1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/ExprObjC.h" 24 #include "clang/AST/Type.h" 25 #include "clang/Basic/ABI.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ValueHandle.h" 33 34 namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43 } 44 45 namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72 namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81 /// The kind of evaluation to perform on values of a particular 82 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 83 /// CGExprAgg? 84 /// 85 /// TODO: should vectors maybe be split out into their own thing? 86 enum TypeEvaluationKind { 87 TEK_Scalar, 88 TEK_Complex, 89 TEK_Aggregate 90 }; 91 92 /// A branch fixup. These are required when emitting a goto to a 93 /// label which hasn't been emitted yet. The goto is optimistically 94 /// emitted as a branch to the basic block for the label, and (if it 95 /// occurs in a scope with non-trivial cleanups) a fixup is added to 96 /// the innermost cleanup. When a (normal) cleanup is popped, any 97 /// unresolved fixups in that scope are threaded through the cleanup. 98 struct BranchFixup { 99 /// The block containing the terminator which needs to be modified 100 /// into a switch if this fixup is resolved into the current scope. 101 /// If null, LatestBranch points directly to the destination. 102 llvm::BasicBlock *OptimisticBranchBlock; 103 104 /// The ultimate destination of the branch. 105 /// 106 /// This can be set to null to indicate that this fixup was 107 /// successfully resolved. 108 llvm::BasicBlock *Destination; 109 110 /// The destination index value. 111 unsigned DestinationIndex; 112 113 /// The initial branch of the fixup. 114 llvm::BranchInst *InitialBranch; 115 }; 116 117 template <class T> struct InvariantValue { 118 typedef T type; 119 typedef T saved_type; needsSavingInvariantValue120 static bool needsSaving(type value) { return false; } saveInvariantValue121 static saved_type save(CodeGenFunction &CGF, type value) { return value; } restoreInvariantValue122 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 123 }; 124 125 /// A metaprogramming class for ensuring that a value will dominate an 126 /// arbitrary position in a function. 127 template <class T> struct DominatingValue : InvariantValue<T> {}; 128 129 template <class T, bool mightBeInstruction = 130 llvm::is_base_of<llvm::Value, T>::value && 131 !llvm::is_base_of<llvm::Constant, T>::value && 132 !llvm::is_base_of<llvm::BasicBlock, T>::value> 133 struct DominatingPointer; 134 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 135 // template <class T> struct DominatingPointer<T,true> at end of file 136 137 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 138 139 enum CleanupKind { 140 EHCleanup = 0x1, 141 NormalCleanup = 0x2, 142 NormalAndEHCleanup = EHCleanup | NormalCleanup, 143 144 InactiveCleanup = 0x4, 145 InactiveEHCleanup = EHCleanup | InactiveCleanup, 146 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 147 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 148 }; 149 150 /// A stack of scopes which respond to exceptions, including cleanups 151 /// and catch blocks. 152 class EHScopeStack { 153 public: 154 /// A saved depth on the scope stack. This is necessary because 155 /// pushing scopes onto the stack invalidates iterators. 156 class stable_iterator { 157 friend class EHScopeStack; 158 159 /// Offset from StartOfData to EndOfBuffer. 160 ptrdiff_t Size; 161 162 stable_iterator(ptrdiff_t Size) : Size(Size) {} 163 164 public: 165 static stable_iterator invalid() { return stable_iterator(-1); } 166 stable_iterator() : Size(-1) {} 167 168 bool isValid() const { return Size >= 0; } 169 170 /// Returns true if this scope encloses I. 171 /// Returns false if I is invalid. 172 /// This scope must be valid. 173 bool encloses(stable_iterator I) const { return Size <= I.Size; } 174 175 /// Returns true if this scope strictly encloses I: that is, 176 /// if it encloses I and is not I. 177 /// Returns false is I is invalid. 178 /// This scope must be valid. 179 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 180 181 friend bool operator==(stable_iterator A, stable_iterator B) { 182 return A.Size == B.Size; 183 } 184 friend bool operator!=(stable_iterator A, stable_iterator B) { 185 return A.Size != B.Size; 186 } 187 }; 188 189 /// Information for lazily generating a cleanup. Subclasses must be 190 /// POD-like: cleanups will not be destructed, and they will be 191 /// allocated on the cleanup stack and freely copied and moved 192 /// around. 193 /// 194 /// Cleanup implementations should generally be declared in an 195 /// anonymous namespace. 196 class Cleanup { 197 // Anchor the construction vtable. 198 virtual void anchor(); 199 public: 200 /// Generation flags. 201 class Flags { 202 enum { 203 F_IsForEH = 0x1, 204 F_IsNormalCleanupKind = 0x2, 205 F_IsEHCleanupKind = 0x4 206 }; 207 unsigned flags; 208 209 public: 210 Flags() : flags(0) {} 211 212 /// isForEH - true if the current emission is for an EH cleanup. 213 bool isForEHCleanup() const { return flags & F_IsForEH; } 214 bool isForNormalCleanup() const { return !isForEHCleanup(); } 215 void setIsForEHCleanup() { flags |= F_IsForEH; } 216 217 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 218 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 219 220 /// isEHCleanupKind - true if the cleanup was pushed as an EH 221 /// cleanup. 222 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 223 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 224 }; 225 226 // Provide a virtual destructor to suppress a very common warning 227 // that unfortunately cannot be suppressed without this. Cleanups 228 // should not rely on this destructor ever being called. 229 virtual ~Cleanup() {} 230 231 /// Emit the cleanup. For normal cleanups, this is run in the 232 /// same EH context as when the cleanup was pushed, i.e. the 233 /// immediately-enclosing context of the cleanup scope. For 234 /// EH cleanups, this is run in a terminate context. 235 /// 236 // \param flags cleanup kind. 237 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 238 }; 239 240 /// ConditionalCleanupN stores the saved form of its N parameters, 241 /// then restores them and performs the cleanup. 242 template <class T, class A0> 243 class ConditionalCleanup1 : public Cleanup { 244 typedef typename DominatingValue<A0>::saved_type A0_saved; 245 A0_saved a0_saved; 246 247 void Emit(CodeGenFunction &CGF, Flags flags) { 248 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 249 T(a0).Emit(CGF, flags); 250 } 251 252 public: 253 ConditionalCleanup1(A0_saved a0) 254 : a0_saved(a0) {} 255 }; 256 257 template <class T, class A0, class A1> 258 class ConditionalCleanup2 : public Cleanup { 259 typedef typename DominatingValue<A0>::saved_type A0_saved; 260 typedef typename DominatingValue<A1>::saved_type A1_saved; 261 A0_saved a0_saved; 262 A1_saved a1_saved; 263 264 void Emit(CodeGenFunction &CGF, Flags flags) { 265 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 266 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 267 T(a0, a1).Emit(CGF, flags); 268 } 269 270 public: 271 ConditionalCleanup2(A0_saved a0, A1_saved a1) 272 : a0_saved(a0), a1_saved(a1) {} 273 }; 274 275 template <class T, class A0, class A1, class A2> 276 class ConditionalCleanup3 : public Cleanup { 277 typedef typename DominatingValue<A0>::saved_type A0_saved; 278 typedef typename DominatingValue<A1>::saved_type A1_saved; 279 typedef typename DominatingValue<A2>::saved_type A2_saved; 280 A0_saved a0_saved; 281 A1_saved a1_saved; 282 A2_saved a2_saved; 283 284 void Emit(CodeGenFunction &CGF, Flags flags) { 285 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 286 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 287 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 288 T(a0, a1, a2).Emit(CGF, flags); 289 } 290 291 public: 292 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 293 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 294 }; 295 296 template <class T, class A0, class A1, class A2, class A3> 297 class ConditionalCleanup4 : public Cleanup { 298 typedef typename DominatingValue<A0>::saved_type A0_saved; 299 typedef typename DominatingValue<A1>::saved_type A1_saved; 300 typedef typename DominatingValue<A2>::saved_type A2_saved; 301 typedef typename DominatingValue<A3>::saved_type A3_saved; 302 A0_saved a0_saved; 303 A1_saved a1_saved; 304 A2_saved a2_saved; 305 A3_saved a3_saved; 306 307 void Emit(CodeGenFunction &CGF, Flags flags) { 308 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 309 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 310 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 311 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 312 T(a0, a1, a2, a3).Emit(CGF, flags); 313 } 314 315 public: 316 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 317 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 318 }; 319 320 private: 321 // The implementation for this class is in CGException.h and 322 // CGException.cpp; the definition is here because it's used as a 323 // member of CodeGenFunction. 324 325 /// The start of the scope-stack buffer, i.e. the allocated pointer 326 /// for the buffer. All of these pointers are either simultaneously 327 /// null or simultaneously valid. 328 char *StartOfBuffer; 329 330 /// The end of the buffer. 331 char *EndOfBuffer; 332 333 /// The first valid entry in the buffer. 334 char *StartOfData; 335 336 /// The innermost normal cleanup on the stack. 337 stable_iterator InnermostNormalCleanup; 338 339 /// The innermost EH scope on the stack. 340 stable_iterator InnermostEHScope; 341 342 /// The current set of branch fixups. A branch fixup is a jump to 343 /// an as-yet unemitted label, i.e. a label for which we don't yet 344 /// know the EH stack depth. Whenever we pop a cleanup, we have 345 /// to thread all the current branch fixups through it. 346 /// 347 /// Fixups are recorded as the Use of the respective branch or 348 /// switch statement. The use points to the final destination. 349 /// When popping out of a cleanup, these uses are threaded through 350 /// the cleanup and adjusted to point to the new cleanup. 351 /// 352 /// Note that branches are allowed to jump into protected scopes 353 /// in certain situations; e.g. the following code is legal: 354 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 355 /// goto foo; 356 /// A a; 357 /// foo: 358 /// bar(); 359 SmallVector<BranchFixup, 8> BranchFixups; 360 361 char *allocate(size_t Size); 362 363 void *pushCleanup(CleanupKind K, size_t DataSize); 364 365 public: 366 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 367 InnermostNormalCleanup(stable_end()), 368 InnermostEHScope(stable_end()) {} 369 ~EHScopeStack() { delete[] StartOfBuffer; } 370 371 // Variadic templates would make this not terrible. 372 373 /// Push a lazily-created cleanup on the stack. 374 template <class T> 375 void pushCleanup(CleanupKind Kind) { 376 void *Buffer = pushCleanup(Kind, sizeof(T)); 377 Cleanup *Obj = new(Buffer) T(); 378 (void) Obj; 379 } 380 381 /// Push a lazily-created cleanup on the stack. 382 template <class T, class A0> 383 void pushCleanup(CleanupKind Kind, A0 a0) { 384 void *Buffer = pushCleanup(Kind, sizeof(T)); 385 Cleanup *Obj = new(Buffer) T(a0); 386 (void) Obj; 387 } 388 389 /// Push a lazily-created cleanup on the stack. 390 template <class T, class A0, class A1> 391 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 392 void *Buffer = pushCleanup(Kind, sizeof(T)); 393 Cleanup *Obj = new(Buffer) T(a0, a1); 394 (void) Obj; 395 } 396 397 /// Push a lazily-created cleanup on the stack. 398 template <class T, class A0, class A1, class A2> 399 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 400 void *Buffer = pushCleanup(Kind, sizeof(T)); 401 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 402 (void) Obj; 403 } 404 405 /// Push a lazily-created cleanup on the stack. 406 template <class T, class A0, class A1, class A2, class A3> 407 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 408 void *Buffer = pushCleanup(Kind, sizeof(T)); 409 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 410 (void) Obj; 411 } 412 413 /// Push a lazily-created cleanup on the stack. 414 template <class T, class A0, class A1, class A2, class A3, class A4> 415 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 416 void *Buffer = pushCleanup(Kind, sizeof(T)); 417 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 418 (void) Obj; 419 } 420 421 // Feel free to add more variants of the following: 422 423 /// Push a cleanup with non-constant storage requirements on the 424 /// stack. The cleanup type must provide an additional static method: 425 /// static size_t getExtraSize(size_t); 426 /// The argument to this method will be the value N, which will also 427 /// be passed as the first argument to the constructor. 428 /// 429 /// The data stored in the extra storage must obey the same 430 /// restrictions as normal cleanup member data. 431 /// 432 /// The pointer returned from this method is valid until the cleanup 433 /// stack is modified. 434 template <class T, class A0, class A1, class A2> 435 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 436 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 437 return new (Buffer) T(N, a0, a1, a2); 438 } 439 440 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 441 void popCleanup(); 442 443 /// Push a set of catch handlers on the stack. The catch is 444 /// uninitialized and will need to have the given number of handlers 445 /// set on it. 446 class EHCatchScope *pushCatch(unsigned NumHandlers); 447 448 /// Pops a catch scope off the stack. This is private to CGException.cpp. 449 void popCatch(); 450 451 /// Push an exceptions filter on the stack. 452 class EHFilterScope *pushFilter(unsigned NumFilters); 453 454 /// Pops an exceptions filter off the stack. 455 void popFilter(); 456 457 /// Push a terminate handler on the stack. 458 void pushTerminate(); 459 460 /// Pops a terminate handler off the stack. 461 void popTerminate(); 462 463 /// Determines whether the exception-scopes stack is empty. 464 bool empty() const { return StartOfData == EndOfBuffer; } 465 466 bool requiresLandingPad() const { 467 return InnermostEHScope != stable_end(); 468 } 469 470 /// Determines whether there are any normal cleanups on the stack. 471 bool hasNormalCleanups() const { 472 return InnermostNormalCleanup != stable_end(); 473 } 474 475 /// Returns the innermost normal cleanup on the stack, or 476 /// stable_end() if there are no normal cleanups. 477 stable_iterator getInnermostNormalCleanup() const { 478 return InnermostNormalCleanup; 479 } 480 stable_iterator getInnermostActiveNormalCleanup() const; 481 482 stable_iterator getInnermostEHScope() const { 483 return InnermostEHScope; 484 } 485 486 stable_iterator getInnermostActiveEHScope() const; 487 488 /// An unstable reference to a scope-stack depth. Invalidated by 489 /// pushes but not pops. 490 class iterator; 491 492 /// Returns an iterator pointing to the innermost EH scope. 493 iterator begin() const; 494 495 /// Returns an iterator pointing to the outermost EH scope. 496 iterator end() const; 497 498 /// Create a stable reference to the top of the EH stack. The 499 /// returned reference is valid until that scope is popped off the 500 /// stack. 501 stable_iterator stable_begin() const { 502 return stable_iterator(EndOfBuffer - StartOfData); 503 } 504 505 /// Create a stable reference to the bottom of the EH stack. 506 static stable_iterator stable_end() { 507 return stable_iterator(0); 508 } 509 510 /// Translates an iterator into a stable_iterator. 511 stable_iterator stabilize(iterator it) const; 512 513 /// Turn a stable reference to a scope depth into a unstable pointer 514 /// to the EH stack. 515 iterator find(stable_iterator save) const; 516 517 /// Removes the cleanup pointed to by the given stable_iterator. 518 void removeCleanup(stable_iterator save); 519 520 /// Add a branch fixup to the current cleanup scope. 521 BranchFixup &addBranchFixup() { 522 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 523 BranchFixups.push_back(BranchFixup()); 524 return BranchFixups.back(); 525 } 526 527 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 528 BranchFixup &getBranchFixup(unsigned I) { 529 assert(I < getNumBranchFixups()); 530 return BranchFixups[I]; 531 } 532 533 /// Pops lazily-removed fixups from the end of the list. This 534 /// should only be called by procedures which have just popped a 535 /// cleanup or resolved one or more fixups. 536 void popNullFixups(); 537 538 /// Clears the branch-fixups list. This should only be called by 539 /// ResolveAllBranchFixups. 540 void clearFixups() { BranchFixups.clear(); } 541 }; 542 543 /// CodeGenFunction - This class organizes the per-function state that is used 544 /// while generating LLVM code. 545 class CodeGenFunction : public CodeGenTypeCache { 546 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 547 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 548 549 friend class CGCXXABI; 550 public: 551 /// A jump destination is an abstract label, branching to which may 552 /// require a jump out through normal cleanups. 553 struct JumpDest { 554 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 555 JumpDest(llvm::BasicBlock *Block, 556 EHScopeStack::stable_iterator Depth, 557 unsigned Index) 558 : Block(Block), ScopeDepth(Depth), Index(Index) {} 559 560 bool isValid() const { return Block != 0; } 561 llvm::BasicBlock *getBlock() const { return Block; } 562 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 563 unsigned getDestIndex() const { return Index; } 564 565 private: 566 llvm::BasicBlock *Block; 567 EHScopeStack::stable_iterator ScopeDepth; 568 unsigned Index; 569 }; 570 571 CodeGenModule &CGM; // Per-module state. 572 const TargetInfo &Target; 573 574 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 575 CGBuilderTy Builder; 576 577 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 578 /// This excludes BlockDecls. 579 const Decl *CurFuncDecl; 580 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 581 const Decl *CurCodeDecl; 582 const CGFunctionInfo *CurFnInfo; 583 QualType FnRetTy; 584 llvm::Function *CurFn; 585 586 /// CurGD - The GlobalDecl for the current function being compiled. 587 GlobalDecl CurGD; 588 589 /// PrologueCleanupDepth - The cleanup depth enclosing all the 590 /// cleanups associated with the parameters. 591 EHScopeStack::stable_iterator PrologueCleanupDepth; 592 593 /// ReturnBlock - Unified return block. 594 JumpDest ReturnBlock; 595 596 /// ReturnValue - The temporary alloca to hold the return value. This is null 597 /// iff the function has no return value. 598 llvm::Value *ReturnValue; 599 600 /// AllocaInsertPoint - This is an instruction in the entry block before which 601 /// we prefer to insert allocas. 602 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 603 604 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 605 /// potentially higher performance penalties. 606 unsigned char BoundsChecking; 607 608 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 609 /// calls to EmitTypeCheck can be skipped. 610 bool SanitizePerformTypeCheck; 611 612 /// \brief Sanitizer options to use for this function. 613 const SanitizerOptions *SanOpts; 614 615 /// In ARC, whether we should autorelease the return value. 616 bool AutoreleaseResult; 617 618 const CodeGen::CGBlockInfo *BlockInfo; 619 llvm::Value *BlockPointer; 620 621 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 622 FieldDecl *LambdaThisCaptureField; 623 624 /// \brief A mapping from NRVO variables to the flags used to indicate 625 /// when the NRVO has been applied to this variable. 626 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 627 628 EHScopeStack EHStack; 629 630 /// i32s containing the indexes of the cleanup destinations. 631 llvm::AllocaInst *NormalCleanupDest; 632 633 unsigned NextCleanupDestIndex; 634 635 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 636 CGBlockInfo *FirstBlockInfo; 637 638 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 639 llvm::BasicBlock *EHResumeBlock; 640 641 /// The exception slot. All landing pads write the current exception pointer 642 /// into this alloca. 643 llvm::Value *ExceptionSlot; 644 645 /// The selector slot. Under the MandatoryCleanup model, all landing pads 646 /// write the current selector value into this alloca. 647 llvm::AllocaInst *EHSelectorSlot; 648 649 /// Emits a landing pad for the current EH stack. 650 llvm::BasicBlock *EmitLandingPad(); 651 652 llvm::BasicBlock *getInvokeDestImpl(); 653 654 template <class T> 655 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 656 return DominatingValue<T>::save(*this, value); 657 } 658 659 public: 660 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 661 /// rethrows. 662 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 663 664 /// A class controlling the emission of a finally block. 665 class FinallyInfo { 666 /// Where the catchall's edge through the cleanup should go. 667 JumpDest RethrowDest; 668 669 /// A function to call to enter the catch. 670 llvm::Constant *BeginCatchFn; 671 672 /// An i1 variable indicating whether or not the @finally is 673 /// running for an exception. 674 llvm::AllocaInst *ForEHVar; 675 676 /// An i8* variable into which the exception pointer to rethrow 677 /// has been saved. 678 llvm::AllocaInst *SavedExnVar; 679 680 public: 681 void enter(CodeGenFunction &CGF, const Stmt *Finally, 682 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 683 llvm::Constant *rethrowFn); 684 void exit(CodeGenFunction &CGF); 685 }; 686 687 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 688 /// current full-expression. Safe against the possibility that 689 /// we're currently inside a conditionally-evaluated expression. 690 template <class T, class A0> 691 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 692 // If we're not in a conditional branch, or if none of the 693 // arguments requires saving, then use the unconditional cleanup. 694 if (!isInConditionalBranch()) 695 return EHStack.pushCleanup<T>(kind, a0); 696 697 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 698 699 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 700 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 701 initFullExprCleanup(); 702 } 703 704 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 705 /// current full-expression. Safe against the possibility that 706 /// we're currently inside a conditionally-evaluated expression. 707 template <class T, class A0, class A1> 708 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 709 // If we're not in a conditional branch, or if none of the 710 // arguments requires saving, then use the unconditional cleanup. 711 if (!isInConditionalBranch()) 712 return EHStack.pushCleanup<T>(kind, a0, a1); 713 714 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 715 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 716 717 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 718 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 719 initFullExprCleanup(); 720 } 721 722 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 723 /// current full-expression. Safe against the possibility that 724 /// we're currently inside a conditionally-evaluated expression. 725 template <class T, class A0, class A1, class A2> 726 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 727 // If we're not in a conditional branch, or if none of the 728 // arguments requires saving, then use the unconditional cleanup. 729 if (!isInConditionalBranch()) { 730 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 731 } 732 733 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 734 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 735 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 736 737 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 738 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 739 initFullExprCleanup(); 740 } 741 742 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 743 /// current full-expression. Safe against the possibility that 744 /// we're currently inside a conditionally-evaluated expression. 745 template <class T, class A0, class A1, class A2, class A3> 746 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 747 // If we're not in a conditional branch, or if none of the 748 // arguments requires saving, then use the unconditional cleanup. 749 if (!isInConditionalBranch()) { 750 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 751 } 752 753 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 754 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 755 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 756 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 757 758 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 759 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 760 a2_saved, a3_saved); 761 initFullExprCleanup(); 762 } 763 764 /// Set up the last cleaup that was pushed as a conditional 765 /// full-expression cleanup. 766 void initFullExprCleanup(); 767 768 /// PushDestructorCleanup - Push a cleanup to call the 769 /// complete-object destructor of an object of the given type at the 770 /// given address. Does nothing if T is not a C++ class type with a 771 /// non-trivial destructor. 772 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 773 774 /// PushDestructorCleanup - Push a cleanup to call the 775 /// complete-object variant of the given destructor on the object at 776 /// the given address. 777 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 778 llvm::Value *Addr); 779 780 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 781 /// process all branch fixups. 782 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 783 784 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 785 /// The block cannot be reactivated. Pops it if it's the top of the 786 /// stack. 787 /// 788 /// \param DominatingIP - An instruction which is known to 789 /// dominate the current IP (if set) and which lies along 790 /// all paths of execution between the current IP and the 791 /// the point at which the cleanup comes into scope. 792 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 793 llvm::Instruction *DominatingIP); 794 795 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 796 /// Cannot be used to resurrect a deactivated cleanup. 797 /// 798 /// \param DominatingIP - An instruction which is known to 799 /// dominate the current IP (if set) and which lies along 800 /// all paths of execution between the current IP and the 801 /// the point at which the cleanup comes into scope. 802 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 803 llvm::Instruction *DominatingIP); 804 805 /// \brief Enters a new scope for capturing cleanups, all of which 806 /// will be executed once the scope is exited. 807 class RunCleanupsScope { 808 EHScopeStack::stable_iterator CleanupStackDepth; 809 bool OldDidCallStackSave; 810 protected: 811 bool PerformCleanup; 812 private: 813 814 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 815 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 816 817 protected: 818 CodeGenFunction& CGF; 819 820 public: 821 /// \brief Enter a new cleanup scope. 822 explicit RunCleanupsScope(CodeGenFunction &CGF) 823 : PerformCleanup(true), CGF(CGF) 824 { 825 CleanupStackDepth = CGF.EHStack.stable_begin(); 826 OldDidCallStackSave = CGF.DidCallStackSave; 827 CGF.DidCallStackSave = false; 828 } 829 830 /// \brief Exit this cleanup scope, emitting any accumulated 831 /// cleanups. 832 ~RunCleanupsScope() { 833 if (PerformCleanup) { 834 CGF.DidCallStackSave = OldDidCallStackSave; 835 CGF.PopCleanupBlocks(CleanupStackDepth); 836 } 837 } 838 839 /// \brief Determine whether this scope requires any cleanups. 840 bool requiresCleanups() const { 841 return CGF.EHStack.stable_begin() != CleanupStackDepth; 842 } 843 844 /// \brief Force the emission of cleanups now, instead of waiting 845 /// until this object is destroyed. 846 void ForceCleanup() { 847 assert(PerformCleanup && "Already forced cleanup"); 848 CGF.DidCallStackSave = OldDidCallStackSave; 849 CGF.PopCleanupBlocks(CleanupStackDepth); 850 PerformCleanup = false; 851 } 852 }; 853 854 class LexicalScope: protected RunCleanupsScope { 855 SourceRange Range; 856 857 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 858 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 859 860 public: 861 /// \brief Enter a new cleanup scope. 862 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 863 : RunCleanupsScope(CGF), Range(Range) { 864 if (CGDebugInfo *DI = CGF.getDebugInfo()) 865 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 866 } 867 868 /// \brief Exit this cleanup scope, emitting any accumulated 869 /// cleanups. 870 ~LexicalScope() { 871 if (PerformCleanup) endLexicalScope(); 872 } 873 874 /// \brief Force the emission of cleanups now, instead of waiting 875 /// until this object is destroyed. 876 void ForceCleanup() { 877 RunCleanupsScope::ForceCleanup(); 878 endLexicalScope(); 879 } 880 881 private: 882 void endLexicalScope() { 883 if (CGDebugInfo *DI = CGF.getDebugInfo()) 884 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 885 } 886 }; 887 888 889 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 890 /// the cleanup blocks that have been added. 891 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 892 893 void ResolveBranchFixups(llvm::BasicBlock *Target); 894 895 /// The given basic block lies in the current EH scope, but may be a 896 /// target of a potentially scope-crossing jump; get a stable handle 897 /// to which we can perform this jump later. 898 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 899 return JumpDest(Target, 900 EHStack.getInnermostNormalCleanup(), 901 NextCleanupDestIndex++); 902 } 903 904 /// The given basic block lies in the current EH scope, but may be a 905 /// target of a potentially scope-crossing jump; get a stable handle 906 /// to which we can perform this jump later. 907 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 908 return getJumpDestInCurrentScope(createBasicBlock(Name)); 909 } 910 911 /// EmitBranchThroughCleanup - Emit a branch from the current insert 912 /// block through the normal cleanup handling code (if any) and then 913 /// on to \arg Dest. 914 void EmitBranchThroughCleanup(JumpDest Dest); 915 916 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 917 /// specified destination obviously has no cleanups to run. 'false' is always 918 /// a conservatively correct answer for this method. 919 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 920 921 /// popCatchScope - Pops the catch scope at the top of the EHScope 922 /// stack, emitting any required code (other than the catch handlers 923 /// themselves). 924 void popCatchScope(); 925 926 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 927 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 928 929 /// An object to manage conditionally-evaluated expressions. 930 class ConditionalEvaluation { 931 llvm::BasicBlock *StartBB; 932 933 public: 934 ConditionalEvaluation(CodeGenFunction &CGF) 935 : StartBB(CGF.Builder.GetInsertBlock()) {} 936 937 void begin(CodeGenFunction &CGF) { 938 assert(CGF.OutermostConditional != this); 939 if (!CGF.OutermostConditional) 940 CGF.OutermostConditional = this; 941 } 942 943 void end(CodeGenFunction &CGF) { 944 assert(CGF.OutermostConditional != 0); 945 if (CGF.OutermostConditional == this) 946 CGF.OutermostConditional = 0; 947 } 948 949 /// Returns a block which will be executed prior to each 950 /// evaluation of the conditional code. 951 llvm::BasicBlock *getStartingBlock() const { 952 return StartBB; 953 } 954 }; 955 956 /// isInConditionalBranch - Return true if we're currently emitting 957 /// one branch or the other of a conditional expression. 958 bool isInConditionalBranch() const { return OutermostConditional != 0; } 959 960 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 961 assert(isInConditionalBranch()); 962 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 963 new llvm::StoreInst(value, addr, &block->back()); 964 } 965 966 /// An RAII object to record that we're evaluating a statement 967 /// expression. 968 class StmtExprEvaluation { 969 CodeGenFunction &CGF; 970 971 /// We have to save the outermost conditional: cleanups in a 972 /// statement expression aren't conditional just because the 973 /// StmtExpr is. 974 ConditionalEvaluation *SavedOutermostConditional; 975 976 public: 977 StmtExprEvaluation(CodeGenFunction &CGF) 978 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 979 CGF.OutermostConditional = 0; 980 } 981 982 ~StmtExprEvaluation() { 983 CGF.OutermostConditional = SavedOutermostConditional; 984 CGF.EnsureInsertPoint(); 985 } 986 }; 987 988 /// An object which temporarily prevents a value from being 989 /// destroyed by aggressive peephole optimizations that assume that 990 /// all uses of a value have been realized in the IR. 991 class PeepholeProtection { 992 llvm::Instruction *Inst; 993 friend class CodeGenFunction; 994 995 public: 996 PeepholeProtection() : Inst(0) {} 997 }; 998 999 /// A non-RAII class containing all the information about a bound 1000 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1001 /// this which makes individual mappings very simple; using this 1002 /// class directly is useful when you have a variable number of 1003 /// opaque values or don't want the RAII functionality for some 1004 /// reason. 1005 class OpaqueValueMappingData { 1006 const OpaqueValueExpr *OpaqueValue; 1007 bool BoundLValue; 1008 CodeGenFunction::PeepholeProtection Protection; 1009 1010 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1011 bool boundLValue) 1012 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1013 public: 1014 OpaqueValueMappingData() : OpaqueValue(0) {} 1015 1016 static bool shouldBindAsLValue(const Expr *expr) { 1017 // gl-values should be bound as l-values for obvious reasons. 1018 // Records should be bound as l-values because IR generation 1019 // always keeps them in memory. Expressions of function type 1020 // act exactly like l-values but are formally required to be 1021 // r-values in C. 1022 return expr->isGLValue() || 1023 expr->getType()->isRecordType() || 1024 expr->getType()->isFunctionType(); 1025 } 1026 1027 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1028 const OpaqueValueExpr *ov, 1029 const Expr *e) { 1030 if (shouldBindAsLValue(ov)) 1031 return bind(CGF, ov, CGF.EmitLValue(e)); 1032 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1033 } 1034 1035 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1036 const OpaqueValueExpr *ov, 1037 const LValue &lv) { 1038 assert(shouldBindAsLValue(ov)); 1039 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1040 return OpaqueValueMappingData(ov, true); 1041 } 1042 1043 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1044 const OpaqueValueExpr *ov, 1045 const RValue &rv) { 1046 assert(!shouldBindAsLValue(ov)); 1047 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1048 1049 OpaqueValueMappingData data(ov, false); 1050 1051 // Work around an extremely aggressive peephole optimization in 1052 // EmitScalarConversion which assumes that all other uses of a 1053 // value are extant. 1054 data.Protection = CGF.protectFromPeepholes(rv); 1055 1056 return data; 1057 } 1058 1059 bool isValid() const { return OpaqueValue != 0; } 1060 void clear() { OpaqueValue = 0; } 1061 1062 void unbind(CodeGenFunction &CGF) { 1063 assert(OpaqueValue && "no data to unbind!"); 1064 1065 if (BoundLValue) { 1066 CGF.OpaqueLValues.erase(OpaqueValue); 1067 } else { 1068 CGF.OpaqueRValues.erase(OpaqueValue); 1069 CGF.unprotectFromPeepholes(Protection); 1070 } 1071 } 1072 }; 1073 1074 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1075 class OpaqueValueMapping { 1076 CodeGenFunction &CGF; 1077 OpaqueValueMappingData Data; 1078 1079 public: 1080 static bool shouldBindAsLValue(const Expr *expr) { 1081 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1082 } 1083 1084 /// Build the opaque value mapping for the given conditional 1085 /// operator if it's the GNU ?: extension. This is a common 1086 /// enough pattern that the convenience operator is really 1087 /// helpful. 1088 /// 1089 OpaqueValueMapping(CodeGenFunction &CGF, 1090 const AbstractConditionalOperator *op) : CGF(CGF) { 1091 if (isa<ConditionalOperator>(op)) 1092 // Leave Data empty. 1093 return; 1094 1095 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1096 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1097 e->getCommon()); 1098 } 1099 1100 OpaqueValueMapping(CodeGenFunction &CGF, 1101 const OpaqueValueExpr *opaqueValue, 1102 LValue lvalue) 1103 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1104 } 1105 1106 OpaqueValueMapping(CodeGenFunction &CGF, 1107 const OpaqueValueExpr *opaqueValue, 1108 RValue rvalue) 1109 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1110 } 1111 1112 void pop() { 1113 Data.unbind(CGF); 1114 Data.clear(); 1115 } 1116 1117 ~OpaqueValueMapping() { 1118 if (Data.isValid()) Data.unbind(CGF); 1119 } 1120 }; 1121 1122 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1123 /// number that holds the value. 1124 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1125 1126 /// BuildBlockByrefAddress - Computes address location of the 1127 /// variable which is declared as __block. 1128 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1129 const VarDecl *V); 1130 private: 1131 CGDebugInfo *DebugInfo; 1132 bool DisableDebugInfo; 1133 1134 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1135 /// calling llvm.stacksave for multiple VLAs in the same scope. 1136 bool DidCallStackSave; 1137 1138 /// IndirectBranch - The first time an indirect goto is seen we create a block 1139 /// with an indirect branch. Every time we see the address of a label taken, 1140 /// we add the label to the indirect goto. Every subsequent indirect goto is 1141 /// codegen'd as a jump to the IndirectBranch's basic block. 1142 llvm::IndirectBrInst *IndirectBranch; 1143 1144 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1145 /// decls. 1146 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1147 DeclMapTy LocalDeclMap; 1148 1149 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1150 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1151 1152 // BreakContinueStack - This keeps track of where break and continue 1153 // statements should jump to. 1154 struct BreakContinue { 1155 BreakContinue(JumpDest Break, JumpDest Continue) 1156 : BreakBlock(Break), ContinueBlock(Continue) {} 1157 1158 JumpDest BreakBlock; 1159 JumpDest ContinueBlock; 1160 }; 1161 SmallVector<BreakContinue, 8> BreakContinueStack; 1162 1163 /// SwitchInsn - This is nearest current switch instruction. It is null if 1164 /// current context is not in a switch. 1165 llvm::SwitchInst *SwitchInsn; 1166 1167 /// CaseRangeBlock - This block holds if condition check for last case 1168 /// statement range in current switch instruction. 1169 llvm::BasicBlock *CaseRangeBlock; 1170 1171 /// OpaqueLValues - Keeps track of the current set of opaque value 1172 /// expressions. 1173 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1174 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1175 1176 // VLASizeMap - This keeps track of the associated size for each VLA type. 1177 // We track this by the size expression rather than the type itself because 1178 // in certain situations, like a const qualifier applied to an VLA typedef, 1179 // multiple VLA types can share the same size expression. 1180 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1181 // enter/leave scopes. 1182 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1183 1184 /// A block containing a single 'unreachable' instruction. Created 1185 /// lazily by getUnreachableBlock(). 1186 llvm::BasicBlock *UnreachableBlock; 1187 1188 /// CXXThisDecl - When generating code for a C++ member function, 1189 /// this will hold the implicit 'this' declaration. 1190 ImplicitParamDecl *CXXABIThisDecl; 1191 llvm::Value *CXXABIThisValue; 1192 llvm::Value *CXXThisValue; 1193 1194 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1195 /// destructor, this will hold the implicit argument (e.g. VTT). 1196 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1197 llvm::Value *CXXStructorImplicitParamValue; 1198 1199 /// OutermostConditional - Points to the outermost active 1200 /// conditional control. This is used so that we know if a 1201 /// temporary should be destroyed conditionally. 1202 ConditionalEvaluation *OutermostConditional; 1203 1204 1205 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1206 /// type as well as the field number that contains the actual data. 1207 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1208 unsigned> > ByRefValueInfo; 1209 1210 llvm::BasicBlock *TerminateLandingPad; 1211 llvm::BasicBlock *TerminateHandler; 1212 llvm::BasicBlock *TrapBB; 1213 1214 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1215 /// In the kernel metadata node, reference the kernel function and metadata 1216 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1217 /// - A node for the vec_type_hint(<type>) qualifier contains string 1218 /// "vec_type_hint", an undefined value of the <type> data type, 1219 /// and a Boolean that is true if the <type> is integer and signed. 1220 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1221 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1222 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1223 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1224 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1225 llvm::Function *Fn); 1226 1227 public: 1228 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1229 ~CodeGenFunction(); 1230 1231 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1232 ASTContext &getContext() const { return CGM.getContext(); } 1233 /// Returns true if DebugInfo is actually initialized. 1234 bool maybeInitializeDebugInfo() { 1235 if (CGM.getModuleDebugInfo()) { 1236 DebugInfo = CGM.getModuleDebugInfo(); 1237 return true; 1238 } 1239 return false; 1240 } 1241 CGDebugInfo *getDebugInfo() { 1242 if (DisableDebugInfo) 1243 return NULL; 1244 return DebugInfo; 1245 } 1246 void disableDebugInfo() { DisableDebugInfo = true; } 1247 void enableDebugInfo() { DisableDebugInfo = false; } 1248 1249 bool shouldUseFusedARCCalls() { 1250 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1251 } 1252 1253 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1254 1255 /// Returns a pointer to the function's exception object and selector slot, 1256 /// which is assigned in every landing pad. 1257 llvm::Value *getExceptionSlot(); 1258 llvm::Value *getEHSelectorSlot(); 1259 1260 /// Returns the contents of the function's exception object and selector 1261 /// slots. 1262 llvm::Value *getExceptionFromSlot(); 1263 llvm::Value *getSelectorFromSlot(); 1264 1265 llvm::Value *getNormalCleanupDestSlot(); 1266 1267 llvm::BasicBlock *getUnreachableBlock() { 1268 if (!UnreachableBlock) { 1269 UnreachableBlock = createBasicBlock("unreachable"); 1270 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1271 } 1272 return UnreachableBlock; 1273 } 1274 1275 llvm::BasicBlock *getInvokeDest() { 1276 if (!EHStack.requiresLandingPad()) return 0; 1277 return getInvokeDestImpl(); 1278 } 1279 1280 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1281 1282 //===--------------------------------------------------------------------===// 1283 // Cleanups 1284 //===--------------------------------------------------------------------===// 1285 1286 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1287 1288 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1289 llvm::Value *arrayEndPointer, 1290 QualType elementType, 1291 Destroyer *destroyer); 1292 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1293 llvm::Value *arrayEnd, 1294 QualType elementType, 1295 Destroyer *destroyer); 1296 1297 void pushDestroy(QualType::DestructionKind dtorKind, 1298 llvm::Value *addr, QualType type); 1299 void pushEHDestroy(QualType::DestructionKind dtorKind, 1300 llvm::Value *addr, QualType type); 1301 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1302 Destroyer *destroyer, bool useEHCleanupForArray); 1303 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1304 bool useEHCleanupForArray); 1305 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1306 QualType type, 1307 Destroyer *destroyer, 1308 bool useEHCleanupForArray); 1309 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1310 QualType type, Destroyer *destroyer, 1311 bool checkZeroLength, bool useEHCleanup); 1312 1313 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1314 1315 /// Determines whether an EH cleanup is required to destroy a type 1316 /// with the given destruction kind. 1317 bool needsEHCleanup(QualType::DestructionKind kind) { 1318 switch (kind) { 1319 case QualType::DK_none: 1320 return false; 1321 case QualType::DK_cxx_destructor: 1322 case QualType::DK_objc_weak_lifetime: 1323 return getLangOpts().Exceptions; 1324 case QualType::DK_objc_strong_lifetime: 1325 return getLangOpts().Exceptions && 1326 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1327 } 1328 llvm_unreachable("bad destruction kind"); 1329 } 1330 1331 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1332 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1333 } 1334 1335 //===--------------------------------------------------------------------===// 1336 // Objective-C 1337 //===--------------------------------------------------------------------===// 1338 1339 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1340 1341 void StartObjCMethod(const ObjCMethodDecl *MD, 1342 const ObjCContainerDecl *CD, 1343 SourceLocation StartLoc); 1344 1345 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1346 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1347 const ObjCPropertyImplDecl *PID); 1348 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1349 const ObjCPropertyImplDecl *propImpl, 1350 const ObjCMethodDecl *GetterMothodDecl, 1351 llvm::Constant *AtomicHelperFn); 1352 1353 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1354 ObjCMethodDecl *MD, bool ctor); 1355 1356 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1357 /// for the given property. 1358 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1359 const ObjCPropertyImplDecl *PID); 1360 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1361 const ObjCPropertyImplDecl *propImpl, 1362 llvm::Constant *AtomicHelperFn); 1363 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1364 bool IvarTypeWithAggrGCObjects(QualType Ty); 1365 1366 //===--------------------------------------------------------------------===// 1367 // Block Bits 1368 //===--------------------------------------------------------------------===// 1369 1370 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1371 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1372 static void destroyBlockInfos(CGBlockInfo *info); 1373 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1374 const CGBlockInfo &Info, 1375 llvm::StructType *, 1376 llvm::Constant *BlockVarLayout); 1377 1378 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1379 const CGBlockInfo &Info, 1380 const Decl *OuterFuncDecl, 1381 const DeclMapTy &ldm, 1382 bool IsLambdaConversionToBlock); 1383 1384 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1385 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1386 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1387 const ObjCPropertyImplDecl *PID); 1388 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1389 const ObjCPropertyImplDecl *PID); 1390 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1391 1392 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1393 1394 class AutoVarEmission; 1395 1396 void emitByrefStructureInit(const AutoVarEmission &emission); 1397 void enterByrefCleanup(const AutoVarEmission &emission); 1398 1399 llvm::Value *LoadBlockStruct() { 1400 assert(BlockPointer && "no block pointer set!"); 1401 return BlockPointer; 1402 } 1403 1404 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1405 void AllocateBlockDecl(const DeclRefExpr *E); 1406 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1407 llvm::Type *BuildByRefType(const VarDecl *var); 1408 1409 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1410 const CGFunctionInfo &FnInfo); 1411 void StartFunction(GlobalDecl GD, QualType RetTy, 1412 llvm::Function *Fn, 1413 const CGFunctionInfo &FnInfo, 1414 const FunctionArgList &Args, 1415 SourceLocation StartLoc); 1416 1417 void EmitConstructorBody(FunctionArgList &Args); 1418 void EmitDestructorBody(FunctionArgList &Args); 1419 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1420 void EmitFunctionBody(FunctionArgList &Args); 1421 1422 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1423 CallArgList &CallArgs); 1424 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1425 void EmitLambdaBlockInvokeBody(); 1426 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1427 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1428 1429 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1430 /// emission when possible. 1431 void EmitReturnBlock(); 1432 1433 /// FinishFunction - Complete IR generation of the current function. It is 1434 /// legal to call this function even if there is no current insertion point. 1435 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1436 1437 /// GenerateThunk - Generate a thunk for the given method. 1438 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1439 GlobalDecl GD, const ThunkInfo &Thunk); 1440 1441 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1442 GlobalDecl GD, const ThunkInfo &Thunk); 1443 1444 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1445 FunctionArgList &Args); 1446 1447 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1448 ArrayRef<VarDecl *> ArrayIndexes); 1449 1450 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1451 /// subobject. 1452 /// 1453 void InitializeVTablePointer(BaseSubobject Base, 1454 const CXXRecordDecl *NearestVBase, 1455 CharUnits OffsetFromNearestVBase, 1456 llvm::Constant *VTable, 1457 const CXXRecordDecl *VTableClass); 1458 1459 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1460 void InitializeVTablePointers(BaseSubobject Base, 1461 const CXXRecordDecl *NearestVBase, 1462 CharUnits OffsetFromNearestVBase, 1463 bool BaseIsNonVirtualPrimaryBase, 1464 llvm::Constant *VTable, 1465 const CXXRecordDecl *VTableClass, 1466 VisitedVirtualBasesSetTy& VBases); 1467 1468 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1469 1470 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1471 /// to by This. 1472 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1473 1474 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1475 /// given phase of destruction for a destructor. The end result 1476 /// should call destructors on members and base classes in reverse 1477 /// order of their construction. 1478 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1479 1480 /// ShouldInstrumentFunction - Return true if the current function should be 1481 /// instrumented with __cyg_profile_func_* calls 1482 bool ShouldInstrumentFunction(); 1483 1484 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1485 /// instrumentation function with the current function and the call site, if 1486 /// function instrumentation is enabled. 1487 void EmitFunctionInstrumentation(const char *Fn); 1488 1489 /// EmitMCountInstrumentation - Emit call to .mcount. 1490 void EmitMCountInstrumentation(); 1491 1492 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1493 /// arguments for the given function. This is also responsible for naming the 1494 /// LLVM function arguments. 1495 void EmitFunctionProlog(const CGFunctionInfo &FI, 1496 llvm::Function *Fn, 1497 const FunctionArgList &Args); 1498 1499 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1500 /// given temporary. 1501 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1502 1503 /// EmitStartEHSpec - Emit the start of the exception spec. 1504 void EmitStartEHSpec(const Decl *D); 1505 1506 /// EmitEndEHSpec - Emit the end of the exception spec. 1507 void EmitEndEHSpec(const Decl *D); 1508 1509 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1510 llvm::BasicBlock *getTerminateLandingPad(); 1511 1512 /// getTerminateHandler - Return a handler (not a landing pad, just 1513 /// a catch handler) that just calls terminate. This is used when 1514 /// a terminate scope encloses a try. 1515 llvm::BasicBlock *getTerminateHandler(); 1516 1517 llvm::Type *ConvertTypeForMem(QualType T); 1518 llvm::Type *ConvertType(QualType T); 1519 llvm::Type *ConvertType(const TypeDecl *T) { 1520 return ConvertType(getContext().getTypeDeclType(T)); 1521 } 1522 1523 /// LoadObjCSelf - Load the value of self. This function is only valid while 1524 /// generating code for an Objective-C method. 1525 llvm::Value *LoadObjCSelf(); 1526 1527 /// TypeOfSelfObject - Return type of object that this self represents. 1528 QualType TypeOfSelfObject(); 1529 1530 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1531 /// an aggregate LLVM type or is void. 1532 static TypeEvaluationKind getEvaluationKind(QualType T); 1533 1534 static bool hasScalarEvaluationKind(QualType T) { 1535 return getEvaluationKind(T) == TEK_Scalar; 1536 } 1537 1538 static bool hasAggregateEvaluationKind(QualType T) { 1539 return getEvaluationKind(T) == TEK_Aggregate; 1540 } 1541 1542 /// createBasicBlock - Create an LLVM basic block. 1543 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1544 llvm::Function *parent = 0, 1545 llvm::BasicBlock *before = 0) { 1546 #ifdef NDEBUG 1547 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1548 #else 1549 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1550 #endif 1551 } 1552 1553 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1554 /// label maps to. 1555 JumpDest getJumpDestForLabel(const LabelDecl *S); 1556 1557 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1558 /// another basic block, simplify it. This assumes that no other code could 1559 /// potentially reference the basic block. 1560 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1561 1562 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1563 /// adding a fall-through branch from the current insert block if 1564 /// necessary. It is legal to call this function even if there is no current 1565 /// insertion point. 1566 /// 1567 /// IsFinished - If true, indicates that the caller has finished emitting 1568 /// branches to the given block and does not expect to emit code into it. This 1569 /// means the block can be ignored if it is unreachable. 1570 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1571 1572 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1573 /// near its uses, and leave the insertion point in it. 1574 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1575 1576 /// EmitBranch - Emit a branch to the specified basic block from the current 1577 /// insert block, taking care to avoid creation of branches from dummy 1578 /// blocks. It is legal to call this function even if there is no current 1579 /// insertion point. 1580 /// 1581 /// This function clears the current insertion point. The caller should follow 1582 /// calls to this function with calls to Emit*Block prior to generation new 1583 /// code. 1584 void EmitBranch(llvm::BasicBlock *Block); 1585 1586 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1587 /// indicates that the current code being emitted is unreachable. 1588 bool HaveInsertPoint() const { 1589 return Builder.GetInsertBlock() != 0; 1590 } 1591 1592 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1593 /// emitted IR has a place to go. Note that by definition, if this function 1594 /// creates a block then that block is unreachable; callers may do better to 1595 /// detect when no insertion point is defined and simply skip IR generation. 1596 void EnsureInsertPoint() { 1597 if (!HaveInsertPoint()) 1598 EmitBlock(createBasicBlock()); 1599 } 1600 1601 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1602 /// specified stmt yet. 1603 void ErrorUnsupported(const Stmt *S, const char *Type, 1604 bool OmitOnError=false); 1605 1606 //===--------------------------------------------------------------------===// 1607 // Helpers 1608 //===--------------------------------------------------------------------===// 1609 1610 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1611 CharUnits Alignment = CharUnits()) { 1612 return LValue::MakeAddr(V, T, Alignment, getContext(), 1613 CGM.getTBAAInfo(T)); 1614 } 1615 1616 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1617 CharUnits Alignment; 1618 if (!T->isIncompleteType()) 1619 Alignment = getContext().getTypeAlignInChars(T); 1620 return LValue::MakeAddr(V, T, Alignment, getContext(), 1621 CGM.getTBAAInfo(T)); 1622 } 1623 1624 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1625 /// block. The caller is responsible for setting an appropriate alignment on 1626 /// the alloca. 1627 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1628 const Twine &Name = "tmp"); 1629 1630 /// InitTempAlloca - Provide an initial value for the given alloca. 1631 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1632 1633 /// CreateIRTemp - Create a temporary IR object of the given type, with 1634 /// appropriate alignment. This routine should only be used when an temporary 1635 /// value needs to be stored into an alloca (for example, to avoid explicit 1636 /// PHI construction), but the type is the IR type, not the type appropriate 1637 /// for storing in memory. 1638 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1639 1640 /// CreateMemTemp - Create a temporary memory object of the given type, with 1641 /// appropriate alignment. 1642 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1643 1644 /// CreateAggTemp - Create a temporary memory object for the given 1645 /// aggregate type. 1646 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1647 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1648 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1649 T.getQualifiers(), 1650 AggValueSlot::IsNotDestructed, 1651 AggValueSlot::DoesNotNeedGCBarriers, 1652 AggValueSlot::IsNotAliased); 1653 } 1654 1655 /// Emit a cast to void* in the appropriate address space. 1656 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1657 1658 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1659 /// expression and compare the result against zero, returning an Int1Ty value. 1660 llvm::Value *EvaluateExprAsBool(const Expr *E); 1661 1662 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1663 void EmitIgnoredExpr(const Expr *E); 1664 1665 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1666 /// any type. The result is returned as an RValue struct. If this is an 1667 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1668 /// the result should be returned. 1669 /// 1670 /// \param ignoreResult True if the resulting value isn't used. 1671 RValue EmitAnyExpr(const Expr *E, 1672 AggValueSlot aggSlot = AggValueSlot::ignored(), 1673 bool ignoreResult = false); 1674 1675 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1676 // or the value of the expression, depending on how va_list is defined. 1677 llvm::Value *EmitVAListRef(const Expr *E); 1678 1679 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1680 /// always be accessible even if no aggregate location is provided. 1681 RValue EmitAnyExprToTemp(const Expr *E); 1682 1683 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1684 /// arbitrary expression into the given memory location. 1685 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1686 Qualifiers Quals, bool IsInitializer); 1687 1688 /// EmitExprAsInit - Emits the code necessary to initialize a 1689 /// location in memory with the given initializer. 1690 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1691 LValue lvalue, bool capturedByInit); 1692 1693 /// hasVolatileMember - returns true if aggregate type has a volatile 1694 /// member. 1695 bool hasVolatileMember(QualType T) { 1696 if (const RecordType *RT = T->getAs<RecordType>()) { 1697 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1698 return RD->hasVolatileMember(); 1699 } 1700 return false; 1701 } 1702 /// EmitAggregateCopy - Emit an aggregate assignment. 1703 /// 1704 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1705 /// This is required for correctness when assigning non-POD structures in C++. 1706 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1707 QualType EltTy) { 1708 bool IsVolatile = hasVolatileMember(EltTy); 1709 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1710 true); 1711 } 1712 1713 /// EmitAggregateCopy - Emit an aggregate copy. 1714 /// 1715 /// \param isVolatile - True iff either the source or the destination is 1716 /// volatile. 1717 /// \param isAssignment - If false, allow padding to be copied. This often 1718 /// yields more efficient. 1719 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1720 QualType EltTy, bool isVolatile=false, 1721 CharUnits Alignment = CharUnits::Zero(), 1722 bool isAssignment = false); 1723 1724 /// StartBlock - Start new block named N. If insert block is a dummy block 1725 /// then reuse it. 1726 void StartBlock(const char *N); 1727 1728 /// GetAddrOfLocalVar - Return the address of a local variable. 1729 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1730 llvm::Value *Res = LocalDeclMap[VD]; 1731 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1732 return Res; 1733 } 1734 1735 /// getOpaqueLValueMapping - Given an opaque value expression (which 1736 /// must be mapped to an l-value), return its mapping. 1737 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1738 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1739 1740 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1741 it = OpaqueLValues.find(e); 1742 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1743 return it->second; 1744 } 1745 1746 /// getOpaqueRValueMapping - Given an opaque value expression (which 1747 /// must be mapped to an r-value), return its mapping. 1748 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1749 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1750 1751 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1752 it = OpaqueRValues.find(e); 1753 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1754 return it->second; 1755 } 1756 1757 /// getAccessedFieldNo - Given an encoded value and a result number, return 1758 /// the input field number being accessed. 1759 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1760 1761 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1762 llvm::BasicBlock *GetIndirectGotoBlock(); 1763 1764 /// EmitNullInitialization - Generate code to set a value of the given type to 1765 /// null, If the type contains data member pointers, they will be initialized 1766 /// to -1 in accordance with the Itanium C++ ABI. 1767 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1768 1769 // EmitVAArg - Generate code to get an argument from the passed in pointer 1770 // and update it accordingly. The return value is a pointer to the argument. 1771 // FIXME: We should be able to get rid of this method and use the va_arg 1772 // instruction in LLVM instead once it works well enough. 1773 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1774 1775 /// emitArrayLength - Compute the length of an array, even if it's a 1776 /// VLA, and drill down to the base element type. 1777 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1778 QualType &baseType, 1779 llvm::Value *&addr); 1780 1781 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1782 /// the given variably-modified type and store them in the VLASizeMap. 1783 /// 1784 /// This function can be called with a null (unreachable) insert point. 1785 void EmitVariablyModifiedType(QualType Ty); 1786 1787 /// getVLASize - Returns an LLVM value that corresponds to the size, 1788 /// in non-variably-sized elements, of a variable length array type, 1789 /// plus that largest non-variably-sized element type. Assumes that 1790 /// the type has already been emitted with EmitVariablyModifiedType. 1791 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1792 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1793 1794 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1795 /// generating code for an C++ member function. 1796 llvm::Value *LoadCXXThis() { 1797 assert(CXXThisValue && "no 'this' value for this function"); 1798 return CXXThisValue; 1799 } 1800 1801 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1802 /// virtual bases. 1803 // FIXME: Every place that calls LoadCXXVTT is something 1804 // that needs to be abstracted properly. 1805 llvm::Value *LoadCXXVTT() { 1806 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1807 return CXXStructorImplicitParamValue; 1808 } 1809 1810 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1811 /// for a constructor/destructor. 1812 llvm::Value *LoadCXXStructorImplicitParam() { 1813 assert(CXXStructorImplicitParamValue && 1814 "no implicit argument value for this function"); 1815 return CXXStructorImplicitParamValue; 1816 } 1817 1818 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1819 /// complete class to the given direct base. 1820 llvm::Value * 1821 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1822 const CXXRecordDecl *Derived, 1823 const CXXRecordDecl *Base, 1824 bool BaseIsVirtual); 1825 1826 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1827 /// load of 'this' and returns address of the base class. 1828 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1829 const CXXRecordDecl *Derived, 1830 CastExpr::path_const_iterator PathBegin, 1831 CastExpr::path_const_iterator PathEnd, 1832 bool NullCheckValue); 1833 1834 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1835 const CXXRecordDecl *Derived, 1836 CastExpr::path_const_iterator PathBegin, 1837 CastExpr::path_const_iterator PathEnd, 1838 bool NullCheckValue); 1839 1840 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1841 const CXXRecordDecl *ClassDecl, 1842 const CXXRecordDecl *BaseClassDecl); 1843 1844 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1845 /// base constructor/destructor with virtual bases. 1846 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1847 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1848 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1849 bool Delegating); 1850 1851 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1852 CXXCtorType CtorType, 1853 const FunctionArgList &Args); 1854 // It's important not to confuse this and the previous function. Delegating 1855 // constructors are the C++0x feature. The constructor delegate optimization 1856 // is used to reduce duplication in the base and complete consturctors where 1857 // they are substantially the same. 1858 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1859 const FunctionArgList &Args); 1860 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1861 bool ForVirtualBase, bool Delegating, 1862 llvm::Value *This, 1863 CallExpr::const_arg_iterator ArgBeg, 1864 CallExpr::const_arg_iterator ArgEnd); 1865 1866 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1867 llvm::Value *This, llvm::Value *Src, 1868 CallExpr::const_arg_iterator ArgBeg, 1869 CallExpr::const_arg_iterator ArgEnd); 1870 1871 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1872 const ConstantArrayType *ArrayTy, 1873 llvm::Value *ArrayPtr, 1874 CallExpr::const_arg_iterator ArgBeg, 1875 CallExpr::const_arg_iterator ArgEnd, 1876 bool ZeroInitialization = false); 1877 1878 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1879 llvm::Value *NumElements, 1880 llvm::Value *ArrayPtr, 1881 CallExpr::const_arg_iterator ArgBeg, 1882 CallExpr::const_arg_iterator ArgEnd, 1883 bool ZeroInitialization = false); 1884 1885 static Destroyer destroyCXXObject; 1886 1887 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1888 bool ForVirtualBase, bool Delegating, 1889 llvm::Value *This); 1890 1891 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1892 llvm::Value *NewPtr, llvm::Value *NumElements); 1893 1894 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1895 llvm::Value *Ptr); 1896 1897 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1898 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1899 1900 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1901 QualType DeleteTy); 1902 1903 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1904 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1905 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1906 1907 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1908 void EmitStdInitializerListCleanup(llvm::Value *loc, 1909 const InitListExpr *init); 1910 1911 /// \brief Situations in which we might emit a check for the suitability of a 1912 /// pointer or glvalue. 1913 enum TypeCheckKind { 1914 /// Checking the operand of a load. Must be suitably sized and aligned. 1915 TCK_Load, 1916 /// Checking the destination of a store. Must be suitably sized and aligned. 1917 TCK_Store, 1918 /// Checking the bound value in a reference binding. Must be suitably sized 1919 /// and aligned, but is not required to refer to an object (until the 1920 /// reference is used), per core issue 453. 1921 TCK_ReferenceBinding, 1922 /// Checking the object expression in a non-static data member access. Must 1923 /// be an object within its lifetime. 1924 TCK_MemberAccess, 1925 /// Checking the 'this' pointer for a call to a non-static member function. 1926 /// Must be an object within its lifetime. 1927 TCK_MemberCall, 1928 /// Checking the 'this' pointer for a constructor call. 1929 TCK_ConstructorCall, 1930 /// Checking the operand of a static_cast to a derived pointer type. Must be 1931 /// null or an object within its lifetime. 1932 TCK_DowncastPointer, 1933 /// Checking the operand of a static_cast to a derived reference type. Must 1934 /// be an object within its lifetime. 1935 TCK_DowncastReference 1936 }; 1937 1938 /// \brief Emit a check that \p V is the address of storage of the 1939 /// appropriate size and alignment for an object of type \p Type. 1940 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1941 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1942 1943 /// \brief Emit a check that \p Base points into an array object, which 1944 /// we can access at index \p Index. \p Accessed should be \c false if we 1945 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1946 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1947 QualType IndexType, bool Accessed); 1948 1949 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1950 bool isInc, bool isPre); 1951 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1952 bool isInc, bool isPre); 1953 //===--------------------------------------------------------------------===// 1954 // Declaration Emission 1955 //===--------------------------------------------------------------------===// 1956 1957 /// EmitDecl - Emit a declaration. 1958 /// 1959 /// This function can be called with a null (unreachable) insert point. 1960 void EmitDecl(const Decl &D); 1961 1962 /// EmitVarDecl - Emit a local variable declaration. 1963 /// 1964 /// This function can be called with a null (unreachable) insert point. 1965 void EmitVarDecl(const VarDecl &D); 1966 1967 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1968 LValue lvalue, bool capturedByInit); 1969 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1970 1971 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1972 llvm::Value *Address); 1973 1974 /// EmitAutoVarDecl - Emit an auto variable declaration. 1975 /// 1976 /// This function can be called with a null (unreachable) insert point. 1977 void EmitAutoVarDecl(const VarDecl &D); 1978 1979 class AutoVarEmission { 1980 friend class CodeGenFunction; 1981 1982 const VarDecl *Variable; 1983 1984 /// The alignment of the variable. 1985 CharUnits Alignment; 1986 1987 /// The address of the alloca. Null if the variable was emitted 1988 /// as a global constant. 1989 llvm::Value *Address; 1990 1991 llvm::Value *NRVOFlag; 1992 1993 /// True if the variable is a __block variable. 1994 bool IsByRef; 1995 1996 /// True if the variable is of aggregate type and has a constant 1997 /// initializer. 1998 bool IsConstantAggregate; 1999 2000 struct Invalid {}; 2001 AutoVarEmission(Invalid) : Variable(0) {} 2002 2003 AutoVarEmission(const VarDecl &variable) 2004 : Variable(&variable), Address(0), NRVOFlag(0), 2005 IsByRef(false), IsConstantAggregate(false) {} 2006 2007 bool wasEmittedAsGlobal() const { return Address == 0; } 2008 2009 public: 2010 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2011 2012 /// Returns the address of the object within this declaration. 2013 /// Note that this does not chase the forwarding pointer for 2014 /// __block decls. 2015 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 2016 if (!IsByRef) return Address; 2017 2018 return CGF.Builder.CreateStructGEP(Address, 2019 CGF.getByRefValueLLVMField(Variable), 2020 Variable->getNameAsString()); 2021 } 2022 }; 2023 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2024 void EmitAutoVarInit(const AutoVarEmission &emission); 2025 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2026 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2027 QualType::DestructionKind dtorKind); 2028 2029 void EmitStaticVarDecl(const VarDecl &D, 2030 llvm::GlobalValue::LinkageTypes Linkage); 2031 2032 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2033 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 2034 2035 /// protectFromPeepholes - Protect a value that we're intending to 2036 /// store to the side, but which will probably be used later, from 2037 /// aggressive peepholing optimizations that might delete it. 2038 /// 2039 /// Pass the result to unprotectFromPeepholes to declare that 2040 /// protection is no longer required. 2041 /// 2042 /// There's no particular reason why this shouldn't apply to 2043 /// l-values, it's just that no existing peepholes work on pointers. 2044 PeepholeProtection protectFromPeepholes(RValue rvalue); 2045 void unprotectFromPeepholes(PeepholeProtection protection); 2046 2047 //===--------------------------------------------------------------------===// 2048 // Statement Emission 2049 //===--------------------------------------------------------------------===// 2050 2051 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2052 void EmitStopPoint(const Stmt *S); 2053 2054 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2055 /// this function even if there is no current insertion point. 2056 /// 2057 /// This function may clear the current insertion point; callers should use 2058 /// EnsureInsertPoint if they wish to subsequently generate code without first 2059 /// calling EmitBlock, EmitBranch, or EmitStmt. 2060 void EmitStmt(const Stmt *S); 2061 2062 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2063 /// necessarily require an insertion point or debug information; typically 2064 /// because the statement amounts to a jump or a container of other 2065 /// statements. 2066 /// 2067 /// \return True if the statement was handled. 2068 bool EmitSimpleStmt(const Stmt *S); 2069 2070 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2071 AggValueSlot AVS = AggValueSlot::ignored()); 2072 RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2073 bool GetLast = false, AggValueSlot AVS = 2074 AggValueSlot::ignored()); 2075 2076 /// EmitLabel - Emit the block for the given label. It is legal to call this 2077 /// function even if there is no current insertion point. 2078 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2079 2080 void EmitLabelStmt(const LabelStmt &S); 2081 void EmitAttributedStmt(const AttributedStmt &S); 2082 void EmitGotoStmt(const GotoStmt &S); 2083 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2084 void EmitIfStmt(const IfStmt &S); 2085 void EmitWhileStmt(const WhileStmt &S); 2086 void EmitDoStmt(const DoStmt &S); 2087 void EmitForStmt(const ForStmt &S); 2088 void EmitReturnStmt(const ReturnStmt &S); 2089 void EmitDeclStmt(const DeclStmt &S); 2090 void EmitBreakStmt(const BreakStmt &S); 2091 void EmitContinueStmt(const ContinueStmt &S); 2092 void EmitSwitchStmt(const SwitchStmt &S); 2093 void EmitDefaultStmt(const DefaultStmt &S); 2094 void EmitCaseStmt(const CaseStmt &S); 2095 void EmitCaseStmtRange(const CaseStmt &S); 2096 void EmitAsmStmt(const AsmStmt &S); 2097 2098 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2099 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2100 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2101 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2102 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2103 2104 llvm::Constant *getUnwindResumeFn(); 2105 llvm::Constant *getUnwindResumeOrRethrowFn(); 2106 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2107 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2108 2109 void EmitCXXTryStmt(const CXXTryStmt &S); 2110 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 2111 2112 //===--------------------------------------------------------------------===// 2113 // LValue Expression Emission 2114 //===--------------------------------------------------------------------===// 2115 2116 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2117 RValue GetUndefRValue(QualType Ty); 2118 2119 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2120 /// and issue an ErrorUnsupported style diagnostic (using the 2121 /// provided Name). 2122 RValue EmitUnsupportedRValue(const Expr *E, 2123 const char *Name); 2124 2125 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2126 /// an ErrorUnsupported style diagnostic (using the provided Name). 2127 LValue EmitUnsupportedLValue(const Expr *E, 2128 const char *Name); 2129 2130 /// EmitLValue - Emit code to compute a designator that specifies the location 2131 /// of the expression. 2132 /// 2133 /// This can return one of two things: a simple address or a bitfield 2134 /// reference. In either case, the LLVM Value* in the LValue structure is 2135 /// guaranteed to be an LLVM pointer type. 2136 /// 2137 /// If this returns a bitfield reference, nothing about the pointee type of 2138 /// the LLVM value is known: For example, it may not be a pointer to an 2139 /// integer. 2140 /// 2141 /// If this returns a normal address, and if the lvalue's C type is fixed 2142 /// size, this method guarantees that the returned pointer type will point to 2143 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2144 /// variable length type, this is not possible. 2145 /// 2146 LValue EmitLValue(const Expr *E); 2147 2148 /// \brief Same as EmitLValue but additionally we generate checking code to 2149 /// guard against undefined behavior. This is only suitable when we know 2150 /// that the address will be used to access the object. 2151 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2152 2153 RValue convertTempToRValue(llvm::Value *addr, QualType type); 2154 2155 void EmitAtomicInit(Expr *E, LValue lvalue); 2156 2157 RValue EmitAtomicLoad(LValue lvalue, 2158 AggValueSlot slot = AggValueSlot::ignored()); 2159 2160 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2161 2162 /// EmitToMemory - Change a scalar value from its value 2163 /// representation to its in-memory representation. 2164 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2165 2166 /// EmitFromMemory - Change a scalar value from its memory 2167 /// representation to its value representation. 2168 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2169 2170 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2171 /// care to appropriately convert from the memory representation to 2172 /// the LLVM value representation. 2173 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2174 unsigned Alignment, QualType Ty, 2175 llvm::MDNode *TBAAInfo = 0); 2176 2177 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2178 /// care to appropriately convert from the memory representation to 2179 /// the LLVM value representation. The l-value must be a simple 2180 /// l-value. 2181 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2182 2183 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2184 /// care to appropriately convert from the memory representation to 2185 /// the LLVM value representation. 2186 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2187 bool Volatile, unsigned Alignment, QualType Ty, 2188 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2189 2190 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2191 /// care to appropriately convert from the memory representation to 2192 /// the LLVM value representation. The l-value must be a simple 2193 /// l-value. The isInit flag indicates whether this is an initialization. 2194 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2195 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2196 2197 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2198 /// this method emits the address of the lvalue, then loads the result as an 2199 /// rvalue, returning the rvalue. 2200 RValue EmitLoadOfLValue(LValue V); 2201 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2202 RValue EmitLoadOfBitfieldLValue(LValue LV); 2203 2204 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2205 /// lvalue, where both are guaranteed to the have the same type, and that type 2206 /// is 'Ty'. 2207 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2208 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2209 2210 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2211 /// EmitStoreThroughLValue. 2212 /// 2213 /// \param Result [out] - If non-null, this will be set to a Value* for the 2214 /// bit-field contents after the store, appropriate for use as the result of 2215 /// an assignment to the bit-field. 2216 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2217 llvm::Value **Result=0); 2218 2219 /// Emit an l-value for an assignment (simple or compound) of complex type. 2220 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2221 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2222 2223 // Note: only available for agg return types 2224 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2225 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2226 // Note: only available for agg return types 2227 LValue EmitCallExprLValue(const CallExpr *E); 2228 // Note: only available for agg return types 2229 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2230 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2231 LValue EmitStringLiteralLValue(const StringLiteral *E); 2232 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2233 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2234 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2235 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2236 bool Accessed = false); 2237 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2238 LValue EmitMemberExpr(const MemberExpr *E); 2239 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2240 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2241 LValue EmitInitListLValue(const InitListExpr *E); 2242 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2243 LValue EmitCastLValue(const CastExpr *E); 2244 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2245 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2246 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2247 2248 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2249 2250 class ConstantEmission { 2251 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2252 ConstantEmission(llvm::Constant *C, bool isReference) 2253 : ValueAndIsReference(C, isReference) {} 2254 public: 2255 ConstantEmission() {} 2256 static ConstantEmission forReference(llvm::Constant *C) { 2257 return ConstantEmission(C, true); 2258 } 2259 static ConstantEmission forValue(llvm::Constant *C) { 2260 return ConstantEmission(C, false); 2261 } 2262 2263 operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2264 2265 bool isReference() const { return ValueAndIsReference.getInt(); } 2266 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2267 assert(isReference()); 2268 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2269 refExpr->getType()); 2270 } 2271 2272 llvm::Constant *getValue() const { 2273 assert(!isReference()); 2274 return ValueAndIsReference.getPointer(); 2275 } 2276 }; 2277 2278 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2279 2280 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2281 AggValueSlot slot = AggValueSlot::ignored()); 2282 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2283 2284 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2285 const ObjCIvarDecl *Ivar); 2286 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2287 2288 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2289 /// if the Field is a reference, this will return the address of the reference 2290 /// and not the address of the value stored in the reference. 2291 LValue EmitLValueForFieldInitialization(LValue Base, 2292 const FieldDecl* Field); 2293 2294 LValue EmitLValueForIvar(QualType ObjectTy, 2295 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2296 unsigned CVRQualifiers); 2297 2298 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2299 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2300 LValue EmitLambdaLValue(const LambdaExpr *E); 2301 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2302 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2303 2304 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2305 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2306 LValue EmitStmtExprLValue(const StmtExpr *E); 2307 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2308 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2309 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2310 2311 //===--------------------------------------------------------------------===// 2312 // Scalar Expression Emission 2313 //===--------------------------------------------------------------------===// 2314 2315 /// EmitCall - Generate a call of the given function, expecting the given 2316 /// result type, and using the given argument list which specifies both the 2317 /// LLVM arguments and the types they were derived from. 2318 /// 2319 /// \param TargetDecl - If given, the decl of the function in a direct call; 2320 /// used to set attributes on the call (noreturn, etc.). 2321 RValue EmitCall(const CGFunctionInfo &FnInfo, 2322 llvm::Value *Callee, 2323 ReturnValueSlot ReturnValue, 2324 const CallArgList &Args, 2325 const Decl *TargetDecl = 0, 2326 llvm::Instruction **callOrInvoke = 0); 2327 2328 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2329 ReturnValueSlot ReturnValue, 2330 CallExpr::const_arg_iterator ArgBeg, 2331 CallExpr::const_arg_iterator ArgEnd, 2332 const Decl *TargetDecl = 0); 2333 RValue EmitCallExpr(const CallExpr *E, 2334 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2335 2336 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2337 const Twine &name = ""); 2338 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2339 ArrayRef<llvm::Value*> args, 2340 const Twine &name = ""); 2341 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2342 const Twine &name = ""); 2343 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2344 ArrayRef<llvm::Value*> args, 2345 const Twine &name = ""); 2346 2347 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2348 ArrayRef<llvm::Value *> Args, 2349 const Twine &Name = ""); 2350 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2351 const Twine &Name = ""); 2352 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2353 ArrayRef<llvm::Value*> args, 2354 const Twine &name = ""); 2355 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2356 const Twine &name = ""); 2357 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2358 ArrayRef<llvm::Value*> args); 2359 2360 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2361 llvm::Type *Ty); 2362 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2363 llvm::Value *This, llvm::Type *Ty); 2364 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2365 NestedNameSpecifier *Qual, 2366 llvm::Type *Ty); 2367 2368 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2369 CXXDtorType Type, 2370 const CXXRecordDecl *RD); 2371 2372 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2373 SourceLocation CallLoc, 2374 llvm::Value *Callee, 2375 ReturnValueSlot ReturnValue, 2376 llvm::Value *This, 2377 llvm::Value *ImplicitParam, 2378 QualType ImplicitParamTy, 2379 CallExpr::const_arg_iterator ArgBeg, 2380 CallExpr::const_arg_iterator ArgEnd); 2381 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2382 ReturnValueSlot ReturnValue); 2383 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2384 ReturnValueSlot ReturnValue); 2385 2386 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2387 const CXXMethodDecl *MD, 2388 llvm::Value *This); 2389 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2390 const CXXMethodDecl *MD, 2391 ReturnValueSlot ReturnValue); 2392 2393 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2394 ReturnValueSlot ReturnValue); 2395 2396 2397 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2398 unsigned BuiltinID, const CallExpr *E); 2399 2400 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2401 2402 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2403 /// is unhandled by the current target. 2404 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2405 2406 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2407 llvm::Value *EmitNeonCall(llvm::Function *F, 2408 SmallVectorImpl<llvm::Value*> &O, 2409 const char *name, 2410 unsigned shift = 0, bool rightshift = false); 2411 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2412 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2413 bool negateForRightShift); 2414 2415 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2416 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2417 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2418 2419 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2420 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2421 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2422 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2423 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2424 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2425 const ObjCMethodDecl *MethodWithObjects); 2426 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2427 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2428 ReturnValueSlot Return = ReturnValueSlot()); 2429 2430 /// Retrieves the default cleanup kind for an ARC cleanup. 2431 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2432 CleanupKind getARCCleanupKind() { 2433 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2434 ? NormalAndEHCleanup : NormalCleanup; 2435 } 2436 2437 // ARC primitives. 2438 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2439 void EmitARCDestroyWeak(llvm::Value *addr); 2440 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2441 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2442 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2443 bool ignored); 2444 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2445 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2446 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2447 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2448 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2449 bool resultIgnored); 2450 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2451 bool resultIgnored); 2452 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2453 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2454 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2455 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2456 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2457 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2458 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2459 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2460 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2461 2462 std::pair<LValue,llvm::Value*> 2463 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2464 std::pair<LValue,llvm::Value*> 2465 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2466 2467 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2468 2469 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2470 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2471 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2472 2473 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2474 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2475 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2476 2477 static Destroyer destroyARCStrongImprecise; 2478 static Destroyer destroyARCStrongPrecise; 2479 static Destroyer destroyARCWeak; 2480 2481 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2482 llvm::Value *EmitObjCAutoreleasePoolPush(); 2483 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2484 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2485 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2486 2487 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2488 /// expression. Will emit a temporary variable if E is not an LValue. 2489 RValue EmitReferenceBindingToExpr(const Expr* E, 2490 const NamedDecl *InitializedDecl); 2491 2492 //===--------------------------------------------------------------------===// 2493 // Expression Emission 2494 //===--------------------------------------------------------------------===// 2495 2496 // Expressions are broken into three classes: scalar, complex, aggregate. 2497 2498 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2499 /// scalar type, returning the result. 2500 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2501 2502 /// EmitScalarConversion - Emit a conversion from the specified type to the 2503 /// specified destination type, both of which are LLVM scalar types. 2504 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2505 QualType DstTy); 2506 2507 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2508 /// complex type to the specified destination type, where the destination type 2509 /// is an LLVM scalar type. 2510 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2511 QualType DstTy); 2512 2513 2514 /// EmitAggExpr - Emit the computation of the specified expression 2515 /// of aggregate type. The result is computed into the given slot, 2516 /// which may be null to indicate that the value is not needed. 2517 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2518 2519 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2520 /// aggregate type into a temporary LValue. 2521 LValue EmitAggExprToLValue(const Expr *E); 2522 2523 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2524 /// pointers. 2525 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2526 QualType Ty); 2527 2528 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2529 /// make sure it survives garbage collection until this point. 2530 void EmitExtendGCLifetime(llvm::Value *object); 2531 2532 /// EmitComplexExpr - Emit the computation of the specified expression of 2533 /// complex type, returning the result. 2534 ComplexPairTy EmitComplexExpr(const Expr *E, 2535 bool IgnoreReal = false, 2536 bool IgnoreImag = false); 2537 2538 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2539 /// type and place its result into the specified l-value. 2540 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2541 2542 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2543 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2544 2545 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2546 ComplexPairTy EmitLoadOfComplex(LValue src); 2547 2548 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2549 /// a static local variable. 2550 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2551 const char *Separator, 2552 llvm::GlobalValue::LinkageTypes Linkage); 2553 2554 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2555 /// global variable that has already been created for it. If the initializer 2556 /// has a different type than GV does, this may free GV and return a different 2557 /// one. Otherwise it just returns GV. 2558 llvm::GlobalVariable * 2559 AddInitializerToStaticVarDecl(const VarDecl &D, 2560 llvm::GlobalVariable *GV); 2561 2562 2563 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2564 /// variable with global storage. 2565 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2566 bool PerformInit); 2567 2568 /// Call atexit() with a function that passes the given argument to 2569 /// the given function. 2570 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2571 2572 /// Emit code in this function to perform a guarded variable 2573 /// initialization. Guarded initializations are used when it's not 2574 /// possible to prove that an initialization will be done exactly 2575 /// once, e.g. with a static local variable or a static data member 2576 /// of a class template. 2577 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2578 bool PerformInit); 2579 2580 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2581 /// variables. 2582 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2583 llvm::Constant **Decls, 2584 unsigned NumDecls); 2585 2586 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2587 /// variables. 2588 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2589 const std::vector<std::pair<llvm::WeakVH, 2590 llvm::Constant*> > &DtorsAndObjects); 2591 2592 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2593 const VarDecl *D, 2594 llvm::GlobalVariable *Addr, 2595 bool PerformInit); 2596 2597 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2598 2599 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2600 const Expr *Exp); 2601 2602 void enterFullExpression(const ExprWithCleanups *E) { 2603 if (E->getNumObjects() == 0) return; 2604 enterNonTrivialFullExpression(E); 2605 } 2606 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2607 2608 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2609 2610 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2611 2612 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2613 2614 //===--------------------------------------------------------------------===// 2615 // Annotations Emission 2616 //===--------------------------------------------------------------------===// 2617 2618 /// Emit an annotation call (intrinsic or builtin). 2619 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2620 llvm::Value *AnnotatedVal, 2621 StringRef AnnotationStr, 2622 SourceLocation Location); 2623 2624 /// Emit local annotations for the local variable V, declared by D. 2625 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2626 2627 /// Emit field annotations for the given field & value. Returns the 2628 /// annotation result. 2629 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2630 2631 //===--------------------------------------------------------------------===// 2632 // Internal Helpers 2633 //===--------------------------------------------------------------------===// 2634 2635 /// ContainsLabel - Return true if the statement contains a label in it. If 2636 /// this statement is not executed normally, it not containing a label means 2637 /// that we can just remove the code. 2638 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2639 2640 /// containsBreak - Return true if the statement contains a break out of it. 2641 /// If the statement (recursively) contains a switch or loop with a break 2642 /// inside of it, this is fine. 2643 static bool containsBreak(const Stmt *S); 2644 2645 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2646 /// to a constant, or if it does but contains a label, return false. If it 2647 /// constant folds return true and set the boolean result in Result. 2648 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2649 2650 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2651 /// to a constant, or if it does but contains a label, return false. If it 2652 /// constant folds return true and set the folded value. 2653 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2654 2655 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2656 /// if statement) to the specified blocks. Based on the condition, this might 2657 /// try to simplify the codegen of the conditional based on the branch. 2658 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2659 llvm::BasicBlock *FalseBlock); 2660 2661 /// \brief Emit a description of a type in a format suitable for passing to 2662 /// a runtime sanitizer handler. 2663 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2664 2665 /// \brief Convert a value into a format suitable for passing to a runtime 2666 /// sanitizer handler. 2667 llvm::Value *EmitCheckValue(llvm::Value *V); 2668 2669 /// \brief Emit a description of a source location in a format suitable for 2670 /// passing to a runtime sanitizer handler. 2671 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2672 2673 /// \brief Specify under what conditions this check can be recovered 2674 enum CheckRecoverableKind { 2675 /// Always terminate program execution if this check fails 2676 CRK_Unrecoverable, 2677 /// Check supports recovering, allows user to specify which 2678 CRK_Recoverable, 2679 /// Runtime conditionally aborts, always need to support recovery. 2680 CRK_AlwaysRecoverable 2681 }; 2682 2683 /// \brief Create a basic block that will call a handler function in a 2684 /// sanitizer runtime with the provided arguments, and create a conditional 2685 /// branch to it. 2686 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2687 ArrayRef<llvm::Constant *> StaticArgs, 2688 ArrayRef<llvm::Value *> DynamicArgs, 2689 CheckRecoverableKind Recoverable); 2690 2691 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2692 /// conditional branch to it, for the -ftrapv checks. 2693 void EmitTrapCheck(llvm::Value *Checked); 2694 2695 /// EmitCallArg - Emit a single call argument. 2696 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2697 2698 /// EmitDelegateCallArg - We are performing a delegate call; that 2699 /// is, the current function is delegating to another one. Produce 2700 /// a r-value suitable for passing the given parameter. 2701 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2702 2703 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2704 /// point operation, expressed as the maximum relative error in ulp. 2705 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2706 2707 private: 2708 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2709 void EmitReturnOfRValue(RValue RV, QualType Ty); 2710 2711 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2712 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2713 /// 2714 /// \param AI - The first function argument of the expansion. 2715 /// \return The argument following the last expanded function 2716 /// argument. 2717 llvm::Function::arg_iterator 2718 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2719 llvm::Function::arg_iterator AI); 2720 2721 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2722 /// Ty, into individual arguments on the provided vector \arg Args. See 2723 /// ABIArgInfo::Expand. 2724 void ExpandTypeToArgs(QualType Ty, RValue Src, 2725 SmallVector<llvm::Value*, 16> &Args, 2726 llvm::FunctionType *IRFuncTy); 2727 2728 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2729 const Expr *InputExpr, std::string &ConstraintStr); 2730 2731 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2732 LValue InputValue, QualType InputType, 2733 std::string &ConstraintStr); 2734 2735 /// EmitCallArgs - Emit call arguments for a function. 2736 /// The CallArgTypeInfo parameter is used for iterating over the known 2737 /// argument types of the function being called. 2738 template<typename T> 2739 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2740 CallExpr::const_arg_iterator ArgBeg, 2741 CallExpr::const_arg_iterator ArgEnd) { 2742 CallExpr::const_arg_iterator Arg = ArgBeg; 2743 2744 // First, use the argument types that the type info knows about 2745 if (CallArgTypeInfo) { 2746 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2747 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2748 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2749 QualType ArgType = *I; 2750 #ifndef NDEBUG 2751 QualType ActualArgType = Arg->getType(); 2752 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2753 QualType ActualBaseType = 2754 ActualArgType->getAs<PointerType>()->getPointeeType(); 2755 QualType ArgBaseType = 2756 ArgType->getAs<PointerType>()->getPointeeType(); 2757 if (ArgBaseType->isVariableArrayType()) { 2758 if (const VariableArrayType *VAT = 2759 getContext().getAsVariableArrayType(ActualBaseType)) { 2760 if (!VAT->getSizeExpr()) 2761 ActualArgType = ArgType; 2762 } 2763 } 2764 } 2765 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2766 getTypePtr() == 2767 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2768 "type mismatch in call argument!"); 2769 #endif 2770 EmitCallArg(Args, *Arg, ArgType); 2771 } 2772 2773 // Either we've emitted all the call args, or we have a call to a 2774 // variadic function. 2775 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2776 "Extra arguments in non-variadic function!"); 2777 2778 } 2779 2780 // If we still have any arguments, emit them using the type of the argument. 2781 for (; Arg != ArgEnd; ++Arg) 2782 EmitCallArg(Args, *Arg, Arg->getType()); 2783 } 2784 2785 const TargetCodeGenInfo &getTargetHooks() const { 2786 return CGM.getTargetCodeGenInfo(); 2787 } 2788 2789 void EmitDeclMetadata(); 2790 2791 CodeGenModule::ByrefHelpers * 2792 buildByrefHelpers(llvm::StructType &byrefType, 2793 const AutoVarEmission &emission); 2794 2795 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2796 2797 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2798 /// value and compute our best estimate of the alignment of the pointee. 2799 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2800 }; 2801 2802 /// Helper class with most of the code for saving a value for a 2803 /// conditional expression cleanup. 2804 struct DominatingLLVMValue { 2805 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2806 2807 /// Answer whether the given value needs extra work to be saved. 2808 static bool needsSaving(llvm::Value *value) { 2809 // If it's not an instruction, we don't need to save. 2810 if (!isa<llvm::Instruction>(value)) return false; 2811 2812 // If it's an instruction in the entry block, we don't need to save. 2813 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2814 return (block != &block->getParent()->getEntryBlock()); 2815 } 2816 2817 /// Try to save the given value. 2818 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2819 if (!needsSaving(value)) return saved_type(value, false); 2820 2821 // Otherwise we need an alloca. 2822 llvm::Value *alloca = 2823 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2824 CGF.Builder.CreateStore(value, alloca); 2825 2826 return saved_type(alloca, true); 2827 } 2828 2829 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2830 if (!value.getInt()) return value.getPointer(); 2831 return CGF.Builder.CreateLoad(value.getPointer()); 2832 } 2833 }; 2834 2835 /// A partial specialization of DominatingValue for llvm::Values that 2836 /// might be llvm::Instructions. 2837 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2838 typedef T *type; 2839 static type restore(CodeGenFunction &CGF, saved_type value) { 2840 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2841 } 2842 }; 2843 2844 /// A specialization of DominatingValue for RValue. 2845 template <> struct DominatingValue<RValue> { 2846 typedef RValue type; 2847 class saved_type { 2848 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2849 AggregateAddress, ComplexAddress }; 2850 2851 llvm::Value *Value; 2852 Kind K; 2853 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2854 2855 public: 2856 static bool needsSaving(RValue value); 2857 static saved_type save(CodeGenFunction &CGF, RValue value); 2858 RValue restore(CodeGenFunction &CGF); 2859 2860 // implementations in CGExprCXX.cpp 2861 }; 2862 2863 static bool needsSaving(type value) { 2864 return saved_type::needsSaving(value); 2865 } 2866 static saved_type save(CodeGenFunction &CGF, type value) { 2867 return saved_type::save(CGF, value); 2868 } 2869 static type restore(CodeGenFunction &CGF, saved_type value) { 2870 return value.restore(CGF); 2871 } 2872 }; 2873 2874 } // end namespace CodeGen 2875 } // end namespace clang 2876 2877 #endif 2878