• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis member access expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 
24 using namespace clang;
25 using namespace sema;
26 
27 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
BaseIsNotInSet(const CXXRecordDecl * Base,void * BasesPtr)28 static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
29   const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
30   return !Bases.count(Base->getCanonicalDecl());
31 }
32 
33 /// Determines if the given class is provably not derived from all of
34 /// the prospective base classes.
isProvablyNotDerivedFrom(Sema & SemaRef,CXXRecordDecl * Record,const BaseSet & Bases)35 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
36                                      const BaseSet &Bases) {
37   void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
38   return BaseIsNotInSet(Record, BasesPtr) &&
39          Record->forallBases(BaseIsNotInSet, BasesPtr);
40 }
41 
42 enum IMAKind {
43   /// The reference is definitely not an instance member access.
44   IMA_Static,
45 
46   /// The reference may be an implicit instance member access.
47   IMA_Mixed,
48 
49   /// The reference may be to an instance member, but it might be invalid if
50   /// so, because the context is not an instance method.
51   IMA_Mixed_StaticContext,
52 
53   /// The reference may be to an instance member, but it is invalid if
54   /// so, because the context is from an unrelated class.
55   IMA_Mixed_Unrelated,
56 
57   /// The reference is definitely an implicit instance member access.
58   IMA_Instance,
59 
60   /// The reference may be to an unresolved using declaration.
61   IMA_Unresolved,
62 
63   /// The reference may be to an unresolved using declaration and the
64   /// context is not an instance method.
65   IMA_Unresolved_StaticContext,
66 
67   // The reference refers to a field which is not a member of the containing
68   // class, which is allowed because we're in C++11 mode and the context is
69   // unevaluated.
70   IMA_Field_Uneval_Context,
71 
72   /// All possible referrents are instance members and the current
73   /// context is not an instance method.
74   IMA_Error_StaticContext,
75 
76   /// All possible referrents are instance members of an unrelated
77   /// class.
78   IMA_Error_Unrelated
79 };
80 
81 /// The given lookup names class member(s) and is not being used for
82 /// an address-of-member expression.  Classify the type of access
83 /// according to whether it's possible that this reference names an
84 /// instance member.  This is best-effort in dependent contexts; it is okay to
85 /// conservatively answer "yes", in which case some errors will simply
86 /// not be caught until template-instantiation.
ClassifyImplicitMemberAccess(Sema & SemaRef,Scope * CurScope,const LookupResult & R)87 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
88                                             Scope *CurScope,
89                                             const LookupResult &R) {
90   assert(!R.empty() && (*R.begin())->isCXXClassMember());
91 
92   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
93 
94   bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
95     (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
96 
97   if (R.isUnresolvableResult())
98     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
99 
100   // Collect all the declaring classes of instance members we find.
101   bool hasNonInstance = false;
102   bool isField = false;
103   BaseSet Classes;
104   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
105     NamedDecl *D = *I;
106 
107     if (D->isCXXInstanceMember()) {
108       if (dyn_cast<FieldDecl>(D) || dyn_cast<IndirectFieldDecl>(D))
109         isField = true;
110 
111       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
112       Classes.insert(R->getCanonicalDecl());
113     }
114     else
115       hasNonInstance = true;
116   }
117 
118   // If we didn't find any instance members, it can't be an implicit
119   // member reference.
120   if (Classes.empty())
121     return IMA_Static;
122 
123   bool IsCXX11UnevaluatedField = false;
124   if (SemaRef.getLangOpts().CPlusPlus11 && isField) {
125     // C++11 [expr.prim.general]p12:
126     //   An id-expression that denotes a non-static data member or non-static
127     //   member function of a class can only be used:
128     //   (...)
129     //   - if that id-expression denotes a non-static data member and it
130     //     appears in an unevaluated operand.
131     const Sema::ExpressionEvaluationContextRecord& record
132       = SemaRef.ExprEvalContexts.back();
133     if (record.Context == Sema::Unevaluated)
134       IsCXX11UnevaluatedField = true;
135   }
136 
137   // If the current context is not an instance method, it can't be
138   // an implicit member reference.
139   if (isStaticContext) {
140     if (hasNonInstance)
141       return IMA_Mixed_StaticContext;
142 
143     return IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context
144                                    : IMA_Error_StaticContext;
145   }
146 
147   CXXRecordDecl *contextClass;
148   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
149     contextClass = MD->getParent()->getCanonicalDecl();
150   else
151     contextClass = cast<CXXRecordDecl>(DC);
152 
153   // [class.mfct.non-static]p3:
154   // ...is used in the body of a non-static member function of class X,
155   // if name lookup (3.4.1) resolves the name in the id-expression to a
156   // non-static non-type member of some class C [...]
157   // ...if C is not X or a base class of X, the class member access expression
158   // is ill-formed.
159   if (R.getNamingClass() &&
160       contextClass->getCanonicalDecl() !=
161         R.getNamingClass()->getCanonicalDecl()) {
162     // If the naming class is not the current context, this was a qualified
163     // member name lookup, and it's sufficient to check that we have the naming
164     // class as a base class.
165     Classes.clear();
166     Classes.insert(R.getNamingClass()->getCanonicalDecl());
167   }
168 
169   // If we can prove that the current context is unrelated to all the
170   // declaring classes, it can't be an implicit member reference (in
171   // which case it's an error if any of those members are selected).
172   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
173     return hasNonInstance ? IMA_Mixed_Unrelated :
174            IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
175                                      IMA_Error_Unrelated;
176 
177   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
178 }
179 
180 /// Diagnose a reference to a field with no object available.
diagnoseInstanceReference(Sema & SemaRef,const CXXScopeSpec & SS,NamedDecl * Rep,const DeclarationNameInfo & nameInfo)181 static void diagnoseInstanceReference(Sema &SemaRef,
182                                       const CXXScopeSpec &SS,
183                                       NamedDecl *Rep,
184                                       const DeclarationNameInfo &nameInfo) {
185   SourceLocation Loc = nameInfo.getLoc();
186   SourceRange Range(Loc);
187   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
188 
189   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
190   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
191   CXXRecordDecl *ContextClass = Method ? Method->getParent() : 0;
192   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
193 
194   bool InStaticMethod = Method && Method->isStatic();
195   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
196 
197   if (IsField && InStaticMethod)
198     // "invalid use of member 'x' in static member function"
199     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
200         << Range << nameInfo.getName();
201   else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
202            !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
203     // Unqualified lookup in a non-static member function found a member of an
204     // enclosing class.
205     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
206       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
207   else if (IsField)
208     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
209       << nameInfo.getName() << Range;
210   else
211     SemaRef.Diag(Loc, diag::err_member_call_without_object)
212       << Range;
213 }
214 
215 /// Builds an expression which might be an implicit member expression.
216 ExprResult
BuildPossibleImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)217 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
218                                       SourceLocation TemplateKWLoc,
219                                       LookupResult &R,
220                                 const TemplateArgumentListInfo *TemplateArgs) {
221   switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
222   case IMA_Instance:
223     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
224 
225   case IMA_Mixed:
226   case IMA_Mixed_Unrelated:
227   case IMA_Unresolved:
228     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
229 
230   case IMA_Field_Uneval_Context:
231     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
232       << R.getLookupNameInfo().getName();
233     // Fall through.
234   case IMA_Static:
235   case IMA_Mixed_StaticContext:
236   case IMA_Unresolved_StaticContext:
237     if (TemplateArgs || TemplateKWLoc.isValid())
238       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
239     return BuildDeclarationNameExpr(SS, R, false);
240 
241   case IMA_Error_StaticContext:
242   case IMA_Error_Unrelated:
243     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
244                               R.getLookupNameInfo());
245     return ExprError();
246   }
247 
248   llvm_unreachable("unexpected instance member access kind");
249 }
250 
251 /// Determine whether input char is from rgba component set.
252 static bool
IsRGBA(char c)253 IsRGBA(char c) {
254   switch (c) {
255   case 'r':
256   case 'g':
257   case 'b':
258   case 'a':
259     return true;
260   default:
261     return false;
262   }
263 }
264 
265 /// Check an ext-vector component access expression.
266 ///
267 /// VK should be set in advance to the value kind of the base
268 /// expression.
269 static QualType
CheckExtVectorComponent(Sema & S,QualType baseType,ExprValueKind & VK,SourceLocation OpLoc,const IdentifierInfo * CompName,SourceLocation CompLoc)270 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
271                         SourceLocation OpLoc, const IdentifierInfo *CompName,
272                         SourceLocation CompLoc) {
273   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
274   // see FIXME there.
275   //
276   // FIXME: This logic can be greatly simplified by splitting it along
277   // halving/not halving and reworking the component checking.
278   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
279 
280   // The vector accessor can't exceed the number of elements.
281   const char *compStr = CompName->getNameStart();
282 
283   // This flag determines whether or not the component is one of the four
284   // special names that indicate a subset of exactly half the elements are
285   // to be selected.
286   bool HalvingSwizzle = false;
287 
288   // This flag determines whether or not CompName has an 's' char prefix,
289   // indicating that it is a string of hex values to be used as vector indices.
290   bool HexSwizzle = *compStr == 's' || *compStr == 'S';
291 
292   bool HasRepeated = false;
293   bool HasIndex[16] = {};
294 
295   int Idx;
296 
297   // Check that we've found one of the special components, or that the component
298   // names must come from the same set.
299   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
300       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
301     HalvingSwizzle = true;
302   } else if (!HexSwizzle &&
303              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
304     bool HasRGBA = IsRGBA(*compStr);
305     do {
306       // If we mix/match rgba with xyzw, break to signal that we encountered
307       // an illegal name.
308       if (HasRGBA != IsRGBA(*compStr))
309         break;
310       if (HasIndex[Idx]) HasRepeated = true;
311       HasIndex[Idx] = true;
312       compStr++;
313     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
314   } else {
315     if (HexSwizzle) compStr++;
316     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
317       if (HasIndex[Idx]) HasRepeated = true;
318       HasIndex[Idx] = true;
319       compStr++;
320     }
321   }
322 
323   if (!HalvingSwizzle && *compStr) {
324     // We didn't get to the end of the string. This means the component names
325     // didn't come from the same set *or* we encountered an illegal name.
326     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
327       << StringRef(compStr, 1) << SourceRange(CompLoc);
328     return QualType();
329   }
330 
331   // Ensure no component accessor exceeds the width of the vector type it
332   // operates on.
333   if (!HalvingSwizzle) {
334     compStr = CompName->getNameStart();
335 
336     if (HexSwizzle)
337       compStr++;
338 
339     while (*compStr) {
340       if (!vecType->isAccessorWithinNumElements(*compStr++)) {
341         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
342           << baseType << SourceRange(CompLoc);
343         return QualType();
344       }
345     }
346   }
347 
348   // The component accessor looks fine - now we need to compute the actual type.
349   // The vector type is implied by the component accessor. For example,
350   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
351   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
352   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
353   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
354                                      : CompName->getLength();
355   if (HexSwizzle)
356     CompSize--;
357 
358   if (CompSize == 1)
359     return vecType->getElementType();
360 
361   if (HasRepeated) VK = VK_RValue;
362 
363   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
364   // Now look up the TypeDefDecl from the vector type. Without this,
365   // diagostics look bad. We want extended vector types to appear built-in.
366   for (Sema::ExtVectorDeclsType::iterator
367          I = S.ExtVectorDecls.begin(S.getExternalSource()),
368          E = S.ExtVectorDecls.end();
369        I != E; ++I) {
370     if ((*I)->getUnderlyingType() == VT)
371       return S.Context.getTypedefType(*I);
372   }
373 
374   return VT; // should never get here (a typedef type should always be found).
375 }
376 
FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl * PDecl,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)377 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
378                                                 IdentifierInfo *Member,
379                                                 const Selector &Sel,
380                                                 ASTContext &Context) {
381   if (Member)
382     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
383       return PD;
384   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
385     return OMD;
386 
387   for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
388        E = PDecl->protocol_end(); I != E; ++I) {
389     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
390                                                            Context))
391       return D;
392   }
393   return 0;
394 }
395 
FindGetterSetterNameDecl(const ObjCObjectPointerType * QIdTy,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)396 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
397                                       IdentifierInfo *Member,
398                                       const Selector &Sel,
399                                       ASTContext &Context) {
400   // Check protocols on qualified interfaces.
401   Decl *GDecl = 0;
402   for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
403        E = QIdTy->qual_end(); I != E; ++I) {
404     if (Member)
405       if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
406         GDecl = PD;
407         break;
408       }
409     // Also must look for a getter or setter name which uses property syntax.
410     if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
411       GDecl = OMD;
412       break;
413     }
414   }
415   if (!GDecl) {
416     for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
417          E = QIdTy->qual_end(); I != E; ++I) {
418       // Search in the protocol-qualifier list of current protocol.
419       GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
420                                                        Context);
421       if (GDecl)
422         return GDecl;
423     }
424   }
425   return GDecl;
426 }
427 
428 ExprResult
ActOnDependentMemberExpr(Expr * BaseExpr,QualType BaseType,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)429 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
430                                bool IsArrow, SourceLocation OpLoc,
431                                const CXXScopeSpec &SS,
432                                SourceLocation TemplateKWLoc,
433                                NamedDecl *FirstQualifierInScope,
434                                const DeclarationNameInfo &NameInfo,
435                                const TemplateArgumentListInfo *TemplateArgs) {
436   // Even in dependent contexts, try to diagnose base expressions with
437   // obviously wrong types, e.g.:
438   //
439   // T* t;
440   // t.f;
441   //
442   // In Obj-C++, however, the above expression is valid, since it could be
443   // accessing the 'f' property if T is an Obj-C interface. The extra check
444   // allows this, while still reporting an error if T is a struct pointer.
445   if (!IsArrow) {
446     const PointerType *PT = BaseType->getAs<PointerType>();
447     if (PT && (!getLangOpts().ObjC1 ||
448                PT->getPointeeType()->isRecordType())) {
449       assert(BaseExpr && "cannot happen with implicit member accesses");
450       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
451         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
452       return ExprError();
453     }
454   }
455 
456   assert(BaseType->isDependentType() ||
457          NameInfo.getName().isDependentName() ||
458          isDependentScopeSpecifier(SS));
459 
460   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
461   // must have pointer type, and the accessed type is the pointee.
462   return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
463                                                    IsArrow, OpLoc,
464                                                SS.getWithLocInContext(Context),
465                                                    TemplateKWLoc,
466                                                    FirstQualifierInScope,
467                                                    NameInfo, TemplateArgs));
468 }
469 
470 /// We know that the given qualified member reference points only to
471 /// declarations which do not belong to the static type of the base
472 /// expression.  Diagnose the problem.
DiagnoseQualifiedMemberReference(Sema & SemaRef,Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,NamedDecl * rep,const DeclarationNameInfo & nameInfo)473 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
474                                              Expr *BaseExpr,
475                                              QualType BaseType,
476                                              const CXXScopeSpec &SS,
477                                              NamedDecl *rep,
478                                        const DeclarationNameInfo &nameInfo) {
479   // If this is an implicit member access, use a different set of
480   // diagnostics.
481   if (!BaseExpr)
482     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
483 
484   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
485     << SS.getRange() << rep << BaseType;
486 }
487 
488 // Check whether the declarations we found through a nested-name
489 // specifier in a member expression are actually members of the base
490 // type.  The restriction here is:
491 //
492 //   C++ [expr.ref]p2:
493 //     ... In these cases, the id-expression shall name a
494 //     member of the class or of one of its base classes.
495 //
496 // So it's perfectly legitimate for the nested-name specifier to name
497 // an unrelated class, and for us to find an overload set including
498 // decls from classes which are not superclasses, as long as the decl
499 // we actually pick through overload resolution is from a superclass.
CheckQualifiedMemberReference(Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,const LookupResult & R)500 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
501                                          QualType BaseType,
502                                          const CXXScopeSpec &SS,
503                                          const LookupResult &R) {
504   CXXRecordDecl *BaseRecord =
505     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
506   if (!BaseRecord) {
507     // We can't check this yet because the base type is still
508     // dependent.
509     assert(BaseType->isDependentType());
510     return false;
511   }
512 
513   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
514     // If this is an implicit member reference and we find a
515     // non-instance member, it's not an error.
516     if (!BaseExpr && !(*I)->isCXXInstanceMember())
517       return false;
518 
519     // Note that we use the DC of the decl, not the underlying decl.
520     DeclContext *DC = (*I)->getDeclContext();
521     while (DC->isTransparentContext())
522       DC = DC->getParent();
523 
524     if (!DC->isRecord())
525       continue;
526 
527     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
528     if (BaseRecord->getCanonicalDecl() == MemberRecord ||
529         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
530       return false;
531   }
532 
533   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
534                                    R.getRepresentativeDecl(),
535                                    R.getLookupNameInfo());
536   return true;
537 }
538 
539 namespace {
540 
541 // Callback to only accept typo corrections that are either a ValueDecl or a
542 // FunctionTemplateDecl.
543 class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
544  public:
ValidateCandidate(const TypoCorrection & candidate)545   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
546     NamedDecl *ND = candidate.getCorrectionDecl();
547     return ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND));
548   }
549 };
550 
551 }
552 
553 static bool
LookupMemberExprInRecord(Sema & SemaRef,LookupResult & R,SourceRange BaseRange,const RecordType * RTy,SourceLocation OpLoc,CXXScopeSpec & SS,bool HasTemplateArgs)554 LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
555                          SourceRange BaseRange, const RecordType *RTy,
556                          SourceLocation OpLoc, CXXScopeSpec &SS,
557                          bool HasTemplateArgs) {
558   RecordDecl *RDecl = RTy->getDecl();
559   if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
560       SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
561                                   diag::err_typecheck_incomplete_tag,
562                                   BaseRange))
563     return true;
564 
565   if (HasTemplateArgs) {
566     // LookupTemplateName doesn't expect these both to exist simultaneously.
567     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
568 
569     bool MOUS;
570     SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
571     return false;
572   }
573 
574   DeclContext *DC = RDecl;
575   if (SS.isSet()) {
576     // If the member name was a qualified-id, look into the
577     // nested-name-specifier.
578     DC = SemaRef.computeDeclContext(SS, false);
579 
580     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
581       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
582         << SS.getRange() << DC;
583       return true;
584     }
585 
586     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
587 
588     if (!isa<TypeDecl>(DC)) {
589       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
590         << DC << SS.getRange();
591       return true;
592     }
593   }
594 
595   // The record definition is complete, now look up the member.
596   SemaRef.LookupQualifiedName(R, DC);
597 
598   if (!R.empty())
599     return false;
600 
601   // We didn't find anything with the given name, so try to correct
602   // for typos.
603   DeclarationName Name = R.getLookupName();
604   RecordMemberExprValidatorCCC Validator;
605   TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
606                                                  R.getLookupKind(), NULL,
607                                                  &SS, Validator, DC);
608   R.clear();
609   if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
610     std::string CorrectedStr(
611         Corrected.getAsString(SemaRef.getLangOpts()));
612     std::string CorrectedQuotedStr(
613         Corrected.getQuoted(SemaRef.getLangOpts()));
614     R.setLookupName(Corrected.getCorrection());
615     R.addDecl(ND);
616     SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
617       << Name << DC << CorrectedQuotedStr << SS.getRange()
618       << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
619                                       CorrectedStr);
620     SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
621       << ND->getDeclName();
622   }
623 
624   return false;
625 }
626 
627 ExprResult
BuildMemberReferenceExpr(Expr * Base,QualType BaseType,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)628 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
629                                SourceLocation OpLoc, bool IsArrow,
630                                CXXScopeSpec &SS,
631                                SourceLocation TemplateKWLoc,
632                                NamedDecl *FirstQualifierInScope,
633                                const DeclarationNameInfo &NameInfo,
634                                const TemplateArgumentListInfo *TemplateArgs) {
635   if (BaseType->isDependentType() ||
636       (SS.isSet() && isDependentScopeSpecifier(SS)))
637     return ActOnDependentMemberExpr(Base, BaseType,
638                                     IsArrow, OpLoc,
639                                     SS, TemplateKWLoc, FirstQualifierInScope,
640                                     NameInfo, TemplateArgs);
641 
642   LookupResult R(*this, NameInfo, LookupMemberName);
643 
644   // Implicit member accesses.
645   if (!Base) {
646     QualType RecordTy = BaseType;
647     if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
648     if (LookupMemberExprInRecord(*this, R, SourceRange(),
649                                  RecordTy->getAs<RecordType>(),
650                                  OpLoc, SS, TemplateArgs != 0))
651       return ExprError();
652 
653   // Explicit member accesses.
654   } else {
655     ExprResult BaseResult = Owned(Base);
656     ExprResult Result =
657       LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
658                        SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
659 
660     if (BaseResult.isInvalid())
661       return ExprError();
662     Base = BaseResult.take();
663 
664     if (Result.isInvalid()) {
665       Owned(Base);
666       return ExprError();
667     }
668 
669     if (Result.get())
670       return Result;
671 
672     // LookupMemberExpr can modify Base, and thus change BaseType
673     BaseType = Base->getType();
674   }
675 
676   return BuildMemberReferenceExpr(Base, BaseType,
677                                   OpLoc, IsArrow, SS, TemplateKWLoc,
678                                   FirstQualifierInScope, R, TemplateArgs);
679 }
680 
681 static ExprResult
682 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
683                         const CXXScopeSpec &SS, FieldDecl *Field,
684                         DeclAccessPair FoundDecl,
685                         const DeclarationNameInfo &MemberNameInfo);
686 
687 ExprResult
BuildAnonymousStructUnionMemberReference(const CXXScopeSpec & SS,SourceLocation loc,IndirectFieldDecl * indirectField,Expr * baseObjectExpr,SourceLocation opLoc)688 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
689                                                SourceLocation loc,
690                                                IndirectFieldDecl *indirectField,
691                                                Expr *baseObjectExpr,
692                                                SourceLocation opLoc) {
693   // First, build the expression that refers to the base object.
694 
695   bool baseObjectIsPointer = false;
696   Qualifiers baseQuals;
697 
698   // Case 1:  the base of the indirect field is not a field.
699   VarDecl *baseVariable = indirectField->getVarDecl();
700   CXXScopeSpec EmptySS;
701   if (baseVariable) {
702     assert(baseVariable->getType()->isRecordType());
703 
704     // In principle we could have a member access expression that
705     // accesses an anonymous struct/union that's a static member of
706     // the base object's class.  However, under the current standard,
707     // static data members cannot be anonymous structs or unions.
708     // Supporting this is as easy as building a MemberExpr here.
709     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
710 
711     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
712 
713     ExprResult result
714       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
715     if (result.isInvalid()) return ExprError();
716 
717     baseObjectExpr = result.take();
718     baseObjectIsPointer = false;
719     baseQuals = baseObjectExpr->getType().getQualifiers();
720 
721     // Case 2: the base of the indirect field is a field and the user
722     // wrote a member expression.
723   } else if (baseObjectExpr) {
724     // The caller provided the base object expression. Determine
725     // whether its a pointer and whether it adds any qualifiers to the
726     // anonymous struct/union fields we're looking into.
727     QualType objectType = baseObjectExpr->getType();
728 
729     if (const PointerType *ptr = objectType->getAs<PointerType>()) {
730       baseObjectIsPointer = true;
731       objectType = ptr->getPointeeType();
732     } else {
733       baseObjectIsPointer = false;
734     }
735     baseQuals = objectType.getQualifiers();
736 
737     // Case 3: the base of the indirect field is a field and we should
738     // build an implicit member access.
739   } else {
740     // We've found a member of an anonymous struct/union that is
741     // inside a non-anonymous struct/union, so in a well-formed
742     // program our base object expression is "this".
743     QualType ThisTy = getCurrentThisType();
744     if (ThisTy.isNull()) {
745       Diag(loc, diag::err_invalid_member_use_in_static_method)
746         << indirectField->getDeclName();
747       return ExprError();
748     }
749 
750     // Our base object expression is "this".
751     CheckCXXThisCapture(loc);
752     baseObjectExpr
753       = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
754     baseObjectIsPointer = true;
755     baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
756   }
757 
758   // Build the implicit member references to the field of the
759   // anonymous struct/union.
760   Expr *result = baseObjectExpr;
761   IndirectFieldDecl::chain_iterator
762   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
763 
764   // Build the first member access in the chain with full information.
765   if (!baseVariable) {
766     FieldDecl *field = cast<FieldDecl>(*FI);
767 
768     // FIXME: use the real found-decl info!
769     DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
770 
771     // Make a nameInfo that properly uses the anonymous name.
772     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
773 
774     result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
775                                      EmptySS, field, foundDecl,
776                                      memberNameInfo).take();
777     baseObjectIsPointer = false;
778 
779     // FIXME: check qualified member access
780   }
781 
782   // In all cases, we should now skip the first declaration in the chain.
783   ++FI;
784 
785   while (FI != FEnd) {
786     FieldDecl *field = cast<FieldDecl>(*FI++);
787 
788     // FIXME: these are somewhat meaningless
789     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
790     DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
791 
792     result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
793                                      (FI == FEnd? SS : EmptySS), field,
794                                      foundDecl, memberNameInfo).take();
795   }
796 
797   return Owned(result);
798 }
799 
800 /// \brief Build a MemberExpr AST node.
BuildMemberExpr(Sema & SemaRef,ASTContext & C,Expr * Base,bool isArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,ValueDecl * Member,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo,QualType Ty,ExprValueKind VK,ExprObjectKind OK,const TemplateArgumentListInfo * TemplateArgs=0)801 static MemberExpr *BuildMemberExpr(Sema &SemaRef,
802                                    ASTContext &C, Expr *Base, bool isArrow,
803                                    const CXXScopeSpec &SS,
804                                    SourceLocation TemplateKWLoc,
805                                    ValueDecl *Member,
806                                    DeclAccessPair FoundDecl,
807                                    const DeclarationNameInfo &MemberNameInfo,
808                                    QualType Ty,
809                                    ExprValueKind VK, ExprObjectKind OK,
810                                    const TemplateArgumentListInfo *TemplateArgs = 0) {
811   assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
812   MemberExpr *E =
813       MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
814                          TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
815                          TemplateArgs, Ty, VK, OK);
816   SemaRef.MarkMemberReferenced(E);
817   return E;
818 }
819 
820 ExprResult
BuildMemberReferenceExpr(Expr * BaseExpr,QualType BaseExprType,SourceLocation OpLoc,bool IsArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool SuppressQualifierCheck,ActOnMemberAccessExtraArgs * ExtraArgs)821 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
822                                SourceLocation OpLoc, bool IsArrow,
823                                const CXXScopeSpec &SS,
824                                SourceLocation TemplateKWLoc,
825                                NamedDecl *FirstQualifierInScope,
826                                LookupResult &R,
827                                const TemplateArgumentListInfo *TemplateArgs,
828                                bool SuppressQualifierCheck,
829                                ActOnMemberAccessExtraArgs *ExtraArgs) {
830   QualType BaseType = BaseExprType;
831   if (IsArrow) {
832     assert(BaseType->isPointerType());
833     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
834   }
835   R.setBaseObjectType(BaseType);
836 
837   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
838   DeclarationName MemberName = MemberNameInfo.getName();
839   SourceLocation MemberLoc = MemberNameInfo.getLoc();
840 
841   if (R.isAmbiguous())
842     return ExprError();
843 
844   if (R.empty()) {
845     // Rederive where we looked up.
846     DeclContext *DC = (SS.isSet()
847                        ? computeDeclContext(SS, false)
848                        : BaseType->getAs<RecordType>()->getDecl());
849 
850     if (ExtraArgs) {
851       ExprResult RetryExpr;
852       if (!IsArrow && BaseExpr) {
853         SFINAETrap Trap(*this, true);
854         ParsedType ObjectType;
855         bool MayBePseudoDestructor = false;
856         RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
857                                                  OpLoc, tok::arrow, ObjectType,
858                                                  MayBePseudoDestructor);
859         if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
860           CXXScopeSpec TempSS(SS);
861           RetryExpr = ActOnMemberAccessExpr(
862               ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
863               TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
864               ExtraArgs->HasTrailingLParen);
865         }
866         if (Trap.hasErrorOccurred())
867           RetryExpr = ExprError();
868       }
869       if (RetryExpr.isUsable()) {
870         Diag(OpLoc, diag::err_no_member_overloaded_arrow)
871           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
872         return RetryExpr;
873       }
874     }
875 
876     Diag(R.getNameLoc(), diag::err_no_member)
877       << MemberName << DC
878       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
879     return ExprError();
880   }
881 
882   // Diagnose lookups that find only declarations from a non-base
883   // type.  This is possible for either qualified lookups (which may
884   // have been qualified with an unrelated type) or implicit member
885   // expressions (which were found with unqualified lookup and thus
886   // may have come from an enclosing scope).  Note that it's okay for
887   // lookup to find declarations from a non-base type as long as those
888   // aren't the ones picked by overload resolution.
889   if ((SS.isSet() || !BaseExpr ||
890        (isa<CXXThisExpr>(BaseExpr) &&
891         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
892       !SuppressQualifierCheck &&
893       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
894     return ExprError();
895 
896   // Construct an unresolved result if we in fact got an unresolved
897   // result.
898   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
899     // Suppress any lookup-related diagnostics; we'll do these when we
900     // pick a member.
901     R.suppressDiagnostics();
902 
903     UnresolvedMemberExpr *MemExpr
904       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
905                                      BaseExpr, BaseExprType,
906                                      IsArrow, OpLoc,
907                                      SS.getWithLocInContext(Context),
908                                      TemplateKWLoc, MemberNameInfo,
909                                      TemplateArgs, R.begin(), R.end());
910 
911     return Owned(MemExpr);
912   }
913 
914   assert(R.isSingleResult());
915   DeclAccessPair FoundDecl = R.begin().getPair();
916   NamedDecl *MemberDecl = R.getFoundDecl();
917 
918   // FIXME: diagnose the presence of template arguments now.
919 
920   // If the decl being referenced had an error, return an error for this
921   // sub-expr without emitting another error, in order to avoid cascading
922   // error cases.
923   if (MemberDecl->isInvalidDecl())
924     return ExprError();
925 
926   // Handle the implicit-member-access case.
927   if (!BaseExpr) {
928     // If this is not an instance member, convert to a non-member access.
929     if (!MemberDecl->isCXXInstanceMember())
930       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
931 
932     SourceLocation Loc = R.getNameLoc();
933     if (SS.getRange().isValid())
934       Loc = SS.getRange().getBegin();
935     CheckCXXThisCapture(Loc);
936     BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
937   }
938 
939   bool ShouldCheckUse = true;
940   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
941     // Don't diagnose the use of a virtual member function unless it's
942     // explicitly qualified.
943     if (MD->isVirtual() && !SS.isSet())
944       ShouldCheckUse = false;
945   }
946 
947   // Check the use of this member.
948   if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
949     Owned(BaseExpr);
950     return ExprError();
951   }
952 
953   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
954     return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
955                                    SS, FD, FoundDecl, MemberNameInfo);
956 
957   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
958     // We may have found a field within an anonymous union or struct
959     // (C++ [class.union]).
960     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
961                                                     BaseExpr, OpLoc);
962 
963   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
964     return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
965                                  TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
966                                  Var->getType().getNonReferenceType(),
967                                  VK_LValue, OK_Ordinary));
968   }
969 
970   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
971     ExprValueKind valueKind;
972     QualType type;
973     if (MemberFn->isInstance()) {
974       valueKind = VK_RValue;
975       type = Context.BoundMemberTy;
976     } else {
977       valueKind = VK_LValue;
978       type = MemberFn->getType();
979     }
980 
981     return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
982                                  TemplateKWLoc, MemberFn, FoundDecl,
983                                  MemberNameInfo, type, valueKind,
984                                  OK_Ordinary));
985   }
986   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
987 
988   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
989     return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
990                                  TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
991                                  Enum->getType(), VK_RValue, OK_Ordinary));
992   }
993 
994   Owned(BaseExpr);
995 
996   // We found something that we didn't expect. Complain.
997   if (isa<TypeDecl>(MemberDecl))
998     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
999       << MemberName << BaseType << int(IsArrow);
1000   else
1001     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1002       << MemberName << BaseType << int(IsArrow);
1003 
1004   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1005     << MemberName;
1006   R.suppressDiagnostics();
1007   return ExprError();
1008 }
1009 
1010 /// Given that normal member access failed on the given expression,
1011 /// and given that the expression's type involves builtin-id or
1012 /// builtin-Class, decide whether substituting in the redefinition
1013 /// types would be profitable.  The redefinition type is whatever
1014 /// this translation unit tried to typedef to id/Class;  we store
1015 /// it to the side and then re-use it in places like this.
ShouldTryAgainWithRedefinitionType(Sema & S,ExprResult & base)1016 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1017   const ObjCObjectPointerType *opty
1018     = base.get()->getType()->getAs<ObjCObjectPointerType>();
1019   if (!opty) return false;
1020 
1021   const ObjCObjectType *ty = opty->getObjectType();
1022 
1023   QualType redef;
1024   if (ty->isObjCId()) {
1025     redef = S.Context.getObjCIdRedefinitionType();
1026   } else if (ty->isObjCClass()) {
1027     redef = S.Context.getObjCClassRedefinitionType();
1028   } else {
1029     return false;
1030   }
1031 
1032   // Do the substitution as long as the redefinition type isn't just a
1033   // possibly-qualified pointer to builtin-id or builtin-Class again.
1034   opty = redef->getAs<ObjCObjectPointerType>();
1035   if (opty && !opty->getObjectType()->getInterface())
1036     return false;
1037 
1038   base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
1039   return true;
1040 }
1041 
isRecordType(QualType T)1042 static bool isRecordType(QualType T) {
1043   return T->isRecordType();
1044 }
isPointerToRecordType(QualType T)1045 static bool isPointerToRecordType(QualType T) {
1046   if (const PointerType *PT = T->getAs<PointerType>())
1047     return PT->getPointeeType()->isRecordType();
1048   return false;
1049 }
1050 
1051 /// Perform conversions on the LHS of a member access expression.
1052 ExprResult
PerformMemberExprBaseConversion(Expr * Base,bool IsArrow)1053 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1054   if (IsArrow && !Base->getType()->isFunctionType())
1055     return DefaultFunctionArrayLvalueConversion(Base);
1056 
1057   return CheckPlaceholderExpr(Base);
1058 }
1059 
1060 /// Look up the given member of the given non-type-dependent
1061 /// expression.  This can return in one of two ways:
1062 ///  * If it returns a sentinel null-but-valid result, the caller will
1063 ///    assume that lookup was performed and the results written into
1064 ///    the provided structure.  It will take over from there.
1065 ///  * Otherwise, the returned expression will be produced in place of
1066 ///    an ordinary member expression.
1067 ///
1068 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1069 /// fixed for ObjC++.
1070 ExprResult
LookupMemberExpr(LookupResult & R,ExprResult & BaseExpr,bool & IsArrow,SourceLocation OpLoc,CXXScopeSpec & SS,Decl * ObjCImpDecl,bool HasTemplateArgs)1071 Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
1072                        bool &IsArrow, SourceLocation OpLoc,
1073                        CXXScopeSpec &SS,
1074                        Decl *ObjCImpDecl, bool HasTemplateArgs) {
1075   assert(BaseExpr.get() && "no base expression");
1076 
1077   // Perform default conversions.
1078   BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow);
1079   if (BaseExpr.isInvalid())
1080     return ExprError();
1081 
1082   QualType BaseType = BaseExpr.get()->getType();
1083   assert(!BaseType->isDependentType());
1084 
1085   DeclarationName MemberName = R.getLookupName();
1086   SourceLocation MemberLoc = R.getNameLoc();
1087 
1088   // For later type-checking purposes, turn arrow accesses into dot
1089   // accesses.  The only access type we support that doesn't follow
1090   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1091   // and those never use arrows, so this is unaffected.
1092   if (IsArrow) {
1093     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1094       BaseType = Ptr->getPointeeType();
1095     else if (const ObjCObjectPointerType *Ptr
1096                = BaseType->getAs<ObjCObjectPointerType>())
1097       BaseType = Ptr->getPointeeType();
1098     else if (BaseType->isRecordType()) {
1099       // Recover from arrow accesses to records, e.g.:
1100       //   struct MyRecord foo;
1101       //   foo->bar
1102       // This is actually well-formed in C++ if MyRecord has an
1103       // overloaded operator->, but that should have been dealt with
1104       // by now.
1105       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1106         << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1107         << FixItHint::CreateReplacement(OpLoc, ".");
1108       IsArrow = false;
1109     } else if (BaseType->isFunctionType()) {
1110       goto fail;
1111     } else {
1112       Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1113         << BaseType << BaseExpr.get()->getSourceRange();
1114       return ExprError();
1115     }
1116   }
1117 
1118   // Handle field access to simple records.
1119   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1120     if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
1121                                  RTy, OpLoc, SS, HasTemplateArgs))
1122       return ExprError();
1123 
1124     // Returning valid-but-null is how we indicate to the caller that
1125     // the lookup result was filled in.
1126     return Owned((Expr*) 0);
1127   }
1128 
1129   // Handle ivar access to Objective-C objects.
1130   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1131     if (!SS.isEmpty() && !SS.isInvalid()) {
1132       Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1133         << 1 << SS.getScopeRep()
1134         << FixItHint::CreateRemoval(SS.getRange());
1135       SS.clear();
1136     }
1137 
1138     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1139 
1140     // There are three cases for the base type:
1141     //   - builtin id (qualified or unqualified)
1142     //   - builtin Class (qualified or unqualified)
1143     //   - an interface
1144     ObjCInterfaceDecl *IDecl = OTy->getInterface();
1145     if (!IDecl) {
1146       if (getLangOpts().ObjCAutoRefCount &&
1147           (OTy->isObjCId() || OTy->isObjCClass()))
1148         goto fail;
1149       // There's an implicit 'isa' ivar on all objects.
1150       // But we only actually find it this way on objects of type 'id',
1151       // apparently.
1152       if (OTy->isObjCId() && Member->isStr("isa")) {
1153         Diag(MemberLoc, diag::warn_objc_isa_use);
1154         return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
1155                                                Context.getObjCClassType()));
1156       }
1157 
1158       if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1159         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1160                                 ObjCImpDecl, HasTemplateArgs);
1161       goto fail;
1162     }
1163     else if (Member && Member->isStr("isa")) {
1164       // If an ivar is (1) the first ivar in a root class and (2) named `isa`,
1165       // then issue the same deprecated warning that id->isa gets.
1166       ObjCInterfaceDecl *ClassDeclared = 0;
1167       if (ObjCIvarDecl *IV =
1168             IDecl->lookupInstanceVariable(Member, ClassDeclared)) {
1169         if (!ClassDeclared->getSuperClass()
1170             && (*ClassDeclared->ivar_begin()) == IV) {
1171           Diag(MemberLoc, diag::warn_objc_isa_use);
1172           Diag(IV->getLocation(), diag::note_ivar_decl);
1173         }
1174       }
1175     }
1176 
1177     if (RequireCompleteType(OpLoc, BaseType, diag::err_typecheck_incomplete_tag,
1178                             BaseExpr.get()))
1179       return ExprError();
1180 
1181     ObjCInterfaceDecl *ClassDeclared = 0;
1182     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1183 
1184     if (!IV) {
1185       // Attempt to correct for typos in ivar names.
1186       DeclFilterCCC<ObjCIvarDecl> Validator;
1187       Validator.IsObjCIvarLookup = IsArrow;
1188       if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
1189                                                  LookupMemberName, NULL, NULL,
1190                                                  Validator, IDecl)) {
1191         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1192         Diag(R.getNameLoc(),
1193              diag::err_typecheck_member_reference_ivar_suggest)
1194           << IDecl->getDeclName() << MemberName << IV->getDeclName()
1195           << FixItHint::CreateReplacement(R.getNameLoc(),
1196                                           IV->getNameAsString());
1197         Diag(IV->getLocation(), diag::note_previous_decl)
1198           << IV->getDeclName();
1199 
1200         // Figure out the class that declares the ivar.
1201         assert(!ClassDeclared);
1202         Decl *D = cast<Decl>(IV->getDeclContext());
1203         if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1204           D = CAT->getClassInterface();
1205         ClassDeclared = cast<ObjCInterfaceDecl>(D);
1206       } else {
1207         if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1208           Diag(MemberLoc,
1209           diag::err_property_found_suggest)
1210           << Member << BaseExpr.get()->getType()
1211           << FixItHint::CreateReplacement(OpLoc, ".");
1212           return ExprError();
1213         }
1214 
1215         Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1216           << IDecl->getDeclName() << MemberName
1217           << BaseExpr.get()->getSourceRange();
1218         return ExprError();
1219       }
1220     }
1221 
1222     assert(ClassDeclared);
1223 
1224     // If the decl being referenced had an error, return an error for this
1225     // sub-expr without emitting another error, in order to avoid cascading
1226     // error cases.
1227     if (IV->isInvalidDecl())
1228       return ExprError();
1229 
1230     // Check whether we can reference this field.
1231     if (DiagnoseUseOfDecl(IV, MemberLoc))
1232       return ExprError();
1233     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1234         IV->getAccessControl() != ObjCIvarDecl::Package) {
1235       ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1236       if (ObjCMethodDecl *MD = getCurMethodDecl())
1237         ClassOfMethodDecl =  MD->getClassInterface();
1238       else if (ObjCImpDecl && getCurFunctionDecl()) {
1239         // Case of a c-function declared inside an objc implementation.
1240         // FIXME: For a c-style function nested inside an objc implementation
1241         // class, there is no implementation context available, so we pass
1242         // down the context as argument to this routine. Ideally, this context
1243         // need be passed down in the AST node and somehow calculated from the
1244         // AST for a function decl.
1245         if (ObjCImplementationDecl *IMPD =
1246               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1247           ClassOfMethodDecl = IMPD->getClassInterface();
1248         else if (ObjCCategoryImplDecl* CatImplClass =
1249                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1250           ClassOfMethodDecl = CatImplClass->getClassInterface();
1251       }
1252       if (!getLangOpts().DebuggerSupport) {
1253         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1254           if (!declaresSameEntity(ClassDeclared, IDecl) ||
1255               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1256             Diag(MemberLoc, diag::error_private_ivar_access)
1257               << IV->getDeclName();
1258         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1259           // @protected
1260           Diag(MemberLoc, diag::error_protected_ivar_access)
1261             << IV->getDeclName();
1262       }
1263     }
1264     bool warn = true;
1265     if (getLangOpts().ObjCAutoRefCount) {
1266       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1267       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1268         if (UO->getOpcode() == UO_Deref)
1269           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1270 
1271       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1272         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1273           Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1274           warn = false;
1275         }
1276     }
1277     if (warn) {
1278       if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1279         ObjCMethodFamily MF = MD->getMethodFamily();
1280         warn = (MF != OMF_init && MF != OMF_dealloc &&
1281                 MF != OMF_finalize &&
1282                 !IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1283       }
1284       if (warn)
1285         Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1286     }
1287 
1288     ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1289                                                             MemberLoc,
1290                                                             BaseExpr.take(),
1291                                                             IsArrow);
1292 
1293     if (getLangOpts().ObjCAutoRefCount) {
1294       if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1295         DiagnosticsEngine::Level Level =
1296           Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1297                                    MemberLoc);
1298         if (Level != DiagnosticsEngine::Ignored)
1299           getCurFunction()->recordUseOfWeak(Result);
1300       }
1301     }
1302 
1303     return Owned(Result);
1304   }
1305 
1306   // Objective-C property access.
1307   const ObjCObjectPointerType *OPT;
1308   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1309     if (!SS.isEmpty() && !SS.isInvalid()) {
1310       Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1311         << 0 << SS.getScopeRep()
1312         << FixItHint::CreateRemoval(SS.getRange());
1313       SS.clear();
1314     }
1315 
1316     // This actually uses the base as an r-value.
1317     BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1318     if (BaseExpr.isInvalid())
1319       return ExprError();
1320 
1321     assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
1322 
1323     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1324 
1325     const ObjCObjectType *OT = OPT->getObjectType();
1326 
1327     // id, with and without qualifiers.
1328     if (OT->isObjCId()) {
1329       // Check protocols on qualified interfaces.
1330       Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1331       if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
1332         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1333           // Check the use of this declaration
1334           if (DiagnoseUseOfDecl(PD, MemberLoc))
1335             return ExprError();
1336 
1337           return Owned(new (Context) ObjCPropertyRefExpr(PD,
1338                                                          Context.PseudoObjectTy,
1339                                                          VK_LValue,
1340                                                          OK_ObjCProperty,
1341                                                          MemberLoc,
1342                                                          BaseExpr.take()));
1343         }
1344 
1345         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1346           // Check the use of this method.
1347           if (DiagnoseUseOfDecl(OMD, MemberLoc))
1348             return ExprError();
1349           Selector SetterSel =
1350             SelectorTable::constructSetterName(PP.getIdentifierTable(),
1351                                                PP.getSelectorTable(), Member);
1352           ObjCMethodDecl *SMD = 0;
1353           if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
1354                                                      SetterSel, Context))
1355             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1356 
1357           return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD,
1358                                                          Context.PseudoObjectTy,
1359                                                          VK_LValue, OK_ObjCProperty,
1360                                                          MemberLoc, BaseExpr.take()));
1361         }
1362       }
1363       // Use of id.member can only be for a property reference. Do not
1364       // use the 'id' redefinition in this case.
1365       if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1366         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1367                                 ObjCImpDecl, HasTemplateArgs);
1368 
1369       return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1370                          << MemberName << BaseType);
1371     }
1372 
1373     // 'Class', unqualified only.
1374     if (OT->isObjCClass()) {
1375       // Only works in a method declaration (??!).
1376       ObjCMethodDecl *MD = getCurMethodDecl();
1377       if (!MD) {
1378         if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1379           return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1380                                   ObjCImpDecl, HasTemplateArgs);
1381 
1382         goto fail;
1383       }
1384 
1385       // Also must look for a getter name which uses property syntax.
1386       Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1387       ObjCInterfaceDecl *IFace = MD->getClassInterface();
1388       ObjCMethodDecl *Getter;
1389       if ((Getter = IFace->lookupClassMethod(Sel))) {
1390         // Check the use of this method.
1391         if (DiagnoseUseOfDecl(Getter, MemberLoc))
1392           return ExprError();
1393       } else
1394         Getter = IFace->lookupPrivateMethod(Sel, false);
1395       // If we found a getter then this may be a valid dot-reference, we
1396       // will look for the matching setter, in case it is needed.
1397       Selector SetterSel =
1398         SelectorTable::constructSetterName(PP.getIdentifierTable(),
1399                                            PP.getSelectorTable(), Member);
1400       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1401       if (!Setter) {
1402         // If this reference is in an @implementation, also check for 'private'
1403         // methods.
1404         Setter = IFace->lookupPrivateMethod(SetterSel, false);
1405       }
1406 
1407       if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1408         return ExprError();
1409 
1410       if (Getter || Setter) {
1411         return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1412                                                        Context.PseudoObjectTy,
1413                                                        VK_LValue, OK_ObjCProperty,
1414                                                        MemberLoc, BaseExpr.take()));
1415       }
1416 
1417       if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1418         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1419                                 ObjCImpDecl, HasTemplateArgs);
1420 
1421       return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1422                          << MemberName << BaseType);
1423     }
1424 
1425     // Normal property access.
1426     return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
1427                                      MemberName, MemberLoc,
1428                                      SourceLocation(), QualType(), false);
1429   }
1430 
1431   // Handle 'field access' to vectors, such as 'V.xx'.
1432   if (BaseType->isExtVectorType()) {
1433     // FIXME: this expr should store IsArrow.
1434     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1435     ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1436     QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
1437                                            Member, MemberLoc);
1438     if (ret.isNull())
1439       return ExprError();
1440 
1441     return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
1442                                                     *Member, MemberLoc));
1443   }
1444 
1445   // Adjust builtin-sel to the appropriate redefinition type if that's
1446   // not just a pointer to builtin-sel again.
1447   if (IsArrow &&
1448       BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1449       !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1450     BaseExpr = ImpCastExprToType(BaseExpr.take(),
1451                                  Context.getObjCSelRedefinitionType(),
1452                                  CK_BitCast);
1453     return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1454                             ObjCImpDecl, HasTemplateArgs);
1455   }
1456 
1457   // Failure cases.
1458  fail:
1459 
1460   // Recover from dot accesses to pointers, e.g.:
1461   //   type *foo;
1462   //   foo.bar
1463   // This is actually well-formed in two cases:
1464   //   - 'type' is an Objective C type
1465   //   - 'bar' is a pseudo-destructor name which happens to refer to
1466   //     the appropriate pointer type
1467   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1468     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1469         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1470       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1471         << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1472           << FixItHint::CreateReplacement(OpLoc, "->");
1473 
1474       // Recurse as an -> access.
1475       IsArrow = true;
1476       return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1477                               ObjCImpDecl, HasTemplateArgs);
1478     }
1479   }
1480 
1481   // If the user is trying to apply -> or . to a function name, it's probably
1482   // because they forgot parentheses to call that function.
1483   if (tryToRecoverWithCall(BaseExpr,
1484                            PDiag(diag::err_member_reference_needs_call),
1485                            /*complain*/ false,
1486                            IsArrow ? &isPointerToRecordType : &isRecordType)) {
1487     if (BaseExpr.isInvalid())
1488       return ExprError();
1489     BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
1490     return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1491                             ObjCImpDecl, HasTemplateArgs);
1492   }
1493 
1494   Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1495     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1496 
1497   return ExprError();
1498 }
1499 
1500 /// The main callback when the parser finds something like
1501 ///   expression . [nested-name-specifier] identifier
1502 ///   expression -> [nested-name-specifier] identifier
1503 /// where 'identifier' encompasses a fairly broad spectrum of
1504 /// possibilities, including destructor and operator references.
1505 ///
1506 /// \param OpKind either tok::arrow or tok::period
1507 /// \param HasTrailingLParen whether the next token is '(', which
1508 ///   is used to diagnose mis-uses of special members that can
1509 ///   only be called
1510 /// \param ObjCImpDecl the current Objective-C \@implementation
1511 ///   decl; this is an ugly hack around the fact that Objective-C
1512 ///   \@implementations aren't properly put in the context chain
ActOnMemberAccessExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,Decl * ObjCImpDecl,bool HasTrailingLParen)1513 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1514                                        SourceLocation OpLoc,
1515                                        tok::TokenKind OpKind,
1516                                        CXXScopeSpec &SS,
1517                                        SourceLocation TemplateKWLoc,
1518                                        UnqualifiedId &Id,
1519                                        Decl *ObjCImpDecl,
1520                                        bool HasTrailingLParen) {
1521   if (SS.isSet() && SS.isInvalid())
1522     return ExprError();
1523 
1524   // Warn about the explicit constructor calls Microsoft extension.
1525   if (getLangOpts().MicrosoftExt &&
1526       Id.getKind() == UnqualifiedId::IK_ConstructorName)
1527     Diag(Id.getSourceRange().getBegin(),
1528          diag::ext_ms_explicit_constructor_call);
1529 
1530   TemplateArgumentListInfo TemplateArgsBuffer;
1531 
1532   // Decompose the name into its component parts.
1533   DeclarationNameInfo NameInfo;
1534   const TemplateArgumentListInfo *TemplateArgs;
1535   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1536                          NameInfo, TemplateArgs);
1537 
1538   DeclarationName Name = NameInfo.getName();
1539   bool IsArrow = (OpKind == tok::arrow);
1540 
1541   NamedDecl *FirstQualifierInScope
1542     = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
1543                        static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
1544 
1545   // This is a postfix expression, so get rid of ParenListExprs.
1546   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1547   if (Result.isInvalid()) return ExprError();
1548   Base = Result.take();
1549 
1550   if (Base->getType()->isDependentType() || Name.isDependentName() ||
1551       isDependentScopeSpecifier(SS)) {
1552     Result = ActOnDependentMemberExpr(Base, Base->getType(),
1553                                       IsArrow, OpLoc,
1554                                       SS, TemplateKWLoc, FirstQualifierInScope,
1555                                       NameInfo, TemplateArgs);
1556   } else {
1557     LookupResult R(*this, NameInfo, LookupMemberName);
1558     ExprResult BaseResult = Owned(Base);
1559     Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
1560                               SS, ObjCImpDecl, TemplateArgs != 0);
1561     if (BaseResult.isInvalid())
1562       return ExprError();
1563     Base = BaseResult.take();
1564 
1565     if (Result.isInvalid()) {
1566       Owned(Base);
1567       return ExprError();
1568     }
1569 
1570     if (Result.get()) {
1571       // The only way a reference to a destructor can be used is to
1572       // immediately call it, which falls into this case.  If the
1573       // next token is not a '(', produce a diagnostic and build the
1574       // call now.
1575       if (!HasTrailingLParen &&
1576           Id.getKind() == UnqualifiedId::IK_DestructorName)
1577         return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
1578 
1579       return Result;
1580     }
1581 
1582     ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl, HasTrailingLParen};
1583     Result = BuildMemberReferenceExpr(Base, Base->getType(),
1584                                       OpLoc, IsArrow, SS, TemplateKWLoc,
1585                                       FirstQualifierInScope, R, TemplateArgs,
1586                                       false, &ExtraArgs);
1587   }
1588 
1589   return Result;
1590 }
1591 
1592 static ExprResult
BuildFieldReferenceExpr(Sema & S,Expr * BaseExpr,bool IsArrow,const CXXScopeSpec & SS,FieldDecl * Field,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo)1593 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1594                         const CXXScopeSpec &SS, FieldDecl *Field,
1595                         DeclAccessPair FoundDecl,
1596                         const DeclarationNameInfo &MemberNameInfo) {
1597   // x.a is an l-value if 'a' has a reference type. Otherwise:
1598   // x.a is an l-value/x-value/pr-value if the base is (and note
1599   //   that *x is always an l-value), except that if the base isn't
1600   //   an ordinary object then we must have an rvalue.
1601   ExprValueKind VK = VK_LValue;
1602   ExprObjectKind OK = OK_Ordinary;
1603   if (!IsArrow) {
1604     if (BaseExpr->getObjectKind() == OK_Ordinary)
1605       VK = BaseExpr->getValueKind();
1606     else
1607       VK = VK_RValue;
1608   }
1609   if (VK != VK_RValue && Field->isBitField())
1610     OK = OK_BitField;
1611 
1612   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1613   QualType MemberType = Field->getType();
1614   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1615     MemberType = Ref->getPointeeType();
1616     VK = VK_LValue;
1617   } else {
1618     QualType BaseType = BaseExpr->getType();
1619     if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1620 
1621     Qualifiers BaseQuals = BaseType.getQualifiers();
1622 
1623     // GC attributes are never picked up by members.
1624     BaseQuals.removeObjCGCAttr();
1625 
1626     // CVR attributes from the base are picked up by members,
1627     // except that 'mutable' members don't pick up 'const'.
1628     if (Field->isMutable()) BaseQuals.removeConst();
1629 
1630     Qualifiers MemberQuals
1631     = S.Context.getCanonicalType(MemberType).getQualifiers();
1632 
1633     assert(!MemberQuals.hasAddressSpace());
1634 
1635 
1636     Qualifiers Combined = BaseQuals + MemberQuals;
1637     if (Combined != MemberQuals)
1638       MemberType = S.Context.getQualifiedType(MemberType, Combined);
1639   }
1640 
1641   S.UnusedPrivateFields.remove(Field);
1642 
1643   ExprResult Base =
1644   S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1645                                   FoundDecl, Field);
1646   if (Base.isInvalid())
1647     return ExprError();
1648   return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS,
1649                                  /*TemplateKWLoc=*/SourceLocation(),
1650                                  Field, FoundDecl, MemberNameInfo,
1651                                  MemberType, VK, OK));
1652 }
1653 
1654 /// Builds an implicit member access expression.  The current context
1655 /// is known to be an instance method, and the given unqualified lookup
1656 /// set is known to contain only instance members, at least one of which
1657 /// is from an appropriate type.
1658 ExprResult
BuildImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool IsKnownInstance)1659 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1660                               SourceLocation TemplateKWLoc,
1661                               LookupResult &R,
1662                               const TemplateArgumentListInfo *TemplateArgs,
1663                               bool IsKnownInstance) {
1664   assert(!R.empty() && !R.isAmbiguous());
1665 
1666   SourceLocation loc = R.getNameLoc();
1667 
1668   // We may have found a field within an anonymous union or struct
1669   // (C++ [class.union]).
1670   // FIXME: template-ids inside anonymous structs?
1671   if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
1672     return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
1673 
1674   // If this is known to be an instance access, go ahead and build an
1675   // implicit 'this' expression now.
1676   // 'this' expression now.
1677   QualType ThisTy = getCurrentThisType();
1678   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1679 
1680   Expr *baseExpr = 0; // null signifies implicit access
1681   if (IsKnownInstance) {
1682     SourceLocation Loc = R.getNameLoc();
1683     if (SS.getRange().isValid())
1684       Loc = SS.getRange().getBegin();
1685     CheckCXXThisCapture(Loc);
1686     baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1687   }
1688 
1689   return BuildMemberReferenceExpr(baseExpr, ThisTy,
1690                                   /*OpLoc*/ SourceLocation(),
1691                                   /*IsArrow*/ true,
1692                                   SS, TemplateKWLoc,
1693                                   /*FirstQualifierInScope*/ 0,
1694                                   R, TemplateArgs);
1695 }
1696