• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the ELFObjectFile template class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_OBJECT_ELF_H
15 #define LLVM_OBJECT_ELF_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/Casting.h"
24 #include "llvm/Support/ELF.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 #include <limits>
31 #include <utility>
32 
33 #include <ctype.h>
34 
35 namespace llvm {
36 namespace object {
37 
38 using support::endianness;
39 
40 template<endianness target_endianness, std::size_t max_alignment, bool is64Bits>
41 struct ELFType {
42   static const endianness TargetEndianness = target_endianness;
43   static const std::size_t MaxAlignment = max_alignment;
44   static const bool Is64Bits = is64Bits;
45 };
46 
47 template<typename T, int max_align>
48 struct MaximumAlignment {
49   enum {value = AlignOf<T>::Alignment > max_align ? max_align
50                                                   : AlignOf<T>::Alignment};
51 };
52 
53 // Subclasses of ELFObjectFile may need this for template instantiation
54 inline std::pair<unsigned char, unsigned char>
getElfArchType(MemoryBuffer * Object)55 getElfArchType(MemoryBuffer *Object) {
56   if (Object->getBufferSize() < ELF::EI_NIDENT)
57     return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
58   return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
59                        , (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
60 }
61 
62 // Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
63 template<endianness target_endianness, std::size_t max_alignment>
64 struct ELFDataTypeTypedefHelperCommon {
65   typedef support::detail::packed_endian_specific_integral
66     <uint16_t, target_endianness,
67      MaximumAlignment<uint16_t, max_alignment>::value> Elf_Half;
68   typedef support::detail::packed_endian_specific_integral
69     <uint32_t, target_endianness,
70      MaximumAlignment<uint32_t, max_alignment>::value> Elf_Word;
71   typedef support::detail::packed_endian_specific_integral
72     <int32_t, target_endianness,
73      MaximumAlignment<int32_t, max_alignment>::value> Elf_Sword;
74   typedef support::detail::packed_endian_specific_integral
75     <uint64_t, target_endianness,
76      MaximumAlignment<uint64_t, max_alignment>::value> Elf_Xword;
77   typedef support::detail::packed_endian_specific_integral
78     <int64_t, target_endianness,
79      MaximumAlignment<int64_t, max_alignment>::value> Elf_Sxword;
80 };
81 
82 template<class ELFT>
83 struct ELFDataTypeTypedefHelper;
84 
85 /// ELF 32bit types.
86 template<template<endianness, std::size_t, bool> class ELFT,
87          endianness TargetEndianness, std::size_t MaxAlign>
88 struct ELFDataTypeTypedefHelper<ELFT<TargetEndianness, MaxAlign, false> >
89   : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
90   typedef uint32_t value_type;
91   typedef support::detail::packed_endian_specific_integral
92     <value_type, TargetEndianness,
93      MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
94   typedef support::detail::packed_endian_specific_integral
95     <value_type, TargetEndianness,
96      MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
97 };
98 
99 /// ELF 64bit types.
100 template<template<endianness, std::size_t, bool> class ELFT,
101          endianness TargetEndianness, std::size_t MaxAlign>
102 struct ELFDataTypeTypedefHelper<ELFT<TargetEndianness, MaxAlign, true> >
103   : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
104   typedef uint64_t value_type;
105   typedef support::detail::packed_endian_specific_integral
106     <value_type, TargetEndianness,
107      MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
108   typedef support::detail::packed_endian_specific_integral
109     <value_type, TargetEndianness,
110      MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
111 };
112 
113 // I really don't like doing this, but the alternative is copypasta.
114 #define LLVM_ELF_IMPORT_TYPES(ELFT) \
115 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Addr Elf_Addr; \
116 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Off Elf_Off; \
117 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Half Elf_Half; \
118 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Word Elf_Word; \
119 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Sword Elf_Sword; \
120 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Xword Elf_Xword; \
121 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Sxword Elf_Sxword;
122 
123 // This is required to get template types into a macro :(
124 #define LLVM_ELF_COMMA ,
125 
126   // Section header.
127 template<class ELFT>
128 struct Elf_Shdr_Base;
129 
130 template<template<endianness, std::size_t, bool> class ELFT,
131          endianness TargetEndianness, std::size_t MaxAlign>
132 struct Elf_Shdr_Base<ELFT<TargetEndianness, MaxAlign, false> > {
133   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
134                              MaxAlign LLVM_ELF_COMMA false>)
135   Elf_Word sh_name;     // Section name (index into string table)
136   Elf_Word sh_type;     // Section type (SHT_*)
137   Elf_Word sh_flags;    // Section flags (SHF_*)
138   Elf_Addr sh_addr;     // Address where section is to be loaded
139   Elf_Off  sh_offset;   // File offset of section data, in bytes
140   Elf_Word sh_size;     // Size of section, in bytes
141   Elf_Word sh_link;     // Section type-specific header table index link
142   Elf_Word sh_info;     // Section type-specific extra information
143   Elf_Word sh_addralign;// Section address alignment
144   Elf_Word sh_entsize;  // Size of records contained within the section
145 };
146 
147 template<template<endianness, std::size_t, bool> class ELFT,
148          endianness TargetEndianness, std::size_t MaxAlign>
149 struct Elf_Shdr_Base<ELFT<TargetEndianness, MaxAlign, true> > {
150   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
151                              MaxAlign LLVM_ELF_COMMA true>)
152   Elf_Word  sh_name;     // Section name (index into string table)
153   Elf_Word  sh_type;     // Section type (SHT_*)
154   Elf_Xword sh_flags;    // Section flags (SHF_*)
155   Elf_Addr  sh_addr;     // Address where section is to be loaded
156   Elf_Off   sh_offset;   // File offset of section data, in bytes
157   Elf_Xword sh_size;     // Size of section, in bytes
158   Elf_Word  sh_link;     // Section type-specific header table index link
159   Elf_Word  sh_info;     // Section type-specific extra information
160   Elf_Xword sh_addralign;// Section address alignment
161   Elf_Xword sh_entsize;  // Size of records contained within the section
162 };
163 
164 template<class ELFT>
165 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
166   using Elf_Shdr_Base<ELFT>::sh_entsize;
167   using Elf_Shdr_Base<ELFT>::sh_size;
168 
169   /// @brief Get the number of entities this section contains if it has any.
170   unsigned getEntityCount() const {
171     if (sh_entsize == 0)
172       return 0;
173     return sh_size / sh_entsize;
174   }
175 };
176 
177 template<class ELFT>
178 struct Elf_Sym_Base;
179 
180 template<template<endianness, std::size_t, bool> class ELFT,
181          endianness TargetEndianness, std::size_t MaxAlign>
182 struct Elf_Sym_Base<ELFT<TargetEndianness, MaxAlign, false> > {
183   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
184                              MaxAlign LLVM_ELF_COMMA false>)
185   Elf_Word      st_name;  // Symbol name (index into string table)
186   Elf_Addr      st_value; // Value or address associated with the symbol
187   Elf_Word      st_size;  // Size of the symbol
188   unsigned char st_info;  // Symbol's type and binding attributes
189   unsigned char st_other; // Must be zero; reserved
190   Elf_Half      st_shndx; // Which section (header table index) it's defined in
191 };
192 
193 template<template<endianness, std::size_t, bool> class ELFT,
194          endianness TargetEndianness, std::size_t MaxAlign>
195 struct Elf_Sym_Base<ELFT<TargetEndianness, MaxAlign, true> > {
196   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
197                              MaxAlign LLVM_ELF_COMMA true>)
198   Elf_Word      st_name;  // Symbol name (index into string table)
199   unsigned char st_info;  // Symbol's type and binding attributes
200   unsigned char st_other; // Must be zero; reserved
201   Elf_Half      st_shndx; // Which section (header table index) it's defined in
202   Elf_Addr      st_value; // Value or address associated with the symbol
203   Elf_Xword     st_size;  // Size of the symbol
204 };
205 
206 template<class ELFT>
207 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
208   using Elf_Sym_Base<ELFT>::st_info;
209 
210   // These accessors and mutators correspond to the ELF32_ST_BIND,
211   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
212   unsigned char getBinding() const { return st_info >> 4; }
213   unsigned char getType() const { return st_info & 0x0f; }
214   void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
215   void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
216   void setBindingAndType(unsigned char b, unsigned char t) {
217     st_info = (b << 4) + (t & 0x0f);
218   }
219 };
220 
221 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
222 /// (.gnu.version). This structure is identical for ELF32 and ELF64.
223 template<class ELFT>
224 struct Elf_Versym_Impl {
225   LLVM_ELF_IMPORT_TYPES(ELFT)
226   Elf_Half vs_index;   // Version index with flags (e.g. VERSYM_HIDDEN)
227 };
228 
229 template<class ELFT>
230 struct Elf_Verdaux_Impl;
231 
232 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
233 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
234 template<class ELFT>
235 struct Elf_Verdef_Impl {
236   LLVM_ELF_IMPORT_TYPES(ELFT)
237   typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
238   Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
239   Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
240   Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
241   Elf_Half vd_cnt;     // Number of Verdaux entries
242   Elf_Word vd_hash;    // Hash of name
243   Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
244   Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
245 
246   /// Get the first Verdaux entry for this Verdef.
247   const Elf_Verdaux *getAux() const {
248     return reinterpret_cast<const Elf_Verdaux*>((const char*)this + vd_aux);
249   }
250 };
251 
252 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
253 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
254 template<class ELFT>
255 struct Elf_Verdaux_Impl {
256   LLVM_ELF_IMPORT_TYPES(ELFT)
257   Elf_Word vda_name; // Version name (offset in string table)
258   Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
259 };
260 
261 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
262 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
263 template<class ELFT>
264 struct Elf_Verneed_Impl {
265   LLVM_ELF_IMPORT_TYPES(ELFT)
266   Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
267   Elf_Half vn_cnt;     // Number of associated Vernaux entries
268   Elf_Word vn_file;    // Library name (string table offset)
269   Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
270   Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
271 };
272 
273 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
274 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
275 template<class ELFT>
276 struct Elf_Vernaux_Impl {
277   LLVM_ELF_IMPORT_TYPES(ELFT)
278   Elf_Word vna_hash;  // Hash of dependency name
279   Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
280   Elf_Half vna_other; // Version index, used in .gnu.version entries
281   Elf_Word vna_name;  // Dependency name
282   Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
283 };
284 
285 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
286 ///               table section (.dynamic) look like.
287 template<class ELFT>
288 struct Elf_Dyn_Base;
289 
290 template<template<endianness, std::size_t, bool> class ELFT,
291          endianness TargetEndianness, std::size_t MaxAlign>
292 struct Elf_Dyn_Base<ELFT<TargetEndianness, MaxAlign, false> > {
293   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
294                              MaxAlign LLVM_ELF_COMMA false>)
295   Elf_Sword d_tag;
296   union {
297     Elf_Word d_val;
298     Elf_Addr d_ptr;
299   } d_un;
300 };
301 
302 template<template<endianness, std::size_t, bool> class ELFT,
303          endianness TargetEndianness, std::size_t MaxAlign>
304 struct Elf_Dyn_Base<ELFT<TargetEndianness, MaxAlign, true> > {
305   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
306                              MaxAlign LLVM_ELF_COMMA true>)
307   Elf_Sxword d_tag;
308   union {
309     Elf_Xword d_val;
310     Elf_Addr d_ptr;
311   } d_un;
312 };
313 
314 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
315 template<class ELFT>
316 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
317   using Elf_Dyn_Base<ELFT>::d_tag;
318   using Elf_Dyn_Base<ELFT>::d_un;
319   int64_t getTag() const { return d_tag; }
320   uint64_t getVal() const { return d_un.d_val; }
321   uint64_t getPtr() const { return d_un.ptr; }
322 };
323 
324 // Elf_Rel: Elf Relocation
325 template<class ELFT, bool isRela>
326 struct Elf_Rel_Base;
327 
328 template<template<endianness, std::size_t, bool> class ELFT,
329          endianness TargetEndianness, std::size_t MaxAlign>
330 struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, false> {
331   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
332                              MaxAlign LLVM_ELF_COMMA false>)
333   Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
334   Elf_Word      r_info;  // Symbol table index and type of relocation to apply
335 };
336 
337 template<template<endianness, std::size_t, bool> class ELFT,
338          endianness TargetEndianness, std::size_t MaxAlign>
339 struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, false> {
340   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
341                              MaxAlign LLVM_ELF_COMMA true>)
342   Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
343   Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
344 };
345 
346 template<template<endianness, std::size_t, bool> class ELFT,
347          endianness TargetEndianness, std::size_t MaxAlign>
348 struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, true> {
349   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
350                              MaxAlign LLVM_ELF_COMMA false>)
351   Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
352   Elf_Word      r_info;   // Symbol table index and type of relocation to apply
353   Elf_Sword     r_addend; // Compute value for relocatable field by adding this
354 };
355 
356 template<template<endianness, std::size_t, bool> class ELFT,
357          endianness TargetEndianness, std::size_t MaxAlign>
358 struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, true> {
359   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
360                              MaxAlign LLVM_ELF_COMMA true>)
361   Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
362   Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
363   Elf_Sxword    r_addend; // Compute value for relocatable field by adding this.
364 };
365 
366 template<class ELFT, bool isRela>
367 struct Elf_Rel_Impl;
368 
369 template<template<endianness, std::size_t, bool> class ELFT,
370          endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
371 struct Elf_Rel_Impl<ELFT<TargetEndianness, MaxAlign, true>, isRela>
372        : Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, isRela> {
373   using Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, isRela>::r_info;
374   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
375                              MaxAlign LLVM_ELF_COMMA true>)
376 
377   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
378   // and ELF64_R_INFO macros defined in the ELF specification:
379   uint32_t getSymbol() const { return (uint32_t) (r_info >> 32); }
380   uint32_t getType() const {
381     return (uint32_t) (r_info & 0xffffffffL);
382   }
383   void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
384   void setType(uint32_t t) { setSymbolAndType(getSymbol(), t); }
385   void setSymbolAndType(uint32_t s, uint32_t t) {
386     r_info = ((uint64_t)s << 32) + (t&0xffffffffL);
387   }
388 };
389 
390 template<template<endianness, std::size_t, bool> class ELFT,
391          endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
392 struct Elf_Rel_Impl<ELFT<TargetEndianness, MaxAlign, false>, isRela>
393        : Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, isRela> {
394   using Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, isRela>::r_info;
395   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
396                              MaxAlign LLVM_ELF_COMMA false>)
397 
398   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
399   // and ELF32_R_INFO macros defined in the ELF specification:
400   uint32_t getSymbol() const { return (r_info >> 8); }
401   unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
402   void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
403   void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
404   void setSymbolAndType(uint32_t s, unsigned char t) {
405     r_info = (s << 8) + t;
406   }
407 };
408 
409 template<class ELFT>
410 struct Elf_Ehdr_Impl {
411   LLVM_ELF_IMPORT_TYPES(ELFT)
412   unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
413   Elf_Half e_type;     // Type of file (see ET_*)
414   Elf_Half e_machine;  // Required architecture for this file (see EM_*)
415   Elf_Word e_version;  // Must be equal to 1
416   Elf_Addr e_entry;    // Address to jump to in order to start program
417   Elf_Off  e_phoff;    // Program header table's file offset, in bytes
418   Elf_Off  e_shoff;    // Section header table's file offset, in bytes
419   Elf_Word e_flags;    // Processor-specific flags
420   Elf_Half e_ehsize;   // Size of ELF header, in bytes
421   Elf_Half e_phentsize;// Size of an entry in the program header table
422   Elf_Half e_phnum;    // Number of entries in the program header table
423   Elf_Half e_shentsize;// Size of an entry in the section header table
424   Elf_Half e_shnum;    // Number of entries in the section header table
425   Elf_Half e_shstrndx; // Section header table index of section name
426                                  // string table
427   bool checkMagic() const {
428     return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
429   }
430    unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
431    unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
432 };
433 
434 template<class ELFT>
435 struct Elf_Phdr_Impl;
436 
437 template<template<endianness, std::size_t, bool> class ELFT,
438          endianness TargetEndianness, std::size_t MaxAlign>
439 struct Elf_Phdr_Impl<ELFT<TargetEndianness, MaxAlign, false> > {
440   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
441                              MaxAlign LLVM_ELF_COMMA false>)
442   Elf_Word p_type;   // Type of segment
443   Elf_Off  p_offset; // FileOffset where segment is located, in bytes
444   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
445   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
446   Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
447   Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
448   Elf_Word p_flags;  // Segment flags
449   Elf_Word p_align;  // Segment alignment constraint
450 };
451 
452 template<template<endianness, std::size_t, bool> class ELFT,
453          endianness TargetEndianness, std::size_t MaxAlign>
454 struct Elf_Phdr_Impl<ELFT<TargetEndianness, MaxAlign, true> > {
455   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
456                              MaxAlign LLVM_ELF_COMMA true>)
457   Elf_Word p_type;   // Type of segment
458   Elf_Word p_flags;  // Segment flags
459   Elf_Off  p_offset; // FileOffset where segment is located, in bytes
460   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
461   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
462   Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
463   Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
464   Elf_Xword p_align;  // Segment alignment constraint
465 };
466 
467 template<class ELFT>
468 class ELFObjectFile : public ObjectFile {
469   LLVM_ELF_IMPORT_TYPES(ELFT)
470 
471 public:
472   /// \brief Iterate over constant sized entities.
473   template<class EntT>
474   class ELFEntityIterator {
475   public:
476     typedef ptrdiff_t difference_type;
477     typedef EntT value_type;
478     typedef std::random_access_iterator_tag iterator_category;
479     typedef value_type &reference;
480     typedef value_type *pointer;
481 
482     /// \brief Default construct iterator.
483     ELFEntityIterator() : EntitySize(0), Current(0) {}
484     ELFEntityIterator(uint64_t EntSize, const char *Start)
485       : EntitySize(EntSize)
486       , Current(Start) {}
487 
488     reference operator *() {
489       assert(Current && "Attempted to dereference an invalid iterator!");
490       return *reinterpret_cast<pointer>(Current);
491     }
492 
493     pointer operator ->() {
494       assert(Current && "Attempted to dereference an invalid iterator!");
495       return reinterpret_cast<pointer>(Current);
496     }
497 
498     bool operator ==(const ELFEntityIterator &Other) {
499       return Current == Other.Current;
500     }
501 
502     bool operator !=(const ELFEntityIterator &Other) {
503       return !(*this == Other);
504     }
505 
506     ELFEntityIterator &operator ++() {
507       assert(Current && "Attempted to increment an invalid iterator!");
508       Current += EntitySize;
509       return *this;
510     }
511 
512     ELFEntityIterator operator ++(int) {
513       ELFEntityIterator Tmp = *this;
514       ++*this;
515       return Tmp;
516     }
517 
518     ELFEntityIterator &operator =(const ELFEntityIterator &Other) {
519       EntitySize = Other.EntitySize;
520       Current = Other.Current;
521       return *this;
522     }
523 
524     difference_type operator -(const ELFEntityIterator &Other) const {
525       assert(EntitySize == Other.EntitySize &&
526              "Subtracting iterators of different EntitiySize!");
527       return (Current - Other.Current) / EntitySize;
528     }
529 
530     const char *get() const { return Current; }
531 
532   private:
533     uint64_t EntitySize;
534     const char *Current;
535   };
536 
537   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
538   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
539   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
540   typedef Elf_Dyn_Impl<ELFT> Elf_Dyn;
541   typedef Elf_Phdr_Impl<ELFT> Elf_Phdr;
542   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
543   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
544   typedef Elf_Verdef_Impl<ELFT> Elf_Verdef;
545   typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
546   typedef Elf_Verneed_Impl<ELFT> Elf_Verneed;
547   typedef Elf_Vernaux_Impl<ELFT> Elf_Vernaux;
548   typedef Elf_Versym_Impl<ELFT> Elf_Versym;
549   typedef ELFEntityIterator<const Elf_Dyn> Elf_Dyn_iterator;
550   typedef ELFEntityIterator<const Elf_Sym> Elf_Sym_iterator;
551   typedef ELFEntityIterator<const Elf_Rela> Elf_Rela_Iter;
552   typedef ELFEntityIterator<const Elf_Rel> Elf_Rel_Iter;
553 
554 protected:
555   // This flag is used for classof, to distinguish ELFObjectFile from
556   // its subclass. If more subclasses will be created, this flag will
557   // have to become an enum.
558   bool isDyldELFObject;
559 
560 private:
561   typedef SmallVector<const Elf_Shdr *, 2> Sections_t;
562   typedef DenseMap<unsigned, unsigned> IndexMap_t;
563   typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
564 
565   const Elf_Ehdr *Header;
566   const Elf_Shdr *SectionHeaderTable;
567   const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
568   const Elf_Shdr *dot_strtab_sec;   // Symbol header string table.
569   const Elf_Shdr *dot_dynstr_sec;   // Dynamic symbol string table.
570 
571   // SymbolTableSections[0] always points to the dynamic string table section
572   // header, or NULL if there is no dynamic string table.
573   Sections_t SymbolTableSections;
574   IndexMap_t SymbolTableSectionsIndexMap;
575   DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
576 
577   const Elf_Shdr *dot_dynamic_sec;       // .dynamic
578   const Elf_Shdr *dot_gnu_version_sec;   // .gnu.version
579   const Elf_Shdr *dot_gnu_version_r_sec; // .gnu.version_r
580   const Elf_Shdr *dot_gnu_version_d_sec; // .gnu.version_d
581 
582   // Pointer to SONAME entry in dynamic string table
583   // This is set the first time getLoadName is called.
584   mutable const char *dt_soname;
585 
586 private:
587   // Records for each version index the corresponding Verdef or Vernaux entry.
588   // This is filled the first time LoadVersionMap() is called.
589   class VersionMapEntry : public PointerIntPair<const void*, 1> {
590     public:
591     // If the integer is 0, this is an Elf_Verdef*.
592     // If the integer is 1, this is an Elf_Vernaux*.
593     VersionMapEntry() : PointerIntPair<const void*, 1>(NULL, 0) { }
594     VersionMapEntry(const Elf_Verdef *verdef)
595         : PointerIntPair<const void*, 1>(verdef, 0) { }
596     VersionMapEntry(const Elf_Vernaux *vernaux)
597         : PointerIntPair<const void*, 1>(vernaux, 1) { }
598     bool isNull() const { return getPointer() == NULL; }
599     bool isVerdef() const { return !isNull() && getInt() == 0; }
600     bool isVernaux() const { return !isNull() && getInt() == 1; }
601     const Elf_Verdef *getVerdef() const {
602       return isVerdef() ? (const Elf_Verdef*)getPointer() : NULL;
603     }
604     const Elf_Vernaux *getVernaux() const {
605       return isVernaux() ? (const Elf_Vernaux*)getPointer() : NULL;
606     }
607   };
608   mutable SmallVector<VersionMapEntry, 16> VersionMap;
609   void LoadVersionDefs(const Elf_Shdr *sec) const;
610   void LoadVersionNeeds(const Elf_Shdr *ec) const;
611   void LoadVersionMap() const;
612 
613   /// @brief Map sections to an array of relocation sections that reference
614   ///        them sorted by section index.
615   RelocMap_t SectionRelocMap;
616 
617   /// @brief Get the relocation section that contains \a Rel.
618   const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
619     return getSection(Rel.w.b);
620   }
621 
622 public:
623   bool            isRelocationHasAddend(DataRefImpl Rel) const;
624   template<typename T>
625   const T        *getEntry(uint16_t Section, uint32_t Entry) const;
626   template<typename T>
627   const T        *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
628   const Elf_Shdr *getSection(DataRefImpl index) const;
629   const Elf_Shdr *getSection(uint32_t index) const;
630   const Elf_Rel  *getRel(DataRefImpl Rel) const;
631   const Elf_Rela *getRela(DataRefImpl Rela) const;
632   const char     *getString(uint32_t section, uint32_t offset) const;
633   const char     *getString(const Elf_Shdr *section, uint32_t offset) const;
634   error_code      getSymbolVersion(const Elf_Shdr *section,
635                                    const Elf_Sym *Symb,
636                                    StringRef &Version,
637                                    bool &IsDefault) const;
638   void VerifyStrTab(const Elf_Shdr *sh) const;
639 
640 protected:
641   const Elf_Sym  *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
642   void            validateSymbol(DataRefImpl Symb) const;
643 
644 public:
645   error_code      getSymbolName(const Elf_Shdr *section,
646                                 const Elf_Sym *Symb,
647                                 StringRef &Res) const;
648   error_code      getSectionName(const Elf_Shdr *section,
649                                  StringRef &Res) const;
650   const Elf_Dyn  *getDyn(DataRefImpl DynData) const;
651   error_code getSymbolVersion(SymbolRef Symb, StringRef &Version,
652                               bool &IsDefault) const;
653   uint64_t getSymbolIndex(const Elf_Sym *sym) const;
654 protected:
655   virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
656   virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
657   virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
658   virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
659   virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
660   virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
661   virtual error_code getSymbolFlags(DataRefImpl Symb, uint32_t &Res) const;
662   virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
663   virtual error_code getSymbolSection(DataRefImpl Symb,
664                                       section_iterator &Res) const;
665   virtual error_code getSymbolValue(DataRefImpl Symb, uint64_t &Val) const;
666 
667   virtual error_code getLibraryNext(DataRefImpl Data, LibraryRef &Result) const;
668   virtual error_code getLibraryPath(DataRefImpl Data, StringRef &Res) const;
669 
670   virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
671   virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
672   virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
673   virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
674   virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
675   virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
676   virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
677   virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
678   virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
679   virtual error_code isSectionRequiredForExecution(DataRefImpl Sec,
680                                                    bool &Res) const;
681   virtual error_code isSectionVirtual(DataRefImpl Sec, bool &Res) const;
682   virtual error_code isSectionZeroInit(DataRefImpl Sec, bool &Res) const;
683   virtual error_code isSectionReadOnlyData(DataRefImpl Sec, bool &Res) const;
684   virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
685                                            bool &Result) const;
686   virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
687   virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
688 
689   virtual error_code getRelocationNext(DataRefImpl Rel,
690                                        RelocationRef &Res) const;
691   virtual error_code getRelocationAddress(DataRefImpl Rel,
692                                           uint64_t &Res) const;
693   virtual error_code getRelocationOffset(DataRefImpl Rel,
694                                          uint64_t &Res) const;
695   virtual error_code getRelocationSymbol(DataRefImpl Rel,
696                                          SymbolRef &Res) const;
697   virtual error_code getRelocationType(DataRefImpl Rel,
698                                        uint64_t &Res) const;
699   virtual error_code getRelocationTypeName(DataRefImpl Rel,
700                                            SmallVectorImpl<char> &Result) const;
701   virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
702                                                  int64_t &Res) const;
703   virtual error_code getRelocationValueString(DataRefImpl Rel,
704                                            SmallVectorImpl<char> &Result) const;
705 
706 public:
707   ELFObjectFile(MemoryBuffer *Object, error_code &ec);
708   virtual symbol_iterator begin_symbols() const;
709   virtual symbol_iterator end_symbols() const;
710 
711   virtual symbol_iterator begin_dynamic_symbols() const;
712   virtual symbol_iterator end_dynamic_symbols() const;
713 
714   virtual section_iterator begin_sections() const;
715   virtual section_iterator end_sections() const;
716 
717   virtual library_iterator begin_libraries_needed() const;
718   virtual library_iterator end_libraries_needed() const;
719 
720   const Elf_Shdr *getDynamicSymbolTableSectionHeader() const {
721     return SymbolTableSections[0];
722   }
723 
724   const Elf_Shdr *getDynamicStringTableSectionHeader() const {
725     return dot_dynstr_sec;
726   }
727 
728   Elf_Dyn_iterator begin_dynamic_table() const;
729   /// \param NULLEnd use one past the first DT_NULL entry as the end instead of
730   /// the section size.
731   Elf_Dyn_iterator end_dynamic_table(bool NULLEnd = false) const;
732 
733   Elf_Sym_iterator begin_elf_dynamic_symbols() const {
734     const Elf_Shdr *DynSymtab = SymbolTableSections[0];
735     if (DynSymtab)
736       return Elf_Sym_iterator(DynSymtab->sh_entsize,
737                               (const char *)base() + DynSymtab->sh_offset);
738     return Elf_Sym_iterator(0, 0);
739   }
740 
741   Elf_Sym_iterator end_elf_dynamic_symbols() const {
742     const Elf_Shdr *DynSymtab = SymbolTableSections[0];
743     if (DynSymtab)
744       return Elf_Sym_iterator(DynSymtab->sh_entsize, (const char *)base() +
745                               DynSymtab->sh_offset + DynSymtab->sh_size);
746     return Elf_Sym_iterator(0, 0);
747   }
748 
749   Elf_Rela_Iter beginELFRela(const Elf_Shdr *sec) const {
750     return Elf_Rela_Iter(sec->sh_entsize,
751                          (const char *)(base() + sec->sh_offset));
752   }
753 
754   Elf_Rela_Iter endELFRela(const Elf_Shdr *sec) const {
755     return Elf_Rela_Iter(sec->sh_entsize, (const char *)
756                          (base() + sec->sh_offset + sec->sh_size));
757   }
758 
759   Elf_Rel_Iter beginELFRel(const Elf_Shdr *sec) const {
760     return Elf_Rel_Iter(sec->sh_entsize,
761                         (const char *)(base() + sec->sh_offset));
762   }
763 
764   Elf_Rel_Iter endELFRel(const Elf_Shdr *sec) const {
765     return Elf_Rel_Iter(sec->sh_entsize, (const char *)
766                         (base() + sec->sh_offset + sec->sh_size));
767   }
768 
769   /// \brief Iterate over program header table.
770   typedef ELFEntityIterator<const Elf_Phdr> Elf_Phdr_Iter;
771 
772   Elf_Phdr_Iter begin_program_headers() const {
773     return Elf_Phdr_Iter(Header->e_phentsize,
774                          (const char*)base() + Header->e_phoff);
775   }
776 
777   Elf_Phdr_Iter end_program_headers() const {
778     return Elf_Phdr_Iter(Header->e_phentsize,
779                          (const char*)base() +
780                            Header->e_phoff +
781                            (Header->e_phnum * Header->e_phentsize));
782   }
783 
784   virtual uint8_t getBytesInAddress() const;
785   virtual StringRef getFileFormatName() const;
786   virtual StringRef getObjectType() const { return "ELF"; }
787   virtual unsigned getArch() const;
788   virtual StringRef getLoadName() const;
789   virtual error_code getSectionContents(const Elf_Shdr *sec,
790                                         StringRef &Res) const;
791 
792   uint64_t getNumSections() const;
793   uint64_t getStringTableIndex() const;
794   ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
795   const Elf_Shdr *getSection(const Elf_Sym *symb) const;
796   const Elf_Shdr *getElfSection(section_iterator &It) const;
797   const Elf_Sym *getElfSymbol(symbol_iterator &It) const;
798   const Elf_Sym *getElfSymbol(uint32_t index) const;
799 
800   // Methods for type inquiry through isa, cast, and dyn_cast
801   bool isDyldType() const { return isDyldELFObject; }
802   static inline bool classof(const Binary *v) {
803     return v->getType() == getELFType(ELFT::TargetEndianness == support::little,
804                                       ELFT::Is64Bits);
805   }
806 };
807 
808 // Iterate through the version definitions, and place each Elf_Verdef
809 // in the VersionMap according to its index.
810 template<class ELFT>
811 void ELFObjectFile<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
812   unsigned vd_size = sec->sh_size; // Size of section in bytes
813   unsigned vd_count = sec->sh_info; // Number of Verdef entries
814   const char *sec_start = (const char*)base() + sec->sh_offset;
815   const char *sec_end = sec_start + vd_size;
816   // The first Verdef entry is at the start of the section.
817   const char *p = sec_start;
818   for (unsigned i = 0; i < vd_count; i++) {
819     if (p + sizeof(Elf_Verdef) > sec_end)
820       report_fatal_error("Section ended unexpectedly while scanning "
821                          "version definitions.");
822     const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
823     if (vd->vd_version != ELF::VER_DEF_CURRENT)
824       report_fatal_error("Unexpected verdef version");
825     size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
826     if (index >= VersionMap.size())
827       VersionMap.resize(index+1);
828     VersionMap[index] = VersionMapEntry(vd);
829     p += vd->vd_next;
830   }
831 }
832 
833 // Iterate through the versions needed section, and place each Elf_Vernaux
834 // in the VersionMap according to its index.
835 template<class ELFT>
836 void ELFObjectFile<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
837   unsigned vn_size = sec->sh_size; // Size of section in bytes
838   unsigned vn_count = sec->sh_info; // Number of Verneed entries
839   const char *sec_start = (const char*)base() + sec->sh_offset;
840   const char *sec_end = sec_start + vn_size;
841   // The first Verneed entry is at the start of the section.
842   const char *p = sec_start;
843   for (unsigned i = 0; i < vn_count; i++) {
844     if (p + sizeof(Elf_Verneed) > sec_end)
845       report_fatal_error("Section ended unexpectedly while scanning "
846                          "version needed records.");
847     const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
848     if (vn->vn_version != ELF::VER_NEED_CURRENT)
849       report_fatal_error("Unexpected verneed version");
850     // Iterate through the Vernaux entries
851     const char *paux = p + vn->vn_aux;
852     for (unsigned j = 0; j < vn->vn_cnt; j++) {
853       if (paux + sizeof(Elf_Vernaux) > sec_end)
854         report_fatal_error("Section ended unexpected while scanning auxiliary "
855                            "version needed records.");
856       const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
857       size_t index = vna->vna_other & ELF::VERSYM_VERSION;
858       if (index >= VersionMap.size())
859         VersionMap.resize(index+1);
860       VersionMap[index] = VersionMapEntry(vna);
861       paux += vna->vna_next;
862     }
863     p += vn->vn_next;
864   }
865 }
866 
867 template<class ELFT>
868 void ELFObjectFile<ELFT>::LoadVersionMap() const {
869   // If there is no dynamic symtab or version table, there is nothing to do.
870   if (SymbolTableSections[0] == NULL || dot_gnu_version_sec == NULL)
871     return;
872 
873   // Has the VersionMap already been loaded?
874   if (VersionMap.size() > 0)
875     return;
876 
877   // The first two version indexes are reserved.
878   // Index 0 is LOCAL, index 1 is GLOBAL.
879   VersionMap.push_back(VersionMapEntry());
880   VersionMap.push_back(VersionMapEntry());
881 
882   if (dot_gnu_version_d_sec)
883     LoadVersionDefs(dot_gnu_version_d_sec);
884 
885   if (dot_gnu_version_r_sec)
886     LoadVersionNeeds(dot_gnu_version_r_sec);
887 }
888 
889 template<class ELFT>
890 void ELFObjectFile<ELFT>::validateSymbol(DataRefImpl Symb) const {
891 #ifndef NDEBUG
892   const Elf_Sym  *symb = getSymbol(Symb);
893   const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
894   // FIXME: We really need to do proper error handling in the case of an invalid
895   //        input file. Because we don't use exceptions, I think we'll just pass
896   //        an error object around.
897   if (!(  symb
898         && SymbolTableSection
899         && symb >= (const Elf_Sym*)(base()
900                    + SymbolTableSection->sh_offset)
901         && symb <  (const Elf_Sym*)(base()
902                    + SymbolTableSection->sh_offset
903                    + SymbolTableSection->sh_size)))
904     // FIXME: Proper error handling.
905     report_fatal_error("Symb must point to a valid symbol!");
906 #endif
907 }
908 
909 template<class ELFT>
910 error_code ELFObjectFile<ELFT>::getSymbolNext(DataRefImpl Symb,
911                                               SymbolRef &Result) const {
912   validateSymbol(Symb);
913   const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
914 
915   ++Symb.d.a;
916   // Check to see if we are at the end of this symbol table.
917   if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
918     // We are at the end. If there are other symbol tables, jump to them.
919     // If the symbol table is .dynsym, we are iterating dynamic symbols,
920     // and there is only one table of these.
921     if (Symb.d.b != 0) {
922       ++Symb.d.b;
923       Symb.d.a = 1; // The 0th symbol in ELF is fake.
924     }
925     // Otherwise return the terminator.
926     if (Symb.d.b == 0 || Symb.d.b >= SymbolTableSections.size()) {
927       Symb.d.a = std::numeric_limits<uint32_t>::max();
928       Symb.d.b = std::numeric_limits<uint32_t>::max();
929     }
930   }
931 
932   Result = SymbolRef(Symb, this);
933   return object_error::success;
934 }
935 
936 template<class ELFT>
937 error_code ELFObjectFile<ELFT>::getSymbolName(DataRefImpl Symb,
938                                               StringRef &Result) const {
939   validateSymbol(Symb);
940   const Elf_Sym *symb = getSymbol(Symb);
941   return getSymbolName(SymbolTableSections[Symb.d.b], symb, Result);
942 }
943 
944 template<class ELFT>
945 error_code ELFObjectFile<ELFT>::getSymbolVersion(SymbolRef SymRef,
946                                                  StringRef &Version,
947                                                  bool &IsDefault) const {
948   DataRefImpl Symb = SymRef.getRawDataRefImpl();
949   validateSymbol(Symb);
950   const Elf_Sym *symb = getSymbol(Symb);
951   return getSymbolVersion(SymbolTableSections[Symb.d.b], symb,
952                           Version, IsDefault);
953 }
954 
955 template<class ELFT>
956 ELF::Elf64_Word ELFObjectFile<ELFT>
957                              ::getSymbolTableIndex(const Elf_Sym *symb) const {
958   if (symb->st_shndx == ELF::SHN_XINDEX)
959     return ExtendedSymbolTable.lookup(symb);
960   return symb->st_shndx;
961 }
962 
963 template<class ELFT>
964 const typename ELFObjectFile<ELFT>::Elf_Shdr *
965 ELFObjectFile<ELFT>::getSection(const Elf_Sym *symb) const {
966   if (symb->st_shndx == ELF::SHN_XINDEX)
967     return getSection(ExtendedSymbolTable.lookup(symb));
968   if (symb->st_shndx >= ELF::SHN_LORESERVE)
969     return 0;
970   return getSection(symb->st_shndx);
971 }
972 
973 template<class ELFT>
974 const typename ELFObjectFile<ELFT>::Elf_Shdr *
975 ELFObjectFile<ELFT>::getElfSection(section_iterator &It) const {
976   llvm::object::DataRefImpl ShdrRef = It->getRawDataRefImpl();
977   return reinterpret_cast<const Elf_Shdr *>(ShdrRef.p);
978 }
979 
980 template<class ELFT>
981 const typename ELFObjectFile<ELFT>::Elf_Sym *
982 ELFObjectFile<ELFT>::getElfSymbol(symbol_iterator &It) const {
983   return getSymbol(It->getRawDataRefImpl());
984 }
985 
986 template<class ELFT>
987 const typename ELFObjectFile<ELFT>::Elf_Sym *
988 ELFObjectFile<ELFT>::getElfSymbol(uint32_t index) const {
989   DataRefImpl SymbolData;
990   SymbolData.d.a = index;
991   SymbolData.d.b = 1;
992   return getSymbol(SymbolData);
993 }
994 
995 template<class ELFT>
996 error_code ELFObjectFile<ELFT>::getSymbolFileOffset(DataRefImpl Symb,
997                                                     uint64_t &Result) const {
998   validateSymbol(Symb);
999   const Elf_Sym  *symb = getSymbol(Symb);
1000   const Elf_Shdr *Section;
1001   switch (getSymbolTableIndex(symb)) {
1002   case ELF::SHN_COMMON:
1003    // Unintialized symbols have no offset in the object file
1004   case ELF::SHN_UNDEF:
1005     Result = UnknownAddressOrSize;
1006     return object_error::success;
1007   case ELF::SHN_ABS:
1008     Result = symb->st_value;
1009     return object_error::success;
1010   default: Section = getSection(symb);
1011   }
1012 
1013   switch (symb->getType()) {
1014   case ELF::STT_SECTION:
1015     Result = Section ? Section->sh_offset : UnknownAddressOrSize;
1016     return object_error::success;
1017   case ELF::STT_FUNC:
1018   case ELF::STT_OBJECT:
1019   case ELF::STT_NOTYPE:
1020     Result = symb->st_value +
1021              (Section ? Section->sh_offset : 0);
1022     return object_error::success;
1023   default:
1024     Result = UnknownAddressOrSize;
1025     return object_error::success;
1026   }
1027 }
1028 
1029 template<class ELFT>
1030 error_code ELFObjectFile<ELFT>::getSymbolAddress(DataRefImpl Symb,
1031                                                  uint64_t &Result) const {
1032   validateSymbol(Symb);
1033   const Elf_Sym  *symb = getSymbol(Symb);
1034   const Elf_Shdr *Section;
1035   switch (getSymbolTableIndex(symb)) {
1036   case ELF::SHN_COMMON:
1037   case ELF::SHN_UNDEF:
1038     Result = UnknownAddressOrSize;
1039     return object_error::success;
1040   case ELF::SHN_ABS:
1041     Result = symb->st_value;
1042     return object_error::success;
1043   default: Section = getSection(symb);
1044   }
1045 
1046   switch (symb->getType()) {
1047   case ELF::STT_SECTION:
1048     Result = Section ? Section->sh_addr : UnknownAddressOrSize;
1049     return object_error::success;
1050   case ELF::STT_FUNC:
1051   case ELF::STT_OBJECT:
1052   case ELF::STT_NOTYPE:
1053     bool IsRelocatable;
1054     switch(Header->e_type) {
1055     case ELF::ET_EXEC:
1056     case ELF::ET_DYN:
1057       IsRelocatable = false;
1058       break;
1059     default:
1060       IsRelocatable = true;
1061     }
1062     Result = symb->st_value;
1063     if (IsRelocatable && Section != 0)
1064       Result += Section->sh_addr;
1065     return object_error::success;
1066   default:
1067     Result = UnknownAddressOrSize;
1068     return object_error::success;
1069   }
1070 }
1071 
1072 template<class ELFT>
1073 error_code ELFObjectFile<ELFT>::getSymbolSize(DataRefImpl Symb,
1074                                               uint64_t &Result) const {
1075   validateSymbol(Symb);
1076   const Elf_Sym  *symb = getSymbol(Symb);
1077   if (symb->st_size == 0)
1078     Result = UnknownAddressOrSize;
1079   Result = symb->st_size;
1080   return object_error::success;
1081 }
1082 
1083 template<class ELFT>
1084 error_code ELFObjectFile<ELFT>::getSymbolNMTypeChar(DataRefImpl Symb,
1085                                                     char &Result) const {
1086   validateSymbol(Symb);
1087   const Elf_Sym  *symb = getSymbol(Symb);
1088   const Elf_Shdr *Section = getSection(symb);
1089 
1090   char ret = '?';
1091 
1092   if (Section) {
1093     switch (Section->sh_type) {
1094     case ELF::SHT_PROGBITS:
1095     case ELF::SHT_DYNAMIC:
1096       switch (Section->sh_flags) {
1097       case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
1098         ret = 't'; break;
1099       case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
1100         ret = 'd'; break;
1101       case ELF::SHF_ALLOC:
1102       case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
1103       case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
1104         ret = 'r'; break;
1105       }
1106       break;
1107     case ELF::SHT_NOBITS: ret = 'b';
1108     }
1109   }
1110 
1111   switch (getSymbolTableIndex(symb)) {
1112   case ELF::SHN_UNDEF:
1113     if (ret == '?')
1114       ret = 'U';
1115     break;
1116   case ELF::SHN_ABS: ret = 'a'; break;
1117   case ELF::SHN_COMMON: ret = 'c'; break;
1118   }
1119 
1120   switch (symb->getBinding()) {
1121   case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
1122   case ELF::STB_WEAK:
1123     if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1124       ret = 'w';
1125     else
1126       if (symb->getType() == ELF::STT_OBJECT)
1127         ret = 'V';
1128       else
1129         ret = 'W';
1130   }
1131 
1132   if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
1133     StringRef name;
1134     if (error_code ec = getSymbolName(Symb, name))
1135       return ec;
1136     Result = StringSwitch<char>(name)
1137       .StartsWith(".debug", 'N')
1138       .StartsWith(".note", 'n')
1139       .Default('?');
1140     return object_error::success;
1141   }
1142 
1143   Result = ret;
1144   return object_error::success;
1145 }
1146 
1147 template<class ELFT>
1148 error_code ELFObjectFile<ELFT>::getSymbolType(DataRefImpl Symb,
1149                                               SymbolRef::Type &Result) const {
1150   validateSymbol(Symb);
1151   const Elf_Sym  *symb = getSymbol(Symb);
1152 
1153   switch (symb->getType()) {
1154   case ELF::STT_NOTYPE:
1155     Result = SymbolRef::ST_Unknown;
1156     break;
1157   case ELF::STT_SECTION:
1158     Result = SymbolRef::ST_Debug;
1159     break;
1160   case ELF::STT_FILE:
1161     Result = SymbolRef::ST_File;
1162     break;
1163   case ELF::STT_FUNC:
1164     Result = SymbolRef::ST_Function;
1165     break;
1166   case ELF::STT_OBJECT:
1167   case ELF::STT_COMMON:
1168   case ELF::STT_TLS:
1169     Result = SymbolRef::ST_Data;
1170     break;
1171   default:
1172     Result = SymbolRef::ST_Other;
1173     break;
1174   }
1175   return object_error::success;
1176 }
1177 
1178 template<class ELFT>
1179 error_code ELFObjectFile<ELFT>::getSymbolFlags(DataRefImpl Symb,
1180                                                uint32_t &Result) const {
1181   validateSymbol(Symb);
1182   const Elf_Sym  *symb = getSymbol(Symb);
1183 
1184   Result = SymbolRef::SF_None;
1185 
1186   if (symb->getBinding() != ELF::STB_LOCAL)
1187     Result |= SymbolRef::SF_Global;
1188 
1189   if (symb->getBinding() == ELF::STB_WEAK)
1190     Result |= SymbolRef::SF_Weak;
1191 
1192   if (symb->st_shndx == ELF::SHN_ABS)
1193     Result |= SymbolRef::SF_Absolute;
1194 
1195   if (symb->getType() == ELF::STT_FILE ||
1196       symb->getType() == ELF::STT_SECTION)
1197     Result |= SymbolRef::SF_FormatSpecific;
1198 
1199   if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1200     Result |= SymbolRef::SF_Undefined;
1201 
1202   if (symb->getType() == ELF::STT_COMMON ||
1203       getSymbolTableIndex(symb) == ELF::SHN_COMMON)
1204     Result |= SymbolRef::SF_Common;
1205 
1206   if (symb->getType() == ELF::STT_TLS)
1207     Result |= SymbolRef::SF_ThreadLocal;
1208 
1209   return object_error::success;
1210 }
1211 
1212 template<class ELFT>
1213 error_code ELFObjectFile<ELFT>::getSymbolSection(DataRefImpl Symb,
1214                                                  section_iterator &Res) const {
1215   validateSymbol(Symb);
1216   const Elf_Sym  *symb = getSymbol(Symb);
1217   const Elf_Shdr *sec = getSection(symb);
1218   if (!sec)
1219     Res = end_sections();
1220   else {
1221     DataRefImpl Sec;
1222     Sec.p = reinterpret_cast<intptr_t>(sec);
1223     Res = section_iterator(SectionRef(Sec, this));
1224   }
1225   return object_error::success;
1226 }
1227 
1228 template<class ELFT>
1229 error_code ELFObjectFile<ELFT>::getSymbolValue(DataRefImpl Symb,
1230                                                uint64_t &Val) const {
1231   validateSymbol(Symb);
1232   const Elf_Sym *symb = getSymbol(Symb);
1233   Val = symb->st_value;
1234   return object_error::success;
1235 }
1236 
1237 template<class ELFT>
1238 error_code ELFObjectFile<ELFT>::getSectionNext(DataRefImpl Sec,
1239                                                SectionRef &Result) const {
1240   const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
1241   sec += Header->e_shentsize;
1242   Sec.p = reinterpret_cast<intptr_t>(sec);
1243   Result = SectionRef(Sec, this);
1244   return object_error::success;
1245 }
1246 
1247 template<class ELFT>
1248 error_code ELFObjectFile<ELFT>::getSectionName(DataRefImpl Sec,
1249                                                StringRef &Result) const {
1250   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1251   Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
1252   return object_error::success;
1253 }
1254 
1255 template<class ELFT>
1256 error_code ELFObjectFile<ELFT>::getSectionAddress(DataRefImpl Sec,
1257                                                   uint64_t &Result) const {
1258   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1259   Result = sec->sh_addr;
1260   return object_error::success;
1261 }
1262 
1263 template<class ELFT>
1264 error_code ELFObjectFile<ELFT>::getSectionSize(DataRefImpl Sec,
1265                                                uint64_t &Result) const {
1266   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1267   Result = sec->sh_size;
1268   return object_error::success;
1269 }
1270 
1271 template<class ELFT>
1272 error_code ELFObjectFile<ELFT>::getSectionContents(DataRefImpl Sec,
1273                                                    StringRef &Result) const {
1274   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1275   const char *start = (const char*)base() + sec->sh_offset;
1276   Result = StringRef(start, sec->sh_size);
1277   return object_error::success;
1278 }
1279 
1280 template<class ELFT>
1281 error_code ELFObjectFile<ELFT>::getSectionContents(const Elf_Shdr *Sec,
1282                                                    StringRef &Result) const {
1283   const char *start = (const char*)base() + Sec->sh_offset;
1284   Result = StringRef(start, Sec->sh_size);
1285   return object_error::success;
1286 }
1287 
1288 template<class ELFT>
1289 error_code ELFObjectFile<ELFT>::getSectionAlignment(DataRefImpl Sec,
1290                                                     uint64_t &Result) const {
1291   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1292   Result = sec->sh_addralign;
1293   return object_error::success;
1294 }
1295 
1296 template<class ELFT>
1297 error_code ELFObjectFile<ELFT>::isSectionText(DataRefImpl Sec,
1298                                               bool &Result) const {
1299   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1300   if (sec->sh_flags & ELF::SHF_EXECINSTR)
1301     Result = true;
1302   else
1303     Result = false;
1304   return object_error::success;
1305 }
1306 
1307 template<class ELFT>
1308 error_code ELFObjectFile<ELFT>::isSectionData(DataRefImpl Sec,
1309                                               bool &Result) const {
1310   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1311   if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1312       && sec->sh_type == ELF::SHT_PROGBITS)
1313     Result = true;
1314   else
1315     Result = false;
1316   return object_error::success;
1317 }
1318 
1319 template<class ELFT>
1320 error_code ELFObjectFile<ELFT>::isSectionBSS(DataRefImpl Sec,
1321                                              bool &Result) const {
1322   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1323   if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1324       && sec->sh_type == ELF::SHT_NOBITS)
1325     Result = true;
1326   else
1327     Result = false;
1328   return object_error::success;
1329 }
1330 
1331 template<class ELFT>
1332 error_code ELFObjectFile<ELFT>::isSectionRequiredForExecution(
1333     DataRefImpl Sec, bool &Result) const {
1334   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1335   if (sec->sh_flags & ELF::SHF_ALLOC)
1336     Result = true;
1337   else
1338     Result = false;
1339   return object_error::success;
1340 }
1341 
1342 template<class ELFT>
1343 error_code ELFObjectFile<ELFT>::isSectionVirtual(DataRefImpl Sec,
1344                                                  bool &Result) const {
1345   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1346   if (sec->sh_type == ELF::SHT_NOBITS)
1347     Result = true;
1348   else
1349     Result = false;
1350   return object_error::success;
1351 }
1352 
1353 template<class ELFT>
1354 error_code ELFObjectFile<ELFT>::isSectionZeroInit(DataRefImpl Sec,
1355                                                   bool &Result) const {
1356   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1357   // For ELF, all zero-init sections are virtual (that is, they occupy no space
1358   //   in the object image) and vice versa.
1359   Result = sec->sh_type == ELF::SHT_NOBITS;
1360   return object_error::success;
1361 }
1362 
1363 template<class ELFT>
1364 error_code ELFObjectFile<ELFT>::isSectionReadOnlyData(DataRefImpl Sec,
1365                                                       bool &Result) const {
1366   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1367   if (sec->sh_flags & ELF::SHF_WRITE || sec->sh_flags & ELF::SHF_EXECINSTR)
1368     Result = false;
1369   else
1370     Result = true;
1371   return object_error::success;
1372 }
1373 
1374 template<class ELFT>
1375 error_code ELFObjectFile<ELFT>::sectionContainsSymbol(DataRefImpl Sec,
1376                                                       DataRefImpl Symb,
1377                                                       bool &Result) const {
1378   // FIXME: Unimplemented.
1379   Result = false;
1380   return object_error::success;
1381 }
1382 
1383 template<class ELFT>
1384 relocation_iterator
1385 ELFObjectFile<ELFT>::getSectionRelBegin(DataRefImpl Sec) const {
1386   DataRefImpl RelData;
1387   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1388   typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1389   if (sec != 0 && ittr != SectionRelocMap.end()) {
1390     RelData.w.a = getSection(ittr->second[0])->sh_info;
1391     RelData.w.b = ittr->second[0];
1392     RelData.w.c = 0;
1393   }
1394   return relocation_iterator(RelocationRef(RelData, this));
1395 }
1396 
1397 template<class ELFT>
1398 relocation_iterator
1399 ELFObjectFile<ELFT>::getSectionRelEnd(DataRefImpl Sec) const {
1400   DataRefImpl RelData;
1401   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1402   typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1403   if (sec != 0 && ittr != SectionRelocMap.end()) {
1404     // Get the index of the last relocation section for this section.
1405     std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
1406     const Elf_Shdr *relocsec = getSection(relocsecindex);
1407     RelData.w.a = relocsec->sh_info;
1408     RelData.w.b = relocsecindex;
1409     RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
1410   }
1411   return relocation_iterator(RelocationRef(RelData, this));
1412 }
1413 
1414 // Relocations
1415 template<class ELFT>
1416 error_code ELFObjectFile<ELFT>::getRelocationNext(DataRefImpl Rel,
1417                                                   RelocationRef &Result) const {
1418   ++Rel.w.c;
1419   const Elf_Shdr *relocsec = getSection(Rel.w.b);
1420   if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
1421     // We have reached the end of the relocations for this section. See if there
1422     // is another relocation section.
1423     typename RelocMap_t::mapped_type relocseclist =
1424       SectionRelocMap.lookup(getSection(Rel.w.a));
1425 
1426     // Do a binary search for the current reloc section index (which must be
1427     // present). Then get the next one.
1428     typename RelocMap_t::mapped_type::const_iterator loc =
1429       std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
1430     ++loc;
1431 
1432     // If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
1433     // to the end iterator.
1434     if (loc != relocseclist.end()) {
1435       Rel.w.b = *loc;
1436       Rel.w.a = 0;
1437     }
1438   }
1439   Result = RelocationRef(Rel, this);
1440   return object_error::success;
1441 }
1442 
1443 template<class ELFT>
1444 error_code ELFObjectFile<ELFT>::getRelocationSymbol(DataRefImpl Rel,
1445                                                     SymbolRef &Result) const {
1446   uint32_t symbolIdx;
1447   const Elf_Shdr *sec = getSection(Rel.w.b);
1448   switch (sec->sh_type) {
1449     default :
1450       report_fatal_error("Invalid section type in Rel!");
1451     case ELF::SHT_REL : {
1452       symbolIdx = getRel(Rel)->getSymbol();
1453       break;
1454     }
1455     case ELF::SHT_RELA : {
1456       symbolIdx = getRela(Rel)->getSymbol();
1457       break;
1458     }
1459   }
1460   DataRefImpl SymbolData;
1461   IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
1462   if (it == SymbolTableSectionsIndexMap.end())
1463     report_fatal_error("Relocation symbol table not found!");
1464   SymbolData.d.a = symbolIdx;
1465   SymbolData.d.b = it->second;
1466   Result = SymbolRef(SymbolData, this);
1467   return object_error::success;
1468 }
1469 
1470 template<class ELFT>
1471 error_code ELFObjectFile<ELFT>::getRelocationAddress(DataRefImpl Rel,
1472                                                      uint64_t &Result) const {
1473   uint64_t offset;
1474   const Elf_Shdr *sec = getSection(Rel.w.b);
1475   switch (sec->sh_type) {
1476     default :
1477       report_fatal_error("Invalid section type in Rel!");
1478     case ELF::SHT_REL : {
1479       offset = getRel(Rel)->r_offset;
1480       break;
1481     }
1482     case ELF::SHT_RELA : {
1483       offset = getRela(Rel)->r_offset;
1484       break;
1485     }
1486   }
1487 
1488   Result = offset;
1489   return object_error::success;
1490 }
1491 
1492 template<class ELFT>
1493 error_code ELFObjectFile<ELFT>::getRelocationOffset(DataRefImpl Rel,
1494                                                     uint64_t &Result) const {
1495   uint64_t offset;
1496   const Elf_Shdr *sec = getSection(Rel.w.b);
1497   switch (sec->sh_type) {
1498     default :
1499       report_fatal_error("Invalid section type in Rel!");
1500     case ELF::SHT_REL : {
1501       offset = getRel(Rel)->r_offset;
1502       break;
1503     }
1504     case ELF::SHT_RELA : {
1505       offset = getRela(Rel)->r_offset;
1506       break;
1507     }
1508   }
1509 
1510   Result = offset - sec->sh_addr;
1511   return object_error::success;
1512 }
1513 
1514 template<class ELFT>
1515 error_code ELFObjectFile<ELFT>::getRelocationType(DataRefImpl Rel,
1516                                                   uint64_t &Result) const {
1517   const Elf_Shdr *sec = getSection(Rel.w.b);
1518   switch (sec->sh_type) {
1519     default :
1520       report_fatal_error("Invalid section type in Rel!");
1521     case ELF::SHT_REL : {
1522       Result = getRel(Rel)->getType();
1523       break;
1524     }
1525     case ELF::SHT_RELA : {
1526       Result = getRela(Rel)->getType();
1527       break;
1528     }
1529   }
1530   return object_error::success;
1531 }
1532 
1533 #define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
1534   case ELF::enum: res = #enum; break;
1535 
1536 template<class ELFT>
1537 error_code ELFObjectFile<ELFT>::getRelocationTypeName(
1538     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1539   const Elf_Shdr *sec = getSection(Rel.w.b);
1540   uint32_t type;
1541   StringRef res;
1542   switch (sec->sh_type) {
1543     default :
1544       return object_error::parse_failed;
1545     case ELF::SHT_REL : {
1546       type = getRel(Rel)->getType();
1547       break;
1548     }
1549     case ELF::SHT_RELA : {
1550       type = getRela(Rel)->getType();
1551       break;
1552     }
1553   }
1554   switch (Header->e_machine) {
1555   case ELF::EM_X86_64:
1556     switch (type) {
1557       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
1558       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
1559       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
1560       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
1561       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
1562       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
1563       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
1564       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
1565       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
1566       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
1567       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
1568       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
1569       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
1570       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
1571       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
1572       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
1573       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
1574       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
1575       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
1576       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
1577       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
1578       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
1579       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
1580       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
1581       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
1582       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
1583       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
1584       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
1585       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
1586       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
1587       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
1588       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
1589     default:
1590       res = "Unknown";
1591     }
1592     break;
1593   case ELF::EM_386:
1594     switch (type) {
1595       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
1596       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
1597       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
1598       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
1599       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
1600       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
1601       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
1602       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
1603       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
1604       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
1605       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
1606       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
1607       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
1608       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
1609       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
1610       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
1611       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
1612       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
1613       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
1614       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
1615       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
1616       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
1617       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
1618       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
1619       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
1620       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
1621       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
1622       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
1623       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
1624       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
1625       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
1626       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
1627       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
1628       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
1629       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
1630       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
1631       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
1632       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
1633       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
1634       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
1635     default:
1636       res = "Unknown";
1637     }
1638     break;
1639   case ELF::EM_AARCH64:
1640     switch (type) {
1641       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_NONE);
1642       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS64);
1643       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS32);
1644       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS16);
1645       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL64);
1646       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL32);
1647       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL16);
1648       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0);
1649       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0_NC);
1650       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1);
1651       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1_NC);
1652       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2);
1653       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2_NC);
1654       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G3);
1655       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G0);
1656       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G1);
1657       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G2);
1658       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD_PREL_LO19);
1659       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_LO21);
1660       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_PG_HI21);
1661       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADD_ABS_LO12_NC);
1662       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST8_ABS_LO12_NC);
1663       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TSTBR14);
1664       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CONDBR19);
1665       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_JUMP26);
1666       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CALL26);
1667       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST16_ABS_LO12_NC);
1668       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST32_ABS_LO12_NC);
1669       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST64_ABS_LO12_NC);
1670       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST128_ABS_LO12_NC);
1671       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_GOT_PAGE);
1672       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD64_GOT_LO12_NC);
1673       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G2);
1674       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1);
1675       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC);
1676       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0);
1677       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC);
1678       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_HI12);
1679       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12);
1680       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC);
1681       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12);
1682       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC);
1683       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12);
1684       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC);
1685       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12);
1686       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC);
1687       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12);
1688       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC);
1689       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
1690       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
1691       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
1692       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
1693       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
1694       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G2);
1695       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1);
1696       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1_NC);
1697       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0);
1698       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0_NC);
1699       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_HI12);
1700       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12);
1701       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12_NC);
1702       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12);
1703       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC);
1704       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12);
1705       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC);
1706       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12);
1707       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC);
1708       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12);
1709       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC);
1710       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADR_PAGE);
1711       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_LD64_LO12_NC);
1712       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADD_LO12_NC);
1713       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_CALL);
1714 
1715     default:
1716       res = "Unknown";
1717     }
1718     break;
1719   case ELF::EM_ARM:
1720     switch (type) {
1721       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
1722       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
1723       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
1724       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
1725       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
1726       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
1727       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
1728       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
1729       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
1730       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
1731       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
1732       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
1733       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
1734       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
1735       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
1736       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
1737       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
1738       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
1739       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
1740       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
1741       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
1742       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
1743       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
1744       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
1745       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
1746       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
1747       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
1748       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
1749       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
1750       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
1751       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
1752       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
1753       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
1754       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
1755       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
1756       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
1757       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
1758       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
1759       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
1760       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
1761       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
1762       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
1763       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
1764       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
1765       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
1766       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
1767       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
1768       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
1769       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
1770       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
1771       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
1772       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
1773       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
1774       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
1775       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
1776       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
1777       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
1778       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
1779       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
1780       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
1781       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
1782       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
1783       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
1784       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
1785       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
1786       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
1787       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
1788       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
1789       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
1790       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
1791       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
1792       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
1793       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
1794       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
1795       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
1796       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
1797       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
1798       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
1799       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
1800       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
1801       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
1802       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
1803       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
1804       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
1805       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
1806       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
1807       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
1808       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
1809       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
1810       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
1811       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
1812       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
1813       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
1814       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
1815       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
1816       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
1817       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
1818       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
1819       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
1820       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
1821       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
1822       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
1823       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
1824       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
1825       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
1826       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
1827       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
1828       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
1829       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
1830       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
1831       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
1832       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
1833       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
1834       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
1835       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
1836       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
1837       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
1838       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
1839       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
1840       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
1841       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
1842       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
1843       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
1844       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
1845       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
1846       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
1847       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
1848       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
1849       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
1850       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
1851       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
1852     default:
1853       res = "Unknown";
1854     }
1855     break;
1856   case ELF::EM_HEXAGON:
1857     switch (type) {
1858       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
1859       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
1860       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
1861       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
1862       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
1863       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
1864       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
1865       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
1866       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
1867       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
1868       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
1869       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
1870       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
1871       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
1872       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
1873       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
1874       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
1875       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
1876       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
1877       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
1878       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
1879       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
1880       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
1881       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
1882       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
1883       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
1884       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
1885       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
1886       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
1887       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
1888       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
1889       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
1890       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
1891       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
1892       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
1893       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
1894       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
1895       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
1896       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
1897       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
1898       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
1899       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
1900       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
1901       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
1902       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
1903       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
1904       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
1905       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
1906       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
1907       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
1908       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
1909       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
1910       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
1911       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
1912       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
1913       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
1914       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
1915       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
1916       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
1917       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
1918       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
1919       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
1920       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
1921       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
1922       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
1923       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
1924       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
1925       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
1926       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
1927       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
1928       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
1929       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
1930       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
1931       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
1932       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
1933       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
1934       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
1935       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
1936       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
1937       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
1938       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
1939       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
1940       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
1941       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
1942       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
1943       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
1944     default:
1945       res = "Unknown";
1946     }
1947     break;
1948   default:
1949     res = "Unknown";
1950   }
1951   Result.append(res.begin(), res.end());
1952   return object_error::success;
1953 }
1954 
1955 #undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
1956 
1957 template<class ELFT>
1958 error_code ELFObjectFile<ELFT>::getRelocationAdditionalInfo(
1959     DataRefImpl Rel, int64_t &Result) const {
1960   const Elf_Shdr *sec = getSection(Rel.w.b);
1961   switch (sec->sh_type) {
1962     default :
1963       report_fatal_error("Invalid section type in Rel!");
1964     case ELF::SHT_REL : {
1965       Result = 0;
1966       return object_error::success;
1967     }
1968     case ELF::SHT_RELA : {
1969       Result = getRela(Rel)->r_addend;
1970       return object_error::success;
1971     }
1972   }
1973 }
1974 
1975 template<class ELFT>
1976 error_code ELFObjectFile<ELFT>::getRelocationValueString(
1977     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1978   const Elf_Shdr *sec = getSection(Rel.w.b);
1979   uint8_t type;
1980   StringRef res;
1981   int64_t addend = 0;
1982   uint16_t symbol_index = 0;
1983   switch (sec->sh_type) {
1984     default:
1985       return object_error::parse_failed;
1986     case ELF::SHT_REL: {
1987       type = getRel(Rel)->getType();
1988       symbol_index = getRel(Rel)->getSymbol();
1989       // TODO: Read implicit addend from section data.
1990       break;
1991     }
1992     case ELF::SHT_RELA: {
1993       type = getRela(Rel)->getType();
1994       symbol_index = getRela(Rel)->getSymbol();
1995       addend = getRela(Rel)->r_addend;
1996       break;
1997     }
1998   }
1999   const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
2000   StringRef symname;
2001   if (error_code ec = getSymbolName(getSection(sec->sh_link), symb, symname))
2002     return ec;
2003   switch (Header->e_machine) {
2004   case ELF::EM_X86_64:
2005     switch (type) {
2006     case ELF::R_X86_64_PC8:
2007     case ELF::R_X86_64_PC16:
2008     case ELF::R_X86_64_PC32: {
2009         std::string fmtbuf;
2010         raw_string_ostream fmt(fmtbuf);
2011         fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
2012         fmt.flush();
2013         Result.append(fmtbuf.begin(), fmtbuf.end());
2014       }
2015       break;
2016     case ELF::R_X86_64_8:
2017     case ELF::R_X86_64_16:
2018     case ELF::R_X86_64_32:
2019     case ELF::R_X86_64_32S:
2020     case ELF::R_X86_64_64: {
2021         std::string fmtbuf;
2022         raw_string_ostream fmt(fmtbuf);
2023         fmt << symname << (addend < 0 ? "" : "+") << addend;
2024         fmt.flush();
2025         Result.append(fmtbuf.begin(), fmtbuf.end());
2026       }
2027       break;
2028     default:
2029       res = "Unknown";
2030     }
2031     break;
2032   case ELF::EM_AARCH64:
2033   case ELF::EM_ARM:
2034   case ELF::EM_HEXAGON:
2035     res = symname;
2036     break;
2037   default:
2038     res = "Unknown";
2039   }
2040   if (Result.empty())
2041     Result.append(res.begin(), res.end());
2042   return object_error::success;
2043 }
2044 
2045 // Verify that the last byte in the string table in a null.
2046 template<class ELFT>
2047 void ELFObjectFile<ELFT>::VerifyStrTab(const Elf_Shdr *sh) const {
2048   const char *strtab = (const char*)base() + sh->sh_offset;
2049   if (strtab[sh->sh_size - 1] != 0)
2050     // FIXME: Proper error handling.
2051     report_fatal_error("String table must end with a null terminator!");
2052 }
2053 
2054 template<class ELFT>
2055 ELFObjectFile<ELFT>::ELFObjectFile(MemoryBuffer *Object, error_code &ec)
2056   : ObjectFile(getELFType(
2057       static_cast<endianness>(ELFT::TargetEndianness) == support::little,
2058       ELFT::Is64Bits),
2059       Object,
2060       ec)
2061   , isDyldELFObject(false)
2062   , SectionHeaderTable(0)
2063   , dot_shstrtab_sec(0)
2064   , dot_strtab_sec(0)
2065   , dot_dynstr_sec(0)
2066   , dot_dynamic_sec(0)
2067   , dot_gnu_version_sec(0)
2068   , dot_gnu_version_r_sec(0)
2069   , dot_gnu_version_d_sec(0)
2070   , dt_soname(0)
2071  {
2072 
2073   const uint64_t FileSize = Data->getBufferSize();
2074 
2075   if (sizeof(Elf_Ehdr) > FileSize)
2076     // FIXME: Proper error handling.
2077     report_fatal_error("File too short!");
2078 
2079   Header = reinterpret_cast<const Elf_Ehdr *>(base());
2080 
2081   if (Header->e_shoff == 0)
2082     return;
2083 
2084   const uint64_t SectionTableOffset = Header->e_shoff;
2085 
2086   if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
2087     // FIXME: Proper error handling.
2088     report_fatal_error("Section header table goes past end of file!");
2089 
2090   // The getNumSections() call below depends on SectionHeaderTable being set.
2091   SectionHeaderTable =
2092     reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
2093   const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
2094 
2095   if (SectionTableOffset + SectionTableSize > FileSize)
2096     // FIXME: Proper error handling.
2097     report_fatal_error("Section table goes past end of file!");
2098 
2099   // To find the symbol tables we walk the section table to find SHT_SYMTAB.
2100   const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
2101   const Elf_Shdr* sh = SectionHeaderTable;
2102 
2103   // Reserve SymbolTableSections[0] for .dynsym
2104   SymbolTableSections.push_back(NULL);
2105 
2106   for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
2107     switch (sh->sh_type) {
2108     case ELF::SHT_SYMTAB_SHNDX: {
2109       if (SymbolTableSectionHeaderIndex)
2110         // FIXME: Proper error handling.
2111         report_fatal_error("More than one .symtab_shndx!");
2112       SymbolTableSectionHeaderIndex = sh;
2113       break;
2114     }
2115     case ELF::SHT_SYMTAB: {
2116       SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
2117       SymbolTableSections.push_back(sh);
2118       break;
2119     }
2120     case ELF::SHT_DYNSYM: {
2121       if (SymbolTableSections[0] != NULL)
2122         // FIXME: Proper error handling.
2123         report_fatal_error("More than one .dynsym!");
2124       SymbolTableSectionsIndexMap[i] = 0;
2125       SymbolTableSections[0] = sh;
2126       break;
2127     }
2128     case ELF::SHT_REL:
2129     case ELF::SHT_RELA: {
2130       SectionRelocMap[getSection(sh->sh_info)].push_back(i);
2131       break;
2132     }
2133     case ELF::SHT_DYNAMIC: {
2134       if (dot_dynamic_sec != NULL)
2135         // FIXME: Proper error handling.
2136         report_fatal_error("More than one .dynamic!");
2137       dot_dynamic_sec = sh;
2138       break;
2139     }
2140     case ELF::SHT_GNU_versym: {
2141       if (dot_gnu_version_sec != NULL)
2142         // FIXME: Proper error handling.
2143         report_fatal_error("More than one .gnu.version section!");
2144       dot_gnu_version_sec = sh;
2145       break;
2146     }
2147     case ELF::SHT_GNU_verdef: {
2148       if (dot_gnu_version_d_sec != NULL)
2149         // FIXME: Proper error handling.
2150         report_fatal_error("More than one .gnu.version_d section!");
2151       dot_gnu_version_d_sec = sh;
2152       break;
2153     }
2154     case ELF::SHT_GNU_verneed: {
2155       if (dot_gnu_version_r_sec != NULL)
2156         // FIXME: Proper error handling.
2157         report_fatal_error("More than one .gnu.version_r section!");
2158       dot_gnu_version_r_sec = sh;
2159       break;
2160     }
2161     }
2162     ++sh;
2163   }
2164 
2165   // Sort section relocation lists by index.
2166   for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
2167                                      e = SectionRelocMap.end(); i != e; ++i) {
2168     std::sort(i->second.begin(), i->second.end());
2169   }
2170 
2171   // Get string table sections.
2172   dot_shstrtab_sec = getSection(getStringTableIndex());
2173   if (dot_shstrtab_sec) {
2174     // Verify that the last byte in the string table in a null.
2175     VerifyStrTab(dot_shstrtab_sec);
2176   }
2177 
2178   // Merge this into the above loop.
2179   for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
2180                   *e = i + getNumSections() * Header->e_shentsize;
2181                    i != e; i += Header->e_shentsize) {
2182     const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
2183     if (sh->sh_type == ELF::SHT_STRTAB) {
2184       StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
2185       if (SectionName == ".strtab") {
2186         if (dot_strtab_sec != 0)
2187           // FIXME: Proper error handling.
2188           report_fatal_error("Already found section named .strtab!");
2189         dot_strtab_sec = sh;
2190         VerifyStrTab(dot_strtab_sec);
2191       } else if (SectionName == ".dynstr") {
2192         if (dot_dynstr_sec != 0)
2193           // FIXME: Proper error handling.
2194           report_fatal_error("Already found section named .dynstr!");
2195         dot_dynstr_sec = sh;
2196         VerifyStrTab(dot_dynstr_sec);
2197       }
2198     }
2199   }
2200 
2201   // Build symbol name side-mapping if there is one.
2202   if (SymbolTableSectionHeaderIndex) {
2203     const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
2204                                       SymbolTableSectionHeaderIndex->sh_offset);
2205     error_code ec;
2206     for (symbol_iterator si = begin_symbols(),
2207                          se = end_symbols(); si != se; si.increment(ec)) {
2208       if (ec)
2209         report_fatal_error("Fewer extended symbol table entries than symbols!");
2210       if (*ShndxTable != ELF::SHN_UNDEF)
2211         ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
2212       ++ShndxTable;
2213     }
2214   }
2215 }
2216 
2217 // Get the symbol table index in the symtab section given a symbol
2218 template<class ELFT>
2219 uint64_t ELFObjectFile<ELFT>::getSymbolIndex(const Elf_Sym *Sym) const {
2220   assert(SymbolTableSections.size() == 1 && "Only one symbol table supported!");
2221   const Elf_Shdr *SymTab = *SymbolTableSections.begin();
2222   uintptr_t SymLoc = uintptr_t(Sym);
2223   uintptr_t SymTabLoc = uintptr_t(base() + SymTab->sh_offset);
2224   assert(SymLoc > SymTabLoc && "Symbol not in symbol table!");
2225   uint64_t SymOffset = SymLoc - SymTabLoc;
2226   assert(SymOffset % SymTab->sh_entsize == 0 &&
2227          "Symbol not multiple of symbol size!");
2228   return SymOffset / SymTab->sh_entsize;
2229 }
2230 
2231 template<class ELFT>
2232 symbol_iterator ELFObjectFile<ELFT>::begin_symbols() const {
2233   DataRefImpl SymbolData;
2234   if (SymbolTableSections.size() <= 1) {
2235     SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2236     SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2237   } else {
2238     SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
2239     SymbolData.d.b = 1; // The 0th table is .dynsym
2240   }
2241   return symbol_iterator(SymbolRef(SymbolData, this));
2242 }
2243 
2244 template<class ELFT>
2245 symbol_iterator ELFObjectFile<ELFT>::end_symbols() const {
2246   DataRefImpl SymbolData;
2247   SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2248   SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2249   return symbol_iterator(SymbolRef(SymbolData, this));
2250 }
2251 
2252 template<class ELFT>
2253 symbol_iterator ELFObjectFile<ELFT>::begin_dynamic_symbols() const {
2254   DataRefImpl SymbolData;
2255   if (SymbolTableSections[0] == NULL) {
2256     SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2257     SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2258   } else {
2259     SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
2260     SymbolData.d.b = 0; // The 0th table is .dynsym
2261   }
2262   return symbol_iterator(SymbolRef(SymbolData, this));
2263 }
2264 
2265 template<class ELFT>
2266 symbol_iterator ELFObjectFile<ELFT>::end_dynamic_symbols() const {
2267   DataRefImpl SymbolData;
2268   SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2269   SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2270   return symbol_iterator(SymbolRef(SymbolData, this));
2271 }
2272 
2273 template<class ELFT>
2274 section_iterator ELFObjectFile<ELFT>::begin_sections() const {
2275   DataRefImpl ret;
2276   ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
2277   return section_iterator(SectionRef(ret, this));
2278 }
2279 
2280 template<class ELFT>
2281 section_iterator ELFObjectFile<ELFT>::end_sections() const {
2282   DataRefImpl ret;
2283   ret.p = reinterpret_cast<intptr_t>(base()
2284                                      + Header->e_shoff
2285                                      + (Header->e_shentsize*getNumSections()));
2286   return section_iterator(SectionRef(ret, this));
2287 }
2288 
2289 template<class ELFT>
2290 typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
2291 ELFObjectFile<ELFT>::begin_dynamic_table() const {
2292   if (dot_dynamic_sec)
2293     return Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2294                             (const char *)base() + dot_dynamic_sec->sh_offset);
2295   return Elf_Dyn_iterator(0, 0);
2296 }
2297 
2298 template<class ELFT>
2299 typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
2300 ELFObjectFile<ELFT>::end_dynamic_table(bool NULLEnd) const {
2301   if (dot_dynamic_sec) {
2302     Elf_Dyn_iterator Ret(dot_dynamic_sec->sh_entsize,
2303                          (const char *)base() + dot_dynamic_sec->sh_offset +
2304                          dot_dynamic_sec->sh_size);
2305 
2306     if (NULLEnd) {
2307       Elf_Dyn_iterator Start = begin_dynamic_table();
2308       for (; Start != Ret && Start->getTag() != ELF::DT_NULL; ++Start)
2309         ;
2310       // Include the DT_NULL.
2311       if (Start != Ret)
2312         ++Start;
2313       Ret = Start;
2314     }
2315     return Ret;
2316   }
2317   return Elf_Dyn_iterator(0, 0);
2318 }
2319 
2320 template<class ELFT>
2321 StringRef ELFObjectFile<ELFT>::getLoadName() const {
2322   if (!dt_soname) {
2323     // Find the DT_SONAME entry
2324     Elf_Dyn_iterator it = begin_dynamic_table();
2325     Elf_Dyn_iterator ie = end_dynamic_table();
2326     for (; it != ie; ++it) {
2327       if (it->getTag() == ELF::DT_SONAME)
2328         break;
2329     }
2330     if (it != ie) {
2331       if (dot_dynstr_sec == NULL)
2332         report_fatal_error("Dynamic string table is missing");
2333       dt_soname = getString(dot_dynstr_sec, it->getVal());
2334     } else {
2335       dt_soname = "";
2336     }
2337   }
2338   return dt_soname;
2339 }
2340 
2341 template<class ELFT>
2342 library_iterator ELFObjectFile<ELFT>::begin_libraries_needed() const {
2343   // Find the first DT_NEEDED entry
2344   Elf_Dyn_iterator i = begin_dynamic_table();
2345   Elf_Dyn_iterator e = end_dynamic_table();
2346   for (; i != e; ++i) {
2347     if (i->getTag() == ELF::DT_NEEDED)
2348       break;
2349   }
2350 
2351   DataRefImpl DRI;
2352   DRI.p = reinterpret_cast<uintptr_t>(i.get());
2353   return library_iterator(LibraryRef(DRI, this));
2354 }
2355 
2356 template<class ELFT>
2357 error_code ELFObjectFile<ELFT>::getLibraryNext(DataRefImpl Data,
2358                                                LibraryRef &Result) const {
2359   // Use the same DataRefImpl format as DynRef.
2360   Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2361                                         reinterpret_cast<const char *>(Data.p));
2362   Elf_Dyn_iterator e = end_dynamic_table();
2363 
2364   // Skip the current dynamic table entry.
2365   ++i;
2366 
2367   // Find the next DT_NEEDED entry.
2368   for (; i != e && i->getTag() != ELF::DT_NEEDED; ++i);
2369 
2370   DataRefImpl DRI;
2371   DRI.p = reinterpret_cast<uintptr_t>(i.get());
2372   Result = LibraryRef(DRI, this);
2373   return object_error::success;
2374 }
2375 
2376 template<class ELFT>
2377 error_code ELFObjectFile<ELFT>::getLibraryPath(DataRefImpl Data,
2378                                                StringRef &Res) const {
2379   Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2380                                         reinterpret_cast<const char *>(Data.p));
2381   if (i == end_dynamic_table())
2382     report_fatal_error("getLibraryPath() called on iterator end");
2383 
2384   if (i->getTag() != ELF::DT_NEEDED)
2385     report_fatal_error("Invalid library_iterator");
2386 
2387   // This uses .dynstr to lookup the name of the DT_NEEDED entry.
2388   // THis works as long as DT_STRTAB == .dynstr. This is true most of
2389   // the time, but the specification allows exceptions.
2390   // TODO: This should really use DT_STRTAB instead. Doing this requires
2391   // reading the program headers.
2392   if (dot_dynstr_sec == NULL)
2393     report_fatal_error("Dynamic string table is missing");
2394   Res = getString(dot_dynstr_sec, i->getVal());
2395   return object_error::success;
2396 }
2397 
2398 template<class ELFT>
2399 library_iterator ELFObjectFile<ELFT>::end_libraries_needed() const {
2400   Elf_Dyn_iterator e = end_dynamic_table();
2401   DataRefImpl DRI;
2402   DRI.p = reinterpret_cast<uintptr_t>(e.get());
2403   return library_iterator(LibraryRef(DRI, this));
2404 }
2405 
2406 template<class ELFT>
2407 uint8_t ELFObjectFile<ELFT>::getBytesInAddress() const {
2408   return ELFT::Is64Bits ? 8 : 4;
2409 }
2410 
2411 template<class ELFT>
2412 StringRef ELFObjectFile<ELFT>::getFileFormatName() const {
2413   switch(Header->e_ident[ELF::EI_CLASS]) {
2414   case ELF::ELFCLASS32:
2415     switch(Header->e_machine) {
2416     case ELF::EM_386:
2417       return "ELF32-i386";
2418     case ELF::EM_X86_64:
2419       return "ELF32-x86-64";
2420     case ELF::EM_ARM:
2421       return "ELF32-arm";
2422     case ELF::EM_HEXAGON:
2423       return "ELF32-hexagon";
2424     case ELF::EM_MIPS:
2425       return "ELF32-mips";
2426     default:
2427       return "ELF32-unknown";
2428     }
2429   case ELF::ELFCLASS64:
2430     switch(Header->e_machine) {
2431     case ELF::EM_386:
2432       return "ELF64-i386";
2433     case ELF::EM_X86_64:
2434       return "ELF64-x86-64";
2435     case ELF::EM_AARCH64:
2436       return "ELF64-aarch64";
2437     case ELF::EM_PPC64:
2438       return "ELF64-ppc64";
2439     default:
2440       return "ELF64-unknown";
2441     }
2442   default:
2443     // FIXME: Proper error handling.
2444     report_fatal_error("Invalid ELFCLASS!");
2445   }
2446 }
2447 
2448 template<class ELFT>
2449 unsigned ELFObjectFile<ELFT>::getArch() const {
2450   switch(Header->e_machine) {
2451   case ELF::EM_386:
2452     return Triple::x86;
2453   case ELF::EM_X86_64:
2454     return Triple::x86_64;
2455   case ELF::EM_AARCH64:
2456     return Triple::aarch64;
2457   case ELF::EM_ARM:
2458     return Triple::arm;
2459   case ELF::EM_HEXAGON:
2460     return Triple::hexagon;
2461   case ELF::EM_MIPS:
2462     return (ELFT::TargetEndianness == support::little) ?
2463            Triple::mipsel : Triple::mips;
2464   case ELF::EM_PPC64:
2465     return Triple::ppc64;
2466   default:
2467     return Triple::UnknownArch;
2468   }
2469 }
2470 
2471 template<class ELFT>
2472 uint64_t ELFObjectFile<ELFT>::getNumSections() const {
2473   assert(Header && "Header not initialized!");
2474   if (Header->e_shnum == ELF::SHN_UNDEF) {
2475     assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
2476     return SectionHeaderTable->sh_size;
2477   }
2478   return Header->e_shnum;
2479 }
2480 
2481 template<class ELFT>
2482 uint64_t
2483 ELFObjectFile<ELFT>::getStringTableIndex() const {
2484   if (Header->e_shnum == ELF::SHN_UNDEF) {
2485     if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
2486       return SectionHeaderTable->sh_link;
2487     if (Header->e_shstrndx >= getNumSections())
2488       return 0;
2489   }
2490   return Header->e_shstrndx;
2491 }
2492 
2493 template<class ELFT>
2494 template<typename T>
2495 inline const T *
2496 ELFObjectFile<ELFT>::getEntry(uint16_t Section, uint32_t Entry) const {
2497   return getEntry<T>(getSection(Section), Entry);
2498 }
2499 
2500 template<class ELFT>
2501 template<typename T>
2502 inline const T *
2503 ELFObjectFile<ELFT>::getEntry(const Elf_Shdr * Section, uint32_t Entry) const {
2504   return reinterpret_cast<const T *>(
2505            base()
2506            + Section->sh_offset
2507            + (Entry * Section->sh_entsize));
2508 }
2509 
2510 template<class ELFT>
2511 const typename ELFObjectFile<ELFT>::Elf_Sym *
2512 ELFObjectFile<ELFT>::getSymbol(DataRefImpl Symb) const {
2513   return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
2514 }
2515 
2516 template<class ELFT>
2517 const typename ELFObjectFile<ELFT>::Elf_Rel *
2518 ELFObjectFile<ELFT>::getRel(DataRefImpl Rel) const {
2519   return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
2520 }
2521 
2522 template<class ELFT>
2523 const typename ELFObjectFile<ELFT>::Elf_Rela *
2524 ELFObjectFile<ELFT>::getRela(DataRefImpl Rela) const {
2525   return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
2526 }
2527 
2528 template<class ELFT>
2529 const typename ELFObjectFile<ELFT>::Elf_Shdr *
2530 ELFObjectFile<ELFT>::getSection(DataRefImpl Symb) const {
2531   const Elf_Shdr *sec = getSection(Symb.d.b);
2532   if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
2533     // FIXME: Proper error handling.
2534     report_fatal_error("Invalid symbol table section!");
2535   return sec;
2536 }
2537 
2538 template<class ELFT>
2539 const typename ELFObjectFile<ELFT>::Elf_Shdr *
2540 ELFObjectFile<ELFT>::getSection(uint32_t index) const {
2541   if (index == 0)
2542     return 0;
2543   if (!SectionHeaderTable || index >= getNumSections())
2544     // FIXME: Proper error handling.
2545     report_fatal_error("Invalid section index!");
2546 
2547   return reinterpret_cast<const Elf_Shdr *>(
2548          reinterpret_cast<const char *>(SectionHeaderTable)
2549          + (index * Header->e_shentsize));
2550 }
2551 
2552 template<class ELFT>
2553 const char *ELFObjectFile<ELFT>::getString(uint32_t section,
2554                                            ELF::Elf32_Word offset) const {
2555   return getString(getSection(section), offset);
2556 }
2557 
2558 template<class ELFT>
2559 const char *ELFObjectFile<ELFT>::getString(const Elf_Shdr *section,
2560                                            ELF::Elf32_Word offset) const {
2561   assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
2562   if (offset >= section->sh_size)
2563     // FIXME: Proper error handling.
2564     report_fatal_error("Symbol name offset outside of string table!");
2565   return (const char *)base() + section->sh_offset + offset;
2566 }
2567 
2568 template<class ELFT>
2569 error_code ELFObjectFile<ELFT>::getSymbolName(const Elf_Shdr *section,
2570                                               const Elf_Sym *symb,
2571                                               StringRef &Result) const {
2572   if (symb->st_name == 0) {
2573     const Elf_Shdr *section = getSection(symb);
2574     if (!section)
2575       Result = "";
2576     else
2577       Result = getString(dot_shstrtab_sec, section->sh_name);
2578     return object_error::success;
2579   }
2580 
2581   if (section == SymbolTableSections[0]) {
2582     // Symbol is in .dynsym, use .dynstr string table
2583     Result = getString(dot_dynstr_sec, symb->st_name);
2584   } else {
2585     // Use the default symbol table name section.
2586     Result = getString(dot_strtab_sec, symb->st_name);
2587   }
2588   return object_error::success;
2589 }
2590 
2591 template<class ELFT>
2592 error_code ELFObjectFile<ELFT>::getSectionName(const Elf_Shdr *section,
2593                                                StringRef &Result) const {
2594   Result = StringRef(getString(dot_shstrtab_sec, section->sh_name));
2595   return object_error::success;
2596 }
2597 
2598 template<class ELFT>
2599 error_code ELFObjectFile<ELFT>::getSymbolVersion(const Elf_Shdr *section,
2600                                                  const Elf_Sym *symb,
2601                                                  StringRef &Version,
2602                                                  bool &IsDefault) const {
2603   // Handle non-dynamic symbols.
2604   if (section != SymbolTableSections[0]) {
2605     // Non-dynamic symbols can have versions in their names
2606     // A name of the form 'foo@V1' indicates version 'V1', non-default.
2607     // A name of the form 'foo@@V2' indicates version 'V2', default version.
2608     StringRef Name;
2609     error_code ec = getSymbolName(section, symb, Name);
2610     if (ec != object_error::success)
2611       return ec;
2612     size_t atpos = Name.find('@');
2613     if (atpos == StringRef::npos) {
2614       Version = "";
2615       IsDefault = false;
2616       return object_error::success;
2617     }
2618     ++atpos;
2619     if (atpos < Name.size() && Name[atpos] == '@') {
2620       IsDefault = true;
2621       ++atpos;
2622     } else {
2623       IsDefault = false;
2624     }
2625     Version = Name.substr(atpos);
2626     return object_error::success;
2627   }
2628 
2629   // This is a dynamic symbol. Look in the GNU symbol version table.
2630   if (dot_gnu_version_sec == NULL) {
2631     // No version table.
2632     Version = "";
2633     IsDefault = false;
2634     return object_error::success;
2635   }
2636 
2637   // Determine the position in the symbol table of this entry.
2638   const char *sec_start = (const char*)base() + section->sh_offset;
2639   size_t entry_index = ((const char*)symb - sec_start)/section->sh_entsize;
2640 
2641   // Get the corresponding version index entry
2642   const Elf_Versym *vs = getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
2643   size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
2644 
2645   // Special markers for unversioned symbols.
2646   if (version_index == ELF::VER_NDX_LOCAL ||
2647       version_index == ELF::VER_NDX_GLOBAL) {
2648     Version = "";
2649     IsDefault = false;
2650     return object_error::success;
2651   }
2652 
2653   // Lookup this symbol in the version table
2654   LoadVersionMap();
2655   if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
2656     report_fatal_error("Symbol has version index without corresponding "
2657                        "define or reference entry");
2658   const VersionMapEntry &entry = VersionMap[version_index];
2659 
2660   // Get the version name string
2661   size_t name_offset;
2662   if (entry.isVerdef()) {
2663     // The first Verdaux entry holds the name.
2664     name_offset = entry.getVerdef()->getAux()->vda_name;
2665   } else {
2666     name_offset = entry.getVernaux()->vna_name;
2667   }
2668   Version = getString(dot_dynstr_sec, name_offset);
2669 
2670   // Set IsDefault
2671   if (entry.isVerdef()) {
2672     IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
2673   } else {
2674     IsDefault = false;
2675   }
2676 
2677   return object_error::success;
2678 }
2679 
2680 /// This is a generic interface for retrieving GNU symbol version
2681 /// information from an ELFObjectFile.
2682 static inline error_code GetELFSymbolVersion(const ObjectFile *Obj,
2683                                              const SymbolRef &Sym,
2684                                              StringRef &Version,
2685                                              bool &IsDefault) {
2686   // Little-endian 32-bit
2687   if (const ELFObjectFile<ELFType<support::little, 4, false> > *ELFObj =
2688           dyn_cast<ELFObjectFile<ELFType<support::little, 4, false> > >(Obj))
2689     return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2690 
2691   // Big-endian 32-bit
2692   if (const ELFObjectFile<ELFType<support::big, 4, false> > *ELFObj =
2693           dyn_cast<ELFObjectFile<ELFType<support::big, 4, false> > >(Obj))
2694     return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2695 
2696   // Little-endian 64-bit
2697   if (const ELFObjectFile<ELFType<support::little, 8, true> > *ELFObj =
2698           dyn_cast<ELFObjectFile<ELFType<support::little, 8, true> > >(Obj))
2699     return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2700 
2701   // Big-endian 64-bit
2702   if (const ELFObjectFile<ELFType<support::big, 8, true> > *ELFObj =
2703           dyn_cast<ELFObjectFile<ELFType<support::big, 8, true> > >(Obj))
2704     return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2705 
2706   llvm_unreachable("Object passed to GetELFSymbolVersion() is not ELF");
2707 }
2708 
2709 }
2710 }
2711 
2712 #endif
2713