10719 
10720   SourceLocation Loc = D.getIdentifierLoc();
10721   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10722 
10723   // C++ [class.friend]p1
10724   //   A friend of a class is a function or class....
10725   // Note that this sees through typedefs, which is intended.
10726   // It *doesn't* see through dependent types, which is correct
10727   // according to [temp.arg.type]p3:
10728   //   If a declaration acquires a function type through a
10729   //   type dependent on a template-parameter and this causes
10730   //   a declaration that does not use the syntactic form of a
10731   //   function declarator to have a function type, the program
10732   //   is ill-formed.
10733   if (!TInfo->getType()->isFunctionType()) {
10734     Diag(Loc, diag::err_unexpected_friend);
10735 
10736     // It might be worthwhile to try to recover by creating an
10737     // appropriate declaration.
10738     return 0;
10739   }
10740 
10741   // C++ [namespace.memdef]p3
10742   //  - If a friend declaration in a non-local class first declares a
10743   //    class or function, the friend class or function is a member
10744   //    of the innermost enclosing namespace.
10745   //  - The name of the friend is not found by simple name lookup
10746   //    until a matching declaration is provided in that namespace
10747   //    scope (either before or after the class declaration granting
10748   //    friendship).
10749   //  - If a friend function is called, its name may be found by the
10750   //    name lookup that considers functions from namespaces and
10751   //    classes associated with the types of the function arguments.
10752   //  - When looking for a prior declaration of a class or a function
10753   //    declared as a friend, scopes outside the innermost enclosing
10754   //    namespace scope are not considered.
10755 
10756   CXXScopeSpec &SS = D.getCXXScopeSpec();
10757   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10758   DeclarationName Name = NameInfo.getName();
10759   assert(Name);
10760 
10761   // Check for unexpanded parameter packs.
10762   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10763       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10764       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10765     return 0;
10766 
10767   // The context we found the declaration in, or in which we should
10768   // create the declaration.
10769   DeclContext *DC;
10770   Scope *DCScope = S;
10771   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10772                         ForRedeclaration);
10773 
10774   // FIXME: there are different rules in local classes
10775 
10776   // There are four cases here.
10777   //   - There's no scope specifier, in which case we just go to the
10778   //     appropriate scope and look for a function or function template
10779   //     there as appropriate.
10780   // Recover from invalid scope qualifiers as if they just weren't there.
10781   if (SS.isInvalid() || !SS.isSet()) {
10782     // C++0x [namespace.memdef]p3:
10783     //   If the name in a friend declaration is neither qualified nor
10784     //   a template-id and the declaration is a function or an
10785     //   elaborated-type-specifier, the lookup to determine whether
10786     //   the entity has been previously declared shall not consider
10787     //   any scopes outside the innermost enclosing namespace.
10788     // C++0x [class.friend]p11:
10789     //   If a friend declaration appears in a local class and the name
10790     //   specified is an unqualified name, a prior declaration is
10791     //   looked up without considering scopes that are outside the
10792     //   innermost enclosing non-class scope. For a friend function
10793     //   declaration, if there is no prior declaration, the program is
10794     //   ill-formed.
10795     bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10796     bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10797 
10798     // Find the appropriate context according to the above.
10799     DC = CurContext;
10800     while (true) {
10801       // Skip class contexts.  If someone can cite chapter and verse
10802       // for this behavior, that would be nice --- it's what GCC and
10803       // EDG do, and it seems like a reasonable intent, but the spec
10804       // really only says that checks for unqualified existing
10805       // declarations should stop at the nearest enclosing namespace,
10806       // not that they should only consider the nearest enclosing
10807       // namespace.
10808       while (DC->isRecord() || DC->isTransparentContext())
10809         DC = DC->getParent();
10810 
10811       LookupQualifiedName(Previous, DC);
10812 
10813       // TODO: decide what we think about using declarations.
10814       if (isLocal || !Previous.empty())
10815         break;
10816 
10817       if (isTemplateId) {
10818         if (isa<TranslationUnitDecl>(DC)) break;
10819       } else {
10820         if (DC->isFileContext()) break;
10821       }
10822       DC = DC->getParent();
10823     }
10824 
10825     // C++ [class.friend]p1: A friend of a class is a function or
10826     //   class that is not a member of the class . . .
10827     // C++11 changes this for both friend types and functions.
10828     // Most C++ 98 compilers do seem to give an error here, so
10829     // we do, too.
10830     if (!Previous.empty() && DC->Equals(CurContext))
10831       Diag(DS.getFriendSpecLoc(),
10832            getLangOpts().CPlusPlus11 ?
10833              diag::warn_cxx98_compat_friend_is_member :
10834              diag::err_friend_is_member);
10835 
10836     DCScope = getScopeForDeclContext(S, DC);
10837 
10838     // C++ [class.friend]p6:
10839     //   A function can be defined in a friend declaration of a class if and
10840     //   only if the class is a non-local class (9.8), the function name is
10841     //   unqualified, and the function has namespace scope.
10842     if (isLocal && D.isFunctionDefinition()) {
10843       Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10844     }
10845 
10846   //   - There's a non-dependent scope specifier, in which case we
10847   //     compute it and do a previous lookup there for a function
10848   //     or function template.
10849   } else if (!SS.getScopeRep()->isDependent()) {
10850     DC = computeDeclContext(SS);
10851     if (!DC) return 0;
10852 
10853     if (RequireCompleteDeclContext(SS, DC)) return 0;
10854 
10855     LookupQualifiedName(Previous, DC);
10856 
10857     // Ignore things found implicitly in the wrong scope.
10858     // TODO: better diagnostics for this case.  Suggesting the right
10859     // qualified scope would be nice...
10860     LookupResult::Filter F = Previous.makeFilter();
10861     while (F.hasNext()) {
10862       NamedDecl *D = F.next();
10863       if (!DC->InEnclosingNamespaceSetOf(
10864               D->getDeclContext()->getRedeclContext()))
10865         F.erase();
10866     }
10867     F.done();
10868 
10869     if (Previous.empty()) {
10870       D.setInvalidType();
10871       Diag(Loc, diag::err_qualified_friend_not_found)
10872           << Name << TInfo->getType();
10873       return 0;
10874     }
10875 
10876     // C++ [class.friend]p1: A friend of a class is a function or
10877     //   class that is not a member of the class . . .
10878     if (DC->Equals(CurContext))
10879       Diag(DS.getFriendSpecLoc(),
10880            getLangOpts().CPlusPlus11 ?
10881              diag::warn_cxx98_compat_friend_is_member :
10882              diag::err_friend_is_member);
10883 
10884     if (D.isFunctionDefinition()) {
10885       // C++ [class.friend]p6:
10886       //   A function can be defined in a friend declaration of a class if and
10887       //   only if the class is a non-local class (9.8), the function name is
10888       //   unqualified, and the function has namespace scope.
10889       SemaDiagnosticBuilder DB
10890         = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10891 
10892       DB << SS.getScopeRep();
10893       if (DC->isFileContext())
10894         DB << FixItHint::CreateRemoval(SS.getRange());
10895       SS.clear();
10896     }
10897 
10898   //   - There's a scope specifier that does not match any template
10899   //     parameter lists, in which case we use some arbitrary context,
10900   //     create a method or method template, and wait for instantiation.
10901   //   - There's a scope specifier that does match some template
10902   //     parameter lists, which we don't handle right now.
10903   } else {
10904     if (D.isFunctionDefinition()) {
10905       // C++ [class.friend]p6:
10906       //   A function can be defined in a friend declaration of a class if and
10907       //   only if the class is a non-local class (9.8), the function name is
10908       //   unqualified, and the function has namespace scope.
10909       Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10910         << SS.getScopeRep();
10911     }
10912 
10913     DC = CurContext;
10914     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10915   }
10916 
10917   if (!DC->isRecord()) {
10918     // This implies that it has to be an operator or function.
10919     if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10920         D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10921         D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10922       Diag(Loc, diag::err_introducing_special_friend) <<
10923         (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10924          D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10925       return 0;
10926     }
10927   }
10928 
10929   // FIXME: This is an egregious hack to cope with cases where the scope stack
10930   // does not contain the declaration context, i.e., in an out-of-line
10931   // definition of a class.
10932   Scope FakeDCScope(S, Scope::DeclScope, Diags);
10933   if (!DCScope) {
10934     FakeDCScope.setEntity(DC);
10935     DCScope = &FakeDCScope;
10936   }
10937 
10938   bool AddToScope = true;
10939   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10940                                           TemplateParams, AddToScope);
10941   if (!ND) return 0;
10942 
10943   assert(ND->getDeclContext() == DC);
10944   assert(ND->getLexicalDeclContext() == CurContext);
10945 
10946   // Add the function declaration to the appropriate lookup tables,
10947   // adjusting the redeclarations list as necessary.  We don't
10948   // want to do this yet if the friending class is dependent.
10949   //
10950   // Also update the scope-based lookup if the target context's
10951   // lookup context is in lexical scope.
10952   if (!CurContext->isDependentContext()) {
10953     DC = DC->getRedeclContext();
10954     DC->makeDeclVisibleInContext(ND);
10955     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10956       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10957   }
10958 
10959   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10960                                        D.getIdentifierLoc(), ND,
10961                                        DS.getFriendSpecLoc());
10962   FrD->setAccess(AS_public);
10963   CurContext->addDecl(FrD);
10964 
10965   if (ND->isInvalidDecl()) {
10966     FrD->setInvalidDecl();
10967   } else {
10968     if (DC->isRecord()) CheckFriendAccess(ND);
10969 
10970     FunctionDecl *FD;
10971     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10972       FD = FTD->getTemplatedDecl();
10973     else
10974       FD = cast<FunctionDecl>(ND);
10975 
10976     // Mark templated-scope function declarations as unsupported.
10977     if (FD->getNumTemplateParameterLists())
10978       FrD->setUnsupportedFriend(true);
10979   }
10980 
10981   return ND;
10982 }
10983 
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)10984 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10985   AdjustDeclIfTemplate(Dcl);
10986 
10987   FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
10988   if (!Fn) {
10989     Diag(DelLoc, diag::err_deleted_non_function);
10990     return;
10991   }
10992   if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10993     // Don't consider the implicit declaration we generate for explicit
10994     // specializations. FIXME: Do not generate these implicit declarations.
10995     if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10996         || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10997       Diag(DelLoc, diag::err_deleted_decl_not_first);
10998       Diag(Prev->getLocation(), diag::note_previous_declaration);
10999     }
11000     // If the declaration wasn't the first, we delete the function anyway for
11001     // recovery.
11002   }
11003   Fn->setDeletedAsWritten();
11004 }
11005 
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)11006 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11007   CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11008 
11009   if (MD) {
11010     if (MD->getParent()->isDependentType()) {
11011       MD->setDefaulted();
11012       MD->setExplicitlyDefaulted();
11013       return;
11014     }
11015 
11016     CXXSpecialMember Member = getSpecialMember(MD);
11017     if (Member == CXXInvalid) {
11018       Diag(DefaultLoc, diag::err_default_special_members);
11019       return;
11020     }
11021 
11022     MD->setDefaulted();
11023     MD->setExplicitlyDefaulted();
11024 
11025     // If this definition appears within the record, do the checking when
11026     // the record is complete.
11027     const FunctionDecl *Primary = MD;
11028     if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11029       // Find the uninstantiated declaration that actually had the '= default'
11030       // on it.
11031       Pattern->isDefined(Primary);
11032 
11033     if (Primary == Primary->getCanonicalDecl())
11034       return;
11035 
11036     CheckExplicitlyDefaultedSpecialMember(MD);
11037 
11038     // The exception specification is needed because we are defining the
11039     // function.
11040     ResolveExceptionSpec(DefaultLoc,
11041                          MD->getType()->castAs<FunctionProtoType>());
11042 
11043     switch (Member) {
11044     case CXXDefaultConstructor: {
11045       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11046       if (!CD->isInvalidDecl())
11047         DefineImplicitDefaultConstructor(DefaultLoc, CD);
11048       break;
11049     }
11050 
11051     case CXXCopyConstructor: {
11052       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11053       if (!CD->isInvalidDecl())
11054         DefineImplicitCopyConstructor(DefaultLoc, CD);
11055       break;
11056     }
11057 
11058     case CXXCopyAssignment: {
11059       if (!MD->isInvalidDecl())
11060         DefineImplicitCopyAssignment(DefaultLoc, MD);
11061       break;
11062     }
11063 
11064     case CXXDestructor: {
11065       CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11066       if (!DD->isInvalidDecl())
11067         DefineImplicitDestructor(DefaultLoc, DD);
11068       break;
11069     }
11070 
11071     case CXXMoveConstructor: {
11072       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11073       if (!CD->isInvalidDecl())
11074         DefineImplicitMoveConstructor(DefaultLoc, CD);
11075       break;
11076     }
11077 
11078     case CXXMoveAssignment: {
11079       if (!MD->isInvalidDecl())
11080         DefineImplicitMoveAssignment(DefaultLoc, MD);
11081       break;
11082     }
11083 
11084     case CXXInvalid:
11085       llvm_unreachable("Invalid special member.");
11086     }
11087   } else {
11088     Diag(DefaultLoc, diag::err_default_special_members);
11089   }
11090 }
11091 
SearchForReturnInStmt(Sema & Self,Stmt * S)11092 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11093   for (Stmt::child_range CI = S->children(); CI; ++CI) {
11094     Stmt *SubStmt = *CI;
11095     if (!SubStmt)
11096       continue;
11097     if (isa<ReturnStmt>(SubStmt))
11098       Self.Diag(SubStmt->getLocStart(),
11099            diag::err_return_in_constructor_handler);
11100     if (!isa<Expr>(SubStmt))
11101       SearchForReturnInStmt(Self, SubStmt);
11102   }
11103 }
11104 
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)11105 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11106   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11107     CXXCatchStmt *Handler = TryBlock->getHandler(I);
11108     SearchForReturnInStmt(*this, Handler);
11109   }
11110 }
11111 
CheckOverridingFunctionAttributes(const CXXMethodDecl * New,const CXXMethodDecl * Old)11112 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11113                                              const CXXMethodDecl *Old) {
11114   const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11115   const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11116 
11117   CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11118 
11119   // If the calling conventions match, everything is fine
11120   if (NewCC == OldCC)
11121     return false;
11122 
11123   // If either of the calling conventions are set to "default", we need to pick
11124   // something more sensible based on the target. This supports code where the
11125   // one method explicitly sets thiscall, and another has no explicit calling
11126   // convention.
11127   CallingConv Default =
11128     Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11129   if (NewCC == CC_Default)
11130     NewCC = Default;
11131   if (OldCC == CC_Default)
11132     OldCC = Default;
11133 
11134   // If the calling conventions still don't match, then report the error
11135   if (NewCC != OldCC) {
11136     Diag(New->getLocation(),
11137          diag::err_conflicting_overriding_cc_attributes)
11138       << New->getDeclName() << New->getType() << Old->getType();
11139     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11140     return true;
11141   }
11142 
11143   return false;
11144 }
11145 
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)11146 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11147                                              const CXXMethodDecl *Old) {
11148   QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11149   QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11150 
11151   if (Context.hasSameType(NewTy, OldTy) ||
11152       NewTy->isDependentType() || OldTy->isDependentType())
11153     return false;
11154 
11155   // Check if the return types are covariant
11156   QualType NewClassTy, OldClassTy;
11157 
11158   /// Both types must be pointers or references to classes.
11159   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11160     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11161       NewClassTy = NewPT->getPointeeType();
11162       OldClassTy = OldPT->getPointeeType();
11163     }
11164   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11165     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11166       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11167         NewClassTy = NewRT->getPointeeType();
11168         OldClassTy = OldRT->getPointeeType();
11169       }
11170     }
11171   }
11172 
11173   // The return types aren't either both pointers or references to a class type.
11174   if (NewClassTy.isNull()) {
11175     Diag(New->getLocation(),
11176          diag::err_different_return_type_for_overriding_virtual_function)
11177       << New->getDeclName() << NewTy << OldTy;
11178     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11179 
11180     return true;
11181   }
11182 
11183   // C++ [class.virtual]p6:
11184   //   If the return type of D::f differs from the return type of B::f, the
11185   //   class type in the return type of D::f shall be complete at the point of
11186   //   declaration of D::f or shall be the class type D.
11187   if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11188     if (!RT->isBeingDefined() &&
11189         RequireCompleteType(New->getLocation(), NewClassTy,
11190                             diag::err_covariant_return_incomplete,
11191                             New->getDeclName()))
11192     return true;
11193   }
11194 
11195   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11196     // Check if the new class derives from the old class.
11197     if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11198       Diag(New->getLocation(),
11199            diag::err_covariant_return_not_derived)
11200       << New->getDeclName() << NewTy << OldTy;
11201       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11202       return true;
11203     }
11204 
11205     // Check if we the conversion from derived to base is valid.
11206     if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11207                     diag::err_covariant_return_inaccessible_base,
11208                     diag::err_covariant_return_ambiguous_derived_to_base_conv,
11209                     // FIXME: Should this point to the return type?
11210                     New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11211       // FIXME: this note won't trigger for delayed access control
11212       // diagnostics, and it's impossible to get an undelayed error
11213       // here from access control during the original parse because
11214       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11215       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11216       return true;
11217     }
11218   }
11219 
11220   // The qualifiers of the return types must be the same.
11221   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11222     Diag(New->getLocation(),
11223          diag::err_covariant_return_type_different_qualifications)
11224     << New->getDeclName() << NewTy << OldTy;
11225     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11226     return true;
11227   };
11228 
11229 
11230   // The new class type must have the same or less qualifiers as the old type.
11231   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11232     Diag(New->getLocation(),
11233          diag::err_covariant_return_type_class_type_more_qualified)
11234     << New->getDeclName() << NewTy << OldTy;
11235     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11236     return true;
11237   };
11238 
11239   return false;
11240 }
11241 
11242 /// \brief Mark the given method pure.
11243 ///
11244 /// \param Method the method to be marked pure.
11245 ///
11246 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)11247 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11248   SourceLocation EndLoc = InitRange.getEnd();
11249   if (EndLoc.isValid())
11250     Method->setRangeEnd(EndLoc);
11251 
11252   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11253     Method->setPure();
11254     return false;
11255   }
11256 
11257   if (!Method->isInvalidDecl())
11258     Diag(Method->getLocation(), diag::err_non_virtual_pure)
11259       << Method->getDeclName() << InitRange;
11260   return true;
11261 }
11262 
11263 /// \brief Determine whether the given declaration is a static data member.
isStaticDataMember(Decl * D)11264 static bool isStaticDataMember(Decl *D) {
11265   VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11266   if (!Var)
11267     return false;
11268 
11269   return Var->isStaticDataMember();
11270 }
11271 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11272 /// an initializer for the out-of-line declaration 'Dcl'.  The scope
11273 /// is a fresh scope pushed for just this purpose.
11274 ///
11275 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11276 /// static data member of class X, names should be looked up in the scope of
11277 /// class X.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)11278 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11279   // If there is no declaration, there was an error parsing it.
11280   if (D == 0 || D->isInvalidDecl()) return;
11281 
11282   // We should only get called for declarations with scope specifiers, like:
11283   //   int foo::bar;
11284   assert(D->isOutOfLine());
11285   EnterDeclaratorContext(S, D->getDeclContext());
11286 
11287   // If we are parsing the initializer for a static data member, push a
11288   // new expression evaluation context that is associated with this static
11289   // data member.
11290   if (isStaticDataMember(D))
11291     PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11292 }
11293 
11294 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11295 /// initializer for the out-of-line declaration 'D'.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)11296 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11297   // If there is no declaration, there was an error parsing it.
11298   if (D == 0 || D->isInvalidDecl()) return;
11299 
11300   if (isStaticDataMember(D))
11301     PopExpressionEvaluationContext();
11302 
11303   assert(D->isOutOfLine());
11304   ExitDeclaratorContext(S);
11305 }
11306 
11307 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11308 /// C++ if/switch/while/for statement.
11309 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)11310 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11311   // C++ 6.4p2:
11312   // The declarator shall not specify a function or an array.
11313   // The type-specifier-seq shall not contain typedef and shall not declare a
11314   // new class or enumeration.
11315   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11316          "Parser allowed 'typedef' as storage class of condition decl.");
11317 
11318   Decl *Dcl = ActOnDeclarator(S, D);
11319   if (!Dcl)
11320     return true;
11321 
11322   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11323     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11324       << D.getSourceRange();
11325     return true;
11326   }
11327 
11328   return Dcl;
11329 }
11330 
LoadExternalVTableUses()11331 void Sema::LoadExternalVTableUses() {
11332   if (!ExternalSource)
11333     return;
11334 
11335   SmallVector<ExternalVTableUse, 4> VTables;
11336   ExternalSource->ReadUsedVTables(VTables);
11337   SmallVector<VTableUse, 4> NewUses;
11338   for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11339     llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11340       = VTablesUsed.find(VTables[I].Record);
11341     // Even if a definition wasn't required before, it may be required now.
11342     if (Pos != VTablesUsed.end()) {
11343       if (!Pos->second && VTables[I].DefinitionRequired)
11344         Pos->second = true;
11345       continue;
11346     }
11347 
11348     VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11349     NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11350   }
11351 
11352   VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11353 }
11354 
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)11355 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11356                           bool DefinitionRequired) {
11357   // Ignore any vtable uses in unevaluated operands or for classes that do
11358   // not have a vtable.
11359   if (!Class->isDynamicClass() || Class->isDependentContext() ||
11360       CurContext->isDependentContext() ||
11361       ExprEvalContexts.back().Context == Unevaluated)
11362     return;
11363 
11364   // Try to insert this class into the map.
11365   LoadExternalVTableUses();
11366   Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11367   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11368     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11369   if (!Pos.second) {
11370     // If we already had an entry, check to see if we are promoting this vtable
11371     // to required a definition. If so, we need to reappend to the VTableUses
11372     // list, since we may have already processed the first entry.
11373     if (DefinitionRequired && !Pos.first->second) {
11374       Pos.first->second = true;
11375     } else {
11376       // Otherwise, we can early exit.
11377       return;
11378     }
11379   }
11380 
11381   // Local classes need to have their virtual members marked
11382   // immediately. For all other classes, we mark their virtual members
11383   // at the end of the translation unit.
11384   if (Class->isLocalClass())
11385     MarkVirtualMembersReferenced(Loc, Class);
11386   else
11387     VTableUses.push_back(std::make_pair(Class, Loc));
11388 }
11389 
DefineUsedVTables()11390 bool Sema::DefineUsedVTables() {
11391   LoadExternalVTableUses();
11392   if (VTableUses.empty())
11393     return false;
11394 
11395   // Note: The VTableUses vector could grow as a result of marking
11396   // the members of a class as "used", so we check the size each
11397   // time through the loop and prefer indices (which are stable) to
11398   // iterators (which are not).
11399   bool DefinedAnything = false;
11400   for (unsigned I = 0; I != VTableUses.size(); ++I) {
11401     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11402     if (!Class)
11403       continue;
11404 
11405     SourceLocation Loc = VTableUses[I].second;
11406 
11407     bool DefineVTable = true;
11408 
11409     // If this class has a key function, but that key function is
11410     // defined in another translation unit, we don't need to emit the
11411     // vtable even though we're using it.
11412     const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11413     if (KeyFunction && !KeyFunction->hasBody()) {
11414       switch (KeyFunction->getTemplateSpecializationKind()) {
11415       case TSK_Undeclared:
11416       case TSK_ExplicitSpecialization:
11417       case TSK_ExplicitInstantiationDeclaration:
11418         // The key function is in another translation unit.
11419         DefineVTable = false;
11420         break;
11421 
11422       case TSK_ExplicitInstantiationDefinition:
11423       case TSK_ImplicitInstantiation:
11424         // We will be instantiating the key function.
11425         break;
11426       }
11427     } else if (!KeyFunction) {
11428       // If we have a class with no key function that is the subject
11429       // of an explicit instantiation declaration, suppress the
11430       // vtable; it will live with the explicit instantiation
11431       // definition.
11432       bool IsExplicitInstantiationDeclaration
11433         = Class->getTemplateSpecializationKind()
11434                                       == TSK_ExplicitInstantiationDeclaration;
11435       for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11436                                  REnd = Class->redecls_end();
11437            R != REnd; ++R) {
11438         TemplateSpecializationKind TSK
11439           = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11440         if (TSK == TSK_ExplicitInstantiationDeclaration)
11441           IsExplicitInstantiationDeclaration = true;
11442         else if (TSK == TSK_ExplicitInstantiationDefinition) {
11443           IsExplicitInstantiationDeclaration = false;
11444           break;
11445         }
11446       }
11447 
11448       if (IsExplicitInstantiationDeclaration)
11449         DefineVTable = false;
11450     }
11451 
11452     // The exception specifications for all virtual members may be needed even
11453     // if we are not providing an authoritative form of the vtable in this TU.
11454     // We may choose to emit it available_externally anyway.
11455     if (!DefineVTable) {
11456       MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11457       continue;
11458     }
11459 
11460     // Mark all of the virtual members of this class as referenced, so
11461     // that we can build a vtable. Then, tell the AST consumer that a
11462     // vtable for this class is required.
11463     DefinedAnything = true;
11464     MarkVirtualMembersReferenced(Loc, Class);
11465     CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11466     Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11467 
11468     // Optionally warn if we're emitting a weak vtable.
11469     if (Class->hasExternalLinkage() &&
11470         Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11471       const FunctionDecl *KeyFunctionDef = 0;
11472       if (!KeyFunction ||
11473           (KeyFunction->hasBody(KeyFunctionDef) &&
11474            KeyFunctionDef->isInlined()))
11475         Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11476              TSK_ExplicitInstantiationDefinition
11477              ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11478           << Class;
11479     }
11480   }
11481   VTableUses.clear();
11482 
11483   return DefinedAnything;
11484 }
11485 
MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,const CXXRecordDecl * RD)11486 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11487                                                  const CXXRecordDecl *RD) {
11488   for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11489                                       E = RD->method_end(); I != E; ++I)
11490     if ((*I)->isVirtual() && !(*I)->isPure())
11491       ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11492 }
11493 
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD)11494 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11495                                         const CXXRecordDecl *RD) {
11496   // Mark all functions which will appear in RD's vtable as used.
11497   CXXFinalOverriderMap FinalOverriders;
11498   RD->getFinalOverriders(FinalOverriders);
11499   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11500                                             E = FinalOverriders.end();
11501        I != E; ++I) {
11502     for (OverridingMethods::const_iterator OI = I->second.begin(),
11503                                            OE = I->second.end();
11504          OI != OE; ++OI) {
11505       assert(OI->second.size() > 0 && "no final overrider");
11506       CXXMethodDecl *Overrider = OI->second.front().Method;
11507 
11508       // C++ [basic.def.odr]p2:
11509       //   [...] A virtual member function is used if it is not pure. [...]
11510       if (!Overrider->isPure())
11511         MarkFunctionReferenced(Loc, Overrider);
11512     }
11513   }
11514 
11515   // Only classes that have virtual bases need a VTT.
11516   if (RD->getNumVBases() == 0)
11517     return;
11518 
11519   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11520            e = RD->bases_end(); i != e; ++i) {
11521     const CXXRecordDecl *Base =
11522         cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11523     if (Base->getNumVBases() == 0)
11524       continue;
11525     MarkVirtualMembersReferenced(Loc, Base);
11526   }
11527 }
11528 
11529 /// SetIvarInitializers - This routine builds initialization ASTs for the
11530 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)11531 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11532   if (!getLangOpts().CPlusPlus)
11533     return;
11534   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11535     SmallVector<ObjCIvarDecl*, 8> ivars;
11536     CollectIvarsToConstructOrDestruct(OID, ivars);
11537     if (ivars.empty())
11538       return;
11539     SmallVector<CXXCtorInitializer*, 32> AllToInit;
11540     for (unsigned i = 0; i < ivars.size(); i++) {
11541       FieldDecl *Field = ivars[i];
11542       if (Field->isInvalidDecl())
11543         continue;
11544 
11545       CXXCtorInitializer *Member;
11546       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11547       InitializationKind InitKind =
11548         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11549 
11550       InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11551       ExprResult MemberInit =
11552         InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11553       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11554       // Note, MemberInit could actually come back empty if no initialization
11555       // is required (e.g., because it would call a trivial default constructor)
11556       if (!MemberInit.get() || MemberInit.isInvalid())
11557         continue;
11558 
11559       Member =
11560         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11561                                          SourceLocation(),
11562                                          MemberInit.takeAs<Expr>(),
11563                                          SourceLocation());
11564       AllToInit.push_back(Member);
11565 
11566       // Be sure that the destructor is accessible and is marked as referenced.
11567       if (const RecordType *RecordTy
11568                   = Context.getBaseElementType(Field->getType())
11569                                                         ->getAs<RecordType>()) {
11570                     CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11571         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11572           MarkFunctionReferenced(Field->getLocation(), Destructor);
11573           CheckDestructorAccess(Field->getLocation(), Destructor,
11574                             PDiag(diag::err_access_dtor_ivar)
11575                               << Context.getBaseElementType(Field->getType()));
11576         }
11577       }
11578     }
11579     ObjCImplementation->setIvarInitializers(Context,
11580                                             AllToInit.data(), AllToInit.size());
11581   }
11582 }
11583 
11584 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallSet<CXXConstructorDecl *,4> & Valid,llvm::SmallSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallSet<CXXConstructorDecl *,4> & Current,Sema & S)11585 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11586                            llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11587                            llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11588                            llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11589                            Sema &S) {
11590   llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11591                                                    CE = Current.end();
11592   if (Ctor->isInvalidDecl())
11593     return;
11594 
11595   CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11596 
11597   // Target may not be determinable yet, for instance if this is a dependent
11598   // call in an uninstantiated template.
11599   if (Target) {
11600     const FunctionDecl *FNTarget = 0;
11601     (void)Target->hasBody(FNTarget);
11602     Target = const_cast<CXXConstructorDecl*>(
11603       cast_or_null<CXXConstructorDecl>(FNTarget));
11604   }
11605 
11606   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11607                      // Avoid dereferencing a null pointer here.
11608                      *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11609 
11610   if (!Current.insert(Canonical))
11611     return;
11612 
11613   // We know that beyond here, we aren't chaining into a cycle.
11614   if (!Target || !Target->isDelegatingConstructor() ||
11615       Target->isInvalidDecl() || Valid.count(TCanonical)) {
11616     for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11617       Valid.insert(*CI);
11618     Current.clear();
11619   // We've hit a cycle.
11620   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11621              Current.count(TCanonical)) {
11622     // If we haven't diagnosed this cycle yet, do so now.
11623     if (!Invalid.count(TCanonical)) {
11624       S.Diag((*Ctor->init_begin())->getSourceLocation(),
11625              diag::warn_delegating_ctor_cycle)
11626         << Ctor;
11627 
11628       // Don't add a note for a function delegating directly to itself.
11629       if (TCanonical != Canonical)
11630         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11631 
11632       CXXConstructorDecl *C = Target;
11633       while (C->getCanonicalDecl() != Canonical) {
11634         const FunctionDecl *FNTarget = 0;
11635         (void)C->getTargetConstructor()->hasBody(FNTarget);
11636         assert(FNTarget && "Ctor cycle through bodiless function");
11637 
11638         C = const_cast<CXXConstructorDecl*>(
11639           cast<CXXConstructorDecl>(FNTarget));
11640         S.Diag(C->getLocation(), diag::note_which_delegates_to);
11641       }
11642     }
11643 
11644     for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11645       Invalid.insert(*CI);
11646     Current.clear();
11647   } else {
11648     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11649   }
11650 }
11651 
11652 
CheckDelegatingCtorCycles()11653 void Sema::CheckDelegatingCtorCycles() {
11654   llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11655 
11656   llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11657                                                    CE = Current.end();
11658 
11659   for (DelegatingCtorDeclsType::iterator
11660          I = DelegatingCtorDecls.begin(ExternalSource),
11661          E = DelegatingCtorDecls.end();
11662        I != E; ++I)
11663     DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11664 
11665   for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11666     (*CI)->setInvalidDecl();
11667 }
11668 
11669 namespace {
11670   /// \brief AST visitor that finds references to the 'this' expression.
11671   class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11672     Sema &S;
11673 
11674   public:
FindCXXThisExpr(Sema & S)11675     explicit FindCXXThisExpr(Sema &S) : S(S) { }
11676 
VisitCXXThisExpr(CXXThisExpr * E)11677     bool VisitCXXThisExpr(CXXThisExpr *E) {
11678       S.Diag(E->getLocation(), diag::err_this_static_member_func)
11679         << E->isImplicit();
11680       return false;
11681     }
11682   };
11683 }
11684 
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)11685 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11686   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11687   if (!TSInfo)
11688     return false;
11689 
11690   TypeLoc TL = TSInfo->getTypeLoc();
11691   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11692   if (!ProtoTL)
11693     return false;
11694 
11695   // C++11 [expr.prim.general]p3:
11696   //   [The expression this] shall not appear before the optional
11697   //   cv-qualifier-seq and it shall not appear within the declaration of a
11698   //   static member function (although its type and value category are defined
11699   //   within a static member function as they are within a non-static member
11700   //   function). [ Note: this is because declaration matching does not occur
11701   //  until the complete declarator is known. - end note ]
11702   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11703   FindCXXThisExpr Finder(*this);
11704 
11705   // If the return type came after the cv-qualifier-seq, check it now.
11706   if (Proto->hasTrailingReturn() &&
11707       !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
11708     return true;
11709 
11710   // Check the exception specification.
11711   if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11712     return true;
11713 
11714   return checkThisInStaticMemberFunctionAttributes(Method);
11715 }
11716 
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)11717 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11718   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11719   if (!TSInfo)
11720     return false;
11721 
11722   TypeLoc TL = TSInfo->getTypeLoc();
11723   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11724   if (!ProtoTL)
11725     return false;
11726 
11727   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11728   FindCXXThisExpr Finder(*this);
11729 
11730   switch (Proto->getExceptionSpecType()) {
11731   case EST_Uninstantiated:
11732   case EST_Unevaluated:
11733   case EST_BasicNoexcept:
11734   case EST_DynamicNone:
11735   case EST_MSAny:
11736   case EST_None:
11737     break;
11738 
11739   case EST_ComputedNoexcept:
11740     if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11741       return true;
11742 
11743   case EST_Dynamic:
11744     for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11745          EEnd = Proto->exception_end();
11746          E != EEnd; ++E) {
11747       if (!Finder.TraverseType(*E))
11748         return true;
11749     }
11750     break;
11751   }
11752 
11753   return false;
11754 }
11755 
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)11756 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11757   FindCXXThisExpr Finder(*this);
11758 
11759   // Check attributes.
11760   for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11761        A != AEnd; ++A) {
11762     // FIXME: This should be emitted by tblgen.
11763     Expr *Arg = 0;
11764     ArrayRef<Expr *> Args;
11765     if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11766       Arg = G->getArg();
11767     else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11768       Arg = G->getArg();
11769     else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11770       Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11771     else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11772       Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11773     else if (ExclusiveLockFunctionAttr *ELF
11774                = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11775       Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11776     else if (SharedLockFunctionAttr *SLF
11777                = dyn_cast<SharedLockFunctionAttr>(*A))
11778       Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11779     else if (ExclusiveTrylockFunctionAttr *ETLF
11780                = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11781       Arg = ETLF->getSuccessValue();
11782       Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11783     } else if (SharedTrylockFunctionAttr *STLF
11784                  = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11785       Arg = STLF->getSuccessValue();
11786       Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11787     } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11788       Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11789     else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11790       Arg = LR->getArg();
11791     else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11792       Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11793     else if (ExclusiveLocksRequiredAttr *ELR
11794                = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11795       Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11796     else if (SharedLocksRequiredAttr *SLR
11797                = dyn_cast<SharedLocksRequiredAttr>(*A))
11798       Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11799 
11800     if (Arg && !Finder.TraverseStmt(Arg))
11801       return true;
11802 
11803     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11804       if (!Finder.TraverseStmt(Args[I]))
11805         return true;
11806     }
11807   }
11808 
11809   return false;
11810 }
11811 
11812 void
checkExceptionSpecification(ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExtProtoInfo & EPI)11813 Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11814                                   ArrayRef<ParsedType> DynamicExceptions,
11815                                   ArrayRef<SourceRange> DynamicExceptionRanges,
11816                                   Expr *NoexceptExpr,
11817                                   SmallVectorImpl<QualType> &Exceptions,
11818                                   FunctionProtoType::ExtProtoInfo &EPI) {
11819   Exceptions.clear();
11820   EPI.ExceptionSpecType = EST;
11821   if (EST == EST_Dynamic) {
11822     Exceptions.reserve(DynamicExceptions.size());
11823     for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11824       // FIXME: Preserve type source info.
11825       QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11826 
11827       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11828       collectUnexpandedParameterPacks(ET, Unexpanded);
11829       if (!Unexpanded.empty()) {
11830         DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11831                                          UPPC_ExceptionType,
11832                                          Unexpanded);
11833         continue;
11834       }
11835 
11836       // Check that the type is valid for an exception spec, and
11837       // drop it if not.
11838       if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11839         Exceptions.push_back(ET);
11840     }
11841     EPI.NumExceptions = Exceptions.size();
11842     EPI.Exceptions = Exceptions.data();
11843     return;
11844   }
11845 
11846   if (EST == EST_ComputedNoexcept) {
11847     // If an error occurred, there's no expression here.
11848     if (NoexceptExpr) {
11849       assert((NoexceptExpr->isTypeDependent() ||
11850               NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11851               Context.BoolTy) &&
11852              "Parser should have made sure that the expression is boolean");
11853       if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11854         EPI.ExceptionSpecType = EST_BasicNoexcept;
11855         return;
11856       }
11857 
11858       if (!NoexceptExpr->isValueDependent())
11859         NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11860                          diag::err_noexcept_needs_constant_expression,
11861                          /*AllowFold*/ false).take();
11862       EPI.NoexceptExpr = NoexceptExpr;
11863     }
11864     return;
11865   }
11866 }
11867 
11868 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
IdentifyCUDATarget(const FunctionDecl * D)11869 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11870   // Implicitly declared functions (e.g. copy constructors) are
11871   // __host__ __device__
11872   if (D->isImplicit())
11873     return CFT_HostDevice;
11874 
11875   if (D->hasAttr<CUDAGlobalAttr>())
11876     return CFT_Global;
11877 
11878   if (D->hasAttr<CUDADeviceAttr>()) {
11879     if (D->hasAttr<CUDAHostAttr>())
11880       return CFT_HostDevice;
11881     else
11882       return CFT_Device;
11883   }
11884 
11885   return CFT_Host;
11886 }
11887 
CheckCUDATarget(CUDAFunctionTarget CallerTarget,CUDAFunctionTarget CalleeTarget)11888 bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11889                            CUDAFunctionTarget CalleeTarget) {
11890   // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11891   // Callable from the device only."
11892   if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11893     return true;
11894 
11895   // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11896   // Callable from the host only."
11897   // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11898   // Callable from the host only."
11899   if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11900       (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11901     return true;
11902 
11903   if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11904     return true;
11905 
11906   return false;
11907 }
11908