1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG. This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 // %Y = add i32 %X, 1
16 // %Z = add i32 %Y, 1
17 // into:
18 // %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
31 // shifts.
32 // ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35
36 #define DEBUG_TYPE "instcombine"
37 #include "llvm/Transforms/Scalar.h"
38 #include "InstCombine.h"
39 #include "llvm-c/Initialization.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/StringSwitch.h"
43 #include "llvm/Analysis/ConstantFolding.h"
44 #include "llvm/Analysis/InstructionSimplify.h"
45 #include "llvm/Analysis/MemoryBuiltins.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/Support/CFG.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/GetElementPtrTypeIterator.h"
52 #include "llvm/Support/PatternMatch.h"
53 #include "llvm/Support/ValueHandle.h"
54 #include "llvm/Target/TargetLibraryInfo.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include <algorithm>
57 #include <climits>
58 using namespace llvm;
59 using namespace llvm::PatternMatch;
60
61 STATISTIC(NumCombined , "Number of insts combined");
62 STATISTIC(NumConstProp, "Number of constant folds");
63 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
64 STATISTIC(NumSunkInst , "Number of instructions sunk");
65 STATISTIC(NumExpand, "Number of expansions");
66 STATISTIC(NumFactor , "Number of factorizations");
67 STATISTIC(NumReassoc , "Number of reassociations");
68
69 static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70 cl::init(false),
71 cl::desc("Enable unsafe double to float "
72 "shrinking for math lib calls"));
73
74 // Initialization Routines
initializeInstCombine(PassRegistry & Registry)75 void llvm::initializeInstCombine(PassRegistry &Registry) {
76 initializeInstCombinerPass(Registry);
77 }
78
LLVMInitializeInstCombine(LLVMPassRegistryRef R)79 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
80 initializeInstCombine(*unwrap(R));
81 }
82
83 char InstCombiner::ID = 0;
84 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85 "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)86 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
87 INITIALIZE_PASS_END(InstCombiner, "instcombine",
88 "Combine redundant instructions", false, false)
89
90 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
91 AU.setPreservesCFG();
92 AU.addRequired<TargetLibraryInfo>();
93 }
94
95
EmitGEPOffset(User * GEP)96 Value *InstCombiner::EmitGEPOffset(User *GEP) {
97 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
98 }
99
100 /// ShouldChangeType - Return true if it is desirable to convert a computation
101 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal
102 /// type for example, or from a smaller to a larger illegal type.
ShouldChangeType(Type * From,Type * To) const103 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
104 assert(From->isIntegerTy() && To->isIntegerTy());
105
106 // If we don't have TD, we don't know if the source/dest are legal.
107 if (!TD) return false;
108
109 unsigned FromWidth = From->getPrimitiveSizeInBits();
110 unsigned ToWidth = To->getPrimitiveSizeInBits();
111 bool FromLegal = TD->isLegalInteger(FromWidth);
112 bool ToLegal = TD->isLegalInteger(ToWidth);
113
114 // If this is a legal integer from type, and the result would be an illegal
115 // type, don't do the transformation.
116 if (FromLegal && !ToLegal)
117 return false;
118
119 // Otherwise, if both are illegal, do not increase the size of the result. We
120 // do allow things like i160 -> i64, but not i64 -> i160.
121 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122 return false;
123
124 return true;
125 }
126
127 // Return true, if No Signed Wrap should be maintained for I.
128 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129 // where both B and C should be ConstantInts, results in a constant that does
130 // not overflow. This function only handles the Add and Sub opcodes. For
131 // all other opcodes, the function conservatively returns false.
MaintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)132 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
133 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
134 if (!OBO || !OBO->hasNoSignedWrap()) {
135 return false;
136 }
137
138 // We reason about Add and Sub Only.
139 Instruction::BinaryOps Opcode = I.getOpcode();
140 if (Opcode != Instruction::Add &&
141 Opcode != Instruction::Sub) {
142 return false;
143 }
144
145 ConstantInt *CB = dyn_cast<ConstantInt>(B);
146 ConstantInt *CC = dyn_cast<ConstantInt>(C);
147
148 if (!CB || !CC) {
149 return false;
150 }
151
152 const APInt &BVal = CB->getValue();
153 const APInt &CVal = CC->getValue();
154 bool Overflow = false;
155
156 if (Opcode == Instruction::Add) {
157 BVal.sadd_ov(CVal, Overflow);
158 } else {
159 BVal.ssub_ov(CVal, Overflow);
160 }
161
162 return !Overflow;
163 }
164
165 /// Conservatively clears subclassOptionalData after a reassociation or
166 /// commutation. We preserve fast-math flags when applicable as they can be
167 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)168 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
169 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
170 if (!FPMO) {
171 I.clearSubclassOptionalData();
172 return;
173 }
174
175 FastMathFlags FMF = I.getFastMathFlags();
176 I.clearSubclassOptionalData();
177 I.setFastMathFlags(FMF);
178 }
179
180 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
181 /// operators which are associative or commutative:
182 //
183 // Commutative operators:
184 //
185 // 1. Order operands such that they are listed from right (least complex) to
186 // left (most complex). This puts constants before unary operators before
187 // binary operators.
188 //
189 // Associative operators:
190 //
191 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
192 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
193 //
194 // Associative and commutative operators:
195 //
196 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
197 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
198 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
199 // if C1 and C2 are constants.
200 //
SimplifyAssociativeOrCommutative(BinaryOperator & I)201 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
202 Instruction::BinaryOps Opcode = I.getOpcode();
203 bool Changed = false;
204
205 do {
206 // Order operands such that they are listed from right (least complex) to
207 // left (most complex). This puts constants before unary operators before
208 // binary operators.
209 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
210 getComplexity(I.getOperand(1)))
211 Changed = !I.swapOperands();
212
213 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
214 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
215
216 if (I.isAssociative()) {
217 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
218 if (Op0 && Op0->getOpcode() == Opcode) {
219 Value *A = Op0->getOperand(0);
220 Value *B = Op0->getOperand(1);
221 Value *C = I.getOperand(1);
222
223 // Does "B op C" simplify?
224 if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
225 // It simplifies to V. Form "A op V".
226 I.setOperand(0, A);
227 I.setOperand(1, V);
228 // Conservatively clear the optional flags, since they may not be
229 // preserved by the reassociation.
230 if (MaintainNoSignedWrap(I, B, C) &&
231 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
232 // Note: this is only valid because SimplifyBinOp doesn't look at
233 // the operands to Op0.
234 I.clearSubclassOptionalData();
235 I.setHasNoSignedWrap(true);
236 } else {
237 ClearSubclassDataAfterReassociation(I);
238 }
239
240 Changed = true;
241 ++NumReassoc;
242 continue;
243 }
244 }
245
246 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
247 if (Op1 && Op1->getOpcode() == Opcode) {
248 Value *A = I.getOperand(0);
249 Value *B = Op1->getOperand(0);
250 Value *C = Op1->getOperand(1);
251
252 // Does "A op B" simplify?
253 if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
254 // It simplifies to V. Form "V op C".
255 I.setOperand(0, V);
256 I.setOperand(1, C);
257 // Conservatively clear the optional flags, since they may not be
258 // preserved by the reassociation.
259 ClearSubclassDataAfterReassociation(I);
260 Changed = true;
261 ++NumReassoc;
262 continue;
263 }
264 }
265 }
266
267 if (I.isAssociative() && I.isCommutative()) {
268 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
269 if (Op0 && Op0->getOpcode() == Opcode) {
270 Value *A = Op0->getOperand(0);
271 Value *B = Op0->getOperand(1);
272 Value *C = I.getOperand(1);
273
274 // Does "C op A" simplify?
275 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
276 // It simplifies to V. Form "V op B".
277 I.setOperand(0, V);
278 I.setOperand(1, B);
279 // Conservatively clear the optional flags, since they may not be
280 // preserved by the reassociation.
281 ClearSubclassDataAfterReassociation(I);
282 Changed = true;
283 ++NumReassoc;
284 continue;
285 }
286 }
287
288 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
289 if (Op1 && Op1->getOpcode() == Opcode) {
290 Value *A = I.getOperand(0);
291 Value *B = Op1->getOperand(0);
292 Value *C = Op1->getOperand(1);
293
294 // Does "C op A" simplify?
295 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
296 // It simplifies to V. Form "B op V".
297 I.setOperand(0, B);
298 I.setOperand(1, V);
299 // Conservatively clear the optional flags, since they may not be
300 // preserved by the reassociation.
301 ClearSubclassDataAfterReassociation(I);
302 Changed = true;
303 ++NumReassoc;
304 continue;
305 }
306 }
307
308 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
309 // if C1 and C2 are constants.
310 if (Op0 && Op1 &&
311 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
312 isa<Constant>(Op0->getOperand(1)) &&
313 isa<Constant>(Op1->getOperand(1)) &&
314 Op0->hasOneUse() && Op1->hasOneUse()) {
315 Value *A = Op0->getOperand(0);
316 Constant *C1 = cast<Constant>(Op0->getOperand(1));
317 Value *B = Op1->getOperand(0);
318 Constant *C2 = cast<Constant>(Op1->getOperand(1));
319
320 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
321 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
322 InsertNewInstWith(New, I);
323 New->takeName(Op1);
324 I.setOperand(0, New);
325 I.setOperand(1, Folded);
326 // Conservatively clear the optional flags, since they may not be
327 // preserved by the reassociation.
328 ClearSubclassDataAfterReassociation(I);
329
330 Changed = true;
331 continue;
332 }
333 }
334
335 // No further simplifications.
336 return Changed;
337 } while (1);
338 }
339
340 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
341 /// "(X LOp Y) ROp (X LOp Z)".
LeftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)342 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
343 Instruction::BinaryOps ROp) {
344 switch (LOp) {
345 default:
346 return false;
347
348 case Instruction::And:
349 // And distributes over Or and Xor.
350 switch (ROp) {
351 default:
352 return false;
353 case Instruction::Or:
354 case Instruction::Xor:
355 return true;
356 }
357
358 case Instruction::Mul:
359 // Multiplication distributes over addition and subtraction.
360 switch (ROp) {
361 default:
362 return false;
363 case Instruction::Add:
364 case Instruction::Sub:
365 return true;
366 }
367
368 case Instruction::Or:
369 // Or distributes over And.
370 switch (ROp) {
371 default:
372 return false;
373 case Instruction::And:
374 return true;
375 }
376 }
377 }
378
379 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
380 /// "(X ROp Z) LOp (Y ROp Z)".
RightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)381 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
382 Instruction::BinaryOps ROp) {
383 if (Instruction::isCommutative(ROp))
384 return LeftDistributesOverRight(ROp, LOp);
385 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
386 // but this requires knowing that the addition does not overflow and other
387 // such subtleties.
388 return false;
389 }
390
391 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
392 /// which some other binary operation distributes over either by factorizing
393 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
394 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
395 /// a win). Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)396 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
397 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
398 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
399 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
400 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
401
402 // Factorization.
403 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
404 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
405 // a common term.
406 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
407 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
408 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
409
410 // Does "X op' Y" always equal "Y op' X"?
411 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
412
413 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
414 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
415 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
416 // commutative case, "(A op' B) op (C op' A)"?
417 if (A == C || (InnerCommutative && A == D)) {
418 if (A != C)
419 std::swap(C, D);
420 // Consider forming "A op' (B op D)".
421 // If "B op D" simplifies then it can be formed with no cost.
422 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
423 // If "B op D" doesn't simplify then only go on if both of the existing
424 // operations "A op' B" and "C op' D" will be zapped as no longer used.
425 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
426 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
427 if (V) {
428 ++NumFactor;
429 V = Builder->CreateBinOp(InnerOpcode, A, V);
430 V->takeName(&I);
431 return V;
432 }
433 }
434
435 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
436 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
437 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
438 // commutative case, "(A op' B) op (B op' D)"?
439 if (B == D || (InnerCommutative && B == C)) {
440 if (B != D)
441 std::swap(C, D);
442 // Consider forming "(A op C) op' B".
443 // If "A op C" simplifies then it can be formed with no cost.
444 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
445 // If "A op C" doesn't simplify then only go on if both of the existing
446 // operations "A op' B" and "C op' D" will be zapped as no longer used.
447 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
448 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
449 if (V) {
450 ++NumFactor;
451 V = Builder->CreateBinOp(InnerOpcode, V, B);
452 V->takeName(&I);
453 return V;
454 }
455 }
456 }
457
458 // Expansion.
459 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
460 // The instruction has the form "(A op' B) op C". See if expanding it out
461 // to "(A op C) op' (B op C)" results in simplifications.
462 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
463 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
464
465 // Do "A op C" and "B op C" both simplify?
466 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
467 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
468 // They do! Return "L op' R".
469 ++NumExpand;
470 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
471 if ((L == A && R == B) ||
472 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
473 return Op0;
474 // Otherwise return "L op' R" if it simplifies.
475 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
476 return V;
477 // Otherwise, create a new instruction.
478 C = Builder->CreateBinOp(InnerOpcode, L, R);
479 C->takeName(&I);
480 return C;
481 }
482 }
483
484 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
485 // The instruction has the form "A op (B op' C)". See if expanding it out
486 // to "(A op B) op' (A op C)" results in simplifications.
487 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
488 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
489
490 // Do "A op B" and "A op C" both simplify?
491 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
492 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
493 // They do! Return "L op' R".
494 ++NumExpand;
495 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
496 if ((L == B && R == C) ||
497 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
498 return Op1;
499 // Otherwise return "L op' R" if it simplifies.
500 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
501 return V;
502 // Otherwise, create a new instruction.
503 A = Builder->CreateBinOp(InnerOpcode, L, R);
504 A->takeName(&I);
505 return A;
506 }
507 }
508
509 return 0;
510 }
511
512 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
513 // if the LHS is a constant zero (which is the 'negate' form).
514 //
dyn_castNegVal(Value * V) const515 Value *InstCombiner::dyn_castNegVal(Value *V) const {
516 if (BinaryOperator::isNeg(V))
517 return BinaryOperator::getNegArgument(V);
518
519 // Constants can be considered to be negated values if they can be folded.
520 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
521 return ConstantExpr::getNeg(C);
522
523 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
524 if (C->getType()->getElementType()->isIntegerTy())
525 return ConstantExpr::getNeg(C);
526
527 return 0;
528 }
529
530 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
531 // instruction if the LHS is a constant negative zero (which is the 'negate'
532 // form).
533 //
dyn_castFNegVal(Value * V,bool IgnoreZeroSign) const534 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
535 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
536 return BinaryOperator::getFNegArgument(V);
537
538 // Constants can be considered to be negated values if they can be folded.
539 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
540 return ConstantExpr::getFNeg(C);
541
542 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
543 if (C->getType()->getElementType()->isFloatingPointTy())
544 return ConstantExpr::getFNeg(C);
545
546 return 0;
547 }
548
FoldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner * IC)549 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
550 InstCombiner *IC) {
551 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
552 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
553 }
554
555 // Figure out if the constant is the left or the right argument.
556 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
557 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
558
559 if (Constant *SOC = dyn_cast<Constant>(SO)) {
560 if (ConstIsRHS)
561 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
562 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
563 }
564
565 Value *Op0 = SO, *Op1 = ConstOperand;
566 if (!ConstIsRHS)
567 std::swap(Op0, Op1);
568
569 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
570 return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
571 SO->getName()+".op");
572 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
573 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
574 SO->getName()+".cmp");
575 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
576 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
577 SO->getName()+".cmp");
578 llvm_unreachable("Unknown binary instruction type!");
579 }
580
581 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
582 // constant as the other operand, try to fold the binary operator into the
583 // select arguments. This also works for Cast instructions, which obviously do
584 // not have a second operand.
FoldOpIntoSelect(Instruction & Op,SelectInst * SI)585 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
586 // Don't modify shared select instructions
587 if (!SI->hasOneUse()) return 0;
588 Value *TV = SI->getOperand(1);
589 Value *FV = SI->getOperand(2);
590
591 if (isa<Constant>(TV) || isa<Constant>(FV)) {
592 // Bool selects with constant operands can be folded to logical ops.
593 if (SI->getType()->isIntegerTy(1)) return 0;
594
595 // If it's a bitcast involving vectors, make sure it has the same number of
596 // elements on both sides.
597 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
598 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
599 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
600
601 // Verify that either both or neither are vectors.
602 if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
603 // If vectors, verify that they have the same number of elements.
604 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
605 return 0;
606 }
607
608 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
609 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
610
611 return SelectInst::Create(SI->getCondition(),
612 SelectTrueVal, SelectFalseVal);
613 }
614 return 0;
615 }
616
617
618 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
619 /// has a PHI node as operand #0, see if we can fold the instruction into the
620 /// PHI (which is only possible if all operands to the PHI are constants).
621 ///
FoldOpIntoPhi(Instruction & I)622 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
623 PHINode *PN = cast<PHINode>(I.getOperand(0));
624 unsigned NumPHIValues = PN->getNumIncomingValues();
625 if (NumPHIValues == 0)
626 return 0;
627
628 // We normally only transform phis with a single use. However, if a PHI has
629 // multiple uses and they are all the same operation, we can fold *all* of the
630 // uses into the PHI.
631 if (!PN->hasOneUse()) {
632 // Walk the use list for the instruction, comparing them to I.
633 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
634 UI != E; ++UI) {
635 Instruction *User = cast<Instruction>(*UI);
636 if (User != &I && !I.isIdenticalTo(User))
637 return 0;
638 }
639 // Otherwise, we can replace *all* users with the new PHI we form.
640 }
641
642 // Check to see if all of the operands of the PHI are simple constants
643 // (constantint/constantfp/undef). If there is one non-constant value,
644 // remember the BB it is in. If there is more than one or if *it* is a PHI,
645 // bail out. We don't do arbitrary constant expressions here because moving
646 // their computation can be expensive without a cost model.
647 BasicBlock *NonConstBB = 0;
648 for (unsigned i = 0; i != NumPHIValues; ++i) {
649 Value *InVal = PN->getIncomingValue(i);
650 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
651 continue;
652
653 if (isa<PHINode>(InVal)) return 0; // Itself a phi.
654 if (NonConstBB) return 0; // More than one non-const value.
655
656 NonConstBB = PN->getIncomingBlock(i);
657
658 // If the InVal is an invoke at the end of the pred block, then we can't
659 // insert a computation after it without breaking the edge.
660 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
661 if (II->getParent() == NonConstBB)
662 return 0;
663
664 // If the incoming non-constant value is in I's block, we will remove one
665 // instruction, but insert another equivalent one, leading to infinite
666 // instcombine.
667 if (NonConstBB == I.getParent())
668 return 0;
669 }
670
671 // If there is exactly one non-constant value, we can insert a copy of the
672 // operation in that block. However, if this is a critical edge, we would be
673 // inserting the computation one some other paths (e.g. inside a loop). Only
674 // do this if the pred block is unconditionally branching into the phi block.
675 if (NonConstBB != 0) {
676 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
677 if (!BI || !BI->isUnconditional()) return 0;
678 }
679
680 // Okay, we can do the transformation: create the new PHI node.
681 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
682 InsertNewInstBefore(NewPN, *PN);
683 NewPN->takeName(PN);
684
685 // If we are going to have to insert a new computation, do so right before the
686 // predecessors terminator.
687 if (NonConstBB)
688 Builder->SetInsertPoint(NonConstBB->getTerminator());
689
690 // Next, add all of the operands to the PHI.
691 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
692 // We only currently try to fold the condition of a select when it is a phi,
693 // not the true/false values.
694 Value *TrueV = SI->getTrueValue();
695 Value *FalseV = SI->getFalseValue();
696 BasicBlock *PhiTransBB = PN->getParent();
697 for (unsigned i = 0; i != NumPHIValues; ++i) {
698 BasicBlock *ThisBB = PN->getIncomingBlock(i);
699 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
700 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
701 Value *InV = 0;
702 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
703 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
704 else
705 InV = Builder->CreateSelect(PN->getIncomingValue(i),
706 TrueVInPred, FalseVInPred, "phitmp");
707 NewPN->addIncoming(InV, ThisBB);
708 }
709 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
710 Constant *C = cast<Constant>(I.getOperand(1));
711 for (unsigned i = 0; i != NumPHIValues; ++i) {
712 Value *InV = 0;
713 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
714 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
715 else if (isa<ICmpInst>(CI))
716 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
717 C, "phitmp");
718 else
719 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
720 C, "phitmp");
721 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
722 }
723 } else if (I.getNumOperands() == 2) {
724 Constant *C = cast<Constant>(I.getOperand(1));
725 for (unsigned i = 0; i != NumPHIValues; ++i) {
726 Value *InV = 0;
727 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
728 InV = ConstantExpr::get(I.getOpcode(), InC, C);
729 else
730 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
731 PN->getIncomingValue(i), C, "phitmp");
732 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
733 }
734 } else {
735 CastInst *CI = cast<CastInst>(&I);
736 Type *RetTy = CI->getType();
737 for (unsigned i = 0; i != NumPHIValues; ++i) {
738 Value *InV;
739 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
740 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
741 else
742 InV = Builder->CreateCast(CI->getOpcode(),
743 PN->getIncomingValue(i), I.getType(), "phitmp");
744 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
745 }
746 }
747
748 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
749 UI != E; ) {
750 Instruction *User = cast<Instruction>(*UI++);
751 if (User == &I) continue;
752 ReplaceInstUsesWith(*User, NewPN);
753 EraseInstFromFunction(*User);
754 }
755 return ReplaceInstUsesWith(I, NewPN);
756 }
757
758 /// FindElementAtOffset - Given a type and a constant offset, determine whether
759 /// or not there is a sequence of GEP indices into the type that will land us at
760 /// the specified offset. If so, fill them into NewIndices and return the
761 /// resultant element type, otherwise return null.
FindElementAtOffset(Type * Ty,int64_t Offset,SmallVectorImpl<Value * > & NewIndices)762 Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
763 SmallVectorImpl<Value*> &NewIndices) {
764 if (!TD) return 0;
765 if (!Ty->isSized()) return 0;
766
767 // Start with the index over the outer type. Note that the type size
768 // might be zero (even if the offset isn't zero) if the indexed type
769 // is something like [0 x {int, int}]
770 Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
771 int64_t FirstIdx = 0;
772 if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
773 FirstIdx = Offset/TySize;
774 Offset -= FirstIdx*TySize;
775
776 // Handle hosts where % returns negative instead of values [0..TySize).
777 if (Offset < 0) {
778 --FirstIdx;
779 Offset += TySize;
780 assert(Offset >= 0);
781 }
782 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
783 }
784
785 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
786
787 // Index into the types. If we fail, set OrigBase to null.
788 while (Offset) {
789 // Indexing into tail padding between struct/array elements.
790 if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
791 return 0;
792
793 if (StructType *STy = dyn_cast<StructType>(Ty)) {
794 const StructLayout *SL = TD->getStructLayout(STy);
795 assert(Offset < (int64_t)SL->getSizeInBytes() &&
796 "Offset must stay within the indexed type");
797
798 unsigned Elt = SL->getElementContainingOffset(Offset);
799 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
800 Elt));
801
802 Offset -= SL->getElementOffset(Elt);
803 Ty = STy->getElementType(Elt);
804 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
805 uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
806 assert(EltSize && "Cannot index into a zero-sized array");
807 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
808 Offset %= EltSize;
809 Ty = AT->getElementType();
810 } else {
811 // Otherwise, we can't index into the middle of this atomic type, bail.
812 return 0;
813 }
814 }
815
816 return Ty;
817 }
818
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)819 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
820 // If this GEP has only 0 indices, it is the same pointer as
821 // Src. If Src is not a trivial GEP too, don't combine
822 // the indices.
823 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
824 !Src.hasOneUse())
825 return false;
826 return true;
827 }
828
829 /// Descale - Return a value X such that Val = X * Scale, or null if none. If
830 /// the multiplication is known not to overflow then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)831 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
832 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
833 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
834 Scale.getBitWidth() && "Scale not compatible with value!");
835
836 // If Val is zero or Scale is one then Val = Val * Scale.
837 if (match(Val, m_Zero()) || Scale == 1) {
838 NoSignedWrap = true;
839 return Val;
840 }
841
842 // If Scale is zero then it does not divide Val.
843 if (Scale.isMinValue())
844 return 0;
845
846 // Look through chains of multiplications, searching for a constant that is
847 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
848 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
849 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
850 // down from Val:
851 //
852 // Val = M1 * X || Analysis starts here and works down
853 // M1 = M2 * Y || Doesn't descend into terms with more
854 // M2 = Z * 4 \/ than one use
855 //
856 // Then to modify a term at the bottom:
857 //
858 // Val = M1 * X
859 // M1 = Z * Y || Replaced M2 with Z
860 //
861 // Then to work back up correcting nsw flags.
862
863 // Op - the term we are currently analyzing. Starts at Val then drills down.
864 // Replaced with its descaled value before exiting from the drill down loop.
865 Value *Op = Val;
866
867 // Parent - initially null, but after drilling down notes where Op came from.
868 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
869 // 0'th operand of Val.
870 std::pair<Instruction*, unsigned> Parent;
871
872 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
873 // levels that doesn't overflow.
874 bool RequireNoSignedWrap = false;
875
876 // logScale - log base 2 of the scale. Negative if not a power of 2.
877 int32_t logScale = Scale.exactLogBase2();
878
879 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
880
881 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
882 // If Op is a constant divisible by Scale then descale to the quotient.
883 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
884 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
885 if (!Remainder.isMinValue())
886 // Not divisible by Scale.
887 return 0;
888 // Replace with the quotient in the parent.
889 Op = ConstantInt::get(CI->getType(), Quotient);
890 NoSignedWrap = true;
891 break;
892 }
893
894 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
895
896 if (BO->getOpcode() == Instruction::Mul) {
897 // Multiplication.
898 NoSignedWrap = BO->hasNoSignedWrap();
899 if (RequireNoSignedWrap && !NoSignedWrap)
900 return 0;
901
902 // There are three cases for multiplication: multiplication by exactly
903 // the scale, multiplication by a constant different to the scale, and
904 // multiplication by something else.
905 Value *LHS = BO->getOperand(0);
906 Value *RHS = BO->getOperand(1);
907
908 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
909 // Multiplication by a constant.
910 if (CI->getValue() == Scale) {
911 // Multiplication by exactly the scale, replace the multiplication
912 // by its left-hand side in the parent.
913 Op = LHS;
914 break;
915 }
916
917 // Otherwise drill down into the constant.
918 if (!Op->hasOneUse())
919 return 0;
920
921 Parent = std::make_pair(BO, 1);
922 continue;
923 }
924
925 // Multiplication by something else. Drill down into the left-hand side
926 // since that's where the reassociate pass puts the good stuff.
927 if (!Op->hasOneUse())
928 return 0;
929
930 Parent = std::make_pair(BO, 0);
931 continue;
932 }
933
934 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
935 isa<ConstantInt>(BO->getOperand(1))) {
936 // Multiplication by a power of 2.
937 NoSignedWrap = BO->hasNoSignedWrap();
938 if (RequireNoSignedWrap && !NoSignedWrap)
939 return 0;
940
941 Value *LHS = BO->getOperand(0);
942 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
943 getLimitedValue(Scale.getBitWidth());
944 // Op = LHS << Amt.
945
946 if (Amt == logScale) {
947 // Multiplication by exactly the scale, replace the multiplication
948 // by its left-hand side in the parent.
949 Op = LHS;
950 break;
951 }
952 if (Amt < logScale || !Op->hasOneUse())
953 return 0;
954
955 // Multiplication by more than the scale. Reduce the multiplying amount
956 // by the scale in the parent.
957 Parent = std::make_pair(BO, 1);
958 Op = ConstantInt::get(BO->getType(), Amt - logScale);
959 break;
960 }
961 }
962
963 if (!Op->hasOneUse())
964 return 0;
965
966 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
967 if (Cast->getOpcode() == Instruction::SExt) {
968 // Op is sign-extended from a smaller type, descale in the smaller type.
969 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
970 APInt SmallScale = Scale.trunc(SmallSize);
971 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
972 // descale Op as (sext Y) * Scale. In order to have
973 // sext (Y * SmallScale) = (sext Y) * Scale
974 // some conditions need to hold however: SmallScale must sign-extend to
975 // Scale and the multiplication Y * SmallScale should not overflow.
976 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
977 // SmallScale does not sign-extend to Scale.
978 return 0;
979 assert(SmallScale.exactLogBase2() == logScale);
980 // Require that Y * SmallScale must not overflow.
981 RequireNoSignedWrap = true;
982
983 // Drill down through the cast.
984 Parent = std::make_pair(Cast, 0);
985 Scale = SmallScale;
986 continue;
987 }
988
989 if (Cast->getOpcode() == Instruction::Trunc) {
990 // Op is truncated from a larger type, descale in the larger type.
991 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
992 // trunc (Y * sext Scale) = (trunc Y) * Scale
993 // always holds. However (trunc Y) * Scale may overflow even if
994 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
995 // from this point up in the expression (see later).
996 if (RequireNoSignedWrap)
997 return 0;
998
999 // Drill down through the cast.
1000 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1001 Parent = std::make_pair(Cast, 0);
1002 Scale = Scale.sext(LargeSize);
1003 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1004 logScale = -1;
1005 assert(Scale.exactLogBase2() == logScale);
1006 continue;
1007 }
1008 }
1009
1010 // Unsupported expression, bail out.
1011 return 0;
1012 }
1013
1014 // We know that we can successfully descale, so from here on we can safely
1015 // modify the IR. Op holds the descaled version of the deepest term in the
1016 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1017 // not to overflow.
1018
1019 if (!Parent.first)
1020 // The expression only had one term.
1021 return Op;
1022
1023 // Rewrite the parent using the descaled version of its operand.
1024 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1025 assert(Op != Parent.first->getOperand(Parent.second) &&
1026 "Descaling was a no-op?");
1027 Parent.first->setOperand(Parent.second, Op);
1028 Worklist.Add(Parent.first);
1029
1030 // Now work back up the expression correcting nsw flags. The logic is based
1031 // on the following observation: if X * Y is known not to overflow as a signed
1032 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1033 // then X * Z will not overflow as a signed multiplication either. As we work
1034 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1035 // current level has strictly smaller absolute value than the original.
1036 Instruction *Ancestor = Parent.first;
1037 do {
1038 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1039 // If the multiplication wasn't nsw then we can't say anything about the
1040 // value of the descaled multiplication, and we have to clear nsw flags
1041 // from this point on up.
1042 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1043 NoSignedWrap &= OpNoSignedWrap;
1044 if (NoSignedWrap != OpNoSignedWrap) {
1045 BO->setHasNoSignedWrap(NoSignedWrap);
1046 Worklist.Add(Ancestor);
1047 }
1048 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1049 // The fact that the descaled input to the trunc has smaller absolute
1050 // value than the original input doesn't tell us anything useful about
1051 // the absolute values of the truncations.
1052 NoSignedWrap = false;
1053 }
1054 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1055 "Failed to keep proper track of nsw flags while drilling down?");
1056
1057 if (Ancestor == Val)
1058 // Got to the top, all done!
1059 return Val;
1060
1061 // Move up one level in the expression.
1062 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1063 Ancestor = Ancestor->use_back();
1064 } while (1);
1065 }
1066
visitGetElementPtrInst(GetElementPtrInst & GEP)1067 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1068 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1069
1070 if (Value *V = SimplifyGEPInst(Ops, TD))
1071 return ReplaceInstUsesWith(GEP, V);
1072
1073 Value *PtrOp = GEP.getOperand(0);
1074
1075 // Eliminate unneeded casts for indices, and replace indices which displace
1076 // by multiples of a zero size type with zero.
1077 if (TD) {
1078 bool MadeChange = false;
1079 Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());
1080
1081 gep_type_iterator GTI = gep_type_begin(GEP);
1082 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1083 I != E; ++I, ++GTI) {
1084 // Skip indices into struct types.
1085 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1086 if (!SeqTy) continue;
1087
1088 // If the element type has zero size then any index over it is equivalent
1089 // to an index of zero, so replace it with zero if it is not zero already.
1090 if (SeqTy->getElementType()->isSized() &&
1091 TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
1092 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1093 *I = Constant::getNullValue(IntPtrTy);
1094 MadeChange = true;
1095 }
1096
1097 Type *IndexTy = (*I)->getType();
1098 if (IndexTy != IntPtrTy) {
1099 // If we are using a wider index than needed for this platform, shrink
1100 // it to what we need. If narrower, sign-extend it to what we need.
1101 // This explicit cast can make subsequent optimizations more obvious.
1102 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1103 MadeChange = true;
1104 }
1105 }
1106 if (MadeChange) return &GEP;
1107 }
1108
1109 // Combine Indices - If the source pointer to this getelementptr instruction
1110 // is a getelementptr instruction, combine the indices of the two
1111 // getelementptr instructions into a single instruction.
1112 //
1113 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1114 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1115 return 0;
1116
1117 // Note that if our source is a gep chain itself then we wait for that
1118 // chain to be resolved before we perform this transformation. This
1119 // avoids us creating a TON of code in some cases.
1120 if (GEPOperator *SrcGEP =
1121 dyn_cast<GEPOperator>(Src->getOperand(0)))
1122 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1123 return 0; // Wait until our source is folded to completion.
1124
1125 SmallVector<Value*, 8> Indices;
1126
1127 // Find out whether the last index in the source GEP is a sequential idx.
1128 bool EndsWithSequential = false;
1129 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1130 I != E; ++I)
1131 EndsWithSequential = !(*I)->isStructTy();
1132
1133 // Can we combine the two pointer arithmetics offsets?
1134 if (EndsWithSequential) {
1135 // Replace: gep (gep %P, long B), long A, ...
1136 // With: T = long A+B; gep %P, T, ...
1137 //
1138 Value *Sum;
1139 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1140 Value *GO1 = GEP.getOperand(1);
1141 if (SO1 == Constant::getNullValue(SO1->getType())) {
1142 Sum = GO1;
1143 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1144 Sum = SO1;
1145 } else {
1146 // If they aren't the same type, then the input hasn't been processed
1147 // by the loop above yet (which canonicalizes sequential index types to
1148 // intptr_t). Just avoid transforming this until the input has been
1149 // normalized.
1150 if (SO1->getType() != GO1->getType())
1151 return 0;
1152 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1153 }
1154
1155 // Update the GEP in place if possible.
1156 if (Src->getNumOperands() == 2) {
1157 GEP.setOperand(0, Src->getOperand(0));
1158 GEP.setOperand(1, Sum);
1159 return &GEP;
1160 }
1161 Indices.append(Src->op_begin()+1, Src->op_end()-1);
1162 Indices.push_back(Sum);
1163 Indices.append(GEP.op_begin()+2, GEP.op_end());
1164 } else if (isa<Constant>(*GEP.idx_begin()) &&
1165 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1166 Src->getNumOperands() != 1) {
1167 // Otherwise we can do the fold if the first index of the GEP is a zero
1168 Indices.append(Src->op_begin()+1, Src->op_end());
1169 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1170 }
1171
1172 if (!Indices.empty())
1173 return (GEP.isInBounds() && Src->isInBounds()) ?
1174 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1175 GEP.getName()) :
1176 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
1177 }
1178
1179 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1180 Value *StrippedPtr = PtrOp->stripPointerCasts();
1181 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1182
1183 // We do not handle pointer-vector geps here.
1184 if (!StrippedPtrTy)
1185 return 0;
1186
1187 if (StrippedPtr != PtrOp &&
1188 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1189
1190 bool HasZeroPointerIndex = false;
1191 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1192 HasZeroPointerIndex = C->isZero();
1193
1194 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1195 // into : GEP [10 x i8]* X, i32 0, ...
1196 //
1197 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1198 // into : GEP i8* X, ...
1199 //
1200 // This occurs when the program declares an array extern like "int X[];"
1201 if (HasZeroPointerIndex) {
1202 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1203 if (ArrayType *CATy =
1204 dyn_cast<ArrayType>(CPTy->getElementType())) {
1205 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1206 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1207 // -> GEP i8* X, ...
1208 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1209 GetElementPtrInst *Res =
1210 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
1211 Res->setIsInBounds(GEP.isInBounds());
1212 return Res;
1213 }
1214
1215 if (ArrayType *XATy =
1216 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1217 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1218 if (CATy->getElementType() == XATy->getElementType()) {
1219 // -> GEP [10 x i8]* X, i32 0, ...
1220 // At this point, we know that the cast source type is a pointer
1221 // to an array of the same type as the destination pointer
1222 // array. Because the array type is never stepped over (there
1223 // is a leading zero) we can fold the cast into this GEP.
1224 GEP.setOperand(0, StrippedPtr);
1225 return &GEP;
1226 }
1227 }
1228 }
1229 } else if (GEP.getNumOperands() == 2) {
1230 // Transform things like:
1231 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1232 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1233 Type *SrcElTy = StrippedPtrTy->getElementType();
1234 Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
1235 if (TD && SrcElTy->isArrayTy() &&
1236 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
1237 TD->getTypeAllocSize(ResElTy)) {
1238 Value *Idx[2];
1239 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1240 Idx[1] = GEP.getOperand(1);
1241 Value *NewGEP = GEP.isInBounds() ?
1242 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1243 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1244 // V and GEP are both pointer types --> BitCast
1245 return new BitCastInst(NewGEP, GEP.getType());
1246 }
1247
1248 // Transform things like:
1249 // %V = mul i64 %N, 4
1250 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1251 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1252 if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
1253 // Check that changing the type amounts to dividing the index by a scale
1254 // factor.
1255 uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1256 uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
1257 if (ResSize && SrcSize % ResSize == 0) {
1258 Value *Idx = GEP.getOperand(1);
1259 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1260 uint64_t Scale = SrcSize / ResSize;
1261
1262 // Earlier transforms ensure that the index has type IntPtrType, which
1263 // considerably simplifies the logic by eliminating implicit casts.
1264 assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
1265 "Index not cast to pointer width?");
1266
1267 bool NSW;
1268 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1269 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1270 // If the multiplication NewIdx * Scale may overflow then the new
1271 // GEP may not be "inbounds".
1272 Value *NewGEP = GEP.isInBounds() && NSW ?
1273 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1274 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1275 // The NewGEP must be pointer typed, so must the old one -> BitCast
1276 return new BitCastInst(NewGEP, GEP.getType());
1277 }
1278 }
1279 }
1280
1281 // Similarly, transform things like:
1282 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1283 // (where tmp = 8*tmp2) into:
1284 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1285 if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
1286 SrcElTy->isArrayTy()) {
1287 // Check that changing to the array element type amounts to dividing the
1288 // index by a scale factor.
1289 uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1290 uint64_t ArrayEltSize =
1291 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
1292 if (ResSize && ArrayEltSize % ResSize == 0) {
1293 Value *Idx = GEP.getOperand(1);
1294 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1295 uint64_t Scale = ArrayEltSize / ResSize;
1296
1297 // Earlier transforms ensure that the index has type IntPtrType, which
1298 // considerably simplifies the logic by eliminating implicit casts.
1299 assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
1300 "Index not cast to pointer width?");
1301
1302 bool NSW;
1303 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1304 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1305 // If the multiplication NewIdx * Scale may overflow then the new
1306 // GEP may not be "inbounds".
1307 Value *Off[2];
1308 Off[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1309 Off[1] = NewIdx;
1310 Value *NewGEP = GEP.isInBounds() && NSW ?
1311 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1312 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1313 // The NewGEP must be pointer typed, so must the old one -> BitCast
1314 return new BitCastInst(NewGEP, GEP.getType());
1315 }
1316 }
1317 }
1318 }
1319 }
1320
1321 /// See if we can simplify:
1322 /// X = bitcast A* to B*
1323 /// Y = gep X, <...constant indices...>
1324 /// into a gep of the original struct. This is important for SROA and alias
1325 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
1326 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1327 APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
1328 if (TD &&
1329 !isa<BitCastInst>(BCI->getOperand(0)) &&
1330 GEP.accumulateConstantOffset(*TD, Offset) &&
1331 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1332
1333 // If this GEP instruction doesn't move the pointer, just replace the GEP
1334 // with a bitcast of the real input to the dest type.
1335 if (!Offset) {
1336 // If the bitcast is of an allocation, and the allocation will be
1337 // converted to match the type of the cast, don't touch this.
1338 if (isa<AllocaInst>(BCI->getOperand(0)) ||
1339 isAllocationFn(BCI->getOperand(0), TLI)) {
1340 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1341 if (Instruction *I = visitBitCast(*BCI)) {
1342 if (I != BCI) {
1343 I->takeName(BCI);
1344 BCI->getParent()->getInstList().insert(BCI, I);
1345 ReplaceInstUsesWith(*BCI, I);
1346 }
1347 return &GEP;
1348 }
1349 }
1350 return new BitCastInst(BCI->getOperand(0), GEP.getType());
1351 }
1352
1353 // Otherwise, if the offset is non-zero, we need to find out if there is a
1354 // field at Offset in 'A's type. If so, we can pull the cast through the
1355 // GEP.
1356 SmallVector<Value*, 8> NewIndices;
1357 Type *InTy =
1358 cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1359 if (FindElementAtOffset(InTy, Offset.getSExtValue(), NewIndices)) {
1360 Value *NGEP = GEP.isInBounds() ?
1361 Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1362 Builder->CreateGEP(BCI->getOperand(0), NewIndices);
1363
1364 if (NGEP->getType() == GEP.getType())
1365 return ReplaceInstUsesWith(GEP, NGEP);
1366 NGEP->takeName(&GEP);
1367 return new BitCastInst(NGEP, GEP.getType());
1368 }
1369 }
1370 }
1371
1372 return 0;
1373 }
1374
1375
1376
1377 static bool
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakVH> & Users,const TargetLibraryInfo * TLI)1378 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1379 const TargetLibraryInfo *TLI) {
1380 SmallVector<Instruction*, 4> Worklist;
1381 Worklist.push_back(AI);
1382
1383 do {
1384 Instruction *PI = Worklist.pop_back_val();
1385 for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1386 ++UI) {
1387 Instruction *I = cast<Instruction>(*UI);
1388 switch (I->getOpcode()) {
1389 default:
1390 // Give up the moment we see something we can't handle.
1391 return false;
1392
1393 case Instruction::BitCast:
1394 case Instruction::GetElementPtr:
1395 Users.push_back(I);
1396 Worklist.push_back(I);
1397 continue;
1398
1399 case Instruction::ICmp: {
1400 ICmpInst *ICI = cast<ICmpInst>(I);
1401 // We can fold eq/ne comparisons with null to false/true, respectively.
1402 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1403 return false;
1404 Users.push_back(I);
1405 continue;
1406 }
1407
1408 case Instruction::Call:
1409 // Ignore no-op and store intrinsics.
1410 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1411 switch (II->getIntrinsicID()) {
1412 default:
1413 return false;
1414
1415 case Intrinsic::memmove:
1416 case Intrinsic::memcpy:
1417 case Intrinsic::memset: {
1418 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1419 if (MI->isVolatile() || MI->getRawDest() != PI)
1420 return false;
1421 }
1422 // fall through
1423 case Intrinsic::dbg_declare:
1424 case Intrinsic::dbg_value:
1425 case Intrinsic::invariant_start:
1426 case Intrinsic::invariant_end:
1427 case Intrinsic::lifetime_start:
1428 case Intrinsic::lifetime_end:
1429 case Intrinsic::objectsize:
1430 Users.push_back(I);
1431 continue;
1432 }
1433 }
1434
1435 if (isFreeCall(I, TLI)) {
1436 Users.push_back(I);
1437 continue;
1438 }
1439 return false;
1440
1441 case Instruction::Store: {
1442 StoreInst *SI = cast<StoreInst>(I);
1443 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1444 return false;
1445 Users.push_back(I);
1446 continue;
1447 }
1448 }
1449 llvm_unreachable("missing a return?");
1450 }
1451 } while (!Worklist.empty());
1452 return true;
1453 }
1454
visitAllocSite(Instruction & MI)1455 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1456 // If we have a malloc call which is only used in any amount of comparisons
1457 // to null and free calls, delete the calls and replace the comparisons with
1458 // true or false as appropriate.
1459 SmallVector<WeakVH, 64> Users;
1460 if (isAllocSiteRemovable(&MI, Users, TLI)) {
1461 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1462 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1463 if (!I) continue;
1464
1465 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1466 ReplaceInstUsesWith(*C,
1467 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1468 C->isFalseWhenEqual()));
1469 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1470 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1471 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1472 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1473 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1474 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1475 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1476 }
1477 }
1478 EraseInstFromFunction(*I);
1479 }
1480
1481 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1482 // Replace invoke with a NOP intrinsic to maintain the original CFG
1483 Module *M = II->getParent()->getParent()->getParent();
1484 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1485 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1486 ArrayRef<Value *>(), "", II->getParent());
1487 }
1488 return EraseInstFromFunction(MI);
1489 }
1490 return 0;
1491 }
1492
1493 /// \brief Move the call to free before a NULL test.
1494 ///
1495 /// Check if this free is accessed after its argument has been test
1496 /// against NULL (property 0).
1497 /// If yes, it is legal to move this call in its predecessor block.
1498 ///
1499 /// The move is performed only if the block containing the call to free
1500 /// will be removed, i.e.:
1501 /// 1. it has only one predecessor P, and P has two successors
1502 /// 2. it contains the call and an unconditional branch
1503 /// 3. its successor is the same as its predecessor's successor
1504 ///
1505 /// The profitability is out-of concern here and this function should
1506 /// be called only if the caller knows this transformation would be
1507 /// profitable (e.g., for code size).
1508 static Instruction *
tryToMoveFreeBeforeNullTest(CallInst & FI)1509 tryToMoveFreeBeforeNullTest(CallInst &FI) {
1510 Value *Op = FI.getArgOperand(0);
1511 BasicBlock *FreeInstrBB = FI.getParent();
1512 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1513
1514 // Validate part of constraint #1: Only one predecessor
1515 // FIXME: We can extend the number of predecessor, but in that case, we
1516 // would duplicate the call to free in each predecessor and it may
1517 // not be profitable even for code size.
1518 if (!PredBB)
1519 return 0;
1520
1521 // Validate constraint #2: Does this block contains only the call to
1522 // free and an unconditional branch?
1523 // FIXME: We could check if we can speculate everything in the
1524 // predecessor block
1525 if (FreeInstrBB->size() != 2)
1526 return 0;
1527 BasicBlock *SuccBB;
1528 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1529 return 0;
1530
1531 // Validate the rest of constraint #1 by matching on the pred branch.
1532 TerminatorInst *TI = PredBB->getTerminator();
1533 BasicBlock *TrueBB, *FalseBB;
1534 ICmpInst::Predicate Pred;
1535 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1536 return 0;
1537 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1538 return 0;
1539
1540 // Validate constraint #3: Ensure the null case just falls through.
1541 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1542 return 0;
1543 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1544 "Broken CFG: missing edge from predecessor to successor");
1545
1546 FI.moveBefore(TI);
1547 return &FI;
1548 }
1549
1550
visitFree(CallInst & FI)1551 Instruction *InstCombiner::visitFree(CallInst &FI) {
1552 Value *Op = FI.getArgOperand(0);
1553
1554 // free undef -> unreachable.
1555 if (isa<UndefValue>(Op)) {
1556 // Insert a new store to null because we cannot modify the CFG here.
1557 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1558 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1559 return EraseInstFromFunction(FI);
1560 }
1561
1562 // If we have 'free null' delete the instruction. This can happen in stl code
1563 // when lots of inlining happens.
1564 if (isa<ConstantPointerNull>(Op))
1565 return EraseInstFromFunction(FI);
1566
1567 // If we optimize for code size, try to move the call to free before the null
1568 // test so that simplify cfg can remove the empty block and dead code
1569 // elimination the branch. I.e., helps to turn something like:
1570 // if (foo) free(foo);
1571 // into
1572 // free(foo);
1573 if (MinimizeSize)
1574 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1575 return I;
1576
1577 return 0;
1578 }
1579
1580
1581
visitBranchInst(BranchInst & BI)1582 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1583 // Change br (not X), label True, label False to: br X, label False, True
1584 Value *X = 0;
1585 BasicBlock *TrueDest;
1586 BasicBlock *FalseDest;
1587 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1588 !isa<Constant>(X)) {
1589 // Swap Destinations and condition...
1590 BI.setCondition(X);
1591 BI.swapSuccessors();
1592 return &BI;
1593 }
1594
1595 // Cannonicalize fcmp_one -> fcmp_oeq
1596 FCmpInst::Predicate FPred; Value *Y;
1597 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1598 TrueDest, FalseDest)) &&
1599 BI.getCondition()->hasOneUse())
1600 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1601 FPred == FCmpInst::FCMP_OGE) {
1602 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1603 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1604
1605 // Swap Destinations and condition.
1606 BI.swapSuccessors();
1607 Worklist.Add(Cond);
1608 return &BI;
1609 }
1610
1611 // Cannonicalize icmp_ne -> icmp_eq
1612 ICmpInst::Predicate IPred;
1613 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1614 TrueDest, FalseDest)) &&
1615 BI.getCondition()->hasOneUse())
1616 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1617 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1618 IPred == ICmpInst::ICMP_SGE) {
1619 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1620 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1621 // Swap Destinations and condition.
1622 BI.swapSuccessors();
1623 Worklist.Add(Cond);
1624 return &BI;
1625 }
1626
1627 return 0;
1628 }
1629
visitSwitchInst(SwitchInst & SI)1630 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1631 Value *Cond = SI.getCondition();
1632 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1633 if (I->getOpcode() == Instruction::Add)
1634 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1635 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1636 // Skip the first item since that's the default case.
1637 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1638 i != e; ++i) {
1639 ConstantInt* CaseVal = i.getCaseValue();
1640 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1641 AddRHS);
1642 assert(isa<ConstantInt>(NewCaseVal) &&
1643 "Result of expression should be constant");
1644 i.setValue(cast<ConstantInt>(NewCaseVal));
1645 }
1646 SI.setCondition(I->getOperand(0));
1647 Worklist.Add(I);
1648 return &SI;
1649 }
1650 }
1651 return 0;
1652 }
1653
visitExtractValueInst(ExtractValueInst & EV)1654 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1655 Value *Agg = EV.getAggregateOperand();
1656
1657 if (!EV.hasIndices())
1658 return ReplaceInstUsesWith(EV, Agg);
1659
1660 if (Constant *C = dyn_cast<Constant>(Agg)) {
1661 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1662 if (EV.getNumIndices() == 0)
1663 return ReplaceInstUsesWith(EV, C2);
1664 // Extract the remaining indices out of the constant indexed by the
1665 // first index
1666 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1667 }
1668 return 0; // Can't handle other constants
1669 }
1670
1671 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1672 // We're extracting from an insertvalue instruction, compare the indices
1673 const unsigned *exti, *exte, *insi, *inse;
1674 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1675 exte = EV.idx_end(), inse = IV->idx_end();
1676 exti != exte && insi != inse;
1677 ++exti, ++insi) {
1678 if (*insi != *exti)
1679 // The insert and extract both reference distinctly different elements.
1680 // This means the extract is not influenced by the insert, and we can
1681 // replace the aggregate operand of the extract with the aggregate
1682 // operand of the insert. i.e., replace
1683 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1684 // %E = extractvalue { i32, { i32 } } %I, 0
1685 // with
1686 // %E = extractvalue { i32, { i32 } } %A, 0
1687 return ExtractValueInst::Create(IV->getAggregateOperand(),
1688 EV.getIndices());
1689 }
1690 if (exti == exte && insi == inse)
1691 // Both iterators are at the end: Index lists are identical. Replace
1692 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1693 // %C = extractvalue { i32, { i32 } } %B, 1, 0
1694 // with "i32 42"
1695 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1696 if (exti == exte) {
1697 // The extract list is a prefix of the insert list. i.e. replace
1698 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1699 // %E = extractvalue { i32, { i32 } } %I, 1
1700 // with
1701 // %X = extractvalue { i32, { i32 } } %A, 1
1702 // %E = insertvalue { i32 } %X, i32 42, 0
1703 // by switching the order of the insert and extract (though the
1704 // insertvalue should be left in, since it may have other uses).
1705 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1706 EV.getIndices());
1707 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1708 makeArrayRef(insi, inse));
1709 }
1710 if (insi == inse)
1711 // The insert list is a prefix of the extract list
1712 // We can simply remove the common indices from the extract and make it
1713 // operate on the inserted value instead of the insertvalue result.
1714 // i.e., replace
1715 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1716 // %E = extractvalue { i32, { i32 } } %I, 1, 0
1717 // with
1718 // %E extractvalue { i32 } { i32 42 }, 0
1719 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1720 makeArrayRef(exti, exte));
1721 }
1722 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1723 // We're extracting from an intrinsic, see if we're the only user, which
1724 // allows us to simplify multiple result intrinsics to simpler things that
1725 // just get one value.
1726 if (II->hasOneUse()) {
1727 // Check if we're grabbing the overflow bit or the result of a 'with
1728 // overflow' intrinsic. If it's the latter we can remove the intrinsic
1729 // and replace it with a traditional binary instruction.
1730 switch (II->getIntrinsicID()) {
1731 case Intrinsic::uadd_with_overflow:
1732 case Intrinsic::sadd_with_overflow:
1733 if (*EV.idx_begin() == 0) { // Normal result.
1734 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1735 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1736 EraseInstFromFunction(*II);
1737 return BinaryOperator::CreateAdd(LHS, RHS);
1738 }
1739
1740 // If the normal result of the add is dead, and the RHS is a constant,
1741 // we can transform this into a range comparison.
1742 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
1743 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1744 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1745 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1746 ConstantExpr::getNot(CI));
1747 break;
1748 case Intrinsic::usub_with_overflow:
1749 case Intrinsic::ssub_with_overflow:
1750 if (*EV.idx_begin() == 0) { // Normal result.
1751 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1752 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1753 EraseInstFromFunction(*II);
1754 return BinaryOperator::CreateSub(LHS, RHS);
1755 }
1756 break;
1757 case Intrinsic::umul_with_overflow:
1758 case Intrinsic::smul_with_overflow:
1759 if (*EV.idx_begin() == 0) { // Normal result.
1760 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1761 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1762 EraseInstFromFunction(*II);
1763 return BinaryOperator::CreateMul(LHS, RHS);
1764 }
1765 break;
1766 default:
1767 break;
1768 }
1769 }
1770 }
1771 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1772 // If the (non-volatile) load only has one use, we can rewrite this to a
1773 // load from a GEP. This reduces the size of the load.
1774 // FIXME: If a load is used only by extractvalue instructions then this
1775 // could be done regardless of having multiple uses.
1776 if (L->isSimple() && L->hasOneUse()) {
1777 // extractvalue has integer indices, getelementptr has Value*s. Convert.
1778 SmallVector<Value*, 4> Indices;
1779 // Prefix an i32 0 since we need the first element.
1780 Indices.push_back(Builder->getInt32(0));
1781 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1782 I != E; ++I)
1783 Indices.push_back(Builder->getInt32(*I));
1784
1785 // We need to insert these at the location of the old load, not at that of
1786 // the extractvalue.
1787 Builder->SetInsertPoint(L->getParent(), L);
1788 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1789 // Returning the load directly will cause the main loop to insert it in
1790 // the wrong spot, so use ReplaceInstUsesWith().
1791 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1792 }
1793 // We could simplify extracts from other values. Note that nested extracts may
1794 // already be simplified implicitly by the above: extract (extract (insert) )
1795 // will be translated into extract ( insert ( extract ) ) first and then just
1796 // the value inserted, if appropriate. Similarly for extracts from single-use
1797 // loads: extract (extract (load)) will be translated to extract (load (gep))
1798 // and if again single-use then via load (gep (gep)) to load (gep).
1799 // However, double extracts from e.g. function arguments or return values
1800 // aren't handled yet.
1801 return 0;
1802 }
1803
1804 enum Personality_Type {
1805 Unknown_Personality,
1806 GNU_Ada_Personality,
1807 GNU_CXX_Personality,
1808 GNU_ObjC_Personality
1809 };
1810
1811 /// RecognizePersonality - See if the given exception handling personality
1812 /// function is one that we understand. If so, return a description of it;
1813 /// otherwise return Unknown_Personality.
RecognizePersonality(Value * Pers)1814 static Personality_Type RecognizePersonality(Value *Pers) {
1815 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1816 if (!F)
1817 return Unknown_Personality;
1818 return StringSwitch<Personality_Type>(F->getName())
1819 .Case("__gnat_eh_personality", GNU_Ada_Personality)
1820 .Case("__gxx_personality_v0", GNU_CXX_Personality)
1821 .Case("__objc_personality_v0", GNU_ObjC_Personality)
1822 .Default(Unknown_Personality);
1823 }
1824
1825 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
isCatchAll(Personality_Type Personality,Constant * TypeInfo)1826 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1827 switch (Personality) {
1828 case Unknown_Personality:
1829 return false;
1830 case GNU_Ada_Personality:
1831 // While __gnat_all_others_value will match any Ada exception, it doesn't
1832 // match foreign exceptions (or didn't, before gcc-4.7).
1833 return false;
1834 case GNU_CXX_Personality:
1835 case GNU_ObjC_Personality:
1836 return TypeInfo->isNullValue();
1837 }
1838 llvm_unreachable("Unknown personality!");
1839 }
1840
shorter_filter(const Value * LHS,const Value * RHS)1841 static bool shorter_filter(const Value *LHS, const Value *RHS) {
1842 return
1843 cast<ArrayType>(LHS->getType())->getNumElements()
1844 <
1845 cast<ArrayType>(RHS->getType())->getNumElements();
1846 }
1847
visitLandingPadInst(LandingPadInst & LI)1848 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1849 // The logic here should be correct for any real-world personality function.
1850 // However if that turns out not to be true, the offending logic can always
1851 // be conditioned on the personality function, like the catch-all logic is.
1852 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1853
1854 // Simplify the list of clauses, eg by removing repeated catch clauses
1855 // (these are often created by inlining).
1856 bool MakeNewInstruction = false; // If true, recreate using the following:
1857 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1858 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
1859
1860 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1861 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1862 bool isLastClause = i + 1 == e;
1863 if (LI.isCatch(i)) {
1864 // A catch clause.
1865 Value *CatchClause = LI.getClause(i);
1866 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1867
1868 // If we already saw this clause, there is no point in having a second
1869 // copy of it.
1870 if (AlreadyCaught.insert(TypeInfo)) {
1871 // This catch clause was not already seen.
1872 NewClauses.push_back(CatchClause);
1873 } else {
1874 // Repeated catch clause - drop the redundant copy.
1875 MakeNewInstruction = true;
1876 }
1877
1878 // If this is a catch-all then there is no point in keeping any following
1879 // clauses or marking the landingpad as having a cleanup.
1880 if (isCatchAll(Personality, TypeInfo)) {
1881 if (!isLastClause)
1882 MakeNewInstruction = true;
1883 CleanupFlag = false;
1884 break;
1885 }
1886 } else {
1887 // A filter clause. If any of the filter elements were already caught
1888 // then they can be dropped from the filter. It is tempting to try to
1889 // exploit the filter further by saying that any typeinfo that does not
1890 // occur in the filter can't be caught later (and thus can be dropped).
1891 // However this would be wrong, since typeinfos can match without being
1892 // equal (for example if one represents a C++ class, and the other some
1893 // class derived from it).
1894 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1895 Value *FilterClause = LI.getClause(i);
1896 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1897 unsigned NumTypeInfos = FilterType->getNumElements();
1898
1899 // An empty filter catches everything, so there is no point in keeping any
1900 // following clauses or marking the landingpad as having a cleanup. By
1901 // dealing with this case here the following code is made a bit simpler.
1902 if (!NumTypeInfos) {
1903 NewClauses.push_back(FilterClause);
1904 if (!isLastClause)
1905 MakeNewInstruction = true;
1906 CleanupFlag = false;
1907 break;
1908 }
1909
1910 bool MakeNewFilter = false; // If true, make a new filter.
1911 SmallVector<Constant *, 16> NewFilterElts; // New elements.
1912 if (isa<ConstantAggregateZero>(FilterClause)) {
1913 // Not an empty filter - it contains at least one null typeinfo.
1914 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1915 Constant *TypeInfo =
1916 Constant::getNullValue(FilterType->getElementType());
1917 // If this typeinfo is a catch-all then the filter can never match.
1918 if (isCatchAll(Personality, TypeInfo)) {
1919 // Throw the filter away.
1920 MakeNewInstruction = true;
1921 continue;
1922 }
1923
1924 // There is no point in having multiple copies of this typeinfo, so
1925 // discard all but the first copy if there is more than one.
1926 NewFilterElts.push_back(TypeInfo);
1927 if (NumTypeInfos > 1)
1928 MakeNewFilter = true;
1929 } else {
1930 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1931 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1932 NewFilterElts.reserve(NumTypeInfos);
1933
1934 // Remove any filter elements that were already caught or that already
1935 // occurred in the filter. While there, see if any of the elements are
1936 // catch-alls. If so, the filter can be discarded.
1937 bool SawCatchAll = false;
1938 for (unsigned j = 0; j != NumTypeInfos; ++j) {
1939 Value *Elt = Filter->getOperand(j);
1940 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1941 if (isCatchAll(Personality, TypeInfo)) {
1942 // This element is a catch-all. Bail out, noting this fact.
1943 SawCatchAll = true;
1944 break;
1945 }
1946 if (AlreadyCaught.count(TypeInfo))
1947 // Already caught by an earlier clause, so having it in the filter
1948 // is pointless.
1949 continue;
1950 // There is no point in having multiple copies of the same typeinfo in
1951 // a filter, so only add it if we didn't already.
1952 if (SeenInFilter.insert(TypeInfo))
1953 NewFilterElts.push_back(cast<Constant>(Elt));
1954 }
1955 // A filter containing a catch-all cannot match anything by definition.
1956 if (SawCatchAll) {
1957 // Throw the filter away.
1958 MakeNewInstruction = true;
1959 continue;
1960 }
1961
1962 // If we dropped something from the filter, make a new one.
1963 if (NewFilterElts.size() < NumTypeInfos)
1964 MakeNewFilter = true;
1965 }
1966 if (MakeNewFilter) {
1967 FilterType = ArrayType::get(FilterType->getElementType(),
1968 NewFilterElts.size());
1969 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1970 MakeNewInstruction = true;
1971 }
1972
1973 NewClauses.push_back(FilterClause);
1974
1975 // If the new filter is empty then it will catch everything so there is
1976 // no point in keeping any following clauses or marking the landingpad
1977 // as having a cleanup. The case of the original filter being empty was
1978 // already handled above.
1979 if (MakeNewFilter && !NewFilterElts.size()) {
1980 assert(MakeNewInstruction && "New filter but not a new instruction!");
1981 CleanupFlag = false;
1982 break;
1983 }
1984 }
1985 }
1986
1987 // If several filters occur in a row then reorder them so that the shortest
1988 // filters come first (those with the smallest number of elements). This is
1989 // advantageous because shorter filters are more likely to match, speeding up
1990 // unwinding, but mostly because it increases the effectiveness of the other
1991 // filter optimizations below.
1992 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1993 unsigned j;
1994 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1995 for (j = i; j != e; ++j)
1996 if (!isa<ArrayType>(NewClauses[j]->getType()))
1997 break;
1998
1999 // Check whether the filters are already sorted by length. We need to know
2000 // if sorting them is actually going to do anything so that we only make a
2001 // new landingpad instruction if it does.
2002 for (unsigned k = i; k + 1 < j; ++k)
2003 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2004 // Not sorted, so sort the filters now. Doing an unstable sort would be
2005 // correct too but reordering filters pointlessly might confuse users.
2006 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2007 shorter_filter);
2008 MakeNewInstruction = true;
2009 break;
2010 }
2011
2012 // Look for the next batch of filters.
2013 i = j + 1;
2014 }
2015
2016 // If typeinfos matched if and only if equal, then the elements of a filter L
2017 // that occurs later than a filter F could be replaced by the intersection of
2018 // the elements of F and L. In reality two typeinfos can match without being
2019 // equal (for example if one represents a C++ class, and the other some class
2020 // derived from it) so it would be wrong to perform this transform in general.
2021 // However the transform is correct and useful if F is a subset of L. In that
2022 // case L can be replaced by F, and thus removed altogether since repeating a
2023 // filter is pointless. So here we look at all pairs of filters F and L where
2024 // L follows F in the list of clauses, and remove L if every element of F is
2025 // an element of L. This can occur when inlining C++ functions with exception
2026 // specifications.
2027 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2028 // Examine each filter in turn.
2029 Value *Filter = NewClauses[i];
2030 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2031 if (!FTy)
2032 // Not a filter - skip it.
2033 continue;
2034 unsigned FElts = FTy->getNumElements();
2035 // Examine each filter following this one. Doing this backwards means that
2036 // we don't have to worry about filters disappearing under us when removed.
2037 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2038 Value *LFilter = NewClauses[j];
2039 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2040 if (!LTy)
2041 // Not a filter - skip it.
2042 continue;
2043 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2044 // an element of LFilter, then discard LFilter.
2045 SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
2046 // If Filter is empty then it is a subset of LFilter.
2047 if (!FElts) {
2048 // Discard LFilter.
2049 NewClauses.erase(J);
2050 MakeNewInstruction = true;
2051 // Move on to the next filter.
2052 continue;
2053 }
2054 unsigned LElts = LTy->getNumElements();
2055 // If Filter is longer than LFilter then it cannot be a subset of it.
2056 if (FElts > LElts)
2057 // Move on to the next filter.
2058 continue;
2059 // At this point we know that LFilter has at least one element.
2060 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2061 // Filter is a subset of LFilter iff Filter contains only zeros (as we
2062 // already know that Filter is not longer than LFilter).
2063 if (isa<ConstantAggregateZero>(Filter)) {
2064 assert(FElts <= LElts && "Should have handled this case earlier!");
2065 // Discard LFilter.
2066 NewClauses.erase(J);
2067 MakeNewInstruction = true;
2068 }
2069 // Move on to the next filter.
2070 continue;
2071 }
2072 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2073 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2074 // Since Filter is non-empty and contains only zeros, it is a subset of
2075 // LFilter iff LFilter contains a zero.
2076 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2077 for (unsigned l = 0; l != LElts; ++l)
2078 if (LArray->getOperand(l)->isNullValue()) {
2079 // LFilter contains a zero - discard it.
2080 NewClauses.erase(J);
2081 MakeNewInstruction = true;
2082 break;
2083 }
2084 // Move on to the next filter.
2085 continue;
2086 }
2087 // At this point we know that both filters are ConstantArrays. Loop over
2088 // operands to see whether every element of Filter is also an element of
2089 // LFilter. Since filters tend to be short this is probably faster than
2090 // using a method that scales nicely.
2091 ConstantArray *FArray = cast<ConstantArray>(Filter);
2092 bool AllFound = true;
2093 for (unsigned f = 0; f != FElts; ++f) {
2094 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2095 AllFound = false;
2096 for (unsigned l = 0; l != LElts; ++l) {
2097 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2098 if (LTypeInfo == FTypeInfo) {
2099 AllFound = true;
2100 break;
2101 }
2102 }
2103 if (!AllFound)
2104 break;
2105 }
2106 if (AllFound) {
2107 // Discard LFilter.
2108 NewClauses.erase(J);
2109 MakeNewInstruction = true;
2110 }
2111 // Move on to the next filter.
2112 }
2113 }
2114
2115 // If we changed any of the clauses, replace the old landingpad instruction
2116 // with a new one.
2117 if (MakeNewInstruction) {
2118 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2119 LI.getPersonalityFn(),
2120 NewClauses.size());
2121 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2122 NLI->addClause(NewClauses[i]);
2123 // A landing pad with no clauses must have the cleanup flag set. It is
2124 // theoretically possible, though highly unlikely, that we eliminated all
2125 // clauses. If so, force the cleanup flag to true.
2126 if (NewClauses.empty())
2127 CleanupFlag = true;
2128 NLI->setCleanup(CleanupFlag);
2129 return NLI;
2130 }
2131
2132 // Even if none of the clauses changed, we may nonetheless have understood
2133 // that the cleanup flag is pointless. Clear it if so.
2134 if (LI.isCleanup() != CleanupFlag) {
2135 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2136 LI.setCleanup(CleanupFlag);
2137 return &LI;
2138 }
2139
2140 return 0;
2141 }
2142
2143
2144
2145
2146 /// TryToSinkInstruction - Try to move the specified instruction from its
2147 /// current block into the beginning of DestBlock, which can only happen if it's
2148 /// safe to move the instruction past all of the instructions between it and the
2149 /// end of its block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)2150 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2151 assert(I->hasOneUse() && "Invariants didn't hold!");
2152
2153 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2154 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2155 isa<TerminatorInst>(I))
2156 return false;
2157
2158 // Do not sink alloca instructions out of the entry block.
2159 if (isa<AllocaInst>(I) && I->getParent() ==
2160 &DestBlock->getParent()->getEntryBlock())
2161 return false;
2162
2163 // We can only sink load instructions if there is nothing between the load and
2164 // the end of block that could change the value.
2165 if (I->mayReadFromMemory()) {
2166 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
2167 Scan != E; ++Scan)
2168 if (Scan->mayWriteToMemory())
2169 return false;
2170 }
2171
2172 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2173 I->moveBefore(InsertPos);
2174 ++NumSunkInst;
2175 return true;
2176 }
2177
2178
2179 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2180 /// all reachable code to the worklist.
2181 ///
2182 /// This has a couple of tricks to make the code faster and more powerful. In
2183 /// particular, we constant fold and DCE instructions as we go, to avoid adding
2184 /// them to the worklist (this significantly speeds up instcombine on code where
2185 /// many instructions are dead or constant). Additionally, if we find a branch
2186 /// whose condition is a known constant, we only visit the reachable successors.
2187 ///
AddReachableCodeToWorklist(BasicBlock * BB,SmallPtrSet<BasicBlock *,64> & Visited,InstCombiner & IC,const DataLayout * TD,const TargetLibraryInfo * TLI)2188 static bool AddReachableCodeToWorklist(BasicBlock *BB,
2189 SmallPtrSet<BasicBlock*, 64> &Visited,
2190 InstCombiner &IC,
2191 const DataLayout *TD,
2192 const TargetLibraryInfo *TLI) {
2193 bool MadeIRChange = false;
2194 SmallVector<BasicBlock*, 256> Worklist;
2195 Worklist.push_back(BB);
2196
2197 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2198 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2199
2200 do {
2201 BB = Worklist.pop_back_val();
2202
2203 // We have now visited this block! If we've already been here, ignore it.
2204 if (!Visited.insert(BB)) continue;
2205
2206 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2207 Instruction *Inst = BBI++;
2208
2209 // DCE instruction if trivially dead.
2210 if (isInstructionTriviallyDead(Inst, TLI)) {
2211 ++NumDeadInst;
2212 DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
2213 Inst->eraseFromParent();
2214 continue;
2215 }
2216
2217 // ConstantProp instruction if trivially constant.
2218 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2219 if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
2220 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
2221 << *Inst << '\n');
2222 Inst->replaceAllUsesWith(C);
2223 ++NumConstProp;
2224 Inst->eraseFromParent();
2225 continue;
2226 }
2227
2228 if (TD) {
2229 // See if we can constant fold its operands.
2230 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2231 i != e; ++i) {
2232 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2233 if (CE == 0) continue;
2234
2235 Constant*& FoldRes = FoldedConstants[CE];
2236 if (!FoldRes)
2237 FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
2238 if (!FoldRes)
2239 FoldRes = CE;
2240
2241 if (FoldRes != CE) {
2242 *i = FoldRes;
2243 MadeIRChange = true;
2244 }
2245 }
2246 }
2247
2248 InstrsForInstCombineWorklist.push_back(Inst);
2249 }
2250
2251 // Recursively visit successors. If this is a branch or switch on a
2252 // constant, only visit the reachable successor.
2253 TerminatorInst *TI = BB->getTerminator();
2254 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2255 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2256 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2257 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2258 Worklist.push_back(ReachableBB);
2259 continue;
2260 }
2261 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2262 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2263 // See if this is an explicit destination.
2264 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2265 i != e; ++i)
2266 if (i.getCaseValue() == Cond) {
2267 BasicBlock *ReachableBB = i.getCaseSuccessor();
2268 Worklist.push_back(ReachableBB);
2269 continue;
2270 }
2271
2272 // Otherwise it is the default destination.
2273 Worklist.push_back(SI->getDefaultDest());
2274 continue;
2275 }
2276 }
2277
2278 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2279 Worklist.push_back(TI->getSuccessor(i));
2280 } while (!Worklist.empty());
2281
2282 // Once we've found all of the instructions to add to instcombine's worklist,
2283 // add them in reverse order. This way instcombine will visit from the top
2284 // of the function down. This jives well with the way that it adds all uses
2285 // of instructions to the worklist after doing a transformation, thus avoiding
2286 // some N^2 behavior in pathological cases.
2287 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2288 InstrsForInstCombineWorklist.size());
2289
2290 return MadeIRChange;
2291 }
2292
DoOneIteration(Function & F,unsigned Iteration)2293 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
2294 MadeIRChange = false;
2295
2296 DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2297 << F.getName() << "\n");
2298
2299 {
2300 // Do a depth-first traversal of the function, populate the worklist with
2301 // the reachable instructions. Ignore blocks that are not reachable. Keep
2302 // track of which blocks we visit.
2303 SmallPtrSet<BasicBlock*, 64> Visited;
2304 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
2305 TLI);
2306
2307 // Do a quick scan over the function. If we find any blocks that are
2308 // unreachable, remove any instructions inside of them. This prevents
2309 // the instcombine code from having to deal with some bad special cases.
2310 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2311 if (Visited.count(BB)) continue;
2312
2313 // Delete the instructions backwards, as it has a reduced likelihood of
2314 // having to update as many def-use and use-def chains.
2315 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2316 while (EndInst != BB->begin()) {
2317 // Delete the next to last instruction.
2318 BasicBlock::iterator I = EndInst;
2319 Instruction *Inst = --I;
2320 if (!Inst->use_empty())
2321 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2322 if (isa<LandingPadInst>(Inst)) {
2323 EndInst = Inst;
2324 continue;
2325 }
2326 if (!isa<DbgInfoIntrinsic>(Inst)) {
2327 ++NumDeadInst;
2328 MadeIRChange = true;
2329 }
2330 Inst->eraseFromParent();
2331 }
2332 }
2333 }
2334
2335 while (!Worklist.isEmpty()) {
2336 Instruction *I = Worklist.RemoveOne();
2337 if (I == 0) continue; // skip null values.
2338
2339 // Check to see if we can DCE the instruction.
2340 if (isInstructionTriviallyDead(I, TLI)) {
2341 DEBUG(errs() << "IC: DCE: " << *I << '\n');
2342 EraseInstFromFunction(*I);
2343 ++NumDeadInst;
2344 MadeIRChange = true;
2345 continue;
2346 }
2347
2348 // Instruction isn't dead, see if we can constant propagate it.
2349 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2350 if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
2351 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2352
2353 // Add operands to the worklist.
2354 ReplaceInstUsesWith(*I, C);
2355 ++NumConstProp;
2356 EraseInstFromFunction(*I);
2357 MadeIRChange = true;
2358 continue;
2359 }
2360
2361 // See if we can trivially sink this instruction to a successor basic block.
2362 if (I->hasOneUse()) {
2363 BasicBlock *BB = I->getParent();
2364 Instruction *UserInst = cast<Instruction>(I->use_back());
2365 BasicBlock *UserParent;
2366
2367 // Get the block the use occurs in.
2368 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2369 UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2370 else
2371 UserParent = UserInst->getParent();
2372
2373 if (UserParent != BB) {
2374 bool UserIsSuccessor = false;
2375 // See if the user is one of our successors.
2376 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2377 if (*SI == UserParent) {
2378 UserIsSuccessor = true;
2379 break;
2380 }
2381
2382 // If the user is one of our immediate successors, and if that successor
2383 // only has us as a predecessors (we'd have to split the critical edge
2384 // otherwise), we can keep going.
2385 if (UserIsSuccessor && UserParent->getSinglePredecessor())
2386 // Okay, the CFG is simple enough, try to sink this instruction.
2387 MadeIRChange |= TryToSinkInstruction(I, UserParent);
2388 }
2389 }
2390
2391 // Now that we have an instruction, try combining it to simplify it.
2392 Builder->SetInsertPoint(I->getParent(), I);
2393 Builder->SetCurrentDebugLocation(I->getDebugLoc());
2394
2395 #ifndef NDEBUG
2396 std::string OrigI;
2397 #endif
2398 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2399 DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2400
2401 if (Instruction *Result = visit(*I)) {
2402 ++NumCombined;
2403 // Should we replace the old instruction with a new one?
2404 if (Result != I) {
2405 DEBUG(errs() << "IC: Old = " << *I << '\n'
2406 << " New = " << *Result << '\n');
2407
2408 if (!I->getDebugLoc().isUnknown())
2409 Result->setDebugLoc(I->getDebugLoc());
2410 // Everything uses the new instruction now.
2411 I->replaceAllUsesWith(Result);
2412
2413 // Move the name to the new instruction first.
2414 Result->takeName(I);
2415
2416 // Push the new instruction and any users onto the worklist.
2417 Worklist.Add(Result);
2418 Worklist.AddUsersToWorkList(*Result);
2419
2420 // Insert the new instruction into the basic block...
2421 BasicBlock *InstParent = I->getParent();
2422 BasicBlock::iterator InsertPos = I;
2423
2424 // If we replace a PHI with something that isn't a PHI, fix up the
2425 // insertion point.
2426 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2427 InsertPos = InstParent->getFirstInsertionPt();
2428
2429 InstParent->getInstList().insert(InsertPos, Result);
2430
2431 EraseInstFromFunction(*I);
2432 } else {
2433 #ifndef NDEBUG
2434 DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2435 << " New = " << *I << '\n');
2436 #endif
2437
2438 // If the instruction was modified, it's possible that it is now dead.
2439 // if so, remove it.
2440 if (isInstructionTriviallyDead(I, TLI)) {
2441 EraseInstFromFunction(*I);
2442 } else {
2443 Worklist.Add(I);
2444 Worklist.AddUsersToWorkList(*I);
2445 }
2446 }
2447 MadeIRChange = true;
2448 }
2449 }
2450
2451 Worklist.Zap();
2452 return MadeIRChange;
2453 }
2454
2455 namespace {
2456 class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2457 InstCombiner *IC;
2458 public:
InstCombinerLibCallSimplifier(const DataLayout * TD,const TargetLibraryInfo * TLI,InstCombiner * IC)2459 InstCombinerLibCallSimplifier(const DataLayout *TD,
2460 const TargetLibraryInfo *TLI,
2461 InstCombiner *IC)
2462 : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
2463 this->IC = IC;
2464 }
2465
2466 /// replaceAllUsesWith - override so that instruction replacement
2467 /// can be defined in terms of the instruction combiner framework.
replaceAllUsesWith(Instruction * I,Value * With) const2468 virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
2469 IC->ReplaceInstUsesWith(*I, With);
2470 }
2471 };
2472 }
2473
runOnFunction(Function & F)2474 bool InstCombiner::runOnFunction(Function &F) {
2475 TD = getAnalysisIfAvailable<DataLayout>();
2476 TLI = &getAnalysis<TargetLibraryInfo>();
2477 // Minimizing size?
2478 MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2479 Attribute::MinSize);
2480
2481 /// Builder - This is an IRBuilder that automatically inserts new
2482 /// instructions into the worklist when they are created.
2483 IRBuilder<true, TargetFolder, InstCombineIRInserter>
2484 TheBuilder(F.getContext(), TargetFolder(TD),
2485 InstCombineIRInserter(Worklist));
2486 Builder = &TheBuilder;
2487
2488 InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
2489 Simplifier = &TheSimplifier;
2490
2491 bool EverMadeChange = false;
2492
2493 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2494 // by instcombiner.
2495 EverMadeChange = LowerDbgDeclare(F);
2496
2497 // Iterate while there is work to do.
2498 unsigned Iteration = 0;
2499 while (DoOneIteration(F, Iteration++))
2500 EverMadeChange = true;
2501
2502 Builder = 0;
2503 return EverMadeChange;
2504 }
2505
createInstructionCombiningPass()2506 FunctionPass *llvm::createInstructionCombiningPass() {
2507 return new InstCombiner();
2508 }
2509