• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "CXXABI.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Comment.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExternalASTSource.h"
27 #include "clang/AST/Mangle.h"
28 #include "clang/AST/RecordLayout.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/Support/Capacity.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <map>
39 
40 using namespace clang;
41 
42 unsigned ASTContext::NumImplicitDefaultConstructors;
43 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44 unsigned ASTContext::NumImplicitCopyConstructors;
45 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46 unsigned ASTContext::NumImplicitMoveConstructors;
47 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52 unsigned ASTContext::NumImplicitDestructors;
53 unsigned ASTContext::NumImplicitDestructorsDeclared;
54 
55 enum FloatingRank {
56   HalfRank, FloatRank, DoubleRank, LongDoubleRank
57 };
58 
getRawCommentForDeclNoCache(const Decl * D) const59 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60   if (!CommentsLoaded && ExternalSource) {
61     ExternalSource->ReadComments();
62     CommentsLoaded = true;
63   }
64 
65   assert(D);
66 
67   // User can not attach documentation to implicit declarations.
68   if (D->isImplicit())
69     return NULL;
70 
71   // User can not attach documentation to implicit instantiations.
72   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74       return NULL;
75   }
76 
77   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78     if (VD->isStaticDataMember() &&
79         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80       return NULL;
81   }
82 
83   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85       return NULL;
86   }
87 
88   if (const ClassTemplateSpecializationDecl *CTSD =
89           dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91     if (TSK == TSK_ImplicitInstantiation ||
92         TSK == TSK_Undeclared)
93       return NULL;
94   }
95 
96   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98       return NULL;
99   }
100 
101   // TODO: handle comments for function parameters properly.
102   if (isa<ParmVarDecl>(D))
103     return NULL;
104 
105   // TODO: we could look up template parameter documentation in the template
106   // documentation.
107   if (isa<TemplateTypeParmDecl>(D) ||
108       isa<NonTypeTemplateParmDecl>(D) ||
109       isa<TemplateTemplateParmDecl>(D))
110     return NULL;
111 
112   ArrayRef<RawComment *> RawComments = Comments.getComments();
113 
114   // If there are no comments anywhere, we won't find anything.
115   if (RawComments.empty())
116     return NULL;
117 
118   // Find declaration location.
119   // For Objective-C declarations we generally don't expect to have multiple
120   // declarators, thus use declaration starting location as the "declaration
121   // location".
122   // For all other declarations multiple declarators are used quite frequently,
123   // so we use the location of the identifier as the "declaration location".
124   SourceLocation DeclLoc;
125   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
126       isa<ObjCPropertyDecl>(D) ||
127       isa<RedeclarableTemplateDecl>(D) ||
128       isa<ClassTemplateSpecializationDecl>(D))
129     DeclLoc = D->getLocStart();
130   else
131     DeclLoc = D->getLocation();
132 
133   // If the declaration doesn't map directly to a location in a file, we
134   // can't find the comment.
135   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
136     return NULL;
137 
138   // Find the comment that occurs just after this declaration.
139   ArrayRef<RawComment *>::iterator Comment;
140   {
141     // When searching for comments during parsing, the comment we are looking
142     // for is usually among the last two comments we parsed -- check them
143     // first.
144     RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
145     BeforeThanCompare<RawComment> Compare(SourceMgr);
146     ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
147     bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
148     if (!Found && RawComments.size() >= 2) {
149       MaybeBeforeDecl--;
150       Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
151     }
152 
153     if (Found) {
154       Comment = MaybeBeforeDecl + 1;
155       assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
156                                          &CommentAtDeclLoc, Compare));
157     } else {
158       // Slow path.
159       Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
160                                  &CommentAtDeclLoc, Compare);
161     }
162   }
163 
164   // Decompose the location for the declaration and find the beginning of the
165   // file buffer.
166   std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
167 
168   // First check whether we have a trailing comment.
169   if (Comment != RawComments.end() &&
170       (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
171       (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
172     std::pair<FileID, unsigned> CommentBeginDecomp
173       = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
174     // Check that Doxygen trailing comment comes after the declaration, starts
175     // on the same line and in the same file as the declaration.
176     if (DeclLocDecomp.first == CommentBeginDecomp.first &&
177         SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
178           == SourceMgr.getLineNumber(CommentBeginDecomp.first,
179                                      CommentBeginDecomp.second)) {
180       return *Comment;
181     }
182   }
183 
184   // The comment just after the declaration was not a trailing comment.
185   // Let's look at the previous comment.
186   if (Comment == RawComments.begin())
187     return NULL;
188   --Comment;
189 
190   // Check that we actually have a non-member Doxygen comment.
191   if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
192     return NULL;
193 
194   // Decompose the end of the comment.
195   std::pair<FileID, unsigned> CommentEndDecomp
196     = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
197 
198   // If the comment and the declaration aren't in the same file, then they
199   // aren't related.
200   if (DeclLocDecomp.first != CommentEndDecomp.first)
201     return NULL;
202 
203   // Get the corresponding buffer.
204   bool Invalid = false;
205   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
206                                                &Invalid).data();
207   if (Invalid)
208     return NULL;
209 
210   // Extract text between the comment and declaration.
211   StringRef Text(Buffer + CommentEndDecomp.second,
212                  DeclLocDecomp.second - CommentEndDecomp.second);
213 
214   // There should be no other declarations or preprocessor directives between
215   // comment and declaration.
216   if (Text.find_first_of(",;{}#@") != StringRef::npos)
217     return NULL;
218 
219   return *Comment;
220 }
221 
222 namespace {
223 /// If we have a 'templated' declaration for a template, adjust 'D' to
224 /// refer to the actual template.
225 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl * D)226 const Decl *adjustDeclToTemplate(const Decl *D) {
227   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
228     // Is this function declaration part of a function template?
229     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
230       return FTD;
231 
232     // Nothing to do if function is not an implicit instantiation.
233     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
234       return D;
235 
236     // Function is an implicit instantiation of a function template?
237     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
238       return FTD;
239 
240     // Function is instantiated from a member definition of a class template?
241     if (const FunctionDecl *MemberDecl =
242             FD->getInstantiatedFromMemberFunction())
243       return MemberDecl;
244 
245     return D;
246   }
247   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
248     // Static data member is instantiated from a member definition of a class
249     // template?
250     if (VD->isStaticDataMember())
251       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
252         return MemberDecl;
253 
254     return D;
255   }
256   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
257     // Is this class declaration part of a class template?
258     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
259       return CTD;
260 
261     // Class is an implicit instantiation of a class template or partial
262     // specialization?
263     if (const ClassTemplateSpecializationDecl *CTSD =
264             dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
265       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
266         return D;
267       llvm::PointerUnion<ClassTemplateDecl *,
268                          ClassTemplatePartialSpecializationDecl *>
269           PU = CTSD->getSpecializedTemplateOrPartial();
270       return PU.is<ClassTemplateDecl*>() ?
271           static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
272           static_cast<const Decl*>(
273               PU.get<ClassTemplatePartialSpecializationDecl *>());
274     }
275 
276     // Class is instantiated from a member definition of a class template?
277     if (const MemberSpecializationInfo *Info =
278                    CRD->getMemberSpecializationInfo())
279       return Info->getInstantiatedFrom();
280 
281     return D;
282   }
283   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
284     // Enum is instantiated from a member definition of a class template?
285     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
286       return MemberDecl;
287 
288     return D;
289   }
290   // FIXME: Adjust alias templates?
291   return D;
292 }
293 } // unnamed namespace
294 
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const295 const RawComment *ASTContext::getRawCommentForAnyRedecl(
296                                                 const Decl *D,
297                                                 const Decl **OriginalDecl) const {
298   D = adjustDeclToTemplate(D);
299 
300   // Check whether we have cached a comment for this declaration already.
301   {
302     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
303         RedeclComments.find(D);
304     if (Pos != RedeclComments.end()) {
305       const RawCommentAndCacheFlags &Raw = Pos->second;
306       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
307         if (OriginalDecl)
308           *OriginalDecl = Raw.getOriginalDecl();
309         return Raw.getRaw();
310       }
311     }
312   }
313 
314   // Search for comments attached to declarations in the redeclaration chain.
315   const RawComment *RC = NULL;
316   const Decl *OriginalDeclForRC = NULL;
317   for (Decl::redecl_iterator I = D->redecls_begin(),
318                              E = D->redecls_end();
319        I != E; ++I) {
320     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
321         RedeclComments.find(*I);
322     if (Pos != RedeclComments.end()) {
323       const RawCommentAndCacheFlags &Raw = Pos->second;
324       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
325         RC = Raw.getRaw();
326         OriginalDeclForRC = Raw.getOriginalDecl();
327         break;
328       }
329     } else {
330       RC = getRawCommentForDeclNoCache(*I);
331       OriginalDeclForRC = *I;
332       RawCommentAndCacheFlags Raw;
333       if (RC) {
334         Raw.setRaw(RC);
335         Raw.setKind(RawCommentAndCacheFlags::FromDecl);
336       } else
337         Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
338       Raw.setOriginalDecl(*I);
339       RedeclComments[*I] = Raw;
340       if (RC)
341         break;
342     }
343   }
344 
345   // If we found a comment, it should be a documentation comment.
346   assert(!RC || RC->isDocumentation());
347 
348   if (OriginalDecl)
349     *OriginalDecl = OriginalDeclForRC;
350 
351   // Update cache for every declaration in the redeclaration chain.
352   RawCommentAndCacheFlags Raw;
353   Raw.setRaw(RC);
354   Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
355   Raw.setOriginalDecl(OriginalDeclForRC);
356 
357   for (Decl::redecl_iterator I = D->redecls_begin(),
358                              E = D->redecls_end();
359        I != E; ++I) {
360     RawCommentAndCacheFlags &R = RedeclComments[*I];
361     if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
362       R = Raw;
363   }
364 
365   return RC;
366 }
367 
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)368 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
369                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
370   const DeclContext *DC = ObjCMethod->getDeclContext();
371   if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
372     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
373     if (!ID)
374       return;
375     // Add redeclared method here.
376     for (ObjCInterfaceDecl::known_extensions_iterator
377            Ext = ID->known_extensions_begin(),
378            ExtEnd = ID->known_extensions_end();
379          Ext != ExtEnd; ++Ext) {
380       if (ObjCMethodDecl *RedeclaredMethod =
381             Ext->getMethod(ObjCMethod->getSelector(),
382                                   ObjCMethod->isInstanceMethod()))
383         Redeclared.push_back(RedeclaredMethod);
384     }
385   }
386 }
387 
cloneFullComment(comments::FullComment * FC,const Decl * D) const388 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
389                                                     const Decl *D) const {
390   comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
391   ThisDeclInfo->CommentDecl = D;
392   ThisDeclInfo->IsFilled = false;
393   ThisDeclInfo->fill();
394   ThisDeclInfo->CommentDecl = FC->getDecl();
395   comments::FullComment *CFC =
396     new (*this) comments::FullComment(FC->getBlocks(),
397                                       ThisDeclInfo);
398   return CFC;
399 
400 }
401 
getCommentForDecl(const Decl * D,const Preprocessor * PP) const402 comments::FullComment *ASTContext::getCommentForDecl(
403                                               const Decl *D,
404                                               const Preprocessor *PP) const {
405   D = adjustDeclToTemplate(D);
406 
407   const Decl *Canonical = D->getCanonicalDecl();
408   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
409       ParsedComments.find(Canonical);
410 
411   if (Pos != ParsedComments.end()) {
412     if (Canonical != D) {
413       comments::FullComment *FC = Pos->second;
414       comments::FullComment *CFC = cloneFullComment(FC, D);
415       return CFC;
416     }
417     return Pos->second;
418   }
419 
420   const Decl *OriginalDecl;
421 
422   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
423   if (!RC) {
424     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
425       SmallVector<const NamedDecl*, 8> Overridden;
426       const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
427       if (OMD && OMD->isPropertyAccessor())
428         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
429           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
430             return cloneFullComment(FC, D);
431       if (OMD)
432         addRedeclaredMethods(OMD, Overridden);
433       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
434       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
435         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
436           return cloneFullComment(FC, D);
437     }
438     else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
439       // Attach any tag type's documentation to its typedef if latter
440       // does not have one of its own.
441       QualType QT = TD->getUnderlyingType();
442       if (const TagType *TT = QT->getAs<TagType>())
443         if (const Decl *TD = TT->getDecl())
444           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
445             return cloneFullComment(FC, D);
446     }
447     return NULL;
448   }
449 
450   // If the RawComment was attached to other redeclaration of this Decl, we
451   // should parse the comment in context of that other Decl.  This is important
452   // because comments can contain references to parameter names which can be
453   // different across redeclarations.
454   if (D != OriginalDecl)
455     return getCommentForDecl(OriginalDecl, PP);
456 
457   comments::FullComment *FC = RC->parse(*this, PP, D);
458   ParsedComments[Canonical] = FC;
459   return FC;
460 }
461 
462 void
Profile(llvm::FoldingSetNodeID & ID,TemplateTemplateParmDecl * Parm)463 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
464                                                TemplateTemplateParmDecl *Parm) {
465   ID.AddInteger(Parm->getDepth());
466   ID.AddInteger(Parm->getPosition());
467   ID.AddBoolean(Parm->isParameterPack());
468 
469   TemplateParameterList *Params = Parm->getTemplateParameters();
470   ID.AddInteger(Params->size());
471   for (TemplateParameterList::const_iterator P = Params->begin(),
472                                           PEnd = Params->end();
473        P != PEnd; ++P) {
474     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
475       ID.AddInteger(0);
476       ID.AddBoolean(TTP->isParameterPack());
477       continue;
478     }
479 
480     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
481       ID.AddInteger(1);
482       ID.AddBoolean(NTTP->isParameterPack());
483       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
484       if (NTTP->isExpandedParameterPack()) {
485         ID.AddBoolean(true);
486         ID.AddInteger(NTTP->getNumExpansionTypes());
487         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
488           QualType T = NTTP->getExpansionType(I);
489           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
490         }
491       } else
492         ID.AddBoolean(false);
493       continue;
494     }
495 
496     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
497     ID.AddInteger(2);
498     Profile(ID, TTP);
499   }
500 }
501 
502 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const503 ASTContext::getCanonicalTemplateTemplateParmDecl(
504                                           TemplateTemplateParmDecl *TTP) const {
505   // Check if we already have a canonical template template parameter.
506   llvm::FoldingSetNodeID ID;
507   CanonicalTemplateTemplateParm::Profile(ID, TTP);
508   void *InsertPos = 0;
509   CanonicalTemplateTemplateParm *Canonical
510     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
511   if (Canonical)
512     return Canonical->getParam();
513 
514   // Build a canonical template parameter list.
515   TemplateParameterList *Params = TTP->getTemplateParameters();
516   SmallVector<NamedDecl *, 4> CanonParams;
517   CanonParams.reserve(Params->size());
518   for (TemplateParameterList::const_iterator P = Params->begin(),
519                                           PEnd = Params->end();
520        P != PEnd; ++P) {
521     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
522       CanonParams.push_back(
523                   TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
524                                                SourceLocation(),
525                                                SourceLocation(),
526                                                TTP->getDepth(),
527                                                TTP->getIndex(), 0, false,
528                                                TTP->isParameterPack()));
529     else if (NonTypeTemplateParmDecl *NTTP
530              = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
531       QualType T = getCanonicalType(NTTP->getType());
532       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
533       NonTypeTemplateParmDecl *Param;
534       if (NTTP->isExpandedParameterPack()) {
535         SmallVector<QualType, 2> ExpandedTypes;
536         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
537         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
538           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
539           ExpandedTInfos.push_back(
540                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
541         }
542 
543         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
544                                                 SourceLocation(),
545                                                 SourceLocation(),
546                                                 NTTP->getDepth(),
547                                                 NTTP->getPosition(), 0,
548                                                 T,
549                                                 TInfo,
550                                                 ExpandedTypes.data(),
551                                                 ExpandedTypes.size(),
552                                                 ExpandedTInfos.data());
553       } else {
554         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
555                                                 SourceLocation(),
556                                                 SourceLocation(),
557                                                 NTTP->getDepth(),
558                                                 NTTP->getPosition(), 0,
559                                                 T,
560                                                 NTTP->isParameterPack(),
561                                                 TInfo);
562       }
563       CanonParams.push_back(Param);
564 
565     } else
566       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
567                                            cast<TemplateTemplateParmDecl>(*P)));
568   }
569 
570   TemplateTemplateParmDecl *CanonTTP
571     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
572                                        SourceLocation(), TTP->getDepth(),
573                                        TTP->getPosition(),
574                                        TTP->isParameterPack(),
575                                        0,
576                          TemplateParameterList::Create(*this, SourceLocation(),
577                                                        SourceLocation(),
578                                                        CanonParams.data(),
579                                                        CanonParams.size(),
580                                                        SourceLocation()));
581 
582   // Get the new insert position for the node we care about.
583   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
584   assert(Canonical == 0 && "Shouldn't be in the map!");
585   (void)Canonical;
586 
587   // Create the canonical template template parameter entry.
588   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
589   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
590   return CanonTTP;
591 }
592 
createCXXABI(const TargetInfo & T)593 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
594   if (!LangOpts.CPlusPlus) return 0;
595 
596   switch (T.getCXXABI().getKind()) {
597   case TargetCXXABI::GenericARM:
598   case TargetCXXABI::iOS:
599     return CreateARMCXXABI(*this);
600   case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
601   case TargetCXXABI::GenericItanium:
602     return CreateItaniumCXXABI(*this);
603   case TargetCXXABI::Microsoft:
604     return CreateMicrosoftCXXABI(*this);
605   }
606   llvm_unreachable("Invalid CXXABI type!");
607 }
608 
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)609 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
610                                              const LangOptions &LOpts) {
611   if (LOpts.FakeAddressSpaceMap) {
612     // The fake address space map must have a distinct entry for each
613     // language-specific address space.
614     static const unsigned FakeAddrSpaceMap[] = {
615       1, // opencl_global
616       2, // opencl_local
617       3, // opencl_constant
618       4, // cuda_device
619       5, // cuda_constant
620       6  // cuda_shared
621     };
622     return &FakeAddrSpaceMap;
623   } else {
624     return &T.getAddressSpaceMap();
625   }
626 }
627 
ASTContext(LangOptions & LOpts,SourceManager & SM,const TargetInfo * t,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins,unsigned size_reserve,bool DelayInitialization)628 ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
629                        const TargetInfo *t,
630                        IdentifierTable &idents, SelectorTable &sels,
631                        Builtin::Context &builtins,
632                        unsigned size_reserve,
633                        bool DelayInitialization)
634   : FunctionProtoTypes(this_()),
635     TemplateSpecializationTypes(this_()),
636     DependentTemplateSpecializationTypes(this_()),
637     SubstTemplateTemplateParmPacks(this_()),
638     GlobalNestedNameSpecifier(0),
639     Int128Decl(0), UInt128Decl(0),
640     BuiltinVaListDecl(0),
641     ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
642     BOOLDecl(0),
643     CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
644     FILEDecl(0),
645     jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
646     BlockDescriptorType(0), BlockDescriptorExtendedType(0),
647     cudaConfigureCallDecl(0),
648     NullTypeSourceInfo(QualType()),
649     FirstLocalImport(), LastLocalImport(),
650     SourceMgr(SM), LangOpts(LOpts),
651     AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
652     Idents(idents), Selectors(sels),
653     BuiltinInfo(builtins),
654     DeclarationNames(*this),
655     ExternalSource(0), Listener(0),
656     Comments(SM), CommentsLoaded(false),
657     CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
658     LastSDM(0, 0),
659     UniqueBlockByRefTypeID(0)
660 {
661   if (size_reserve > 0) Types.reserve(size_reserve);
662   TUDecl = TranslationUnitDecl::Create(*this);
663 
664   if (!DelayInitialization) {
665     assert(t && "No target supplied for ASTContext initialization");
666     InitBuiltinTypes(*t);
667   }
668 }
669 
~ASTContext()670 ASTContext::~ASTContext() {
671   // Release the DenseMaps associated with DeclContext objects.
672   // FIXME: Is this the ideal solution?
673   ReleaseDeclContextMaps();
674 
675   // Call all of the deallocation functions.
676   for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
677     Deallocations[I].first(Deallocations[I].second);
678 
679   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
680   // because they can contain DenseMaps.
681   for (llvm::DenseMap<const ObjCContainerDecl*,
682        const ASTRecordLayout*>::iterator
683        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
684     // Increment in loop to prevent using deallocated memory.
685     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
686       R->Destroy(*this);
687 
688   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
689        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
690     // Increment in loop to prevent using deallocated memory.
691     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
692       R->Destroy(*this);
693   }
694 
695   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
696                                                     AEnd = DeclAttrs.end();
697        A != AEnd; ++A)
698     A->second->~AttrVec();
699 }
700 
AddDeallocation(void (* Callback)(void *),void * Data)701 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
702   Deallocations.push_back(std::make_pair(Callback, Data));
703 }
704 
705 void
setExternalSource(OwningPtr<ExternalASTSource> & Source)706 ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
707   ExternalSource.reset(Source.take());
708 }
709 
PrintStats() const710 void ASTContext::PrintStats() const {
711   llvm::errs() << "\n*** AST Context Stats:\n";
712   llvm::errs() << "  " << Types.size() << " types total.\n";
713 
714   unsigned counts[] = {
715 #define TYPE(Name, Parent) 0,
716 #define ABSTRACT_TYPE(Name, Parent)
717 #include "clang/AST/TypeNodes.def"
718     0 // Extra
719   };
720 
721   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
722     Type *T = Types[i];
723     counts[(unsigned)T->getTypeClass()]++;
724   }
725 
726   unsigned Idx = 0;
727   unsigned TotalBytes = 0;
728 #define TYPE(Name, Parent)                                              \
729   if (counts[Idx])                                                      \
730     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
731                  << " types\n";                                         \
732   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
733   ++Idx;
734 #define ABSTRACT_TYPE(Name, Parent)
735 #include "clang/AST/TypeNodes.def"
736 
737   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
738 
739   // Implicit special member functions.
740   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
741                << NumImplicitDefaultConstructors
742                << " implicit default constructors created\n";
743   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
744                << NumImplicitCopyConstructors
745                << " implicit copy constructors created\n";
746   if (getLangOpts().CPlusPlus)
747     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
748                  << NumImplicitMoveConstructors
749                  << " implicit move constructors created\n";
750   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
751                << NumImplicitCopyAssignmentOperators
752                << " implicit copy assignment operators created\n";
753   if (getLangOpts().CPlusPlus)
754     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
755                  << NumImplicitMoveAssignmentOperators
756                  << " implicit move assignment operators created\n";
757   llvm::errs() << NumImplicitDestructorsDeclared << "/"
758                << NumImplicitDestructors
759                << " implicit destructors created\n";
760 
761   if (ExternalSource.get()) {
762     llvm::errs() << "\n";
763     ExternalSource->PrintStats();
764   }
765 
766   BumpAlloc.PrintStats();
767 }
768 
getInt128Decl() const769 TypedefDecl *ASTContext::getInt128Decl() const {
770   if (!Int128Decl) {
771     TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
772     Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
773                                      getTranslationUnitDecl(),
774                                      SourceLocation(),
775                                      SourceLocation(),
776                                      &Idents.get("__int128_t"),
777                                      TInfo);
778   }
779 
780   return Int128Decl;
781 }
782 
getUInt128Decl() const783 TypedefDecl *ASTContext::getUInt128Decl() const {
784   if (!UInt128Decl) {
785     TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
786     UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
787                                      getTranslationUnitDecl(),
788                                      SourceLocation(),
789                                      SourceLocation(),
790                                      &Idents.get("__uint128_t"),
791                                      TInfo);
792   }
793 
794   return UInt128Decl;
795 }
796 
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)797 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
798   BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
799   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
800   Types.push_back(Ty);
801 }
802 
InitBuiltinTypes(const TargetInfo & Target)803 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
804   assert((!this->Target || this->Target == &Target) &&
805          "Incorrect target reinitialization");
806   assert(VoidTy.isNull() && "Context reinitialized?");
807 
808   this->Target = &Target;
809 
810   ABI.reset(createCXXABI(Target));
811   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
812 
813   // C99 6.2.5p19.
814   InitBuiltinType(VoidTy,              BuiltinType::Void);
815 
816   // C99 6.2.5p2.
817   InitBuiltinType(BoolTy,              BuiltinType::Bool);
818   // C99 6.2.5p3.
819   if (LangOpts.CharIsSigned)
820     InitBuiltinType(CharTy,            BuiltinType::Char_S);
821   else
822     InitBuiltinType(CharTy,            BuiltinType::Char_U);
823   // C99 6.2.5p4.
824   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
825   InitBuiltinType(ShortTy,             BuiltinType::Short);
826   InitBuiltinType(IntTy,               BuiltinType::Int);
827   InitBuiltinType(LongTy,              BuiltinType::Long);
828   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
829 
830   // C99 6.2.5p6.
831   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
832   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
833   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
834   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
835   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
836 
837   // C99 6.2.5p10.
838   InitBuiltinType(FloatTy,             BuiltinType::Float);
839   InitBuiltinType(DoubleTy,            BuiltinType::Double);
840   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
841 
842   // GNU extension, 128-bit integers.
843   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
844   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
845 
846   if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
847     if (TargetInfo::isTypeSigned(Target.getWCharType()))
848       InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
849     else  // -fshort-wchar makes wchar_t be unsigned.
850       InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
851   } else // C99 (or C++ using -fno-wchar)
852     WCharTy = getFromTargetType(Target.getWCharType());
853 
854   WIntTy = getFromTargetType(Target.getWIntType());
855 
856   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
857     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
858   else // C99
859     Char16Ty = getFromTargetType(Target.getChar16Type());
860 
861   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
862     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
863   else // C99
864     Char32Ty = getFromTargetType(Target.getChar32Type());
865 
866   // Placeholder type for type-dependent expressions whose type is
867   // completely unknown. No code should ever check a type against
868   // DependentTy and users should never see it; however, it is here to
869   // help diagnose failures to properly check for type-dependent
870   // expressions.
871   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
872 
873   // Placeholder type for functions.
874   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
875 
876   // Placeholder type for bound members.
877   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
878 
879   // Placeholder type for pseudo-objects.
880   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
881 
882   // "any" type; useful for debugger-like clients.
883   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
884 
885   // Placeholder type for unbridged ARC casts.
886   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
887 
888   // Placeholder type for builtin functions.
889   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
890 
891   // C99 6.2.5p11.
892   FloatComplexTy      = getComplexType(FloatTy);
893   DoubleComplexTy     = getComplexType(DoubleTy);
894   LongDoubleComplexTy = getComplexType(LongDoubleTy);
895 
896   // Builtin types for 'id', 'Class', and 'SEL'.
897   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
898   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
899   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
900 
901   if (LangOpts.OpenCL) {
902     InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
903     InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
904     InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
905     InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
906     InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
907     InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
908 
909     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
910     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
911   }
912 
913   // Builtin type for __objc_yes and __objc_no
914   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
915                        SignedCharTy : BoolTy);
916 
917   ObjCConstantStringType = QualType();
918 
919   ObjCSuperType = QualType();
920 
921   // void * type
922   VoidPtrTy = getPointerType(VoidTy);
923 
924   // nullptr type (C++0x 2.14.7)
925   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
926 
927   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
928   InitBuiltinType(HalfTy, BuiltinType::Half);
929 
930   // Builtin type used to help define __builtin_va_list.
931   VaListTagTy = QualType();
932 }
933 
getDiagnostics() const934 DiagnosticsEngine &ASTContext::getDiagnostics() const {
935   return SourceMgr.getDiagnostics();
936 }
937 
getDeclAttrs(const Decl * D)938 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
939   AttrVec *&Result = DeclAttrs[D];
940   if (!Result) {
941     void *Mem = Allocate(sizeof(AttrVec));
942     Result = new (Mem) AttrVec;
943   }
944 
945   return *Result;
946 }
947 
948 /// \brief Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)949 void ASTContext::eraseDeclAttrs(const Decl *D) {
950   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
951   if (Pos != DeclAttrs.end()) {
952     Pos->second->~AttrVec();
953     DeclAttrs.erase(Pos);
954   }
955 }
956 
957 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)958 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
959   assert(Var->isStaticDataMember() && "Not a static data member");
960   llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
961     = InstantiatedFromStaticDataMember.find(Var);
962   if (Pos == InstantiatedFromStaticDataMember.end())
963     return 0;
964 
965   return Pos->second;
966 }
967 
968 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)969 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
970                                                 TemplateSpecializationKind TSK,
971                                           SourceLocation PointOfInstantiation) {
972   assert(Inst->isStaticDataMember() && "Not a static data member");
973   assert(Tmpl->isStaticDataMember() && "Not a static data member");
974   assert(!InstantiatedFromStaticDataMember[Inst] &&
975          "Already noted what static data member was instantiated from");
976   InstantiatedFromStaticDataMember[Inst]
977     = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
978 }
979 
getClassScopeSpecializationPattern(const FunctionDecl * FD)980 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
981                                                      const FunctionDecl *FD){
982   assert(FD && "Specialization is 0");
983   llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
984     = ClassScopeSpecializationPattern.find(FD);
985   if (Pos == ClassScopeSpecializationPattern.end())
986     return 0;
987 
988   return Pos->second;
989 }
990 
setClassScopeSpecializationPattern(FunctionDecl * FD,FunctionDecl * Pattern)991 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
992                                         FunctionDecl *Pattern) {
993   assert(FD && "Specialization is 0");
994   assert(Pattern && "Class scope specialization pattern is 0");
995   ClassScopeSpecializationPattern[FD] = Pattern;
996 }
997 
998 NamedDecl *
getInstantiatedFromUsingDecl(UsingDecl * UUD)999 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1000   llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1001     = InstantiatedFromUsingDecl.find(UUD);
1002   if (Pos == InstantiatedFromUsingDecl.end())
1003     return 0;
1004 
1005   return Pos->second;
1006 }
1007 
1008 void
setInstantiatedFromUsingDecl(UsingDecl * Inst,NamedDecl * Pattern)1009 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1010   assert((isa<UsingDecl>(Pattern) ||
1011           isa<UnresolvedUsingValueDecl>(Pattern) ||
1012           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1013          "pattern decl is not a using decl");
1014   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1015   InstantiatedFromUsingDecl[Inst] = Pattern;
1016 }
1017 
1018 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1019 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1020   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1021     = InstantiatedFromUsingShadowDecl.find(Inst);
1022   if (Pos == InstantiatedFromUsingShadowDecl.end())
1023     return 0;
1024 
1025   return Pos->second;
1026 }
1027 
1028 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1029 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1030                                                UsingShadowDecl *Pattern) {
1031   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1032   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1033 }
1034 
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1035 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1036   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1037     = InstantiatedFromUnnamedFieldDecl.find(Field);
1038   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1039     return 0;
1040 
1041   return Pos->second;
1042 }
1043 
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1044 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1045                                                      FieldDecl *Tmpl) {
1046   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1047   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1048   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1049          "Already noted what unnamed field was instantiated from");
1050 
1051   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1052 }
1053 
ZeroBitfieldFollowsNonBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const1054 bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1055                                     const FieldDecl *LastFD) const {
1056   return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1057           FD->getBitWidthValue(*this) == 0);
1058 }
1059 
ZeroBitfieldFollowsBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const1060 bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1061                                              const FieldDecl *LastFD) const {
1062   return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1063           FD->getBitWidthValue(*this) == 0 &&
1064           LastFD->getBitWidthValue(*this) != 0);
1065 }
1066 
BitfieldFollowsBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const1067 bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1068                                          const FieldDecl *LastFD) const {
1069   return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1070           FD->getBitWidthValue(*this) &&
1071           LastFD->getBitWidthValue(*this));
1072 }
1073 
NonBitfieldFollowsBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const1074 bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1075                                          const FieldDecl *LastFD) const {
1076   return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1077           LastFD->getBitWidthValue(*this));
1078 }
1079 
BitfieldFollowsNonBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const1080 bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1081                                              const FieldDecl *LastFD) const {
1082   return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1083           FD->getBitWidthValue(*this));
1084 }
1085 
1086 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1087 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1088   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1089     = OverriddenMethods.find(Method->getCanonicalDecl());
1090   if (Pos == OverriddenMethods.end())
1091     return 0;
1092 
1093   return Pos->second.begin();
1094 }
1095 
1096 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1097 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1098   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1099     = OverriddenMethods.find(Method->getCanonicalDecl());
1100   if (Pos == OverriddenMethods.end())
1101     return 0;
1102 
1103   return Pos->second.end();
1104 }
1105 
1106 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1107 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1108   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1109     = OverriddenMethods.find(Method->getCanonicalDecl());
1110   if (Pos == OverriddenMethods.end())
1111     return 0;
1112 
1113   return Pos->second.size();
1114 }
1115 
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1116 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1117                                      const CXXMethodDecl *Overridden) {
1118   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1119   OverriddenMethods[Method].push_back(Overridden);
1120 }
1121 
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1122 void ASTContext::getOverriddenMethods(
1123                       const NamedDecl *D,
1124                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1125   assert(D);
1126 
1127   if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1128     Overridden.append(CXXMethod->begin_overridden_methods(),
1129                       CXXMethod->end_overridden_methods());
1130     return;
1131   }
1132 
1133   const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1134   if (!Method)
1135     return;
1136 
1137   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1138   Method->getOverriddenMethods(OverDecls);
1139   Overridden.append(OverDecls.begin(), OverDecls.end());
1140 }
1141 
addedLocalImportDecl(ImportDecl * Import)1142 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1143   assert(!Import->NextLocalImport && "Import declaration already in the chain");
1144   assert(!Import->isFromASTFile() && "Non-local import declaration");
1145   if (!FirstLocalImport) {
1146     FirstLocalImport = Import;
1147     LastLocalImport = Import;
1148     return;
1149   }
1150 
1151   LastLocalImport->NextLocalImport = Import;
1152   LastLocalImport = Import;
1153 }
1154 
1155 //===----------------------------------------------------------------------===//
1156 //                         Type Sizing and Analysis
1157 //===----------------------------------------------------------------------===//
1158 
1159 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1160 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1161 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1162   const BuiltinType *BT = T->getAs<BuiltinType>();
1163   assert(BT && "Not a floating point type!");
1164   switch (BT->getKind()) {
1165   default: llvm_unreachable("Not a floating point type!");
1166   case BuiltinType::Half:       return Target->getHalfFormat();
1167   case BuiltinType::Float:      return Target->getFloatFormat();
1168   case BuiltinType::Double:     return Target->getDoubleFormat();
1169   case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1170   }
1171 }
1172 
1173 /// getDeclAlign - Return a conservative estimate of the alignment of the
1174 /// specified decl.  Note that bitfields do not have a valid alignment, so
1175 /// this method will assert on them.
1176 /// If @p RefAsPointee, references are treated like their underlying type
1177 /// (for alignof), else they're treated like pointers (for CodeGen).
getDeclAlign(const Decl * D,bool RefAsPointee) const1178 CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1179   unsigned Align = Target->getCharWidth();
1180 
1181   bool UseAlignAttrOnly = false;
1182   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1183     Align = AlignFromAttr;
1184 
1185     // __attribute__((aligned)) can increase or decrease alignment
1186     // *except* on a struct or struct member, where it only increases
1187     // alignment unless 'packed' is also specified.
1188     //
1189     // It is an error for alignas to decrease alignment, so we can
1190     // ignore that possibility;  Sema should diagnose it.
1191     if (isa<FieldDecl>(D)) {
1192       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1193         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1194     } else {
1195       UseAlignAttrOnly = true;
1196     }
1197   }
1198   else if (isa<FieldDecl>(D))
1199       UseAlignAttrOnly =
1200         D->hasAttr<PackedAttr>() ||
1201         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1202 
1203   // If we're using the align attribute only, just ignore everything
1204   // else about the declaration and its type.
1205   if (UseAlignAttrOnly) {
1206     // do nothing
1207 
1208   } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1209     QualType T = VD->getType();
1210     if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1211       if (RefAsPointee)
1212         T = RT->getPointeeType();
1213       else
1214         T = getPointerType(RT->getPointeeType());
1215     }
1216     if (!T->isIncompleteType() && !T->isFunctionType()) {
1217       // Adjust alignments of declarations with array type by the
1218       // large-array alignment on the target.
1219       unsigned MinWidth = Target->getLargeArrayMinWidth();
1220       const ArrayType *arrayType;
1221       if (MinWidth && (arrayType = getAsArrayType(T))) {
1222         if (isa<VariableArrayType>(arrayType))
1223           Align = std::max(Align, Target->getLargeArrayAlign());
1224         else if (isa<ConstantArrayType>(arrayType) &&
1225                  MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1226           Align = std::max(Align, Target->getLargeArrayAlign());
1227 
1228         // Walk through any array types while we're at it.
1229         T = getBaseElementType(arrayType);
1230       }
1231       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1232     }
1233 
1234     // Fields can be subject to extra alignment constraints, like if
1235     // the field is packed, the struct is packed, or the struct has a
1236     // a max-field-alignment constraint (#pragma pack).  So calculate
1237     // the actual alignment of the field within the struct, and then
1238     // (as we're expected to) constrain that by the alignment of the type.
1239     if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1240       // So calculate the alignment of the field.
1241       const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1242 
1243       // Start with the record's overall alignment.
1244       unsigned fieldAlign = toBits(layout.getAlignment());
1245 
1246       // Use the GCD of that and the offset within the record.
1247       uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1248       if (offset > 0) {
1249         // Alignment is always a power of 2, so the GCD will be a power of 2,
1250         // which means we get to do this crazy thing instead of Euclid's.
1251         uint64_t lowBitOfOffset = offset & (~offset + 1);
1252         if (lowBitOfOffset < fieldAlign)
1253           fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1254       }
1255 
1256       Align = std::min(Align, fieldAlign);
1257     }
1258   }
1259 
1260   return toCharUnitsFromBits(Align);
1261 }
1262 
1263 // getTypeInfoDataSizeInChars - Return the size of a type, in
1264 // chars. If the type is a record, its data size is returned.  This is
1265 // the size of the memcpy that's performed when assigning this type
1266 // using a trivial copy/move assignment operator.
1267 std::pair<CharUnits, CharUnits>
getTypeInfoDataSizeInChars(QualType T) const1268 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1269   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1270 
1271   // In C++, objects can sometimes be allocated into the tail padding
1272   // of a base-class subobject.  We decide whether that's possible
1273   // during class layout, so here we can just trust the layout results.
1274   if (getLangOpts().CPlusPlus) {
1275     if (const RecordType *RT = T->getAs<RecordType>()) {
1276       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1277       sizeAndAlign.first = layout.getDataSize();
1278     }
1279   }
1280 
1281   return sizeAndAlign;
1282 }
1283 
1284 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const1285 ASTContext::getTypeInfoInChars(const Type *T) const {
1286   std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1287   return std::make_pair(toCharUnitsFromBits(Info.first),
1288                         toCharUnitsFromBits(Info.second));
1289 }
1290 
1291 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const1292 ASTContext::getTypeInfoInChars(QualType T) const {
1293   return getTypeInfoInChars(T.getTypePtr());
1294 }
1295 
getTypeInfo(const Type * T) const1296 std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1297   TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1298   if (it != MemoizedTypeInfo.end())
1299     return it->second;
1300 
1301   std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1302   MemoizedTypeInfo.insert(std::make_pair(T, Info));
1303   return Info;
1304 }
1305 
1306 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1307 /// method does not work on incomplete types.
1308 ///
1309 /// FIXME: Pointers into different addr spaces could have different sizes and
1310 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1311 /// should take a QualType, &c.
1312 std::pair<uint64_t, unsigned>
getTypeInfoImpl(const Type * T) const1313 ASTContext::getTypeInfoImpl(const Type *T) const {
1314   uint64_t Width=0;
1315   unsigned Align=8;
1316   switch (T->getTypeClass()) {
1317 #define TYPE(Class, Base)
1318 #define ABSTRACT_TYPE(Class, Base)
1319 #define NON_CANONICAL_TYPE(Class, Base)
1320 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1321 #include "clang/AST/TypeNodes.def"
1322     llvm_unreachable("Should not see dependent types");
1323 
1324   case Type::FunctionNoProto:
1325   case Type::FunctionProto:
1326     // GCC extension: alignof(function) = 32 bits
1327     Width = 0;
1328     Align = 32;
1329     break;
1330 
1331   case Type::IncompleteArray:
1332   case Type::VariableArray:
1333     Width = 0;
1334     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1335     break;
1336 
1337   case Type::ConstantArray: {
1338     const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1339 
1340     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1341     uint64_t Size = CAT->getSize().getZExtValue();
1342     assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1343            "Overflow in array type bit size evaluation");
1344     Width = EltInfo.first*Size;
1345     Align = EltInfo.second;
1346     Width = llvm::RoundUpToAlignment(Width, Align);
1347     break;
1348   }
1349   case Type::ExtVector:
1350   case Type::Vector: {
1351     const VectorType *VT = cast<VectorType>(T);
1352     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1353     Width = EltInfo.first*VT->getNumElements();
1354     Align = Width;
1355     // If the alignment is not a power of 2, round up to the next power of 2.
1356     // This happens for non-power-of-2 length vectors.
1357     if (Align & (Align-1)) {
1358       Align = llvm::NextPowerOf2(Align);
1359       Width = llvm::RoundUpToAlignment(Width, Align);
1360     }
1361     // Adjust the alignment based on the target max.
1362     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1363     if (TargetVectorAlign && TargetVectorAlign < Align)
1364       Align = TargetVectorAlign;
1365     break;
1366   }
1367 
1368   case Type::Builtin:
1369     switch (cast<BuiltinType>(T)->getKind()) {
1370     default: llvm_unreachable("Unknown builtin type!");
1371     case BuiltinType::Void:
1372       // GCC extension: alignof(void) = 8 bits.
1373       Width = 0;
1374       Align = 8;
1375       break;
1376 
1377     case BuiltinType::Bool:
1378       Width = Target->getBoolWidth();
1379       Align = Target->getBoolAlign();
1380       break;
1381     case BuiltinType::Char_S:
1382     case BuiltinType::Char_U:
1383     case BuiltinType::UChar:
1384     case BuiltinType::SChar:
1385       Width = Target->getCharWidth();
1386       Align = Target->getCharAlign();
1387       break;
1388     case BuiltinType::WChar_S:
1389     case BuiltinType::WChar_U:
1390       Width = Target->getWCharWidth();
1391       Align = Target->getWCharAlign();
1392       break;
1393     case BuiltinType::Char16:
1394       Width = Target->getChar16Width();
1395       Align = Target->getChar16Align();
1396       break;
1397     case BuiltinType::Char32:
1398       Width = Target->getChar32Width();
1399       Align = Target->getChar32Align();
1400       break;
1401     case BuiltinType::UShort:
1402     case BuiltinType::Short:
1403       Width = Target->getShortWidth();
1404       Align = Target->getShortAlign();
1405       break;
1406     case BuiltinType::UInt:
1407     case BuiltinType::Int:
1408       Width = Target->getIntWidth();
1409       Align = Target->getIntAlign();
1410       break;
1411     case BuiltinType::ULong:
1412     case BuiltinType::Long:
1413       Width = Target->getLongWidth();
1414       Align = Target->getLongAlign();
1415       break;
1416     case BuiltinType::ULongLong:
1417     case BuiltinType::LongLong:
1418       Width = Target->getLongLongWidth();
1419       Align = Target->getLongLongAlign();
1420       break;
1421     case BuiltinType::Int128:
1422     case BuiltinType::UInt128:
1423       Width = 128;
1424       Align = 128; // int128_t is 128-bit aligned on all targets.
1425       break;
1426     case BuiltinType::Half:
1427       Width = Target->getHalfWidth();
1428       Align = Target->getHalfAlign();
1429       break;
1430     case BuiltinType::Float:
1431       Width = Target->getFloatWidth();
1432       Align = Target->getFloatAlign();
1433       break;
1434     case BuiltinType::Double:
1435       Width = Target->getDoubleWidth();
1436       Align = Target->getDoubleAlign();
1437       break;
1438     case BuiltinType::LongDouble:
1439       Width = Target->getLongDoubleWidth();
1440       Align = Target->getLongDoubleAlign();
1441       break;
1442     case BuiltinType::NullPtr:
1443       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1444       Align = Target->getPointerAlign(0); //   == sizeof(void*)
1445       break;
1446     case BuiltinType::ObjCId:
1447     case BuiltinType::ObjCClass:
1448     case BuiltinType::ObjCSel:
1449       Width = Target->getPointerWidth(0);
1450       Align = Target->getPointerAlign(0);
1451       break;
1452     case BuiltinType::OCLSampler:
1453       // Samplers are modeled as integers.
1454       Width = Target->getIntWidth();
1455       Align = Target->getIntAlign();
1456       break;
1457     case BuiltinType::OCLEvent:
1458     case BuiltinType::OCLImage1d:
1459     case BuiltinType::OCLImage1dArray:
1460     case BuiltinType::OCLImage1dBuffer:
1461     case BuiltinType::OCLImage2d:
1462     case BuiltinType::OCLImage2dArray:
1463     case BuiltinType::OCLImage3d:
1464       // Currently these types are pointers to opaque types.
1465       Width = Target->getPointerWidth(0);
1466       Align = Target->getPointerAlign(0);
1467       break;
1468     }
1469     break;
1470   case Type::ObjCObjectPointer:
1471     Width = Target->getPointerWidth(0);
1472     Align = Target->getPointerAlign(0);
1473     break;
1474   case Type::BlockPointer: {
1475     unsigned AS = getTargetAddressSpace(
1476         cast<BlockPointerType>(T)->getPointeeType());
1477     Width = Target->getPointerWidth(AS);
1478     Align = Target->getPointerAlign(AS);
1479     break;
1480   }
1481   case Type::LValueReference:
1482   case Type::RValueReference: {
1483     // alignof and sizeof should never enter this code path here, so we go
1484     // the pointer route.
1485     unsigned AS = getTargetAddressSpace(
1486         cast<ReferenceType>(T)->getPointeeType());
1487     Width = Target->getPointerWidth(AS);
1488     Align = Target->getPointerAlign(AS);
1489     break;
1490   }
1491   case Type::Pointer: {
1492     unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1493     Width = Target->getPointerWidth(AS);
1494     Align = Target->getPointerAlign(AS);
1495     break;
1496   }
1497   case Type::MemberPointer: {
1498     const MemberPointerType *MPT = cast<MemberPointerType>(T);
1499     std::pair<uint64_t, unsigned> PtrDiffInfo =
1500       getTypeInfo(getPointerDiffType());
1501     Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1502     Align = PtrDiffInfo.second;
1503     break;
1504   }
1505   case Type::Complex: {
1506     // Complex types have the same alignment as their elements, but twice the
1507     // size.
1508     std::pair<uint64_t, unsigned> EltInfo =
1509       getTypeInfo(cast<ComplexType>(T)->getElementType());
1510     Width = EltInfo.first*2;
1511     Align = EltInfo.second;
1512     break;
1513   }
1514   case Type::ObjCObject:
1515     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1516   case Type::ObjCInterface: {
1517     const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1518     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1519     Width = toBits(Layout.getSize());
1520     Align = toBits(Layout.getAlignment());
1521     break;
1522   }
1523   case Type::Record:
1524   case Type::Enum: {
1525     const TagType *TT = cast<TagType>(T);
1526 
1527     if (TT->getDecl()->isInvalidDecl()) {
1528       Width = 8;
1529       Align = 8;
1530       break;
1531     }
1532 
1533     if (const EnumType *ET = dyn_cast<EnumType>(TT))
1534       return getTypeInfo(ET->getDecl()->getIntegerType());
1535 
1536     const RecordType *RT = cast<RecordType>(TT);
1537     const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1538     Width = toBits(Layout.getSize());
1539     Align = toBits(Layout.getAlignment());
1540     break;
1541   }
1542 
1543   case Type::SubstTemplateTypeParm:
1544     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1545                        getReplacementType().getTypePtr());
1546 
1547   case Type::Auto: {
1548     const AutoType *A = cast<AutoType>(T);
1549     assert(A->isDeduced() && "Cannot request the size of a dependent type");
1550     return getTypeInfo(A->getDeducedType().getTypePtr());
1551   }
1552 
1553   case Type::Paren:
1554     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1555 
1556   case Type::Typedef: {
1557     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1558     std::pair<uint64_t, unsigned> Info
1559       = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1560     // If the typedef has an aligned attribute on it, it overrides any computed
1561     // alignment we have.  This violates the GCC documentation (which says that
1562     // attribute(aligned) can only round up) but matches its implementation.
1563     if (unsigned AttrAlign = Typedef->getMaxAlignment())
1564       Align = AttrAlign;
1565     else
1566       Align = Info.second;
1567     Width = Info.first;
1568     break;
1569   }
1570 
1571   case Type::TypeOfExpr:
1572     return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1573                          .getTypePtr());
1574 
1575   case Type::TypeOf:
1576     return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1577 
1578   case Type::Decltype:
1579     return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1580                         .getTypePtr());
1581 
1582   case Type::UnaryTransform:
1583     return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1584 
1585   case Type::Elaborated:
1586     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1587 
1588   case Type::Attributed:
1589     return getTypeInfo(
1590                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1591 
1592   case Type::TemplateSpecialization: {
1593     assert(getCanonicalType(T) != T &&
1594            "Cannot request the size of a dependent type");
1595     const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1596     // A type alias template specialization may refer to a typedef with the
1597     // aligned attribute on it.
1598     if (TST->isTypeAlias())
1599       return getTypeInfo(TST->getAliasedType().getTypePtr());
1600     else
1601       return getTypeInfo(getCanonicalType(T));
1602   }
1603 
1604   case Type::Atomic: {
1605     // Start with the base type information.
1606     std::pair<uint64_t, unsigned> Info
1607       = getTypeInfo(cast<AtomicType>(T)->getValueType());
1608     Width = Info.first;
1609     Align = Info.second;
1610 
1611     // If the size of the type doesn't exceed the platform's max
1612     // atomic promotion width, make the size and alignment more
1613     // favorable to atomic operations:
1614     if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1615       // Round the size up to a power of 2.
1616       if (!llvm::isPowerOf2_64(Width))
1617         Width = llvm::NextPowerOf2(Width);
1618 
1619       // Set the alignment equal to the size.
1620       Align = static_cast<unsigned>(Width);
1621     }
1622   }
1623 
1624   }
1625 
1626   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1627   return std::make_pair(Width, Align);
1628 }
1629 
1630 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const1631 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1632   return CharUnits::fromQuantity(BitSize / getCharWidth());
1633 }
1634 
1635 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const1636 int64_t ASTContext::toBits(CharUnits CharSize) const {
1637   return CharSize.getQuantity() * getCharWidth();
1638 }
1639 
1640 /// getTypeSizeInChars - Return the size of the specified type, in characters.
1641 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const1642 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1643   return toCharUnitsFromBits(getTypeSize(T));
1644 }
getTypeSizeInChars(const Type * T) const1645 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1646   return toCharUnitsFromBits(getTypeSize(T));
1647 }
1648 
1649 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1650 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const1651 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1652   return toCharUnitsFromBits(getTypeAlign(T));
1653 }
getTypeAlignInChars(const Type * T) const1654 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1655   return toCharUnitsFromBits(getTypeAlign(T));
1656 }
1657 
1658 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1659 /// type for the current target in bits.  This can be different than the ABI
1660 /// alignment in cases where it is beneficial for performance to overalign
1661 /// a data type.
getPreferredTypeAlign(const Type * T) const1662 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1663   unsigned ABIAlign = getTypeAlign(T);
1664 
1665   // Double and long long should be naturally aligned if possible.
1666   if (const ComplexType* CT = T->getAs<ComplexType>())
1667     T = CT->getElementType().getTypePtr();
1668   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1669       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1670       T->isSpecificBuiltinType(BuiltinType::ULongLong))
1671     return std::max(ABIAlign, (unsigned)getTypeSize(T));
1672 
1673   return ABIAlign;
1674 }
1675 
1676 /// DeepCollectObjCIvars -
1677 /// This routine first collects all declared, but not synthesized, ivars in
1678 /// super class and then collects all ivars, including those synthesized for
1679 /// current class. This routine is used for implementation of current class
1680 /// when all ivars, declared and synthesized are known.
1681 ///
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const1682 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1683                                       bool leafClass,
1684                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1685   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1686     DeepCollectObjCIvars(SuperClass, false, Ivars);
1687   if (!leafClass) {
1688     for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1689          E = OI->ivar_end(); I != E; ++I)
1690       Ivars.push_back(*I);
1691   } else {
1692     ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1693     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1694          Iv= Iv->getNextIvar())
1695       Ivars.push_back(Iv);
1696   }
1697 }
1698 
1699 /// CollectInheritedProtocols - Collect all protocols in current class and
1700 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)1701 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1702                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1703   if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1704     // We can use protocol_iterator here instead of
1705     // all_referenced_protocol_iterator since we are walking all categories.
1706     for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1707          PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1708       ObjCProtocolDecl *Proto = (*P);
1709       Protocols.insert(Proto->getCanonicalDecl());
1710       for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1711            PE = Proto->protocol_end(); P != PE; ++P) {
1712         Protocols.insert((*P)->getCanonicalDecl());
1713         CollectInheritedProtocols(*P, Protocols);
1714       }
1715     }
1716 
1717     // Categories of this Interface.
1718     for (ObjCInterfaceDecl::visible_categories_iterator
1719            Cat = OI->visible_categories_begin(),
1720            CatEnd = OI->visible_categories_end();
1721          Cat != CatEnd; ++Cat) {
1722       CollectInheritedProtocols(*Cat, Protocols);
1723     }
1724 
1725     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1726       while (SD) {
1727         CollectInheritedProtocols(SD, Protocols);
1728         SD = SD->getSuperClass();
1729       }
1730   } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1731     for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1732          PE = OC->protocol_end(); P != PE; ++P) {
1733       ObjCProtocolDecl *Proto = (*P);
1734       Protocols.insert(Proto->getCanonicalDecl());
1735       for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1736            PE = Proto->protocol_end(); P != PE; ++P)
1737         CollectInheritedProtocols(*P, Protocols);
1738     }
1739   } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1740     for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1741          PE = OP->protocol_end(); P != PE; ++P) {
1742       ObjCProtocolDecl *Proto = (*P);
1743       Protocols.insert(Proto->getCanonicalDecl());
1744       for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1745            PE = Proto->protocol_end(); P != PE; ++P)
1746         CollectInheritedProtocols(*P, Protocols);
1747     }
1748   }
1749 }
1750 
CountNonClassIvars(const ObjCInterfaceDecl * OI) const1751 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1752   unsigned count = 0;
1753   // Count ivars declared in class extension.
1754   for (ObjCInterfaceDecl::known_extensions_iterator
1755          Ext = OI->known_extensions_begin(),
1756          ExtEnd = OI->known_extensions_end();
1757        Ext != ExtEnd; ++Ext) {
1758     count += Ext->ivar_size();
1759   }
1760 
1761   // Count ivar defined in this class's implementation.  This
1762   // includes synthesized ivars.
1763   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1764     count += ImplDecl->ivar_size();
1765 
1766   return count;
1767 }
1768 
isSentinelNullExpr(const Expr * E)1769 bool ASTContext::isSentinelNullExpr(const Expr *E) {
1770   if (!E)
1771     return false;
1772 
1773   // nullptr_t is always treated as null.
1774   if (E->getType()->isNullPtrType()) return true;
1775 
1776   if (E->getType()->isAnyPointerType() &&
1777       E->IgnoreParenCasts()->isNullPointerConstant(*this,
1778                                                 Expr::NPC_ValueDependentIsNull))
1779     return true;
1780 
1781   // Unfortunately, __null has type 'int'.
1782   if (isa<GNUNullExpr>(E)) return true;
1783 
1784   return false;
1785 }
1786 
1787 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
getObjCImplementation(ObjCInterfaceDecl * D)1788 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1789   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1790     I = ObjCImpls.find(D);
1791   if (I != ObjCImpls.end())
1792     return cast<ObjCImplementationDecl>(I->second);
1793   return 0;
1794 }
1795 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
getObjCImplementation(ObjCCategoryDecl * D)1796 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1797   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1798     I = ObjCImpls.find(D);
1799   if (I != ObjCImpls.end())
1800     return cast<ObjCCategoryImplDecl>(I->second);
1801   return 0;
1802 }
1803 
1804 /// \brief Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)1805 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1806                            ObjCImplementationDecl *ImplD) {
1807   assert(IFaceD && ImplD && "Passed null params");
1808   ObjCImpls[IFaceD] = ImplD;
1809 }
1810 /// \brief Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)1811 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1812                            ObjCCategoryImplDecl *ImplD) {
1813   assert(CatD && ImplD && "Passed null params");
1814   ObjCImpls[CatD] = ImplD;
1815 }
1816 
getObjContainingInterface(const NamedDecl * ND) const1817 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1818                                               const NamedDecl *ND) const {
1819   if (const ObjCInterfaceDecl *ID =
1820           dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1821     return ID;
1822   if (const ObjCCategoryDecl *CD =
1823           dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1824     return CD->getClassInterface();
1825   if (const ObjCImplDecl *IMD =
1826           dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1827     return IMD->getClassInterface();
1828 
1829   return 0;
1830 }
1831 
1832 /// \brief Get the copy initialization expression of VarDecl,or NULL if
1833 /// none exists.
getBlockVarCopyInits(const VarDecl * VD)1834 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1835   assert(VD && "Passed null params");
1836   assert(VD->hasAttr<BlocksAttr>() &&
1837          "getBlockVarCopyInits - not __block var");
1838   llvm::DenseMap<const VarDecl*, Expr*>::iterator
1839     I = BlockVarCopyInits.find(VD);
1840   return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1841 }
1842 
1843 /// \brief Set the copy inialization expression of a block var decl.
setBlockVarCopyInits(VarDecl * VD,Expr * Init)1844 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1845   assert(VD && Init && "Passed null params");
1846   assert(VD->hasAttr<BlocksAttr>() &&
1847          "setBlockVarCopyInits - not __block var");
1848   BlockVarCopyInits[VD] = Init;
1849 }
1850 
CreateTypeSourceInfo(QualType T,unsigned DataSize) const1851 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1852                                                  unsigned DataSize) const {
1853   if (!DataSize)
1854     DataSize = TypeLoc::getFullDataSizeForType(T);
1855   else
1856     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1857            "incorrect data size provided to CreateTypeSourceInfo!");
1858 
1859   TypeSourceInfo *TInfo =
1860     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1861   new (TInfo) TypeSourceInfo(T);
1862   return TInfo;
1863 }
1864 
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const1865 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1866                                                      SourceLocation L) const {
1867   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1868   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1869   return DI;
1870 }
1871 
1872 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const1873 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1874   return getObjCLayout(D, 0);
1875 }
1876 
1877 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const1878 ASTContext::getASTObjCImplementationLayout(
1879                                         const ObjCImplementationDecl *D) const {
1880   return getObjCLayout(D->getClassInterface(), D);
1881 }
1882 
1883 //===----------------------------------------------------------------------===//
1884 //                   Type creation/memoization methods
1885 //===----------------------------------------------------------------------===//
1886 
1887 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const1888 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1889   unsigned fastQuals = quals.getFastQualifiers();
1890   quals.removeFastQualifiers();
1891 
1892   // Check if we've already instantiated this type.
1893   llvm::FoldingSetNodeID ID;
1894   ExtQuals::Profile(ID, baseType, quals);
1895   void *insertPos = 0;
1896   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1897     assert(eq->getQualifiers() == quals);
1898     return QualType(eq, fastQuals);
1899   }
1900 
1901   // If the base type is not canonical, make the appropriate canonical type.
1902   QualType canon;
1903   if (!baseType->isCanonicalUnqualified()) {
1904     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1905     canonSplit.Quals.addConsistentQualifiers(quals);
1906     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1907 
1908     // Re-find the insert position.
1909     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1910   }
1911 
1912   ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1913   ExtQualNodes.InsertNode(eq, insertPos);
1914   return QualType(eq, fastQuals);
1915 }
1916 
1917 QualType
getAddrSpaceQualType(QualType T,unsigned AddressSpace) const1918 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1919   QualType CanT = getCanonicalType(T);
1920   if (CanT.getAddressSpace() == AddressSpace)
1921     return T;
1922 
1923   // If we are composing extended qualifiers together, merge together
1924   // into one ExtQuals node.
1925   QualifierCollector Quals;
1926   const Type *TypeNode = Quals.strip(T);
1927 
1928   // If this type already has an address space specified, it cannot get
1929   // another one.
1930   assert(!Quals.hasAddressSpace() &&
1931          "Type cannot be in multiple addr spaces!");
1932   Quals.addAddressSpace(AddressSpace);
1933 
1934   return getExtQualType(TypeNode, Quals);
1935 }
1936 
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const1937 QualType ASTContext::getObjCGCQualType(QualType T,
1938                                        Qualifiers::GC GCAttr) const {
1939   QualType CanT = getCanonicalType(T);
1940   if (CanT.getObjCGCAttr() == GCAttr)
1941     return T;
1942 
1943   if (const PointerType *ptr = T->getAs<PointerType>()) {
1944     QualType Pointee = ptr->getPointeeType();
1945     if (Pointee->isAnyPointerType()) {
1946       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1947       return getPointerType(ResultType);
1948     }
1949   }
1950 
1951   // If we are composing extended qualifiers together, merge together
1952   // into one ExtQuals node.
1953   QualifierCollector Quals;
1954   const Type *TypeNode = Quals.strip(T);
1955 
1956   // If this type already has an ObjCGC specified, it cannot get
1957   // another one.
1958   assert(!Quals.hasObjCGCAttr() &&
1959          "Type cannot have multiple ObjCGCs!");
1960   Quals.addObjCGCAttr(GCAttr);
1961 
1962   return getExtQualType(TypeNode, Quals);
1963 }
1964 
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)1965 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1966                                                    FunctionType::ExtInfo Info) {
1967   if (T->getExtInfo() == Info)
1968     return T;
1969 
1970   QualType Result;
1971   if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1972     Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1973   } else {
1974     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1975     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1976     EPI.ExtInfo = Info;
1977     Result = getFunctionType(FPT->getResultType(),
1978                              ArrayRef<QualType>(FPT->arg_type_begin(),
1979                                                 FPT->getNumArgs()),
1980                              EPI);
1981   }
1982 
1983   return cast<FunctionType>(Result.getTypePtr());
1984 }
1985 
1986 /// getComplexType - Return the uniqued reference to the type for a complex
1987 /// number with the specified element type.
getComplexType(QualType T) const1988 QualType ASTContext::getComplexType(QualType T) const {
1989   // Unique pointers, to guarantee there is only one pointer of a particular
1990   // structure.
1991   llvm::FoldingSetNodeID ID;
1992   ComplexType::Profile(ID, T);
1993 
1994   void *InsertPos = 0;
1995   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1996     return QualType(CT, 0);
1997 
1998   // If the pointee type isn't canonical, this won't be a canonical type either,
1999   // so fill in the canonical type field.
2000   QualType Canonical;
2001   if (!T.isCanonical()) {
2002     Canonical = getComplexType(getCanonicalType(T));
2003 
2004     // Get the new insert position for the node we care about.
2005     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2006     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2007   }
2008   ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2009   Types.push_back(New);
2010   ComplexTypes.InsertNode(New, InsertPos);
2011   return QualType(New, 0);
2012 }
2013 
2014 /// getPointerType - Return the uniqued reference to the type for a pointer to
2015 /// the specified type.
getPointerType(QualType T) const2016 QualType ASTContext::getPointerType(QualType T) const {
2017   // Unique pointers, to guarantee there is only one pointer of a particular
2018   // structure.
2019   llvm::FoldingSetNodeID ID;
2020   PointerType::Profile(ID, T);
2021 
2022   void *InsertPos = 0;
2023   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2024     return QualType(PT, 0);
2025 
2026   // If the pointee type isn't canonical, this won't be a canonical type either,
2027   // so fill in the canonical type field.
2028   QualType Canonical;
2029   if (!T.isCanonical()) {
2030     Canonical = getPointerType(getCanonicalType(T));
2031 
2032     // Get the new insert position for the node we care about.
2033     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2034     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2035   }
2036   PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2037   Types.push_back(New);
2038   PointerTypes.InsertNode(New, InsertPos);
2039   return QualType(New, 0);
2040 }
2041 
2042 /// getBlockPointerType - Return the uniqued reference to the type for
2043 /// a pointer to the specified block.
getBlockPointerType(QualType T) const2044 QualType ASTContext::getBlockPointerType(QualType T) const {
2045   assert(T->isFunctionType() && "block of function types only");
2046   // Unique pointers, to guarantee there is only one block of a particular
2047   // structure.
2048   llvm::FoldingSetNodeID ID;
2049   BlockPointerType::Profile(ID, T);
2050 
2051   void *InsertPos = 0;
2052   if (BlockPointerType *PT =
2053         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2054     return QualType(PT, 0);
2055 
2056   // If the block pointee type isn't canonical, this won't be a canonical
2057   // type either so fill in the canonical type field.
2058   QualType Canonical;
2059   if (!T.isCanonical()) {
2060     Canonical = getBlockPointerType(getCanonicalType(T));
2061 
2062     // Get the new insert position for the node we care about.
2063     BlockPointerType *NewIP =
2064       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2065     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2066   }
2067   BlockPointerType *New
2068     = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2069   Types.push_back(New);
2070   BlockPointerTypes.InsertNode(New, InsertPos);
2071   return QualType(New, 0);
2072 }
2073 
2074 /// getLValueReferenceType - Return the uniqued reference to the type for an
2075 /// lvalue reference to the specified type.
2076 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const2077 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2078   assert(getCanonicalType(T) != OverloadTy &&
2079          "Unresolved overloaded function type");
2080 
2081   // Unique pointers, to guarantee there is only one pointer of a particular
2082   // structure.
2083   llvm::FoldingSetNodeID ID;
2084   ReferenceType::Profile(ID, T, SpelledAsLValue);
2085 
2086   void *InsertPos = 0;
2087   if (LValueReferenceType *RT =
2088         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2089     return QualType(RT, 0);
2090 
2091   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2092 
2093   // If the referencee type isn't canonical, this won't be a canonical type
2094   // either, so fill in the canonical type field.
2095   QualType Canonical;
2096   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2097     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2098     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2099 
2100     // Get the new insert position for the node we care about.
2101     LValueReferenceType *NewIP =
2102       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2103     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2104   }
2105 
2106   LValueReferenceType *New
2107     = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2108                                                      SpelledAsLValue);
2109   Types.push_back(New);
2110   LValueReferenceTypes.InsertNode(New, InsertPos);
2111 
2112   return QualType(New, 0);
2113 }
2114 
2115 /// getRValueReferenceType - Return the uniqued reference to the type for an
2116 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const2117 QualType ASTContext::getRValueReferenceType(QualType T) const {
2118   // Unique pointers, to guarantee there is only one pointer of a particular
2119   // structure.
2120   llvm::FoldingSetNodeID ID;
2121   ReferenceType::Profile(ID, T, false);
2122 
2123   void *InsertPos = 0;
2124   if (RValueReferenceType *RT =
2125         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2126     return QualType(RT, 0);
2127 
2128   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2129 
2130   // If the referencee type isn't canonical, this won't be a canonical type
2131   // either, so fill in the canonical type field.
2132   QualType Canonical;
2133   if (InnerRef || !T.isCanonical()) {
2134     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2135     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2136 
2137     // Get the new insert position for the node we care about.
2138     RValueReferenceType *NewIP =
2139       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2140     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2141   }
2142 
2143   RValueReferenceType *New
2144     = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2145   Types.push_back(New);
2146   RValueReferenceTypes.InsertNode(New, InsertPos);
2147   return QualType(New, 0);
2148 }
2149 
2150 /// getMemberPointerType - Return the uniqued reference to the type for a
2151 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const2152 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2153   // Unique pointers, to guarantee there is only one pointer of a particular
2154   // structure.
2155   llvm::FoldingSetNodeID ID;
2156   MemberPointerType::Profile(ID, T, Cls);
2157 
2158   void *InsertPos = 0;
2159   if (MemberPointerType *PT =
2160       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2161     return QualType(PT, 0);
2162 
2163   // If the pointee or class type isn't canonical, this won't be a canonical
2164   // type either, so fill in the canonical type field.
2165   QualType Canonical;
2166   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2167     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2168 
2169     // Get the new insert position for the node we care about.
2170     MemberPointerType *NewIP =
2171       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2172     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2173   }
2174   MemberPointerType *New
2175     = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2176   Types.push_back(New);
2177   MemberPointerTypes.InsertNode(New, InsertPos);
2178   return QualType(New, 0);
2179 }
2180 
2181 /// getConstantArrayType - Return the unique reference to the type for an
2182 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const2183 QualType ASTContext::getConstantArrayType(QualType EltTy,
2184                                           const llvm::APInt &ArySizeIn,
2185                                           ArrayType::ArraySizeModifier ASM,
2186                                           unsigned IndexTypeQuals) const {
2187   assert((EltTy->isDependentType() ||
2188           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2189          "Constant array of VLAs is illegal!");
2190 
2191   // Convert the array size into a canonical width matching the pointer size for
2192   // the target.
2193   llvm::APInt ArySize(ArySizeIn);
2194   ArySize =
2195     ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2196 
2197   llvm::FoldingSetNodeID ID;
2198   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2199 
2200   void *InsertPos = 0;
2201   if (ConstantArrayType *ATP =
2202       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2203     return QualType(ATP, 0);
2204 
2205   // If the element type isn't canonical or has qualifiers, this won't
2206   // be a canonical type either, so fill in the canonical type field.
2207   QualType Canon;
2208   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2209     SplitQualType canonSplit = getCanonicalType(EltTy).split();
2210     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2211                                  ASM, IndexTypeQuals);
2212     Canon = getQualifiedType(Canon, canonSplit.Quals);
2213 
2214     // Get the new insert position for the node we care about.
2215     ConstantArrayType *NewIP =
2216       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2217     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2218   }
2219 
2220   ConstantArrayType *New = new(*this,TypeAlignment)
2221     ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2222   ConstantArrayTypes.InsertNode(New, InsertPos);
2223   Types.push_back(New);
2224   return QualType(New, 0);
2225 }
2226 
2227 /// getVariableArrayDecayedType - Turns the given type, which may be
2228 /// variably-modified, into the corresponding type with all the known
2229 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const2230 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2231   // Vastly most common case.
2232   if (!type->isVariablyModifiedType()) return type;
2233 
2234   QualType result;
2235 
2236   SplitQualType split = type.getSplitDesugaredType();
2237   const Type *ty = split.Ty;
2238   switch (ty->getTypeClass()) {
2239 #define TYPE(Class, Base)
2240 #define ABSTRACT_TYPE(Class, Base)
2241 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2242 #include "clang/AST/TypeNodes.def"
2243     llvm_unreachable("didn't desugar past all non-canonical types?");
2244 
2245   // These types should never be variably-modified.
2246   case Type::Builtin:
2247   case Type::Complex:
2248   case Type::Vector:
2249   case Type::ExtVector:
2250   case Type::DependentSizedExtVector:
2251   case Type::ObjCObject:
2252   case Type::ObjCInterface:
2253   case Type::ObjCObjectPointer:
2254   case Type::Record:
2255   case Type::Enum:
2256   case Type::UnresolvedUsing:
2257   case Type::TypeOfExpr:
2258   case Type::TypeOf:
2259   case Type::Decltype:
2260   case Type::UnaryTransform:
2261   case Type::DependentName:
2262   case Type::InjectedClassName:
2263   case Type::TemplateSpecialization:
2264   case Type::DependentTemplateSpecialization:
2265   case Type::TemplateTypeParm:
2266   case Type::SubstTemplateTypeParmPack:
2267   case Type::Auto:
2268   case Type::PackExpansion:
2269     llvm_unreachable("type should never be variably-modified");
2270 
2271   // These types can be variably-modified but should never need to
2272   // further decay.
2273   case Type::FunctionNoProto:
2274   case Type::FunctionProto:
2275   case Type::BlockPointer:
2276   case Type::MemberPointer:
2277     return type;
2278 
2279   // These types can be variably-modified.  All these modifications
2280   // preserve structure except as noted by comments.
2281   // TODO: if we ever care about optimizing VLAs, there are no-op
2282   // optimizations available here.
2283   case Type::Pointer:
2284     result = getPointerType(getVariableArrayDecayedType(
2285                               cast<PointerType>(ty)->getPointeeType()));
2286     break;
2287 
2288   case Type::LValueReference: {
2289     const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2290     result = getLValueReferenceType(
2291                  getVariableArrayDecayedType(lv->getPointeeType()),
2292                                     lv->isSpelledAsLValue());
2293     break;
2294   }
2295 
2296   case Type::RValueReference: {
2297     const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2298     result = getRValueReferenceType(
2299                  getVariableArrayDecayedType(lv->getPointeeType()));
2300     break;
2301   }
2302 
2303   case Type::Atomic: {
2304     const AtomicType *at = cast<AtomicType>(ty);
2305     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2306     break;
2307   }
2308 
2309   case Type::ConstantArray: {
2310     const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2311     result = getConstantArrayType(
2312                  getVariableArrayDecayedType(cat->getElementType()),
2313                                   cat->getSize(),
2314                                   cat->getSizeModifier(),
2315                                   cat->getIndexTypeCVRQualifiers());
2316     break;
2317   }
2318 
2319   case Type::DependentSizedArray: {
2320     const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2321     result = getDependentSizedArrayType(
2322                  getVariableArrayDecayedType(dat->getElementType()),
2323                                         dat->getSizeExpr(),
2324                                         dat->getSizeModifier(),
2325                                         dat->getIndexTypeCVRQualifiers(),
2326                                         dat->getBracketsRange());
2327     break;
2328   }
2329 
2330   // Turn incomplete types into [*] types.
2331   case Type::IncompleteArray: {
2332     const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2333     result = getVariableArrayType(
2334                  getVariableArrayDecayedType(iat->getElementType()),
2335                                   /*size*/ 0,
2336                                   ArrayType::Normal,
2337                                   iat->getIndexTypeCVRQualifiers(),
2338                                   SourceRange());
2339     break;
2340   }
2341 
2342   // Turn VLA types into [*] types.
2343   case Type::VariableArray: {
2344     const VariableArrayType *vat = cast<VariableArrayType>(ty);
2345     result = getVariableArrayType(
2346                  getVariableArrayDecayedType(vat->getElementType()),
2347                                   /*size*/ 0,
2348                                   ArrayType::Star,
2349                                   vat->getIndexTypeCVRQualifiers(),
2350                                   vat->getBracketsRange());
2351     break;
2352   }
2353   }
2354 
2355   // Apply the top-level qualifiers from the original.
2356   return getQualifiedType(result, split.Quals);
2357 }
2358 
2359 /// getVariableArrayType - Returns a non-unique reference to the type for a
2360 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const2361 QualType ASTContext::getVariableArrayType(QualType EltTy,
2362                                           Expr *NumElts,
2363                                           ArrayType::ArraySizeModifier ASM,
2364                                           unsigned IndexTypeQuals,
2365                                           SourceRange Brackets) const {
2366   // Since we don't unique expressions, it isn't possible to unique VLA's
2367   // that have an expression provided for their size.
2368   QualType Canon;
2369 
2370   // Be sure to pull qualifiers off the element type.
2371   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2372     SplitQualType canonSplit = getCanonicalType(EltTy).split();
2373     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2374                                  IndexTypeQuals, Brackets);
2375     Canon = getQualifiedType(Canon, canonSplit.Quals);
2376   }
2377 
2378   VariableArrayType *New = new(*this, TypeAlignment)
2379     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2380 
2381   VariableArrayTypes.push_back(New);
2382   Types.push_back(New);
2383   return QualType(New, 0);
2384 }
2385 
2386 /// getDependentSizedArrayType - Returns a non-unique reference to
2387 /// the type for a dependently-sized array of the specified element
2388 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const2389 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2390                                                 Expr *numElements,
2391                                                 ArrayType::ArraySizeModifier ASM,
2392                                                 unsigned elementTypeQuals,
2393                                                 SourceRange brackets) const {
2394   assert((!numElements || numElements->isTypeDependent() ||
2395           numElements->isValueDependent()) &&
2396          "Size must be type- or value-dependent!");
2397 
2398   // Dependently-sized array types that do not have a specified number
2399   // of elements will have their sizes deduced from a dependent
2400   // initializer.  We do no canonicalization here at all, which is okay
2401   // because they can't be used in most locations.
2402   if (!numElements) {
2403     DependentSizedArrayType *newType
2404       = new (*this, TypeAlignment)
2405           DependentSizedArrayType(*this, elementType, QualType(),
2406                                   numElements, ASM, elementTypeQuals,
2407                                   brackets);
2408     Types.push_back(newType);
2409     return QualType(newType, 0);
2410   }
2411 
2412   // Otherwise, we actually build a new type every time, but we
2413   // also build a canonical type.
2414 
2415   SplitQualType canonElementType = getCanonicalType(elementType).split();
2416 
2417   void *insertPos = 0;
2418   llvm::FoldingSetNodeID ID;
2419   DependentSizedArrayType::Profile(ID, *this,
2420                                    QualType(canonElementType.Ty, 0),
2421                                    ASM, elementTypeQuals, numElements);
2422 
2423   // Look for an existing type with these properties.
2424   DependentSizedArrayType *canonTy =
2425     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2426 
2427   // If we don't have one, build one.
2428   if (!canonTy) {
2429     canonTy = new (*this, TypeAlignment)
2430       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2431                               QualType(), numElements, ASM, elementTypeQuals,
2432                               brackets);
2433     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2434     Types.push_back(canonTy);
2435   }
2436 
2437   // Apply qualifiers from the element type to the array.
2438   QualType canon = getQualifiedType(QualType(canonTy,0),
2439                                     canonElementType.Quals);
2440 
2441   // If we didn't need extra canonicalization for the element type,
2442   // then just use that as our result.
2443   if (QualType(canonElementType.Ty, 0) == elementType)
2444     return canon;
2445 
2446   // Otherwise, we need to build a type which follows the spelling
2447   // of the element type.
2448   DependentSizedArrayType *sugaredType
2449     = new (*this, TypeAlignment)
2450         DependentSizedArrayType(*this, elementType, canon, numElements,
2451                                 ASM, elementTypeQuals, brackets);
2452   Types.push_back(sugaredType);
2453   return QualType(sugaredType, 0);
2454 }
2455 
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const2456 QualType ASTContext::getIncompleteArrayType(QualType elementType,
2457                                             ArrayType::ArraySizeModifier ASM,
2458                                             unsigned elementTypeQuals) const {
2459   llvm::FoldingSetNodeID ID;
2460   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2461 
2462   void *insertPos = 0;
2463   if (IncompleteArrayType *iat =
2464        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2465     return QualType(iat, 0);
2466 
2467   // If the element type isn't canonical, this won't be a canonical type
2468   // either, so fill in the canonical type field.  We also have to pull
2469   // qualifiers off the element type.
2470   QualType canon;
2471 
2472   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2473     SplitQualType canonSplit = getCanonicalType(elementType).split();
2474     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2475                                    ASM, elementTypeQuals);
2476     canon = getQualifiedType(canon, canonSplit.Quals);
2477 
2478     // Get the new insert position for the node we care about.
2479     IncompleteArrayType *existing =
2480       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2481     assert(!existing && "Shouldn't be in the map!"); (void) existing;
2482   }
2483 
2484   IncompleteArrayType *newType = new (*this, TypeAlignment)
2485     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2486 
2487   IncompleteArrayTypes.InsertNode(newType, insertPos);
2488   Types.push_back(newType);
2489   return QualType(newType, 0);
2490 }
2491 
2492 /// getVectorType - Return the unique reference to a vector type of
2493 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const2494 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2495                                    VectorType::VectorKind VecKind) const {
2496   assert(vecType->isBuiltinType());
2497 
2498   // Check if we've already instantiated a vector of this type.
2499   llvm::FoldingSetNodeID ID;
2500   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2501 
2502   void *InsertPos = 0;
2503   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2504     return QualType(VTP, 0);
2505 
2506   // If the element type isn't canonical, this won't be a canonical type either,
2507   // so fill in the canonical type field.
2508   QualType Canonical;
2509   if (!vecType.isCanonical()) {
2510     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2511 
2512     // Get the new insert position for the node we care about.
2513     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2514     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2515   }
2516   VectorType *New = new (*this, TypeAlignment)
2517     VectorType(vecType, NumElts, Canonical, VecKind);
2518   VectorTypes.InsertNode(New, InsertPos);
2519   Types.push_back(New);
2520   return QualType(New, 0);
2521 }
2522 
2523 /// getExtVectorType - Return the unique reference to an extended vector type of
2524 /// the specified element type and size. VectorType must be a built-in type.
2525 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const2526 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2527   assert(vecType->isBuiltinType() || vecType->isDependentType());
2528 
2529   // Check if we've already instantiated a vector of this type.
2530   llvm::FoldingSetNodeID ID;
2531   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2532                       VectorType::GenericVector);
2533   void *InsertPos = 0;
2534   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2535     return QualType(VTP, 0);
2536 
2537   // If the element type isn't canonical, this won't be a canonical type either,
2538   // so fill in the canonical type field.
2539   QualType Canonical;
2540   if (!vecType.isCanonical()) {
2541     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2542 
2543     // Get the new insert position for the node we care about.
2544     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2545     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2546   }
2547   ExtVectorType *New = new (*this, TypeAlignment)
2548     ExtVectorType(vecType, NumElts, Canonical);
2549   VectorTypes.InsertNode(New, InsertPos);
2550   Types.push_back(New);
2551   return QualType(New, 0);
2552 }
2553 
2554 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const2555 ASTContext::getDependentSizedExtVectorType(QualType vecType,
2556                                            Expr *SizeExpr,
2557                                            SourceLocation AttrLoc) const {
2558   llvm::FoldingSetNodeID ID;
2559   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2560                                        SizeExpr);
2561 
2562   void *InsertPos = 0;
2563   DependentSizedExtVectorType *Canon
2564     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2565   DependentSizedExtVectorType *New;
2566   if (Canon) {
2567     // We already have a canonical version of this array type; use it as
2568     // the canonical type for a newly-built type.
2569     New = new (*this, TypeAlignment)
2570       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2571                                   SizeExpr, AttrLoc);
2572   } else {
2573     QualType CanonVecTy = getCanonicalType(vecType);
2574     if (CanonVecTy == vecType) {
2575       New = new (*this, TypeAlignment)
2576         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2577                                     AttrLoc);
2578 
2579       DependentSizedExtVectorType *CanonCheck
2580         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2581       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2582       (void)CanonCheck;
2583       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2584     } else {
2585       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2586                                                       SourceLocation());
2587       New = new (*this, TypeAlignment)
2588         DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2589     }
2590   }
2591 
2592   Types.push_back(New);
2593   return QualType(New, 0);
2594 }
2595 
2596 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2597 ///
2598 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const2599 ASTContext::getFunctionNoProtoType(QualType ResultTy,
2600                                    const FunctionType::ExtInfo &Info) const {
2601   const CallingConv DefaultCC = Info.getCC();
2602   const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2603                                CC_X86StdCall : DefaultCC;
2604   // Unique functions, to guarantee there is only one function of a particular
2605   // structure.
2606   llvm::FoldingSetNodeID ID;
2607   FunctionNoProtoType::Profile(ID, ResultTy, Info);
2608 
2609   void *InsertPos = 0;
2610   if (FunctionNoProtoType *FT =
2611         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2612     return QualType(FT, 0);
2613 
2614   QualType Canonical;
2615   if (!ResultTy.isCanonical() ||
2616       getCanonicalCallConv(CallConv) != CallConv) {
2617     Canonical =
2618       getFunctionNoProtoType(getCanonicalType(ResultTy),
2619                      Info.withCallingConv(getCanonicalCallConv(CallConv)));
2620 
2621     // Get the new insert position for the node we care about.
2622     FunctionNoProtoType *NewIP =
2623       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2624     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2625   }
2626 
2627   FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2628   FunctionNoProtoType *New = new (*this, TypeAlignment)
2629     FunctionNoProtoType(ResultTy, Canonical, newInfo);
2630   Types.push_back(New);
2631   FunctionNoProtoTypes.InsertNode(New, InsertPos);
2632   return QualType(New, 0);
2633 }
2634 
2635 /// \brief Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)2636 static bool isCanonicalResultType(QualType T) {
2637   return T.isCanonical() &&
2638          (T.getObjCLifetime() == Qualifiers::OCL_None ||
2639           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2640 }
2641 
2642 /// getFunctionType - Return a normal function type with a typed argument
2643 /// list.  isVariadic indicates whether the argument list includes '...'.
2644 QualType
getFunctionType(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI) const2645 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2646                             const FunctionProtoType::ExtProtoInfo &EPI) const {
2647   size_t NumArgs = ArgArray.size();
2648 
2649   // Unique functions, to guarantee there is only one function of a particular
2650   // structure.
2651   llvm::FoldingSetNodeID ID;
2652   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2653                              *this);
2654 
2655   void *InsertPos = 0;
2656   if (FunctionProtoType *FTP =
2657         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2658     return QualType(FTP, 0);
2659 
2660   // Determine whether the type being created is already canonical or not.
2661   bool isCanonical =
2662     EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2663     !EPI.HasTrailingReturn;
2664   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2665     if (!ArgArray[i].isCanonicalAsParam())
2666       isCanonical = false;
2667 
2668   const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2669   const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2670                                CC_X86StdCall : DefaultCC;
2671 
2672   // If this type isn't canonical, get the canonical version of it.
2673   // The exception spec is not part of the canonical type.
2674   QualType Canonical;
2675   if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2676     SmallVector<QualType, 16> CanonicalArgs;
2677     CanonicalArgs.reserve(NumArgs);
2678     for (unsigned i = 0; i != NumArgs; ++i)
2679       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2680 
2681     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2682     CanonicalEPI.HasTrailingReturn = false;
2683     CanonicalEPI.ExceptionSpecType = EST_None;
2684     CanonicalEPI.NumExceptions = 0;
2685     CanonicalEPI.ExtInfo
2686       = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2687 
2688     // Result types do not have ARC lifetime qualifiers.
2689     QualType CanResultTy = getCanonicalType(ResultTy);
2690     if (ResultTy.getQualifiers().hasObjCLifetime()) {
2691       Qualifiers Qs = CanResultTy.getQualifiers();
2692       Qs.removeObjCLifetime();
2693       CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2694     }
2695 
2696     Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2697 
2698     // Get the new insert position for the node we care about.
2699     FunctionProtoType *NewIP =
2700       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2701     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2702   }
2703 
2704   // FunctionProtoType objects are allocated with extra bytes after
2705   // them for three variable size arrays at the end:
2706   //  - parameter types
2707   //  - exception types
2708   //  - consumed-arguments flags
2709   // Instead of the exception types, there could be a noexcept
2710   // expression, or information used to resolve the exception
2711   // specification.
2712   size_t Size = sizeof(FunctionProtoType) +
2713                 NumArgs * sizeof(QualType);
2714   if (EPI.ExceptionSpecType == EST_Dynamic) {
2715     Size += EPI.NumExceptions * sizeof(QualType);
2716   } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2717     Size += sizeof(Expr*);
2718   } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2719     Size += 2 * sizeof(FunctionDecl*);
2720   } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2721     Size += sizeof(FunctionDecl*);
2722   }
2723   if (EPI.ConsumedArguments)
2724     Size += NumArgs * sizeof(bool);
2725 
2726   FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2727   FunctionProtoType::ExtProtoInfo newEPI = EPI;
2728   newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2729   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2730   Types.push_back(FTP);
2731   FunctionProtoTypes.InsertNode(FTP, InsertPos);
2732   return QualType(FTP, 0);
2733 }
2734 
2735 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)2736 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2737   if (!isa<CXXRecordDecl>(D)) return false;
2738   const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2739   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2740     return true;
2741   if (RD->getDescribedClassTemplate() &&
2742       !isa<ClassTemplateSpecializationDecl>(RD))
2743     return true;
2744   return false;
2745 }
2746 #endif
2747 
2748 /// getInjectedClassNameType - Return the unique reference to the
2749 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const2750 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2751                                               QualType TST) const {
2752   assert(NeedsInjectedClassNameType(Decl));
2753   if (Decl->TypeForDecl) {
2754     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2755   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2756     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2757     Decl->TypeForDecl = PrevDecl->TypeForDecl;
2758     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2759   } else {
2760     Type *newType =
2761       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2762     Decl->TypeForDecl = newType;
2763     Types.push_back(newType);
2764   }
2765   return QualType(Decl->TypeForDecl, 0);
2766 }
2767 
2768 /// getTypeDeclType - Return the unique reference to the type for the
2769 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const2770 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2771   assert(Decl && "Passed null for Decl param");
2772   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2773 
2774   if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2775     return getTypedefType(Typedef);
2776 
2777   assert(!isa<TemplateTypeParmDecl>(Decl) &&
2778          "Template type parameter types are always available.");
2779 
2780   if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2781     assert(!Record->getPreviousDecl() &&
2782            "struct/union has previous declaration");
2783     assert(!NeedsInjectedClassNameType(Record));
2784     return getRecordType(Record);
2785   } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2786     assert(!Enum->getPreviousDecl() &&
2787            "enum has previous declaration");
2788     return getEnumType(Enum);
2789   } else if (const UnresolvedUsingTypenameDecl *Using =
2790                dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2791     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2792     Decl->TypeForDecl = newType;
2793     Types.push_back(newType);
2794   } else
2795     llvm_unreachable("TypeDecl without a type?");
2796 
2797   return QualType(Decl->TypeForDecl, 0);
2798 }
2799 
2800 /// getTypedefType - Return the unique reference to the type for the
2801 /// specified typedef name decl.
2802 QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const2803 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2804                            QualType Canonical) const {
2805   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2806 
2807   if (Canonical.isNull())
2808     Canonical = getCanonicalType(Decl->getUnderlyingType());
2809   TypedefType *newType = new(*this, TypeAlignment)
2810     TypedefType(Type::Typedef, Decl, Canonical);
2811   Decl->TypeForDecl = newType;
2812   Types.push_back(newType);
2813   return QualType(newType, 0);
2814 }
2815 
getRecordType(const RecordDecl * Decl) const2816 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2817   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2818 
2819   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2820     if (PrevDecl->TypeForDecl)
2821       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2822 
2823   RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2824   Decl->TypeForDecl = newType;
2825   Types.push_back(newType);
2826   return QualType(newType, 0);
2827 }
2828 
getEnumType(const EnumDecl * Decl) const2829 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2830   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2831 
2832   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2833     if (PrevDecl->TypeForDecl)
2834       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2835 
2836   EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2837   Decl->TypeForDecl = newType;
2838   Types.push_back(newType);
2839   return QualType(newType, 0);
2840 }
2841 
getAttributedType(AttributedType::Kind attrKind,QualType modifiedType,QualType equivalentType)2842 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2843                                        QualType modifiedType,
2844                                        QualType equivalentType) {
2845   llvm::FoldingSetNodeID id;
2846   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2847 
2848   void *insertPos = 0;
2849   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2850   if (type) return QualType(type, 0);
2851 
2852   QualType canon = getCanonicalType(equivalentType);
2853   type = new (*this, TypeAlignment)
2854            AttributedType(canon, attrKind, modifiedType, equivalentType);
2855 
2856   Types.push_back(type);
2857   AttributedTypes.InsertNode(type, insertPos);
2858 
2859   return QualType(type, 0);
2860 }
2861 
2862 
2863 /// \brief Retrieve a substitution-result type.
2864 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const2865 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2866                                          QualType Replacement) const {
2867   assert(Replacement.isCanonical()
2868          && "replacement types must always be canonical");
2869 
2870   llvm::FoldingSetNodeID ID;
2871   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2872   void *InsertPos = 0;
2873   SubstTemplateTypeParmType *SubstParm
2874     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2875 
2876   if (!SubstParm) {
2877     SubstParm = new (*this, TypeAlignment)
2878       SubstTemplateTypeParmType(Parm, Replacement);
2879     Types.push_back(SubstParm);
2880     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2881   }
2882 
2883   return QualType(SubstParm, 0);
2884 }
2885 
2886 /// \brief Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)2887 QualType ASTContext::getSubstTemplateTypeParmPackType(
2888                                           const TemplateTypeParmType *Parm,
2889                                               const TemplateArgument &ArgPack) {
2890 #ifndef NDEBUG
2891   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2892                                     PEnd = ArgPack.pack_end();
2893        P != PEnd; ++P) {
2894     assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2895     assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2896   }
2897 #endif
2898 
2899   llvm::FoldingSetNodeID ID;
2900   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2901   void *InsertPos = 0;
2902   if (SubstTemplateTypeParmPackType *SubstParm
2903         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2904     return QualType(SubstParm, 0);
2905 
2906   QualType Canon;
2907   if (!Parm->isCanonicalUnqualified()) {
2908     Canon = getCanonicalType(QualType(Parm, 0));
2909     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2910                                              ArgPack);
2911     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2912   }
2913 
2914   SubstTemplateTypeParmPackType *SubstParm
2915     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2916                                                                ArgPack);
2917   Types.push_back(SubstParm);
2918   SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2919   return QualType(SubstParm, 0);
2920 }
2921 
2922 /// \brief Retrieve the template type parameter type for a template
2923 /// parameter or parameter pack with the given depth, index, and (optionally)
2924 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const2925 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2926                                              bool ParameterPack,
2927                                              TemplateTypeParmDecl *TTPDecl) const {
2928   llvm::FoldingSetNodeID ID;
2929   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2930   void *InsertPos = 0;
2931   TemplateTypeParmType *TypeParm
2932     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2933 
2934   if (TypeParm)
2935     return QualType(TypeParm, 0);
2936 
2937   if (TTPDecl) {
2938     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2939     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2940 
2941     TemplateTypeParmType *TypeCheck
2942       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2943     assert(!TypeCheck && "Template type parameter canonical type broken");
2944     (void)TypeCheck;
2945   } else
2946     TypeParm = new (*this, TypeAlignment)
2947       TemplateTypeParmType(Depth, Index, ParameterPack);
2948 
2949   Types.push_back(TypeParm);
2950   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2951 
2952   return QualType(TypeParm, 0);
2953 }
2954 
2955 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const2956 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2957                                               SourceLocation NameLoc,
2958                                         const TemplateArgumentListInfo &Args,
2959                                               QualType Underlying) const {
2960   assert(!Name.getAsDependentTemplateName() &&
2961          "No dependent template names here!");
2962   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2963 
2964   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2965   TemplateSpecializationTypeLoc TL =
2966       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
2967   TL.setTemplateKeywordLoc(SourceLocation());
2968   TL.setTemplateNameLoc(NameLoc);
2969   TL.setLAngleLoc(Args.getLAngleLoc());
2970   TL.setRAngleLoc(Args.getRAngleLoc());
2971   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2972     TL.setArgLocInfo(i, Args[i].getLocInfo());
2973   return DI;
2974 }
2975 
2976 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const2977 ASTContext::getTemplateSpecializationType(TemplateName Template,
2978                                           const TemplateArgumentListInfo &Args,
2979                                           QualType Underlying) const {
2980   assert(!Template.getAsDependentTemplateName() &&
2981          "No dependent template names here!");
2982 
2983   unsigned NumArgs = Args.size();
2984 
2985   SmallVector<TemplateArgument, 4> ArgVec;
2986   ArgVec.reserve(NumArgs);
2987   for (unsigned i = 0; i != NumArgs; ++i)
2988     ArgVec.push_back(Args[i].getArgument());
2989 
2990   return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2991                                        Underlying);
2992 }
2993 
2994 #ifndef NDEBUG
hasAnyPackExpansions(const TemplateArgument * Args,unsigned NumArgs)2995 static bool hasAnyPackExpansions(const TemplateArgument *Args,
2996                                  unsigned NumArgs) {
2997   for (unsigned I = 0; I != NumArgs; ++I)
2998     if (Args[I].isPackExpansion())
2999       return true;
3000 
3001   return true;
3002 }
3003 #endif
3004 
3005 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs,QualType Underlying) const3006 ASTContext::getTemplateSpecializationType(TemplateName Template,
3007                                           const TemplateArgument *Args,
3008                                           unsigned NumArgs,
3009                                           QualType Underlying) const {
3010   assert(!Template.getAsDependentTemplateName() &&
3011          "No dependent template names here!");
3012   // Look through qualified template names.
3013   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3014     Template = TemplateName(QTN->getTemplateDecl());
3015 
3016   bool IsTypeAlias =
3017     Template.getAsTemplateDecl() &&
3018     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3019   QualType CanonType;
3020   if (!Underlying.isNull())
3021     CanonType = getCanonicalType(Underlying);
3022   else {
3023     // We can get here with an alias template when the specialization contains
3024     // a pack expansion that does not match up with a parameter pack.
3025     assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3026            "Caller must compute aliased type");
3027     IsTypeAlias = false;
3028     CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3029                                                        NumArgs);
3030   }
3031 
3032   // Allocate the (non-canonical) template specialization type, but don't
3033   // try to unique it: these types typically have location information that
3034   // we don't unique and don't want to lose.
3035   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3036                        sizeof(TemplateArgument) * NumArgs +
3037                        (IsTypeAlias? sizeof(QualType) : 0),
3038                        TypeAlignment);
3039   TemplateSpecializationType *Spec
3040     = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3041                                          IsTypeAlias ? Underlying : QualType());
3042 
3043   Types.push_back(Spec);
3044   return QualType(Spec, 0);
3045 }
3046 
3047 QualType
getCanonicalTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs) const3048 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3049                                                    const TemplateArgument *Args,
3050                                                    unsigned NumArgs) const {
3051   assert(!Template.getAsDependentTemplateName() &&
3052          "No dependent template names here!");
3053 
3054   // Look through qualified template names.
3055   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3056     Template = TemplateName(QTN->getTemplateDecl());
3057 
3058   // Build the canonical template specialization type.
3059   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3060   SmallVector<TemplateArgument, 4> CanonArgs;
3061   CanonArgs.reserve(NumArgs);
3062   for (unsigned I = 0; I != NumArgs; ++I)
3063     CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3064 
3065   // Determine whether this canonical template specialization type already
3066   // exists.
3067   llvm::FoldingSetNodeID ID;
3068   TemplateSpecializationType::Profile(ID, CanonTemplate,
3069                                       CanonArgs.data(), NumArgs, *this);
3070 
3071   void *InsertPos = 0;
3072   TemplateSpecializationType *Spec
3073     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3074 
3075   if (!Spec) {
3076     // Allocate a new canonical template specialization type.
3077     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3078                           sizeof(TemplateArgument) * NumArgs),
3079                          TypeAlignment);
3080     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3081                                                 CanonArgs.data(), NumArgs,
3082                                                 QualType(), QualType());
3083     Types.push_back(Spec);
3084     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3085   }
3086 
3087   assert(Spec->isDependentType() &&
3088          "Non-dependent template-id type must have a canonical type");
3089   return QualType(Spec, 0);
3090 }
3091 
3092 QualType
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType) const3093 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3094                               NestedNameSpecifier *NNS,
3095                               QualType NamedType) const {
3096   llvm::FoldingSetNodeID ID;
3097   ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3098 
3099   void *InsertPos = 0;
3100   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3101   if (T)
3102     return QualType(T, 0);
3103 
3104   QualType Canon = NamedType;
3105   if (!Canon.isCanonical()) {
3106     Canon = getCanonicalType(NamedType);
3107     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3108     assert(!CheckT && "Elaborated canonical type broken");
3109     (void)CheckT;
3110   }
3111 
3112   T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3113   Types.push_back(T);
3114   ElaboratedTypes.InsertNode(T, InsertPos);
3115   return QualType(T, 0);
3116 }
3117 
3118 QualType
getParenType(QualType InnerType) const3119 ASTContext::getParenType(QualType InnerType) const {
3120   llvm::FoldingSetNodeID ID;
3121   ParenType::Profile(ID, InnerType);
3122 
3123   void *InsertPos = 0;
3124   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3125   if (T)
3126     return QualType(T, 0);
3127 
3128   QualType Canon = InnerType;
3129   if (!Canon.isCanonical()) {
3130     Canon = getCanonicalType(InnerType);
3131     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3132     assert(!CheckT && "Paren canonical type broken");
3133     (void)CheckT;
3134   }
3135 
3136   T = new (*this) ParenType(InnerType, Canon);
3137   Types.push_back(T);
3138   ParenTypes.InsertNode(T, InsertPos);
3139   return QualType(T, 0);
3140 }
3141 
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const3142 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3143                                           NestedNameSpecifier *NNS,
3144                                           const IdentifierInfo *Name,
3145                                           QualType Canon) const {
3146   assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3147 
3148   if (Canon.isNull()) {
3149     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3150     ElaboratedTypeKeyword CanonKeyword = Keyword;
3151     if (Keyword == ETK_None)
3152       CanonKeyword = ETK_Typename;
3153 
3154     if (CanonNNS != NNS || CanonKeyword != Keyword)
3155       Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3156   }
3157 
3158   llvm::FoldingSetNodeID ID;
3159   DependentNameType::Profile(ID, Keyword, NNS, Name);
3160 
3161   void *InsertPos = 0;
3162   DependentNameType *T
3163     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3164   if (T)
3165     return QualType(T, 0);
3166 
3167   T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3168   Types.push_back(T);
3169   DependentNameTypes.InsertNode(T, InsertPos);
3170   return QualType(T, 0);
3171 }
3172 
3173 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const3174 ASTContext::getDependentTemplateSpecializationType(
3175                                  ElaboratedTypeKeyword Keyword,
3176                                  NestedNameSpecifier *NNS,
3177                                  const IdentifierInfo *Name,
3178                                  const TemplateArgumentListInfo &Args) const {
3179   // TODO: avoid this copy
3180   SmallVector<TemplateArgument, 16> ArgCopy;
3181   for (unsigned I = 0, E = Args.size(); I != E; ++I)
3182     ArgCopy.push_back(Args[I].getArgument());
3183   return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3184                                                 ArgCopy.size(),
3185                                                 ArgCopy.data());
3186 }
3187 
3188 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args) const3189 ASTContext::getDependentTemplateSpecializationType(
3190                                  ElaboratedTypeKeyword Keyword,
3191                                  NestedNameSpecifier *NNS,
3192                                  const IdentifierInfo *Name,
3193                                  unsigned NumArgs,
3194                                  const TemplateArgument *Args) const {
3195   assert((!NNS || NNS->isDependent()) &&
3196          "nested-name-specifier must be dependent");
3197 
3198   llvm::FoldingSetNodeID ID;
3199   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3200                                                Name, NumArgs, Args);
3201 
3202   void *InsertPos = 0;
3203   DependentTemplateSpecializationType *T
3204     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3205   if (T)
3206     return QualType(T, 0);
3207 
3208   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3209 
3210   ElaboratedTypeKeyword CanonKeyword = Keyword;
3211   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3212 
3213   bool AnyNonCanonArgs = false;
3214   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3215   for (unsigned I = 0; I != NumArgs; ++I) {
3216     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3217     if (!CanonArgs[I].structurallyEquals(Args[I]))
3218       AnyNonCanonArgs = true;
3219   }
3220 
3221   QualType Canon;
3222   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3223     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3224                                                    Name, NumArgs,
3225                                                    CanonArgs.data());
3226 
3227     // Find the insert position again.
3228     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3229   }
3230 
3231   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3232                         sizeof(TemplateArgument) * NumArgs),
3233                        TypeAlignment);
3234   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3235                                                     Name, NumArgs, Args, Canon);
3236   Types.push_back(T);
3237   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3238   return QualType(T, 0);
3239 }
3240 
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions)3241 QualType ASTContext::getPackExpansionType(QualType Pattern,
3242                                           Optional<unsigned> NumExpansions) {
3243   llvm::FoldingSetNodeID ID;
3244   PackExpansionType::Profile(ID, Pattern, NumExpansions);
3245 
3246   assert(Pattern->containsUnexpandedParameterPack() &&
3247          "Pack expansions must expand one or more parameter packs");
3248   void *InsertPos = 0;
3249   PackExpansionType *T
3250     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3251   if (T)
3252     return QualType(T, 0);
3253 
3254   QualType Canon;
3255   if (!Pattern.isCanonical()) {
3256     Canon = getCanonicalType(Pattern);
3257     // The canonical type might not contain an unexpanded parameter pack, if it
3258     // contains an alias template specialization which ignores one of its
3259     // parameters.
3260     if (Canon->containsUnexpandedParameterPack()) {
3261       Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3262 
3263       // Find the insert position again, in case we inserted an element into
3264       // PackExpansionTypes and invalidated our insert position.
3265       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3266     }
3267   }
3268 
3269   T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3270   Types.push_back(T);
3271   PackExpansionTypes.InsertNode(T, InsertPos);
3272   return QualType(T, 0);
3273 }
3274 
3275 /// CmpProtocolNames - Comparison predicate for sorting protocols
3276 /// alphabetically.
CmpProtocolNames(const ObjCProtocolDecl * LHS,const ObjCProtocolDecl * RHS)3277 static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3278                             const ObjCProtocolDecl *RHS) {
3279   return LHS->getDeclName() < RHS->getDeclName();
3280 }
3281 
areSortedAndUniqued(ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)3282 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3283                                 unsigned NumProtocols) {
3284   if (NumProtocols == 0) return true;
3285 
3286   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3287     return false;
3288 
3289   for (unsigned i = 1; i != NumProtocols; ++i)
3290     if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3291         Protocols[i]->getCanonicalDecl() != Protocols[i])
3292       return false;
3293   return true;
3294 }
3295 
SortAndUniqueProtocols(ObjCProtocolDecl ** Protocols,unsigned & NumProtocols)3296 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3297                                    unsigned &NumProtocols) {
3298   ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3299 
3300   // Sort protocols, keyed by name.
3301   std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3302 
3303   // Canonicalize.
3304   for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3305     Protocols[I] = Protocols[I]->getCanonicalDecl();
3306 
3307   // Remove duplicates.
3308   ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3309   NumProtocols = ProtocolsEnd-Protocols;
3310 }
3311 
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const3312 QualType ASTContext::getObjCObjectType(QualType BaseType,
3313                                        ObjCProtocolDecl * const *Protocols,
3314                                        unsigned NumProtocols) const {
3315   // If the base type is an interface and there aren't any protocols
3316   // to add, then the interface type will do just fine.
3317   if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3318     return BaseType;
3319 
3320   // Look in the folding set for an existing type.
3321   llvm::FoldingSetNodeID ID;
3322   ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3323   void *InsertPos = 0;
3324   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3325     return QualType(QT, 0);
3326 
3327   // Build the canonical type, which has the canonical base type and
3328   // a sorted-and-uniqued list of protocols.
3329   QualType Canonical;
3330   bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3331   if (!ProtocolsSorted || !BaseType.isCanonical()) {
3332     if (!ProtocolsSorted) {
3333       SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3334                                                      Protocols + NumProtocols);
3335       unsigned UniqueCount = NumProtocols;
3336 
3337       SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3338       Canonical = getObjCObjectType(getCanonicalType(BaseType),
3339                                     &Sorted[0], UniqueCount);
3340     } else {
3341       Canonical = getObjCObjectType(getCanonicalType(BaseType),
3342                                     Protocols, NumProtocols);
3343     }
3344 
3345     // Regenerate InsertPos.
3346     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3347   }
3348 
3349   unsigned Size = sizeof(ObjCObjectTypeImpl);
3350   Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3351   void *Mem = Allocate(Size, TypeAlignment);
3352   ObjCObjectTypeImpl *T =
3353     new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3354 
3355   Types.push_back(T);
3356   ObjCObjectTypes.InsertNode(T, InsertPos);
3357   return QualType(T, 0);
3358 }
3359 
3360 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3361 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const3362 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3363   llvm::FoldingSetNodeID ID;
3364   ObjCObjectPointerType::Profile(ID, ObjectT);
3365 
3366   void *InsertPos = 0;
3367   if (ObjCObjectPointerType *QT =
3368               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3369     return QualType(QT, 0);
3370 
3371   // Find the canonical object type.
3372   QualType Canonical;
3373   if (!ObjectT.isCanonical()) {
3374     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3375 
3376     // Regenerate InsertPos.
3377     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3378   }
3379 
3380   // No match.
3381   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3382   ObjCObjectPointerType *QType =
3383     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3384 
3385   Types.push_back(QType);
3386   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3387   return QualType(QType, 0);
3388 }
3389 
3390 /// getObjCInterfaceType - Return the unique reference to the type for the
3391 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const3392 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3393                                           ObjCInterfaceDecl *PrevDecl) const {
3394   if (Decl->TypeForDecl)
3395     return QualType(Decl->TypeForDecl, 0);
3396 
3397   if (PrevDecl) {
3398     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3399     Decl->TypeForDecl = PrevDecl->TypeForDecl;
3400     return QualType(PrevDecl->TypeForDecl, 0);
3401   }
3402 
3403   // Prefer the definition, if there is one.
3404   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3405     Decl = Def;
3406 
3407   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3408   ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3409   Decl->TypeForDecl = T;
3410   Types.push_back(T);
3411   return QualType(T, 0);
3412 }
3413 
3414 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3415 /// TypeOfExprType AST's (since expression's are never shared). For example,
3416 /// multiple declarations that refer to "typeof(x)" all contain different
3417 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
3418 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const3419 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3420   TypeOfExprType *toe;
3421   if (tofExpr->isTypeDependent()) {
3422     llvm::FoldingSetNodeID ID;
3423     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3424 
3425     void *InsertPos = 0;
3426     DependentTypeOfExprType *Canon
3427       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3428     if (Canon) {
3429       // We already have a "canonical" version of an identical, dependent
3430       // typeof(expr) type. Use that as our canonical type.
3431       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3432                                           QualType((TypeOfExprType*)Canon, 0));
3433     } else {
3434       // Build a new, canonical typeof(expr) type.
3435       Canon
3436         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3437       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3438       toe = Canon;
3439     }
3440   } else {
3441     QualType Canonical = getCanonicalType(tofExpr->getType());
3442     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3443   }
3444   Types.push_back(toe);
3445   return QualType(toe, 0);
3446 }
3447 
3448 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3449 /// TypeOfType AST's. The only motivation to unique these nodes would be
3450 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3451 /// an issue. This doesn't effect the type checker, since it operates
3452 /// on canonical type's (which are always unique).
getTypeOfType(QualType tofType) const3453 QualType ASTContext::getTypeOfType(QualType tofType) const {
3454   QualType Canonical = getCanonicalType(tofType);
3455   TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3456   Types.push_back(tot);
3457   return QualType(tot, 0);
3458 }
3459 
3460 
3461 /// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3462 /// DecltypeType AST's. The only motivation to unique these nodes would be
3463 /// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3464 /// an issue. This doesn't effect the type checker, since it operates
3465 /// on canonical types (which are always unique).
getDecltypeType(Expr * e,QualType UnderlyingType) const3466 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3467   DecltypeType *dt;
3468 
3469   // C++0x [temp.type]p2:
3470   //   If an expression e involves a template parameter, decltype(e) denotes a
3471   //   unique dependent type. Two such decltype-specifiers refer to the same
3472   //   type only if their expressions are equivalent (14.5.6.1).
3473   if (e->isInstantiationDependent()) {
3474     llvm::FoldingSetNodeID ID;
3475     DependentDecltypeType::Profile(ID, *this, e);
3476 
3477     void *InsertPos = 0;
3478     DependentDecltypeType *Canon
3479       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3480     if (Canon) {
3481       // We already have a "canonical" version of an equivalent, dependent
3482       // decltype type. Use that as our canonical type.
3483       dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3484                                        QualType((DecltypeType*)Canon, 0));
3485     } else {
3486       // Build a new, canonical typeof(expr) type.
3487       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3488       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3489       dt = Canon;
3490     }
3491   } else {
3492     dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3493                                       getCanonicalType(UnderlyingType));
3494   }
3495   Types.push_back(dt);
3496   return QualType(dt, 0);
3497 }
3498 
3499 /// getUnaryTransformationType - We don't unique these, since the memory
3500 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const3501 QualType ASTContext::getUnaryTransformType(QualType BaseType,
3502                                            QualType UnderlyingType,
3503                                            UnaryTransformType::UTTKind Kind)
3504     const {
3505   UnaryTransformType *Ty =
3506     new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3507                                                    Kind,
3508                                  UnderlyingType->isDependentType() ?
3509                                  QualType() : getCanonicalType(UnderlyingType));
3510   Types.push_back(Ty);
3511   return QualType(Ty, 0);
3512 }
3513 
3514 /// getAutoType - We only unique auto types after they've been deduced.
getAutoType(QualType DeducedType) const3515 QualType ASTContext::getAutoType(QualType DeducedType) const {
3516   void *InsertPos = 0;
3517   if (!DeducedType.isNull()) {
3518     // Look in the folding set for an existing type.
3519     llvm::FoldingSetNodeID ID;
3520     AutoType::Profile(ID, DeducedType);
3521     if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3522       return QualType(AT, 0);
3523   }
3524 
3525   AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3526   Types.push_back(AT);
3527   if (InsertPos)
3528     AutoTypes.InsertNode(AT, InsertPos);
3529   return QualType(AT, 0);
3530 }
3531 
3532 /// getAtomicType - Return the uniqued reference to the atomic type for
3533 /// the given value type.
getAtomicType(QualType T) const3534 QualType ASTContext::getAtomicType(QualType T) const {
3535   // Unique pointers, to guarantee there is only one pointer of a particular
3536   // structure.
3537   llvm::FoldingSetNodeID ID;
3538   AtomicType::Profile(ID, T);
3539 
3540   void *InsertPos = 0;
3541   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3542     return QualType(AT, 0);
3543 
3544   // If the atomic value type isn't canonical, this won't be a canonical type
3545   // either, so fill in the canonical type field.
3546   QualType Canonical;
3547   if (!T.isCanonical()) {
3548     Canonical = getAtomicType(getCanonicalType(T));
3549 
3550     // Get the new insert position for the node we care about.
3551     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3552     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3553   }
3554   AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3555   Types.push_back(New);
3556   AtomicTypes.InsertNode(New, InsertPos);
3557   return QualType(New, 0);
3558 }
3559 
3560 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const3561 QualType ASTContext::getAutoDeductType() const {
3562   if (AutoDeductTy.isNull())
3563     AutoDeductTy = getAutoType(QualType());
3564   assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3565   return AutoDeductTy;
3566 }
3567 
3568 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const3569 QualType ASTContext::getAutoRRefDeductType() const {
3570   if (AutoRRefDeductTy.isNull())
3571     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3572   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3573   return AutoRRefDeductTy;
3574 }
3575 
3576 /// getTagDeclType - Return the unique reference to the type for the
3577 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const3578 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3579   assert (Decl);
3580   // FIXME: What is the design on getTagDeclType when it requires casting
3581   // away const?  mutable?
3582   return getTypeDeclType(const_cast<TagDecl*>(Decl));
3583 }
3584 
3585 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3586 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3587 /// needs to agree with the definition in <stddef.h>.
getSizeType() const3588 CanQualType ASTContext::getSizeType() const {
3589   return getFromTargetType(Target->getSizeType());
3590 }
3591 
3592 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const3593 CanQualType ASTContext::getIntMaxType() const {
3594   return getFromTargetType(Target->getIntMaxType());
3595 }
3596 
3597 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const3598 CanQualType ASTContext::getUIntMaxType() const {
3599   return getFromTargetType(Target->getUIntMaxType());
3600 }
3601 
3602 /// getSignedWCharType - Return the type of "signed wchar_t".
3603 /// Used when in C++, as a GCC extension.
getSignedWCharType() const3604 QualType ASTContext::getSignedWCharType() const {
3605   // FIXME: derive from "Target" ?
3606   return WCharTy;
3607 }
3608 
3609 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3610 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const3611 QualType ASTContext::getUnsignedWCharType() const {
3612   // FIXME: derive from "Target" ?
3613   return UnsignedIntTy;
3614 }
3615 
getIntPtrType() const3616 QualType ASTContext::getIntPtrType() const {
3617   return getFromTargetType(Target->getIntPtrType());
3618 }
3619 
getUIntPtrType() const3620 QualType ASTContext::getUIntPtrType() const {
3621   return getCorrespondingUnsignedType(getIntPtrType());
3622 }
3623 
3624 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3625 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const3626 QualType ASTContext::getPointerDiffType() const {
3627   return getFromTargetType(Target->getPtrDiffType(0));
3628 }
3629 
3630 /// \brief Return the unique type for "pid_t" defined in
3631 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const3632 QualType ASTContext::getProcessIDType() const {
3633   return getFromTargetType(Target->getProcessIDType());
3634 }
3635 
3636 //===----------------------------------------------------------------------===//
3637 //                              Type Operators
3638 //===----------------------------------------------------------------------===//
3639 
getCanonicalParamType(QualType T) const3640 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3641   // Push qualifiers into arrays, and then discard any remaining
3642   // qualifiers.
3643   T = getCanonicalType(T);
3644   T = getVariableArrayDecayedType(T);
3645   const Type *Ty = T.getTypePtr();
3646   QualType Result;
3647   if (isa<ArrayType>(Ty)) {
3648     Result = getArrayDecayedType(QualType(Ty,0));
3649   } else if (isa<FunctionType>(Ty)) {
3650     Result = getPointerType(QualType(Ty, 0));
3651   } else {
3652     Result = QualType(Ty, 0);
3653   }
3654 
3655   return CanQualType::CreateUnsafe(Result);
3656 }
3657 
getUnqualifiedArrayType(QualType type,Qualifiers & quals)3658 QualType ASTContext::getUnqualifiedArrayType(QualType type,
3659                                              Qualifiers &quals) {
3660   SplitQualType splitType = type.getSplitUnqualifiedType();
3661 
3662   // FIXME: getSplitUnqualifiedType() actually walks all the way to
3663   // the unqualified desugared type and then drops it on the floor.
3664   // We then have to strip that sugar back off with
3665   // getUnqualifiedDesugaredType(), which is silly.
3666   const ArrayType *AT =
3667     dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3668 
3669   // If we don't have an array, just use the results in splitType.
3670   if (!AT) {
3671     quals = splitType.Quals;
3672     return QualType(splitType.Ty, 0);
3673   }
3674 
3675   // Otherwise, recurse on the array's element type.
3676   QualType elementType = AT->getElementType();
3677   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3678 
3679   // If that didn't change the element type, AT has no qualifiers, so we
3680   // can just use the results in splitType.
3681   if (elementType == unqualElementType) {
3682     assert(quals.empty()); // from the recursive call
3683     quals = splitType.Quals;
3684     return QualType(splitType.Ty, 0);
3685   }
3686 
3687   // Otherwise, add in the qualifiers from the outermost type, then
3688   // build the type back up.
3689   quals.addConsistentQualifiers(splitType.Quals);
3690 
3691   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3692     return getConstantArrayType(unqualElementType, CAT->getSize(),
3693                                 CAT->getSizeModifier(), 0);
3694   }
3695 
3696   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3697     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3698   }
3699 
3700   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3701     return getVariableArrayType(unqualElementType,
3702                                 VAT->getSizeExpr(),
3703                                 VAT->getSizeModifier(),
3704                                 VAT->getIndexTypeCVRQualifiers(),
3705                                 VAT->getBracketsRange());
3706   }
3707 
3708   const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3709   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3710                                     DSAT->getSizeModifier(), 0,
3711                                     SourceRange());
3712 }
3713 
3714 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3715 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3716 /// they point to and return true. If T1 and T2 aren't pointer types
3717 /// or pointer-to-member types, or if they are not similar at this
3718 /// level, returns false and leaves T1 and T2 unchanged. Top-level
3719 /// qualifiers on T1 and T2 are ignored. This function will typically
3720 /// be called in a loop that successively "unwraps" pointer and
3721 /// pointer-to-member types to compare them at each level.
UnwrapSimilarPointerTypes(QualType & T1,QualType & T2)3722 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3723   const PointerType *T1PtrType = T1->getAs<PointerType>(),
3724                     *T2PtrType = T2->getAs<PointerType>();
3725   if (T1PtrType && T2PtrType) {
3726     T1 = T1PtrType->getPointeeType();
3727     T2 = T2PtrType->getPointeeType();
3728     return true;
3729   }
3730 
3731   const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3732                           *T2MPType = T2->getAs<MemberPointerType>();
3733   if (T1MPType && T2MPType &&
3734       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3735                              QualType(T2MPType->getClass(), 0))) {
3736     T1 = T1MPType->getPointeeType();
3737     T2 = T2MPType->getPointeeType();
3738     return true;
3739   }
3740 
3741   if (getLangOpts().ObjC1) {
3742     const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3743                                 *T2OPType = T2->getAs<ObjCObjectPointerType>();
3744     if (T1OPType && T2OPType) {
3745       T1 = T1OPType->getPointeeType();
3746       T2 = T2OPType->getPointeeType();
3747       return true;
3748     }
3749   }
3750 
3751   // FIXME: Block pointers, too?
3752 
3753   return false;
3754 }
3755 
3756 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const3757 ASTContext::getNameForTemplate(TemplateName Name,
3758                                SourceLocation NameLoc) const {
3759   switch (Name.getKind()) {
3760   case TemplateName::QualifiedTemplate:
3761   case TemplateName::Template:
3762     // DNInfo work in progress: CHECKME: what about DNLoc?
3763     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3764                                NameLoc);
3765 
3766   case TemplateName::OverloadedTemplate: {
3767     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3768     // DNInfo work in progress: CHECKME: what about DNLoc?
3769     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3770   }
3771 
3772   case TemplateName::DependentTemplate: {
3773     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3774     DeclarationName DName;
3775     if (DTN->isIdentifier()) {
3776       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3777       return DeclarationNameInfo(DName, NameLoc);
3778     } else {
3779       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3780       // DNInfo work in progress: FIXME: source locations?
3781       DeclarationNameLoc DNLoc;
3782       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3783       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3784       return DeclarationNameInfo(DName, NameLoc, DNLoc);
3785     }
3786   }
3787 
3788   case TemplateName::SubstTemplateTemplateParm: {
3789     SubstTemplateTemplateParmStorage *subst
3790       = Name.getAsSubstTemplateTemplateParm();
3791     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3792                                NameLoc);
3793   }
3794 
3795   case TemplateName::SubstTemplateTemplateParmPack: {
3796     SubstTemplateTemplateParmPackStorage *subst
3797       = Name.getAsSubstTemplateTemplateParmPack();
3798     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3799                                NameLoc);
3800   }
3801   }
3802 
3803   llvm_unreachable("bad template name kind!");
3804 }
3805 
getCanonicalTemplateName(TemplateName Name) const3806 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3807   switch (Name.getKind()) {
3808   case TemplateName::QualifiedTemplate:
3809   case TemplateName::Template: {
3810     TemplateDecl *Template = Name.getAsTemplateDecl();
3811     if (TemplateTemplateParmDecl *TTP
3812           = dyn_cast<TemplateTemplateParmDecl>(Template))
3813       Template = getCanonicalTemplateTemplateParmDecl(TTP);
3814 
3815     // The canonical template name is the canonical template declaration.
3816     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3817   }
3818 
3819   case TemplateName::OverloadedTemplate:
3820     llvm_unreachable("cannot canonicalize overloaded template");
3821 
3822   case TemplateName::DependentTemplate: {
3823     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3824     assert(DTN && "Non-dependent template names must refer to template decls.");
3825     return DTN->CanonicalTemplateName;
3826   }
3827 
3828   case TemplateName::SubstTemplateTemplateParm: {
3829     SubstTemplateTemplateParmStorage *subst
3830       = Name.getAsSubstTemplateTemplateParm();
3831     return getCanonicalTemplateName(subst->getReplacement());
3832   }
3833 
3834   case TemplateName::SubstTemplateTemplateParmPack: {
3835     SubstTemplateTemplateParmPackStorage *subst
3836                                   = Name.getAsSubstTemplateTemplateParmPack();
3837     TemplateTemplateParmDecl *canonParameter
3838       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3839     TemplateArgument canonArgPack
3840       = getCanonicalTemplateArgument(subst->getArgumentPack());
3841     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3842   }
3843   }
3844 
3845   llvm_unreachable("bad template name!");
3846 }
3847 
hasSameTemplateName(TemplateName X,TemplateName Y)3848 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3849   X = getCanonicalTemplateName(X);
3850   Y = getCanonicalTemplateName(Y);
3851   return X.getAsVoidPointer() == Y.getAsVoidPointer();
3852 }
3853 
3854 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const3855 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3856   switch (Arg.getKind()) {
3857     case TemplateArgument::Null:
3858       return Arg;
3859 
3860     case TemplateArgument::Expression:
3861       return Arg;
3862 
3863     case TemplateArgument::Declaration: {
3864       ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3865       return TemplateArgument(D, Arg.isDeclForReferenceParam());
3866     }
3867 
3868     case TemplateArgument::NullPtr:
3869       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3870                               /*isNullPtr*/true);
3871 
3872     case TemplateArgument::Template:
3873       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3874 
3875     case TemplateArgument::TemplateExpansion:
3876       return TemplateArgument(getCanonicalTemplateName(
3877                                          Arg.getAsTemplateOrTemplatePattern()),
3878                               Arg.getNumTemplateExpansions());
3879 
3880     case TemplateArgument::Integral:
3881       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3882 
3883     case TemplateArgument::Type:
3884       return TemplateArgument(getCanonicalType(Arg.getAsType()));
3885 
3886     case TemplateArgument::Pack: {
3887       if (Arg.pack_size() == 0)
3888         return Arg;
3889 
3890       TemplateArgument *CanonArgs
3891         = new (*this) TemplateArgument[Arg.pack_size()];
3892       unsigned Idx = 0;
3893       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3894                                         AEnd = Arg.pack_end();
3895            A != AEnd; (void)++A, ++Idx)
3896         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3897 
3898       return TemplateArgument(CanonArgs, Arg.pack_size());
3899     }
3900   }
3901 
3902   // Silence GCC warning
3903   llvm_unreachable("Unhandled template argument kind");
3904 }
3905 
3906 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const3907 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3908   if (!NNS)
3909     return 0;
3910 
3911   switch (NNS->getKind()) {
3912   case NestedNameSpecifier::Identifier:
3913     // Canonicalize the prefix but keep the identifier the same.
3914     return NestedNameSpecifier::Create(*this,
3915                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3916                                        NNS->getAsIdentifier());
3917 
3918   case NestedNameSpecifier::Namespace:
3919     // A namespace is canonical; build a nested-name-specifier with
3920     // this namespace and no prefix.
3921     return NestedNameSpecifier::Create(*this, 0,
3922                                  NNS->getAsNamespace()->getOriginalNamespace());
3923 
3924   case NestedNameSpecifier::NamespaceAlias:
3925     // A namespace is canonical; build a nested-name-specifier with
3926     // this namespace and no prefix.
3927     return NestedNameSpecifier::Create(*this, 0,
3928                                     NNS->getAsNamespaceAlias()->getNamespace()
3929                                                       ->getOriginalNamespace());
3930 
3931   case NestedNameSpecifier::TypeSpec:
3932   case NestedNameSpecifier::TypeSpecWithTemplate: {
3933     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3934 
3935     // If we have some kind of dependent-named type (e.g., "typename T::type"),
3936     // break it apart into its prefix and identifier, then reconsititute those
3937     // as the canonical nested-name-specifier. This is required to canonicalize
3938     // a dependent nested-name-specifier involving typedefs of dependent-name
3939     // types, e.g.,
3940     //   typedef typename T::type T1;
3941     //   typedef typename T1::type T2;
3942     if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3943       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3944                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3945 
3946     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3947     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3948     // first place?
3949     return NestedNameSpecifier::Create(*this, 0, false,
3950                                        const_cast<Type*>(T.getTypePtr()));
3951   }
3952 
3953   case NestedNameSpecifier::Global:
3954     // The global specifier is canonical and unique.
3955     return NNS;
3956   }
3957 
3958   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3959 }
3960 
3961 
getAsArrayType(QualType T) const3962 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3963   // Handle the non-qualified case efficiently.
3964   if (!T.hasLocalQualifiers()) {
3965     // Handle the common positive case fast.
3966     if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3967       return AT;
3968   }
3969 
3970   // Handle the common negative case fast.
3971   if (!isa<ArrayType>(T.getCanonicalType()))
3972     return 0;
3973 
3974   // Apply any qualifiers from the array type to the element type.  This
3975   // implements C99 6.7.3p8: "If the specification of an array type includes
3976   // any type qualifiers, the element type is so qualified, not the array type."
3977 
3978   // If we get here, we either have type qualifiers on the type, or we have
3979   // sugar such as a typedef in the way.  If we have type qualifiers on the type
3980   // we must propagate them down into the element type.
3981 
3982   SplitQualType split = T.getSplitDesugaredType();
3983   Qualifiers qs = split.Quals;
3984 
3985   // If we have a simple case, just return now.
3986   const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3987   if (ATy == 0 || qs.empty())
3988     return ATy;
3989 
3990   // Otherwise, we have an array and we have qualifiers on it.  Push the
3991   // qualifiers into the array element type and return a new array type.
3992   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3993 
3994   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3995     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3996                                                 CAT->getSizeModifier(),
3997                                            CAT->getIndexTypeCVRQualifiers()));
3998   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3999     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4000                                                   IAT->getSizeModifier(),
4001                                            IAT->getIndexTypeCVRQualifiers()));
4002 
4003   if (const DependentSizedArrayType *DSAT
4004         = dyn_cast<DependentSizedArrayType>(ATy))
4005     return cast<ArrayType>(
4006                      getDependentSizedArrayType(NewEltTy,
4007                                                 DSAT->getSizeExpr(),
4008                                                 DSAT->getSizeModifier(),
4009                                               DSAT->getIndexTypeCVRQualifiers(),
4010                                                 DSAT->getBracketsRange()));
4011 
4012   const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4013   return cast<ArrayType>(getVariableArrayType(NewEltTy,
4014                                               VAT->getSizeExpr(),
4015                                               VAT->getSizeModifier(),
4016                                               VAT->getIndexTypeCVRQualifiers(),
4017                                               VAT->getBracketsRange()));
4018 }
4019 
getAdjustedParameterType(QualType T) const4020 QualType ASTContext::getAdjustedParameterType(QualType T) const {
4021   // C99 6.7.5.3p7:
4022   //   A declaration of a parameter as "array of type" shall be
4023   //   adjusted to "qualified pointer to type", where the type
4024   //   qualifiers (if any) are those specified within the [ and ] of
4025   //   the array type derivation.
4026   if (T->isArrayType())
4027     return getArrayDecayedType(T);
4028 
4029   // C99 6.7.5.3p8:
4030   //   A declaration of a parameter as "function returning type"
4031   //   shall be adjusted to "pointer to function returning type", as
4032   //   in 6.3.2.1.
4033   if (T->isFunctionType())
4034     return getPointerType(T);
4035 
4036   return T;
4037 }
4038 
getSignatureParameterType(QualType T) const4039 QualType ASTContext::getSignatureParameterType(QualType T) const {
4040   T = getVariableArrayDecayedType(T);
4041   T = getAdjustedParameterType(T);
4042   return T.getUnqualifiedType();
4043 }
4044 
4045 /// getArrayDecayedType - Return the properly qualified result of decaying the
4046 /// specified array type to a pointer.  This operation is non-trivial when
4047 /// handling typedefs etc.  The canonical type of "T" must be an array type,
4048 /// this returns a pointer to a properly qualified element of the array.
4049 ///
4050 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const4051 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4052   // Get the element type with 'getAsArrayType' so that we don't lose any
4053   // typedefs in the element type of the array.  This also handles propagation
4054   // of type qualifiers from the array type into the element type if present
4055   // (C99 6.7.3p8).
4056   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4057   assert(PrettyArrayType && "Not an array type!");
4058 
4059   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4060 
4061   // int x[restrict 4] ->  int *restrict
4062   return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4063 }
4064 
getBaseElementType(const ArrayType * array) const4065 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4066   return getBaseElementType(array->getElementType());
4067 }
4068 
getBaseElementType(QualType type) const4069 QualType ASTContext::getBaseElementType(QualType type) const {
4070   Qualifiers qs;
4071   while (true) {
4072     SplitQualType split = type.getSplitDesugaredType();
4073     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4074     if (!array) break;
4075 
4076     type = array->getElementType();
4077     qs.addConsistentQualifiers(split.Quals);
4078   }
4079 
4080   return getQualifiedType(type, qs);
4081 }
4082 
4083 /// getConstantArrayElementCount - Returns number of constant array elements.
4084 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const4085 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4086   uint64_t ElementCount = 1;
4087   do {
4088     ElementCount *= CA->getSize().getZExtValue();
4089     CA = dyn_cast_or_null<ConstantArrayType>(
4090       CA->getElementType()->getAsArrayTypeUnsafe());
4091   } while (CA);
4092   return ElementCount;
4093 }
4094 
4095 /// getFloatingRank - Return a relative rank for floating point types.
4096 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)4097 static FloatingRank getFloatingRank(QualType T) {
4098   if (const ComplexType *CT = T->getAs<ComplexType>())
4099     return getFloatingRank(CT->getElementType());
4100 
4101   assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4102   switch (T->getAs<BuiltinType>()->getKind()) {
4103   default: llvm_unreachable("getFloatingRank(): not a floating type");
4104   case BuiltinType::Half:       return HalfRank;
4105   case BuiltinType::Float:      return FloatRank;
4106   case BuiltinType::Double:     return DoubleRank;
4107   case BuiltinType::LongDouble: return LongDoubleRank;
4108   }
4109 }
4110 
4111 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4112 /// point or a complex type (based on typeDomain/typeSize).
4113 /// 'typeDomain' is a real floating point or complex type.
4114 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const4115 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4116                                                        QualType Domain) const {
4117   FloatingRank EltRank = getFloatingRank(Size);
4118   if (Domain->isComplexType()) {
4119     switch (EltRank) {
4120     case HalfRank: llvm_unreachable("Complex half is not supported");
4121     case FloatRank:      return FloatComplexTy;
4122     case DoubleRank:     return DoubleComplexTy;
4123     case LongDoubleRank: return LongDoubleComplexTy;
4124     }
4125   }
4126 
4127   assert(Domain->isRealFloatingType() && "Unknown domain!");
4128   switch (EltRank) {
4129   case HalfRank:       return HalfTy;
4130   case FloatRank:      return FloatTy;
4131   case DoubleRank:     return DoubleTy;
4132   case LongDoubleRank: return LongDoubleTy;
4133   }
4134   llvm_unreachable("getFloatingRank(): illegal value for rank");
4135 }
4136 
4137 /// getFloatingTypeOrder - Compare the rank of the two specified floating
4138 /// point types, ignoring the domain of the type (i.e. 'double' ==
4139 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4140 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const4141 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4142   FloatingRank LHSR = getFloatingRank(LHS);
4143   FloatingRank RHSR = getFloatingRank(RHS);
4144 
4145   if (LHSR == RHSR)
4146     return 0;
4147   if (LHSR > RHSR)
4148     return 1;
4149   return -1;
4150 }
4151 
4152 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4153 /// routine will assert if passed a built-in type that isn't an integer or enum,
4154 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const4155 unsigned ASTContext::getIntegerRank(const Type *T) const {
4156   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4157 
4158   switch (cast<BuiltinType>(T)->getKind()) {
4159   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4160   case BuiltinType::Bool:
4161     return 1 + (getIntWidth(BoolTy) << 3);
4162   case BuiltinType::Char_S:
4163   case BuiltinType::Char_U:
4164   case BuiltinType::SChar:
4165   case BuiltinType::UChar:
4166     return 2 + (getIntWidth(CharTy) << 3);
4167   case BuiltinType::Short:
4168   case BuiltinType::UShort:
4169     return 3 + (getIntWidth(ShortTy) << 3);
4170   case BuiltinType::Int:
4171   case BuiltinType::UInt:
4172     return 4 + (getIntWidth(IntTy) << 3);
4173   case BuiltinType::Long:
4174   case BuiltinType::ULong:
4175     return 5 + (getIntWidth(LongTy) << 3);
4176   case BuiltinType::LongLong:
4177   case BuiltinType::ULongLong:
4178     return 6 + (getIntWidth(LongLongTy) << 3);
4179   case BuiltinType::Int128:
4180   case BuiltinType::UInt128:
4181     return 7 + (getIntWidth(Int128Ty) << 3);
4182   }
4183 }
4184 
4185 /// \brief Whether this is a promotable bitfield reference according
4186 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4187 ///
4188 /// \returns the type this bit-field will promote to, or NULL if no
4189 /// promotion occurs.
isPromotableBitField(Expr * E) const4190 QualType ASTContext::isPromotableBitField(Expr *E) const {
4191   if (E->isTypeDependent() || E->isValueDependent())
4192     return QualType();
4193 
4194   FieldDecl *Field = E->getBitField();
4195   if (!Field)
4196     return QualType();
4197 
4198   QualType FT = Field->getType();
4199 
4200   uint64_t BitWidth = Field->getBitWidthValue(*this);
4201   uint64_t IntSize = getTypeSize(IntTy);
4202   // GCC extension compatibility: if the bit-field size is less than or equal
4203   // to the size of int, it gets promoted no matter what its type is.
4204   // For instance, unsigned long bf : 4 gets promoted to signed int.
4205   if (BitWidth < IntSize)
4206     return IntTy;
4207 
4208   if (BitWidth == IntSize)
4209     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4210 
4211   // Types bigger than int are not subject to promotions, and therefore act
4212   // like the base type.
4213   // FIXME: This doesn't quite match what gcc does, but what gcc does here
4214   // is ridiculous.
4215   return QualType();
4216 }
4217 
4218 /// getPromotedIntegerType - Returns the type that Promotable will
4219 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4220 /// integer type.
getPromotedIntegerType(QualType Promotable) const4221 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4222   assert(!Promotable.isNull());
4223   assert(Promotable->isPromotableIntegerType());
4224   if (const EnumType *ET = Promotable->getAs<EnumType>())
4225     return ET->getDecl()->getPromotionType();
4226 
4227   if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4228     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4229     // (3.9.1) can be converted to a prvalue of the first of the following
4230     // types that can represent all the values of its underlying type:
4231     // int, unsigned int, long int, unsigned long int, long long int, or
4232     // unsigned long long int [...]
4233     // FIXME: Is there some better way to compute this?
4234     if (BT->getKind() == BuiltinType::WChar_S ||
4235         BT->getKind() == BuiltinType::WChar_U ||
4236         BT->getKind() == BuiltinType::Char16 ||
4237         BT->getKind() == BuiltinType::Char32) {
4238       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4239       uint64_t FromSize = getTypeSize(BT);
4240       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4241                                   LongLongTy, UnsignedLongLongTy };
4242       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4243         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4244         if (FromSize < ToSize ||
4245             (FromSize == ToSize &&
4246              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4247           return PromoteTypes[Idx];
4248       }
4249       llvm_unreachable("char type should fit into long long");
4250     }
4251   }
4252 
4253   // At this point, we should have a signed or unsigned integer type.
4254   if (Promotable->isSignedIntegerType())
4255     return IntTy;
4256   uint64_t PromotableSize = getIntWidth(Promotable);
4257   uint64_t IntSize = getIntWidth(IntTy);
4258   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4259   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4260 }
4261 
4262 /// \brief Recurses in pointer/array types until it finds an objc retainable
4263 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const4264 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4265   while (!T.isNull()) {
4266     if (T.getObjCLifetime() != Qualifiers::OCL_None)
4267       return T.getObjCLifetime();
4268     if (T->isArrayType())
4269       T = getBaseElementType(T);
4270     else if (const PointerType *PT = T->getAs<PointerType>())
4271       T = PT->getPointeeType();
4272     else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4273       T = RT->getPointeeType();
4274     else
4275       break;
4276   }
4277 
4278   return Qualifiers::OCL_None;
4279 }
4280 
4281 /// getIntegerTypeOrder - Returns the highest ranked integer type:
4282 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4283 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const4284 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4285   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4286   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4287   if (LHSC == RHSC) return 0;
4288 
4289   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4290   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4291 
4292   unsigned LHSRank = getIntegerRank(LHSC);
4293   unsigned RHSRank = getIntegerRank(RHSC);
4294 
4295   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4296     if (LHSRank == RHSRank) return 0;
4297     return LHSRank > RHSRank ? 1 : -1;
4298   }
4299 
4300   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4301   if (LHSUnsigned) {
4302     // If the unsigned [LHS] type is larger, return it.
4303     if (LHSRank >= RHSRank)
4304       return 1;
4305 
4306     // If the signed type can represent all values of the unsigned type, it
4307     // wins.  Because we are dealing with 2's complement and types that are
4308     // powers of two larger than each other, this is always safe.
4309     return -1;
4310   }
4311 
4312   // If the unsigned [RHS] type is larger, return it.
4313   if (RHSRank >= LHSRank)
4314     return -1;
4315 
4316   // If the signed type can represent all values of the unsigned type, it
4317   // wins.  Because we are dealing with 2's complement and types that are
4318   // powers of two larger than each other, this is always safe.
4319   return 1;
4320 }
4321 
4322 static RecordDecl *
CreateRecordDecl(const ASTContext & Ctx,RecordDecl::TagKind TK,DeclContext * DC,IdentifierInfo * Id)4323 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4324                  DeclContext *DC, IdentifierInfo *Id) {
4325   SourceLocation Loc;
4326   if (Ctx.getLangOpts().CPlusPlus)
4327     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4328   else
4329     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4330 }
4331 
4332 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const4333 QualType ASTContext::getCFConstantStringType() const {
4334   if (!CFConstantStringTypeDecl) {
4335     CFConstantStringTypeDecl =
4336       CreateRecordDecl(*this, TTK_Struct, TUDecl,
4337                        &Idents.get("NSConstantString"));
4338     CFConstantStringTypeDecl->startDefinition();
4339 
4340     QualType FieldTypes[4];
4341 
4342     // const int *isa;
4343     FieldTypes[0] = getPointerType(IntTy.withConst());
4344     // int flags;
4345     FieldTypes[1] = IntTy;
4346     // const char *str;
4347     FieldTypes[2] = getPointerType(CharTy.withConst());
4348     // long length;
4349     FieldTypes[3] = LongTy;
4350 
4351     // Create fields
4352     for (unsigned i = 0; i < 4; ++i) {
4353       FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4354                                            SourceLocation(),
4355                                            SourceLocation(), 0,
4356                                            FieldTypes[i], /*TInfo=*/0,
4357                                            /*BitWidth=*/0,
4358                                            /*Mutable=*/false,
4359                                            ICIS_NoInit);
4360       Field->setAccess(AS_public);
4361       CFConstantStringTypeDecl->addDecl(Field);
4362     }
4363 
4364     CFConstantStringTypeDecl->completeDefinition();
4365   }
4366 
4367   return getTagDeclType(CFConstantStringTypeDecl);
4368 }
4369 
getObjCSuperType() const4370 QualType ASTContext::getObjCSuperType() const {
4371   if (ObjCSuperType.isNull()) {
4372     RecordDecl *ObjCSuperTypeDecl  =
4373       CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4374     TUDecl->addDecl(ObjCSuperTypeDecl);
4375     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4376   }
4377   return ObjCSuperType;
4378 }
4379 
setCFConstantStringType(QualType T)4380 void ASTContext::setCFConstantStringType(QualType T) {
4381   const RecordType *Rec = T->getAs<RecordType>();
4382   assert(Rec && "Invalid CFConstantStringType");
4383   CFConstantStringTypeDecl = Rec->getDecl();
4384 }
4385 
getBlockDescriptorType() const4386 QualType ASTContext::getBlockDescriptorType() const {
4387   if (BlockDescriptorType)
4388     return getTagDeclType(BlockDescriptorType);
4389 
4390   RecordDecl *T;
4391   // FIXME: Needs the FlagAppleBlock bit.
4392   T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4393                        &Idents.get("__block_descriptor"));
4394   T->startDefinition();
4395 
4396   QualType FieldTypes[] = {
4397     UnsignedLongTy,
4398     UnsignedLongTy,
4399   };
4400 
4401   const char *FieldNames[] = {
4402     "reserved",
4403     "Size"
4404   };
4405 
4406   for (size_t i = 0; i < 2; ++i) {
4407     FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4408                                          SourceLocation(),
4409                                          &Idents.get(FieldNames[i]),
4410                                          FieldTypes[i], /*TInfo=*/0,
4411                                          /*BitWidth=*/0,
4412                                          /*Mutable=*/false,
4413                                          ICIS_NoInit);
4414     Field->setAccess(AS_public);
4415     T->addDecl(Field);
4416   }
4417 
4418   T->completeDefinition();
4419 
4420   BlockDescriptorType = T;
4421 
4422   return getTagDeclType(BlockDescriptorType);
4423 }
4424 
getBlockDescriptorExtendedType() const4425 QualType ASTContext::getBlockDescriptorExtendedType() const {
4426   if (BlockDescriptorExtendedType)
4427     return getTagDeclType(BlockDescriptorExtendedType);
4428 
4429   RecordDecl *T;
4430   // FIXME: Needs the FlagAppleBlock bit.
4431   T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4432                        &Idents.get("__block_descriptor_withcopydispose"));
4433   T->startDefinition();
4434 
4435   QualType FieldTypes[] = {
4436     UnsignedLongTy,
4437     UnsignedLongTy,
4438     getPointerType(VoidPtrTy),
4439     getPointerType(VoidPtrTy)
4440   };
4441 
4442   const char *FieldNames[] = {
4443     "reserved",
4444     "Size",
4445     "CopyFuncPtr",
4446     "DestroyFuncPtr"
4447   };
4448 
4449   for (size_t i = 0; i < 4; ++i) {
4450     FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4451                                          SourceLocation(),
4452                                          &Idents.get(FieldNames[i]),
4453                                          FieldTypes[i], /*TInfo=*/0,
4454                                          /*BitWidth=*/0,
4455                                          /*Mutable=*/false,
4456                                          ICIS_NoInit);
4457     Field->setAccess(AS_public);
4458     T->addDecl(Field);
4459   }
4460 
4461   T->completeDefinition();
4462 
4463   BlockDescriptorExtendedType = T;
4464 
4465   return getTagDeclType(BlockDescriptorExtendedType);
4466 }
4467 
4468 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4469 /// requires copy/dispose. Note that this must match the logic
4470 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)4471 bool ASTContext::BlockRequiresCopying(QualType Ty,
4472                                       const VarDecl *D) {
4473   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4474     const Expr *copyExpr = getBlockVarCopyInits(D);
4475     if (!copyExpr && record->hasTrivialDestructor()) return false;
4476 
4477     return true;
4478   }
4479 
4480   if (!Ty->isObjCRetainableType()) return false;
4481 
4482   Qualifiers qs = Ty.getQualifiers();
4483 
4484   // If we have lifetime, that dominates.
4485   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4486     assert(getLangOpts().ObjCAutoRefCount);
4487 
4488     switch (lifetime) {
4489       case Qualifiers::OCL_None: llvm_unreachable("impossible");
4490 
4491       // These are just bits as far as the runtime is concerned.
4492       case Qualifiers::OCL_ExplicitNone:
4493       case Qualifiers::OCL_Autoreleasing:
4494         return false;
4495 
4496       // Tell the runtime that this is ARC __weak, called by the
4497       // byref routines.
4498       case Qualifiers::OCL_Weak:
4499       // ARC __strong __block variables need to be retained.
4500       case Qualifiers::OCL_Strong:
4501         return true;
4502     }
4503     llvm_unreachable("fell out of lifetime switch!");
4504   }
4505   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4506           Ty->isObjCObjectPointerType());
4507 }
4508 
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const4509 bool ASTContext::getByrefLifetime(QualType Ty,
4510                               Qualifiers::ObjCLifetime &LifeTime,
4511                               bool &HasByrefExtendedLayout) const {
4512 
4513   if (!getLangOpts().ObjC1 ||
4514       getLangOpts().getGC() != LangOptions::NonGC)
4515     return false;
4516 
4517   HasByrefExtendedLayout = false;
4518   if (Ty->isRecordType()) {
4519     HasByrefExtendedLayout = true;
4520     LifeTime = Qualifiers::OCL_None;
4521   }
4522   else if (getLangOpts().ObjCAutoRefCount)
4523     LifeTime = Ty.getObjCLifetime();
4524   // MRR.
4525   else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4526     LifeTime = Qualifiers::OCL_ExplicitNone;
4527   else
4528     LifeTime = Qualifiers::OCL_None;
4529   return true;
4530 }
4531 
getObjCInstanceTypeDecl()4532 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4533   if (!ObjCInstanceTypeDecl)
4534     ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4535                                                getTranslationUnitDecl(),
4536                                                SourceLocation(),
4537                                                SourceLocation(),
4538                                                &Idents.get("instancetype"),
4539                                      getTrivialTypeSourceInfo(getObjCIdType()));
4540   return ObjCInstanceTypeDecl;
4541 }
4542 
4543 // This returns true if a type has been typedefed to BOOL:
4544 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)4545 static bool isTypeTypedefedAsBOOL(QualType T) {
4546   if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4547     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4548       return II->isStr("BOOL");
4549 
4550   return false;
4551 }
4552 
4553 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
4554 /// purpose.
getObjCEncodingTypeSize(QualType type) const4555 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4556   if (!type->isIncompleteArrayType() && type->isIncompleteType())
4557     return CharUnits::Zero();
4558 
4559   CharUnits sz = getTypeSizeInChars(type);
4560 
4561   // Make all integer and enum types at least as large as an int
4562   if (sz.isPositive() && type->isIntegralOrEnumerationType())
4563     sz = std::max(sz, getTypeSizeInChars(IntTy));
4564   // Treat arrays as pointers, since that's how they're passed in.
4565   else if (type->isArrayType())
4566     sz = getTypeSizeInChars(VoidPtrTy);
4567   return sz;
4568 }
4569 
4570 static inline
charUnitsToString(const CharUnits & CU)4571 std::string charUnitsToString(const CharUnits &CU) {
4572   return llvm::itostr(CU.getQuantity());
4573 }
4574 
4575 /// getObjCEncodingForBlock - Return the encoded type for this block
4576 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const4577 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4578   std::string S;
4579 
4580   const BlockDecl *Decl = Expr->getBlockDecl();
4581   QualType BlockTy =
4582       Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4583   // Encode result type.
4584   if (getLangOpts().EncodeExtendedBlockSig)
4585     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4586                             BlockTy->getAs<FunctionType>()->getResultType(),
4587                             S, true /*Extended*/);
4588   else
4589     getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4590                            S);
4591   // Compute size of all parameters.
4592   // Start with computing size of a pointer in number of bytes.
4593   // FIXME: There might(should) be a better way of doing this computation!
4594   SourceLocation Loc;
4595   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4596   CharUnits ParmOffset = PtrSize;
4597   for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4598        E = Decl->param_end(); PI != E; ++PI) {
4599     QualType PType = (*PI)->getType();
4600     CharUnits sz = getObjCEncodingTypeSize(PType);
4601     if (sz.isZero())
4602       continue;
4603     assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4604     ParmOffset += sz;
4605   }
4606   // Size of the argument frame
4607   S += charUnitsToString(ParmOffset);
4608   // Block pointer and offset.
4609   S += "@?0";
4610 
4611   // Argument types.
4612   ParmOffset = PtrSize;
4613   for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4614        Decl->param_end(); PI != E; ++PI) {
4615     ParmVarDecl *PVDecl = *PI;
4616     QualType PType = PVDecl->getOriginalType();
4617     if (const ArrayType *AT =
4618           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4619       // Use array's original type only if it has known number of
4620       // elements.
4621       if (!isa<ConstantArrayType>(AT))
4622         PType = PVDecl->getType();
4623     } else if (PType->isFunctionType())
4624       PType = PVDecl->getType();
4625     if (getLangOpts().EncodeExtendedBlockSig)
4626       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4627                                       S, true /*Extended*/);
4628     else
4629       getObjCEncodingForType(PType, S);
4630     S += charUnitsToString(ParmOffset);
4631     ParmOffset += getObjCEncodingTypeSize(PType);
4632   }
4633 
4634   return S;
4635 }
4636 
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl,std::string & S)4637 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4638                                                 std::string& S) {
4639   // Encode result type.
4640   getObjCEncodingForType(Decl->getResultType(), S);
4641   CharUnits ParmOffset;
4642   // Compute size of all parameters.
4643   for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4644        E = Decl->param_end(); PI != E; ++PI) {
4645     QualType PType = (*PI)->getType();
4646     CharUnits sz = getObjCEncodingTypeSize(PType);
4647     if (sz.isZero())
4648       continue;
4649 
4650     assert (sz.isPositive() &&
4651         "getObjCEncodingForFunctionDecl - Incomplete param type");
4652     ParmOffset += sz;
4653   }
4654   S += charUnitsToString(ParmOffset);
4655   ParmOffset = CharUnits::Zero();
4656 
4657   // Argument types.
4658   for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4659        E = Decl->param_end(); PI != E; ++PI) {
4660     ParmVarDecl *PVDecl = *PI;
4661     QualType PType = PVDecl->getOriginalType();
4662     if (const ArrayType *AT =
4663           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4664       // Use array's original type only if it has known number of
4665       // elements.
4666       if (!isa<ConstantArrayType>(AT))
4667         PType = PVDecl->getType();
4668     } else if (PType->isFunctionType())
4669       PType = PVDecl->getType();
4670     getObjCEncodingForType(PType, S);
4671     S += charUnitsToString(ParmOffset);
4672     ParmOffset += getObjCEncodingTypeSize(PType);
4673   }
4674 
4675   return false;
4676 }
4677 
4678 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
4679 /// method parameter or return type. If Extended, include class names and
4680 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const4681 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4682                                                    QualType T, std::string& S,
4683                                                    bool Extended) const {
4684   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4685   getObjCEncodingForTypeQualifier(QT, S);
4686   // Encode parameter type.
4687   getObjCEncodingForTypeImpl(T, S, true, true, 0,
4688                              true     /*OutermostType*/,
4689                              false    /*EncodingProperty*/,
4690                              false    /*StructField*/,
4691                              Extended /*EncodeBlockParameters*/,
4692                              Extended /*EncodeClassNames*/);
4693 }
4694 
4695 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
4696 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,std::string & S,bool Extended) const4697 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4698                                               std::string& S,
4699                                               bool Extended) const {
4700   // FIXME: This is not very efficient.
4701   // Encode return type.
4702   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4703                                     Decl->getResultType(), S, Extended);
4704   // Compute size of all parameters.
4705   // Start with computing size of a pointer in number of bytes.
4706   // FIXME: There might(should) be a better way of doing this computation!
4707   SourceLocation Loc;
4708   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4709   // The first two arguments (self and _cmd) are pointers; account for
4710   // their size.
4711   CharUnits ParmOffset = 2 * PtrSize;
4712   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4713        E = Decl->sel_param_end(); PI != E; ++PI) {
4714     QualType PType = (*PI)->getType();
4715     CharUnits sz = getObjCEncodingTypeSize(PType);
4716     if (sz.isZero())
4717       continue;
4718 
4719     assert (sz.isPositive() &&
4720         "getObjCEncodingForMethodDecl - Incomplete param type");
4721     ParmOffset += sz;
4722   }
4723   S += charUnitsToString(ParmOffset);
4724   S += "@0:";
4725   S += charUnitsToString(PtrSize);
4726 
4727   // Argument types.
4728   ParmOffset = 2 * PtrSize;
4729   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4730        E = Decl->sel_param_end(); PI != E; ++PI) {
4731     const ParmVarDecl *PVDecl = *PI;
4732     QualType PType = PVDecl->getOriginalType();
4733     if (const ArrayType *AT =
4734           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4735       // Use array's original type only if it has known number of
4736       // elements.
4737       if (!isa<ConstantArrayType>(AT))
4738         PType = PVDecl->getType();
4739     } else if (PType->isFunctionType())
4740       PType = PVDecl->getType();
4741     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4742                                       PType, S, Extended);
4743     S += charUnitsToString(ParmOffset);
4744     ParmOffset += getObjCEncodingTypeSize(PType);
4745   }
4746 
4747   return false;
4748 }
4749 
4750 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
4751 /// property declaration. If non-NULL, Container must be either an
4752 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4753 /// NULL when getting encodings for protocol properties.
4754 /// Property attributes are stored as a comma-delimited C string. The simple
4755 /// attributes readonly and bycopy are encoded as single characters. The
4756 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
4757 /// encoded as single characters, followed by an identifier. Property types
4758 /// are also encoded as a parametrized attribute. The characters used to encode
4759 /// these attributes are defined by the following enumeration:
4760 /// @code
4761 /// enum PropertyAttributes {
4762 /// kPropertyReadOnly = 'R',   // property is read-only.
4763 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4764 /// kPropertyByref = '&',  // property is a reference to the value last assigned
4765 /// kPropertyDynamic = 'D',    // property is dynamic
4766 /// kPropertyGetter = 'G',     // followed by getter selector name
4767 /// kPropertySetter = 'S',     // followed by setter selector name
4768 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4769 /// kPropertyType = 'T'              // followed by old-style type encoding.
4770 /// kPropertyWeak = 'W'              // 'weak' property
4771 /// kPropertyStrong = 'P'            // property GC'able
4772 /// kPropertyNonAtomic = 'N'         // property non-atomic
4773 /// };
4774 /// @endcode
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container,std::string & S) const4775 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4776                                                 const Decl *Container,
4777                                                 std::string& S) const {
4778   // Collect information from the property implementation decl(s).
4779   bool Dynamic = false;
4780   ObjCPropertyImplDecl *SynthesizePID = 0;
4781 
4782   // FIXME: Duplicated code due to poor abstraction.
4783   if (Container) {
4784     if (const ObjCCategoryImplDecl *CID =
4785         dyn_cast<ObjCCategoryImplDecl>(Container)) {
4786       for (ObjCCategoryImplDecl::propimpl_iterator
4787              i = CID->propimpl_begin(), e = CID->propimpl_end();
4788            i != e; ++i) {
4789         ObjCPropertyImplDecl *PID = *i;
4790         if (PID->getPropertyDecl() == PD) {
4791           if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4792             Dynamic = true;
4793           } else {
4794             SynthesizePID = PID;
4795           }
4796         }
4797       }
4798     } else {
4799       const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4800       for (ObjCCategoryImplDecl::propimpl_iterator
4801              i = OID->propimpl_begin(), e = OID->propimpl_end();
4802            i != e; ++i) {
4803         ObjCPropertyImplDecl *PID = *i;
4804         if (PID->getPropertyDecl() == PD) {
4805           if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4806             Dynamic = true;
4807           } else {
4808             SynthesizePID = PID;
4809           }
4810         }
4811       }
4812     }
4813   }
4814 
4815   // FIXME: This is not very efficient.
4816   S = "T";
4817 
4818   // Encode result type.
4819   // GCC has some special rules regarding encoding of properties which
4820   // closely resembles encoding of ivars.
4821   getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4822                              true /* outermost type */,
4823                              true /* encoding for property */);
4824 
4825   if (PD->isReadOnly()) {
4826     S += ",R";
4827   } else {
4828     switch (PD->getSetterKind()) {
4829     case ObjCPropertyDecl::Assign: break;
4830     case ObjCPropertyDecl::Copy:   S += ",C"; break;
4831     case ObjCPropertyDecl::Retain: S += ",&"; break;
4832     case ObjCPropertyDecl::Weak:   S += ",W"; break;
4833     }
4834   }
4835 
4836   // It really isn't clear at all what this means, since properties
4837   // are "dynamic by default".
4838   if (Dynamic)
4839     S += ",D";
4840 
4841   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4842     S += ",N";
4843 
4844   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4845     S += ",G";
4846     S += PD->getGetterName().getAsString();
4847   }
4848 
4849   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4850     S += ",S";
4851     S += PD->getSetterName().getAsString();
4852   }
4853 
4854   if (SynthesizePID) {
4855     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4856     S += ",V";
4857     S += OID->getNameAsString();
4858   }
4859 
4860   // FIXME: OBJCGC: weak & strong
4861 }
4862 
4863 /// getLegacyIntegralTypeEncoding -
4864 /// Another legacy compatibility encoding: 32-bit longs are encoded as
4865 /// 'l' or 'L' , but not always.  For typedefs, we need to use
4866 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
4867 ///
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const4868 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4869   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4870     if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4871       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4872         PointeeTy = UnsignedIntTy;
4873       else
4874         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4875           PointeeTy = IntTy;
4876     }
4877   }
4878 }
4879 
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field) const4880 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4881                                         const FieldDecl *Field) const {
4882   // We follow the behavior of gcc, expanding structures which are
4883   // directly pointed to, and expanding embedded structures. Note that
4884   // these rules are sufficient to prevent recursive encoding of the
4885   // same type.
4886   getObjCEncodingForTypeImpl(T, S, true, true, Field,
4887                              true /* outermost type */);
4888 }
4889 
getObjCEncodingForPrimitiveKind(const ASTContext * C,BuiltinType::Kind kind)4890 static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4891                                             BuiltinType::Kind kind) {
4892     switch (kind) {
4893     case BuiltinType::Void:       return 'v';
4894     case BuiltinType::Bool:       return 'B';
4895     case BuiltinType::Char_U:
4896     case BuiltinType::UChar:      return 'C';
4897     case BuiltinType::Char16:
4898     case BuiltinType::UShort:     return 'S';
4899     case BuiltinType::Char32:
4900     case BuiltinType::UInt:       return 'I';
4901     case BuiltinType::ULong:
4902         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4903     case BuiltinType::UInt128:    return 'T';
4904     case BuiltinType::ULongLong:  return 'Q';
4905     case BuiltinType::Char_S:
4906     case BuiltinType::SChar:      return 'c';
4907     case BuiltinType::Short:      return 's';
4908     case BuiltinType::WChar_S:
4909     case BuiltinType::WChar_U:
4910     case BuiltinType::Int:        return 'i';
4911     case BuiltinType::Long:
4912       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4913     case BuiltinType::LongLong:   return 'q';
4914     case BuiltinType::Int128:     return 't';
4915     case BuiltinType::Float:      return 'f';
4916     case BuiltinType::Double:     return 'd';
4917     case BuiltinType::LongDouble: return 'D';
4918     case BuiltinType::NullPtr:    return '*'; // like char*
4919 
4920     case BuiltinType::Half:
4921       // FIXME: potentially need @encodes for these!
4922       return ' ';
4923 
4924     case BuiltinType::ObjCId:
4925     case BuiltinType::ObjCClass:
4926     case BuiltinType::ObjCSel:
4927       llvm_unreachable("@encoding ObjC primitive type");
4928 
4929     // OpenCL and placeholder types don't need @encodings.
4930     case BuiltinType::OCLImage1d:
4931     case BuiltinType::OCLImage1dArray:
4932     case BuiltinType::OCLImage1dBuffer:
4933     case BuiltinType::OCLImage2d:
4934     case BuiltinType::OCLImage2dArray:
4935     case BuiltinType::OCLImage3d:
4936     case BuiltinType::OCLEvent:
4937     case BuiltinType::OCLSampler:
4938     case BuiltinType::Dependent:
4939 #define BUILTIN_TYPE(KIND, ID)
4940 #define PLACEHOLDER_TYPE(KIND, ID) \
4941     case BuiltinType::KIND:
4942 #include "clang/AST/BuiltinTypes.def"
4943       llvm_unreachable("invalid builtin type for @encode");
4944     }
4945     llvm_unreachable("invalid BuiltinType::Kind value");
4946 }
4947 
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)4948 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4949   EnumDecl *Enum = ET->getDecl();
4950 
4951   // The encoding of an non-fixed enum type is always 'i', regardless of size.
4952   if (!Enum->isFixed())
4953     return 'i';
4954 
4955   // The encoding of a fixed enum type matches its fixed underlying type.
4956   const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
4957   return getObjCEncodingForPrimitiveKind(C, BT->getKind());
4958 }
4959 
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)4960 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4961                            QualType T, const FieldDecl *FD) {
4962   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4963   S += 'b';
4964   // The NeXT runtime encodes bit fields as b followed by the number of bits.
4965   // The GNU runtime requires more information; bitfields are encoded as b,
4966   // then the offset (in bits) of the first element, then the type of the
4967   // bitfield, then the size in bits.  For example, in this structure:
4968   //
4969   // struct
4970   // {
4971   //    int integer;
4972   //    int flags:2;
4973   // };
4974   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4975   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4976   // information is not especially sensible, but we're stuck with it for
4977   // compatibility with GCC, although providing it breaks anything that
4978   // actually uses runtime introspection and wants to work on both runtimes...
4979   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4980     const RecordDecl *RD = FD->getParent();
4981     const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4982     S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4983     if (const EnumType *ET = T->getAs<EnumType>())
4984       S += ObjCEncodingForEnumType(Ctx, ET);
4985     else {
4986       const BuiltinType *BT = T->castAs<BuiltinType>();
4987       S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
4988     }
4989   }
4990   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4991 }
4992 
4993 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,bool ExpandPointedToStructures,bool ExpandStructures,const FieldDecl * FD,bool OutermostType,bool EncodingProperty,bool StructField,bool EncodeBlockParameters,bool EncodeClassNames,bool EncodePointerToObjCTypedef) const4994 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4995                                             bool ExpandPointedToStructures,
4996                                             bool ExpandStructures,
4997                                             const FieldDecl *FD,
4998                                             bool OutermostType,
4999                                             bool EncodingProperty,
5000                                             bool StructField,
5001                                             bool EncodeBlockParameters,
5002                                             bool EncodeClassNames,
5003                                             bool EncodePointerToObjCTypedef) const {
5004   CanQualType CT = getCanonicalType(T);
5005   switch (CT->getTypeClass()) {
5006   case Type::Builtin:
5007   case Type::Enum:
5008     if (FD && FD->isBitField())
5009       return EncodeBitField(this, S, T, FD);
5010     if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5011       S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5012     else
5013       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5014     return;
5015 
5016   case Type::Complex: {
5017     const ComplexType *CT = T->castAs<ComplexType>();
5018     S += 'j';
5019     getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5020                                false);
5021     return;
5022   }
5023 
5024   case Type::Atomic: {
5025     const AtomicType *AT = T->castAs<AtomicType>();
5026     S += 'A';
5027     getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5028                                false, false);
5029     return;
5030   }
5031 
5032   // encoding for pointer or reference types.
5033   case Type::Pointer:
5034   case Type::LValueReference:
5035   case Type::RValueReference: {
5036     QualType PointeeTy;
5037     if (isa<PointerType>(CT)) {
5038       const PointerType *PT = T->castAs<PointerType>();
5039       if (PT->isObjCSelType()) {
5040         S += ':';
5041         return;
5042       }
5043       PointeeTy = PT->getPointeeType();
5044     } else {
5045       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5046     }
5047 
5048     bool isReadOnly = false;
5049     // For historical/compatibility reasons, the read-only qualifier of the
5050     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5051     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5052     // Also, do not emit the 'r' for anything but the outermost type!
5053     if (isa<TypedefType>(T.getTypePtr())) {
5054       if (OutermostType && T.isConstQualified()) {
5055         isReadOnly = true;
5056         S += 'r';
5057       }
5058     } else if (OutermostType) {
5059       QualType P = PointeeTy;
5060       while (P->getAs<PointerType>())
5061         P = P->getAs<PointerType>()->getPointeeType();
5062       if (P.isConstQualified()) {
5063         isReadOnly = true;
5064         S += 'r';
5065       }
5066     }
5067     if (isReadOnly) {
5068       // Another legacy compatibility encoding. Some ObjC qualifier and type
5069       // combinations need to be rearranged.
5070       // Rewrite "in const" from "nr" to "rn"
5071       if (StringRef(S).endswith("nr"))
5072         S.replace(S.end()-2, S.end(), "rn");
5073     }
5074 
5075     if (PointeeTy->isCharType()) {
5076       // char pointer types should be encoded as '*' unless it is a
5077       // type that has been typedef'd to 'BOOL'.
5078       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5079         S += '*';
5080         return;
5081       }
5082     } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5083       // GCC binary compat: Need to convert "struct objc_class *" to "#".
5084       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5085         S += '#';
5086         return;
5087       }
5088       // GCC binary compat: Need to convert "struct objc_object *" to "@".
5089       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5090         S += '@';
5091         return;
5092       }
5093       // fall through...
5094     }
5095     S += '^';
5096     getLegacyIntegralTypeEncoding(PointeeTy);
5097 
5098     getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5099                                NULL);
5100     return;
5101   }
5102 
5103   case Type::ConstantArray:
5104   case Type::IncompleteArray:
5105   case Type::VariableArray: {
5106     const ArrayType *AT = cast<ArrayType>(CT);
5107 
5108     if (isa<IncompleteArrayType>(AT) && !StructField) {
5109       // Incomplete arrays are encoded as a pointer to the array element.
5110       S += '^';
5111 
5112       getObjCEncodingForTypeImpl(AT->getElementType(), S,
5113                                  false, ExpandStructures, FD);
5114     } else {
5115       S += '[';
5116 
5117       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5118         if (getTypeSize(CAT->getElementType()) == 0)
5119           S += '0';
5120         else
5121           S += llvm::utostr(CAT->getSize().getZExtValue());
5122       } else {
5123         //Variable length arrays are encoded as a regular array with 0 elements.
5124         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5125                "Unknown array type!");
5126         S += '0';
5127       }
5128 
5129       getObjCEncodingForTypeImpl(AT->getElementType(), S,
5130                                  false, ExpandStructures, FD);
5131       S += ']';
5132     }
5133     return;
5134   }
5135 
5136   case Type::FunctionNoProto:
5137   case Type::FunctionProto:
5138     S += '?';
5139     return;
5140 
5141   case Type::Record: {
5142     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5143     S += RDecl->isUnion() ? '(' : '{';
5144     // Anonymous structures print as '?'
5145     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5146       S += II->getName();
5147       if (ClassTemplateSpecializationDecl *Spec
5148           = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5149         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5150         llvm::raw_string_ostream OS(S);
5151         TemplateSpecializationType::PrintTemplateArgumentList(OS,
5152                                             TemplateArgs.data(),
5153                                             TemplateArgs.size(),
5154                                             (*this).getPrintingPolicy());
5155       }
5156     } else {
5157       S += '?';
5158     }
5159     if (ExpandStructures) {
5160       S += '=';
5161       if (!RDecl->isUnion()) {
5162         getObjCEncodingForStructureImpl(RDecl, S, FD);
5163       } else {
5164         for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5165                                      FieldEnd = RDecl->field_end();
5166              Field != FieldEnd; ++Field) {
5167           if (FD) {
5168             S += '"';
5169             S += Field->getNameAsString();
5170             S += '"';
5171           }
5172 
5173           // Special case bit-fields.
5174           if (Field->isBitField()) {
5175             getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5176                                        *Field);
5177           } else {
5178             QualType qt = Field->getType();
5179             getLegacyIntegralTypeEncoding(qt);
5180             getObjCEncodingForTypeImpl(qt, S, false, true,
5181                                        FD, /*OutermostType*/false,
5182                                        /*EncodingProperty*/false,
5183                                        /*StructField*/true);
5184           }
5185         }
5186       }
5187     }
5188     S += RDecl->isUnion() ? ')' : '}';
5189     return;
5190   }
5191 
5192   case Type::BlockPointer: {
5193     const BlockPointerType *BT = T->castAs<BlockPointerType>();
5194     S += "@?"; // Unlike a pointer-to-function, which is "^?".
5195     if (EncodeBlockParameters) {
5196       const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5197 
5198       S += '<';
5199       // Block return type
5200       getObjCEncodingForTypeImpl(FT->getResultType(), S,
5201                                  ExpandPointedToStructures, ExpandStructures,
5202                                  FD,
5203                                  false /* OutermostType */,
5204                                  EncodingProperty,
5205                                  false /* StructField */,
5206                                  EncodeBlockParameters,
5207                                  EncodeClassNames);
5208       // Block self
5209       S += "@?";
5210       // Block parameters
5211       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5212         for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5213                E = FPT->arg_type_end(); I && (I != E); ++I) {
5214           getObjCEncodingForTypeImpl(*I, S,
5215                                      ExpandPointedToStructures,
5216                                      ExpandStructures,
5217                                      FD,
5218                                      false /* OutermostType */,
5219                                      EncodingProperty,
5220                                      false /* StructField */,
5221                                      EncodeBlockParameters,
5222                                      EncodeClassNames);
5223         }
5224       }
5225       S += '>';
5226     }
5227     return;
5228   }
5229 
5230   case Type::ObjCObject:
5231   case Type::ObjCInterface: {
5232     // Ignore protocol qualifiers when mangling at this level.
5233     T = T->castAs<ObjCObjectType>()->getBaseType();
5234 
5235     // The assumption seems to be that this assert will succeed
5236     // because nested levels will have filtered out 'id' and 'Class'.
5237     const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5238     // @encode(class_name)
5239     ObjCInterfaceDecl *OI = OIT->getDecl();
5240     S += '{';
5241     const IdentifierInfo *II = OI->getIdentifier();
5242     S += II->getName();
5243     S += '=';
5244     SmallVector<const ObjCIvarDecl*, 32> Ivars;
5245     DeepCollectObjCIvars(OI, true, Ivars);
5246     for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5247       const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5248       if (Field->isBitField())
5249         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5250       else
5251         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5252                                    false, false, false, false, false,
5253                                    EncodePointerToObjCTypedef);
5254     }
5255     S += '}';
5256     return;
5257   }
5258 
5259   case Type::ObjCObjectPointer: {
5260     const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5261     if (OPT->isObjCIdType()) {
5262       S += '@';
5263       return;
5264     }
5265 
5266     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5267       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5268       // Since this is a binary compatibility issue, need to consult with runtime
5269       // folks. Fortunately, this is a *very* obsure construct.
5270       S += '#';
5271       return;
5272     }
5273 
5274     if (OPT->isObjCQualifiedIdType()) {
5275       getObjCEncodingForTypeImpl(getObjCIdType(), S,
5276                                  ExpandPointedToStructures,
5277                                  ExpandStructures, FD);
5278       if (FD || EncodingProperty || EncodeClassNames) {
5279         // Note that we do extended encoding of protocol qualifer list
5280         // Only when doing ivar or property encoding.
5281         S += '"';
5282         for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5283              E = OPT->qual_end(); I != E; ++I) {
5284           S += '<';
5285           S += (*I)->getNameAsString();
5286           S += '>';
5287         }
5288         S += '"';
5289       }
5290       return;
5291     }
5292 
5293     QualType PointeeTy = OPT->getPointeeType();
5294     if (!EncodingProperty &&
5295         isa<TypedefType>(PointeeTy.getTypePtr()) &&
5296         !EncodePointerToObjCTypedef) {
5297       // Another historical/compatibility reason.
5298       // We encode the underlying type which comes out as
5299       // {...};
5300       S += '^';
5301       getObjCEncodingForTypeImpl(PointeeTy, S,
5302                                  false, ExpandPointedToStructures,
5303                                  NULL,
5304                                  false, false, false, false, false,
5305                                  /*EncodePointerToObjCTypedef*/true);
5306       return;
5307     }
5308 
5309     S += '@';
5310     if (OPT->getInterfaceDecl() &&
5311         (FD || EncodingProperty || EncodeClassNames)) {
5312       S += '"';
5313       S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5314       for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5315            E = OPT->qual_end(); I != E; ++I) {
5316         S += '<';
5317         S += (*I)->getNameAsString();
5318         S += '>';
5319       }
5320       S += '"';
5321     }
5322     return;
5323   }
5324 
5325   // gcc just blithely ignores member pointers.
5326   // FIXME: we shoul do better than that.  'M' is available.
5327   case Type::MemberPointer:
5328     return;
5329 
5330   case Type::Vector:
5331   case Type::ExtVector:
5332     // This matches gcc's encoding, even though technically it is
5333     // insufficient.
5334     // FIXME. We should do a better job than gcc.
5335     return;
5336 
5337 #define ABSTRACT_TYPE(KIND, BASE)
5338 #define TYPE(KIND, BASE)
5339 #define DEPENDENT_TYPE(KIND, BASE) \
5340   case Type::KIND:
5341 #define NON_CANONICAL_TYPE(KIND, BASE) \
5342   case Type::KIND:
5343 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5344   case Type::KIND:
5345 #include "clang/AST/TypeNodes.def"
5346     llvm_unreachable("@encode for dependent type!");
5347   }
5348   llvm_unreachable("bad type kind!");
5349 }
5350 
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases) const5351 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5352                                                  std::string &S,
5353                                                  const FieldDecl *FD,
5354                                                  bool includeVBases) const {
5355   assert(RDecl && "Expected non-null RecordDecl");
5356   assert(!RDecl->isUnion() && "Should not be called for unions");
5357   if (!RDecl->getDefinition())
5358     return;
5359 
5360   CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5361   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5362   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5363 
5364   if (CXXRec) {
5365     for (CXXRecordDecl::base_class_iterator
5366            BI = CXXRec->bases_begin(),
5367            BE = CXXRec->bases_end(); BI != BE; ++BI) {
5368       if (!BI->isVirtual()) {
5369         CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5370         if (base->isEmpty())
5371           continue;
5372         uint64_t offs = toBits(layout.getBaseClassOffset(base));
5373         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5374                                   std::make_pair(offs, base));
5375       }
5376     }
5377   }
5378 
5379   unsigned i = 0;
5380   for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5381                                FieldEnd = RDecl->field_end();
5382        Field != FieldEnd; ++Field, ++i) {
5383     uint64_t offs = layout.getFieldOffset(i);
5384     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5385                               std::make_pair(offs, *Field));
5386   }
5387 
5388   if (CXXRec && includeVBases) {
5389     for (CXXRecordDecl::base_class_iterator
5390            BI = CXXRec->vbases_begin(),
5391            BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5392       CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5393       if (base->isEmpty())
5394         continue;
5395       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5396       if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5397         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5398                                   std::make_pair(offs, base));
5399     }
5400   }
5401 
5402   CharUnits size;
5403   if (CXXRec) {
5404     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5405   } else {
5406     size = layout.getSize();
5407   }
5408 
5409   uint64_t CurOffs = 0;
5410   std::multimap<uint64_t, NamedDecl *>::iterator
5411     CurLayObj = FieldOrBaseOffsets.begin();
5412 
5413   if (CXXRec && CXXRec->isDynamicClass() &&
5414       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5415     if (FD) {
5416       S += "\"_vptr$";
5417       std::string recname = CXXRec->getNameAsString();
5418       if (recname.empty()) recname = "?";
5419       S += recname;
5420       S += '"';
5421     }
5422     S += "^^?";
5423     CurOffs += getTypeSize(VoidPtrTy);
5424   }
5425 
5426   if (!RDecl->hasFlexibleArrayMember()) {
5427     // Mark the end of the structure.
5428     uint64_t offs = toBits(size);
5429     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5430                               std::make_pair(offs, (NamedDecl*)0));
5431   }
5432 
5433   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5434     assert(CurOffs <= CurLayObj->first);
5435 
5436     if (CurOffs < CurLayObj->first) {
5437       uint64_t padding = CurLayObj->first - CurOffs;
5438       // FIXME: There doesn't seem to be a way to indicate in the encoding that
5439       // packing/alignment of members is different that normal, in which case
5440       // the encoding will be out-of-sync with the real layout.
5441       // If the runtime switches to just consider the size of types without
5442       // taking into account alignment, we could make padding explicit in the
5443       // encoding (e.g. using arrays of chars). The encoding strings would be
5444       // longer then though.
5445       CurOffs += padding;
5446     }
5447 
5448     NamedDecl *dcl = CurLayObj->second;
5449     if (dcl == 0)
5450       break; // reached end of structure.
5451 
5452     if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5453       // We expand the bases without their virtual bases since those are going
5454       // in the initial structure. Note that this differs from gcc which
5455       // expands virtual bases each time one is encountered in the hierarchy,
5456       // making the encoding type bigger than it really is.
5457       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5458       assert(!base->isEmpty());
5459       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5460     } else {
5461       FieldDecl *field = cast<FieldDecl>(dcl);
5462       if (FD) {
5463         S += '"';
5464         S += field->getNameAsString();
5465         S += '"';
5466       }
5467 
5468       if (field->isBitField()) {
5469         EncodeBitField(this, S, field->getType(), field);
5470         CurOffs += field->getBitWidthValue(*this);
5471       } else {
5472         QualType qt = field->getType();
5473         getLegacyIntegralTypeEncoding(qt);
5474         getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5475                                    /*OutermostType*/false,
5476                                    /*EncodingProperty*/false,
5477                                    /*StructField*/true);
5478         CurOffs += getTypeSize(field->getType());
5479       }
5480     }
5481   }
5482 }
5483 
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const5484 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5485                                                  std::string& S) const {
5486   if (QT & Decl::OBJC_TQ_In)
5487     S += 'n';
5488   if (QT & Decl::OBJC_TQ_Inout)
5489     S += 'N';
5490   if (QT & Decl::OBJC_TQ_Out)
5491     S += 'o';
5492   if (QT & Decl::OBJC_TQ_Bycopy)
5493     S += 'O';
5494   if (QT & Decl::OBJC_TQ_Byref)
5495     S += 'R';
5496   if (QT & Decl::OBJC_TQ_Oneway)
5497     S += 'V';
5498 }
5499 
getObjCIdDecl() const5500 TypedefDecl *ASTContext::getObjCIdDecl() const {
5501   if (!ObjCIdDecl) {
5502     QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5503     T = getObjCObjectPointerType(T);
5504     TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5505     ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5506                                      getTranslationUnitDecl(),
5507                                      SourceLocation(), SourceLocation(),
5508                                      &Idents.get("id"), IdInfo);
5509   }
5510 
5511   return ObjCIdDecl;
5512 }
5513 
getObjCSelDecl() const5514 TypedefDecl *ASTContext::getObjCSelDecl() const {
5515   if (!ObjCSelDecl) {
5516     QualType SelT = getPointerType(ObjCBuiltinSelTy);
5517     TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5518     ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5519                                       getTranslationUnitDecl(),
5520                                       SourceLocation(), SourceLocation(),
5521                                       &Idents.get("SEL"), SelInfo);
5522   }
5523   return ObjCSelDecl;
5524 }
5525 
getObjCClassDecl() const5526 TypedefDecl *ASTContext::getObjCClassDecl() const {
5527   if (!ObjCClassDecl) {
5528     QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5529     T = getObjCObjectPointerType(T);
5530     TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5531     ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5532                                         getTranslationUnitDecl(),
5533                                         SourceLocation(), SourceLocation(),
5534                                         &Idents.get("Class"), ClassInfo);
5535   }
5536 
5537   return ObjCClassDecl;
5538 }
5539 
getObjCProtocolDecl() const5540 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5541   if (!ObjCProtocolClassDecl) {
5542     ObjCProtocolClassDecl
5543       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5544                                   SourceLocation(),
5545                                   &Idents.get("Protocol"),
5546                                   /*PrevDecl=*/0,
5547                                   SourceLocation(), true);
5548   }
5549 
5550   return ObjCProtocolClassDecl;
5551 }
5552 
5553 //===----------------------------------------------------------------------===//
5554 // __builtin_va_list Construction Functions
5555 //===----------------------------------------------------------------------===//
5556 
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)5557 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5558   // typedef char* __builtin_va_list;
5559   QualType CharPtrType = Context->getPointerType(Context->CharTy);
5560   TypeSourceInfo *TInfo
5561     = Context->getTrivialTypeSourceInfo(CharPtrType);
5562 
5563   TypedefDecl *VaListTypeDecl
5564     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5565                           Context->getTranslationUnitDecl(),
5566                           SourceLocation(), SourceLocation(),
5567                           &Context->Idents.get("__builtin_va_list"),
5568                           TInfo);
5569   return VaListTypeDecl;
5570 }
5571 
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)5572 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5573   // typedef void* __builtin_va_list;
5574   QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5575   TypeSourceInfo *TInfo
5576     = Context->getTrivialTypeSourceInfo(VoidPtrType);
5577 
5578   TypedefDecl *VaListTypeDecl
5579     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5580                           Context->getTranslationUnitDecl(),
5581                           SourceLocation(), SourceLocation(),
5582                           &Context->Idents.get("__builtin_va_list"),
5583                           TInfo);
5584   return VaListTypeDecl;
5585 }
5586 
5587 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)5588 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5589   RecordDecl *VaListTagDecl;
5590   if (Context->getLangOpts().CPlusPlus) {
5591     // namespace std { struct __va_list {
5592     NamespaceDecl *NS;
5593     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5594                                Context->getTranslationUnitDecl(),
5595                                /*Inline*/false, SourceLocation(),
5596                                SourceLocation(), &Context->Idents.get("std"),
5597                                /*PrevDecl*/0);
5598 
5599     VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5600                                           Context->getTranslationUnitDecl(),
5601                                           SourceLocation(), SourceLocation(),
5602                                           &Context->Idents.get("__va_list"));
5603     VaListTagDecl->setDeclContext(NS);
5604   } else {
5605     // struct __va_list
5606     VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5607                                    Context->getTranslationUnitDecl(),
5608                                    &Context->Idents.get("__va_list"));
5609   }
5610 
5611   VaListTagDecl->startDefinition();
5612 
5613   const size_t NumFields = 5;
5614   QualType FieldTypes[NumFields];
5615   const char *FieldNames[NumFields];
5616 
5617   // void *__stack;
5618   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5619   FieldNames[0] = "__stack";
5620 
5621   // void *__gr_top;
5622   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5623   FieldNames[1] = "__gr_top";
5624 
5625   // void *__vr_top;
5626   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5627   FieldNames[2] = "__vr_top";
5628 
5629   // int __gr_offs;
5630   FieldTypes[3] = Context->IntTy;
5631   FieldNames[3] = "__gr_offs";
5632 
5633   // int __vr_offs;
5634   FieldTypes[4] = Context->IntTy;
5635   FieldNames[4] = "__vr_offs";
5636 
5637   // Create fields
5638   for (unsigned i = 0; i < NumFields; ++i) {
5639     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5640                                          VaListTagDecl,
5641                                          SourceLocation(),
5642                                          SourceLocation(),
5643                                          &Context->Idents.get(FieldNames[i]),
5644                                          FieldTypes[i], /*TInfo=*/0,
5645                                          /*BitWidth=*/0,
5646                                          /*Mutable=*/false,
5647                                          ICIS_NoInit);
5648     Field->setAccess(AS_public);
5649     VaListTagDecl->addDecl(Field);
5650   }
5651   VaListTagDecl->completeDefinition();
5652   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5653   Context->VaListTagTy = VaListTagType;
5654 
5655   // } __builtin_va_list;
5656   TypedefDecl *VaListTypedefDecl
5657     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5658                           Context->getTranslationUnitDecl(),
5659                           SourceLocation(), SourceLocation(),
5660                           &Context->Idents.get("__builtin_va_list"),
5661                           Context->getTrivialTypeSourceInfo(VaListTagType));
5662 
5663   return VaListTypedefDecl;
5664 }
5665 
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)5666 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5667   // typedef struct __va_list_tag {
5668   RecordDecl *VaListTagDecl;
5669 
5670   VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5671                                    Context->getTranslationUnitDecl(),
5672                                    &Context->Idents.get("__va_list_tag"));
5673   VaListTagDecl->startDefinition();
5674 
5675   const size_t NumFields = 5;
5676   QualType FieldTypes[NumFields];
5677   const char *FieldNames[NumFields];
5678 
5679   //   unsigned char gpr;
5680   FieldTypes[0] = Context->UnsignedCharTy;
5681   FieldNames[0] = "gpr";
5682 
5683   //   unsigned char fpr;
5684   FieldTypes[1] = Context->UnsignedCharTy;
5685   FieldNames[1] = "fpr";
5686 
5687   //   unsigned short reserved;
5688   FieldTypes[2] = Context->UnsignedShortTy;
5689   FieldNames[2] = "reserved";
5690 
5691   //   void* overflow_arg_area;
5692   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5693   FieldNames[3] = "overflow_arg_area";
5694 
5695   //   void* reg_save_area;
5696   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5697   FieldNames[4] = "reg_save_area";
5698 
5699   // Create fields
5700   for (unsigned i = 0; i < NumFields; ++i) {
5701     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5702                                          SourceLocation(),
5703                                          SourceLocation(),
5704                                          &Context->Idents.get(FieldNames[i]),
5705                                          FieldTypes[i], /*TInfo=*/0,
5706                                          /*BitWidth=*/0,
5707                                          /*Mutable=*/false,
5708                                          ICIS_NoInit);
5709     Field->setAccess(AS_public);
5710     VaListTagDecl->addDecl(Field);
5711   }
5712   VaListTagDecl->completeDefinition();
5713   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5714   Context->VaListTagTy = VaListTagType;
5715 
5716   // } __va_list_tag;
5717   TypedefDecl *VaListTagTypedefDecl
5718     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5719                           Context->getTranslationUnitDecl(),
5720                           SourceLocation(), SourceLocation(),
5721                           &Context->Idents.get("__va_list_tag"),
5722                           Context->getTrivialTypeSourceInfo(VaListTagType));
5723   QualType VaListTagTypedefType =
5724     Context->getTypedefType(VaListTagTypedefDecl);
5725 
5726   // typedef __va_list_tag __builtin_va_list[1];
5727   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5728   QualType VaListTagArrayType
5729     = Context->getConstantArrayType(VaListTagTypedefType,
5730                                     Size, ArrayType::Normal, 0);
5731   TypeSourceInfo *TInfo
5732     = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5733   TypedefDecl *VaListTypedefDecl
5734     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5735                           Context->getTranslationUnitDecl(),
5736                           SourceLocation(), SourceLocation(),
5737                           &Context->Idents.get("__builtin_va_list"),
5738                           TInfo);
5739 
5740   return VaListTypedefDecl;
5741 }
5742 
5743 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)5744 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5745   // typedef struct __va_list_tag {
5746   RecordDecl *VaListTagDecl;
5747   VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5748                                    Context->getTranslationUnitDecl(),
5749                                    &Context->Idents.get("__va_list_tag"));
5750   VaListTagDecl->startDefinition();
5751 
5752   const size_t NumFields = 4;
5753   QualType FieldTypes[NumFields];
5754   const char *FieldNames[NumFields];
5755 
5756   //   unsigned gp_offset;
5757   FieldTypes[0] = Context->UnsignedIntTy;
5758   FieldNames[0] = "gp_offset";
5759 
5760   //   unsigned fp_offset;
5761   FieldTypes[1] = Context->UnsignedIntTy;
5762   FieldNames[1] = "fp_offset";
5763 
5764   //   void* overflow_arg_area;
5765   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5766   FieldNames[2] = "overflow_arg_area";
5767 
5768   //   void* reg_save_area;
5769   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5770   FieldNames[3] = "reg_save_area";
5771 
5772   // Create fields
5773   for (unsigned i = 0; i < NumFields; ++i) {
5774     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5775                                          VaListTagDecl,
5776                                          SourceLocation(),
5777                                          SourceLocation(),
5778                                          &Context->Idents.get(FieldNames[i]),
5779                                          FieldTypes[i], /*TInfo=*/0,
5780                                          /*BitWidth=*/0,
5781                                          /*Mutable=*/false,
5782                                          ICIS_NoInit);
5783     Field->setAccess(AS_public);
5784     VaListTagDecl->addDecl(Field);
5785   }
5786   VaListTagDecl->completeDefinition();
5787   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5788   Context->VaListTagTy = VaListTagType;
5789 
5790   // } __va_list_tag;
5791   TypedefDecl *VaListTagTypedefDecl
5792     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5793                           Context->getTranslationUnitDecl(),
5794                           SourceLocation(), SourceLocation(),
5795                           &Context->Idents.get("__va_list_tag"),
5796                           Context->getTrivialTypeSourceInfo(VaListTagType));
5797   QualType VaListTagTypedefType =
5798     Context->getTypedefType(VaListTagTypedefDecl);
5799 
5800   // typedef __va_list_tag __builtin_va_list[1];
5801   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5802   QualType VaListTagArrayType
5803     = Context->getConstantArrayType(VaListTagTypedefType,
5804                                       Size, ArrayType::Normal,0);
5805   TypeSourceInfo *TInfo
5806     = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5807   TypedefDecl *VaListTypedefDecl
5808     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5809                           Context->getTranslationUnitDecl(),
5810                           SourceLocation(), SourceLocation(),
5811                           &Context->Idents.get("__builtin_va_list"),
5812                           TInfo);
5813 
5814   return VaListTypedefDecl;
5815 }
5816 
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)5817 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5818   // typedef int __builtin_va_list[4];
5819   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5820   QualType IntArrayType
5821     = Context->getConstantArrayType(Context->IntTy,
5822 				    Size, ArrayType::Normal, 0);
5823   TypedefDecl *VaListTypedefDecl
5824     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5825                           Context->getTranslationUnitDecl(),
5826                           SourceLocation(), SourceLocation(),
5827                           &Context->Idents.get("__builtin_va_list"),
5828                           Context->getTrivialTypeSourceInfo(IntArrayType));
5829 
5830   return VaListTypedefDecl;
5831 }
5832 
5833 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)5834 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5835   RecordDecl *VaListDecl;
5836   if (Context->getLangOpts().CPlusPlus) {
5837     // namespace std { struct __va_list {
5838     NamespaceDecl *NS;
5839     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5840                                Context->getTranslationUnitDecl(),
5841                                /*Inline*/false, SourceLocation(),
5842                                SourceLocation(), &Context->Idents.get("std"),
5843                                /*PrevDecl*/0);
5844 
5845     VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5846                                        Context->getTranslationUnitDecl(),
5847                                        SourceLocation(), SourceLocation(),
5848                                        &Context->Idents.get("__va_list"));
5849 
5850     VaListDecl->setDeclContext(NS);
5851 
5852   } else {
5853     // struct __va_list {
5854     VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5855                                   Context->getTranslationUnitDecl(),
5856                                   &Context->Idents.get("__va_list"));
5857   }
5858 
5859   VaListDecl->startDefinition();
5860 
5861   // void * __ap;
5862   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5863                                        VaListDecl,
5864                                        SourceLocation(),
5865                                        SourceLocation(),
5866                                        &Context->Idents.get("__ap"),
5867                                        Context->getPointerType(Context->VoidTy),
5868                                        /*TInfo=*/0,
5869                                        /*BitWidth=*/0,
5870                                        /*Mutable=*/false,
5871                                        ICIS_NoInit);
5872   Field->setAccess(AS_public);
5873   VaListDecl->addDecl(Field);
5874 
5875   // };
5876   VaListDecl->completeDefinition();
5877 
5878   // typedef struct __va_list __builtin_va_list;
5879   TypeSourceInfo *TInfo
5880     = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5881 
5882   TypedefDecl *VaListTypeDecl
5883     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5884                           Context->getTranslationUnitDecl(),
5885                           SourceLocation(), SourceLocation(),
5886                           &Context->Idents.get("__builtin_va_list"),
5887                           TInfo);
5888 
5889   return VaListTypeDecl;
5890 }
5891 
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)5892 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5893                                      TargetInfo::BuiltinVaListKind Kind) {
5894   switch (Kind) {
5895   case TargetInfo::CharPtrBuiltinVaList:
5896     return CreateCharPtrBuiltinVaListDecl(Context);
5897   case TargetInfo::VoidPtrBuiltinVaList:
5898     return CreateVoidPtrBuiltinVaListDecl(Context);
5899   case TargetInfo::AArch64ABIBuiltinVaList:
5900     return CreateAArch64ABIBuiltinVaListDecl(Context);
5901   case TargetInfo::PowerABIBuiltinVaList:
5902     return CreatePowerABIBuiltinVaListDecl(Context);
5903   case TargetInfo::X86_64ABIBuiltinVaList:
5904     return CreateX86_64ABIBuiltinVaListDecl(Context);
5905   case TargetInfo::PNaClABIBuiltinVaList:
5906     return CreatePNaClABIBuiltinVaListDecl(Context);
5907   case TargetInfo::AAPCSABIBuiltinVaList:
5908     return CreateAAPCSABIBuiltinVaListDecl(Context);
5909   }
5910 
5911   llvm_unreachable("Unhandled __builtin_va_list type kind");
5912 }
5913 
getBuiltinVaListDecl() const5914 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5915   if (!BuiltinVaListDecl)
5916     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5917 
5918   return BuiltinVaListDecl;
5919 }
5920 
getVaListTagType() const5921 QualType ASTContext::getVaListTagType() const {
5922   // Force the creation of VaListTagTy by building the __builtin_va_list
5923   // declaration.
5924   if (VaListTagTy.isNull())
5925     (void) getBuiltinVaListDecl();
5926 
5927   return VaListTagTy;
5928 }
5929 
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)5930 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5931   assert(ObjCConstantStringType.isNull() &&
5932          "'NSConstantString' type already set!");
5933 
5934   ObjCConstantStringType = getObjCInterfaceType(Decl);
5935 }
5936 
5937 /// \brief Retrieve the template name that corresponds to a non-empty
5938 /// lookup.
5939 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const5940 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5941                                       UnresolvedSetIterator End) const {
5942   unsigned size = End - Begin;
5943   assert(size > 1 && "set is not overloaded!");
5944 
5945   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5946                           size * sizeof(FunctionTemplateDecl*));
5947   OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5948 
5949   NamedDecl **Storage = OT->getStorage();
5950   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5951     NamedDecl *D = *I;
5952     assert(isa<FunctionTemplateDecl>(D) ||
5953            (isa<UsingShadowDecl>(D) &&
5954             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5955     *Storage++ = D;
5956   }
5957 
5958   return TemplateName(OT);
5959 }
5960 
5961 /// \brief Retrieve the template name that represents a qualified
5962 /// template name such as \c std::vector.
5963 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const5964 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5965                                      bool TemplateKeyword,
5966                                      TemplateDecl *Template) const {
5967   assert(NNS && "Missing nested-name-specifier in qualified template name");
5968 
5969   // FIXME: Canonicalization?
5970   llvm::FoldingSetNodeID ID;
5971   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5972 
5973   void *InsertPos = 0;
5974   QualifiedTemplateName *QTN =
5975     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5976   if (!QTN) {
5977     QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5978         QualifiedTemplateName(NNS, TemplateKeyword, Template);
5979     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5980   }
5981 
5982   return TemplateName(QTN);
5983 }
5984 
5985 /// \brief Retrieve the template name that represents a dependent
5986 /// template name such as \c MetaFun::template apply.
5987 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const5988 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5989                                      const IdentifierInfo *Name) const {
5990   assert((!NNS || NNS->isDependent()) &&
5991          "Nested name specifier must be dependent");
5992 
5993   llvm::FoldingSetNodeID ID;
5994   DependentTemplateName::Profile(ID, NNS, Name);
5995 
5996   void *InsertPos = 0;
5997   DependentTemplateName *QTN =
5998     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5999 
6000   if (QTN)
6001     return TemplateName(QTN);
6002 
6003   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6004   if (CanonNNS == NNS) {
6005     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6006         DependentTemplateName(NNS, Name);
6007   } else {
6008     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6009     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6010         DependentTemplateName(NNS, Name, Canon);
6011     DependentTemplateName *CheckQTN =
6012       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6013     assert(!CheckQTN && "Dependent type name canonicalization broken");
6014     (void)CheckQTN;
6015   }
6016 
6017   DependentTemplateNames.InsertNode(QTN, InsertPos);
6018   return TemplateName(QTN);
6019 }
6020 
6021 /// \brief Retrieve the template name that represents a dependent
6022 /// template name such as \c MetaFun::template operator+.
6023 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const6024 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6025                                      OverloadedOperatorKind Operator) const {
6026   assert((!NNS || NNS->isDependent()) &&
6027          "Nested name specifier must be dependent");
6028 
6029   llvm::FoldingSetNodeID ID;
6030   DependentTemplateName::Profile(ID, NNS, Operator);
6031 
6032   void *InsertPos = 0;
6033   DependentTemplateName *QTN
6034     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6035 
6036   if (QTN)
6037     return TemplateName(QTN);
6038 
6039   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6040   if (CanonNNS == NNS) {
6041     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6042         DependentTemplateName(NNS, Operator);
6043   } else {
6044     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6045     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6046         DependentTemplateName(NNS, Operator, Canon);
6047 
6048     DependentTemplateName *CheckQTN
6049       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6050     assert(!CheckQTN && "Dependent template name canonicalization broken");
6051     (void)CheckQTN;
6052   }
6053 
6054   DependentTemplateNames.InsertNode(QTN, InsertPos);
6055   return TemplateName(QTN);
6056 }
6057 
6058 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const6059 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6060                                          TemplateName replacement) const {
6061   llvm::FoldingSetNodeID ID;
6062   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6063 
6064   void *insertPos = 0;
6065   SubstTemplateTemplateParmStorage *subst
6066     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6067 
6068   if (!subst) {
6069     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6070     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6071   }
6072 
6073   return TemplateName(subst);
6074 }
6075 
6076 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const6077 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6078                                        const TemplateArgument &ArgPack) const {
6079   ASTContext &Self = const_cast<ASTContext &>(*this);
6080   llvm::FoldingSetNodeID ID;
6081   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6082 
6083   void *InsertPos = 0;
6084   SubstTemplateTemplateParmPackStorage *Subst
6085     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6086 
6087   if (!Subst) {
6088     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6089                                                            ArgPack.pack_size(),
6090                                                          ArgPack.pack_begin());
6091     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6092   }
6093 
6094   return TemplateName(Subst);
6095 }
6096 
6097 /// getFromTargetType - Given one of the integer types provided by
6098 /// TargetInfo, produce the corresponding type. The unsigned @p Type
6099 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const6100 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6101   switch (Type) {
6102   case TargetInfo::NoInt: return CanQualType();
6103   case TargetInfo::SignedShort: return ShortTy;
6104   case TargetInfo::UnsignedShort: return UnsignedShortTy;
6105   case TargetInfo::SignedInt: return IntTy;
6106   case TargetInfo::UnsignedInt: return UnsignedIntTy;
6107   case TargetInfo::SignedLong: return LongTy;
6108   case TargetInfo::UnsignedLong: return UnsignedLongTy;
6109   case TargetInfo::SignedLongLong: return LongLongTy;
6110   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6111   }
6112 
6113   llvm_unreachable("Unhandled TargetInfo::IntType value");
6114 }
6115 
6116 //===----------------------------------------------------------------------===//
6117 //                        Type Predicates.
6118 //===----------------------------------------------------------------------===//
6119 
6120 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6121 /// garbage collection attribute.
6122 ///
getObjCGCAttrKind(QualType Ty) const6123 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6124   if (getLangOpts().getGC() == LangOptions::NonGC)
6125     return Qualifiers::GCNone;
6126 
6127   assert(getLangOpts().ObjC1);
6128   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6129 
6130   // Default behaviour under objective-C's gc is for ObjC pointers
6131   // (or pointers to them) be treated as though they were declared
6132   // as __strong.
6133   if (GCAttrs == Qualifiers::GCNone) {
6134     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6135       return Qualifiers::Strong;
6136     else if (Ty->isPointerType())
6137       return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6138   } else {
6139     // It's not valid to set GC attributes on anything that isn't a
6140     // pointer.
6141 #ifndef NDEBUG
6142     QualType CT = Ty->getCanonicalTypeInternal();
6143     while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6144       CT = AT->getElementType();
6145     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6146 #endif
6147   }
6148   return GCAttrs;
6149 }
6150 
6151 //===----------------------------------------------------------------------===//
6152 //                        Type Compatibility Testing
6153 //===----------------------------------------------------------------------===//
6154 
6155 /// areCompatVectorTypes - Return true if the two specified vector types are
6156 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)6157 static bool areCompatVectorTypes(const VectorType *LHS,
6158                                  const VectorType *RHS) {
6159   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6160   return LHS->getElementType() == RHS->getElementType() &&
6161          LHS->getNumElements() == RHS->getNumElements();
6162 }
6163 
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)6164 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6165                                           QualType SecondVec) {
6166   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6167   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6168 
6169   if (hasSameUnqualifiedType(FirstVec, SecondVec))
6170     return true;
6171 
6172   // Treat Neon vector types and most AltiVec vector types as if they are the
6173   // equivalent GCC vector types.
6174   const VectorType *First = FirstVec->getAs<VectorType>();
6175   const VectorType *Second = SecondVec->getAs<VectorType>();
6176   if (First->getNumElements() == Second->getNumElements() &&
6177       hasSameType(First->getElementType(), Second->getElementType()) &&
6178       First->getVectorKind() != VectorType::AltiVecPixel &&
6179       First->getVectorKind() != VectorType::AltiVecBool &&
6180       Second->getVectorKind() != VectorType::AltiVecPixel &&
6181       Second->getVectorKind() != VectorType::AltiVecBool)
6182     return true;
6183 
6184   return false;
6185 }
6186 
6187 //===----------------------------------------------------------------------===//
6188 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6189 //===----------------------------------------------------------------------===//
6190 
6191 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6192 /// inheritance hierarchy of 'rProto'.
6193 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const6194 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6195                                            ObjCProtocolDecl *rProto) const {
6196   if (declaresSameEntity(lProto, rProto))
6197     return true;
6198   for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6199        E = rProto->protocol_end(); PI != E; ++PI)
6200     if (ProtocolCompatibleWithProtocol(lProto, *PI))
6201       return true;
6202   return false;
6203 }
6204 
6205 /// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6206 /// return true if lhs's protocols conform to rhs's protocol; false
6207 /// otherwise.
QualifiedIdConformsQualifiedId(QualType lhs,QualType rhs)6208 bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6209   if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6210     return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6211   return false;
6212 }
6213 
6214 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6215 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(QualType lhs,QualType rhs)6216 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6217                                                       QualType rhs) {
6218   const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6219   const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6220   assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6221 
6222   for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6223        E = lhsQID->qual_end(); I != E; ++I) {
6224     bool match = false;
6225     ObjCProtocolDecl *lhsProto = *I;
6226     for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6227          E = rhsOPT->qual_end(); J != E; ++J) {
6228       ObjCProtocolDecl *rhsProto = *J;
6229       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6230         match = true;
6231         break;
6232       }
6233     }
6234     if (!match)
6235       return false;
6236   }
6237   return true;
6238 }
6239 
6240 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6241 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(QualType lhs,QualType rhs,bool compare)6242 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6243                                                    bool compare) {
6244   // Allow id<P..> and an 'id' or void* type in all cases.
6245   if (lhs->isVoidPointerType() ||
6246       lhs->isObjCIdType() || lhs->isObjCClassType())
6247     return true;
6248   else if (rhs->isVoidPointerType() ||
6249            rhs->isObjCIdType() || rhs->isObjCClassType())
6250     return true;
6251 
6252   if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6253     const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6254 
6255     if (!rhsOPT) return false;
6256 
6257     if (rhsOPT->qual_empty()) {
6258       // If the RHS is a unqualified interface pointer "NSString*",
6259       // make sure we check the class hierarchy.
6260       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6261         for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6262              E = lhsQID->qual_end(); I != E; ++I) {
6263           // when comparing an id<P> on lhs with a static type on rhs,
6264           // see if static class implements all of id's protocols, directly or
6265           // through its super class and categories.
6266           if (!rhsID->ClassImplementsProtocol(*I, true))
6267             return false;
6268         }
6269       }
6270       // If there are no qualifiers and no interface, we have an 'id'.
6271       return true;
6272     }
6273     // Both the right and left sides have qualifiers.
6274     for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6275          E = lhsQID->qual_end(); I != E; ++I) {
6276       ObjCProtocolDecl *lhsProto = *I;
6277       bool match = false;
6278 
6279       // when comparing an id<P> on lhs with a static type on rhs,
6280       // see if static class implements all of id's protocols, directly or
6281       // through its super class and categories.
6282       for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6283            E = rhsOPT->qual_end(); J != E; ++J) {
6284         ObjCProtocolDecl *rhsProto = *J;
6285         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6286             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6287           match = true;
6288           break;
6289         }
6290       }
6291       // If the RHS is a qualified interface pointer "NSString<P>*",
6292       // make sure we check the class hierarchy.
6293       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6294         for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6295              E = lhsQID->qual_end(); I != E; ++I) {
6296           // when comparing an id<P> on lhs with a static type on rhs,
6297           // see if static class implements all of id's protocols, directly or
6298           // through its super class and categories.
6299           if (rhsID->ClassImplementsProtocol(*I, true)) {
6300             match = true;
6301             break;
6302           }
6303         }
6304       }
6305       if (!match)
6306         return false;
6307     }
6308 
6309     return true;
6310   }
6311 
6312   const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6313   assert(rhsQID && "One of the LHS/RHS should be id<x>");
6314 
6315   if (const ObjCObjectPointerType *lhsOPT =
6316         lhs->getAsObjCInterfacePointerType()) {
6317     // If both the right and left sides have qualifiers.
6318     for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6319          E = lhsOPT->qual_end(); I != E; ++I) {
6320       ObjCProtocolDecl *lhsProto = *I;
6321       bool match = false;
6322 
6323       // when comparing an id<P> on rhs with a static type on lhs,
6324       // see if static class implements all of id's protocols, directly or
6325       // through its super class and categories.
6326       // First, lhs protocols in the qualifier list must be found, direct
6327       // or indirect in rhs's qualifier list or it is a mismatch.
6328       for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6329            E = rhsQID->qual_end(); J != E; ++J) {
6330         ObjCProtocolDecl *rhsProto = *J;
6331         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6332             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6333           match = true;
6334           break;
6335         }
6336       }
6337       if (!match)
6338         return false;
6339     }
6340 
6341     // Static class's protocols, or its super class or category protocols
6342     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6343     if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6344       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6345       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6346       // This is rather dubious but matches gcc's behavior. If lhs has
6347       // no type qualifier and its class has no static protocol(s)
6348       // assume that it is mismatch.
6349       if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6350         return false;
6351       for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6352            LHSInheritedProtocols.begin(),
6353            E = LHSInheritedProtocols.end(); I != E; ++I) {
6354         bool match = false;
6355         ObjCProtocolDecl *lhsProto = (*I);
6356         for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6357              E = rhsQID->qual_end(); J != E; ++J) {
6358           ObjCProtocolDecl *rhsProto = *J;
6359           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6360               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6361             match = true;
6362             break;
6363           }
6364         }
6365         if (!match)
6366           return false;
6367       }
6368     }
6369     return true;
6370   }
6371   return false;
6372 }
6373 
6374 /// canAssignObjCInterfaces - Return true if the two interface types are
6375 /// compatible for assignment from RHS to LHS.  This handles validation of any
6376 /// protocol qualifiers on the LHS or RHS.
6377 ///
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)6378 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6379                                          const ObjCObjectPointerType *RHSOPT) {
6380   const ObjCObjectType* LHS = LHSOPT->getObjectType();
6381   const ObjCObjectType* RHS = RHSOPT->getObjectType();
6382 
6383   // If either type represents the built-in 'id' or 'Class' types, return true.
6384   if (LHS->isObjCUnqualifiedIdOrClass() ||
6385       RHS->isObjCUnqualifiedIdOrClass())
6386     return true;
6387 
6388   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6389     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6390                                              QualType(RHSOPT,0),
6391                                              false);
6392 
6393   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6394     return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6395                                                 QualType(RHSOPT,0));
6396 
6397   // If we have 2 user-defined types, fall into that path.
6398   if (LHS->getInterface() && RHS->getInterface())
6399     return canAssignObjCInterfaces(LHS, RHS);
6400 
6401   return false;
6402 }
6403 
6404 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6405 /// for providing type-safety for objective-c pointers used to pass/return
6406 /// arguments in block literals. When passed as arguments, passing 'A*' where
6407 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6408 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)6409 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6410                                          const ObjCObjectPointerType *LHSOPT,
6411                                          const ObjCObjectPointerType *RHSOPT,
6412                                          bool BlockReturnType) {
6413   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6414     return true;
6415 
6416   if (LHSOPT->isObjCBuiltinType()) {
6417     return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6418   }
6419 
6420   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6421     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6422                                              QualType(RHSOPT,0),
6423                                              false);
6424 
6425   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6426   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6427   if (LHS && RHS)  { // We have 2 user-defined types.
6428     if (LHS != RHS) {
6429       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6430         return BlockReturnType;
6431       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6432         return !BlockReturnType;
6433     }
6434     else
6435       return true;
6436   }
6437   return false;
6438 }
6439 
6440 /// getIntersectionOfProtocols - This routine finds the intersection of set
6441 /// of protocols inherited from two distinct objective-c pointer objects.
6442 /// It is used to build composite qualifier list of the composite type of
6443 /// the conditional expression involving two objective-c pointer objects.
6444 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionOfProtocols)6445 void getIntersectionOfProtocols(ASTContext &Context,
6446                                 const ObjCObjectPointerType *LHSOPT,
6447                                 const ObjCObjectPointerType *RHSOPT,
6448       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6449 
6450   const ObjCObjectType* LHS = LHSOPT->getObjectType();
6451   const ObjCObjectType* RHS = RHSOPT->getObjectType();
6452   assert(LHS->getInterface() && "LHS must have an interface base");
6453   assert(RHS->getInterface() && "RHS must have an interface base");
6454 
6455   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6456   unsigned LHSNumProtocols = LHS->getNumProtocols();
6457   if (LHSNumProtocols > 0)
6458     InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6459   else {
6460     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6461     Context.CollectInheritedProtocols(LHS->getInterface(),
6462                                       LHSInheritedProtocols);
6463     InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6464                                 LHSInheritedProtocols.end());
6465   }
6466 
6467   unsigned RHSNumProtocols = RHS->getNumProtocols();
6468   if (RHSNumProtocols > 0) {
6469     ObjCProtocolDecl **RHSProtocols =
6470       const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6471     for (unsigned i = 0; i < RHSNumProtocols; ++i)
6472       if (InheritedProtocolSet.count(RHSProtocols[i]))
6473         IntersectionOfProtocols.push_back(RHSProtocols[i]);
6474   } else {
6475     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6476     Context.CollectInheritedProtocols(RHS->getInterface(),
6477                                       RHSInheritedProtocols);
6478     for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6479          RHSInheritedProtocols.begin(),
6480          E = RHSInheritedProtocols.end(); I != E; ++I)
6481       if (InheritedProtocolSet.count((*I)))
6482         IntersectionOfProtocols.push_back((*I));
6483   }
6484 }
6485 
6486 /// areCommonBaseCompatible - Returns common base class of the two classes if
6487 /// one found. Note that this is O'2 algorithm. But it will be called as the
6488 /// last type comparison in a ?-exp of ObjC pointer types before a
6489 /// warning is issued. So, its invokation is extremely rare.
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)6490 QualType ASTContext::areCommonBaseCompatible(
6491                                           const ObjCObjectPointerType *Lptr,
6492                                           const ObjCObjectPointerType *Rptr) {
6493   const ObjCObjectType *LHS = Lptr->getObjectType();
6494   const ObjCObjectType *RHS = Rptr->getObjectType();
6495   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6496   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6497   if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6498     return QualType();
6499 
6500   do {
6501     LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6502     if (canAssignObjCInterfaces(LHS, RHS)) {
6503       SmallVector<ObjCProtocolDecl *, 8> Protocols;
6504       getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6505 
6506       QualType Result = QualType(LHS, 0);
6507       if (!Protocols.empty())
6508         Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6509       Result = getObjCObjectPointerType(Result);
6510       return Result;
6511     }
6512   } while ((LDecl = LDecl->getSuperClass()));
6513 
6514   return QualType();
6515 }
6516 
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)6517 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6518                                          const ObjCObjectType *RHS) {
6519   assert(LHS->getInterface() && "LHS is not an interface type");
6520   assert(RHS->getInterface() && "RHS is not an interface type");
6521 
6522   // Verify that the base decls are compatible: the RHS must be a subclass of
6523   // the LHS.
6524   if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6525     return false;
6526 
6527   // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6528   // protocol qualified at all, then we are good.
6529   if (LHS->getNumProtocols() == 0)
6530     return true;
6531 
6532   // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6533   // more detailed analysis is required.
6534   if (RHS->getNumProtocols() == 0) {
6535     // OK, if LHS is a superclass of RHS *and*
6536     // this superclass is assignment compatible with LHS.
6537     // false otherwise.
6538     bool IsSuperClass =
6539       LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6540     if (IsSuperClass) {
6541       // OK if conversion of LHS to SuperClass results in narrowing of types
6542       // ; i.e., SuperClass may implement at least one of the protocols
6543       // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6544       // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6545       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6546       CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6547       // If super class has no protocols, it is not a match.
6548       if (SuperClassInheritedProtocols.empty())
6549         return false;
6550 
6551       for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6552            LHSPE = LHS->qual_end();
6553            LHSPI != LHSPE; LHSPI++) {
6554         bool SuperImplementsProtocol = false;
6555         ObjCProtocolDecl *LHSProto = (*LHSPI);
6556 
6557         for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6558              SuperClassInheritedProtocols.begin(),
6559              E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6560           ObjCProtocolDecl *SuperClassProto = (*I);
6561           if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6562             SuperImplementsProtocol = true;
6563             break;
6564           }
6565         }
6566         if (!SuperImplementsProtocol)
6567           return false;
6568       }
6569       return true;
6570     }
6571     return false;
6572   }
6573 
6574   for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6575                                      LHSPE = LHS->qual_end();
6576        LHSPI != LHSPE; LHSPI++) {
6577     bool RHSImplementsProtocol = false;
6578 
6579     // If the RHS doesn't implement the protocol on the left, the types
6580     // are incompatible.
6581     for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6582                                        RHSPE = RHS->qual_end();
6583          RHSPI != RHSPE; RHSPI++) {
6584       if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6585         RHSImplementsProtocol = true;
6586         break;
6587       }
6588     }
6589     // FIXME: For better diagnostics, consider passing back the protocol name.
6590     if (!RHSImplementsProtocol)
6591       return false;
6592   }
6593   // The RHS implements all protocols listed on the LHS.
6594   return true;
6595 }
6596 
areComparableObjCPointerTypes(QualType LHS,QualType RHS)6597 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6598   // get the "pointed to" types
6599   const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6600   const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6601 
6602   if (!LHSOPT || !RHSOPT)
6603     return false;
6604 
6605   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6606          canAssignObjCInterfaces(RHSOPT, LHSOPT);
6607 }
6608 
canBindObjCObjectType(QualType To,QualType From)6609 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6610   return canAssignObjCInterfaces(
6611                 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6612                 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6613 }
6614 
6615 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6616 /// both shall have the identically qualified version of a compatible type.
6617 /// C99 6.2.7p1: Two types have compatible types if their types are the
6618 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)6619 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6620                                     bool CompareUnqualified) {
6621   if (getLangOpts().CPlusPlus)
6622     return hasSameType(LHS, RHS);
6623 
6624   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6625 }
6626 
propertyTypesAreCompatible(QualType LHS,QualType RHS)6627 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6628   return typesAreCompatible(LHS, RHS);
6629 }
6630 
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)6631 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6632   return !mergeTypes(LHS, RHS, true).isNull();
6633 }
6634 
6635 /// mergeTransparentUnionType - if T is a transparent union type and a member
6636 /// of T is compatible with SubType, return the merged type, else return
6637 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)6638 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6639                                                bool OfBlockPointer,
6640                                                bool Unqualified) {
6641   if (const RecordType *UT = T->getAsUnionType()) {
6642     RecordDecl *UD = UT->getDecl();
6643     if (UD->hasAttr<TransparentUnionAttr>()) {
6644       for (RecordDecl::field_iterator it = UD->field_begin(),
6645            itend = UD->field_end(); it != itend; ++it) {
6646         QualType ET = it->getType().getUnqualifiedType();
6647         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6648         if (!MT.isNull())
6649           return MT;
6650       }
6651     }
6652   }
6653 
6654   return QualType();
6655 }
6656 
6657 /// mergeFunctionArgumentTypes - merge two types which appear as function
6658 /// argument types
mergeFunctionArgumentTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6659 QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6660                                                 bool OfBlockPointer,
6661                                                 bool Unqualified) {
6662   // GNU extension: two types are compatible if they appear as a function
6663   // argument, one of the types is a transparent union type and the other
6664   // type is compatible with a union member
6665   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6666                                               Unqualified);
6667   if (!lmerge.isNull())
6668     return lmerge;
6669 
6670   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6671                                               Unqualified);
6672   if (!rmerge.isNull())
6673     return rmerge;
6674 
6675   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6676 }
6677 
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6678 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6679                                         bool OfBlockPointer,
6680                                         bool Unqualified) {
6681   const FunctionType *lbase = lhs->getAs<FunctionType>();
6682   const FunctionType *rbase = rhs->getAs<FunctionType>();
6683   const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6684   const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6685   bool allLTypes = true;
6686   bool allRTypes = true;
6687 
6688   // Check return type
6689   QualType retType;
6690   if (OfBlockPointer) {
6691     QualType RHS = rbase->getResultType();
6692     QualType LHS = lbase->getResultType();
6693     bool UnqualifiedResult = Unqualified;
6694     if (!UnqualifiedResult)
6695       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6696     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6697   }
6698   else
6699     retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6700                          Unqualified);
6701   if (retType.isNull()) return QualType();
6702 
6703   if (Unqualified)
6704     retType = retType.getUnqualifiedType();
6705 
6706   CanQualType LRetType = getCanonicalType(lbase->getResultType());
6707   CanQualType RRetType = getCanonicalType(rbase->getResultType());
6708   if (Unqualified) {
6709     LRetType = LRetType.getUnqualifiedType();
6710     RRetType = RRetType.getUnqualifiedType();
6711   }
6712 
6713   if (getCanonicalType(retType) != LRetType)
6714     allLTypes = false;
6715   if (getCanonicalType(retType) != RRetType)
6716     allRTypes = false;
6717 
6718   // FIXME: double check this
6719   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6720   //                           rbase->getRegParmAttr() != 0 &&
6721   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6722   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6723   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6724 
6725   // Compatible functions must have compatible calling conventions
6726   if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6727     return QualType();
6728 
6729   // Regparm is part of the calling convention.
6730   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6731     return QualType();
6732   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6733     return QualType();
6734 
6735   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6736     return QualType();
6737 
6738   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6739   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6740 
6741   if (lbaseInfo.getNoReturn() != NoReturn)
6742     allLTypes = false;
6743   if (rbaseInfo.getNoReturn() != NoReturn)
6744     allRTypes = false;
6745 
6746   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6747 
6748   if (lproto && rproto) { // two C99 style function prototypes
6749     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6750            "C++ shouldn't be here");
6751     unsigned lproto_nargs = lproto->getNumArgs();
6752     unsigned rproto_nargs = rproto->getNumArgs();
6753 
6754     // Compatible functions must have the same number of arguments
6755     if (lproto_nargs != rproto_nargs)
6756       return QualType();
6757 
6758     // Variadic and non-variadic functions aren't compatible
6759     if (lproto->isVariadic() != rproto->isVariadic())
6760       return QualType();
6761 
6762     if (lproto->getTypeQuals() != rproto->getTypeQuals())
6763       return QualType();
6764 
6765     if (LangOpts.ObjCAutoRefCount &&
6766         !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6767       return QualType();
6768 
6769     // Check argument compatibility
6770     SmallVector<QualType, 10> types;
6771     for (unsigned i = 0; i < lproto_nargs; i++) {
6772       QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6773       QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6774       QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6775                                                     OfBlockPointer,
6776                                                     Unqualified);
6777       if (argtype.isNull()) return QualType();
6778 
6779       if (Unqualified)
6780         argtype = argtype.getUnqualifiedType();
6781 
6782       types.push_back(argtype);
6783       if (Unqualified) {
6784         largtype = largtype.getUnqualifiedType();
6785         rargtype = rargtype.getUnqualifiedType();
6786       }
6787 
6788       if (getCanonicalType(argtype) != getCanonicalType(largtype))
6789         allLTypes = false;
6790       if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6791         allRTypes = false;
6792     }
6793 
6794     if (allLTypes) return lhs;
6795     if (allRTypes) return rhs;
6796 
6797     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6798     EPI.ExtInfo = einfo;
6799     return getFunctionType(retType, types, EPI);
6800   }
6801 
6802   if (lproto) allRTypes = false;
6803   if (rproto) allLTypes = false;
6804 
6805   const FunctionProtoType *proto = lproto ? lproto : rproto;
6806   if (proto) {
6807     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6808     if (proto->isVariadic()) return QualType();
6809     // Check that the types are compatible with the types that
6810     // would result from default argument promotions (C99 6.7.5.3p15).
6811     // The only types actually affected are promotable integer
6812     // types and floats, which would be passed as a different
6813     // type depending on whether the prototype is visible.
6814     unsigned proto_nargs = proto->getNumArgs();
6815     for (unsigned i = 0; i < proto_nargs; ++i) {
6816       QualType argTy = proto->getArgType(i);
6817 
6818       // Look at the converted type of enum types, since that is the type used
6819       // to pass enum values.
6820       if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6821         argTy = Enum->getDecl()->getIntegerType();
6822         if (argTy.isNull())
6823           return QualType();
6824       }
6825 
6826       if (argTy->isPromotableIntegerType() ||
6827           getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6828         return QualType();
6829     }
6830 
6831     if (allLTypes) return lhs;
6832     if (allRTypes) return rhs;
6833 
6834     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6835     EPI.ExtInfo = einfo;
6836     return getFunctionType(retType,
6837                            ArrayRef<QualType>(proto->arg_type_begin(),
6838                                               proto->getNumArgs()),
6839                            EPI);
6840   }
6841 
6842   if (allLTypes) return lhs;
6843   if (allRTypes) return rhs;
6844   return getFunctionNoProtoType(retType, einfo);
6845 }
6846 
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)6847 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6848                                 bool OfBlockPointer,
6849                                 bool Unqualified, bool BlockReturnType) {
6850   // C++ [expr]: If an expression initially has the type "reference to T", the
6851   // type is adjusted to "T" prior to any further analysis, the expression
6852   // designates the object or function denoted by the reference, and the
6853   // expression is an lvalue unless the reference is an rvalue reference and
6854   // the expression is a function call (possibly inside parentheses).
6855   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6856   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6857 
6858   if (Unqualified) {
6859     LHS = LHS.getUnqualifiedType();
6860     RHS = RHS.getUnqualifiedType();
6861   }
6862 
6863   QualType LHSCan = getCanonicalType(LHS),
6864            RHSCan = getCanonicalType(RHS);
6865 
6866   // If two types are identical, they are compatible.
6867   if (LHSCan == RHSCan)
6868     return LHS;
6869 
6870   // If the qualifiers are different, the types aren't compatible... mostly.
6871   Qualifiers LQuals = LHSCan.getLocalQualifiers();
6872   Qualifiers RQuals = RHSCan.getLocalQualifiers();
6873   if (LQuals != RQuals) {
6874     // If any of these qualifiers are different, we have a type
6875     // mismatch.
6876     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6877         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6878         LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6879       return QualType();
6880 
6881     // Exactly one GC qualifier difference is allowed: __strong is
6882     // okay if the other type has no GC qualifier but is an Objective
6883     // C object pointer (i.e. implicitly strong by default).  We fix
6884     // this by pretending that the unqualified type was actually
6885     // qualified __strong.
6886     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6887     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6888     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6889 
6890     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6891       return QualType();
6892 
6893     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6894       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6895     }
6896     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6897       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6898     }
6899     return QualType();
6900   }
6901 
6902   // Okay, qualifiers are equal.
6903 
6904   Type::TypeClass LHSClass = LHSCan->getTypeClass();
6905   Type::TypeClass RHSClass = RHSCan->getTypeClass();
6906 
6907   // We want to consider the two function types to be the same for these
6908   // comparisons, just force one to the other.
6909   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6910   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6911 
6912   // Same as above for arrays
6913   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6914     LHSClass = Type::ConstantArray;
6915   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6916     RHSClass = Type::ConstantArray;
6917 
6918   // ObjCInterfaces are just specialized ObjCObjects.
6919   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6920   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6921 
6922   // Canonicalize ExtVector -> Vector.
6923   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6924   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6925 
6926   // If the canonical type classes don't match.
6927   if (LHSClass != RHSClass) {
6928     // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6929     // a signed integer type, or an unsigned integer type.
6930     // Compatibility is based on the underlying type, not the promotion
6931     // type.
6932     if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6933       QualType TINT = ETy->getDecl()->getIntegerType();
6934       if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6935         return RHS;
6936     }
6937     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6938       QualType TINT = ETy->getDecl()->getIntegerType();
6939       if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6940         return LHS;
6941     }
6942     // allow block pointer type to match an 'id' type.
6943     if (OfBlockPointer && !BlockReturnType) {
6944        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6945          return LHS;
6946       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6947         return RHS;
6948     }
6949 
6950     return QualType();
6951   }
6952 
6953   // The canonical type classes match.
6954   switch (LHSClass) {
6955 #define TYPE(Class, Base)
6956 #define ABSTRACT_TYPE(Class, Base)
6957 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6958 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6959 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
6960 #include "clang/AST/TypeNodes.def"
6961     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6962 
6963   case Type::LValueReference:
6964   case Type::RValueReference:
6965   case Type::MemberPointer:
6966     llvm_unreachable("C++ should never be in mergeTypes");
6967 
6968   case Type::ObjCInterface:
6969   case Type::IncompleteArray:
6970   case Type::VariableArray:
6971   case Type::FunctionProto:
6972   case Type::ExtVector:
6973     llvm_unreachable("Types are eliminated above");
6974 
6975   case Type::Pointer:
6976   {
6977     // Merge two pointer types, while trying to preserve typedef info
6978     QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6979     QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6980     if (Unqualified) {
6981       LHSPointee = LHSPointee.getUnqualifiedType();
6982       RHSPointee = RHSPointee.getUnqualifiedType();
6983     }
6984     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6985                                      Unqualified);
6986     if (ResultType.isNull()) return QualType();
6987     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6988       return LHS;
6989     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6990       return RHS;
6991     return getPointerType(ResultType);
6992   }
6993   case Type::BlockPointer:
6994   {
6995     // Merge two block pointer types, while trying to preserve typedef info
6996     QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6997     QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6998     if (Unqualified) {
6999       LHSPointee = LHSPointee.getUnqualifiedType();
7000       RHSPointee = RHSPointee.getUnqualifiedType();
7001     }
7002     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7003                                      Unqualified);
7004     if (ResultType.isNull()) return QualType();
7005     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7006       return LHS;
7007     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7008       return RHS;
7009     return getBlockPointerType(ResultType);
7010   }
7011   case Type::Atomic:
7012   {
7013     // Merge two pointer types, while trying to preserve typedef info
7014     QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7015     QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7016     if (Unqualified) {
7017       LHSValue = LHSValue.getUnqualifiedType();
7018       RHSValue = RHSValue.getUnqualifiedType();
7019     }
7020     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7021                                      Unqualified);
7022     if (ResultType.isNull()) return QualType();
7023     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7024       return LHS;
7025     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7026       return RHS;
7027     return getAtomicType(ResultType);
7028   }
7029   case Type::ConstantArray:
7030   {
7031     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7032     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7033     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7034       return QualType();
7035 
7036     QualType LHSElem = getAsArrayType(LHS)->getElementType();
7037     QualType RHSElem = getAsArrayType(RHS)->getElementType();
7038     if (Unqualified) {
7039       LHSElem = LHSElem.getUnqualifiedType();
7040       RHSElem = RHSElem.getUnqualifiedType();
7041     }
7042 
7043     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7044     if (ResultType.isNull()) return QualType();
7045     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7046       return LHS;
7047     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7048       return RHS;
7049     if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7050                                           ArrayType::ArraySizeModifier(), 0);
7051     if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7052                                           ArrayType::ArraySizeModifier(), 0);
7053     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7054     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7055     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7056       return LHS;
7057     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7058       return RHS;
7059     if (LVAT) {
7060       // FIXME: This isn't correct! But tricky to implement because
7061       // the array's size has to be the size of LHS, but the type
7062       // has to be different.
7063       return LHS;
7064     }
7065     if (RVAT) {
7066       // FIXME: This isn't correct! But tricky to implement because
7067       // the array's size has to be the size of RHS, but the type
7068       // has to be different.
7069       return RHS;
7070     }
7071     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7072     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7073     return getIncompleteArrayType(ResultType,
7074                                   ArrayType::ArraySizeModifier(), 0);
7075   }
7076   case Type::FunctionNoProto:
7077     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7078   case Type::Record:
7079   case Type::Enum:
7080     return QualType();
7081   case Type::Builtin:
7082     // Only exactly equal builtin types are compatible, which is tested above.
7083     return QualType();
7084   case Type::Complex:
7085     // Distinct complex types are incompatible.
7086     return QualType();
7087   case Type::Vector:
7088     // FIXME: The merged type should be an ExtVector!
7089     if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7090                              RHSCan->getAs<VectorType>()))
7091       return LHS;
7092     return QualType();
7093   case Type::ObjCObject: {
7094     // Check if the types are assignment compatible.
7095     // FIXME: This should be type compatibility, e.g. whether
7096     // "LHS x; RHS x;" at global scope is legal.
7097     const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7098     const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7099     if (canAssignObjCInterfaces(LHSIface, RHSIface))
7100       return LHS;
7101 
7102     return QualType();
7103   }
7104   case Type::ObjCObjectPointer: {
7105     if (OfBlockPointer) {
7106       if (canAssignObjCInterfacesInBlockPointer(
7107                                           LHS->getAs<ObjCObjectPointerType>(),
7108                                           RHS->getAs<ObjCObjectPointerType>(),
7109                                           BlockReturnType))
7110         return LHS;
7111       return QualType();
7112     }
7113     if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7114                                 RHS->getAs<ObjCObjectPointerType>()))
7115       return LHS;
7116 
7117     return QualType();
7118   }
7119   }
7120 
7121   llvm_unreachable("Invalid Type::Class!");
7122 }
7123 
FunctionTypesMatchOnNSConsumedAttrs(const FunctionProtoType * FromFunctionType,const FunctionProtoType * ToFunctionType)7124 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7125                    const FunctionProtoType *FromFunctionType,
7126                    const FunctionProtoType *ToFunctionType) {
7127   if (FromFunctionType->hasAnyConsumedArgs() !=
7128       ToFunctionType->hasAnyConsumedArgs())
7129     return false;
7130   FunctionProtoType::ExtProtoInfo FromEPI =
7131     FromFunctionType->getExtProtoInfo();
7132   FunctionProtoType::ExtProtoInfo ToEPI =
7133     ToFunctionType->getExtProtoInfo();
7134   if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7135     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7136          ArgIdx != NumArgs; ++ArgIdx)  {
7137       if (FromEPI.ConsumedArguments[ArgIdx] !=
7138           ToEPI.ConsumedArguments[ArgIdx])
7139         return false;
7140     }
7141   return true;
7142 }
7143 
7144 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7145 /// 'RHS' attributes and returns the merged version; including for function
7146 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)7147 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7148   QualType LHSCan = getCanonicalType(LHS),
7149   RHSCan = getCanonicalType(RHS);
7150   // If two types are identical, they are compatible.
7151   if (LHSCan == RHSCan)
7152     return LHS;
7153   if (RHSCan->isFunctionType()) {
7154     if (!LHSCan->isFunctionType())
7155       return QualType();
7156     QualType OldReturnType =
7157       cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7158     QualType NewReturnType =
7159       cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7160     QualType ResReturnType =
7161       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7162     if (ResReturnType.isNull())
7163       return QualType();
7164     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7165       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7166       // In either case, use OldReturnType to build the new function type.
7167       const FunctionType *F = LHS->getAs<FunctionType>();
7168       if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7169         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7170         EPI.ExtInfo = getFunctionExtInfo(LHS);
7171         QualType ResultType
7172           = getFunctionType(OldReturnType,
7173                             ArrayRef<QualType>(FPT->arg_type_begin(),
7174                                                FPT->getNumArgs()),
7175                             EPI);
7176         return ResultType;
7177       }
7178     }
7179     return QualType();
7180   }
7181 
7182   // If the qualifiers are different, the types can still be merged.
7183   Qualifiers LQuals = LHSCan.getLocalQualifiers();
7184   Qualifiers RQuals = RHSCan.getLocalQualifiers();
7185   if (LQuals != RQuals) {
7186     // If any of these qualifiers are different, we have a type mismatch.
7187     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7188         LQuals.getAddressSpace() != RQuals.getAddressSpace())
7189       return QualType();
7190 
7191     // Exactly one GC qualifier difference is allowed: __strong is
7192     // okay if the other type has no GC qualifier but is an Objective
7193     // C object pointer (i.e. implicitly strong by default).  We fix
7194     // this by pretending that the unqualified type was actually
7195     // qualified __strong.
7196     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7197     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7198     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7199 
7200     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7201       return QualType();
7202 
7203     if (GC_L == Qualifiers::Strong)
7204       return LHS;
7205     if (GC_R == Qualifiers::Strong)
7206       return RHS;
7207     return QualType();
7208   }
7209 
7210   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7211     QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7212     QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7213     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7214     if (ResQT == LHSBaseQT)
7215       return LHS;
7216     if (ResQT == RHSBaseQT)
7217       return RHS;
7218   }
7219   return QualType();
7220 }
7221 
7222 //===----------------------------------------------------------------------===//
7223 //                         Integer Predicates
7224 //===----------------------------------------------------------------------===//
7225 
getIntWidth(QualType T) const7226 unsigned ASTContext::getIntWidth(QualType T) const {
7227   if (const EnumType *ET = dyn_cast<EnumType>(T))
7228     T = ET->getDecl()->getIntegerType();
7229   if (T->isBooleanType())
7230     return 1;
7231   // For builtin types, just use the standard type sizing method
7232   return (unsigned)getTypeSize(T);
7233 }
7234 
getCorrespondingUnsignedType(QualType T) const7235 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7236   assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7237 
7238   // Turn <4 x signed int> -> <4 x unsigned int>
7239   if (const VectorType *VTy = T->getAs<VectorType>())
7240     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7241                          VTy->getNumElements(), VTy->getVectorKind());
7242 
7243   // For enums, we return the unsigned version of the base type.
7244   if (const EnumType *ETy = T->getAs<EnumType>())
7245     T = ETy->getDecl()->getIntegerType();
7246 
7247   const BuiltinType *BTy = T->getAs<BuiltinType>();
7248   assert(BTy && "Unexpected signed integer type");
7249   switch (BTy->getKind()) {
7250   case BuiltinType::Char_S:
7251   case BuiltinType::SChar:
7252     return UnsignedCharTy;
7253   case BuiltinType::Short:
7254     return UnsignedShortTy;
7255   case BuiltinType::Int:
7256     return UnsignedIntTy;
7257   case BuiltinType::Long:
7258     return UnsignedLongTy;
7259   case BuiltinType::LongLong:
7260     return UnsignedLongLongTy;
7261   case BuiltinType::Int128:
7262     return UnsignedInt128Ty;
7263   default:
7264     llvm_unreachable("Unexpected signed integer type");
7265   }
7266 }
7267 
~ASTMutationListener()7268 ASTMutationListener::~ASTMutationListener() { }
7269 
7270 
7271 //===----------------------------------------------------------------------===//
7272 //                          Builtin Type Computation
7273 //===----------------------------------------------------------------------===//
7274 
7275 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7276 /// pointer over the consumed characters.  This returns the resultant type.  If
7277 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7278 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7279 /// a vector of "i*".
7280 ///
7281 /// RequiresICE is filled in on return to indicate whether the value is required
7282 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)7283 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7284                                   ASTContext::GetBuiltinTypeError &Error,
7285                                   bool &RequiresICE,
7286                                   bool AllowTypeModifiers) {
7287   // Modifiers.
7288   int HowLong = 0;
7289   bool Signed = false, Unsigned = false;
7290   RequiresICE = false;
7291 
7292   // Read the prefixed modifiers first.
7293   bool Done = false;
7294   while (!Done) {
7295     switch (*Str++) {
7296     default: Done = true; --Str; break;
7297     case 'I':
7298       RequiresICE = true;
7299       break;
7300     case 'S':
7301       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7302       assert(!Signed && "Can't use 'S' modifier multiple times!");
7303       Signed = true;
7304       break;
7305     case 'U':
7306       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7307       assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7308       Unsigned = true;
7309       break;
7310     case 'L':
7311       assert(HowLong <= 2 && "Can't have LLLL modifier");
7312       ++HowLong;
7313       break;
7314     }
7315   }
7316 
7317   QualType Type;
7318 
7319   // Read the base type.
7320   switch (*Str++) {
7321   default: llvm_unreachable("Unknown builtin type letter!");
7322   case 'v':
7323     assert(HowLong == 0 && !Signed && !Unsigned &&
7324            "Bad modifiers used with 'v'!");
7325     Type = Context.VoidTy;
7326     break;
7327   case 'f':
7328     assert(HowLong == 0 && !Signed && !Unsigned &&
7329            "Bad modifiers used with 'f'!");
7330     Type = Context.FloatTy;
7331     break;
7332   case 'd':
7333     assert(HowLong < 2 && !Signed && !Unsigned &&
7334            "Bad modifiers used with 'd'!");
7335     if (HowLong)
7336       Type = Context.LongDoubleTy;
7337     else
7338       Type = Context.DoubleTy;
7339     break;
7340   case 's':
7341     assert(HowLong == 0 && "Bad modifiers used with 's'!");
7342     if (Unsigned)
7343       Type = Context.UnsignedShortTy;
7344     else
7345       Type = Context.ShortTy;
7346     break;
7347   case 'i':
7348     if (HowLong == 3)
7349       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7350     else if (HowLong == 2)
7351       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7352     else if (HowLong == 1)
7353       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7354     else
7355       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7356     break;
7357   case 'c':
7358     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7359     if (Signed)
7360       Type = Context.SignedCharTy;
7361     else if (Unsigned)
7362       Type = Context.UnsignedCharTy;
7363     else
7364       Type = Context.CharTy;
7365     break;
7366   case 'b': // boolean
7367     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7368     Type = Context.BoolTy;
7369     break;
7370   case 'z':  // size_t.
7371     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7372     Type = Context.getSizeType();
7373     break;
7374   case 'F':
7375     Type = Context.getCFConstantStringType();
7376     break;
7377   case 'G':
7378     Type = Context.getObjCIdType();
7379     break;
7380   case 'H':
7381     Type = Context.getObjCSelType();
7382     break;
7383   case 'M':
7384     Type = Context.getObjCSuperType();
7385     break;
7386   case 'a':
7387     Type = Context.getBuiltinVaListType();
7388     assert(!Type.isNull() && "builtin va list type not initialized!");
7389     break;
7390   case 'A':
7391     // This is a "reference" to a va_list; however, what exactly
7392     // this means depends on how va_list is defined. There are two
7393     // different kinds of va_list: ones passed by value, and ones
7394     // passed by reference.  An example of a by-value va_list is
7395     // x86, where va_list is a char*. An example of by-ref va_list
7396     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7397     // we want this argument to be a char*&; for x86-64, we want
7398     // it to be a __va_list_tag*.
7399     Type = Context.getBuiltinVaListType();
7400     assert(!Type.isNull() && "builtin va list type not initialized!");
7401     if (Type->isArrayType())
7402       Type = Context.getArrayDecayedType(Type);
7403     else
7404       Type = Context.getLValueReferenceType(Type);
7405     break;
7406   case 'V': {
7407     char *End;
7408     unsigned NumElements = strtoul(Str, &End, 10);
7409     assert(End != Str && "Missing vector size");
7410     Str = End;
7411 
7412     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7413                                              RequiresICE, false);
7414     assert(!RequiresICE && "Can't require vector ICE");
7415 
7416     // TODO: No way to make AltiVec vectors in builtins yet.
7417     Type = Context.getVectorType(ElementType, NumElements,
7418                                  VectorType::GenericVector);
7419     break;
7420   }
7421   case 'E': {
7422     char *End;
7423 
7424     unsigned NumElements = strtoul(Str, &End, 10);
7425     assert(End != Str && "Missing vector size");
7426 
7427     Str = End;
7428 
7429     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7430                                              false);
7431     Type = Context.getExtVectorType(ElementType, NumElements);
7432     break;
7433   }
7434   case 'X': {
7435     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7436                                              false);
7437     assert(!RequiresICE && "Can't require complex ICE");
7438     Type = Context.getComplexType(ElementType);
7439     break;
7440   }
7441   case 'Y' : {
7442     Type = Context.getPointerDiffType();
7443     break;
7444   }
7445   case 'P':
7446     Type = Context.getFILEType();
7447     if (Type.isNull()) {
7448       Error = ASTContext::GE_Missing_stdio;
7449       return QualType();
7450     }
7451     break;
7452   case 'J':
7453     if (Signed)
7454       Type = Context.getsigjmp_bufType();
7455     else
7456       Type = Context.getjmp_bufType();
7457 
7458     if (Type.isNull()) {
7459       Error = ASTContext::GE_Missing_setjmp;
7460       return QualType();
7461     }
7462     break;
7463   case 'K':
7464     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7465     Type = Context.getucontext_tType();
7466 
7467     if (Type.isNull()) {
7468       Error = ASTContext::GE_Missing_ucontext;
7469       return QualType();
7470     }
7471     break;
7472   case 'p':
7473     Type = Context.getProcessIDType();
7474     break;
7475   }
7476 
7477   // If there are modifiers and if we're allowed to parse them, go for it.
7478   Done = !AllowTypeModifiers;
7479   while (!Done) {
7480     switch (char c = *Str++) {
7481     default: Done = true; --Str; break;
7482     case '*':
7483     case '&': {
7484       // Both pointers and references can have their pointee types
7485       // qualified with an address space.
7486       char *End;
7487       unsigned AddrSpace = strtoul(Str, &End, 10);
7488       if (End != Str && AddrSpace != 0) {
7489         Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7490         Str = End;
7491       }
7492       if (c == '*')
7493         Type = Context.getPointerType(Type);
7494       else
7495         Type = Context.getLValueReferenceType(Type);
7496       break;
7497     }
7498     // FIXME: There's no way to have a built-in with an rvalue ref arg.
7499     case 'C':
7500       Type = Type.withConst();
7501       break;
7502     case 'D':
7503       Type = Context.getVolatileType(Type);
7504       break;
7505     case 'R':
7506       Type = Type.withRestrict();
7507       break;
7508     }
7509   }
7510 
7511   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7512          "Integer constant 'I' type must be an integer");
7513 
7514   return Type;
7515 }
7516 
7517 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const7518 QualType ASTContext::GetBuiltinType(unsigned Id,
7519                                     GetBuiltinTypeError &Error,
7520                                     unsigned *IntegerConstantArgs) const {
7521   const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7522 
7523   SmallVector<QualType, 8> ArgTypes;
7524 
7525   bool RequiresICE = false;
7526   Error = GE_None;
7527   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7528                                        RequiresICE, true);
7529   if (Error != GE_None)
7530     return QualType();
7531 
7532   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7533 
7534   while (TypeStr[0] && TypeStr[0] != '.') {
7535     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7536     if (Error != GE_None)
7537       return QualType();
7538 
7539     // If this argument is required to be an IntegerConstantExpression and the
7540     // caller cares, fill in the bitmask we return.
7541     if (RequiresICE && IntegerConstantArgs)
7542       *IntegerConstantArgs |= 1 << ArgTypes.size();
7543 
7544     // Do array -> pointer decay.  The builtin should use the decayed type.
7545     if (Ty->isArrayType())
7546       Ty = getArrayDecayedType(Ty);
7547 
7548     ArgTypes.push_back(Ty);
7549   }
7550 
7551   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7552          "'.' should only occur at end of builtin type list!");
7553 
7554   FunctionType::ExtInfo EI;
7555   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7556 
7557   bool Variadic = (TypeStr[0] == '.');
7558 
7559   // We really shouldn't be making a no-proto type here, especially in C++.
7560   if (ArgTypes.empty() && Variadic)
7561     return getFunctionNoProtoType(ResType, EI);
7562 
7563   FunctionProtoType::ExtProtoInfo EPI;
7564   EPI.ExtInfo = EI;
7565   EPI.Variadic = Variadic;
7566 
7567   return getFunctionType(ResType, ArgTypes, EPI);
7568 }
7569 
GetGVALinkageForFunction(const FunctionDecl * FD)7570 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7571   GVALinkage External = GVA_StrongExternal;
7572 
7573   Linkage L = FD->getLinkage();
7574   switch (L) {
7575   case NoLinkage:
7576   case InternalLinkage:
7577   case UniqueExternalLinkage:
7578     return GVA_Internal;
7579 
7580   case ExternalLinkage:
7581     switch (FD->getTemplateSpecializationKind()) {
7582     case TSK_Undeclared:
7583     case TSK_ExplicitSpecialization:
7584       External = GVA_StrongExternal;
7585       break;
7586 
7587     case TSK_ExplicitInstantiationDefinition:
7588       return GVA_ExplicitTemplateInstantiation;
7589 
7590     case TSK_ExplicitInstantiationDeclaration:
7591     case TSK_ImplicitInstantiation:
7592       External = GVA_TemplateInstantiation;
7593       break;
7594     }
7595   }
7596 
7597   if (!FD->isInlined())
7598     return External;
7599 
7600   if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7601     // GNU or C99 inline semantics. Determine whether this symbol should be
7602     // externally visible.
7603     if (FD->isInlineDefinitionExternallyVisible())
7604       return External;
7605 
7606     // C99 inline semantics, where the symbol is not externally visible.
7607     return GVA_C99Inline;
7608   }
7609 
7610   // C++0x [temp.explicit]p9:
7611   //   [ Note: The intent is that an inline function that is the subject of
7612   //   an explicit instantiation declaration will still be implicitly
7613   //   instantiated when used so that the body can be considered for
7614   //   inlining, but that no out-of-line copy of the inline function would be
7615   //   generated in the translation unit. -- end note ]
7616   if (FD->getTemplateSpecializationKind()
7617                                        == TSK_ExplicitInstantiationDeclaration)
7618     return GVA_C99Inline;
7619 
7620   return GVA_CXXInline;
7621 }
7622 
GetGVALinkageForVariable(const VarDecl * VD)7623 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7624   // If this is a static data member, compute the kind of template
7625   // specialization. Otherwise, this variable is not part of a
7626   // template.
7627   TemplateSpecializationKind TSK = TSK_Undeclared;
7628   if (VD->isStaticDataMember())
7629     TSK = VD->getTemplateSpecializationKind();
7630 
7631   Linkage L = VD->getLinkage();
7632 
7633   switch (L) {
7634   case NoLinkage:
7635   case InternalLinkage:
7636   case UniqueExternalLinkage:
7637     return GVA_Internal;
7638 
7639   case ExternalLinkage:
7640     switch (TSK) {
7641     case TSK_Undeclared:
7642     case TSK_ExplicitSpecialization:
7643       return GVA_StrongExternal;
7644 
7645     case TSK_ExplicitInstantiationDeclaration:
7646       llvm_unreachable("Variable should not be instantiated");
7647       // Fall through to treat this like any other instantiation.
7648 
7649     case TSK_ExplicitInstantiationDefinition:
7650       return GVA_ExplicitTemplateInstantiation;
7651 
7652     case TSK_ImplicitInstantiation:
7653       return GVA_TemplateInstantiation;
7654     }
7655   }
7656 
7657   llvm_unreachable("Invalid Linkage!");
7658 }
7659 
DeclMustBeEmitted(const Decl * D)7660 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7661   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7662     if (!VD->isFileVarDecl())
7663       return false;
7664   } else if (!isa<FunctionDecl>(D))
7665     return false;
7666 
7667   // Weak references don't produce any output by themselves.
7668   if (D->hasAttr<WeakRefAttr>())
7669     return false;
7670 
7671   // Aliases and used decls are required.
7672   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7673     return true;
7674 
7675   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7676     // Forward declarations aren't required.
7677     if (!FD->doesThisDeclarationHaveABody())
7678       return FD->doesDeclarationForceExternallyVisibleDefinition();
7679 
7680     // Constructors and destructors are required.
7681     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7682       return true;
7683 
7684     // The key function for a class is required.  This rule only comes
7685     // into play when inline functions can be key functions, though.
7686     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7687       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7688         const CXXRecordDecl *RD = MD->getParent();
7689         if (MD->isOutOfLine() && RD->isDynamicClass()) {
7690           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7691           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7692             return true;
7693         }
7694       }
7695     }
7696 
7697     GVALinkage Linkage = GetGVALinkageForFunction(FD);
7698 
7699     // static, static inline, always_inline, and extern inline functions can
7700     // always be deferred.  Normal inline functions can be deferred in C99/C++.
7701     // Implicit template instantiations can also be deferred in C++.
7702     if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7703         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7704       return false;
7705     return true;
7706   }
7707 
7708   const VarDecl *VD = cast<VarDecl>(D);
7709   assert(VD->isFileVarDecl() && "Expected file scoped var");
7710 
7711   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7712     return false;
7713 
7714   // Variables that can be needed in other TUs are required.
7715   GVALinkage L = GetGVALinkageForVariable(VD);
7716   if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7717     return true;
7718 
7719   // Variables that have destruction with side-effects are required.
7720   if (VD->getType().isDestructedType())
7721     return true;
7722 
7723   // Variables that have initialization with side-effects are required.
7724   if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7725     return true;
7726 
7727   return false;
7728 }
7729 
getDefaultCXXMethodCallConv(bool isVariadic)7730 CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7731   // Pass through to the C++ ABI object
7732   return ABI->getDefaultMethodCallConv(isVariadic);
7733 }
7734 
getCanonicalCallConv(CallingConv CC) const7735 CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7736   if (CC == CC_C && !LangOpts.MRTD &&
7737       getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7738     return CC_Default;
7739   return CC;
7740 }
7741 
isNearlyEmpty(const CXXRecordDecl * RD) const7742 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7743   // Pass through to the C++ ABI object
7744   return ABI->isNearlyEmpty(RD);
7745 }
7746 
createMangleContext()7747 MangleContext *ASTContext::createMangleContext() {
7748   switch (Target->getCXXABI().getKind()) {
7749   case TargetCXXABI::GenericAArch64:
7750   case TargetCXXABI::GenericItanium:
7751   case TargetCXXABI::GenericARM:
7752   case TargetCXXABI::iOS:
7753     return createItaniumMangleContext(*this, getDiagnostics());
7754   case TargetCXXABI::Microsoft:
7755     return createMicrosoftMangleContext(*this, getDiagnostics());
7756   }
7757   llvm_unreachable("Unsupported ABI");
7758 }
7759 
~CXXABI()7760 CXXABI::~CXXABI() {}
7761 
getSideTableAllocatedMemory() const7762 size_t ASTContext::getSideTableAllocatedMemory() const {
7763   return ASTRecordLayouts.getMemorySize()
7764     + llvm::capacity_in_bytes(ObjCLayouts)
7765     + llvm::capacity_in_bytes(KeyFunctions)
7766     + llvm::capacity_in_bytes(ObjCImpls)
7767     + llvm::capacity_in_bytes(BlockVarCopyInits)
7768     + llvm::capacity_in_bytes(DeclAttrs)
7769     + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7770     + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7771     + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7772     + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7773     + llvm::capacity_in_bytes(OverriddenMethods)
7774     + llvm::capacity_in_bytes(Types)
7775     + llvm::capacity_in_bytes(VariableArrayTypes)
7776     + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7777 }
7778 
addUnnamedTag(const TagDecl * Tag)7779 void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7780   // FIXME: This mangling should be applied to function local classes too
7781   if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7782       !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7783     return;
7784 
7785   std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7786     UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7787   UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7788 }
7789 
getUnnamedTagManglingNumber(const TagDecl * Tag) const7790 int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7791   llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7792     UnnamedMangleNumbers.find(Tag);
7793   return I != UnnamedMangleNumbers.end() ? I->second : -1;
7794 }
7795 
getLambdaManglingNumber(CXXMethodDecl * CallOperator)7796 unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7797   CXXRecordDecl *Lambda = CallOperator->getParent();
7798   return LambdaMangleContexts[Lambda->getDeclContext()]
7799            .getManglingNumber(CallOperator);
7800 }
7801 
7802 
setParameterIndex(const ParmVarDecl * D,unsigned int index)7803 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7804   ParamIndices[D] = index;
7805 }
7806 
getParameterIndex(const ParmVarDecl * D) const7807 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7808   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7809   assert(I != ParamIndices.end() &&
7810          "ParmIndices lacks entry set by ParmVarDecl");
7811   return I->second;
7812 }
7813