1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis member access expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23
24 using namespace clang;
25 using namespace sema;
26
27 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
BaseIsNotInSet(const CXXRecordDecl * Base,void * BasesPtr)28 static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
29 const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
30 return !Bases.count(Base->getCanonicalDecl());
31 }
32
33 /// Determines if the given class is provably not derived from all of
34 /// the prospective base classes.
isProvablyNotDerivedFrom(Sema & SemaRef,CXXRecordDecl * Record,const BaseSet & Bases)35 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
36 const BaseSet &Bases) {
37 void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
38 return BaseIsNotInSet(Record, BasesPtr) &&
39 Record->forallBases(BaseIsNotInSet, BasesPtr);
40 }
41
42 enum IMAKind {
43 /// The reference is definitely not an instance member access.
44 IMA_Static,
45
46 /// The reference may be an implicit instance member access.
47 IMA_Mixed,
48
49 /// The reference may be to an instance member, but it might be invalid if
50 /// so, because the context is not an instance method.
51 IMA_Mixed_StaticContext,
52
53 /// The reference may be to an instance member, but it is invalid if
54 /// so, because the context is from an unrelated class.
55 IMA_Mixed_Unrelated,
56
57 /// The reference is definitely an implicit instance member access.
58 IMA_Instance,
59
60 /// The reference may be to an unresolved using declaration.
61 IMA_Unresolved,
62
63 /// The reference may be to an unresolved using declaration and the
64 /// context is not an instance method.
65 IMA_Unresolved_StaticContext,
66
67 // The reference refers to a field which is not a member of the containing
68 // class, which is allowed because we're in C++11 mode and the context is
69 // unevaluated.
70 IMA_Field_Uneval_Context,
71
72 /// All possible referrents are instance members and the current
73 /// context is not an instance method.
74 IMA_Error_StaticContext,
75
76 /// All possible referrents are instance members of an unrelated
77 /// class.
78 IMA_Error_Unrelated
79 };
80
81 /// The given lookup names class member(s) and is not being used for
82 /// an address-of-member expression. Classify the type of access
83 /// according to whether it's possible that this reference names an
84 /// instance member. This is best-effort in dependent contexts; it is okay to
85 /// conservatively answer "yes", in which case some errors will simply
86 /// not be caught until template-instantiation.
ClassifyImplicitMemberAccess(Sema & SemaRef,Scope * CurScope,const LookupResult & R)87 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
88 Scope *CurScope,
89 const LookupResult &R) {
90 assert(!R.empty() && (*R.begin())->isCXXClassMember());
91
92 DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
93
94 bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
95 (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
96
97 if (R.isUnresolvableResult())
98 return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
99
100 // Collect all the declaring classes of instance members we find.
101 bool hasNonInstance = false;
102 bool isField = false;
103 BaseSet Classes;
104 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
105 NamedDecl *D = *I;
106
107 if (D->isCXXInstanceMember()) {
108 if (dyn_cast<FieldDecl>(D) || dyn_cast<IndirectFieldDecl>(D))
109 isField = true;
110
111 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
112 Classes.insert(R->getCanonicalDecl());
113 }
114 else
115 hasNonInstance = true;
116 }
117
118 // If we didn't find any instance members, it can't be an implicit
119 // member reference.
120 if (Classes.empty())
121 return IMA_Static;
122
123 bool IsCXX11UnevaluatedField = false;
124 if (SemaRef.getLangOpts().CPlusPlus11 && isField) {
125 // C++11 [expr.prim.general]p12:
126 // An id-expression that denotes a non-static data member or non-static
127 // member function of a class can only be used:
128 // (...)
129 // - if that id-expression denotes a non-static data member and it
130 // appears in an unevaluated operand.
131 const Sema::ExpressionEvaluationContextRecord& record
132 = SemaRef.ExprEvalContexts.back();
133 if (record.Context == Sema::Unevaluated)
134 IsCXX11UnevaluatedField = true;
135 }
136
137 // If the current context is not an instance method, it can't be
138 // an implicit member reference.
139 if (isStaticContext) {
140 if (hasNonInstance)
141 return IMA_Mixed_StaticContext;
142
143 return IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context
144 : IMA_Error_StaticContext;
145 }
146
147 CXXRecordDecl *contextClass;
148 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
149 contextClass = MD->getParent()->getCanonicalDecl();
150 else
151 contextClass = cast<CXXRecordDecl>(DC);
152
153 // [class.mfct.non-static]p3:
154 // ...is used in the body of a non-static member function of class X,
155 // if name lookup (3.4.1) resolves the name in the id-expression to a
156 // non-static non-type member of some class C [...]
157 // ...if C is not X or a base class of X, the class member access expression
158 // is ill-formed.
159 if (R.getNamingClass() &&
160 contextClass->getCanonicalDecl() !=
161 R.getNamingClass()->getCanonicalDecl()) {
162 // If the naming class is not the current context, this was a qualified
163 // member name lookup, and it's sufficient to check that we have the naming
164 // class as a base class.
165 Classes.clear();
166 Classes.insert(R.getNamingClass()->getCanonicalDecl());
167 }
168
169 // If we can prove that the current context is unrelated to all the
170 // declaring classes, it can't be an implicit member reference (in
171 // which case it's an error if any of those members are selected).
172 if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
173 return hasNonInstance ? IMA_Mixed_Unrelated :
174 IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
175 IMA_Error_Unrelated;
176
177 return (hasNonInstance ? IMA_Mixed : IMA_Instance);
178 }
179
180 /// Diagnose a reference to a field with no object available.
diagnoseInstanceReference(Sema & SemaRef,const CXXScopeSpec & SS,NamedDecl * Rep,const DeclarationNameInfo & nameInfo)181 static void diagnoseInstanceReference(Sema &SemaRef,
182 const CXXScopeSpec &SS,
183 NamedDecl *Rep,
184 const DeclarationNameInfo &nameInfo) {
185 SourceLocation Loc = nameInfo.getLoc();
186 SourceRange Range(Loc);
187 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
188
189 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
190 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
191 CXXRecordDecl *ContextClass = Method ? Method->getParent() : 0;
192 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
193
194 bool InStaticMethod = Method && Method->isStatic();
195 bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
196
197 if (IsField && InStaticMethod)
198 // "invalid use of member 'x' in static member function"
199 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
200 << Range << nameInfo.getName();
201 else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
202 !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
203 // Unqualified lookup in a non-static member function found a member of an
204 // enclosing class.
205 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
206 << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
207 else if (IsField)
208 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
209 << nameInfo.getName() << Range;
210 else
211 SemaRef.Diag(Loc, diag::err_member_call_without_object)
212 << Range;
213 }
214
215 /// Builds an expression which might be an implicit member expression.
216 ExprResult
BuildPossibleImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)217 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
218 SourceLocation TemplateKWLoc,
219 LookupResult &R,
220 const TemplateArgumentListInfo *TemplateArgs) {
221 switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
222 case IMA_Instance:
223 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
224
225 case IMA_Mixed:
226 case IMA_Mixed_Unrelated:
227 case IMA_Unresolved:
228 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
229
230 case IMA_Field_Uneval_Context:
231 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
232 << R.getLookupNameInfo().getName();
233 // Fall through.
234 case IMA_Static:
235 case IMA_Mixed_StaticContext:
236 case IMA_Unresolved_StaticContext:
237 if (TemplateArgs || TemplateKWLoc.isValid())
238 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
239 return BuildDeclarationNameExpr(SS, R, false);
240
241 case IMA_Error_StaticContext:
242 case IMA_Error_Unrelated:
243 diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
244 R.getLookupNameInfo());
245 return ExprError();
246 }
247
248 llvm_unreachable("unexpected instance member access kind");
249 }
250
251 /// Determine whether input char is from rgba component set.
252 static bool
IsRGBA(char c)253 IsRGBA(char c) {
254 switch (c) {
255 case 'r':
256 case 'g':
257 case 'b':
258 case 'a':
259 return true;
260 default:
261 return false;
262 }
263 }
264
265 /// Check an ext-vector component access expression.
266 ///
267 /// VK should be set in advance to the value kind of the base
268 /// expression.
269 static QualType
CheckExtVectorComponent(Sema & S,QualType baseType,ExprValueKind & VK,SourceLocation OpLoc,const IdentifierInfo * CompName,SourceLocation CompLoc)270 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
271 SourceLocation OpLoc, const IdentifierInfo *CompName,
272 SourceLocation CompLoc) {
273 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
274 // see FIXME there.
275 //
276 // FIXME: This logic can be greatly simplified by splitting it along
277 // halving/not halving and reworking the component checking.
278 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
279
280 // The vector accessor can't exceed the number of elements.
281 const char *compStr = CompName->getNameStart();
282
283 // This flag determines whether or not the component is one of the four
284 // special names that indicate a subset of exactly half the elements are
285 // to be selected.
286 bool HalvingSwizzle = false;
287
288 // This flag determines whether or not CompName has an 's' char prefix,
289 // indicating that it is a string of hex values to be used as vector indices.
290 bool HexSwizzle = *compStr == 's' || *compStr == 'S';
291
292 bool HasRepeated = false;
293 bool HasIndex[16] = {};
294
295 int Idx;
296
297 // Check that we've found one of the special components, or that the component
298 // names must come from the same set.
299 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
300 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
301 HalvingSwizzle = true;
302 } else if (!HexSwizzle &&
303 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
304 bool HasRGBA = IsRGBA(*compStr);
305 do {
306 // If we mix/match rgba with xyzw, break to signal that we encountered
307 // an illegal name.
308 if (HasRGBA != IsRGBA(*compStr))
309 break;
310 if (HasIndex[Idx]) HasRepeated = true;
311 HasIndex[Idx] = true;
312 compStr++;
313 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
314 } else {
315 if (HexSwizzle) compStr++;
316 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
317 if (HasIndex[Idx]) HasRepeated = true;
318 HasIndex[Idx] = true;
319 compStr++;
320 }
321 }
322
323 if (!HalvingSwizzle && *compStr) {
324 // We didn't get to the end of the string. This means the component names
325 // didn't come from the same set *or* we encountered an illegal name.
326 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
327 << StringRef(compStr, 1) << SourceRange(CompLoc);
328 return QualType();
329 }
330
331 // Ensure no component accessor exceeds the width of the vector type it
332 // operates on.
333 if (!HalvingSwizzle) {
334 compStr = CompName->getNameStart();
335
336 if (HexSwizzle)
337 compStr++;
338
339 while (*compStr) {
340 if (!vecType->isAccessorWithinNumElements(*compStr++)) {
341 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
342 << baseType << SourceRange(CompLoc);
343 return QualType();
344 }
345 }
346 }
347
348 // The component accessor looks fine - now we need to compute the actual type.
349 // The vector type is implied by the component accessor. For example,
350 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
351 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
352 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
353 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
354 : CompName->getLength();
355 if (HexSwizzle)
356 CompSize--;
357
358 if (CompSize == 1)
359 return vecType->getElementType();
360
361 if (HasRepeated) VK = VK_RValue;
362
363 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
364 // Now look up the TypeDefDecl from the vector type. Without this,
365 // diagostics look bad. We want extended vector types to appear built-in.
366 for (Sema::ExtVectorDeclsType::iterator
367 I = S.ExtVectorDecls.begin(S.getExternalSource()),
368 E = S.ExtVectorDecls.end();
369 I != E; ++I) {
370 if ((*I)->getUnderlyingType() == VT)
371 return S.Context.getTypedefType(*I);
372 }
373
374 return VT; // should never get here (a typedef type should always be found).
375 }
376
FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl * PDecl,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)377 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
378 IdentifierInfo *Member,
379 const Selector &Sel,
380 ASTContext &Context) {
381 if (Member)
382 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
383 return PD;
384 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
385 return OMD;
386
387 for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
388 E = PDecl->protocol_end(); I != E; ++I) {
389 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
390 Context))
391 return D;
392 }
393 return 0;
394 }
395
FindGetterSetterNameDecl(const ObjCObjectPointerType * QIdTy,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)396 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
397 IdentifierInfo *Member,
398 const Selector &Sel,
399 ASTContext &Context) {
400 // Check protocols on qualified interfaces.
401 Decl *GDecl = 0;
402 for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
403 E = QIdTy->qual_end(); I != E; ++I) {
404 if (Member)
405 if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
406 GDecl = PD;
407 break;
408 }
409 // Also must look for a getter or setter name which uses property syntax.
410 if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
411 GDecl = OMD;
412 break;
413 }
414 }
415 if (!GDecl) {
416 for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
417 E = QIdTy->qual_end(); I != E; ++I) {
418 // Search in the protocol-qualifier list of current protocol.
419 GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
420 Context);
421 if (GDecl)
422 return GDecl;
423 }
424 }
425 return GDecl;
426 }
427
428 ExprResult
ActOnDependentMemberExpr(Expr * BaseExpr,QualType BaseType,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)429 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
430 bool IsArrow, SourceLocation OpLoc,
431 const CXXScopeSpec &SS,
432 SourceLocation TemplateKWLoc,
433 NamedDecl *FirstQualifierInScope,
434 const DeclarationNameInfo &NameInfo,
435 const TemplateArgumentListInfo *TemplateArgs) {
436 // Even in dependent contexts, try to diagnose base expressions with
437 // obviously wrong types, e.g.:
438 //
439 // T* t;
440 // t.f;
441 //
442 // In Obj-C++, however, the above expression is valid, since it could be
443 // accessing the 'f' property if T is an Obj-C interface. The extra check
444 // allows this, while still reporting an error if T is a struct pointer.
445 if (!IsArrow) {
446 const PointerType *PT = BaseType->getAs<PointerType>();
447 if (PT && (!getLangOpts().ObjC1 ||
448 PT->getPointeeType()->isRecordType())) {
449 assert(BaseExpr && "cannot happen with implicit member accesses");
450 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
451 << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
452 return ExprError();
453 }
454 }
455
456 assert(BaseType->isDependentType() ||
457 NameInfo.getName().isDependentName() ||
458 isDependentScopeSpecifier(SS));
459
460 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
461 // must have pointer type, and the accessed type is the pointee.
462 return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
463 IsArrow, OpLoc,
464 SS.getWithLocInContext(Context),
465 TemplateKWLoc,
466 FirstQualifierInScope,
467 NameInfo, TemplateArgs));
468 }
469
470 /// We know that the given qualified member reference points only to
471 /// declarations which do not belong to the static type of the base
472 /// expression. Diagnose the problem.
DiagnoseQualifiedMemberReference(Sema & SemaRef,Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,NamedDecl * rep,const DeclarationNameInfo & nameInfo)473 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
474 Expr *BaseExpr,
475 QualType BaseType,
476 const CXXScopeSpec &SS,
477 NamedDecl *rep,
478 const DeclarationNameInfo &nameInfo) {
479 // If this is an implicit member access, use a different set of
480 // diagnostics.
481 if (!BaseExpr)
482 return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
483
484 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
485 << SS.getRange() << rep << BaseType;
486 }
487
488 // Check whether the declarations we found through a nested-name
489 // specifier in a member expression are actually members of the base
490 // type. The restriction here is:
491 //
492 // C++ [expr.ref]p2:
493 // ... In these cases, the id-expression shall name a
494 // member of the class or of one of its base classes.
495 //
496 // So it's perfectly legitimate for the nested-name specifier to name
497 // an unrelated class, and for us to find an overload set including
498 // decls from classes which are not superclasses, as long as the decl
499 // we actually pick through overload resolution is from a superclass.
CheckQualifiedMemberReference(Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,const LookupResult & R)500 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
501 QualType BaseType,
502 const CXXScopeSpec &SS,
503 const LookupResult &R) {
504 CXXRecordDecl *BaseRecord =
505 cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
506 if (!BaseRecord) {
507 // We can't check this yet because the base type is still
508 // dependent.
509 assert(BaseType->isDependentType());
510 return false;
511 }
512
513 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
514 // If this is an implicit member reference and we find a
515 // non-instance member, it's not an error.
516 if (!BaseExpr && !(*I)->isCXXInstanceMember())
517 return false;
518
519 // Note that we use the DC of the decl, not the underlying decl.
520 DeclContext *DC = (*I)->getDeclContext();
521 while (DC->isTransparentContext())
522 DC = DC->getParent();
523
524 if (!DC->isRecord())
525 continue;
526
527 CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
528 if (BaseRecord->getCanonicalDecl() == MemberRecord ||
529 !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
530 return false;
531 }
532
533 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
534 R.getRepresentativeDecl(),
535 R.getLookupNameInfo());
536 return true;
537 }
538
539 namespace {
540
541 // Callback to only accept typo corrections that are either a ValueDecl or a
542 // FunctionTemplateDecl.
543 class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
544 public:
ValidateCandidate(const TypoCorrection & candidate)545 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
546 NamedDecl *ND = candidate.getCorrectionDecl();
547 return ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND));
548 }
549 };
550
551 }
552
553 static bool
LookupMemberExprInRecord(Sema & SemaRef,LookupResult & R,SourceRange BaseRange,const RecordType * RTy,SourceLocation OpLoc,CXXScopeSpec & SS,bool HasTemplateArgs)554 LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
555 SourceRange BaseRange, const RecordType *RTy,
556 SourceLocation OpLoc, CXXScopeSpec &SS,
557 bool HasTemplateArgs) {
558 RecordDecl *RDecl = RTy->getDecl();
559 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
560 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
561 diag::err_typecheck_incomplete_tag,
562 BaseRange))
563 return true;
564
565 if (HasTemplateArgs) {
566 // LookupTemplateName doesn't expect these both to exist simultaneously.
567 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
568
569 bool MOUS;
570 SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
571 return false;
572 }
573
574 DeclContext *DC = RDecl;
575 if (SS.isSet()) {
576 // If the member name was a qualified-id, look into the
577 // nested-name-specifier.
578 DC = SemaRef.computeDeclContext(SS, false);
579
580 if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
581 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
582 << SS.getRange() << DC;
583 return true;
584 }
585
586 assert(DC && "Cannot handle non-computable dependent contexts in lookup");
587
588 if (!isa<TypeDecl>(DC)) {
589 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
590 << DC << SS.getRange();
591 return true;
592 }
593 }
594
595 // The record definition is complete, now look up the member.
596 SemaRef.LookupQualifiedName(R, DC);
597
598 if (!R.empty())
599 return false;
600
601 // We didn't find anything with the given name, so try to correct
602 // for typos.
603 DeclarationName Name = R.getLookupName();
604 RecordMemberExprValidatorCCC Validator;
605 TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
606 R.getLookupKind(), NULL,
607 &SS, Validator, DC);
608 R.clear();
609 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
610 std::string CorrectedStr(
611 Corrected.getAsString(SemaRef.getLangOpts()));
612 std::string CorrectedQuotedStr(
613 Corrected.getQuoted(SemaRef.getLangOpts()));
614 R.setLookupName(Corrected.getCorrection());
615 R.addDecl(ND);
616 SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
617 << Name << DC << CorrectedQuotedStr << SS.getRange()
618 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
619 CorrectedStr);
620 SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
621 << ND->getDeclName();
622 }
623
624 return false;
625 }
626
627 ExprResult
BuildMemberReferenceExpr(Expr * Base,QualType BaseType,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)628 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
629 SourceLocation OpLoc, bool IsArrow,
630 CXXScopeSpec &SS,
631 SourceLocation TemplateKWLoc,
632 NamedDecl *FirstQualifierInScope,
633 const DeclarationNameInfo &NameInfo,
634 const TemplateArgumentListInfo *TemplateArgs) {
635 if (BaseType->isDependentType() ||
636 (SS.isSet() && isDependentScopeSpecifier(SS)))
637 return ActOnDependentMemberExpr(Base, BaseType,
638 IsArrow, OpLoc,
639 SS, TemplateKWLoc, FirstQualifierInScope,
640 NameInfo, TemplateArgs);
641
642 LookupResult R(*this, NameInfo, LookupMemberName);
643
644 // Implicit member accesses.
645 if (!Base) {
646 QualType RecordTy = BaseType;
647 if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
648 if (LookupMemberExprInRecord(*this, R, SourceRange(),
649 RecordTy->getAs<RecordType>(),
650 OpLoc, SS, TemplateArgs != 0))
651 return ExprError();
652
653 // Explicit member accesses.
654 } else {
655 ExprResult BaseResult = Owned(Base);
656 ExprResult Result =
657 LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
658 SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
659
660 if (BaseResult.isInvalid())
661 return ExprError();
662 Base = BaseResult.take();
663
664 if (Result.isInvalid()) {
665 Owned(Base);
666 return ExprError();
667 }
668
669 if (Result.get())
670 return Result;
671
672 // LookupMemberExpr can modify Base, and thus change BaseType
673 BaseType = Base->getType();
674 }
675
676 return BuildMemberReferenceExpr(Base, BaseType,
677 OpLoc, IsArrow, SS, TemplateKWLoc,
678 FirstQualifierInScope, R, TemplateArgs);
679 }
680
681 static ExprResult
682 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
683 const CXXScopeSpec &SS, FieldDecl *Field,
684 DeclAccessPair FoundDecl,
685 const DeclarationNameInfo &MemberNameInfo);
686
687 ExprResult
BuildAnonymousStructUnionMemberReference(const CXXScopeSpec & SS,SourceLocation loc,IndirectFieldDecl * indirectField,Expr * baseObjectExpr,SourceLocation opLoc)688 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
689 SourceLocation loc,
690 IndirectFieldDecl *indirectField,
691 Expr *baseObjectExpr,
692 SourceLocation opLoc) {
693 // First, build the expression that refers to the base object.
694
695 bool baseObjectIsPointer = false;
696 Qualifiers baseQuals;
697
698 // Case 1: the base of the indirect field is not a field.
699 VarDecl *baseVariable = indirectField->getVarDecl();
700 CXXScopeSpec EmptySS;
701 if (baseVariable) {
702 assert(baseVariable->getType()->isRecordType());
703
704 // In principle we could have a member access expression that
705 // accesses an anonymous struct/union that's a static member of
706 // the base object's class. However, under the current standard,
707 // static data members cannot be anonymous structs or unions.
708 // Supporting this is as easy as building a MemberExpr here.
709 assert(!baseObjectExpr && "anonymous struct/union is static data member?");
710
711 DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
712
713 ExprResult result
714 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
715 if (result.isInvalid()) return ExprError();
716
717 baseObjectExpr = result.take();
718 baseObjectIsPointer = false;
719 baseQuals = baseObjectExpr->getType().getQualifiers();
720
721 // Case 2: the base of the indirect field is a field and the user
722 // wrote a member expression.
723 } else if (baseObjectExpr) {
724 // The caller provided the base object expression. Determine
725 // whether its a pointer and whether it adds any qualifiers to the
726 // anonymous struct/union fields we're looking into.
727 QualType objectType = baseObjectExpr->getType();
728
729 if (const PointerType *ptr = objectType->getAs<PointerType>()) {
730 baseObjectIsPointer = true;
731 objectType = ptr->getPointeeType();
732 } else {
733 baseObjectIsPointer = false;
734 }
735 baseQuals = objectType.getQualifiers();
736
737 // Case 3: the base of the indirect field is a field and we should
738 // build an implicit member access.
739 } else {
740 // We've found a member of an anonymous struct/union that is
741 // inside a non-anonymous struct/union, so in a well-formed
742 // program our base object expression is "this".
743 QualType ThisTy = getCurrentThisType();
744 if (ThisTy.isNull()) {
745 Diag(loc, diag::err_invalid_member_use_in_static_method)
746 << indirectField->getDeclName();
747 return ExprError();
748 }
749
750 // Our base object expression is "this".
751 CheckCXXThisCapture(loc);
752 baseObjectExpr
753 = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
754 baseObjectIsPointer = true;
755 baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
756 }
757
758 // Build the implicit member references to the field of the
759 // anonymous struct/union.
760 Expr *result = baseObjectExpr;
761 IndirectFieldDecl::chain_iterator
762 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
763
764 // Build the first member access in the chain with full information.
765 if (!baseVariable) {
766 FieldDecl *field = cast<FieldDecl>(*FI);
767
768 // FIXME: use the real found-decl info!
769 DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
770
771 // Make a nameInfo that properly uses the anonymous name.
772 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
773
774 result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
775 EmptySS, field, foundDecl,
776 memberNameInfo).take();
777 baseObjectIsPointer = false;
778
779 // FIXME: check qualified member access
780 }
781
782 // In all cases, we should now skip the first declaration in the chain.
783 ++FI;
784
785 while (FI != FEnd) {
786 FieldDecl *field = cast<FieldDecl>(*FI++);
787
788 // FIXME: these are somewhat meaningless
789 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
790 DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
791
792 result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
793 (FI == FEnd? SS : EmptySS), field,
794 foundDecl, memberNameInfo).take();
795 }
796
797 return Owned(result);
798 }
799
800 /// \brief Build a MemberExpr AST node.
BuildMemberExpr(Sema & SemaRef,ASTContext & C,Expr * Base,bool isArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,ValueDecl * Member,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo,QualType Ty,ExprValueKind VK,ExprObjectKind OK,const TemplateArgumentListInfo * TemplateArgs=0)801 static MemberExpr *BuildMemberExpr(Sema &SemaRef,
802 ASTContext &C, Expr *Base, bool isArrow,
803 const CXXScopeSpec &SS,
804 SourceLocation TemplateKWLoc,
805 ValueDecl *Member,
806 DeclAccessPair FoundDecl,
807 const DeclarationNameInfo &MemberNameInfo,
808 QualType Ty,
809 ExprValueKind VK, ExprObjectKind OK,
810 const TemplateArgumentListInfo *TemplateArgs = 0) {
811 assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
812 MemberExpr *E =
813 MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
814 TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
815 TemplateArgs, Ty, VK, OK);
816 SemaRef.MarkMemberReferenced(E);
817 return E;
818 }
819
820 ExprResult
BuildMemberReferenceExpr(Expr * BaseExpr,QualType BaseExprType,SourceLocation OpLoc,bool IsArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool SuppressQualifierCheck,ActOnMemberAccessExtraArgs * ExtraArgs)821 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
822 SourceLocation OpLoc, bool IsArrow,
823 const CXXScopeSpec &SS,
824 SourceLocation TemplateKWLoc,
825 NamedDecl *FirstQualifierInScope,
826 LookupResult &R,
827 const TemplateArgumentListInfo *TemplateArgs,
828 bool SuppressQualifierCheck,
829 ActOnMemberAccessExtraArgs *ExtraArgs) {
830 QualType BaseType = BaseExprType;
831 if (IsArrow) {
832 assert(BaseType->isPointerType());
833 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
834 }
835 R.setBaseObjectType(BaseType);
836
837 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
838 DeclarationName MemberName = MemberNameInfo.getName();
839 SourceLocation MemberLoc = MemberNameInfo.getLoc();
840
841 if (R.isAmbiguous())
842 return ExprError();
843
844 if (R.empty()) {
845 // Rederive where we looked up.
846 DeclContext *DC = (SS.isSet()
847 ? computeDeclContext(SS, false)
848 : BaseType->getAs<RecordType>()->getDecl());
849
850 if (ExtraArgs) {
851 ExprResult RetryExpr;
852 if (!IsArrow && BaseExpr) {
853 SFINAETrap Trap(*this, true);
854 ParsedType ObjectType;
855 bool MayBePseudoDestructor = false;
856 RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
857 OpLoc, tok::arrow, ObjectType,
858 MayBePseudoDestructor);
859 if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
860 CXXScopeSpec TempSS(SS);
861 RetryExpr = ActOnMemberAccessExpr(
862 ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
863 TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
864 ExtraArgs->HasTrailingLParen);
865 }
866 if (Trap.hasErrorOccurred())
867 RetryExpr = ExprError();
868 }
869 if (RetryExpr.isUsable()) {
870 Diag(OpLoc, diag::err_no_member_overloaded_arrow)
871 << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
872 return RetryExpr;
873 }
874 }
875
876 Diag(R.getNameLoc(), diag::err_no_member)
877 << MemberName << DC
878 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
879 return ExprError();
880 }
881
882 // Diagnose lookups that find only declarations from a non-base
883 // type. This is possible for either qualified lookups (which may
884 // have been qualified with an unrelated type) or implicit member
885 // expressions (which were found with unqualified lookup and thus
886 // may have come from an enclosing scope). Note that it's okay for
887 // lookup to find declarations from a non-base type as long as those
888 // aren't the ones picked by overload resolution.
889 if ((SS.isSet() || !BaseExpr ||
890 (isa<CXXThisExpr>(BaseExpr) &&
891 cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
892 !SuppressQualifierCheck &&
893 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
894 return ExprError();
895
896 // Construct an unresolved result if we in fact got an unresolved
897 // result.
898 if (R.isOverloadedResult() || R.isUnresolvableResult()) {
899 // Suppress any lookup-related diagnostics; we'll do these when we
900 // pick a member.
901 R.suppressDiagnostics();
902
903 UnresolvedMemberExpr *MemExpr
904 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
905 BaseExpr, BaseExprType,
906 IsArrow, OpLoc,
907 SS.getWithLocInContext(Context),
908 TemplateKWLoc, MemberNameInfo,
909 TemplateArgs, R.begin(), R.end());
910
911 return Owned(MemExpr);
912 }
913
914 assert(R.isSingleResult());
915 DeclAccessPair FoundDecl = R.begin().getPair();
916 NamedDecl *MemberDecl = R.getFoundDecl();
917
918 // FIXME: diagnose the presence of template arguments now.
919
920 // If the decl being referenced had an error, return an error for this
921 // sub-expr without emitting another error, in order to avoid cascading
922 // error cases.
923 if (MemberDecl->isInvalidDecl())
924 return ExprError();
925
926 // Handle the implicit-member-access case.
927 if (!BaseExpr) {
928 // If this is not an instance member, convert to a non-member access.
929 if (!MemberDecl->isCXXInstanceMember())
930 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
931
932 SourceLocation Loc = R.getNameLoc();
933 if (SS.getRange().isValid())
934 Loc = SS.getRange().getBegin();
935 CheckCXXThisCapture(Loc);
936 BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
937 }
938
939 bool ShouldCheckUse = true;
940 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
941 // Don't diagnose the use of a virtual member function unless it's
942 // explicitly qualified.
943 if (MD->isVirtual() && !SS.isSet())
944 ShouldCheckUse = false;
945 }
946
947 // Check the use of this member.
948 if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
949 Owned(BaseExpr);
950 return ExprError();
951 }
952
953 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
954 return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
955 SS, FD, FoundDecl, MemberNameInfo);
956
957 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
958 // We may have found a field within an anonymous union or struct
959 // (C++ [class.union]).
960 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
961 BaseExpr, OpLoc);
962
963 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
964 return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
965 TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
966 Var->getType().getNonReferenceType(),
967 VK_LValue, OK_Ordinary));
968 }
969
970 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
971 ExprValueKind valueKind;
972 QualType type;
973 if (MemberFn->isInstance()) {
974 valueKind = VK_RValue;
975 type = Context.BoundMemberTy;
976 } else {
977 valueKind = VK_LValue;
978 type = MemberFn->getType();
979 }
980
981 return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
982 TemplateKWLoc, MemberFn, FoundDecl,
983 MemberNameInfo, type, valueKind,
984 OK_Ordinary));
985 }
986 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
987
988 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
989 return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
990 TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
991 Enum->getType(), VK_RValue, OK_Ordinary));
992 }
993
994 Owned(BaseExpr);
995
996 // We found something that we didn't expect. Complain.
997 if (isa<TypeDecl>(MemberDecl))
998 Diag(MemberLoc, diag::err_typecheck_member_reference_type)
999 << MemberName << BaseType << int(IsArrow);
1000 else
1001 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1002 << MemberName << BaseType << int(IsArrow);
1003
1004 Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1005 << MemberName;
1006 R.suppressDiagnostics();
1007 return ExprError();
1008 }
1009
1010 /// Given that normal member access failed on the given expression,
1011 /// and given that the expression's type involves builtin-id or
1012 /// builtin-Class, decide whether substituting in the redefinition
1013 /// types would be profitable. The redefinition type is whatever
1014 /// this translation unit tried to typedef to id/Class; we store
1015 /// it to the side and then re-use it in places like this.
ShouldTryAgainWithRedefinitionType(Sema & S,ExprResult & base)1016 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1017 const ObjCObjectPointerType *opty
1018 = base.get()->getType()->getAs<ObjCObjectPointerType>();
1019 if (!opty) return false;
1020
1021 const ObjCObjectType *ty = opty->getObjectType();
1022
1023 QualType redef;
1024 if (ty->isObjCId()) {
1025 redef = S.Context.getObjCIdRedefinitionType();
1026 } else if (ty->isObjCClass()) {
1027 redef = S.Context.getObjCClassRedefinitionType();
1028 } else {
1029 return false;
1030 }
1031
1032 // Do the substitution as long as the redefinition type isn't just a
1033 // possibly-qualified pointer to builtin-id or builtin-Class again.
1034 opty = redef->getAs<ObjCObjectPointerType>();
1035 if (opty && !opty->getObjectType()->getInterface())
1036 return false;
1037
1038 base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
1039 return true;
1040 }
1041
isRecordType(QualType T)1042 static bool isRecordType(QualType T) {
1043 return T->isRecordType();
1044 }
isPointerToRecordType(QualType T)1045 static bool isPointerToRecordType(QualType T) {
1046 if (const PointerType *PT = T->getAs<PointerType>())
1047 return PT->getPointeeType()->isRecordType();
1048 return false;
1049 }
1050
1051 /// Perform conversions on the LHS of a member access expression.
1052 ExprResult
PerformMemberExprBaseConversion(Expr * Base,bool IsArrow)1053 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1054 if (IsArrow && !Base->getType()->isFunctionType())
1055 return DefaultFunctionArrayLvalueConversion(Base);
1056
1057 return CheckPlaceholderExpr(Base);
1058 }
1059
1060 /// Look up the given member of the given non-type-dependent
1061 /// expression. This can return in one of two ways:
1062 /// * If it returns a sentinel null-but-valid result, the caller will
1063 /// assume that lookup was performed and the results written into
1064 /// the provided structure. It will take over from there.
1065 /// * Otherwise, the returned expression will be produced in place of
1066 /// an ordinary member expression.
1067 ///
1068 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1069 /// fixed for ObjC++.
1070 ExprResult
LookupMemberExpr(LookupResult & R,ExprResult & BaseExpr,bool & IsArrow,SourceLocation OpLoc,CXXScopeSpec & SS,Decl * ObjCImpDecl,bool HasTemplateArgs)1071 Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
1072 bool &IsArrow, SourceLocation OpLoc,
1073 CXXScopeSpec &SS,
1074 Decl *ObjCImpDecl, bool HasTemplateArgs) {
1075 assert(BaseExpr.get() && "no base expression");
1076
1077 // Perform default conversions.
1078 BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow);
1079 if (BaseExpr.isInvalid())
1080 return ExprError();
1081
1082 QualType BaseType = BaseExpr.get()->getType();
1083 assert(!BaseType->isDependentType());
1084
1085 DeclarationName MemberName = R.getLookupName();
1086 SourceLocation MemberLoc = R.getNameLoc();
1087
1088 // For later type-checking purposes, turn arrow accesses into dot
1089 // accesses. The only access type we support that doesn't follow
1090 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1091 // and those never use arrows, so this is unaffected.
1092 if (IsArrow) {
1093 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1094 BaseType = Ptr->getPointeeType();
1095 else if (const ObjCObjectPointerType *Ptr
1096 = BaseType->getAs<ObjCObjectPointerType>())
1097 BaseType = Ptr->getPointeeType();
1098 else if (BaseType->isRecordType()) {
1099 // Recover from arrow accesses to records, e.g.:
1100 // struct MyRecord foo;
1101 // foo->bar
1102 // This is actually well-formed in C++ if MyRecord has an
1103 // overloaded operator->, but that should have been dealt with
1104 // by now.
1105 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1106 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1107 << FixItHint::CreateReplacement(OpLoc, ".");
1108 IsArrow = false;
1109 } else if (BaseType->isFunctionType()) {
1110 goto fail;
1111 } else {
1112 Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1113 << BaseType << BaseExpr.get()->getSourceRange();
1114 return ExprError();
1115 }
1116 }
1117
1118 // Handle field access to simple records.
1119 if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1120 if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
1121 RTy, OpLoc, SS, HasTemplateArgs))
1122 return ExprError();
1123
1124 // Returning valid-but-null is how we indicate to the caller that
1125 // the lookup result was filled in.
1126 return Owned((Expr*) 0);
1127 }
1128
1129 // Handle ivar access to Objective-C objects.
1130 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1131 if (!SS.isEmpty() && !SS.isInvalid()) {
1132 Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1133 << 1 << SS.getScopeRep()
1134 << FixItHint::CreateRemoval(SS.getRange());
1135 SS.clear();
1136 }
1137
1138 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1139
1140 // There are three cases for the base type:
1141 // - builtin id (qualified or unqualified)
1142 // - builtin Class (qualified or unqualified)
1143 // - an interface
1144 ObjCInterfaceDecl *IDecl = OTy->getInterface();
1145 if (!IDecl) {
1146 if (getLangOpts().ObjCAutoRefCount &&
1147 (OTy->isObjCId() || OTy->isObjCClass()))
1148 goto fail;
1149 // There's an implicit 'isa' ivar on all objects.
1150 // But we only actually find it this way on objects of type 'id',
1151 // apparently.
1152 if (OTy->isObjCId() && Member->isStr("isa")) {
1153 Diag(MemberLoc, diag::warn_objc_isa_use);
1154 return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
1155 Context.getObjCClassType()));
1156 }
1157
1158 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1159 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1160 ObjCImpDecl, HasTemplateArgs);
1161 goto fail;
1162 }
1163 else if (Member && Member->isStr("isa")) {
1164 // If an ivar is (1) the first ivar in a root class and (2) named `isa`,
1165 // then issue the same deprecated warning that id->isa gets.
1166 ObjCInterfaceDecl *ClassDeclared = 0;
1167 if (ObjCIvarDecl *IV =
1168 IDecl->lookupInstanceVariable(Member, ClassDeclared)) {
1169 if (!ClassDeclared->getSuperClass()
1170 && (*ClassDeclared->ivar_begin()) == IV) {
1171 Diag(MemberLoc, diag::warn_objc_isa_use);
1172 Diag(IV->getLocation(), diag::note_ivar_decl);
1173 }
1174 }
1175 }
1176
1177 if (RequireCompleteType(OpLoc, BaseType, diag::err_typecheck_incomplete_tag,
1178 BaseExpr.get()))
1179 return ExprError();
1180
1181 ObjCInterfaceDecl *ClassDeclared = 0;
1182 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1183
1184 if (!IV) {
1185 // Attempt to correct for typos in ivar names.
1186 DeclFilterCCC<ObjCIvarDecl> Validator;
1187 Validator.IsObjCIvarLookup = IsArrow;
1188 if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
1189 LookupMemberName, NULL, NULL,
1190 Validator, IDecl)) {
1191 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1192 Diag(R.getNameLoc(),
1193 diag::err_typecheck_member_reference_ivar_suggest)
1194 << IDecl->getDeclName() << MemberName << IV->getDeclName()
1195 << FixItHint::CreateReplacement(R.getNameLoc(),
1196 IV->getNameAsString());
1197 Diag(IV->getLocation(), diag::note_previous_decl)
1198 << IV->getDeclName();
1199
1200 // Figure out the class that declares the ivar.
1201 assert(!ClassDeclared);
1202 Decl *D = cast<Decl>(IV->getDeclContext());
1203 if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1204 D = CAT->getClassInterface();
1205 ClassDeclared = cast<ObjCInterfaceDecl>(D);
1206 } else {
1207 if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1208 Diag(MemberLoc,
1209 diag::err_property_found_suggest)
1210 << Member << BaseExpr.get()->getType()
1211 << FixItHint::CreateReplacement(OpLoc, ".");
1212 return ExprError();
1213 }
1214
1215 Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1216 << IDecl->getDeclName() << MemberName
1217 << BaseExpr.get()->getSourceRange();
1218 return ExprError();
1219 }
1220 }
1221
1222 assert(ClassDeclared);
1223
1224 // If the decl being referenced had an error, return an error for this
1225 // sub-expr without emitting another error, in order to avoid cascading
1226 // error cases.
1227 if (IV->isInvalidDecl())
1228 return ExprError();
1229
1230 // Check whether we can reference this field.
1231 if (DiagnoseUseOfDecl(IV, MemberLoc))
1232 return ExprError();
1233 if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1234 IV->getAccessControl() != ObjCIvarDecl::Package) {
1235 ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1236 if (ObjCMethodDecl *MD = getCurMethodDecl())
1237 ClassOfMethodDecl = MD->getClassInterface();
1238 else if (ObjCImpDecl && getCurFunctionDecl()) {
1239 // Case of a c-function declared inside an objc implementation.
1240 // FIXME: For a c-style function nested inside an objc implementation
1241 // class, there is no implementation context available, so we pass
1242 // down the context as argument to this routine. Ideally, this context
1243 // need be passed down in the AST node and somehow calculated from the
1244 // AST for a function decl.
1245 if (ObjCImplementationDecl *IMPD =
1246 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1247 ClassOfMethodDecl = IMPD->getClassInterface();
1248 else if (ObjCCategoryImplDecl* CatImplClass =
1249 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1250 ClassOfMethodDecl = CatImplClass->getClassInterface();
1251 }
1252 if (!getLangOpts().DebuggerSupport) {
1253 if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1254 if (!declaresSameEntity(ClassDeclared, IDecl) ||
1255 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1256 Diag(MemberLoc, diag::error_private_ivar_access)
1257 << IV->getDeclName();
1258 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1259 // @protected
1260 Diag(MemberLoc, diag::error_protected_ivar_access)
1261 << IV->getDeclName();
1262 }
1263 }
1264 bool warn = true;
1265 if (getLangOpts().ObjCAutoRefCount) {
1266 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1267 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1268 if (UO->getOpcode() == UO_Deref)
1269 BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1270
1271 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1272 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1273 Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1274 warn = false;
1275 }
1276 }
1277 if (warn) {
1278 if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1279 ObjCMethodFamily MF = MD->getMethodFamily();
1280 warn = (MF != OMF_init && MF != OMF_dealloc &&
1281 MF != OMF_finalize &&
1282 !IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1283 }
1284 if (warn)
1285 Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1286 }
1287
1288 ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1289 MemberLoc,
1290 BaseExpr.take(),
1291 IsArrow);
1292
1293 if (getLangOpts().ObjCAutoRefCount) {
1294 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1295 DiagnosticsEngine::Level Level =
1296 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1297 MemberLoc);
1298 if (Level != DiagnosticsEngine::Ignored)
1299 getCurFunction()->recordUseOfWeak(Result);
1300 }
1301 }
1302
1303 return Owned(Result);
1304 }
1305
1306 // Objective-C property access.
1307 const ObjCObjectPointerType *OPT;
1308 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1309 if (!SS.isEmpty() && !SS.isInvalid()) {
1310 Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1311 << 0 << SS.getScopeRep()
1312 << FixItHint::CreateRemoval(SS.getRange());
1313 SS.clear();
1314 }
1315
1316 // This actually uses the base as an r-value.
1317 BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1318 if (BaseExpr.isInvalid())
1319 return ExprError();
1320
1321 assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
1322
1323 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1324
1325 const ObjCObjectType *OT = OPT->getObjectType();
1326
1327 // id, with and without qualifiers.
1328 if (OT->isObjCId()) {
1329 // Check protocols on qualified interfaces.
1330 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1331 if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
1332 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1333 // Check the use of this declaration
1334 if (DiagnoseUseOfDecl(PD, MemberLoc))
1335 return ExprError();
1336
1337 return Owned(new (Context) ObjCPropertyRefExpr(PD,
1338 Context.PseudoObjectTy,
1339 VK_LValue,
1340 OK_ObjCProperty,
1341 MemberLoc,
1342 BaseExpr.take()));
1343 }
1344
1345 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1346 // Check the use of this method.
1347 if (DiagnoseUseOfDecl(OMD, MemberLoc))
1348 return ExprError();
1349 Selector SetterSel =
1350 SelectorTable::constructSetterName(PP.getIdentifierTable(),
1351 PP.getSelectorTable(), Member);
1352 ObjCMethodDecl *SMD = 0;
1353 if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
1354 SetterSel, Context))
1355 SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1356
1357 return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD,
1358 Context.PseudoObjectTy,
1359 VK_LValue, OK_ObjCProperty,
1360 MemberLoc, BaseExpr.take()));
1361 }
1362 }
1363 // Use of id.member can only be for a property reference. Do not
1364 // use the 'id' redefinition in this case.
1365 if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1366 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1367 ObjCImpDecl, HasTemplateArgs);
1368
1369 return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1370 << MemberName << BaseType);
1371 }
1372
1373 // 'Class', unqualified only.
1374 if (OT->isObjCClass()) {
1375 // Only works in a method declaration (??!).
1376 ObjCMethodDecl *MD = getCurMethodDecl();
1377 if (!MD) {
1378 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1379 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1380 ObjCImpDecl, HasTemplateArgs);
1381
1382 goto fail;
1383 }
1384
1385 // Also must look for a getter name which uses property syntax.
1386 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1387 ObjCInterfaceDecl *IFace = MD->getClassInterface();
1388 ObjCMethodDecl *Getter;
1389 if ((Getter = IFace->lookupClassMethod(Sel))) {
1390 // Check the use of this method.
1391 if (DiagnoseUseOfDecl(Getter, MemberLoc))
1392 return ExprError();
1393 } else
1394 Getter = IFace->lookupPrivateMethod(Sel, false);
1395 // If we found a getter then this may be a valid dot-reference, we
1396 // will look for the matching setter, in case it is needed.
1397 Selector SetterSel =
1398 SelectorTable::constructSetterName(PP.getIdentifierTable(),
1399 PP.getSelectorTable(), Member);
1400 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1401 if (!Setter) {
1402 // If this reference is in an @implementation, also check for 'private'
1403 // methods.
1404 Setter = IFace->lookupPrivateMethod(SetterSel, false);
1405 }
1406
1407 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1408 return ExprError();
1409
1410 if (Getter || Setter) {
1411 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1412 Context.PseudoObjectTy,
1413 VK_LValue, OK_ObjCProperty,
1414 MemberLoc, BaseExpr.take()));
1415 }
1416
1417 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1418 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1419 ObjCImpDecl, HasTemplateArgs);
1420
1421 return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1422 << MemberName << BaseType);
1423 }
1424
1425 // Normal property access.
1426 return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
1427 MemberName, MemberLoc,
1428 SourceLocation(), QualType(), false);
1429 }
1430
1431 // Handle 'field access' to vectors, such as 'V.xx'.
1432 if (BaseType->isExtVectorType()) {
1433 // FIXME: this expr should store IsArrow.
1434 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1435 ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1436 QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
1437 Member, MemberLoc);
1438 if (ret.isNull())
1439 return ExprError();
1440
1441 return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
1442 *Member, MemberLoc));
1443 }
1444
1445 // Adjust builtin-sel to the appropriate redefinition type if that's
1446 // not just a pointer to builtin-sel again.
1447 if (IsArrow &&
1448 BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1449 !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1450 BaseExpr = ImpCastExprToType(BaseExpr.take(),
1451 Context.getObjCSelRedefinitionType(),
1452 CK_BitCast);
1453 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1454 ObjCImpDecl, HasTemplateArgs);
1455 }
1456
1457 // Failure cases.
1458 fail:
1459
1460 // Recover from dot accesses to pointers, e.g.:
1461 // type *foo;
1462 // foo.bar
1463 // This is actually well-formed in two cases:
1464 // - 'type' is an Objective C type
1465 // - 'bar' is a pseudo-destructor name which happens to refer to
1466 // the appropriate pointer type
1467 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1468 if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1469 MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1470 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1471 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1472 << FixItHint::CreateReplacement(OpLoc, "->");
1473
1474 // Recurse as an -> access.
1475 IsArrow = true;
1476 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1477 ObjCImpDecl, HasTemplateArgs);
1478 }
1479 }
1480
1481 // If the user is trying to apply -> or . to a function name, it's probably
1482 // because they forgot parentheses to call that function.
1483 if (tryToRecoverWithCall(BaseExpr,
1484 PDiag(diag::err_member_reference_needs_call),
1485 /*complain*/ false,
1486 IsArrow ? &isPointerToRecordType : &isRecordType)) {
1487 if (BaseExpr.isInvalid())
1488 return ExprError();
1489 BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
1490 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1491 ObjCImpDecl, HasTemplateArgs);
1492 }
1493
1494 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1495 << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1496
1497 return ExprError();
1498 }
1499
1500 /// The main callback when the parser finds something like
1501 /// expression . [nested-name-specifier] identifier
1502 /// expression -> [nested-name-specifier] identifier
1503 /// where 'identifier' encompasses a fairly broad spectrum of
1504 /// possibilities, including destructor and operator references.
1505 ///
1506 /// \param OpKind either tok::arrow or tok::period
1507 /// \param HasTrailingLParen whether the next token is '(', which
1508 /// is used to diagnose mis-uses of special members that can
1509 /// only be called
1510 /// \param ObjCImpDecl the current Objective-C \@implementation
1511 /// decl; this is an ugly hack around the fact that Objective-C
1512 /// \@implementations aren't properly put in the context chain
ActOnMemberAccessExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,Decl * ObjCImpDecl,bool HasTrailingLParen)1513 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1514 SourceLocation OpLoc,
1515 tok::TokenKind OpKind,
1516 CXXScopeSpec &SS,
1517 SourceLocation TemplateKWLoc,
1518 UnqualifiedId &Id,
1519 Decl *ObjCImpDecl,
1520 bool HasTrailingLParen) {
1521 if (SS.isSet() && SS.isInvalid())
1522 return ExprError();
1523
1524 // Warn about the explicit constructor calls Microsoft extension.
1525 if (getLangOpts().MicrosoftExt &&
1526 Id.getKind() == UnqualifiedId::IK_ConstructorName)
1527 Diag(Id.getSourceRange().getBegin(),
1528 diag::ext_ms_explicit_constructor_call);
1529
1530 TemplateArgumentListInfo TemplateArgsBuffer;
1531
1532 // Decompose the name into its component parts.
1533 DeclarationNameInfo NameInfo;
1534 const TemplateArgumentListInfo *TemplateArgs;
1535 DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1536 NameInfo, TemplateArgs);
1537
1538 DeclarationName Name = NameInfo.getName();
1539 bool IsArrow = (OpKind == tok::arrow);
1540
1541 NamedDecl *FirstQualifierInScope
1542 = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
1543 static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
1544
1545 // This is a postfix expression, so get rid of ParenListExprs.
1546 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1547 if (Result.isInvalid()) return ExprError();
1548 Base = Result.take();
1549
1550 if (Base->getType()->isDependentType() || Name.isDependentName() ||
1551 isDependentScopeSpecifier(SS)) {
1552 Result = ActOnDependentMemberExpr(Base, Base->getType(),
1553 IsArrow, OpLoc,
1554 SS, TemplateKWLoc, FirstQualifierInScope,
1555 NameInfo, TemplateArgs);
1556 } else {
1557 LookupResult R(*this, NameInfo, LookupMemberName);
1558 ExprResult BaseResult = Owned(Base);
1559 Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
1560 SS, ObjCImpDecl, TemplateArgs != 0);
1561 if (BaseResult.isInvalid())
1562 return ExprError();
1563 Base = BaseResult.take();
1564
1565 if (Result.isInvalid()) {
1566 Owned(Base);
1567 return ExprError();
1568 }
1569
1570 if (Result.get()) {
1571 // The only way a reference to a destructor can be used is to
1572 // immediately call it, which falls into this case. If the
1573 // next token is not a '(', produce a diagnostic and build the
1574 // call now.
1575 if (!HasTrailingLParen &&
1576 Id.getKind() == UnqualifiedId::IK_DestructorName)
1577 return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
1578
1579 return Result;
1580 }
1581
1582 ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl, HasTrailingLParen};
1583 Result = BuildMemberReferenceExpr(Base, Base->getType(),
1584 OpLoc, IsArrow, SS, TemplateKWLoc,
1585 FirstQualifierInScope, R, TemplateArgs,
1586 false, &ExtraArgs);
1587 }
1588
1589 return Result;
1590 }
1591
1592 static ExprResult
BuildFieldReferenceExpr(Sema & S,Expr * BaseExpr,bool IsArrow,const CXXScopeSpec & SS,FieldDecl * Field,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo)1593 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1594 const CXXScopeSpec &SS, FieldDecl *Field,
1595 DeclAccessPair FoundDecl,
1596 const DeclarationNameInfo &MemberNameInfo) {
1597 // x.a is an l-value if 'a' has a reference type. Otherwise:
1598 // x.a is an l-value/x-value/pr-value if the base is (and note
1599 // that *x is always an l-value), except that if the base isn't
1600 // an ordinary object then we must have an rvalue.
1601 ExprValueKind VK = VK_LValue;
1602 ExprObjectKind OK = OK_Ordinary;
1603 if (!IsArrow) {
1604 if (BaseExpr->getObjectKind() == OK_Ordinary)
1605 VK = BaseExpr->getValueKind();
1606 else
1607 VK = VK_RValue;
1608 }
1609 if (VK != VK_RValue && Field->isBitField())
1610 OK = OK_BitField;
1611
1612 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1613 QualType MemberType = Field->getType();
1614 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1615 MemberType = Ref->getPointeeType();
1616 VK = VK_LValue;
1617 } else {
1618 QualType BaseType = BaseExpr->getType();
1619 if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1620
1621 Qualifiers BaseQuals = BaseType.getQualifiers();
1622
1623 // GC attributes are never picked up by members.
1624 BaseQuals.removeObjCGCAttr();
1625
1626 // CVR attributes from the base are picked up by members,
1627 // except that 'mutable' members don't pick up 'const'.
1628 if (Field->isMutable()) BaseQuals.removeConst();
1629
1630 Qualifiers MemberQuals
1631 = S.Context.getCanonicalType(MemberType).getQualifiers();
1632
1633 assert(!MemberQuals.hasAddressSpace());
1634
1635
1636 Qualifiers Combined = BaseQuals + MemberQuals;
1637 if (Combined != MemberQuals)
1638 MemberType = S.Context.getQualifiedType(MemberType, Combined);
1639 }
1640
1641 S.UnusedPrivateFields.remove(Field);
1642
1643 ExprResult Base =
1644 S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1645 FoundDecl, Field);
1646 if (Base.isInvalid())
1647 return ExprError();
1648 return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS,
1649 /*TemplateKWLoc=*/SourceLocation(),
1650 Field, FoundDecl, MemberNameInfo,
1651 MemberType, VK, OK));
1652 }
1653
1654 /// Builds an implicit member access expression. The current context
1655 /// is known to be an instance method, and the given unqualified lookup
1656 /// set is known to contain only instance members, at least one of which
1657 /// is from an appropriate type.
1658 ExprResult
BuildImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool IsKnownInstance)1659 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1660 SourceLocation TemplateKWLoc,
1661 LookupResult &R,
1662 const TemplateArgumentListInfo *TemplateArgs,
1663 bool IsKnownInstance) {
1664 assert(!R.empty() && !R.isAmbiguous());
1665
1666 SourceLocation loc = R.getNameLoc();
1667
1668 // We may have found a field within an anonymous union or struct
1669 // (C++ [class.union]).
1670 // FIXME: template-ids inside anonymous structs?
1671 if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
1672 return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
1673
1674 // If this is known to be an instance access, go ahead and build an
1675 // implicit 'this' expression now.
1676 // 'this' expression now.
1677 QualType ThisTy = getCurrentThisType();
1678 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1679
1680 Expr *baseExpr = 0; // null signifies implicit access
1681 if (IsKnownInstance) {
1682 SourceLocation Loc = R.getNameLoc();
1683 if (SS.getRange().isValid())
1684 Loc = SS.getRange().getBegin();
1685 CheckCXXThisCapture(Loc);
1686 baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1687 }
1688
1689 return BuildMemberReferenceExpr(baseExpr, ThisTy,
1690 /*OpLoc*/ SourceLocation(),
1691 /*IsArrow*/ true,
1692 SS, TemplateKWLoc,
1693 /*FirstQualifierInScope*/ 0,
1694 R, TemplateArgs);
1695 }
1696