• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/ABI.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ValueHandle.h"
33 
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44 
45 namespace clang {
46   class ASTContext;
47   class BlockDecl;
48   class CXXDestructorDecl;
49   class CXXForRangeStmt;
50   class CXXTryStmt;
51   class Decl;
52   class LabelDecl;
53   class EnumConstantDecl;
54   class FunctionDecl;
55   class FunctionProtoType;
56   class LabelStmt;
57   class ObjCContainerDecl;
58   class ObjCInterfaceDecl;
59   class ObjCIvarDecl;
60   class ObjCMethodDecl;
61   class ObjCImplementationDecl;
62   class ObjCPropertyImplDecl;
63   class TargetInfo;
64   class TargetCodeGenInfo;
65   class VarDecl;
66   class ObjCForCollectionStmt;
67   class ObjCAtTryStmt;
68   class ObjCAtThrowStmt;
69   class ObjCAtSynchronizedStmt;
70   class ObjCAutoreleasePoolStmt;
71 
72 namespace CodeGen {
73   class CodeGenTypes;
74   class CGFunctionInfo;
75   class CGRecordLayout;
76   class CGBlockInfo;
77   class CGCXXABI;
78   class BlockFlags;
79   class BlockFieldFlags;
80 
81 /// The kind of evaluation to perform on values of a particular
82 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
83 /// CGExprAgg?
84 ///
85 /// TODO: should vectors maybe be split out into their own thing?
86 enum TypeEvaluationKind {
87   TEK_Scalar,
88   TEK_Complex,
89   TEK_Aggregate
90 };
91 
92 /// A branch fixup.  These are required when emitting a goto to a
93 /// label which hasn't been emitted yet.  The goto is optimistically
94 /// emitted as a branch to the basic block for the label, and (if it
95 /// occurs in a scope with non-trivial cleanups) a fixup is added to
96 /// the innermost cleanup.  When a (normal) cleanup is popped, any
97 /// unresolved fixups in that scope are threaded through the cleanup.
98 struct BranchFixup {
99   /// The block containing the terminator which needs to be modified
100   /// into a switch if this fixup is resolved into the current scope.
101   /// If null, LatestBranch points directly to the destination.
102   llvm::BasicBlock *OptimisticBranchBlock;
103 
104   /// The ultimate destination of the branch.
105   ///
106   /// This can be set to null to indicate that this fixup was
107   /// successfully resolved.
108   llvm::BasicBlock *Destination;
109 
110   /// The destination index value.
111   unsigned DestinationIndex;
112 
113   /// The initial branch of the fixup.
114   llvm::BranchInst *InitialBranch;
115 };
116 
117 template <class T> struct InvariantValue {
118   typedef T type;
119   typedef T saved_type;
needsSavingInvariantValue120   static bool needsSaving(type value) { return false; }
saveInvariantValue121   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
restoreInvariantValue122   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
123 };
124 
125 /// A metaprogramming class for ensuring that a value will dominate an
126 /// arbitrary position in a function.
127 template <class T> struct DominatingValue : InvariantValue<T> {};
128 
129 template <class T, bool mightBeInstruction =
130             llvm::is_base_of<llvm::Value, T>::value &&
131             !llvm::is_base_of<llvm::Constant, T>::value &&
132             !llvm::is_base_of<llvm::BasicBlock, T>::value>
133 struct DominatingPointer;
134 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
135 // template <class T> struct DominatingPointer<T,true> at end of file
136 
137 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
138 
139 enum CleanupKind {
140   EHCleanup = 0x1,
141   NormalCleanup = 0x2,
142   NormalAndEHCleanup = EHCleanup | NormalCleanup,
143 
144   InactiveCleanup = 0x4,
145   InactiveEHCleanup = EHCleanup | InactiveCleanup,
146   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
147   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
148 };
149 
150 /// A stack of scopes which respond to exceptions, including cleanups
151 /// and catch blocks.
152 class EHScopeStack {
153 public:
154   /// A saved depth on the scope stack.  This is necessary because
155   /// pushing scopes onto the stack invalidates iterators.
156   class stable_iterator {
157     friend class EHScopeStack;
158 
159     /// Offset from StartOfData to EndOfBuffer.
160     ptrdiff_t Size;
161 
162     stable_iterator(ptrdiff_t Size) : Size(Size) {}
163 
164   public:
165     static stable_iterator invalid() { return stable_iterator(-1); }
166     stable_iterator() : Size(-1) {}
167 
168     bool isValid() const { return Size >= 0; }
169 
170     /// Returns true if this scope encloses I.
171     /// Returns false if I is invalid.
172     /// This scope must be valid.
173     bool encloses(stable_iterator I) const { return Size <= I.Size; }
174 
175     /// Returns true if this scope strictly encloses I: that is,
176     /// if it encloses I and is not I.
177     /// Returns false is I is invalid.
178     /// This scope must be valid.
179     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
180 
181     friend bool operator==(stable_iterator A, stable_iterator B) {
182       return A.Size == B.Size;
183     }
184     friend bool operator!=(stable_iterator A, stable_iterator B) {
185       return A.Size != B.Size;
186     }
187   };
188 
189   /// Information for lazily generating a cleanup.  Subclasses must be
190   /// POD-like: cleanups will not be destructed, and they will be
191   /// allocated on the cleanup stack and freely copied and moved
192   /// around.
193   ///
194   /// Cleanup implementations should generally be declared in an
195   /// anonymous namespace.
196   class Cleanup {
197     // Anchor the construction vtable.
198     virtual void anchor();
199   public:
200     /// Generation flags.
201     class Flags {
202       enum {
203         F_IsForEH             = 0x1,
204         F_IsNormalCleanupKind = 0x2,
205         F_IsEHCleanupKind     = 0x4
206       };
207       unsigned flags;
208 
209     public:
210       Flags() : flags(0) {}
211 
212       /// isForEH - true if the current emission is for an EH cleanup.
213       bool isForEHCleanup() const { return flags & F_IsForEH; }
214       bool isForNormalCleanup() const { return !isForEHCleanup(); }
215       void setIsForEHCleanup() { flags |= F_IsForEH; }
216 
217       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
218       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
219 
220       /// isEHCleanupKind - true if the cleanup was pushed as an EH
221       /// cleanup.
222       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
223       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
224     };
225 
226     // Provide a virtual destructor to suppress a very common warning
227     // that unfortunately cannot be suppressed without this.  Cleanups
228     // should not rely on this destructor ever being called.
229     virtual ~Cleanup() {}
230 
231     /// Emit the cleanup.  For normal cleanups, this is run in the
232     /// same EH context as when the cleanup was pushed, i.e. the
233     /// immediately-enclosing context of the cleanup scope.  For
234     /// EH cleanups, this is run in a terminate context.
235     ///
236     // \param flags cleanup kind.
237     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
238   };
239 
240   /// ConditionalCleanupN stores the saved form of its N parameters,
241   /// then restores them and performs the cleanup.
242   template <class T, class A0>
243   class ConditionalCleanup1 : public Cleanup {
244     typedef typename DominatingValue<A0>::saved_type A0_saved;
245     A0_saved a0_saved;
246 
247     void Emit(CodeGenFunction &CGF, Flags flags) {
248       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
249       T(a0).Emit(CGF, flags);
250     }
251 
252   public:
253     ConditionalCleanup1(A0_saved a0)
254       : a0_saved(a0) {}
255   };
256 
257   template <class T, class A0, class A1>
258   class ConditionalCleanup2 : public Cleanup {
259     typedef typename DominatingValue<A0>::saved_type A0_saved;
260     typedef typename DominatingValue<A1>::saved_type A1_saved;
261     A0_saved a0_saved;
262     A1_saved a1_saved;
263 
264     void Emit(CodeGenFunction &CGF, Flags flags) {
265       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
266       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
267       T(a0, a1).Emit(CGF, flags);
268     }
269 
270   public:
271     ConditionalCleanup2(A0_saved a0, A1_saved a1)
272       : a0_saved(a0), a1_saved(a1) {}
273   };
274 
275   template <class T, class A0, class A1, class A2>
276   class ConditionalCleanup3 : public Cleanup {
277     typedef typename DominatingValue<A0>::saved_type A0_saved;
278     typedef typename DominatingValue<A1>::saved_type A1_saved;
279     typedef typename DominatingValue<A2>::saved_type A2_saved;
280     A0_saved a0_saved;
281     A1_saved a1_saved;
282     A2_saved a2_saved;
283 
284     void Emit(CodeGenFunction &CGF, Flags flags) {
285       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
286       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
287       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
288       T(a0, a1, a2).Emit(CGF, flags);
289     }
290 
291   public:
292     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
293       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
294   };
295 
296   template <class T, class A0, class A1, class A2, class A3>
297   class ConditionalCleanup4 : public Cleanup {
298     typedef typename DominatingValue<A0>::saved_type A0_saved;
299     typedef typename DominatingValue<A1>::saved_type A1_saved;
300     typedef typename DominatingValue<A2>::saved_type A2_saved;
301     typedef typename DominatingValue<A3>::saved_type A3_saved;
302     A0_saved a0_saved;
303     A1_saved a1_saved;
304     A2_saved a2_saved;
305     A3_saved a3_saved;
306 
307     void Emit(CodeGenFunction &CGF, Flags flags) {
308       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
309       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
310       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
311       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
312       T(a0, a1, a2, a3).Emit(CGF, flags);
313     }
314 
315   public:
316     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
317       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
318   };
319 
320 private:
321   // The implementation for this class is in CGException.h and
322   // CGException.cpp; the definition is here because it's used as a
323   // member of CodeGenFunction.
324 
325   /// The start of the scope-stack buffer, i.e. the allocated pointer
326   /// for the buffer.  All of these pointers are either simultaneously
327   /// null or simultaneously valid.
328   char *StartOfBuffer;
329 
330   /// The end of the buffer.
331   char *EndOfBuffer;
332 
333   /// The first valid entry in the buffer.
334   char *StartOfData;
335 
336   /// The innermost normal cleanup on the stack.
337   stable_iterator InnermostNormalCleanup;
338 
339   /// The innermost EH scope on the stack.
340   stable_iterator InnermostEHScope;
341 
342   /// The current set of branch fixups.  A branch fixup is a jump to
343   /// an as-yet unemitted label, i.e. a label for which we don't yet
344   /// know the EH stack depth.  Whenever we pop a cleanup, we have
345   /// to thread all the current branch fixups through it.
346   ///
347   /// Fixups are recorded as the Use of the respective branch or
348   /// switch statement.  The use points to the final destination.
349   /// When popping out of a cleanup, these uses are threaded through
350   /// the cleanup and adjusted to point to the new cleanup.
351   ///
352   /// Note that branches are allowed to jump into protected scopes
353   /// in certain situations;  e.g. the following code is legal:
354   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
355   ///     goto foo;
356   ///     A a;
357   ///    foo:
358   ///     bar();
359   SmallVector<BranchFixup, 8> BranchFixups;
360 
361   char *allocate(size_t Size);
362 
363   void *pushCleanup(CleanupKind K, size_t DataSize);
364 
365 public:
366   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
367                    InnermostNormalCleanup(stable_end()),
368                    InnermostEHScope(stable_end()) {}
369   ~EHScopeStack() { delete[] StartOfBuffer; }
370 
371   // Variadic templates would make this not terrible.
372 
373   /// Push a lazily-created cleanup on the stack.
374   template <class T>
375   void pushCleanup(CleanupKind Kind) {
376     void *Buffer = pushCleanup(Kind, sizeof(T));
377     Cleanup *Obj = new(Buffer) T();
378     (void) Obj;
379   }
380 
381   /// Push a lazily-created cleanup on the stack.
382   template <class T, class A0>
383   void pushCleanup(CleanupKind Kind, A0 a0) {
384     void *Buffer = pushCleanup(Kind, sizeof(T));
385     Cleanup *Obj = new(Buffer) T(a0);
386     (void) Obj;
387   }
388 
389   /// Push a lazily-created cleanup on the stack.
390   template <class T, class A0, class A1>
391   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
392     void *Buffer = pushCleanup(Kind, sizeof(T));
393     Cleanup *Obj = new(Buffer) T(a0, a1);
394     (void) Obj;
395   }
396 
397   /// Push a lazily-created cleanup on the stack.
398   template <class T, class A0, class A1, class A2>
399   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
400     void *Buffer = pushCleanup(Kind, sizeof(T));
401     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
402     (void) Obj;
403   }
404 
405   /// Push a lazily-created cleanup on the stack.
406   template <class T, class A0, class A1, class A2, class A3>
407   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
408     void *Buffer = pushCleanup(Kind, sizeof(T));
409     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
410     (void) Obj;
411   }
412 
413   /// Push a lazily-created cleanup on the stack.
414   template <class T, class A0, class A1, class A2, class A3, class A4>
415   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
416     void *Buffer = pushCleanup(Kind, sizeof(T));
417     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
418     (void) Obj;
419   }
420 
421   // Feel free to add more variants of the following:
422 
423   /// Push a cleanup with non-constant storage requirements on the
424   /// stack.  The cleanup type must provide an additional static method:
425   ///   static size_t getExtraSize(size_t);
426   /// The argument to this method will be the value N, which will also
427   /// be passed as the first argument to the constructor.
428   ///
429   /// The data stored in the extra storage must obey the same
430   /// restrictions as normal cleanup member data.
431   ///
432   /// The pointer returned from this method is valid until the cleanup
433   /// stack is modified.
434   template <class T, class A0, class A1, class A2>
435   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
436     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
437     return new (Buffer) T(N, a0, a1, a2);
438   }
439 
440   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
441   void popCleanup();
442 
443   /// Push a set of catch handlers on the stack.  The catch is
444   /// uninitialized and will need to have the given number of handlers
445   /// set on it.
446   class EHCatchScope *pushCatch(unsigned NumHandlers);
447 
448   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
449   void popCatch();
450 
451   /// Push an exceptions filter on the stack.
452   class EHFilterScope *pushFilter(unsigned NumFilters);
453 
454   /// Pops an exceptions filter off the stack.
455   void popFilter();
456 
457   /// Push a terminate handler on the stack.
458   void pushTerminate();
459 
460   /// Pops a terminate handler off the stack.
461   void popTerminate();
462 
463   /// Determines whether the exception-scopes stack is empty.
464   bool empty() const { return StartOfData == EndOfBuffer; }
465 
466   bool requiresLandingPad() const {
467     return InnermostEHScope != stable_end();
468   }
469 
470   /// Determines whether there are any normal cleanups on the stack.
471   bool hasNormalCleanups() const {
472     return InnermostNormalCleanup != stable_end();
473   }
474 
475   /// Returns the innermost normal cleanup on the stack, or
476   /// stable_end() if there are no normal cleanups.
477   stable_iterator getInnermostNormalCleanup() const {
478     return InnermostNormalCleanup;
479   }
480   stable_iterator getInnermostActiveNormalCleanup() const;
481 
482   stable_iterator getInnermostEHScope() const {
483     return InnermostEHScope;
484   }
485 
486   stable_iterator getInnermostActiveEHScope() const;
487 
488   /// An unstable reference to a scope-stack depth.  Invalidated by
489   /// pushes but not pops.
490   class iterator;
491 
492   /// Returns an iterator pointing to the innermost EH scope.
493   iterator begin() const;
494 
495   /// Returns an iterator pointing to the outermost EH scope.
496   iterator end() const;
497 
498   /// Create a stable reference to the top of the EH stack.  The
499   /// returned reference is valid until that scope is popped off the
500   /// stack.
501   stable_iterator stable_begin() const {
502     return stable_iterator(EndOfBuffer - StartOfData);
503   }
504 
505   /// Create a stable reference to the bottom of the EH stack.
506   static stable_iterator stable_end() {
507     return stable_iterator(0);
508   }
509 
510   /// Translates an iterator into a stable_iterator.
511   stable_iterator stabilize(iterator it) const;
512 
513   /// Turn a stable reference to a scope depth into a unstable pointer
514   /// to the EH stack.
515   iterator find(stable_iterator save) const;
516 
517   /// Removes the cleanup pointed to by the given stable_iterator.
518   void removeCleanup(stable_iterator save);
519 
520   /// Add a branch fixup to the current cleanup scope.
521   BranchFixup &addBranchFixup() {
522     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
523     BranchFixups.push_back(BranchFixup());
524     return BranchFixups.back();
525   }
526 
527   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
528   BranchFixup &getBranchFixup(unsigned I) {
529     assert(I < getNumBranchFixups());
530     return BranchFixups[I];
531   }
532 
533   /// Pops lazily-removed fixups from the end of the list.  This
534   /// should only be called by procedures which have just popped a
535   /// cleanup or resolved one or more fixups.
536   void popNullFixups();
537 
538   /// Clears the branch-fixups list.  This should only be called by
539   /// ResolveAllBranchFixups.
540   void clearFixups() { BranchFixups.clear(); }
541 };
542 
543 /// CodeGenFunction - This class organizes the per-function state that is used
544 /// while generating LLVM code.
545 class CodeGenFunction : public CodeGenTypeCache {
546   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
547   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
548 
549   friend class CGCXXABI;
550 public:
551   /// A jump destination is an abstract label, branching to which may
552   /// require a jump out through normal cleanups.
553   struct JumpDest {
554     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
555     JumpDest(llvm::BasicBlock *Block,
556              EHScopeStack::stable_iterator Depth,
557              unsigned Index)
558       : Block(Block), ScopeDepth(Depth), Index(Index) {}
559 
560     bool isValid() const { return Block != 0; }
561     llvm::BasicBlock *getBlock() const { return Block; }
562     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
563     unsigned getDestIndex() const { return Index; }
564 
565   private:
566     llvm::BasicBlock *Block;
567     EHScopeStack::stable_iterator ScopeDepth;
568     unsigned Index;
569   };
570 
571   CodeGenModule &CGM;  // Per-module state.
572   const TargetInfo &Target;
573 
574   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
575   CGBuilderTy Builder;
576 
577   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
578   /// This excludes BlockDecls.
579   const Decl *CurFuncDecl;
580   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
581   const Decl *CurCodeDecl;
582   const CGFunctionInfo *CurFnInfo;
583   QualType FnRetTy;
584   llvm::Function *CurFn;
585 
586   /// CurGD - The GlobalDecl for the current function being compiled.
587   GlobalDecl CurGD;
588 
589   /// PrologueCleanupDepth - The cleanup depth enclosing all the
590   /// cleanups associated with the parameters.
591   EHScopeStack::stable_iterator PrologueCleanupDepth;
592 
593   /// ReturnBlock - Unified return block.
594   JumpDest ReturnBlock;
595 
596   /// ReturnValue - The temporary alloca to hold the return value. This is null
597   /// iff the function has no return value.
598   llvm::Value *ReturnValue;
599 
600   /// AllocaInsertPoint - This is an instruction in the entry block before which
601   /// we prefer to insert allocas.
602   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
603 
604   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
605   /// potentially higher performance penalties.
606   unsigned char BoundsChecking;
607 
608   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
609   /// calls to EmitTypeCheck can be skipped.
610   bool SanitizePerformTypeCheck;
611 
612   /// \brief Sanitizer options to use for this function.
613   const SanitizerOptions *SanOpts;
614 
615   /// In ARC, whether we should autorelease the return value.
616   bool AutoreleaseResult;
617 
618   const CodeGen::CGBlockInfo *BlockInfo;
619   llvm::Value *BlockPointer;
620 
621   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
622   FieldDecl *LambdaThisCaptureField;
623 
624   /// \brief A mapping from NRVO variables to the flags used to indicate
625   /// when the NRVO has been applied to this variable.
626   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
627 
628   EHScopeStack EHStack;
629 
630   /// i32s containing the indexes of the cleanup destinations.
631   llvm::AllocaInst *NormalCleanupDest;
632 
633   unsigned NextCleanupDestIndex;
634 
635   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
636   CGBlockInfo *FirstBlockInfo;
637 
638   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
639   llvm::BasicBlock *EHResumeBlock;
640 
641   /// The exception slot.  All landing pads write the current exception pointer
642   /// into this alloca.
643   llvm::Value *ExceptionSlot;
644 
645   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
646   /// write the current selector value into this alloca.
647   llvm::AllocaInst *EHSelectorSlot;
648 
649   /// Emits a landing pad for the current EH stack.
650   llvm::BasicBlock *EmitLandingPad();
651 
652   llvm::BasicBlock *getInvokeDestImpl();
653 
654   template <class T>
655   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
656     return DominatingValue<T>::save(*this, value);
657   }
658 
659 public:
660   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
661   /// rethrows.
662   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
663 
664   /// A class controlling the emission of a finally block.
665   class FinallyInfo {
666     /// Where the catchall's edge through the cleanup should go.
667     JumpDest RethrowDest;
668 
669     /// A function to call to enter the catch.
670     llvm::Constant *BeginCatchFn;
671 
672     /// An i1 variable indicating whether or not the @finally is
673     /// running for an exception.
674     llvm::AllocaInst *ForEHVar;
675 
676     /// An i8* variable into which the exception pointer to rethrow
677     /// has been saved.
678     llvm::AllocaInst *SavedExnVar;
679 
680   public:
681     void enter(CodeGenFunction &CGF, const Stmt *Finally,
682                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
683                llvm::Constant *rethrowFn);
684     void exit(CodeGenFunction &CGF);
685   };
686 
687   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
688   /// current full-expression.  Safe against the possibility that
689   /// we're currently inside a conditionally-evaluated expression.
690   template <class T, class A0>
691   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
692     // If we're not in a conditional branch, or if none of the
693     // arguments requires saving, then use the unconditional cleanup.
694     if (!isInConditionalBranch())
695       return EHStack.pushCleanup<T>(kind, a0);
696 
697     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
698 
699     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
700     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
701     initFullExprCleanup();
702   }
703 
704   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
705   /// current full-expression.  Safe against the possibility that
706   /// we're currently inside a conditionally-evaluated expression.
707   template <class T, class A0, class A1>
708   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
709     // If we're not in a conditional branch, or if none of the
710     // arguments requires saving, then use the unconditional cleanup.
711     if (!isInConditionalBranch())
712       return EHStack.pushCleanup<T>(kind, a0, a1);
713 
714     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
715     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
716 
717     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
718     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
719     initFullExprCleanup();
720   }
721 
722   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
723   /// current full-expression.  Safe against the possibility that
724   /// we're currently inside a conditionally-evaluated expression.
725   template <class T, class A0, class A1, class A2>
726   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
727     // If we're not in a conditional branch, or if none of the
728     // arguments requires saving, then use the unconditional cleanup.
729     if (!isInConditionalBranch()) {
730       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
731     }
732 
733     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
734     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
735     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
736 
737     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
738     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
739     initFullExprCleanup();
740   }
741 
742   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
743   /// current full-expression.  Safe against the possibility that
744   /// we're currently inside a conditionally-evaluated expression.
745   template <class T, class A0, class A1, class A2, class A3>
746   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
747     // If we're not in a conditional branch, or if none of the
748     // arguments requires saving, then use the unconditional cleanup.
749     if (!isInConditionalBranch()) {
750       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
751     }
752 
753     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
754     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
755     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
756     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
757 
758     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
759     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
760                                      a2_saved, a3_saved);
761     initFullExprCleanup();
762   }
763 
764   /// Set up the last cleaup that was pushed as a conditional
765   /// full-expression cleanup.
766   void initFullExprCleanup();
767 
768   /// PushDestructorCleanup - Push a cleanup to call the
769   /// complete-object destructor of an object of the given type at the
770   /// given address.  Does nothing if T is not a C++ class type with a
771   /// non-trivial destructor.
772   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
773 
774   /// PushDestructorCleanup - Push a cleanup to call the
775   /// complete-object variant of the given destructor on the object at
776   /// the given address.
777   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
778                              llvm::Value *Addr);
779 
780   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
781   /// process all branch fixups.
782   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
783 
784   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
785   /// The block cannot be reactivated.  Pops it if it's the top of the
786   /// stack.
787   ///
788   /// \param DominatingIP - An instruction which is known to
789   ///   dominate the current IP (if set) and which lies along
790   ///   all paths of execution between the current IP and the
791   ///   the point at which the cleanup comes into scope.
792   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
793                               llvm::Instruction *DominatingIP);
794 
795   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
796   /// Cannot be used to resurrect a deactivated cleanup.
797   ///
798   /// \param DominatingIP - An instruction which is known to
799   ///   dominate the current IP (if set) and which lies along
800   ///   all paths of execution between the current IP and the
801   ///   the point at which the cleanup comes into scope.
802   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
803                             llvm::Instruction *DominatingIP);
804 
805   /// \brief Enters a new scope for capturing cleanups, all of which
806   /// will be executed once the scope is exited.
807   class RunCleanupsScope {
808     EHScopeStack::stable_iterator CleanupStackDepth;
809     bool OldDidCallStackSave;
810   protected:
811     bool PerformCleanup;
812   private:
813 
814     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
815     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
816 
817   protected:
818     CodeGenFunction& CGF;
819 
820   public:
821     /// \brief Enter a new cleanup scope.
822     explicit RunCleanupsScope(CodeGenFunction &CGF)
823       : PerformCleanup(true), CGF(CGF)
824     {
825       CleanupStackDepth = CGF.EHStack.stable_begin();
826       OldDidCallStackSave = CGF.DidCallStackSave;
827       CGF.DidCallStackSave = false;
828     }
829 
830     /// \brief Exit this cleanup scope, emitting any accumulated
831     /// cleanups.
832     ~RunCleanupsScope() {
833       if (PerformCleanup) {
834         CGF.DidCallStackSave = OldDidCallStackSave;
835         CGF.PopCleanupBlocks(CleanupStackDepth);
836       }
837     }
838 
839     /// \brief Determine whether this scope requires any cleanups.
840     bool requiresCleanups() const {
841       return CGF.EHStack.stable_begin() != CleanupStackDepth;
842     }
843 
844     /// \brief Force the emission of cleanups now, instead of waiting
845     /// until this object is destroyed.
846     void ForceCleanup() {
847       assert(PerformCleanup && "Already forced cleanup");
848       CGF.DidCallStackSave = OldDidCallStackSave;
849       CGF.PopCleanupBlocks(CleanupStackDepth);
850       PerformCleanup = false;
851     }
852   };
853 
854   class LexicalScope: protected RunCleanupsScope {
855     SourceRange Range;
856 
857     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
858     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
859 
860   public:
861     /// \brief Enter a new cleanup scope.
862     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
863       : RunCleanupsScope(CGF), Range(Range) {
864       if (CGDebugInfo *DI = CGF.getDebugInfo())
865         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
866     }
867 
868     /// \brief Exit this cleanup scope, emitting any accumulated
869     /// cleanups.
870     ~LexicalScope() {
871       if (PerformCleanup) endLexicalScope();
872     }
873 
874     /// \brief Force the emission of cleanups now, instead of waiting
875     /// until this object is destroyed.
876     void ForceCleanup() {
877       RunCleanupsScope::ForceCleanup();
878       endLexicalScope();
879     }
880 
881   private:
882     void endLexicalScope() {
883       if (CGDebugInfo *DI = CGF.getDebugInfo())
884         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
885     }
886   };
887 
888 
889   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
890   /// the cleanup blocks that have been added.
891   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
892 
893   void ResolveBranchFixups(llvm::BasicBlock *Target);
894 
895   /// The given basic block lies in the current EH scope, but may be a
896   /// target of a potentially scope-crossing jump; get a stable handle
897   /// to which we can perform this jump later.
898   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
899     return JumpDest(Target,
900                     EHStack.getInnermostNormalCleanup(),
901                     NextCleanupDestIndex++);
902   }
903 
904   /// The given basic block lies in the current EH scope, but may be a
905   /// target of a potentially scope-crossing jump; get a stable handle
906   /// to which we can perform this jump later.
907   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
908     return getJumpDestInCurrentScope(createBasicBlock(Name));
909   }
910 
911   /// EmitBranchThroughCleanup - Emit a branch from the current insert
912   /// block through the normal cleanup handling code (if any) and then
913   /// on to \arg Dest.
914   void EmitBranchThroughCleanup(JumpDest Dest);
915 
916   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
917   /// specified destination obviously has no cleanups to run.  'false' is always
918   /// a conservatively correct answer for this method.
919   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
920 
921   /// popCatchScope - Pops the catch scope at the top of the EHScope
922   /// stack, emitting any required code (other than the catch handlers
923   /// themselves).
924   void popCatchScope();
925 
926   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
927   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
928 
929   /// An object to manage conditionally-evaluated expressions.
930   class ConditionalEvaluation {
931     llvm::BasicBlock *StartBB;
932 
933   public:
934     ConditionalEvaluation(CodeGenFunction &CGF)
935       : StartBB(CGF.Builder.GetInsertBlock()) {}
936 
937     void begin(CodeGenFunction &CGF) {
938       assert(CGF.OutermostConditional != this);
939       if (!CGF.OutermostConditional)
940         CGF.OutermostConditional = this;
941     }
942 
943     void end(CodeGenFunction &CGF) {
944       assert(CGF.OutermostConditional != 0);
945       if (CGF.OutermostConditional == this)
946         CGF.OutermostConditional = 0;
947     }
948 
949     /// Returns a block which will be executed prior to each
950     /// evaluation of the conditional code.
951     llvm::BasicBlock *getStartingBlock() const {
952       return StartBB;
953     }
954   };
955 
956   /// isInConditionalBranch - Return true if we're currently emitting
957   /// one branch or the other of a conditional expression.
958   bool isInConditionalBranch() const { return OutermostConditional != 0; }
959 
960   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
961     assert(isInConditionalBranch());
962     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
963     new llvm::StoreInst(value, addr, &block->back());
964   }
965 
966   /// An RAII object to record that we're evaluating a statement
967   /// expression.
968   class StmtExprEvaluation {
969     CodeGenFunction &CGF;
970 
971     /// We have to save the outermost conditional: cleanups in a
972     /// statement expression aren't conditional just because the
973     /// StmtExpr is.
974     ConditionalEvaluation *SavedOutermostConditional;
975 
976   public:
977     StmtExprEvaluation(CodeGenFunction &CGF)
978       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
979       CGF.OutermostConditional = 0;
980     }
981 
982     ~StmtExprEvaluation() {
983       CGF.OutermostConditional = SavedOutermostConditional;
984       CGF.EnsureInsertPoint();
985     }
986   };
987 
988   /// An object which temporarily prevents a value from being
989   /// destroyed by aggressive peephole optimizations that assume that
990   /// all uses of a value have been realized in the IR.
991   class PeepholeProtection {
992     llvm::Instruction *Inst;
993     friend class CodeGenFunction;
994 
995   public:
996     PeepholeProtection() : Inst(0) {}
997   };
998 
999   /// A non-RAII class containing all the information about a bound
1000   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1001   /// this which makes individual mappings very simple; using this
1002   /// class directly is useful when you have a variable number of
1003   /// opaque values or don't want the RAII functionality for some
1004   /// reason.
1005   class OpaqueValueMappingData {
1006     const OpaqueValueExpr *OpaqueValue;
1007     bool BoundLValue;
1008     CodeGenFunction::PeepholeProtection Protection;
1009 
1010     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1011                            bool boundLValue)
1012       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1013   public:
1014     OpaqueValueMappingData() : OpaqueValue(0) {}
1015 
1016     static bool shouldBindAsLValue(const Expr *expr) {
1017       // gl-values should be bound as l-values for obvious reasons.
1018       // Records should be bound as l-values because IR generation
1019       // always keeps them in memory.  Expressions of function type
1020       // act exactly like l-values but are formally required to be
1021       // r-values in C.
1022       return expr->isGLValue() ||
1023              expr->getType()->isRecordType() ||
1024              expr->getType()->isFunctionType();
1025     }
1026 
1027     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1028                                        const OpaqueValueExpr *ov,
1029                                        const Expr *e) {
1030       if (shouldBindAsLValue(ov))
1031         return bind(CGF, ov, CGF.EmitLValue(e));
1032       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1033     }
1034 
1035     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1036                                        const OpaqueValueExpr *ov,
1037                                        const LValue &lv) {
1038       assert(shouldBindAsLValue(ov));
1039       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1040       return OpaqueValueMappingData(ov, true);
1041     }
1042 
1043     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1044                                        const OpaqueValueExpr *ov,
1045                                        const RValue &rv) {
1046       assert(!shouldBindAsLValue(ov));
1047       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1048 
1049       OpaqueValueMappingData data(ov, false);
1050 
1051       // Work around an extremely aggressive peephole optimization in
1052       // EmitScalarConversion which assumes that all other uses of a
1053       // value are extant.
1054       data.Protection = CGF.protectFromPeepholes(rv);
1055 
1056       return data;
1057     }
1058 
1059     bool isValid() const { return OpaqueValue != 0; }
1060     void clear() { OpaqueValue = 0; }
1061 
1062     void unbind(CodeGenFunction &CGF) {
1063       assert(OpaqueValue && "no data to unbind!");
1064 
1065       if (BoundLValue) {
1066         CGF.OpaqueLValues.erase(OpaqueValue);
1067       } else {
1068         CGF.OpaqueRValues.erase(OpaqueValue);
1069         CGF.unprotectFromPeepholes(Protection);
1070       }
1071     }
1072   };
1073 
1074   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1075   class OpaqueValueMapping {
1076     CodeGenFunction &CGF;
1077     OpaqueValueMappingData Data;
1078 
1079   public:
1080     static bool shouldBindAsLValue(const Expr *expr) {
1081       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1082     }
1083 
1084     /// Build the opaque value mapping for the given conditional
1085     /// operator if it's the GNU ?: extension.  This is a common
1086     /// enough pattern that the convenience operator is really
1087     /// helpful.
1088     ///
1089     OpaqueValueMapping(CodeGenFunction &CGF,
1090                        const AbstractConditionalOperator *op) : CGF(CGF) {
1091       if (isa<ConditionalOperator>(op))
1092         // Leave Data empty.
1093         return;
1094 
1095       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1096       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1097                                           e->getCommon());
1098     }
1099 
1100     OpaqueValueMapping(CodeGenFunction &CGF,
1101                        const OpaqueValueExpr *opaqueValue,
1102                        LValue lvalue)
1103       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1104     }
1105 
1106     OpaqueValueMapping(CodeGenFunction &CGF,
1107                        const OpaqueValueExpr *opaqueValue,
1108                        RValue rvalue)
1109       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1110     }
1111 
1112     void pop() {
1113       Data.unbind(CGF);
1114       Data.clear();
1115     }
1116 
1117     ~OpaqueValueMapping() {
1118       if (Data.isValid()) Data.unbind(CGF);
1119     }
1120   };
1121 
1122   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1123   /// number that holds the value.
1124   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1125 
1126   /// BuildBlockByrefAddress - Computes address location of the
1127   /// variable which is declared as __block.
1128   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1129                                       const VarDecl *V);
1130 private:
1131   CGDebugInfo *DebugInfo;
1132   bool DisableDebugInfo;
1133 
1134   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1135   /// calling llvm.stacksave for multiple VLAs in the same scope.
1136   bool DidCallStackSave;
1137 
1138   /// IndirectBranch - The first time an indirect goto is seen we create a block
1139   /// with an indirect branch.  Every time we see the address of a label taken,
1140   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1141   /// codegen'd as a jump to the IndirectBranch's basic block.
1142   llvm::IndirectBrInst *IndirectBranch;
1143 
1144   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1145   /// decls.
1146   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1147   DeclMapTy LocalDeclMap;
1148 
1149   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1150   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1151 
1152   // BreakContinueStack - This keeps track of where break and continue
1153   // statements should jump to.
1154   struct BreakContinue {
1155     BreakContinue(JumpDest Break, JumpDest Continue)
1156       : BreakBlock(Break), ContinueBlock(Continue) {}
1157 
1158     JumpDest BreakBlock;
1159     JumpDest ContinueBlock;
1160   };
1161   SmallVector<BreakContinue, 8> BreakContinueStack;
1162 
1163   /// SwitchInsn - This is nearest current switch instruction. It is null if
1164   /// current context is not in a switch.
1165   llvm::SwitchInst *SwitchInsn;
1166 
1167   /// CaseRangeBlock - This block holds if condition check for last case
1168   /// statement range in current switch instruction.
1169   llvm::BasicBlock *CaseRangeBlock;
1170 
1171   /// OpaqueLValues - Keeps track of the current set of opaque value
1172   /// expressions.
1173   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1174   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1175 
1176   // VLASizeMap - This keeps track of the associated size for each VLA type.
1177   // We track this by the size expression rather than the type itself because
1178   // in certain situations, like a const qualifier applied to an VLA typedef,
1179   // multiple VLA types can share the same size expression.
1180   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1181   // enter/leave scopes.
1182   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1183 
1184   /// A block containing a single 'unreachable' instruction.  Created
1185   /// lazily by getUnreachableBlock().
1186   llvm::BasicBlock *UnreachableBlock;
1187 
1188   /// CXXThisDecl - When generating code for a C++ member function,
1189   /// this will hold the implicit 'this' declaration.
1190   ImplicitParamDecl *CXXABIThisDecl;
1191   llvm::Value *CXXABIThisValue;
1192   llvm::Value *CXXThisValue;
1193 
1194   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1195   /// destructor, this will hold the implicit argument (e.g. VTT).
1196   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1197   llvm::Value *CXXStructorImplicitParamValue;
1198 
1199   /// OutermostConditional - Points to the outermost active
1200   /// conditional control.  This is used so that we know if a
1201   /// temporary should be destroyed conditionally.
1202   ConditionalEvaluation *OutermostConditional;
1203 
1204 
1205   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1206   /// type as well as the field number that contains the actual data.
1207   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1208                                               unsigned> > ByRefValueInfo;
1209 
1210   llvm::BasicBlock *TerminateLandingPad;
1211   llvm::BasicBlock *TerminateHandler;
1212   llvm::BasicBlock *TrapBB;
1213 
1214   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1215   /// In the kernel metadata node, reference the kernel function and metadata
1216   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1217   /// - A node for the vec_type_hint(<type>) qualifier contains string
1218   ///   "vec_type_hint", an undefined value of the <type> data type,
1219   ///   and a Boolean that is true if the <type> is integer and signed.
1220   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1221   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1222   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1223   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1224   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1225                                 llvm::Function *Fn);
1226 
1227 public:
1228   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1229   ~CodeGenFunction();
1230 
1231   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1232   ASTContext &getContext() const { return CGM.getContext(); }
1233   /// Returns true if DebugInfo is actually initialized.
1234   bool maybeInitializeDebugInfo() {
1235     if (CGM.getModuleDebugInfo()) {
1236       DebugInfo = CGM.getModuleDebugInfo();
1237       return true;
1238     }
1239     return false;
1240   }
1241   CGDebugInfo *getDebugInfo() {
1242     if (DisableDebugInfo)
1243       return NULL;
1244     return DebugInfo;
1245   }
1246   void disableDebugInfo() { DisableDebugInfo = true; }
1247   void enableDebugInfo() { DisableDebugInfo = false; }
1248 
1249   bool shouldUseFusedARCCalls() {
1250     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1251   }
1252 
1253   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1254 
1255   /// Returns a pointer to the function's exception object and selector slot,
1256   /// which is assigned in every landing pad.
1257   llvm::Value *getExceptionSlot();
1258   llvm::Value *getEHSelectorSlot();
1259 
1260   /// Returns the contents of the function's exception object and selector
1261   /// slots.
1262   llvm::Value *getExceptionFromSlot();
1263   llvm::Value *getSelectorFromSlot();
1264 
1265   llvm::Value *getNormalCleanupDestSlot();
1266 
1267   llvm::BasicBlock *getUnreachableBlock() {
1268     if (!UnreachableBlock) {
1269       UnreachableBlock = createBasicBlock("unreachable");
1270       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1271     }
1272     return UnreachableBlock;
1273   }
1274 
1275   llvm::BasicBlock *getInvokeDest() {
1276     if (!EHStack.requiresLandingPad()) return 0;
1277     return getInvokeDestImpl();
1278   }
1279 
1280   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1281 
1282   //===--------------------------------------------------------------------===//
1283   //                                  Cleanups
1284   //===--------------------------------------------------------------------===//
1285 
1286   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1287 
1288   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1289                                         llvm::Value *arrayEndPointer,
1290                                         QualType elementType,
1291                                         Destroyer *destroyer);
1292   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1293                                       llvm::Value *arrayEnd,
1294                                       QualType elementType,
1295                                       Destroyer *destroyer);
1296 
1297   void pushDestroy(QualType::DestructionKind dtorKind,
1298                    llvm::Value *addr, QualType type);
1299   void pushEHDestroy(QualType::DestructionKind dtorKind,
1300                      llvm::Value *addr, QualType type);
1301   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1302                    Destroyer *destroyer, bool useEHCleanupForArray);
1303   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1304                    bool useEHCleanupForArray);
1305   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1306                                         QualType type,
1307                                         Destroyer *destroyer,
1308                                         bool useEHCleanupForArray);
1309   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1310                         QualType type, Destroyer *destroyer,
1311                         bool checkZeroLength, bool useEHCleanup);
1312 
1313   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1314 
1315   /// Determines whether an EH cleanup is required to destroy a type
1316   /// with the given destruction kind.
1317   bool needsEHCleanup(QualType::DestructionKind kind) {
1318     switch (kind) {
1319     case QualType::DK_none:
1320       return false;
1321     case QualType::DK_cxx_destructor:
1322     case QualType::DK_objc_weak_lifetime:
1323       return getLangOpts().Exceptions;
1324     case QualType::DK_objc_strong_lifetime:
1325       return getLangOpts().Exceptions &&
1326              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1327     }
1328     llvm_unreachable("bad destruction kind");
1329   }
1330 
1331   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1332     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1333   }
1334 
1335   //===--------------------------------------------------------------------===//
1336   //                                  Objective-C
1337   //===--------------------------------------------------------------------===//
1338 
1339   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1340 
1341   void StartObjCMethod(const ObjCMethodDecl *MD,
1342                        const ObjCContainerDecl *CD,
1343                        SourceLocation StartLoc);
1344 
1345   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1346   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1347                           const ObjCPropertyImplDecl *PID);
1348   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1349                               const ObjCPropertyImplDecl *propImpl,
1350                               const ObjCMethodDecl *GetterMothodDecl,
1351                               llvm::Constant *AtomicHelperFn);
1352 
1353   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1354                                   ObjCMethodDecl *MD, bool ctor);
1355 
1356   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1357   /// for the given property.
1358   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1359                           const ObjCPropertyImplDecl *PID);
1360   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1361                               const ObjCPropertyImplDecl *propImpl,
1362                               llvm::Constant *AtomicHelperFn);
1363   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1364   bool IvarTypeWithAggrGCObjects(QualType Ty);
1365 
1366   //===--------------------------------------------------------------------===//
1367   //                                  Block Bits
1368   //===--------------------------------------------------------------------===//
1369 
1370   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1371   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1372   static void destroyBlockInfos(CGBlockInfo *info);
1373   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1374                                            const CGBlockInfo &Info,
1375                                            llvm::StructType *,
1376                                            llvm::Constant *BlockVarLayout);
1377 
1378   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1379                                         const CGBlockInfo &Info,
1380                                         const Decl *OuterFuncDecl,
1381                                         const DeclMapTy &ldm,
1382                                         bool IsLambdaConversionToBlock);
1383 
1384   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1385   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1386   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1387                                              const ObjCPropertyImplDecl *PID);
1388   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1389                                              const ObjCPropertyImplDecl *PID);
1390   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1391 
1392   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1393 
1394   class AutoVarEmission;
1395 
1396   void emitByrefStructureInit(const AutoVarEmission &emission);
1397   void enterByrefCleanup(const AutoVarEmission &emission);
1398 
1399   llvm::Value *LoadBlockStruct() {
1400     assert(BlockPointer && "no block pointer set!");
1401     return BlockPointer;
1402   }
1403 
1404   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1405   void AllocateBlockDecl(const DeclRefExpr *E);
1406   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1407   llvm::Type *BuildByRefType(const VarDecl *var);
1408 
1409   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1410                     const CGFunctionInfo &FnInfo);
1411   void StartFunction(GlobalDecl GD, QualType RetTy,
1412                      llvm::Function *Fn,
1413                      const CGFunctionInfo &FnInfo,
1414                      const FunctionArgList &Args,
1415                      SourceLocation StartLoc);
1416 
1417   void EmitConstructorBody(FunctionArgList &Args);
1418   void EmitDestructorBody(FunctionArgList &Args);
1419   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1420   void EmitFunctionBody(FunctionArgList &Args);
1421 
1422   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1423                                   CallArgList &CallArgs);
1424   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1425   void EmitLambdaBlockInvokeBody();
1426   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1427   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1428 
1429   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1430   /// emission when possible.
1431   void EmitReturnBlock();
1432 
1433   /// FinishFunction - Complete IR generation of the current function. It is
1434   /// legal to call this function even if there is no current insertion point.
1435   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1436 
1437   /// GenerateThunk - Generate a thunk for the given method.
1438   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1439                      GlobalDecl GD, const ThunkInfo &Thunk);
1440 
1441   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1442                             GlobalDecl GD, const ThunkInfo &Thunk);
1443 
1444   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1445                         FunctionArgList &Args);
1446 
1447   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1448                                ArrayRef<VarDecl *> ArrayIndexes);
1449 
1450   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1451   /// subobject.
1452   ///
1453   void InitializeVTablePointer(BaseSubobject Base,
1454                                const CXXRecordDecl *NearestVBase,
1455                                CharUnits OffsetFromNearestVBase,
1456                                llvm::Constant *VTable,
1457                                const CXXRecordDecl *VTableClass);
1458 
1459   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1460   void InitializeVTablePointers(BaseSubobject Base,
1461                                 const CXXRecordDecl *NearestVBase,
1462                                 CharUnits OffsetFromNearestVBase,
1463                                 bool BaseIsNonVirtualPrimaryBase,
1464                                 llvm::Constant *VTable,
1465                                 const CXXRecordDecl *VTableClass,
1466                                 VisitedVirtualBasesSetTy& VBases);
1467 
1468   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1469 
1470   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1471   /// to by This.
1472   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1473 
1474   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1475   /// given phase of destruction for a destructor.  The end result
1476   /// should call destructors on members and base classes in reverse
1477   /// order of their construction.
1478   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1479 
1480   /// ShouldInstrumentFunction - Return true if the current function should be
1481   /// instrumented with __cyg_profile_func_* calls
1482   bool ShouldInstrumentFunction();
1483 
1484   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1485   /// instrumentation function with the current function and the call site, if
1486   /// function instrumentation is enabled.
1487   void EmitFunctionInstrumentation(const char *Fn);
1488 
1489   /// EmitMCountInstrumentation - Emit call to .mcount.
1490   void EmitMCountInstrumentation();
1491 
1492   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1493   /// arguments for the given function. This is also responsible for naming the
1494   /// LLVM function arguments.
1495   void EmitFunctionProlog(const CGFunctionInfo &FI,
1496                           llvm::Function *Fn,
1497                           const FunctionArgList &Args);
1498 
1499   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1500   /// given temporary.
1501   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1502 
1503   /// EmitStartEHSpec - Emit the start of the exception spec.
1504   void EmitStartEHSpec(const Decl *D);
1505 
1506   /// EmitEndEHSpec - Emit the end of the exception spec.
1507   void EmitEndEHSpec(const Decl *D);
1508 
1509   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1510   llvm::BasicBlock *getTerminateLandingPad();
1511 
1512   /// getTerminateHandler - Return a handler (not a landing pad, just
1513   /// a catch handler) that just calls terminate.  This is used when
1514   /// a terminate scope encloses a try.
1515   llvm::BasicBlock *getTerminateHandler();
1516 
1517   llvm::Type *ConvertTypeForMem(QualType T);
1518   llvm::Type *ConvertType(QualType T);
1519   llvm::Type *ConvertType(const TypeDecl *T) {
1520     return ConvertType(getContext().getTypeDeclType(T));
1521   }
1522 
1523   /// LoadObjCSelf - Load the value of self. This function is only valid while
1524   /// generating code for an Objective-C method.
1525   llvm::Value *LoadObjCSelf();
1526 
1527   /// TypeOfSelfObject - Return type of object that this self represents.
1528   QualType TypeOfSelfObject();
1529 
1530   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1531   /// an aggregate LLVM type or is void.
1532   static TypeEvaluationKind getEvaluationKind(QualType T);
1533 
1534   static bool hasScalarEvaluationKind(QualType T) {
1535     return getEvaluationKind(T) == TEK_Scalar;
1536   }
1537 
1538   static bool hasAggregateEvaluationKind(QualType T) {
1539     return getEvaluationKind(T) == TEK_Aggregate;
1540   }
1541 
1542   /// createBasicBlock - Create an LLVM basic block.
1543   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1544                                      llvm::Function *parent = 0,
1545                                      llvm::BasicBlock *before = 0) {
1546 #ifdef NDEBUG
1547     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1548 #else
1549     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1550 #endif
1551   }
1552 
1553   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1554   /// label maps to.
1555   JumpDest getJumpDestForLabel(const LabelDecl *S);
1556 
1557   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1558   /// another basic block, simplify it. This assumes that no other code could
1559   /// potentially reference the basic block.
1560   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1561 
1562   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1563   /// adding a fall-through branch from the current insert block if
1564   /// necessary. It is legal to call this function even if there is no current
1565   /// insertion point.
1566   ///
1567   /// IsFinished - If true, indicates that the caller has finished emitting
1568   /// branches to the given block and does not expect to emit code into it. This
1569   /// means the block can be ignored if it is unreachable.
1570   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1571 
1572   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1573   /// near its uses, and leave the insertion point in it.
1574   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1575 
1576   /// EmitBranch - Emit a branch to the specified basic block from the current
1577   /// insert block, taking care to avoid creation of branches from dummy
1578   /// blocks. It is legal to call this function even if there is no current
1579   /// insertion point.
1580   ///
1581   /// This function clears the current insertion point. The caller should follow
1582   /// calls to this function with calls to Emit*Block prior to generation new
1583   /// code.
1584   void EmitBranch(llvm::BasicBlock *Block);
1585 
1586   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1587   /// indicates that the current code being emitted is unreachable.
1588   bool HaveInsertPoint() const {
1589     return Builder.GetInsertBlock() != 0;
1590   }
1591 
1592   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1593   /// emitted IR has a place to go. Note that by definition, if this function
1594   /// creates a block then that block is unreachable; callers may do better to
1595   /// detect when no insertion point is defined and simply skip IR generation.
1596   void EnsureInsertPoint() {
1597     if (!HaveInsertPoint())
1598       EmitBlock(createBasicBlock());
1599   }
1600 
1601   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1602   /// specified stmt yet.
1603   void ErrorUnsupported(const Stmt *S, const char *Type,
1604                         bool OmitOnError=false);
1605 
1606   //===--------------------------------------------------------------------===//
1607   //                                  Helpers
1608   //===--------------------------------------------------------------------===//
1609 
1610   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1611                         CharUnits Alignment = CharUnits()) {
1612     return LValue::MakeAddr(V, T, Alignment, getContext(),
1613                             CGM.getTBAAInfo(T));
1614   }
1615 
1616   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1617     CharUnits Alignment;
1618     if (!T->isIncompleteType())
1619       Alignment = getContext().getTypeAlignInChars(T);
1620     return LValue::MakeAddr(V, T, Alignment, getContext(),
1621                             CGM.getTBAAInfo(T));
1622   }
1623 
1624   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1625   /// block. The caller is responsible for setting an appropriate alignment on
1626   /// the alloca.
1627   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1628                                      const Twine &Name = "tmp");
1629 
1630   /// InitTempAlloca - Provide an initial value for the given alloca.
1631   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1632 
1633   /// CreateIRTemp - Create a temporary IR object of the given type, with
1634   /// appropriate alignment. This routine should only be used when an temporary
1635   /// value needs to be stored into an alloca (for example, to avoid explicit
1636   /// PHI construction), but the type is the IR type, not the type appropriate
1637   /// for storing in memory.
1638   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1639 
1640   /// CreateMemTemp - Create a temporary memory object of the given type, with
1641   /// appropriate alignment.
1642   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1643 
1644   /// CreateAggTemp - Create a temporary memory object for the given
1645   /// aggregate type.
1646   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1647     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1648     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1649                                  T.getQualifiers(),
1650                                  AggValueSlot::IsNotDestructed,
1651                                  AggValueSlot::DoesNotNeedGCBarriers,
1652                                  AggValueSlot::IsNotAliased);
1653   }
1654 
1655   /// Emit a cast to void* in the appropriate address space.
1656   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1657 
1658   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1659   /// expression and compare the result against zero, returning an Int1Ty value.
1660   llvm::Value *EvaluateExprAsBool(const Expr *E);
1661 
1662   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1663   void EmitIgnoredExpr(const Expr *E);
1664 
1665   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1666   /// any type.  The result is returned as an RValue struct.  If this is an
1667   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1668   /// the result should be returned.
1669   ///
1670   /// \param ignoreResult True if the resulting value isn't used.
1671   RValue EmitAnyExpr(const Expr *E,
1672                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1673                      bool ignoreResult = false);
1674 
1675   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1676   // or the value of the expression, depending on how va_list is defined.
1677   llvm::Value *EmitVAListRef(const Expr *E);
1678 
1679   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1680   /// always be accessible even if no aggregate location is provided.
1681   RValue EmitAnyExprToTemp(const Expr *E);
1682 
1683   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1684   /// arbitrary expression into the given memory location.
1685   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1686                         Qualifiers Quals, bool IsInitializer);
1687 
1688   /// EmitExprAsInit - Emits the code necessary to initialize a
1689   /// location in memory with the given initializer.
1690   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1691                       LValue lvalue, bool capturedByInit);
1692 
1693   /// hasVolatileMember - returns true if aggregate type has a volatile
1694   /// member.
1695   bool hasVolatileMember(QualType T) {
1696     if (const RecordType *RT = T->getAs<RecordType>()) {
1697       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1698       return RD->hasVolatileMember();
1699     }
1700     return false;
1701   }
1702   /// EmitAggregateCopy - Emit an aggregate assignment.
1703   ///
1704   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1705   /// This is required for correctness when assigning non-POD structures in C++.
1706   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1707                            QualType EltTy) {
1708     bool IsVolatile = hasVolatileMember(EltTy);
1709     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1710                       true);
1711   }
1712 
1713   /// EmitAggregateCopy - Emit an aggregate copy.
1714   ///
1715   /// \param isVolatile - True iff either the source or the destination is
1716   /// volatile.
1717   /// \param isAssignment - If false, allow padding to be copied.  This often
1718   /// yields more efficient.
1719   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1720                          QualType EltTy, bool isVolatile=false,
1721                          CharUnits Alignment = CharUnits::Zero(),
1722                          bool isAssignment = false);
1723 
1724   /// StartBlock - Start new block named N. If insert block is a dummy block
1725   /// then reuse it.
1726   void StartBlock(const char *N);
1727 
1728   /// GetAddrOfLocalVar - Return the address of a local variable.
1729   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1730     llvm::Value *Res = LocalDeclMap[VD];
1731     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1732     return Res;
1733   }
1734 
1735   /// getOpaqueLValueMapping - Given an opaque value expression (which
1736   /// must be mapped to an l-value), return its mapping.
1737   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1738     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1739 
1740     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1741       it = OpaqueLValues.find(e);
1742     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1743     return it->second;
1744   }
1745 
1746   /// getOpaqueRValueMapping - Given an opaque value expression (which
1747   /// must be mapped to an r-value), return its mapping.
1748   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1749     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1750 
1751     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1752       it = OpaqueRValues.find(e);
1753     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1754     return it->second;
1755   }
1756 
1757   /// getAccessedFieldNo - Given an encoded value and a result number, return
1758   /// the input field number being accessed.
1759   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1760 
1761   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1762   llvm::BasicBlock *GetIndirectGotoBlock();
1763 
1764   /// EmitNullInitialization - Generate code to set a value of the given type to
1765   /// null, If the type contains data member pointers, they will be initialized
1766   /// to -1 in accordance with the Itanium C++ ABI.
1767   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1768 
1769   // EmitVAArg - Generate code to get an argument from the passed in pointer
1770   // and update it accordingly. The return value is a pointer to the argument.
1771   // FIXME: We should be able to get rid of this method and use the va_arg
1772   // instruction in LLVM instead once it works well enough.
1773   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1774 
1775   /// emitArrayLength - Compute the length of an array, even if it's a
1776   /// VLA, and drill down to the base element type.
1777   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1778                                QualType &baseType,
1779                                llvm::Value *&addr);
1780 
1781   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1782   /// the given variably-modified type and store them in the VLASizeMap.
1783   ///
1784   /// This function can be called with a null (unreachable) insert point.
1785   void EmitVariablyModifiedType(QualType Ty);
1786 
1787   /// getVLASize - Returns an LLVM value that corresponds to the size,
1788   /// in non-variably-sized elements, of a variable length array type,
1789   /// plus that largest non-variably-sized element type.  Assumes that
1790   /// the type has already been emitted with EmitVariablyModifiedType.
1791   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1792   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1793 
1794   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1795   /// generating code for an C++ member function.
1796   llvm::Value *LoadCXXThis() {
1797     assert(CXXThisValue && "no 'this' value for this function");
1798     return CXXThisValue;
1799   }
1800 
1801   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1802   /// virtual bases.
1803   // FIXME: Every place that calls LoadCXXVTT is something
1804   // that needs to be abstracted properly.
1805   llvm::Value *LoadCXXVTT() {
1806     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1807     return CXXStructorImplicitParamValue;
1808   }
1809 
1810   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1811   /// for a constructor/destructor.
1812   llvm::Value *LoadCXXStructorImplicitParam() {
1813     assert(CXXStructorImplicitParamValue &&
1814            "no implicit argument value for this function");
1815     return CXXStructorImplicitParamValue;
1816   }
1817 
1818   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1819   /// complete class to the given direct base.
1820   llvm::Value *
1821   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1822                                         const CXXRecordDecl *Derived,
1823                                         const CXXRecordDecl *Base,
1824                                         bool BaseIsVirtual);
1825 
1826   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1827   /// load of 'this' and returns address of the base class.
1828   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1829                                      const CXXRecordDecl *Derived,
1830                                      CastExpr::path_const_iterator PathBegin,
1831                                      CastExpr::path_const_iterator PathEnd,
1832                                      bool NullCheckValue);
1833 
1834   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1835                                         const CXXRecordDecl *Derived,
1836                                         CastExpr::path_const_iterator PathBegin,
1837                                         CastExpr::path_const_iterator PathEnd,
1838                                         bool NullCheckValue);
1839 
1840   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1841                                          const CXXRecordDecl *ClassDecl,
1842                                          const CXXRecordDecl *BaseClassDecl);
1843 
1844   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1845   /// base constructor/destructor with virtual bases.
1846   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1847   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1848   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1849                                bool Delegating);
1850 
1851   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1852                                       CXXCtorType CtorType,
1853                                       const FunctionArgList &Args);
1854   // It's important not to confuse this and the previous function. Delegating
1855   // constructors are the C++0x feature. The constructor delegate optimization
1856   // is used to reduce duplication in the base and complete consturctors where
1857   // they are substantially the same.
1858   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1859                                         const FunctionArgList &Args);
1860   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1861                               bool ForVirtualBase, bool Delegating,
1862                               llvm::Value *This,
1863                               CallExpr::const_arg_iterator ArgBeg,
1864                               CallExpr::const_arg_iterator ArgEnd);
1865 
1866   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1867                               llvm::Value *This, llvm::Value *Src,
1868                               CallExpr::const_arg_iterator ArgBeg,
1869                               CallExpr::const_arg_iterator ArgEnd);
1870 
1871   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1872                                   const ConstantArrayType *ArrayTy,
1873                                   llvm::Value *ArrayPtr,
1874                                   CallExpr::const_arg_iterator ArgBeg,
1875                                   CallExpr::const_arg_iterator ArgEnd,
1876                                   bool ZeroInitialization = false);
1877 
1878   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1879                                   llvm::Value *NumElements,
1880                                   llvm::Value *ArrayPtr,
1881                                   CallExpr::const_arg_iterator ArgBeg,
1882                                   CallExpr::const_arg_iterator ArgEnd,
1883                                   bool ZeroInitialization = false);
1884 
1885   static Destroyer destroyCXXObject;
1886 
1887   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1888                              bool ForVirtualBase, bool Delegating,
1889                              llvm::Value *This);
1890 
1891   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1892                                llvm::Value *NewPtr, llvm::Value *NumElements);
1893 
1894   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1895                         llvm::Value *Ptr);
1896 
1897   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1898   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1899 
1900   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1901                       QualType DeleteTy);
1902 
1903   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1904   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1905   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1906 
1907   void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1908   void EmitStdInitializerListCleanup(llvm::Value *loc,
1909                                      const InitListExpr *init);
1910 
1911   /// \brief Situations in which we might emit a check for the suitability of a
1912   ///        pointer or glvalue.
1913   enum TypeCheckKind {
1914     /// Checking the operand of a load. Must be suitably sized and aligned.
1915     TCK_Load,
1916     /// Checking the destination of a store. Must be suitably sized and aligned.
1917     TCK_Store,
1918     /// Checking the bound value in a reference binding. Must be suitably sized
1919     /// and aligned, but is not required to refer to an object (until the
1920     /// reference is used), per core issue 453.
1921     TCK_ReferenceBinding,
1922     /// Checking the object expression in a non-static data member access. Must
1923     /// be an object within its lifetime.
1924     TCK_MemberAccess,
1925     /// Checking the 'this' pointer for a call to a non-static member function.
1926     /// Must be an object within its lifetime.
1927     TCK_MemberCall,
1928     /// Checking the 'this' pointer for a constructor call.
1929     TCK_ConstructorCall,
1930     /// Checking the operand of a static_cast to a derived pointer type. Must be
1931     /// null or an object within its lifetime.
1932     TCK_DowncastPointer,
1933     /// Checking the operand of a static_cast to a derived reference type. Must
1934     /// be an object within its lifetime.
1935     TCK_DowncastReference
1936   };
1937 
1938   /// \brief Emit a check that \p V is the address of storage of the
1939   /// appropriate size and alignment for an object of type \p Type.
1940   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1941                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1942 
1943   /// \brief Emit a check that \p Base points into an array object, which
1944   /// we can access at index \p Index. \p Accessed should be \c false if we
1945   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1946   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1947                        QualType IndexType, bool Accessed);
1948 
1949   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1950                                        bool isInc, bool isPre);
1951   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1952                                          bool isInc, bool isPre);
1953   //===--------------------------------------------------------------------===//
1954   //                            Declaration Emission
1955   //===--------------------------------------------------------------------===//
1956 
1957   /// EmitDecl - Emit a declaration.
1958   ///
1959   /// This function can be called with a null (unreachable) insert point.
1960   void EmitDecl(const Decl &D);
1961 
1962   /// EmitVarDecl - Emit a local variable declaration.
1963   ///
1964   /// This function can be called with a null (unreachable) insert point.
1965   void EmitVarDecl(const VarDecl &D);
1966 
1967   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1968                       LValue lvalue, bool capturedByInit);
1969   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1970 
1971   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1972                              llvm::Value *Address);
1973 
1974   /// EmitAutoVarDecl - Emit an auto variable declaration.
1975   ///
1976   /// This function can be called with a null (unreachable) insert point.
1977   void EmitAutoVarDecl(const VarDecl &D);
1978 
1979   class AutoVarEmission {
1980     friend class CodeGenFunction;
1981 
1982     const VarDecl *Variable;
1983 
1984     /// The alignment of the variable.
1985     CharUnits Alignment;
1986 
1987     /// The address of the alloca.  Null if the variable was emitted
1988     /// as a global constant.
1989     llvm::Value *Address;
1990 
1991     llvm::Value *NRVOFlag;
1992 
1993     /// True if the variable is a __block variable.
1994     bool IsByRef;
1995 
1996     /// True if the variable is of aggregate type and has a constant
1997     /// initializer.
1998     bool IsConstantAggregate;
1999 
2000     struct Invalid {};
2001     AutoVarEmission(Invalid) : Variable(0) {}
2002 
2003     AutoVarEmission(const VarDecl &variable)
2004       : Variable(&variable), Address(0), NRVOFlag(0),
2005         IsByRef(false), IsConstantAggregate(false) {}
2006 
2007     bool wasEmittedAsGlobal() const { return Address == 0; }
2008 
2009   public:
2010     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2011 
2012     /// Returns the address of the object within this declaration.
2013     /// Note that this does not chase the forwarding pointer for
2014     /// __block decls.
2015     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
2016       if (!IsByRef) return Address;
2017 
2018       return CGF.Builder.CreateStructGEP(Address,
2019                                          CGF.getByRefValueLLVMField(Variable),
2020                                          Variable->getNameAsString());
2021     }
2022   };
2023   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2024   void EmitAutoVarInit(const AutoVarEmission &emission);
2025   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2026   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2027                               QualType::DestructionKind dtorKind);
2028 
2029   void EmitStaticVarDecl(const VarDecl &D,
2030                          llvm::GlobalValue::LinkageTypes Linkage);
2031 
2032   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2033   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
2034 
2035   /// protectFromPeepholes - Protect a value that we're intending to
2036   /// store to the side, but which will probably be used later, from
2037   /// aggressive peepholing optimizations that might delete it.
2038   ///
2039   /// Pass the result to unprotectFromPeepholes to declare that
2040   /// protection is no longer required.
2041   ///
2042   /// There's no particular reason why this shouldn't apply to
2043   /// l-values, it's just that no existing peepholes work on pointers.
2044   PeepholeProtection protectFromPeepholes(RValue rvalue);
2045   void unprotectFromPeepholes(PeepholeProtection protection);
2046 
2047   //===--------------------------------------------------------------------===//
2048   //                             Statement Emission
2049   //===--------------------------------------------------------------------===//
2050 
2051   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2052   void EmitStopPoint(const Stmt *S);
2053 
2054   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2055   /// this function even if there is no current insertion point.
2056   ///
2057   /// This function may clear the current insertion point; callers should use
2058   /// EnsureInsertPoint if they wish to subsequently generate code without first
2059   /// calling EmitBlock, EmitBranch, or EmitStmt.
2060   void EmitStmt(const Stmt *S);
2061 
2062   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2063   /// necessarily require an insertion point or debug information; typically
2064   /// because the statement amounts to a jump or a container of other
2065   /// statements.
2066   ///
2067   /// \return True if the statement was handled.
2068   bool EmitSimpleStmt(const Stmt *S);
2069 
2070   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2071                           AggValueSlot AVS = AggValueSlot::ignored());
2072   RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2073                                       bool GetLast = false, AggValueSlot AVS =
2074                                           AggValueSlot::ignored());
2075 
2076   /// EmitLabel - Emit the block for the given label. It is legal to call this
2077   /// function even if there is no current insertion point.
2078   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2079 
2080   void EmitLabelStmt(const LabelStmt &S);
2081   void EmitAttributedStmt(const AttributedStmt &S);
2082   void EmitGotoStmt(const GotoStmt &S);
2083   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2084   void EmitIfStmt(const IfStmt &S);
2085   void EmitWhileStmt(const WhileStmt &S);
2086   void EmitDoStmt(const DoStmt &S);
2087   void EmitForStmt(const ForStmt &S);
2088   void EmitReturnStmt(const ReturnStmt &S);
2089   void EmitDeclStmt(const DeclStmt &S);
2090   void EmitBreakStmt(const BreakStmt &S);
2091   void EmitContinueStmt(const ContinueStmt &S);
2092   void EmitSwitchStmt(const SwitchStmt &S);
2093   void EmitDefaultStmt(const DefaultStmt &S);
2094   void EmitCaseStmt(const CaseStmt &S);
2095   void EmitCaseStmtRange(const CaseStmt &S);
2096   void EmitAsmStmt(const AsmStmt &S);
2097 
2098   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2099   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2100   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2101   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2102   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2103 
2104   llvm::Constant *getUnwindResumeFn();
2105   llvm::Constant *getUnwindResumeOrRethrowFn();
2106   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2107   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2108 
2109   void EmitCXXTryStmt(const CXXTryStmt &S);
2110   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2111 
2112   //===--------------------------------------------------------------------===//
2113   //                         LValue Expression Emission
2114   //===--------------------------------------------------------------------===//
2115 
2116   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2117   RValue GetUndefRValue(QualType Ty);
2118 
2119   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2120   /// and issue an ErrorUnsupported style diagnostic (using the
2121   /// provided Name).
2122   RValue EmitUnsupportedRValue(const Expr *E,
2123                                const char *Name);
2124 
2125   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2126   /// an ErrorUnsupported style diagnostic (using the provided Name).
2127   LValue EmitUnsupportedLValue(const Expr *E,
2128                                const char *Name);
2129 
2130   /// EmitLValue - Emit code to compute a designator that specifies the location
2131   /// of the expression.
2132   ///
2133   /// This can return one of two things: a simple address or a bitfield
2134   /// reference.  In either case, the LLVM Value* in the LValue structure is
2135   /// guaranteed to be an LLVM pointer type.
2136   ///
2137   /// If this returns a bitfield reference, nothing about the pointee type of
2138   /// the LLVM value is known: For example, it may not be a pointer to an
2139   /// integer.
2140   ///
2141   /// If this returns a normal address, and if the lvalue's C type is fixed
2142   /// size, this method guarantees that the returned pointer type will point to
2143   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2144   /// variable length type, this is not possible.
2145   ///
2146   LValue EmitLValue(const Expr *E);
2147 
2148   /// \brief Same as EmitLValue but additionally we generate checking code to
2149   /// guard against undefined behavior.  This is only suitable when we know
2150   /// that the address will be used to access the object.
2151   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2152 
2153   RValue convertTempToRValue(llvm::Value *addr, QualType type);
2154 
2155   void EmitAtomicInit(Expr *E, LValue lvalue);
2156 
2157   RValue EmitAtomicLoad(LValue lvalue,
2158                         AggValueSlot slot = AggValueSlot::ignored());
2159 
2160   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2161 
2162   /// EmitToMemory - Change a scalar value from its value
2163   /// representation to its in-memory representation.
2164   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2165 
2166   /// EmitFromMemory - Change a scalar value from its memory
2167   /// representation to its value representation.
2168   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2169 
2170   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2171   /// care to appropriately convert from the memory representation to
2172   /// the LLVM value representation.
2173   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2174                                 unsigned Alignment, QualType Ty,
2175                                 llvm::MDNode *TBAAInfo = 0);
2176 
2177   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2178   /// care to appropriately convert from the memory representation to
2179   /// the LLVM value representation.  The l-value must be a simple
2180   /// l-value.
2181   llvm::Value *EmitLoadOfScalar(LValue lvalue);
2182 
2183   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2184   /// care to appropriately convert from the memory representation to
2185   /// the LLVM value representation.
2186   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2187                          bool Volatile, unsigned Alignment, QualType Ty,
2188                          llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2189 
2190   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2191   /// care to appropriately convert from the memory representation to
2192   /// the LLVM value representation.  The l-value must be a simple
2193   /// l-value.  The isInit flag indicates whether this is an initialization.
2194   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2195   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2196 
2197   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2198   /// this method emits the address of the lvalue, then loads the result as an
2199   /// rvalue, returning the rvalue.
2200   RValue EmitLoadOfLValue(LValue V);
2201   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2202   RValue EmitLoadOfBitfieldLValue(LValue LV);
2203 
2204   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2205   /// lvalue, where both are guaranteed to the have the same type, and that type
2206   /// is 'Ty'.
2207   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2208   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2209 
2210   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2211   /// EmitStoreThroughLValue.
2212   ///
2213   /// \param Result [out] - If non-null, this will be set to a Value* for the
2214   /// bit-field contents after the store, appropriate for use as the result of
2215   /// an assignment to the bit-field.
2216   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2217                                       llvm::Value **Result=0);
2218 
2219   /// Emit an l-value for an assignment (simple or compound) of complex type.
2220   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2221   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2222 
2223   // Note: only available for agg return types
2224   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2225   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2226   // Note: only available for agg return types
2227   LValue EmitCallExprLValue(const CallExpr *E);
2228   // Note: only available for agg return types
2229   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2230   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2231   LValue EmitStringLiteralLValue(const StringLiteral *E);
2232   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2233   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2234   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2235   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2236                                 bool Accessed = false);
2237   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2238   LValue EmitMemberExpr(const MemberExpr *E);
2239   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2240   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2241   LValue EmitInitListLValue(const InitListExpr *E);
2242   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2243   LValue EmitCastLValue(const CastExpr *E);
2244   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2245   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2246   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2247 
2248   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2249 
2250   class ConstantEmission {
2251     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2252     ConstantEmission(llvm::Constant *C, bool isReference)
2253       : ValueAndIsReference(C, isReference) {}
2254   public:
2255     ConstantEmission() {}
2256     static ConstantEmission forReference(llvm::Constant *C) {
2257       return ConstantEmission(C, true);
2258     }
2259     static ConstantEmission forValue(llvm::Constant *C) {
2260       return ConstantEmission(C, false);
2261     }
2262 
2263     operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2264 
2265     bool isReference() const { return ValueAndIsReference.getInt(); }
2266     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2267       assert(isReference());
2268       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2269                                             refExpr->getType());
2270     }
2271 
2272     llvm::Constant *getValue() const {
2273       assert(!isReference());
2274       return ValueAndIsReference.getPointer();
2275     }
2276   };
2277 
2278   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2279 
2280   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2281                                 AggValueSlot slot = AggValueSlot::ignored());
2282   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2283 
2284   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2285                               const ObjCIvarDecl *Ivar);
2286   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2287 
2288   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2289   /// if the Field is a reference, this will return the address of the reference
2290   /// and not the address of the value stored in the reference.
2291   LValue EmitLValueForFieldInitialization(LValue Base,
2292                                           const FieldDecl* Field);
2293 
2294   LValue EmitLValueForIvar(QualType ObjectTy,
2295                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2296                            unsigned CVRQualifiers);
2297 
2298   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2299   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2300   LValue EmitLambdaLValue(const LambdaExpr *E);
2301   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2302   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2303 
2304   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2305   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2306   LValue EmitStmtExprLValue(const StmtExpr *E);
2307   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2308   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2309   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2310 
2311   //===--------------------------------------------------------------------===//
2312   //                         Scalar Expression Emission
2313   //===--------------------------------------------------------------------===//
2314 
2315   /// EmitCall - Generate a call of the given function, expecting the given
2316   /// result type, and using the given argument list which specifies both the
2317   /// LLVM arguments and the types they were derived from.
2318   ///
2319   /// \param TargetDecl - If given, the decl of the function in a direct call;
2320   /// used to set attributes on the call (noreturn, etc.).
2321   RValue EmitCall(const CGFunctionInfo &FnInfo,
2322                   llvm::Value *Callee,
2323                   ReturnValueSlot ReturnValue,
2324                   const CallArgList &Args,
2325                   const Decl *TargetDecl = 0,
2326                   llvm::Instruction **callOrInvoke = 0);
2327 
2328   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2329                   ReturnValueSlot ReturnValue,
2330                   CallExpr::const_arg_iterator ArgBeg,
2331                   CallExpr::const_arg_iterator ArgEnd,
2332                   const Decl *TargetDecl = 0);
2333   RValue EmitCallExpr(const CallExpr *E,
2334                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2335 
2336   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2337                                   const Twine &name = "");
2338   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2339                                   ArrayRef<llvm::Value*> args,
2340                                   const Twine &name = "");
2341   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2342                                           const Twine &name = "");
2343   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2344                                           ArrayRef<llvm::Value*> args,
2345                                           const Twine &name = "");
2346 
2347   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2348                                   ArrayRef<llvm::Value *> Args,
2349                                   const Twine &Name = "");
2350   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2351                                   const Twine &Name = "");
2352   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2353                                          ArrayRef<llvm::Value*> args,
2354                                          const Twine &name = "");
2355   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2356                                          const Twine &name = "");
2357   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2358                                        ArrayRef<llvm::Value*> args);
2359 
2360   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2361                                 llvm::Type *Ty);
2362   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2363                                 llvm::Value *This, llvm::Type *Ty);
2364   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2365                                          NestedNameSpecifier *Qual,
2366                                          llvm::Type *Ty);
2367 
2368   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2369                                                    CXXDtorType Type,
2370                                                    const CXXRecordDecl *RD);
2371 
2372   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2373                            SourceLocation CallLoc,
2374                            llvm::Value *Callee,
2375                            ReturnValueSlot ReturnValue,
2376                            llvm::Value *This,
2377                            llvm::Value *ImplicitParam,
2378                            QualType ImplicitParamTy,
2379                            CallExpr::const_arg_iterator ArgBeg,
2380                            CallExpr::const_arg_iterator ArgEnd);
2381   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2382                                ReturnValueSlot ReturnValue);
2383   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2384                                       ReturnValueSlot ReturnValue);
2385 
2386   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2387                                            const CXXMethodDecl *MD,
2388                                            llvm::Value *This);
2389   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2390                                        const CXXMethodDecl *MD,
2391                                        ReturnValueSlot ReturnValue);
2392 
2393   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2394                                 ReturnValueSlot ReturnValue);
2395 
2396 
2397   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2398                          unsigned BuiltinID, const CallExpr *E);
2399 
2400   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2401 
2402   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2403   /// is unhandled by the current target.
2404   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2405 
2406   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2407   llvm::Value *EmitNeonCall(llvm::Function *F,
2408                             SmallVectorImpl<llvm::Value*> &O,
2409                             const char *name,
2410                             unsigned shift = 0, bool rightshift = false);
2411   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2412   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2413                                    bool negateForRightShift);
2414 
2415   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2416   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2417   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2418 
2419   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2420   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2421   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2422   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2423   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2424   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2425                                 const ObjCMethodDecl *MethodWithObjects);
2426   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2427   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2428                              ReturnValueSlot Return = ReturnValueSlot());
2429 
2430   /// Retrieves the default cleanup kind for an ARC cleanup.
2431   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2432   CleanupKind getARCCleanupKind() {
2433     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2434              ? NormalAndEHCleanup : NormalCleanup;
2435   }
2436 
2437   // ARC primitives.
2438   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2439   void EmitARCDestroyWeak(llvm::Value *addr);
2440   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2441   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2442   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2443                                 bool ignored);
2444   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2445   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2446   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2447   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2448   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2449                                   bool resultIgnored);
2450   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2451                                       bool resultIgnored);
2452   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2453   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2454   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2455   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2456   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2457   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2458   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2459   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2460   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2461 
2462   std::pair<LValue,llvm::Value*>
2463   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2464   std::pair<LValue,llvm::Value*>
2465   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2466 
2467   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2468 
2469   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2470   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2471   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2472 
2473   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2474   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2475   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2476 
2477   static Destroyer destroyARCStrongImprecise;
2478   static Destroyer destroyARCStrongPrecise;
2479   static Destroyer destroyARCWeak;
2480 
2481   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2482   llvm::Value *EmitObjCAutoreleasePoolPush();
2483   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2484   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2485   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2486 
2487   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2488   /// expression. Will emit a temporary variable if E is not an LValue.
2489   RValue EmitReferenceBindingToExpr(const Expr* E,
2490                                     const NamedDecl *InitializedDecl);
2491 
2492   //===--------------------------------------------------------------------===//
2493   //                           Expression Emission
2494   //===--------------------------------------------------------------------===//
2495 
2496   // Expressions are broken into three classes: scalar, complex, aggregate.
2497 
2498   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2499   /// scalar type, returning the result.
2500   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2501 
2502   /// EmitScalarConversion - Emit a conversion from the specified type to the
2503   /// specified destination type, both of which are LLVM scalar types.
2504   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2505                                     QualType DstTy);
2506 
2507   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2508   /// complex type to the specified destination type, where the destination type
2509   /// is an LLVM scalar type.
2510   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2511                                              QualType DstTy);
2512 
2513 
2514   /// EmitAggExpr - Emit the computation of the specified expression
2515   /// of aggregate type.  The result is computed into the given slot,
2516   /// which may be null to indicate that the value is not needed.
2517   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2518 
2519   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2520   /// aggregate type into a temporary LValue.
2521   LValue EmitAggExprToLValue(const Expr *E);
2522 
2523   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2524   /// pointers.
2525   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2526                                 QualType Ty);
2527 
2528   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2529   /// make sure it survives garbage collection until this point.
2530   void EmitExtendGCLifetime(llvm::Value *object);
2531 
2532   /// EmitComplexExpr - Emit the computation of the specified expression of
2533   /// complex type, returning the result.
2534   ComplexPairTy EmitComplexExpr(const Expr *E,
2535                                 bool IgnoreReal = false,
2536                                 bool IgnoreImag = false);
2537 
2538   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2539   /// type and place its result into the specified l-value.
2540   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2541 
2542   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2543   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2544 
2545   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2546   ComplexPairTy EmitLoadOfComplex(LValue src);
2547 
2548   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2549   /// a static local variable.
2550   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2551                                             const char *Separator,
2552                                        llvm::GlobalValue::LinkageTypes Linkage);
2553 
2554   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2555   /// global variable that has already been created for it.  If the initializer
2556   /// has a different type than GV does, this may free GV and return a different
2557   /// one.  Otherwise it just returns GV.
2558   llvm::GlobalVariable *
2559   AddInitializerToStaticVarDecl(const VarDecl &D,
2560                                 llvm::GlobalVariable *GV);
2561 
2562 
2563   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2564   /// variable with global storage.
2565   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2566                                 bool PerformInit);
2567 
2568   /// Call atexit() with a function that passes the given argument to
2569   /// the given function.
2570   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2571 
2572   /// Emit code in this function to perform a guarded variable
2573   /// initialization.  Guarded initializations are used when it's not
2574   /// possible to prove that an initialization will be done exactly
2575   /// once, e.g. with a static local variable or a static data member
2576   /// of a class template.
2577   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2578                           bool PerformInit);
2579 
2580   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2581   /// variables.
2582   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2583                                  llvm::Constant **Decls,
2584                                  unsigned NumDecls);
2585 
2586   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2587   /// variables.
2588   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2589                                   const std::vector<std::pair<llvm::WeakVH,
2590                                   llvm::Constant*> > &DtorsAndObjects);
2591 
2592   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2593                                         const VarDecl *D,
2594                                         llvm::GlobalVariable *Addr,
2595                                         bool PerformInit);
2596 
2597   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2598 
2599   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2600                                   const Expr *Exp);
2601 
2602   void enterFullExpression(const ExprWithCleanups *E) {
2603     if (E->getNumObjects() == 0) return;
2604     enterNonTrivialFullExpression(E);
2605   }
2606   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2607 
2608   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2609 
2610   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2611 
2612   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2613 
2614   //===--------------------------------------------------------------------===//
2615   //                         Annotations Emission
2616   //===--------------------------------------------------------------------===//
2617 
2618   /// Emit an annotation call (intrinsic or builtin).
2619   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2620                                   llvm::Value *AnnotatedVal,
2621                                   StringRef AnnotationStr,
2622                                   SourceLocation Location);
2623 
2624   /// Emit local annotations for the local variable V, declared by D.
2625   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2626 
2627   /// Emit field annotations for the given field & value. Returns the
2628   /// annotation result.
2629   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2630 
2631   //===--------------------------------------------------------------------===//
2632   //                             Internal Helpers
2633   //===--------------------------------------------------------------------===//
2634 
2635   /// ContainsLabel - Return true if the statement contains a label in it.  If
2636   /// this statement is not executed normally, it not containing a label means
2637   /// that we can just remove the code.
2638   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2639 
2640   /// containsBreak - Return true if the statement contains a break out of it.
2641   /// If the statement (recursively) contains a switch or loop with a break
2642   /// inside of it, this is fine.
2643   static bool containsBreak(const Stmt *S);
2644 
2645   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2646   /// to a constant, or if it does but contains a label, return false.  If it
2647   /// constant folds return true and set the boolean result in Result.
2648   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2649 
2650   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2651   /// to a constant, or if it does but contains a label, return false.  If it
2652   /// constant folds return true and set the folded value.
2653   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2654 
2655   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2656   /// if statement) to the specified blocks.  Based on the condition, this might
2657   /// try to simplify the codegen of the conditional based on the branch.
2658   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2659                             llvm::BasicBlock *FalseBlock);
2660 
2661   /// \brief Emit a description of a type in a format suitable for passing to
2662   /// a runtime sanitizer handler.
2663   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2664 
2665   /// \brief Convert a value into a format suitable for passing to a runtime
2666   /// sanitizer handler.
2667   llvm::Value *EmitCheckValue(llvm::Value *V);
2668 
2669   /// \brief Emit a description of a source location in a format suitable for
2670   /// passing to a runtime sanitizer handler.
2671   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2672 
2673   /// \brief Specify under what conditions this check can be recovered
2674   enum CheckRecoverableKind {
2675     /// Always terminate program execution if this check fails
2676     CRK_Unrecoverable,
2677     /// Check supports recovering, allows user to specify which
2678     CRK_Recoverable,
2679     /// Runtime conditionally aborts, always need to support recovery.
2680     CRK_AlwaysRecoverable
2681   };
2682 
2683   /// \brief Create a basic block that will call a handler function in a
2684   /// sanitizer runtime with the provided arguments, and create a conditional
2685   /// branch to it.
2686   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2687                  ArrayRef<llvm::Constant *> StaticArgs,
2688                  ArrayRef<llvm::Value *> DynamicArgs,
2689                  CheckRecoverableKind Recoverable);
2690 
2691   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2692   /// conditional branch to it, for the -ftrapv checks.
2693   void EmitTrapCheck(llvm::Value *Checked);
2694 
2695   /// EmitCallArg - Emit a single call argument.
2696   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2697 
2698   /// EmitDelegateCallArg - We are performing a delegate call; that
2699   /// is, the current function is delegating to another one.  Produce
2700   /// a r-value suitable for passing the given parameter.
2701   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2702 
2703   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2704   /// point operation, expressed as the maximum relative error in ulp.
2705   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2706 
2707 private:
2708   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2709   void EmitReturnOfRValue(RValue RV, QualType Ty);
2710 
2711   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2712   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2713   ///
2714   /// \param AI - The first function argument of the expansion.
2715   /// \return The argument following the last expanded function
2716   /// argument.
2717   llvm::Function::arg_iterator
2718   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2719                      llvm::Function::arg_iterator AI);
2720 
2721   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2722   /// Ty, into individual arguments on the provided vector \arg Args. See
2723   /// ABIArgInfo::Expand.
2724   void ExpandTypeToArgs(QualType Ty, RValue Src,
2725                         SmallVector<llvm::Value*, 16> &Args,
2726                         llvm::FunctionType *IRFuncTy);
2727 
2728   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2729                             const Expr *InputExpr, std::string &ConstraintStr);
2730 
2731   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2732                                   LValue InputValue, QualType InputType,
2733                                   std::string &ConstraintStr);
2734 
2735   /// EmitCallArgs - Emit call arguments for a function.
2736   /// The CallArgTypeInfo parameter is used for iterating over the known
2737   /// argument types of the function being called.
2738   template<typename T>
2739   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2740                     CallExpr::const_arg_iterator ArgBeg,
2741                     CallExpr::const_arg_iterator ArgEnd) {
2742       CallExpr::const_arg_iterator Arg = ArgBeg;
2743 
2744     // First, use the argument types that the type info knows about
2745     if (CallArgTypeInfo) {
2746       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2747            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2748         assert(Arg != ArgEnd && "Running over edge of argument list!");
2749         QualType ArgType = *I;
2750 #ifndef NDEBUG
2751         QualType ActualArgType = Arg->getType();
2752         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2753           QualType ActualBaseType =
2754             ActualArgType->getAs<PointerType>()->getPointeeType();
2755           QualType ArgBaseType =
2756             ArgType->getAs<PointerType>()->getPointeeType();
2757           if (ArgBaseType->isVariableArrayType()) {
2758             if (const VariableArrayType *VAT =
2759                 getContext().getAsVariableArrayType(ActualBaseType)) {
2760               if (!VAT->getSizeExpr())
2761                 ActualArgType = ArgType;
2762             }
2763           }
2764         }
2765         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2766                getTypePtr() ==
2767                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2768                "type mismatch in call argument!");
2769 #endif
2770         EmitCallArg(Args, *Arg, ArgType);
2771       }
2772 
2773       // Either we've emitted all the call args, or we have a call to a
2774       // variadic function.
2775       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2776              "Extra arguments in non-variadic function!");
2777 
2778     }
2779 
2780     // If we still have any arguments, emit them using the type of the argument.
2781     for (; Arg != ArgEnd; ++Arg)
2782       EmitCallArg(Args, *Arg, Arg->getType());
2783   }
2784 
2785   const TargetCodeGenInfo &getTargetHooks() const {
2786     return CGM.getTargetCodeGenInfo();
2787   }
2788 
2789   void EmitDeclMetadata();
2790 
2791   CodeGenModule::ByrefHelpers *
2792   buildByrefHelpers(llvm::StructType &byrefType,
2793                     const AutoVarEmission &emission);
2794 
2795   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2796 
2797   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2798   /// value and compute our best estimate of the alignment of the pointee.
2799   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2800 };
2801 
2802 /// Helper class with most of the code for saving a value for a
2803 /// conditional expression cleanup.
2804 struct DominatingLLVMValue {
2805   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2806 
2807   /// Answer whether the given value needs extra work to be saved.
2808   static bool needsSaving(llvm::Value *value) {
2809     // If it's not an instruction, we don't need to save.
2810     if (!isa<llvm::Instruction>(value)) return false;
2811 
2812     // If it's an instruction in the entry block, we don't need to save.
2813     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2814     return (block != &block->getParent()->getEntryBlock());
2815   }
2816 
2817   /// Try to save the given value.
2818   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2819     if (!needsSaving(value)) return saved_type(value, false);
2820 
2821     // Otherwise we need an alloca.
2822     llvm::Value *alloca =
2823       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2824     CGF.Builder.CreateStore(value, alloca);
2825 
2826     return saved_type(alloca, true);
2827   }
2828 
2829   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2830     if (!value.getInt()) return value.getPointer();
2831     return CGF.Builder.CreateLoad(value.getPointer());
2832   }
2833 };
2834 
2835 /// A partial specialization of DominatingValue for llvm::Values that
2836 /// might be llvm::Instructions.
2837 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2838   typedef T *type;
2839   static type restore(CodeGenFunction &CGF, saved_type value) {
2840     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2841   }
2842 };
2843 
2844 /// A specialization of DominatingValue for RValue.
2845 template <> struct DominatingValue<RValue> {
2846   typedef RValue type;
2847   class saved_type {
2848     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2849                 AggregateAddress, ComplexAddress };
2850 
2851     llvm::Value *Value;
2852     Kind K;
2853     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2854 
2855   public:
2856     static bool needsSaving(RValue value);
2857     static saved_type save(CodeGenFunction &CGF, RValue value);
2858     RValue restore(CodeGenFunction &CGF);
2859 
2860     // implementations in CGExprCXX.cpp
2861   };
2862 
2863   static bool needsSaving(type value) {
2864     return saved_type::needsSaving(value);
2865   }
2866   static saved_type save(CodeGenFunction &CGF, type value) {
2867     return saved_type::save(CGF, value);
2868   }
2869   static type restore(CodeGenFunction &CGF, saved_type value) {
2870     return value.restore(CGF);
2871   }
2872 };
2873 
2874 }  // end namespace CodeGen
2875 }  // end namespace clang
2876 
2877 #endif
2878