• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements name lookup for C, C++, Objective-C, and
11 //  Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Lookup.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclLookups.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Sema/DeclSpec.h"
27 #include "clang/Sema/ExternalSemaSource.h"
28 #include "clang/Sema/Overload.h"
29 #include "clang/Sema/Scope.h"
30 #include "clang/Sema/ScopeInfo.h"
31 #include "clang/Sema/Sema.h"
32 #include "clang/Sema/SemaInternal.h"
33 #include "clang/Sema/TemplateDeduction.h"
34 #include "clang/Sema/TypoCorrection.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/StringMap.h"
39 #include "llvm/ADT/TinyPtrVector.h"
40 #include "llvm/ADT/edit_distance.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43 #include <iterator>
44 #include <limits>
45 #include <list>
46 #include <map>
47 #include <set>
48 #include <utility>
49 #include <vector>
50 
51 using namespace clang;
52 using namespace sema;
53 
54 namespace {
55   class UnqualUsingEntry {
56     const DeclContext *Nominated;
57     const DeclContext *CommonAncestor;
58 
59   public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)60     UnqualUsingEntry(const DeclContext *Nominated,
61                      const DeclContext *CommonAncestor)
62       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
63     }
64 
getCommonAncestor() const65     const DeclContext *getCommonAncestor() const {
66       return CommonAncestor;
67     }
68 
getNominatedNamespace() const69     const DeclContext *getNominatedNamespace() const {
70       return Nominated;
71     }
72 
73     // Sort by the pointer value of the common ancestor.
74     struct Comparator {
operator ()__anondc90a4f70111::UnqualUsingEntry::Comparator75       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
76         return L.getCommonAncestor() < R.getCommonAncestor();
77       }
78 
operator ()__anondc90a4f70111::UnqualUsingEntry::Comparator79       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
80         return E.getCommonAncestor() < DC;
81       }
82 
operator ()__anondc90a4f70111::UnqualUsingEntry::Comparator83       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
84         return DC < E.getCommonAncestor();
85       }
86     };
87   };
88 
89   /// A collection of using directives, as used by C++ unqualified
90   /// lookup.
91   class UnqualUsingDirectiveSet {
92     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93 
94     ListTy list;
95     llvm::SmallPtrSet<DeclContext*, 8> visited;
96 
97   public:
UnqualUsingDirectiveSet()98     UnqualUsingDirectiveSet() {}
99 
visitScopeChain(Scope * S,Scope * InnermostFileScope)100     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101       // C++ [namespace.udir]p1:
102       //   During unqualified name lookup, the names appear as if they
103       //   were declared in the nearest enclosing namespace which contains
104       //   both the using-directive and the nominated namespace.
105       DeclContext *InnermostFileDC
106         = static_cast<DeclContext*>(InnermostFileScope->getEntity());
107       assert(InnermostFileDC && InnermostFileDC->isFileContext());
108 
109       for (; S; S = S->getParent()) {
110         // C++ [namespace.udir]p1:
111         //   A using-directive shall not appear in class scope, but may
112         //   appear in namespace scope or in block scope.
113         DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
114         if (Ctx && Ctx->isFileContext()) {
115           visit(Ctx, Ctx);
116         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117           Scope::udir_iterator I = S->using_directives_begin(),
118                              End = S->using_directives_end();
119           for (; I != End; ++I)
120             visit(*I, InnermostFileDC);
121         }
122       }
123     }
124 
125     // Visits a context and collect all of its using directives
126     // recursively.  Treats all using directives as if they were
127     // declared in the context.
128     //
129     // A given context is only every visited once, so it is important
130     // that contexts be visited from the inside out in order to get
131     // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)132     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
133       if (!visited.insert(DC))
134         return;
135 
136       addUsingDirectives(DC, EffectiveDC);
137     }
138 
139     // Visits a using directive and collects all of its using
140     // directives recursively.  Treats all using directives as if they
141     // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)142     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143       DeclContext *NS = UD->getNominatedNamespace();
144       if (!visited.insert(NS))
145         return;
146 
147       addUsingDirective(UD, EffectiveDC);
148       addUsingDirectives(NS, EffectiveDC);
149     }
150 
151     // Adds all the using directives in a context (and those nominated
152     // by its using directives, transitively) as if they appeared in
153     // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)154     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155       SmallVector<DeclContext*,4> queue;
156       while (true) {
157         DeclContext::udir_iterator I, End;
158         for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
159           UsingDirectiveDecl *UD = *I;
160           DeclContext *NS = UD->getNominatedNamespace();
161           if (visited.insert(NS)) {
162             addUsingDirective(UD, EffectiveDC);
163             queue.push_back(NS);
164           }
165         }
166 
167         if (queue.empty())
168           return;
169 
170         DC = queue.back();
171         queue.pop_back();
172       }
173     }
174 
175     // Add a using directive as if it had been declared in the given
176     // context.  This helps implement C++ [namespace.udir]p3:
177     //   The using-directive is transitive: if a scope contains a
178     //   using-directive that nominates a second namespace that itself
179     //   contains using-directives, the effect is as if the
180     //   using-directives from the second namespace also appeared in
181     //   the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)182     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
183       // Find the common ancestor between the effective context and
184       // the nominated namespace.
185       DeclContext *Common = UD->getNominatedNamespace();
186       while (!Common->Encloses(EffectiveDC))
187         Common = Common->getParent();
188       Common = Common->getPrimaryContext();
189 
190       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
191     }
192 
done()193     void done() {
194       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
195     }
196 
197     typedef ListTy::const_iterator const_iterator;
198 
begin() const199     const_iterator begin() const { return list.begin(); }
end() const200     const_iterator end() const { return list.end(); }
201 
202     std::pair<const_iterator,const_iterator>
getNamespacesFor(DeclContext * DC) const203     getNamespacesFor(DeclContext *DC) const {
204       return std::equal_range(begin(), end(), DC->getPrimaryContext(),
205                               UnqualUsingEntry::Comparator());
206     }
207   };
208 }
209 
210 // Retrieve the set of identifier namespaces that correspond to a
211 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213                                bool CPlusPlus,
214                                bool Redeclaration) {
215   unsigned IDNS = 0;
216   switch (NameKind) {
217   case Sema::LookupObjCImplicitSelfParam:
218   case Sema::LookupOrdinaryName:
219   case Sema::LookupRedeclarationWithLinkage:
220     IDNS = Decl::IDNS_Ordinary;
221     if (CPlusPlus) {
222       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
223       if (Redeclaration)
224         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
225     }
226     break;
227 
228   case Sema::LookupOperatorName:
229     // Operator lookup is its own crazy thing;  it is not the same
230     // as (e.g.) looking up an operator name for redeclaration.
231     assert(!Redeclaration && "cannot do redeclaration operator lookup");
232     IDNS = Decl::IDNS_NonMemberOperator;
233     break;
234 
235   case Sema::LookupTagName:
236     if (CPlusPlus) {
237       IDNS = Decl::IDNS_Type;
238 
239       // When looking for a redeclaration of a tag name, we add:
240       // 1) TagFriend to find undeclared friend decls
241       // 2) Namespace because they can't "overload" with tag decls.
242       // 3) Tag because it includes class templates, which can't
243       //    "overload" with tag decls.
244       if (Redeclaration)
245         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246     } else {
247       IDNS = Decl::IDNS_Tag;
248     }
249     break;
250   case Sema::LookupLabel:
251     IDNS = Decl::IDNS_Label;
252     break;
253 
254   case Sema::LookupMemberName:
255     IDNS = Decl::IDNS_Member;
256     if (CPlusPlus)
257       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258     break;
259 
260   case Sema::LookupNestedNameSpecifierName:
261     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262     break;
263 
264   case Sema::LookupNamespaceName:
265     IDNS = Decl::IDNS_Namespace;
266     break;
267 
268   case Sema::LookupUsingDeclName:
269     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
270          | Decl::IDNS_Member | Decl::IDNS_Using;
271     break;
272 
273   case Sema::LookupObjCProtocolName:
274     IDNS = Decl::IDNS_ObjCProtocol;
275     break;
276 
277   case Sema::LookupAnyName:
278     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
279       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
280       | Decl::IDNS_Type;
281     break;
282   }
283   return IDNS;
284 }
285 
configure()286 void LookupResult::configure() {
287   IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
288                  isForRedeclaration());
289 
290   // If we're looking for one of the allocation or deallocation
291   // operators, make sure that the implicitly-declared new and delete
292   // operators can be found.
293   if (!isForRedeclaration()) {
294     switch (NameInfo.getName().getCXXOverloadedOperator()) {
295     case OO_New:
296     case OO_Delete:
297     case OO_Array_New:
298     case OO_Array_Delete:
299       SemaRef.DeclareGlobalNewDelete();
300       break;
301 
302     default:
303       break;
304     }
305   }
306 }
307 
sanityImpl() const308 void LookupResult::sanityImpl() const {
309   // Note that this function is never called by NDEBUG builds. See
310   // LookupResult::sanity().
311   assert(ResultKind != NotFound || Decls.size() == 0);
312   assert(ResultKind != Found || Decls.size() == 1);
313   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
314          (Decls.size() == 1 &&
315           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
316   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
317   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
318          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
319                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
320   assert((Paths != NULL) == (ResultKind == Ambiguous &&
321                              (Ambiguity == AmbiguousBaseSubobjectTypes ||
322                               Ambiguity == AmbiguousBaseSubobjects)));
323 }
324 
325 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)326 void LookupResult::deletePaths(CXXBasePaths *Paths) {
327   delete Paths;
328 }
329 
330 static NamedDecl *getVisibleDecl(NamedDecl *D);
331 
getAcceptableDeclSlow(NamedDecl * D) const332 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
333   return getVisibleDecl(D);
334 }
335 
336 /// Resolves the result kind of this lookup.
resolveKind()337 void LookupResult::resolveKind() {
338   unsigned N = Decls.size();
339 
340   // Fast case: no possible ambiguity.
341   if (N == 0) {
342     assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
343     return;
344   }
345 
346   // If there's a single decl, we need to examine it to decide what
347   // kind of lookup this is.
348   if (N == 1) {
349     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
350     if (isa<FunctionTemplateDecl>(D))
351       ResultKind = FoundOverloaded;
352     else if (isa<UnresolvedUsingValueDecl>(D))
353       ResultKind = FoundUnresolvedValue;
354     return;
355   }
356 
357   // Don't do any extra resolution if we've already resolved as ambiguous.
358   if (ResultKind == Ambiguous) return;
359 
360   llvm::SmallPtrSet<NamedDecl*, 16> Unique;
361   llvm::SmallPtrSet<QualType, 16> UniqueTypes;
362 
363   bool Ambiguous = false;
364   bool HasTag = false, HasFunction = false, HasNonFunction = false;
365   bool HasFunctionTemplate = false, HasUnresolved = false;
366 
367   unsigned UniqueTagIndex = 0;
368 
369   unsigned I = 0;
370   while (I < N) {
371     NamedDecl *D = Decls[I]->getUnderlyingDecl();
372     D = cast<NamedDecl>(D->getCanonicalDecl());
373 
374     // Ignore an invalid declaration unless it's the only one left.
375     if (D->isInvalidDecl() && I < N-1) {
376       Decls[I] = Decls[--N];
377       continue;
378     }
379 
380     // Redeclarations of types via typedef can occur both within a scope
381     // and, through using declarations and directives, across scopes. There is
382     // no ambiguity if they all refer to the same type, so unique based on the
383     // canonical type.
384     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
385       if (!TD->getDeclContext()->isRecord()) {
386         QualType T = SemaRef.Context.getTypeDeclType(TD);
387         if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
388           // The type is not unique; pull something off the back and continue
389           // at this index.
390           Decls[I] = Decls[--N];
391           continue;
392         }
393       }
394     }
395 
396     if (!Unique.insert(D)) {
397       // If it's not unique, pull something off the back (and
398       // continue at this index).
399       Decls[I] = Decls[--N];
400       continue;
401     }
402 
403     // Otherwise, do some decl type analysis and then continue.
404 
405     if (isa<UnresolvedUsingValueDecl>(D)) {
406       HasUnresolved = true;
407     } else if (isa<TagDecl>(D)) {
408       if (HasTag)
409         Ambiguous = true;
410       UniqueTagIndex = I;
411       HasTag = true;
412     } else if (isa<FunctionTemplateDecl>(D)) {
413       HasFunction = true;
414       HasFunctionTemplate = true;
415     } else if (isa<FunctionDecl>(D)) {
416       HasFunction = true;
417     } else {
418       if (HasNonFunction)
419         Ambiguous = true;
420       HasNonFunction = true;
421     }
422     I++;
423   }
424 
425   // C++ [basic.scope.hiding]p2:
426   //   A class name or enumeration name can be hidden by the name of
427   //   an object, function, or enumerator declared in the same
428   //   scope. If a class or enumeration name and an object, function,
429   //   or enumerator are declared in the same scope (in any order)
430   //   with the same name, the class or enumeration name is hidden
431   //   wherever the object, function, or enumerator name is visible.
432   // But it's still an error if there are distinct tag types found,
433   // even if they're not visible. (ref?)
434   if (HideTags && HasTag && !Ambiguous &&
435       (HasFunction || HasNonFunction || HasUnresolved)) {
436     if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
437          Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
438       Decls[UniqueTagIndex] = Decls[--N];
439     else
440       Ambiguous = true;
441   }
442 
443   Decls.set_size(N);
444 
445   if (HasNonFunction && (HasFunction || HasUnresolved))
446     Ambiguous = true;
447 
448   if (Ambiguous)
449     setAmbiguous(LookupResult::AmbiguousReference);
450   else if (HasUnresolved)
451     ResultKind = LookupResult::FoundUnresolvedValue;
452   else if (N > 1 || HasFunctionTemplate)
453     ResultKind = LookupResult::FoundOverloaded;
454   else
455     ResultKind = LookupResult::Found;
456 }
457 
addDeclsFromBasePaths(const CXXBasePaths & P)458 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
459   CXXBasePaths::const_paths_iterator I, E;
460   for (I = P.begin(), E = P.end(); I != E; ++I)
461     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
462          DE = I->Decls.end(); DI != DE; ++DI)
463       addDecl(*DI);
464 }
465 
setAmbiguousBaseSubobjects(CXXBasePaths & P)466 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
467   Paths = new CXXBasePaths;
468   Paths->swap(P);
469   addDeclsFromBasePaths(*Paths);
470   resolveKind();
471   setAmbiguous(AmbiguousBaseSubobjects);
472 }
473 
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)474 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
475   Paths = new CXXBasePaths;
476   Paths->swap(P);
477   addDeclsFromBasePaths(*Paths);
478   resolveKind();
479   setAmbiguous(AmbiguousBaseSubobjectTypes);
480 }
481 
print(raw_ostream & Out)482 void LookupResult::print(raw_ostream &Out) {
483   Out << Decls.size() << " result(s)";
484   if (isAmbiguous()) Out << ", ambiguous";
485   if (Paths) Out << ", base paths present";
486 
487   for (iterator I = begin(), E = end(); I != E; ++I) {
488     Out << "\n";
489     (*I)->print(Out, 2);
490   }
491 }
492 
493 /// \brief Lookup a builtin function, when name lookup would otherwise
494 /// fail.
LookupBuiltin(Sema & S,LookupResult & R)495 static bool LookupBuiltin(Sema &S, LookupResult &R) {
496   Sema::LookupNameKind NameKind = R.getLookupKind();
497 
498   // If we didn't find a use of this identifier, and if the identifier
499   // corresponds to a compiler builtin, create the decl object for the builtin
500   // now, injecting it into translation unit scope, and return it.
501   if (NameKind == Sema::LookupOrdinaryName ||
502       NameKind == Sema::LookupRedeclarationWithLinkage) {
503     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
504     if (II) {
505       // If this is a builtin on this (or all) targets, create the decl.
506       if (unsigned BuiltinID = II->getBuiltinID()) {
507         // In C++, we don't have any predefined library functions like
508         // 'malloc'. Instead, we'll just error.
509         if (S.getLangOpts().CPlusPlus &&
510             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
511           return false;
512 
513         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
514                                                  BuiltinID, S.TUScope,
515                                                  R.isForRedeclaration(),
516                                                  R.getNameLoc())) {
517           R.addDecl(D);
518           return true;
519         }
520 
521         if (R.isForRedeclaration()) {
522           // If we're redeclaring this function anyway, forget that
523           // this was a builtin at all.
524           S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
525         }
526 
527         return false;
528       }
529     }
530   }
531 
532   return false;
533 }
534 
535 /// \brief Determine whether we can declare a special member function within
536 /// the class at this point.
CanDeclareSpecialMemberFunction(const CXXRecordDecl * Class)537 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
538   // We need to have a definition for the class.
539   if (!Class->getDefinition() || Class->isDependentContext())
540     return false;
541 
542   // We can't be in the middle of defining the class.
543   return !Class->isBeingDefined();
544 }
545 
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)546 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
547   if (!CanDeclareSpecialMemberFunction(Class))
548     return;
549 
550   // If the default constructor has not yet been declared, do so now.
551   if (Class->needsImplicitDefaultConstructor())
552     DeclareImplicitDefaultConstructor(Class);
553 
554   // If the copy constructor has not yet been declared, do so now.
555   if (Class->needsImplicitCopyConstructor())
556     DeclareImplicitCopyConstructor(Class);
557 
558   // If the copy assignment operator has not yet been declared, do so now.
559   if (Class->needsImplicitCopyAssignment())
560     DeclareImplicitCopyAssignment(Class);
561 
562   if (getLangOpts().CPlusPlus11) {
563     // If the move constructor has not yet been declared, do so now.
564     if (Class->needsImplicitMoveConstructor())
565       DeclareImplicitMoveConstructor(Class); // might not actually do it
566 
567     // If the move assignment operator has not yet been declared, do so now.
568     if (Class->needsImplicitMoveAssignment())
569       DeclareImplicitMoveAssignment(Class); // might not actually do it
570   }
571 
572   // If the destructor has not yet been declared, do so now.
573   if (Class->needsImplicitDestructor())
574     DeclareImplicitDestructor(Class);
575 }
576 
577 /// \brief Determine whether this is the name of an implicitly-declared
578 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)579 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
580   switch (Name.getNameKind()) {
581   case DeclarationName::CXXConstructorName:
582   case DeclarationName::CXXDestructorName:
583     return true;
584 
585   case DeclarationName::CXXOperatorName:
586     return Name.getCXXOverloadedOperator() == OO_Equal;
587 
588   default:
589     break;
590   }
591 
592   return false;
593 }
594 
595 /// \brief If there are any implicit member functions with the given name
596 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,const DeclContext * DC)597 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
598                                                    DeclarationName Name,
599                                                    const DeclContext *DC) {
600   if (!DC)
601     return;
602 
603   switch (Name.getNameKind()) {
604   case DeclarationName::CXXConstructorName:
605     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
606       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
607         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
608         if (Record->needsImplicitDefaultConstructor())
609           S.DeclareImplicitDefaultConstructor(Class);
610         if (Record->needsImplicitCopyConstructor())
611           S.DeclareImplicitCopyConstructor(Class);
612         if (S.getLangOpts().CPlusPlus11 &&
613             Record->needsImplicitMoveConstructor())
614           S.DeclareImplicitMoveConstructor(Class);
615       }
616     break;
617 
618   case DeclarationName::CXXDestructorName:
619     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
620       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
621           CanDeclareSpecialMemberFunction(Record))
622         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
623     break;
624 
625   case DeclarationName::CXXOperatorName:
626     if (Name.getCXXOverloadedOperator() != OO_Equal)
627       break;
628 
629     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
630       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
631         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
632         if (Record->needsImplicitCopyAssignment())
633           S.DeclareImplicitCopyAssignment(Class);
634         if (S.getLangOpts().CPlusPlus11 &&
635             Record->needsImplicitMoveAssignment())
636           S.DeclareImplicitMoveAssignment(Class);
637       }
638     }
639     break;
640 
641   default:
642     break;
643   }
644 }
645 
646 // Adds all qualifying matches for a name within a decl context to the
647 // given lookup result.  Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)648 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
649   bool Found = false;
650 
651   // Lazily declare C++ special member functions.
652   if (S.getLangOpts().CPlusPlus)
653     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
654 
655   // Perform lookup into this declaration context.
656   DeclContext::lookup_const_result DR = DC->lookup(R.getLookupName());
657   for (DeclContext::lookup_const_iterator I = DR.begin(), E = DR.end(); I != E;
658        ++I) {
659     NamedDecl *D = *I;
660     if ((D = R.getAcceptableDecl(D))) {
661       R.addDecl(D);
662       Found = true;
663     }
664   }
665 
666   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
667     return true;
668 
669   if (R.getLookupName().getNameKind()
670         != DeclarationName::CXXConversionFunctionName ||
671       R.getLookupName().getCXXNameType()->isDependentType() ||
672       !isa<CXXRecordDecl>(DC))
673     return Found;
674 
675   // C++ [temp.mem]p6:
676   //   A specialization of a conversion function template is not found by
677   //   name lookup. Instead, any conversion function templates visible in the
678   //   context of the use are considered. [...]
679   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
680   if (!Record->isCompleteDefinition())
681     return Found;
682 
683   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
684          UEnd = Record->conversion_end(); U != UEnd; ++U) {
685     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
686     if (!ConvTemplate)
687       continue;
688 
689     // When we're performing lookup for the purposes of redeclaration, just
690     // add the conversion function template. When we deduce template
691     // arguments for specializations, we'll end up unifying the return
692     // type of the new declaration with the type of the function template.
693     if (R.isForRedeclaration()) {
694       R.addDecl(ConvTemplate);
695       Found = true;
696       continue;
697     }
698 
699     // C++ [temp.mem]p6:
700     //   [...] For each such operator, if argument deduction succeeds
701     //   (14.9.2.3), the resulting specialization is used as if found by
702     //   name lookup.
703     //
704     // When referencing a conversion function for any purpose other than
705     // a redeclaration (such that we'll be building an expression with the
706     // result), perform template argument deduction and place the
707     // specialization into the result set. We do this to avoid forcing all
708     // callers to perform special deduction for conversion functions.
709     TemplateDeductionInfo Info(R.getNameLoc());
710     FunctionDecl *Specialization = 0;
711 
712     const FunctionProtoType *ConvProto
713       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
714     assert(ConvProto && "Nonsensical conversion function template type");
715 
716     // Compute the type of the function that we would expect the conversion
717     // function to have, if it were to match the name given.
718     // FIXME: Calling convention!
719     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
720     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
721     EPI.ExceptionSpecType = EST_None;
722     EPI.NumExceptions = 0;
723     QualType ExpectedType
724       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
725                                             ArrayRef<QualType>(), EPI);
726 
727     // Perform template argument deduction against the type that we would
728     // expect the function to have.
729     if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
730                                             Specialization, Info)
731           == Sema::TDK_Success) {
732       R.addDecl(Specialization);
733       Found = true;
734     }
735   }
736 
737   return Found;
738 }
739 
740 // Performs C++ unqualified lookup into the given file context.
741 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)742 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
743                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
744 
745   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
746 
747   // Perform direct name lookup into the LookupCtx.
748   bool Found = LookupDirect(S, R, NS);
749 
750   // Perform direct name lookup into the namespaces nominated by the
751   // using directives whose common ancestor is this namespace.
752   UnqualUsingDirectiveSet::const_iterator UI, UEnd;
753   llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
754 
755   for (; UI != UEnd; ++UI)
756     if (LookupDirect(S, R, UI->getNominatedNamespace()))
757       Found = true;
758 
759   R.resolveKind();
760 
761   return Found;
762 }
763 
isNamespaceOrTranslationUnitScope(Scope * S)764 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
765   if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
766     return Ctx->isFileContext();
767   return false;
768 }
769 
770 // Find the next outer declaration context from this scope. This
771 // routine actually returns the semantic outer context, which may
772 // differ from the lexical context (encoded directly in the Scope
773 // stack) when we are parsing a member of a class template. In this
774 // case, the second element of the pair will be true, to indicate that
775 // name lookup should continue searching in this semantic context when
776 // it leaves the current template parameter scope.
findOuterContext(Scope * S)777 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
778   DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
779   DeclContext *Lexical = 0;
780   for (Scope *OuterS = S->getParent(); OuterS;
781        OuterS = OuterS->getParent()) {
782     if (OuterS->getEntity()) {
783       Lexical = static_cast<DeclContext *>(OuterS->getEntity());
784       break;
785     }
786   }
787 
788   // C++ [temp.local]p8:
789   //   In the definition of a member of a class template that appears
790   //   outside of the namespace containing the class template
791   //   definition, the name of a template-parameter hides the name of
792   //   a member of this namespace.
793   //
794   // Example:
795   //
796   //   namespace N {
797   //     class C { };
798   //
799   //     template<class T> class B {
800   //       void f(T);
801   //     };
802   //   }
803   //
804   //   template<class C> void N::B<C>::f(C) {
805   //     C b;  // C is the template parameter, not N::C
806   //   }
807   //
808   // In this example, the lexical context we return is the
809   // TranslationUnit, while the semantic context is the namespace N.
810   if (!Lexical || !DC || !S->getParent() ||
811       !S->getParent()->isTemplateParamScope())
812     return std::make_pair(Lexical, false);
813 
814   // Find the outermost template parameter scope.
815   // For the example, this is the scope for the template parameters of
816   // template<class C>.
817   Scope *OutermostTemplateScope = S->getParent();
818   while (OutermostTemplateScope->getParent() &&
819          OutermostTemplateScope->getParent()->isTemplateParamScope())
820     OutermostTemplateScope = OutermostTemplateScope->getParent();
821 
822   // Find the namespace context in which the original scope occurs. In
823   // the example, this is namespace N.
824   DeclContext *Semantic = DC;
825   while (!Semantic->isFileContext())
826     Semantic = Semantic->getParent();
827 
828   // Find the declaration context just outside of the template
829   // parameter scope. This is the context in which the template is
830   // being lexically declaration (a namespace context). In the
831   // example, this is the global scope.
832   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
833       Lexical->Encloses(Semantic))
834     return std::make_pair(Semantic, true);
835 
836   return std::make_pair(Lexical, false);
837 }
838 
CppLookupName(LookupResult & R,Scope * S)839 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
840   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
841 
842   DeclarationName Name = R.getLookupName();
843 
844   // If this is the name of an implicitly-declared special member function,
845   // go through the scope stack to implicitly declare
846   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
847     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
848       if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
849         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
850   }
851 
852   // Implicitly declare member functions with the name we're looking for, if in
853   // fact we are in a scope where it matters.
854 
855   Scope *Initial = S;
856   IdentifierResolver::iterator
857     I = IdResolver.begin(Name),
858     IEnd = IdResolver.end();
859 
860   // First we lookup local scope.
861   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
862   // ...During unqualified name lookup (3.4.1), the names appear as if
863   // they were declared in the nearest enclosing namespace which contains
864   // both the using-directive and the nominated namespace.
865   // [Note: in this context, "contains" means "contains directly or
866   // indirectly".
867   //
868   // For example:
869   // namespace A { int i; }
870   // void foo() {
871   //   int i;
872   //   {
873   //     using namespace A;
874   //     ++i; // finds local 'i', A::i appears at global scope
875   //   }
876   // }
877   //
878   DeclContext *OutsideOfTemplateParamDC = 0;
879   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
880     DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
881 
882     // Check whether the IdResolver has anything in this scope.
883     bool Found = false;
884     for (; I != IEnd && S->isDeclScope(*I); ++I) {
885       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
886         Found = true;
887         R.addDecl(ND);
888       }
889     }
890     if (Found) {
891       R.resolveKind();
892       if (S->isClassScope())
893         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
894           R.setNamingClass(Record);
895       return true;
896     }
897 
898     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
899         S->getParent() && !S->getParent()->isTemplateParamScope()) {
900       // We've just searched the last template parameter scope and
901       // found nothing, so look into the contexts between the
902       // lexical and semantic declaration contexts returned by
903       // findOuterContext(). This implements the name lookup behavior
904       // of C++ [temp.local]p8.
905       Ctx = OutsideOfTemplateParamDC;
906       OutsideOfTemplateParamDC = 0;
907     }
908 
909     if (Ctx) {
910       DeclContext *OuterCtx;
911       bool SearchAfterTemplateScope;
912       llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
913       if (SearchAfterTemplateScope)
914         OutsideOfTemplateParamDC = OuterCtx;
915 
916       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
917         // We do not directly look into transparent contexts, since
918         // those entities will be found in the nearest enclosing
919         // non-transparent context.
920         if (Ctx->isTransparentContext())
921           continue;
922 
923         // We do not look directly into function or method contexts,
924         // since all of the local variables and parameters of the
925         // function/method are present within the Scope.
926         if (Ctx->isFunctionOrMethod()) {
927           // If we have an Objective-C instance method, look for ivars
928           // in the corresponding interface.
929           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
930             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
931               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
932                 ObjCInterfaceDecl *ClassDeclared;
933                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
934                                                  Name.getAsIdentifierInfo(),
935                                                              ClassDeclared)) {
936                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
937                     R.addDecl(ND);
938                     R.resolveKind();
939                     return true;
940                   }
941                 }
942               }
943           }
944 
945           continue;
946         }
947 
948         // Perform qualified name lookup into this context.
949         // FIXME: In some cases, we know that every name that could be found by
950         // this qualified name lookup will also be on the identifier chain. For
951         // example, inside a class without any base classes, we never need to
952         // perform qualified lookup because all of the members are on top of the
953         // identifier chain.
954         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
955           return true;
956       }
957     }
958   }
959 
960   // Stop if we ran out of scopes.
961   // FIXME:  This really, really shouldn't be happening.
962   if (!S) return false;
963 
964   // If we are looking for members, no need to look into global/namespace scope.
965   if (R.getLookupKind() == LookupMemberName)
966     return false;
967 
968   // Collect UsingDirectiveDecls in all scopes, and recursively all
969   // nominated namespaces by those using-directives.
970   //
971   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
972   // don't build it for each lookup!
973 
974   UnqualUsingDirectiveSet UDirs;
975   UDirs.visitScopeChain(Initial, S);
976   UDirs.done();
977 
978   // Lookup namespace scope, and global scope.
979   // Unqualified name lookup in C++ requires looking into scopes
980   // that aren't strictly lexical, and therefore we walk through the
981   // context as well as walking through the scopes.
982 
983   for (; S; S = S->getParent()) {
984     // Check whether the IdResolver has anything in this scope.
985     bool Found = false;
986     for (; I != IEnd && S->isDeclScope(*I); ++I) {
987       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
988         // We found something.  Look for anything else in our scope
989         // with this same name and in an acceptable identifier
990         // namespace, so that we can construct an overload set if we
991         // need to.
992         Found = true;
993         R.addDecl(ND);
994       }
995     }
996 
997     if (Found && S->isTemplateParamScope()) {
998       R.resolveKind();
999       return true;
1000     }
1001 
1002     DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1003     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1004         S->getParent() && !S->getParent()->isTemplateParamScope()) {
1005       // We've just searched the last template parameter scope and
1006       // found nothing, so look into the contexts between the
1007       // lexical and semantic declaration contexts returned by
1008       // findOuterContext(). This implements the name lookup behavior
1009       // of C++ [temp.local]p8.
1010       Ctx = OutsideOfTemplateParamDC;
1011       OutsideOfTemplateParamDC = 0;
1012     }
1013 
1014     if (Ctx) {
1015       DeclContext *OuterCtx;
1016       bool SearchAfterTemplateScope;
1017       llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1018       if (SearchAfterTemplateScope)
1019         OutsideOfTemplateParamDC = OuterCtx;
1020 
1021       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1022         // We do not directly look into transparent contexts, since
1023         // those entities will be found in the nearest enclosing
1024         // non-transparent context.
1025         if (Ctx->isTransparentContext())
1026           continue;
1027 
1028         // If we have a context, and it's not a context stashed in the
1029         // template parameter scope for an out-of-line definition, also
1030         // look into that context.
1031         if (!(Found && S && S->isTemplateParamScope())) {
1032           assert(Ctx->isFileContext() &&
1033               "We should have been looking only at file context here already.");
1034 
1035           // Look into context considering using-directives.
1036           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1037             Found = true;
1038         }
1039 
1040         if (Found) {
1041           R.resolveKind();
1042           return true;
1043         }
1044 
1045         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1046           return false;
1047       }
1048     }
1049 
1050     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1051       return false;
1052   }
1053 
1054   return !R.empty();
1055 }
1056 
1057 /// \brief Retrieve the visible declaration corresponding to D, if any.
1058 ///
1059 /// This routine determines whether the declaration D is visible in the current
1060 /// module, with the current imports. If not, it checks whether any
1061 /// redeclaration of D is visible, and if so, returns that declaration.
1062 ///
1063 /// \returns D, or a visible previous declaration of D, whichever is more recent
1064 /// and visible. If no declaration of D is visible, returns null.
getVisibleDecl(NamedDecl * D)1065 static NamedDecl *getVisibleDecl(NamedDecl *D) {
1066   if (LookupResult::isVisible(D))
1067     return D;
1068 
1069   for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end();
1070        RD != RDEnd; ++RD) {
1071     if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) {
1072       if (LookupResult::isVisible(ND))
1073         return ND;
1074     }
1075   }
1076 
1077   return 0;
1078 }
1079 
1080 /// @brief Perform unqualified name lookup starting from a given
1081 /// scope.
1082 ///
1083 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1084 /// used to find names within the current scope. For example, 'x' in
1085 /// @code
1086 /// int x;
1087 /// int f() {
1088 ///   return x; // unqualified name look finds 'x' in the global scope
1089 /// }
1090 /// @endcode
1091 ///
1092 /// Different lookup criteria can find different names. For example, a
1093 /// particular scope can have both a struct and a function of the same
1094 /// name, and each can be found by certain lookup criteria. For more
1095 /// information about lookup criteria, see the documentation for the
1096 /// class LookupCriteria.
1097 ///
1098 /// @param S        The scope from which unqualified name lookup will
1099 /// begin. If the lookup criteria permits, name lookup may also search
1100 /// in the parent scopes.
1101 ///
1102 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1103 /// look up and the lookup kind), and is updated with the results of lookup
1104 /// including zero or more declarations and possibly additional information
1105 /// used to diagnose ambiguities.
1106 ///
1107 /// @returns \c true if lookup succeeded and false otherwise.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1108 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1109   DeclarationName Name = R.getLookupName();
1110   if (!Name) return false;
1111 
1112   LookupNameKind NameKind = R.getLookupKind();
1113 
1114   if (!getLangOpts().CPlusPlus) {
1115     // Unqualified name lookup in C/Objective-C is purely lexical, so
1116     // search in the declarations attached to the name.
1117     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1118       // Find the nearest non-transparent declaration scope.
1119       while (!(S->getFlags() & Scope::DeclScope) ||
1120              (S->getEntity() &&
1121               static_cast<DeclContext *>(S->getEntity())
1122                 ->isTransparentContext()))
1123         S = S->getParent();
1124     }
1125 
1126     unsigned IDNS = R.getIdentifierNamespace();
1127 
1128     // Scan up the scope chain looking for a decl that matches this
1129     // identifier that is in the appropriate namespace.  This search
1130     // should not take long, as shadowing of names is uncommon, and
1131     // deep shadowing is extremely uncommon.
1132     bool LeftStartingScope = false;
1133 
1134     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1135                                    IEnd = IdResolver.end();
1136          I != IEnd; ++I)
1137       if ((*I)->isInIdentifierNamespace(IDNS)) {
1138         if (NameKind == LookupRedeclarationWithLinkage) {
1139           // Determine whether this (or a previous) declaration is
1140           // out-of-scope.
1141           if (!LeftStartingScope && !S->isDeclScope(*I))
1142             LeftStartingScope = true;
1143 
1144           // If we found something outside of our starting scope that
1145           // does not have linkage, skip it.
1146           if (LeftStartingScope && !((*I)->hasLinkage()))
1147             continue;
1148         }
1149         else if (NameKind == LookupObjCImplicitSelfParam &&
1150                  !isa<ImplicitParamDecl>(*I))
1151           continue;
1152 
1153         // If this declaration is module-private and it came from an AST
1154         // file, we can't see it.
1155         NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I);
1156         if (!D)
1157           continue;
1158 
1159         R.addDecl(D);
1160 
1161         // Check whether there are any other declarations with the same name
1162         // and in the same scope.
1163         if (I != IEnd) {
1164           // Find the scope in which this declaration was declared (if it
1165           // actually exists in a Scope).
1166           while (S && !S->isDeclScope(D))
1167             S = S->getParent();
1168 
1169           // If the scope containing the declaration is the translation unit,
1170           // then we'll need to perform our checks based on the matching
1171           // DeclContexts rather than matching scopes.
1172           if (S && isNamespaceOrTranslationUnitScope(S))
1173             S = 0;
1174 
1175           // Compute the DeclContext, if we need it.
1176           DeclContext *DC = 0;
1177           if (!S)
1178             DC = (*I)->getDeclContext()->getRedeclContext();
1179 
1180           IdentifierResolver::iterator LastI = I;
1181           for (++LastI; LastI != IEnd; ++LastI) {
1182             if (S) {
1183               // Match based on scope.
1184               if (!S->isDeclScope(*LastI))
1185                 break;
1186             } else {
1187               // Match based on DeclContext.
1188               DeclContext *LastDC
1189                 = (*LastI)->getDeclContext()->getRedeclContext();
1190               if (!LastDC->Equals(DC))
1191                 break;
1192             }
1193 
1194             // If the declaration isn't in the right namespace, skip it.
1195             if (!(*LastI)->isInIdentifierNamespace(IDNS))
1196               continue;
1197 
1198             D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI);
1199             if (D)
1200               R.addDecl(D);
1201           }
1202 
1203           R.resolveKind();
1204         }
1205         return true;
1206       }
1207   } else {
1208     // Perform C++ unqualified name lookup.
1209     if (CppLookupName(R, S))
1210       return true;
1211   }
1212 
1213   // If we didn't find a use of this identifier, and if the identifier
1214   // corresponds to a compiler builtin, create the decl object for the builtin
1215   // now, injecting it into translation unit scope, and return it.
1216   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1217     return true;
1218 
1219   // If we didn't find a use of this identifier, the ExternalSource
1220   // may be able to handle the situation.
1221   // Note: some lookup failures are expected!
1222   // See e.g. R.isForRedeclaration().
1223   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1224 }
1225 
1226 /// @brief Perform qualified name lookup in the namespaces nominated by
1227 /// using directives by the given context.
1228 ///
1229 /// C++98 [namespace.qual]p2:
1230 ///   Given X::m (where X is a user-declared namespace), or given \::m
1231 ///   (where X is the global namespace), let S be the set of all
1232 ///   declarations of m in X and in the transitive closure of all
1233 ///   namespaces nominated by using-directives in X and its used
1234 ///   namespaces, except that using-directives are ignored in any
1235 ///   namespace, including X, directly containing one or more
1236 ///   declarations of m. No namespace is searched more than once in
1237 ///   the lookup of a name. If S is the empty set, the program is
1238 ///   ill-formed. Otherwise, if S has exactly one member, or if the
1239 ///   context of the reference is a using-declaration
1240 ///   (namespace.udecl), S is the required set of declarations of
1241 ///   m. Otherwise if the use of m is not one that allows a unique
1242 ///   declaration to be chosen from S, the program is ill-formed.
1243 ///
1244 /// C++98 [namespace.qual]p5:
1245 ///   During the lookup of a qualified namespace member name, if the
1246 ///   lookup finds more than one declaration of the member, and if one
1247 ///   declaration introduces a class name or enumeration name and the
1248 ///   other declarations either introduce the same object, the same
1249 ///   enumerator or a set of functions, the non-type name hides the
1250 ///   class or enumeration name if and only if the declarations are
1251 ///   from the same namespace; otherwise (the declarations are from
1252 ///   different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)1253 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1254                                                  DeclContext *StartDC) {
1255   assert(StartDC->isFileContext() && "start context is not a file context");
1256 
1257   DeclContext::udir_iterator I = StartDC->using_directives_begin();
1258   DeclContext::udir_iterator E = StartDC->using_directives_end();
1259 
1260   if (I == E) return false;
1261 
1262   // We have at least added all these contexts to the queue.
1263   llvm::SmallPtrSet<DeclContext*, 8> Visited;
1264   Visited.insert(StartDC);
1265 
1266   // We have not yet looked into these namespaces, much less added
1267   // their "using-children" to the queue.
1268   SmallVector<NamespaceDecl*, 8> Queue;
1269 
1270   // We have already looked into the initial namespace; seed the queue
1271   // with its using-children.
1272   for (; I != E; ++I) {
1273     NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1274     if (Visited.insert(ND))
1275       Queue.push_back(ND);
1276   }
1277 
1278   // The easiest way to implement the restriction in [namespace.qual]p5
1279   // is to check whether any of the individual results found a tag
1280   // and, if so, to declare an ambiguity if the final result is not
1281   // a tag.
1282   bool FoundTag = false;
1283   bool FoundNonTag = false;
1284 
1285   LookupResult LocalR(LookupResult::Temporary, R);
1286 
1287   bool Found = false;
1288   while (!Queue.empty()) {
1289     NamespaceDecl *ND = Queue.back();
1290     Queue.pop_back();
1291 
1292     // We go through some convolutions here to avoid copying results
1293     // between LookupResults.
1294     bool UseLocal = !R.empty();
1295     LookupResult &DirectR = UseLocal ? LocalR : R;
1296     bool FoundDirect = LookupDirect(S, DirectR, ND);
1297 
1298     if (FoundDirect) {
1299       // First do any local hiding.
1300       DirectR.resolveKind();
1301 
1302       // If the local result is a tag, remember that.
1303       if (DirectR.isSingleTagDecl())
1304         FoundTag = true;
1305       else
1306         FoundNonTag = true;
1307 
1308       // Append the local results to the total results if necessary.
1309       if (UseLocal) {
1310         R.addAllDecls(LocalR);
1311         LocalR.clear();
1312       }
1313     }
1314 
1315     // If we find names in this namespace, ignore its using directives.
1316     if (FoundDirect) {
1317       Found = true;
1318       continue;
1319     }
1320 
1321     for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1322       NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1323       if (Visited.insert(Nom))
1324         Queue.push_back(Nom);
1325     }
1326   }
1327 
1328   if (Found) {
1329     if (FoundTag && FoundNonTag)
1330       R.setAmbiguousQualifiedTagHiding();
1331     else
1332       R.resolveKind();
1333   }
1334 
1335   return Found;
1336 }
1337 
1338 /// \brief Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)1339 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1340                             CXXBasePath &Path,
1341                             void *Name) {
1342   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1343 
1344   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1345   Path.Decls = BaseRecord->lookup(N);
1346   return !Path.Decls.empty();
1347 }
1348 
1349 /// \brief Determine whether the given set of member declarations contains only
1350 /// static members, nested types, and enumerators.
1351 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)1352 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1353   Decl *D = (*First)->getUnderlyingDecl();
1354   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1355     return true;
1356 
1357   if (isa<CXXMethodDecl>(D)) {
1358     // Determine whether all of the methods are static.
1359     bool AllMethodsAreStatic = true;
1360     for(; First != Last; ++First) {
1361       D = (*First)->getUnderlyingDecl();
1362 
1363       if (!isa<CXXMethodDecl>(D)) {
1364         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1365         break;
1366       }
1367 
1368       if (!cast<CXXMethodDecl>(D)->isStatic()) {
1369         AllMethodsAreStatic = false;
1370         break;
1371       }
1372     }
1373 
1374     if (AllMethodsAreStatic)
1375       return true;
1376   }
1377 
1378   return false;
1379 }
1380 
1381 /// \brief Perform qualified name lookup into a given context.
1382 ///
1383 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1384 /// names when the context of those names is explicit specified, e.g.,
1385 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1386 ///
1387 /// Different lookup criteria can find different names. For example, a
1388 /// particular scope can have both a struct and a function of the same
1389 /// name, and each can be found by certain lookup criteria. For more
1390 /// information about lookup criteria, see the documentation for the
1391 /// class LookupCriteria.
1392 ///
1393 /// \param R captures both the lookup criteria and any lookup results found.
1394 ///
1395 /// \param LookupCtx The context in which qualified name lookup will
1396 /// search. If the lookup criteria permits, name lookup may also search
1397 /// in the parent contexts or (for C++ classes) base classes.
1398 ///
1399 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1400 /// occurs as part of unqualified name lookup.
1401 ///
1402 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)1403 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1404                                bool InUnqualifiedLookup) {
1405   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1406 
1407   if (!R.getLookupName())
1408     return false;
1409 
1410   // Make sure that the declaration context is complete.
1411   assert((!isa<TagDecl>(LookupCtx) ||
1412           LookupCtx->isDependentContext() ||
1413           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1414           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1415          "Declaration context must already be complete!");
1416 
1417   // Perform qualified name lookup into the LookupCtx.
1418   if (LookupDirect(*this, R, LookupCtx)) {
1419     R.resolveKind();
1420     if (isa<CXXRecordDecl>(LookupCtx))
1421       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1422     return true;
1423   }
1424 
1425   // Don't descend into implied contexts for redeclarations.
1426   // C++98 [namespace.qual]p6:
1427   //   In a declaration for a namespace member in which the
1428   //   declarator-id is a qualified-id, given that the qualified-id
1429   //   for the namespace member has the form
1430   //     nested-name-specifier unqualified-id
1431   //   the unqualified-id shall name a member of the namespace
1432   //   designated by the nested-name-specifier.
1433   // See also [class.mfct]p5 and [class.static.data]p2.
1434   if (R.isForRedeclaration())
1435     return false;
1436 
1437   // If this is a namespace, look it up in the implied namespaces.
1438   if (LookupCtx->isFileContext())
1439     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1440 
1441   // If this isn't a C++ class, we aren't allowed to look into base
1442   // classes, we're done.
1443   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1444   if (!LookupRec || !LookupRec->getDefinition())
1445     return false;
1446 
1447   // If we're performing qualified name lookup into a dependent class,
1448   // then we are actually looking into a current instantiation. If we have any
1449   // dependent base classes, then we either have to delay lookup until
1450   // template instantiation time (at which point all bases will be available)
1451   // or we have to fail.
1452   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1453       LookupRec->hasAnyDependentBases()) {
1454     R.setNotFoundInCurrentInstantiation();
1455     return false;
1456   }
1457 
1458   // Perform lookup into our base classes.
1459   CXXBasePaths Paths;
1460   Paths.setOrigin(LookupRec);
1461 
1462   // Look for this member in our base classes
1463   CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1464   switch (R.getLookupKind()) {
1465     case LookupObjCImplicitSelfParam:
1466     case LookupOrdinaryName:
1467     case LookupMemberName:
1468     case LookupRedeclarationWithLinkage:
1469       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1470       break;
1471 
1472     case LookupTagName:
1473       BaseCallback = &CXXRecordDecl::FindTagMember;
1474       break;
1475 
1476     case LookupAnyName:
1477       BaseCallback = &LookupAnyMember;
1478       break;
1479 
1480     case LookupUsingDeclName:
1481       // This lookup is for redeclarations only.
1482 
1483     case LookupOperatorName:
1484     case LookupNamespaceName:
1485     case LookupObjCProtocolName:
1486     case LookupLabel:
1487       // These lookups will never find a member in a C++ class (or base class).
1488       return false;
1489 
1490     case LookupNestedNameSpecifierName:
1491       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1492       break;
1493   }
1494 
1495   if (!LookupRec->lookupInBases(BaseCallback,
1496                                 R.getLookupName().getAsOpaquePtr(), Paths))
1497     return false;
1498 
1499   R.setNamingClass(LookupRec);
1500 
1501   // C++ [class.member.lookup]p2:
1502   //   [...] If the resulting set of declarations are not all from
1503   //   sub-objects of the same type, or the set has a nonstatic member
1504   //   and includes members from distinct sub-objects, there is an
1505   //   ambiguity and the program is ill-formed. Otherwise that set is
1506   //   the result of the lookup.
1507   QualType SubobjectType;
1508   int SubobjectNumber = 0;
1509   AccessSpecifier SubobjectAccess = AS_none;
1510 
1511   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1512        Path != PathEnd; ++Path) {
1513     const CXXBasePathElement &PathElement = Path->back();
1514 
1515     // Pick the best (i.e. most permissive i.e. numerically lowest) access
1516     // across all paths.
1517     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1518 
1519     // Determine whether we're looking at a distinct sub-object or not.
1520     if (SubobjectType.isNull()) {
1521       // This is the first subobject we've looked at. Record its type.
1522       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1523       SubobjectNumber = PathElement.SubobjectNumber;
1524       continue;
1525     }
1526 
1527     if (SubobjectType
1528                  != Context.getCanonicalType(PathElement.Base->getType())) {
1529       // We found members of the given name in two subobjects of
1530       // different types. If the declaration sets aren't the same, this
1531       // this lookup is ambiguous.
1532       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
1533         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1534         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
1535         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
1536 
1537         while (FirstD != FirstPath->Decls.end() &&
1538                CurrentD != Path->Decls.end()) {
1539          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1540              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1541            break;
1542 
1543           ++FirstD;
1544           ++CurrentD;
1545         }
1546 
1547         if (FirstD == FirstPath->Decls.end() &&
1548             CurrentD == Path->Decls.end())
1549           continue;
1550       }
1551 
1552       R.setAmbiguousBaseSubobjectTypes(Paths);
1553       return true;
1554     }
1555 
1556     if (SubobjectNumber != PathElement.SubobjectNumber) {
1557       // We have a different subobject of the same type.
1558 
1559       // C++ [class.member.lookup]p5:
1560       //   A static member, a nested type or an enumerator defined in
1561       //   a base class T can unambiguously be found even if an object
1562       //   has more than one base class subobject of type T.
1563       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
1564         continue;
1565 
1566       // We have found a nonstatic member name in multiple, distinct
1567       // subobjects. Name lookup is ambiguous.
1568       R.setAmbiguousBaseSubobjects(Paths);
1569       return true;
1570     }
1571   }
1572 
1573   // Lookup in a base class succeeded; return these results.
1574 
1575   DeclContext::lookup_result DR = Paths.front().Decls;
1576   for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E; ++I) {
1577     NamedDecl *D = *I;
1578     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1579                                                     D->getAccess());
1580     R.addDecl(D, AS);
1581   }
1582   R.resolveKind();
1583   return true;
1584 }
1585 
1586 /// @brief Performs name lookup for a name that was parsed in the
1587 /// source code, and may contain a C++ scope specifier.
1588 ///
1589 /// This routine is a convenience routine meant to be called from
1590 /// contexts that receive a name and an optional C++ scope specifier
1591 /// (e.g., "N::M::x"). It will then perform either qualified or
1592 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1593 /// respectively) on the given name and return those results.
1594 ///
1595 /// @param S        The scope from which unqualified name lookup will
1596 /// begin.
1597 ///
1598 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1599 ///
1600 /// @param EnteringContext Indicates whether we are going to enter the
1601 /// context of the scope-specifier SS (if present).
1602 ///
1603 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)1604 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1605                             bool AllowBuiltinCreation, bool EnteringContext) {
1606   if (SS && SS->isInvalid()) {
1607     // When the scope specifier is invalid, don't even look for
1608     // anything.
1609     return false;
1610   }
1611 
1612   if (SS && SS->isSet()) {
1613     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1614       // We have resolved the scope specifier to a particular declaration
1615       // contex, and will perform name lookup in that context.
1616       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1617         return false;
1618 
1619       R.setContextRange(SS->getRange());
1620       return LookupQualifiedName(R, DC);
1621     }
1622 
1623     // We could not resolve the scope specified to a specific declaration
1624     // context, which means that SS refers to an unknown specialization.
1625     // Name lookup can't find anything in this case.
1626     R.setNotFoundInCurrentInstantiation();
1627     R.setContextRange(SS->getRange());
1628     return false;
1629   }
1630 
1631   // Perform unqualified name lookup starting in the given scope.
1632   return LookupName(R, S, AllowBuiltinCreation);
1633 }
1634 
1635 
1636 /// \brief Produce a diagnostic describing the ambiguity that resulted
1637 /// from name lookup.
1638 ///
1639 /// \param Result The result of the ambiguous lookup to be diagnosed.
1640 ///
1641 /// \returns true
DiagnoseAmbiguousLookup(LookupResult & Result)1642 bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1643   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1644 
1645   DeclarationName Name = Result.getLookupName();
1646   SourceLocation NameLoc = Result.getNameLoc();
1647   SourceRange LookupRange = Result.getContextRange();
1648 
1649   switch (Result.getAmbiguityKind()) {
1650   case LookupResult::AmbiguousBaseSubobjects: {
1651     CXXBasePaths *Paths = Result.getBasePaths();
1652     QualType SubobjectType = Paths->front().back().Base->getType();
1653     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1654       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1655       << LookupRange;
1656 
1657     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
1658     while (isa<CXXMethodDecl>(*Found) &&
1659            cast<CXXMethodDecl>(*Found)->isStatic())
1660       ++Found;
1661 
1662     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1663 
1664     return true;
1665   }
1666 
1667   case LookupResult::AmbiguousBaseSubobjectTypes: {
1668     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1669       << Name << LookupRange;
1670 
1671     CXXBasePaths *Paths = Result.getBasePaths();
1672     std::set<Decl *> DeclsPrinted;
1673     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1674                                       PathEnd = Paths->end();
1675          Path != PathEnd; ++Path) {
1676       Decl *D = Path->Decls.front();
1677       if (DeclsPrinted.insert(D).second)
1678         Diag(D->getLocation(), diag::note_ambiguous_member_found);
1679     }
1680 
1681     return true;
1682   }
1683 
1684   case LookupResult::AmbiguousTagHiding: {
1685     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1686 
1687     llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1688 
1689     LookupResult::iterator DI, DE = Result.end();
1690     for (DI = Result.begin(); DI != DE; ++DI)
1691       if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1692         TagDecls.insert(TD);
1693         Diag(TD->getLocation(), diag::note_hidden_tag);
1694       }
1695 
1696     for (DI = Result.begin(); DI != DE; ++DI)
1697       if (!isa<TagDecl>(*DI))
1698         Diag((*DI)->getLocation(), diag::note_hiding_object);
1699 
1700     // For recovery purposes, go ahead and implement the hiding.
1701     LookupResult::Filter F = Result.makeFilter();
1702     while (F.hasNext()) {
1703       if (TagDecls.count(F.next()))
1704         F.erase();
1705     }
1706     F.done();
1707 
1708     return true;
1709   }
1710 
1711   case LookupResult::AmbiguousReference: {
1712     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1713 
1714     LookupResult::iterator DI = Result.begin(), DE = Result.end();
1715     for (; DI != DE; ++DI)
1716       Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1717 
1718     return true;
1719   }
1720   }
1721 
1722   llvm_unreachable("unknown ambiguity kind");
1723 }
1724 
1725 namespace {
1726   struct AssociatedLookup {
AssociatedLookup__anondc90a4f70211::AssociatedLookup1727     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1728                      Sema::AssociatedNamespaceSet &Namespaces,
1729                      Sema::AssociatedClassSet &Classes)
1730       : S(S), Namespaces(Namespaces), Classes(Classes),
1731         InstantiationLoc(InstantiationLoc) {
1732     }
1733 
1734     Sema &S;
1735     Sema::AssociatedNamespaceSet &Namespaces;
1736     Sema::AssociatedClassSet &Classes;
1737     SourceLocation InstantiationLoc;
1738   };
1739 }
1740 
1741 static void
1742 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1743 
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)1744 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1745                                       DeclContext *Ctx) {
1746   // Add the associated namespace for this class.
1747 
1748   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1749   // be a locally scoped record.
1750 
1751   // We skip out of inline namespaces. The innermost non-inline namespace
1752   // contains all names of all its nested inline namespaces anyway, so we can
1753   // replace the entire inline namespace tree with its root.
1754   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1755          Ctx->isInlineNamespace())
1756     Ctx = Ctx->getParent();
1757 
1758   if (Ctx->isFileContext())
1759     Namespaces.insert(Ctx->getPrimaryContext());
1760 }
1761 
1762 // \brief Add the associated classes and namespaces for argument-dependent
1763 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1764 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)1765 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1766                                   const TemplateArgument &Arg) {
1767   // C++ [basic.lookup.koenig]p2, last bullet:
1768   //   -- [...] ;
1769   switch (Arg.getKind()) {
1770     case TemplateArgument::Null:
1771       break;
1772 
1773     case TemplateArgument::Type:
1774       // [...] the namespaces and classes associated with the types of the
1775       // template arguments provided for template type parameters (excluding
1776       // template template parameters)
1777       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1778       break;
1779 
1780     case TemplateArgument::Template:
1781     case TemplateArgument::TemplateExpansion: {
1782       // [...] the namespaces in which any template template arguments are
1783       // defined; and the classes in which any member templates used as
1784       // template template arguments are defined.
1785       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1786       if (ClassTemplateDecl *ClassTemplate
1787                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1788         DeclContext *Ctx = ClassTemplate->getDeclContext();
1789         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1790           Result.Classes.insert(EnclosingClass);
1791         // Add the associated namespace for this class.
1792         CollectEnclosingNamespace(Result.Namespaces, Ctx);
1793       }
1794       break;
1795     }
1796 
1797     case TemplateArgument::Declaration:
1798     case TemplateArgument::Integral:
1799     case TemplateArgument::Expression:
1800     case TemplateArgument::NullPtr:
1801       // [Note: non-type template arguments do not contribute to the set of
1802       //  associated namespaces. ]
1803       break;
1804 
1805     case TemplateArgument::Pack:
1806       for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1807                                         PEnd = Arg.pack_end();
1808            P != PEnd; ++P)
1809         addAssociatedClassesAndNamespaces(Result, *P);
1810       break;
1811   }
1812 }
1813 
1814 // \brief Add the associated classes and namespaces for
1815 // argument-dependent lookup with an argument of class type
1816 // (C++ [basic.lookup.koenig]p2).
1817 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)1818 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1819                                   CXXRecordDecl *Class) {
1820 
1821   // Just silently ignore anything whose name is __va_list_tag.
1822   if (Class->getDeclName() == Result.S.VAListTagName)
1823     return;
1824 
1825   // C++ [basic.lookup.koenig]p2:
1826   //   [...]
1827   //     -- If T is a class type (including unions), its associated
1828   //        classes are: the class itself; the class of which it is a
1829   //        member, if any; and its direct and indirect base
1830   //        classes. Its associated namespaces are the namespaces in
1831   //        which its associated classes are defined.
1832 
1833   // Add the class of which it is a member, if any.
1834   DeclContext *Ctx = Class->getDeclContext();
1835   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1836     Result.Classes.insert(EnclosingClass);
1837   // Add the associated namespace for this class.
1838   CollectEnclosingNamespace(Result.Namespaces, Ctx);
1839 
1840   // Add the class itself. If we've already seen this class, we don't
1841   // need to visit base classes.
1842   if (!Result.Classes.insert(Class))
1843     return;
1844 
1845   // -- If T is a template-id, its associated namespaces and classes are
1846   //    the namespace in which the template is defined; for member
1847   //    templates, the member template's class; the namespaces and classes
1848   //    associated with the types of the template arguments provided for
1849   //    template type parameters (excluding template template parameters); the
1850   //    namespaces in which any template template arguments are defined; and
1851   //    the classes in which any member templates used as template template
1852   //    arguments are defined. [Note: non-type template arguments do not
1853   //    contribute to the set of associated namespaces. ]
1854   if (ClassTemplateSpecializationDecl *Spec
1855         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1856     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1857     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1858       Result.Classes.insert(EnclosingClass);
1859     // Add the associated namespace for this class.
1860     CollectEnclosingNamespace(Result.Namespaces, Ctx);
1861 
1862     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1863     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1864       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1865   }
1866 
1867   // Only recurse into base classes for complete types.
1868   if (!Class->hasDefinition()) {
1869     QualType type = Result.S.Context.getTypeDeclType(Class);
1870     if (Result.S.RequireCompleteType(Result.InstantiationLoc, type,
1871                                      /*no diagnostic*/ 0))
1872       return;
1873   }
1874 
1875   // Add direct and indirect base classes along with their associated
1876   // namespaces.
1877   SmallVector<CXXRecordDecl *, 32> Bases;
1878   Bases.push_back(Class);
1879   while (!Bases.empty()) {
1880     // Pop this class off the stack.
1881     Class = Bases.back();
1882     Bases.pop_back();
1883 
1884     // Visit the base classes.
1885     for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1886                                          BaseEnd = Class->bases_end();
1887          Base != BaseEnd; ++Base) {
1888       const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1889       // In dependent contexts, we do ADL twice, and the first time around,
1890       // the base type might be a dependent TemplateSpecializationType, or a
1891       // TemplateTypeParmType. If that happens, simply ignore it.
1892       // FIXME: If we want to support export, we probably need to add the
1893       // namespace of the template in a TemplateSpecializationType, or even
1894       // the classes and namespaces of known non-dependent arguments.
1895       if (!BaseType)
1896         continue;
1897       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1898       if (Result.Classes.insert(BaseDecl)) {
1899         // Find the associated namespace for this base class.
1900         DeclContext *BaseCtx = BaseDecl->getDeclContext();
1901         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1902 
1903         // Make sure we visit the bases of this base class.
1904         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1905           Bases.push_back(BaseDecl);
1906       }
1907     }
1908   }
1909 }
1910 
1911 // \brief Add the associated classes and namespaces for
1912 // argument-dependent lookup with an argument of type T
1913 // (C++ [basic.lookup.koenig]p2).
1914 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)1915 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1916   // C++ [basic.lookup.koenig]p2:
1917   //
1918   //   For each argument type T in the function call, there is a set
1919   //   of zero or more associated namespaces and a set of zero or more
1920   //   associated classes to be considered. The sets of namespaces and
1921   //   classes is determined entirely by the types of the function
1922   //   arguments (and the namespace of any template template
1923   //   argument). Typedef names and using-declarations used to specify
1924   //   the types do not contribute to this set. The sets of namespaces
1925   //   and classes are determined in the following way:
1926 
1927   SmallVector<const Type *, 16> Queue;
1928   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1929 
1930   while (true) {
1931     switch (T->getTypeClass()) {
1932 
1933 #define TYPE(Class, Base)
1934 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1935 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1936 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1937 #define ABSTRACT_TYPE(Class, Base)
1938 #include "clang/AST/TypeNodes.def"
1939       // T is canonical.  We can also ignore dependent types because
1940       // we don't need to do ADL at the definition point, but if we
1941       // wanted to implement template export (or if we find some other
1942       // use for associated classes and namespaces...) this would be
1943       // wrong.
1944       break;
1945 
1946     //    -- If T is a pointer to U or an array of U, its associated
1947     //       namespaces and classes are those associated with U.
1948     case Type::Pointer:
1949       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1950       continue;
1951     case Type::ConstantArray:
1952     case Type::IncompleteArray:
1953     case Type::VariableArray:
1954       T = cast<ArrayType>(T)->getElementType().getTypePtr();
1955       continue;
1956 
1957     //     -- If T is a fundamental type, its associated sets of
1958     //        namespaces and classes are both empty.
1959     case Type::Builtin:
1960       break;
1961 
1962     //     -- If T is a class type (including unions), its associated
1963     //        classes are: the class itself; the class of which it is a
1964     //        member, if any; and its direct and indirect base
1965     //        classes. Its associated namespaces are the namespaces in
1966     //        which its associated classes are defined.
1967     case Type::Record: {
1968       CXXRecordDecl *Class
1969         = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1970       addAssociatedClassesAndNamespaces(Result, Class);
1971       break;
1972     }
1973 
1974     //     -- If T is an enumeration type, its associated namespace is
1975     //        the namespace in which it is defined. If it is class
1976     //        member, its associated class is the member's class; else
1977     //        it has no associated class.
1978     case Type::Enum: {
1979       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1980 
1981       DeclContext *Ctx = Enum->getDeclContext();
1982       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1983         Result.Classes.insert(EnclosingClass);
1984 
1985       // Add the associated namespace for this class.
1986       CollectEnclosingNamespace(Result.Namespaces, Ctx);
1987 
1988       break;
1989     }
1990 
1991     //     -- If T is a function type, its associated namespaces and
1992     //        classes are those associated with the function parameter
1993     //        types and those associated with the return type.
1994     case Type::FunctionProto: {
1995       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1996       for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1997                                              ArgEnd = Proto->arg_type_end();
1998              Arg != ArgEnd; ++Arg)
1999         Queue.push_back(Arg->getTypePtr());
2000       // fallthrough
2001     }
2002     case Type::FunctionNoProto: {
2003       const FunctionType *FnType = cast<FunctionType>(T);
2004       T = FnType->getResultType().getTypePtr();
2005       continue;
2006     }
2007 
2008     //     -- If T is a pointer to a member function of a class X, its
2009     //        associated namespaces and classes are those associated
2010     //        with the function parameter types and return type,
2011     //        together with those associated with X.
2012     //
2013     //     -- If T is a pointer to a data member of class X, its
2014     //        associated namespaces and classes are those associated
2015     //        with the member type together with those associated with
2016     //        X.
2017     case Type::MemberPointer: {
2018       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2019 
2020       // Queue up the class type into which this points.
2021       Queue.push_back(MemberPtr->getClass());
2022 
2023       // And directly continue with the pointee type.
2024       T = MemberPtr->getPointeeType().getTypePtr();
2025       continue;
2026     }
2027 
2028     // As an extension, treat this like a normal pointer.
2029     case Type::BlockPointer:
2030       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2031       continue;
2032 
2033     // References aren't covered by the standard, but that's such an
2034     // obvious defect that we cover them anyway.
2035     case Type::LValueReference:
2036     case Type::RValueReference:
2037       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2038       continue;
2039 
2040     // These are fundamental types.
2041     case Type::Vector:
2042     case Type::ExtVector:
2043     case Type::Complex:
2044       break;
2045 
2046     // If T is an Objective-C object or interface type, or a pointer to an
2047     // object or interface type, the associated namespace is the global
2048     // namespace.
2049     case Type::ObjCObject:
2050     case Type::ObjCInterface:
2051     case Type::ObjCObjectPointer:
2052       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2053       break;
2054 
2055     // Atomic types are just wrappers; use the associations of the
2056     // contained type.
2057     case Type::Atomic:
2058       T = cast<AtomicType>(T)->getValueType().getTypePtr();
2059       continue;
2060     }
2061 
2062     if (Queue.empty()) break;
2063     T = Queue.back();
2064     Queue.pop_back();
2065   }
2066 }
2067 
2068 /// \brief Find the associated classes and namespaces for
2069 /// argument-dependent lookup for a call with the given set of
2070 /// arguments.
2071 ///
2072 /// This routine computes the sets of associated classes and associated
2073 /// namespaces searched by argument-dependent lookup
2074 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2075 void
FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,llvm::ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)2076 Sema::FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
2077                                          llvm::ArrayRef<Expr *> Args,
2078                                  AssociatedNamespaceSet &AssociatedNamespaces,
2079                                  AssociatedClassSet &AssociatedClasses) {
2080   AssociatedNamespaces.clear();
2081   AssociatedClasses.clear();
2082 
2083   AssociatedLookup Result(*this, InstantiationLoc,
2084                           AssociatedNamespaces, AssociatedClasses);
2085 
2086   // C++ [basic.lookup.koenig]p2:
2087   //   For each argument type T in the function call, there is a set
2088   //   of zero or more associated namespaces and a set of zero or more
2089   //   associated classes to be considered. The sets of namespaces and
2090   //   classes is determined entirely by the types of the function
2091   //   arguments (and the namespace of any template template
2092   //   argument).
2093   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2094     Expr *Arg = Args[ArgIdx];
2095 
2096     if (Arg->getType() != Context.OverloadTy) {
2097       addAssociatedClassesAndNamespaces(Result, Arg->getType());
2098       continue;
2099     }
2100 
2101     // [...] In addition, if the argument is the name or address of a
2102     // set of overloaded functions and/or function templates, its
2103     // associated classes and namespaces are the union of those
2104     // associated with each of the members of the set: the namespace
2105     // in which the function or function template is defined and the
2106     // classes and namespaces associated with its (non-dependent)
2107     // parameter types and return type.
2108     Arg = Arg->IgnoreParens();
2109     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2110       if (unaryOp->getOpcode() == UO_AddrOf)
2111         Arg = unaryOp->getSubExpr();
2112 
2113     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2114     if (!ULE) continue;
2115 
2116     for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2117            I != E; ++I) {
2118       // Look through any using declarations to find the underlying function.
2119       NamedDecl *Fn = (*I)->getUnderlyingDecl();
2120 
2121       FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2122       if (!FDecl)
2123         FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2124 
2125       // Add the classes and namespaces associated with the parameter
2126       // types and return type of this function.
2127       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2128     }
2129   }
2130 }
2131 
2132 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2133 /// an acceptable non-member overloaded operator for a call whose
2134 /// arguments have types T1 (and, if non-empty, T2). This routine
2135 /// implements the check in C++ [over.match.oper]p3b2 concerning
2136 /// enumeration types.
2137 static bool
IsAcceptableNonMemberOperatorCandidate(FunctionDecl * Fn,QualType T1,QualType T2,ASTContext & Context)2138 IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2139                                        QualType T1, QualType T2,
2140                                        ASTContext &Context) {
2141   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2142     return true;
2143 
2144   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2145     return true;
2146 
2147   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2148   if (Proto->getNumArgs() < 1)
2149     return false;
2150 
2151   if (T1->isEnumeralType()) {
2152     QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2153     if (Context.hasSameUnqualifiedType(T1, ArgType))
2154       return true;
2155   }
2156 
2157   if (Proto->getNumArgs() < 2)
2158     return false;
2159 
2160   if (!T2.isNull() && T2->isEnumeralType()) {
2161     QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2162     if (Context.hasSameUnqualifiedType(T2, ArgType))
2163       return true;
2164   }
2165 
2166   return false;
2167 }
2168 
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)2169 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2170                                   SourceLocation Loc,
2171                                   LookupNameKind NameKind,
2172                                   RedeclarationKind Redecl) {
2173   LookupResult R(*this, Name, Loc, NameKind, Redecl);
2174   LookupName(R, S);
2175   return R.getAsSingle<NamedDecl>();
2176 }
2177 
2178 /// \brief Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)2179 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2180                                        SourceLocation IdLoc,
2181                                        RedeclarationKind Redecl) {
2182   Decl *D = LookupSingleName(TUScope, II, IdLoc,
2183                              LookupObjCProtocolName, Redecl);
2184   return cast_or_null<ObjCProtocolDecl>(D);
2185 }
2186 
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)2187 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2188                                         QualType T1, QualType T2,
2189                                         UnresolvedSetImpl &Functions) {
2190   // C++ [over.match.oper]p3:
2191   //     -- The set of non-member candidates is the result of the
2192   //        unqualified lookup of operator@ in the context of the
2193   //        expression according to the usual rules for name lookup in
2194   //        unqualified function calls (3.4.2) except that all member
2195   //        functions are ignored. However, if no operand has a class
2196   //        type, only those non-member functions in the lookup set
2197   //        that have a first parameter of type T1 or "reference to
2198   //        (possibly cv-qualified) T1", when T1 is an enumeration
2199   //        type, or (if there is a right operand) a second parameter
2200   //        of type T2 or "reference to (possibly cv-qualified) T2",
2201   //        when T2 is an enumeration type, are candidate functions.
2202   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2203   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2204   LookupName(Operators, S);
2205 
2206   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2207 
2208   if (Operators.empty())
2209     return;
2210 
2211   for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2212        Op != OpEnd; ++Op) {
2213     NamedDecl *Found = (*Op)->getUnderlyingDecl();
2214     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2215       if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2216         Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2217     } else if (FunctionTemplateDecl *FunTmpl
2218                  = dyn_cast<FunctionTemplateDecl>(Found)) {
2219       // FIXME: friend operators?
2220       // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2221       // later?
2222       if (!FunTmpl->getDeclContext()->isRecord())
2223         Functions.addDecl(*Op, Op.getAccess());
2224     }
2225   }
2226 }
2227 
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)2228 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2229                                                             CXXSpecialMember SM,
2230                                                             bool ConstArg,
2231                                                             bool VolatileArg,
2232                                                             bool RValueThis,
2233                                                             bool ConstThis,
2234                                                             bool VolatileThis) {
2235   assert(CanDeclareSpecialMemberFunction(RD) &&
2236          "doing special member lookup into record that isn't fully complete");
2237   RD = RD->getDefinition();
2238   if (RValueThis || ConstThis || VolatileThis)
2239     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2240            "constructors and destructors always have unqualified lvalue this");
2241   if (ConstArg || VolatileArg)
2242     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2243            "parameter-less special members can't have qualified arguments");
2244 
2245   llvm::FoldingSetNodeID ID;
2246   ID.AddPointer(RD);
2247   ID.AddInteger(SM);
2248   ID.AddInteger(ConstArg);
2249   ID.AddInteger(VolatileArg);
2250   ID.AddInteger(RValueThis);
2251   ID.AddInteger(ConstThis);
2252   ID.AddInteger(VolatileThis);
2253 
2254   void *InsertPoint;
2255   SpecialMemberOverloadResult *Result =
2256     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2257 
2258   // This was already cached
2259   if (Result)
2260     return Result;
2261 
2262   Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2263   Result = new (Result) SpecialMemberOverloadResult(ID);
2264   SpecialMemberCache.InsertNode(Result, InsertPoint);
2265 
2266   if (SM == CXXDestructor) {
2267     if (RD->needsImplicitDestructor())
2268       DeclareImplicitDestructor(RD);
2269     CXXDestructorDecl *DD = RD->getDestructor();
2270     assert(DD && "record without a destructor");
2271     Result->setMethod(DD);
2272     Result->setKind(DD->isDeleted() ?
2273                     SpecialMemberOverloadResult::NoMemberOrDeleted :
2274                     SpecialMemberOverloadResult::Success);
2275     return Result;
2276   }
2277 
2278   // Prepare for overload resolution. Here we construct a synthetic argument
2279   // if necessary and make sure that implicit functions are declared.
2280   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2281   DeclarationName Name;
2282   Expr *Arg = 0;
2283   unsigned NumArgs;
2284 
2285   QualType ArgType = CanTy;
2286   ExprValueKind VK = VK_LValue;
2287 
2288   if (SM == CXXDefaultConstructor) {
2289     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2290     NumArgs = 0;
2291     if (RD->needsImplicitDefaultConstructor())
2292       DeclareImplicitDefaultConstructor(RD);
2293   } else {
2294     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2295       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2296       if (RD->needsImplicitCopyConstructor())
2297         DeclareImplicitCopyConstructor(RD);
2298       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2299         DeclareImplicitMoveConstructor(RD);
2300     } else {
2301       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2302       if (RD->needsImplicitCopyAssignment())
2303         DeclareImplicitCopyAssignment(RD);
2304       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2305         DeclareImplicitMoveAssignment(RD);
2306     }
2307 
2308     if (ConstArg)
2309       ArgType.addConst();
2310     if (VolatileArg)
2311       ArgType.addVolatile();
2312 
2313     // This isn't /really/ specified by the standard, but it's implied
2314     // we should be working from an RValue in the case of move to ensure
2315     // that we prefer to bind to rvalue references, and an LValue in the
2316     // case of copy to ensure we don't bind to rvalue references.
2317     // Possibly an XValue is actually correct in the case of move, but
2318     // there is no semantic difference for class types in this restricted
2319     // case.
2320     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2321       VK = VK_LValue;
2322     else
2323       VK = VK_RValue;
2324   }
2325 
2326   OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2327 
2328   if (SM != CXXDefaultConstructor) {
2329     NumArgs = 1;
2330     Arg = &FakeArg;
2331   }
2332 
2333   // Create the object argument
2334   QualType ThisTy = CanTy;
2335   if (ConstThis)
2336     ThisTy.addConst();
2337   if (VolatileThis)
2338     ThisTy.addVolatile();
2339   Expr::Classification Classification =
2340     OpaqueValueExpr(SourceLocation(), ThisTy,
2341                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2342 
2343   // Now we perform lookup on the name we computed earlier and do overload
2344   // resolution. Lookup is only performed directly into the class since there
2345   // will always be a (possibly implicit) declaration to shadow any others.
2346   OverloadCandidateSet OCS((SourceLocation()));
2347   DeclContext::lookup_result R = RD->lookup(Name);
2348 
2349   assert(!R.empty() &&
2350          "lookup for a constructor or assignment operator was empty");
2351   for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
2352     Decl *Cand = *I;
2353 
2354     if (Cand->isInvalidDecl())
2355       continue;
2356 
2357     if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2358       // FIXME: [namespace.udecl]p15 says that we should only consider a
2359       // using declaration here if it does not match a declaration in the
2360       // derived class. We do not implement this correctly in other cases
2361       // either.
2362       Cand = U->getTargetDecl();
2363 
2364       if (Cand->isInvalidDecl())
2365         continue;
2366     }
2367 
2368     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2369       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2370         AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2371                            Classification, llvm::makeArrayRef(&Arg, NumArgs),
2372                            OCS, true);
2373       else
2374         AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2375                              llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2376     } else if (FunctionTemplateDecl *Tmpl =
2377                  dyn_cast<FunctionTemplateDecl>(Cand)) {
2378       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2379         AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2380                                    RD, 0, ThisTy, Classification,
2381                                    llvm::makeArrayRef(&Arg, NumArgs),
2382                                    OCS, true);
2383       else
2384         AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2385                                      0, llvm::makeArrayRef(&Arg, NumArgs),
2386                                      OCS, true);
2387     } else {
2388       assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2389     }
2390   }
2391 
2392   OverloadCandidateSet::iterator Best;
2393   switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2394     case OR_Success:
2395       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2396       Result->setKind(SpecialMemberOverloadResult::Success);
2397       break;
2398 
2399     case OR_Deleted:
2400       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2401       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2402       break;
2403 
2404     case OR_Ambiguous:
2405       Result->setMethod(0);
2406       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2407       break;
2408 
2409     case OR_No_Viable_Function:
2410       Result->setMethod(0);
2411       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2412       break;
2413   }
2414 
2415   return Result;
2416 }
2417 
2418 /// \brief Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)2419 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2420   SpecialMemberOverloadResult *Result =
2421     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2422                         false, false);
2423 
2424   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2425 }
2426 
2427 /// \brief Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals)2428 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2429                                                    unsigned Quals) {
2430   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2431          "non-const, non-volatile qualifiers for copy ctor arg");
2432   SpecialMemberOverloadResult *Result =
2433     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2434                         Quals & Qualifiers::Volatile, false, false, false);
2435 
2436   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2437 }
2438 
2439 /// \brief Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class,unsigned Quals)2440 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2441                                                   unsigned Quals) {
2442   SpecialMemberOverloadResult *Result =
2443     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2444                         Quals & Qualifiers::Volatile, false, false, false);
2445 
2446   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2447 }
2448 
2449 /// \brief Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)2450 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2451   // If the implicit constructors have not yet been declared, do so now.
2452   if (CanDeclareSpecialMemberFunction(Class)) {
2453     if (Class->needsImplicitDefaultConstructor())
2454       DeclareImplicitDefaultConstructor(Class);
2455     if (Class->needsImplicitCopyConstructor())
2456       DeclareImplicitCopyConstructor(Class);
2457     if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2458       DeclareImplicitMoveConstructor(Class);
2459   }
2460 
2461   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2462   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2463   return Class->lookup(Name);
2464 }
2465 
2466 /// \brief Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2467 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2468                                              unsigned Quals, bool RValueThis,
2469                                              unsigned ThisQuals) {
2470   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2471          "non-const, non-volatile qualifiers for copy assignment arg");
2472   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2473          "non-const, non-volatile qualifiers for copy assignment this");
2474   SpecialMemberOverloadResult *Result =
2475     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2476                         Quals & Qualifiers::Volatile, RValueThis,
2477                         ThisQuals & Qualifiers::Const,
2478                         ThisQuals & Qualifiers::Volatile);
2479 
2480   return Result->getMethod();
2481 }
2482 
2483 /// \brief Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2484 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2485                                             unsigned Quals,
2486                                             bool RValueThis,
2487                                             unsigned ThisQuals) {
2488   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2489          "non-const, non-volatile qualifiers for copy assignment this");
2490   SpecialMemberOverloadResult *Result =
2491     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2492                         Quals & Qualifiers::Volatile, RValueThis,
2493                         ThisQuals & Qualifiers::Const,
2494                         ThisQuals & Qualifiers::Volatile);
2495 
2496   return Result->getMethod();
2497 }
2498 
2499 /// \brief Look for the destructor of the given class.
2500 ///
2501 /// During semantic analysis, this routine should be used in lieu of
2502 /// CXXRecordDecl::getDestructor().
2503 ///
2504 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)2505 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2506   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2507                                                      false, false, false,
2508                                                      false, false)->getMethod());
2509 }
2510 
2511 /// LookupLiteralOperator - Determine which literal operator should be used for
2512 /// a user-defined literal, per C++11 [lex.ext].
2513 ///
2514 /// Normal overload resolution is not used to select which literal operator to
2515 /// call for a user-defined literal. Look up the provided literal operator name,
2516 /// and filter the results to the appropriate set for the given argument types.
2517 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRawAndTemplate)2518 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2519                             ArrayRef<QualType> ArgTys,
2520                             bool AllowRawAndTemplate) {
2521   LookupName(R, S);
2522   assert(R.getResultKind() != LookupResult::Ambiguous &&
2523          "literal operator lookup can't be ambiguous");
2524 
2525   // Filter the lookup results appropriately.
2526   LookupResult::Filter F = R.makeFilter();
2527 
2528   bool FoundTemplate = false;
2529   bool FoundRaw = false;
2530   bool FoundExactMatch = false;
2531 
2532   while (F.hasNext()) {
2533     Decl *D = F.next();
2534     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2535       D = USD->getTargetDecl();
2536 
2537     bool IsTemplate = isa<FunctionTemplateDecl>(D);
2538     bool IsRaw = false;
2539     bool IsExactMatch = false;
2540 
2541     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2542       if (FD->getNumParams() == 1 &&
2543           FD->getParamDecl(0)->getType()->getAs<PointerType>())
2544         IsRaw = true;
2545       else if (FD->getNumParams() == ArgTys.size()) {
2546         IsExactMatch = true;
2547         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2548           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2549           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2550             IsExactMatch = false;
2551             break;
2552           }
2553         }
2554       }
2555     }
2556 
2557     if (IsExactMatch) {
2558       FoundExactMatch = true;
2559       AllowRawAndTemplate = false;
2560       if (FoundRaw || FoundTemplate) {
2561         // Go through again and remove the raw and template decls we've
2562         // already found.
2563         F.restart();
2564         FoundRaw = FoundTemplate = false;
2565       }
2566     } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) {
2567       FoundTemplate |= IsTemplate;
2568       FoundRaw |= IsRaw;
2569     } else {
2570       F.erase();
2571     }
2572   }
2573 
2574   F.done();
2575 
2576   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2577   // parameter type, that is used in preference to a raw literal operator
2578   // or literal operator template.
2579   if (FoundExactMatch)
2580     return LOLR_Cooked;
2581 
2582   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2583   // operator template, but not both.
2584   if (FoundRaw && FoundTemplate) {
2585     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2586     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2587       Decl *D = *I;
2588       if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2589         D = USD->getTargetDecl();
2590       if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
2591         D = FunTmpl->getTemplatedDecl();
2592       NoteOverloadCandidate(cast<FunctionDecl>(D));
2593     }
2594     return LOLR_Error;
2595   }
2596 
2597   if (FoundRaw)
2598     return LOLR_Raw;
2599 
2600   if (FoundTemplate)
2601     return LOLR_Template;
2602 
2603   // Didn't find anything we could use.
2604   Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2605     << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2606     << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate;
2607   return LOLR_Error;
2608 }
2609 
insert(NamedDecl * New)2610 void ADLResult::insert(NamedDecl *New) {
2611   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2612 
2613   // If we haven't yet seen a decl for this key, or the last decl
2614   // was exactly this one, we're done.
2615   if (Old == 0 || Old == New) {
2616     Old = New;
2617     return;
2618   }
2619 
2620   // Otherwise, decide which is a more recent redeclaration.
2621   FunctionDecl *OldFD, *NewFD;
2622   if (isa<FunctionTemplateDecl>(New)) {
2623     OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2624     NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2625   } else {
2626     OldFD = cast<FunctionDecl>(Old);
2627     NewFD = cast<FunctionDecl>(New);
2628   }
2629 
2630   FunctionDecl *Cursor = NewFD;
2631   while (true) {
2632     Cursor = Cursor->getPreviousDecl();
2633 
2634     // If we got to the end without finding OldFD, OldFD is the newer
2635     // declaration;  leave things as they are.
2636     if (!Cursor) return;
2637 
2638     // If we do find OldFD, then NewFD is newer.
2639     if (Cursor == OldFD) break;
2640 
2641     // Otherwise, keep looking.
2642   }
2643 
2644   Old = New;
2645 }
2646 
ArgumentDependentLookup(DeclarationName Name,bool Operator,SourceLocation Loc,llvm::ArrayRef<Expr * > Args,ADLResult & Result)2647 void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2648                                    SourceLocation Loc,
2649                                    llvm::ArrayRef<Expr *> Args,
2650                                    ADLResult &Result) {
2651   // Find all of the associated namespaces and classes based on the
2652   // arguments we have.
2653   AssociatedNamespaceSet AssociatedNamespaces;
2654   AssociatedClassSet AssociatedClasses;
2655   FindAssociatedClassesAndNamespaces(Loc, Args,
2656                                      AssociatedNamespaces,
2657                                      AssociatedClasses);
2658 
2659   QualType T1, T2;
2660   if (Operator) {
2661     T1 = Args[0]->getType();
2662     if (Args.size() >= 2)
2663       T2 = Args[1]->getType();
2664   }
2665 
2666   // C++ [basic.lookup.argdep]p3:
2667   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2668   //   and let Y be the lookup set produced by argument dependent
2669   //   lookup (defined as follows). If X contains [...] then Y is
2670   //   empty. Otherwise Y is the set of declarations found in the
2671   //   namespaces associated with the argument types as described
2672   //   below. The set of declarations found by the lookup of the name
2673   //   is the union of X and Y.
2674   //
2675   // Here, we compute Y and add its members to the overloaded
2676   // candidate set.
2677   for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2678                                      NSEnd = AssociatedNamespaces.end();
2679        NS != NSEnd; ++NS) {
2680     //   When considering an associated namespace, the lookup is the
2681     //   same as the lookup performed when the associated namespace is
2682     //   used as a qualifier (3.4.3.2) except that:
2683     //
2684     //     -- Any using-directives in the associated namespace are
2685     //        ignored.
2686     //
2687     //     -- Any namespace-scope friend functions declared in
2688     //        associated classes are visible within their respective
2689     //        namespaces even if they are not visible during an ordinary
2690     //        lookup (11.4).
2691     DeclContext::lookup_result R = (*NS)->lookup(Name);
2692     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
2693          ++I) {
2694       NamedDecl *D = *I;
2695       // If the only declaration here is an ordinary friend, consider
2696       // it only if it was declared in an associated classes.
2697       if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2698         DeclContext *LexDC = D->getLexicalDeclContext();
2699         if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2700           continue;
2701       }
2702 
2703       if (isa<UsingShadowDecl>(D))
2704         D = cast<UsingShadowDecl>(D)->getTargetDecl();
2705 
2706       if (isa<FunctionDecl>(D)) {
2707         if (Operator &&
2708             !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2709                                                     T1, T2, Context))
2710           continue;
2711       } else if (!isa<FunctionTemplateDecl>(D))
2712         continue;
2713 
2714       Result.insert(D);
2715     }
2716   }
2717 }
2718 
2719 //----------------------------------------------------------------------------
2720 // Search for all visible declarations.
2721 //----------------------------------------------------------------------------
~VisibleDeclConsumer()2722 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2723 
2724 namespace {
2725 
2726 class ShadowContextRAII;
2727 
2728 class VisibleDeclsRecord {
2729 public:
2730   /// \brief An entry in the shadow map, which is optimized to store a
2731   /// single declaration (the common case) but can also store a list
2732   /// of declarations.
2733   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2734 
2735 private:
2736   /// \brief A mapping from declaration names to the declarations that have
2737   /// this name within a particular scope.
2738   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2739 
2740   /// \brief A list of shadow maps, which is used to model name hiding.
2741   std::list<ShadowMap> ShadowMaps;
2742 
2743   /// \brief The declaration contexts we have already visited.
2744   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2745 
2746   friend class ShadowContextRAII;
2747 
2748 public:
2749   /// \brief Determine whether we have already visited this context
2750   /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)2751   bool visitedContext(DeclContext *Ctx) {
2752     return !VisitedContexts.insert(Ctx);
2753   }
2754 
alreadyVisitedContext(DeclContext * Ctx)2755   bool alreadyVisitedContext(DeclContext *Ctx) {
2756     return VisitedContexts.count(Ctx);
2757   }
2758 
2759   /// \brief Determine whether the given declaration is hidden in the
2760   /// current scope.
2761   ///
2762   /// \returns the declaration that hides the given declaration, or
2763   /// NULL if no such declaration exists.
2764   NamedDecl *checkHidden(NamedDecl *ND);
2765 
2766   /// \brief Add a declaration to the current shadow map.
add(NamedDecl * ND)2767   void add(NamedDecl *ND) {
2768     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2769   }
2770 };
2771 
2772 /// \brief RAII object that records when we've entered a shadow context.
2773 class ShadowContextRAII {
2774   VisibleDeclsRecord &Visible;
2775 
2776   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2777 
2778 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)2779   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2780     Visible.ShadowMaps.push_back(ShadowMap());
2781   }
2782 
~ShadowContextRAII()2783   ~ShadowContextRAII() {
2784     Visible.ShadowMaps.pop_back();
2785   }
2786 };
2787 
2788 } // end anonymous namespace
2789 
checkHidden(NamedDecl * ND)2790 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2791   // Look through using declarations.
2792   ND = ND->getUnderlyingDecl();
2793 
2794   unsigned IDNS = ND->getIdentifierNamespace();
2795   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2796   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2797        SM != SMEnd; ++SM) {
2798     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2799     if (Pos == SM->end())
2800       continue;
2801 
2802     for (ShadowMapEntry::iterator I = Pos->second.begin(),
2803                                IEnd = Pos->second.end();
2804          I != IEnd; ++I) {
2805       // A tag declaration does not hide a non-tag declaration.
2806       if ((*I)->hasTagIdentifierNamespace() &&
2807           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2808                    Decl::IDNS_ObjCProtocol)))
2809         continue;
2810 
2811       // Protocols are in distinct namespaces from everything else.
2812       if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2813            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2814           (*I)->getIdentifierNamespace() != IDNS)
2815         continue;
2816 
2817       // Functions and function templates in the same scope overload
2818       // rather than hide.  FIXME: Look for hiding based on function
2819       // signatures!
2820       if ((*I)->isFunctionOrFunctionTemplate() &&
2821           ND->isFunctionOrFunctionTemplate() &&
2822           SM == ShadowMaps.rbegin())
2823         continue;
2824 
2825       // We've found a declaration that hides this one.
2826       return *I;
2827     }
2828   }
2829 
2830   return 0;
2831 }
2832 
LookupVisibleDecls(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)2833 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2834                                bool QualifiedNameLookup,
2835                                bool InBaseClass,
2836                                VisibleDeclConsumer &Consumer,
2837                                VisibleDeclsRecord &Visited) {
2838   if (!Ctx)
2839     return;
2840 
2841   // Make sure we don't visit the same context twice.
2842   if (Visited.visitedContext(Ctx->getPrimaryContext()))
2843     return;
2844 
2845   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2846     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2847 
2848   // Enumerate all of the results in this context.
2849   for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(),
2850                                       LEnd = Ctx->lookups_end();
2851        L != LEnd; ++L) {
2852     DeclContext::lookup_result R = *L;
2853     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
2854          ++I) {
2855       if (NamedDecl *ND = dyn_cast<NamedDecl>(*I)) {
2856         if ((ND = Result.getAcceptableDecl(ND))) {
2857           Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
2858           Visited.add(ND);
2859         }
2860       }
2861     }
2862   }
2863 
2864   // Traverse using directives for qualified name lookup.
2865   if (QualifiedNameLookup) {
2866     ShadowContextRAII Shadow(Visited);
2867     DeclContext::udir_iterator I, E;
2868     for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2869       LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2870                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
2871     }
2872   }
2873 
2874   // Traverse the contexts of inherited C++ classes.
2875   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2876     if (!Record->hasDefinition())
2877       return;
2878 
2879     for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2880                                          BEnd = Record->bases_end();
2881          B != BEnd; ++B) {
2882       QualType BaseType = B->getType();
2883 
2884       // Don't look into dependent bases, because name lookup can't look
2885       // there anyway.
2886       if (BaseType->isDependentType())
2887         continue;
2888 
2889       const RecordType *Record = BaseType->getAs<RecordType>();
2890       if (!Record)
2891         continue;
2892 
2893       // FIXME: It would be nice to be able to determine whether referencing
2894       // a particular member would be ambiguous. For example, given
2895       //
2896       //   struct A { int member; };
2897       //   struct B { int member; };
2898       //   struct C : A, B { };
2899       //
2900       //   void f(C *c) { c->### }
2901       //
2902       // accessing 'member' would result in an ambiguity. However, we
2903       // could be smart enough to qualify the member with the base
2904       // class, e.g.,
2905       //
2906       //   c->B::member
2907       //
2908       // or
2909       //
2910       //   c->A::member
2911 
2912       // Find results in this base class (and its bases).
2913       ShadowContextRAII Shadow(Visited);
2914       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2915                          true, Consumer, Visited);
2916     }
2917   }
2918 
2919   // Traverse the contexts of Objective-C classes.
2920   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2921     // Traverse categories.
2922     for (ObjCInterfaceDecl::visible_categories_iterator
2923            Cat = IFace->visible_categories_begin(),
2924            CatEnd = IFace->visible_categories_end();
2925          Cat != CatEnd; ++Cat) {
2926       ShadowContextRAII Shadow(Visited);
2927       LookupVisibleDecls(*Cat, Result, QualifiedNameLookup, false,
2928                          Consumer, Visited);
2929     }
2930 
2931     // Traverse protocols.
2932     for (ObjCInterfaceDecl::all_protocol_iterator
2933          I = IFace->all_referenced_protocol_begin(),
2934          E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2935       ShadowContextRAII Shadow(Visited);
2936       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2937                          Visited);
2938     }
2939 
2940     // Traverse the superclass.
2941     if (IFace->getSuperClass()) {
2942       ShadowContextRAII Shadow(Visited);
2943       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2944                          true, Consumer, Visited);
2945     }
2946 
2947     // If there is an implementation, traverse it. We do this to find
2948     // synthesized ivars.
2949     if (IFace->getImplementation()) {
2950       ShadowContextRAII Shadow(Visited);
2951       LookupVisibleDecls(IFace->getImplementation(), Result,
2952                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
2953     }
2954   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2955     for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2956            E = Protocol->protocol_end(); I != E; ++I) {
2957       ShadowContextRAII Shadow(Visited);
2958       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2959                          Visited);
2960     }
2961   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2962     for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2963            E = Category->protocol_end(); I != E; ++I) {
2964       ShadowContextRAII Shadow(Visited);
2965       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2966                          Visited);
2967     }
2968 
2969     // If there is an implementation, traverse it.
2970     if (Category->getImplementation()) {
2971       ShadowContextRAII Shadow(Visited);
2972       LookupVisibleDecls(Category->getImplementation(), Result,
2973                          QualifiedNameLookup, true, Consumer, Visited);
2974     }
2975   }
2976 }
2977 
LookupVisibleDecls(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)2978 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2979                                UnqualUsingDirectiveSet &UDirs,
2980                                VisibleDeclConsumer &Consumer,
2981                                VisibleDeclsRecord &Visited) {
2982   if (!S)
2983     return;
2984 
2985   if (!S->getEntity() ||
2986       (!S->getParent() &&
2987        !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2988       ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2989     // Walk through the declarations in this Scope.
2990     for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2991          D != DEnd; ++D) {
2992       if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2993         if ((ND = Result.getAcceptableDecl(ND))) {
2994           Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false);
2995           Visited.add(ND);
2996         }
2997     }
2998   }
2999 
3000   // FIXME: C++ [temp.local]p8
3001   DeclContext *Entity = 0;
3002   if (S->getEntity()) {
3003     // Look into this scope's declaration context, along with any of its
3004     // parent lookup contexts (e.g., enclosing classes), up to the point
3005     // where we hit the context stored in the next outer scope.
3006     Entity = (DeclContext *)S->getEntity();
3007     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3008 
3009     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3010          Ctx = Ctx->getLookupParent()) {
3011       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3012         if (Method->isInstanceMethod()) {
3013           // For instance methods, look for ivars in the method's interface.
3014           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3015                                   Result.getNameLoc(), Sema::LookupMemberName);
3016           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3017             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3018                                /*InBaseClass=*/false, Consumer, Visited);
3019           }
3020         }
3021 
3022         // We've already performed all of the name lookup that we need
3023         // to for Objective-C methods; the next context will be the
3024         // outer scope.
3025         break;
3026       }
3027 
3028       if (Ctx->isFunctionOrMethod())
3029         continue;
3030 
3031       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3032                          /*InBaseClass=*/false, Consumer, Visited);
3033     }
3034   } else if (!S->getParent()) {
3035     // Look into the translation unit scope. We walk through the translation
3036     // unit's declaration context, because the Scope itself won't have all of
3037     // the declarations if we loaded a precompiled header.
3038     // FIXME: We would like the translation unit's Scope object to point to the
3039     // translation unit, so we don't need this special "if" branch. However,
3040     // doing so would force the normal C++ name-lookup code to look into the
3041     // translation unit decl when the IdentifierInfo chains would suffice.
3042     // Once we fix that problem (which is part of a more general "don't look
3043     // in DeclContexts unless we have to" optimization), we can eliminate this.
3044     Entity = Result.getSema().Context.getTranslationUnitDecl();
3045     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3046                        /*InBaseClass=*/false, Consumer, Visited);
3047   }
3048 
3049   if (Entity) {
3050     // Lookup visible declarations in any namespaces found by using
3051     // directives.
3052     UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3053     llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3054     for (; UI != UEnd; ++UI)
3055       LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3056                          Result, /*QualifiedNameLookup=*/false,
3057                          /*InBaseClass=*/false, Consumer, Visited);
3058   }
3059 
3060   // Lookup names in the parent scope.
3061   ShadowContextRAII Shadow(Visited);
3062   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3063 }
3064 
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3065 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3066                               VisibleDeclConsumer &Consumer,
3067                               bool IncludeGlobalScope) {
3068   // Determine the set of using directives available during
3069   // unqualified name lookup.
3070   Scope *Initial = S;
3071   UnqualUsingDirectiveSet UDirs;
3072   if (getLangOpts().CPlusPlus) {
3073     // Find the first namespace or translation-unit scope.
3074     while (S && !isNamespaceOrTranslationUnitScope(S))
3075       S = S->getParent();
3076 
3077     UDirs.visitScopeChain(Initial, S);
3078   }
3079   UDirs.done();
3080 
3081   // Look for visible declarations.
3082   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3083   VisibleDeclsRecord Visited;
3084   if (!IncludeGlobalScope)
3085     Visited.visitedContext(Context.getTranslationUnitDecl());
3086   ShadowContextRAII Shadow(Visited);
3087   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3088 }
3089 
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3090 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3091                               VisibleDeclConsumer &Consumer,
3092                               bool IncludeGlobalScope) {
3093   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3094   VisibleDeclsRecord Visited;
3095   if (!IncludeGlobalScope)
3096     Visited.visitedContext(Context.getTranslationUnitDecl());
3097   ShadowContextRAII Shadow(Visited);
3098   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3099                        /*InBaseClass=*/false, Consumer, Visited);
3100 }
3101 
3102 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3103 /// If GnuLabelLoc is a valid source location, then this is a definition
3104 /// of an __label__ label name, otherwise it is a normal label definition
3105 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)3106 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3107                                      SourceLocation GnuLabelLoc) {
3108   // Do a lookup to see if we have a label with this name already.
3109   NamedDecl *Res = 0;
3110 
3111   if (GnuLabelLoc.isValid()) {
3112     // Local label definitions always shadow existing labels.
3113     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3114     Scope *S = CurScope;
3115     PushOnScopeChains(Res, S, true);
3116     return cast<LabelDecl>(Res);
3117   }
3118 
3119   // Not a GNU local label.
3120   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3121   // If we found a label, check to see if it is in the same context as us.
3122   // When in a Block, we don't want to reuse a label in an enclosing function.
3123   if (Res && Res->getDeclContext() != CurContext)
3124     Res = 0;
3125   if (Res == 0) {
3126     // If not forward referenced or defined already, create the backing decl.
3127     Res = LabelDecl::Create(Context, CurContext, Loc, II);
3128     Scope *S = CurScope->getFnParent();
3129     assert(S && "Not in a function?");
3130     PushOnScopeChains(Res, S, true);
3131   }
3132   return cast<LabelDecl>(Res);
3133 }
3134 
3135 //===----------------------------------------------------------------------===//
3136 // Typo correction
3137 //===----------------------------------------------------------------------===//
3138 
3139 namespace {
3140 
3141 typedef SmallVector<TypoCorrection, 1> TypoResultList;
3142 typedef llvm::StringMap<TypoResultList, llvm::BumpPtrAllocator> TypoResultsMap;
3143 typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3144 
3145 static const unsigned MaxTypoDistanceResultSets = 5;
3146 
3147 class TypoCorrectionConsumer : public VisibleDeclConsumer {
3148   /// \brief The name written that is a typo in the source.
3149   StringRef Typo;
3150 
3151   /// \brief The results found that have the smallest edit distance
3152   /// found (so far) with the typo name.
3153   ///
3154   /// The pointer value being set to the current DeclContext indicates
3155   /// whether there is a keyword with this name.
3156   TypoEditDistanceMap CorrectionResults;
3157 
3158   Sema &SemaRef;
3159 
3160 public:
TypoCorrectionConsumer(Sema & SemaRef,IdentifierInfo * Typo)3161   explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
3162     : Typo(Typo->getName()),
3163       SemaRef(SemaRef) { }
3164 
3165   virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3166                          bool InBaseClass);
3167   void FoundName(StringRef Name);
3168   void addKeywordResult(StringRef Keyword);
3169   void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
3170                NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
3171   void addCorrection(TypoCorrection Correction);
3172 
3173   typedef TypoResultsMap::iterator result_iterator;
3174   typedef TypoEditDistanceMap::iterator distance_iterator;
begin()3175   distance_iterator begin() { return CorrectionResults.begin(); }
end()3176   distance_iterator end()  { return CorrectionResults.end(); }
erase(distance_iterator I)3177   void erase(distance_iterator I) { CorrectionResults.erase(I); }
size() const3178   unsigned size() const { return CorrectionResults.size(); }
empty() const3179   bool empty() const { return CorrectionResults.empty(); }
3180 
operator [](StringRef Name)3181   TypoResultList &operator[](StringRef Name) {
3182     return CorrectionResults.begin()->second[Name];
3183   }
3184 
getBestEditDistance(bool Normalized)3185   unsigned getBestEditDistance(bool Normalized) {
3186     if (CorrectionResults.empty())
3187       return (std::numeric_limits<unsigned>::max)();
3188 
3189     unsigned BestED = CorrectionResults.begin()->first;
3190     return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3191   }
3192 
getBestResults()3193   TypoResultsMap &getBestResults() {
3194     return CorrectionResults.begin()->second;
3195   }
3196 
3197 };
3198 
3199 }
3200 
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)3201 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3202                                        DeclContext *Ctx, bool InBaseClass) {
3203   // Don't consider hidden names for typo correction.
3204   if (Hiding)
3205     return;
3206 
3207   // Only consider entities with identifiers for names, ignoring
3208   // special names (constructors, overloaded operators, selectors,
3209   // etc.).
3210   IdentifierInfo *Name = ND->getIdentifier();
3211   if (!Name)
3212     return;
3213 
3214   FoundName(Name->getName());
3215 }
3216 
FoundName(StringRef Name)3217 void TypoCorrectionConsumer::FoundName(StringRef Name) {
3218   // Use a simple length-based heuristic to determine the minimum possible
3219   // edit distance. If the minimum isn't good enough, bail out early.
3220   unsigned MinED = abs((int)Name.size() - (int)Typo.size());
3221   if (MinED && Typo.size() / MinED < 3)
3222     return;
3223 
3224   // Compute an upper bound on the allowable edit distance, so that the
3225   // edit-distance algorithm can short-circuit.
3226   unsigned UpperBound = (Typo.size() + 2) / 3;
3227 
3228   // Compute the edit distance between the typo and the name of this
3229   // entity, and add the identifier to the list of results.
3230   addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound));
3231 }
3232 
addKeywordResult(StringRef Keyword)3233 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3234   // Compute the edit distance between the typo and this keyword,
3235   // and add the keyword to the list of results.
3236   addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true);
3237 }
3238 
addName(StringRef Name,NamedDecl * ND,unsigned Distance,NestedNameSpecifier * NNS,bool isKeyword)3239 void TypoCorrectionConsumer::addName(StringRef Name,
3240                                      NamedDecl *ND,
3241                                      unsigned Distance,
3242                                      NestedNameSpecifier *NNS,
3243                                      bool isKeyword) {
3244   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
3245   if (isKeyword) TC.makeKeyword();
3246   addCorrection(TC);
3247 }
3248 
addCorrection(TypoCorrection Correction)3249 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3250   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3251   TypoResultList &CList =
3252       CorrectionResults[Correction.getEditDistance(false)][Name];
3253 
3254   if (!CList.empty() && !CList.back().isResolved())
3255     CList.pop_back();
3256   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3257     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3258     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3259          RI != RIEnd; ++RI) {
3260       // If the Correction refers to a decl already in the result list,
3261       // replace the existing result if the string representation of Correction
3262       // comes before the current result alphabetically, then stop as there is
3263       // nothing more to be done to add Correction to the candidate set.
3264       if (RI->getCorrectionDecl() == NewND) {
3265         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3266           *RI = Correction;
3267         return;
3268       }
3269     }
3270   }
3271   if (CList.empty() || Correction.isResolved())
3272     CList.push_back(Correction);
3273 
3274   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3275     erase(llvm::prior(CorrectionResults.end()));
3276 }
3277 
3278 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3279 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3280 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)3281 static void getNestedNameSpecifierIdentifiers(
3282     NestedNameSpecifier *NNS,
3283     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3284   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3285     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3286   else
3287     Identifiers.clear();
3288 
3289   const IdentifierInfo *II = NULL;
3290 
3291   switch (NNS->getKind()) {
3292   case NestedNameSpecifier::Identifier:
3293     II = NNS->getAsIdentifier();
3294     break;
3295 
3296   case NestedNameSpecifier::Namespace:
3297     if (NNS->getAsNamespace()->isAnonymousNamespace())
3298       return;
3299     II = NNS->getAsNamespace()->getIdentifier();
3300     break;
3301 
3302   case NestedNameSpecifier::NamespaceAlias:
3303     II = NNS->getAsNamespaceAlias()->getIdentifier();
3304     break;
3305 
3306   case NestedNameSpecifier::TypeSpecWithTemplate:
3307   case NestedNameSpecifier::TypeSpec:
3308     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3309     break;
3310 
3311   case NestedNameSpecifier::Global:
3312     return;
3313   }
3314 
3315   if (II)
3316     Identifiers.push_back(II);
3317 }
3318 
3319 namespace {
3320 
3321 class SpecifierInfo {
3322  public:
3323   DeclContext* DeclCtx;
3324   NestedNameSpecifier* NameSpecifier;
3325   unsigned EditDistance;
3326 
SpecifierInfo(DeclContext * Ctx,NestedNameSpecifier * NNS,unsigned ED)3327   SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
3328       : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
3329 };
3330 
3331 typedef SmallVector<DeclContext*, 4> DeclContextList;
3332 typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3333 
3334 class NamespaceSpecifierSet {
3335   ASTContext &Context;
3336   DeclContextList CurContextChain;
3337   SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3338   SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3339   bool isSorted;
3340 
3341   SpecifierInfoList Specifiers;
3342   llvm::SmallSetVector<unsigned, 4> Distances;
3343   llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3344 
3345   /// \brief Helper for building the list of DeclContexts between the current
3346   /// context and the top of the translation unit
3347   static DeclContextList BuildContextChain(DeclContext *Start);
3348 
3349   void SortNamespaces();
3350 
3351  public:
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)3352   NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3353                         CXXScopeSpec *CurScopeSpec)
3354       : Context(Context), CurContextChain(BuildContextChain(CurContext)),
3355         isSorted(true) {
3356     if (CurScopeSpec && CurScopeSpec->getScopeRep())
3357       getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(),
3358                                         CurNameSpecifierIdentifiers);
3359     // Build the list of identifiers that would be used for an absolute
3360     // (from the global context) NestedNameSpecifier referring to the current
3361     // context.
3362     for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3363                                         CEnd = CurContextChain.rend();
3364          C != CEnd; ++C) {
3365       if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3366         CurContextIdentifiers.push_back(ND->getIdentifier());
3367     }
3368   }
3369 
3370   /// \brief Add the namespace to the set, computing the corresponding
3371   /// NestedNameSpecifier and its distance in the process.
3372   void AddNamespace(NamespaceDecl *ND);
3373 
3374   typedef SpecifierInfoList::iterator iterator;
begin()3375   iterator begin() {
3376     if (!isSorted) SortNamespaces();
3377     return Specifiers.begin();
3378   }
end()3379   iterator end() { return Specifiers.end(); }
3380 };
3381 
3382 }
3383 
BuildContextChain(DeclContext * Start)3384 DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
3385   assert(Start && "Bulding a context chain from a null context");
3386   DeclContextList Chain;
3387   for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
3388        DC = DC->getLookupParent()) {
3389     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3390     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3391         !(ND && ND->isAnonymousNamespace()))
3392       Chain.push_back(DC->getPrimaryContext());
3393   }
3394   return Chain;
3395 }
3396 
SortNamespaces()3397 void NamespaceSpecifierSet::SortNamespaces() {
3398   SmallVector<unsigned, 4> sortedDistances;
3399   sortedDistances.append(Distances.begin(), Distances.end());
3400 
3401   if (sortedDistances.size() > 1)
3402     std::sort(sortedDistances.begin(), sortedDistances.end());
3403 
3404   Specifiers.clear();
3405   for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
3406                                        DIEnd = sortedDistances.end();
3407        DI != DIEnd; ++DI) {
3408     SpecifierInfoList &SpecList = DistanceMap[*DI];
3409     Specifiers.append(SpecList.begin(), SpecList.end());
3410   }
3411 
3412   isSorted = true;
3413 }
3414 
AddNamespace(NamespaceDecl * ND)3415 void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
3416   DeclContext *Ctx = cast<DeclContext>(ND);
3417   NestedNameSpecifier *NNS = NULL;
3418   unsigned NumSpecifiers = 0;
3419   DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
3420   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3421 
3422   // Eliminate common elements from the two DeclContext chains.
3423   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3424                                       CEnd = CurContextChain.rend();
3425        C != CEnd && !NamespaceDeclChain.empty() &&
3426        NamespaceDeclChain.back() == *C; ++C) {
3427     NamespaceDeclChain.pop_back();
3428   }
3429 
3430   // Add an explicit leading '::' specifier if needed.
3431   if (NamespaceDecl *ND =
3432         NamespaceDeclChain.empty() ? NULL :
3433           dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) {
3434     IdentifierInfo *Name = ND->getIdentifier();
3435     if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3436                   Name) != CurContextIdentifiers.end() ||
3437         std::find(CurNameSpecifierIdentifiers.begin(),
3438                   CurNameSpecifierIdentifiers.end(),
3439                   Name) != CurNameSpecifierIdentifiers.end()) {
3440       NamespaceDeclChain = FullNamespaceDeclChain;
3441       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3442     }
3443   }
3444 
3445   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3446   for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
3447                                       CEnd = NamespaceDeclChain.rend();
3448        C != CEnd; ++C) {
3449     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
3450     if (ND) {
3451       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3452       ++NumSpecifiers;
3453     }
3454   }
3455 
3456   // If the built NestedNameSpecifier would be replacing an existing
3457   // NestedNameSpecifier, use the number of component identifiers that
3458   // would need to be changed as the edit distance instead of the number
3459   // of components in the built NestedNameSpecifier.
3460   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3461     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3462     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3463     NumSpecifiers = llvm::ComputeEditDistance(
3464       llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers),
3465       llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers));
3466   }
3467 
3468   isSorted = false;
3469   Distances.insert(NumSpecifiers);
3470   DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
3471 }
3472 
3473 /// \brief Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup)3474 static void LookupPotentialTypoResult(Sema &SemaRef,
3475                                       LookupResult &Res,
3476                                       IdentifierInfo *Name,
3477                                       Scope *S, CXXScopeSpec *SS,
3478                                       DeclContext *MemberContext,
3479                                       bool EnteringContext,
3480                                       bool isObjCIvarLookup) {
3481   Res.suppressDiagnostics();
3482   Res.clear();
3483   Res.setLookupName(Name);
3484   if (MemberContext) {
3485     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3486       if (isObjCIvarLookup) {
3487         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3488           Res.addDecl(Ivar);
3489           Res.resolveKind();
3490           return;
3491         }
3492       }
3493 
3494       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3495         Res.addDecl(Prop);
3496         Res.resolveKind();
3497         return;
3498       }
3499     }
3500 
3501     SemaRef.LookupQualifiedName(Res, MemberContext);
3502     return;
3503   }
3504 
3505   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3506                            EnteringContext);
3507 
3508   // Fake ivar lookup; this should really be part of
3509   // LookupParsedName.
3510   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3511     if (Method->isInstanceMethod() && Method->getClassInterface() &&
3512         (Res.empty() ||
3513          (Res.isSingleResult() &&
3514           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3515        if (ObjCIvarDecl *IV
3516              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3517          Res.addDecl(IV);
3518          Res.resolveKind();
3519        }
3520      }
3521   }
3522 }
3523 
3524 /// \brief Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC,bool AfterNestedNameSpecifier)3525 static void AddKeywordsToConsumer(Sema &SemaRef,
3526                                   TypoCorrectionConsumer &Consumer,
3527                                   Scope *S, CorrectionCandidateCallback &CCC,
3528                                   bool AfterNestedNameSpecifier) {
3529   if (AfterNestedNameSpecifier) {
3530     // For 'X::', we know exactly which keywords can appear next.
3531     Consumer.addKeywordResult("template");
3532     if (CCC.WantExpressionKeywords)
3533       Consumer.addKeywordResult("operator");
3534     return;
3535   }
3536 
3537   if (CCC.WantObjCSuper)
3538     Consumer.addKeywordResult("super");
3539 
3540   if (CCC.WantTypeSpecifiers) {
3541     // Add type-specifier keywords to the set of results.
3542     const char *CTypeSpecs[] = {
3543       "char", "const", "double", "enum", "float", "int", "long", "short",
3544       "signed", "struct", "union", "unsigned", "void", "volatile",
3545       "_Complex", "_Imaginary",
3546       // storage-specifiers as well
3547       "extern", "inline", "static", "typedef"
3548     };
3549 
3550     const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3551     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3552       Consumer.addKeywordResult(CTypeSpecs[I]);
3553 
3554     if (SemaRef.getLangOpts().C99)
3555       Consumer.addKeywordResult("restrict");
3556     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3557       Consumer.addKeywordResult("bool");
3558     else if (SemaRef.getLangOpts().C99)
3559       Consumer.addKeywordResult("_Bool");
3560 
3561     if (SemaRef.getLangOpts().CPlusPlus) {
3562       Consumer.addKeywordResult("class");
3563       Consumer.addKeywordResult("typename");
3564       Consumer.addKeywordResult("wchar_t");
3565 
3566       if (SemaRef.getLangOpts().CPlusPlus11) {
3567         Consumer.addKeywordResult("char16_t");
3568         Consumer.addKeywordResult("char32_t");
3569         Consumer.addKeywordResult("constexpr");
3570         Consumer.addKeywordResult("decltype");
3571         Consumer.addKeywordResult("thread_local");
3572       }
3573     }
3574 
3575     if (SemaRef.getLangOpts().GNUMode)
3576       Consumer.addKeywordResult("typeof");
3577   }
3578 
3579   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3580     Consumer.addKeywordResult("const_cast");
3581     Consumer.addKeywordResult("dynamic_cast");
3582     Consumer.addKeywordResult("reinterpret_cast");
3583     Consumer.addKeywordResult("static_cast");
3584   }
3585 
3586   if (CCC.WantExpressionKeywords) {
3587     Consumer.addKeywordResult("sizeof");
3588     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3589       Consumer.addKeywordResult("false");
3590       Consumer.addKeywordResult("true");
3591     }
3592 
3593     if (SemaRef.getLangOpts().CPlusPlus) {
3594       const char *CXXExprs[] = {
3595         "delete", "new", "operator", "throw", "typeid"
3596       };
3597       const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3598       for (unsigned I = 0; I != NumCXXExprs; ++I)
3599         Consumer.addKeywordResult(CXXExprs[I]);
3600 
3601       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3602           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3603         Consumer.addKeywordResult("this");
3604 
3605       if (SemaRef.getLangOpts().CPlusPlus11) {
3606         Consumer.addKeywordResult("alignof");
3607         Consumer.addKeywordResult("nullptr");
3608       }
3609     }
3610 
3611     if (SemaRef.getLangOpts().C11) {
3612       // FIXME: We should not suggest _Alignof if the alignof macro
3613       // is present.
3614       Consumer.addKeywordResult("_Alignof");
3615     }
3616   }
3617 
3618   if (CCC.WantRemainingKeywords) {
3619     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3620       // Statements.
3621       const char *CStmts[] = {
3622         "do", "else", "for", "goto", "if", "return", "switch", "while" };
3623       const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3624       for (unsigned I = 0; I != NumCStmts; ++I)
3625         Consumer.addKeywordResult(CStmts[I]);
3626 
3627       if (SemaRef.getLangOpts().CPlusPlus) {
3628         Consumer.addKeywordResult("catch");
3629         Consumer.addKeywordResult("try");
3630       }
3631 
3632       if (S && S->getBreakParent())
3633         Consumer.addKeywordResult("break");
3634 
3635       if (S && S->getContinueParent())
3636         Consumer.addKeywordResult("continue");
3637 
3638       if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
3639         Consumer.addKeywordResult("case");
3640         Consumer.addKeywordResult("default");
3641       }
3642     } else {
3643       if (SemaRef.getLangOpts().CPlusPlus) {
3644         Consumer.addKeywordResult("namespace");
3645         Consumer.addKeywordResult("template");
3646       }
3647 
3648       if (S && S->isClassScope()) {
3649         Consumer.addKeywordResult("explicit");
3650         Consumer.addKeywordResult("friend");
3651         Consumer.addKeywordResult("mutable");
3652         Consumer.addKeywordResult("private");
3653         Consumer.addKeywordResult("protected");
3654         Consumer.addKeywordResult("public");
3655         Consumer.addKeywordResult("virtual");
3656       }
3657     }
3658 
3659     if (SemaRef.getLangOpts().CPlusPlus) {
3660       Consumer.addKeywordResult("using");
3661 
3662       if (SemaRef.getLangOpts().CPlusPlus11)
3663         Consumer.addKeywordResult("static_assert");
3664     }
3665   }
3666 }
3667 
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)3668 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3669                               TypoCorrection &Candidate) {
3670   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3671   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3672 }
3673 
3674 /// \brief Try to "correct" a typo in the source code by finding
3675 /// visible declarations whose names are similar to the name that was
3676 /// present in the source code.
3677 ///
3678 /// \param TypoName the \c DeclarationNameInfo structure that contains
3679 /// the name that was present in the source code along with its location.
3680 ///
3681 /// \param LookupKind the name-lookup criteria used to search for the name.
3682 ///
3683 /// \param S the scope in which name lookup occurs.
3684 ///
3685 /// \param SS the nested-name-specifier that precedes the name we're
3686 /// looking for, if present.
3687 ///
3688 /// \param CCC A CorrectionCandidateCallback object that provides further
3689 /// validation of typo correction candidates. It also provides flags for
3690 /// determining the set of keywords permitted.
3691 ///
3692 /// \param MemberContext if non-NULL, the context in which to look for
3693 /// a member access expression.
3694 ///
3695 /// \param EnteringContext whether we're entering the context described by
3696 /// the nested-name-specifier SS.
3697 ///
3698 /// \param OPT when non-NULL, the search for visible declarations will
3699 /// also walk the protocols in the qualified interfaces of \p OPT.
3700 ///
3701 /// \returns a \c TypoCorrection containing the corrected name if the typo
3702 /// along with information such as the \c NamedDecl where the corrected name
3703 /// was declared, and any additional \c NestedNameSpecifier needed to access
3704 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)3705 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
3706                                  Sema::LookupNameKind LookupKind,
3707                                  Scope *S, CXXScopeSpec *SS,
3708                                  CorrectionCandidateCallback &CCC,
3709                                  DeclContext *MemberContext,
3710                                  bool EnteringContext,
3711                                  const ObjCObjectPointerType *OPT) {
3712   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking)
3713     return TypoCorrection();
3714 
3715   // In Microsoft mode, don't perform typo correction in a template member
3716   // function dependent context because it interferes with the "lookup into
3717   // dependent bases of class templates" feature.
3718   if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
3719       isa<CXXMethodDecl>(CurContext))
3720     return TypoCorrection();
3721 
3722   // We only attempt to correct typos for identifiers.
3723   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
3724   if (!Typo)
3725     return TypoCorrection();
3726 
3727   // If the scope specifier itself was invalid, don't try to correct
3728   // typos.
3729   if (SS && SS->isInvalid())
3730     return TypoCorrection();
3731 
3732   // Never try to correct typos during template deduction or
3733   // instantiation.
3734   if (!ActiveTemplateInstantiations.empty())
3735     return TypoCorrection();
3736 
3737   // Don't try to correct 'super'.
3738   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
3739     return TypoCorrection();
3740 
3741   // This is for testing.
3742   if (Diags.getWarnOnSpellCheck()) {
3743     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Warning,
3744                                             "spell-checking initiated for %0");
3745     Diag(TypoName.getLoc(), DiagID) << TypoName.getName();
3746   }
3747 
3748   NamespaceSpecifierSet Namespaces(Context, CurContext, SS);
3749 
3750   TypoCorrectionConsumer Consumer(*this, Typo);
3751 
3752   // If a callback object considers an empty typo correction candidate to be
3753   // viable, assume it does not do any actual validation of the candidates.
3754   TypoCorrection EmptyCorrection;
3755   bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
3756 
3757   // Perform name lookup to find visible, similarly-named entities.
3758   bool IsUnqualifiedLookup = false;
3759   DeclContext *QualifiedDC = MemberContext;
3760   if (MemberContext) {
3761     LookupVisibleDecls(MemberContext, LookupKind, Consumer);
3762 
3763     // Look in qualified interfaces.
3764     if (OPT) {
3765       for (ObjCObjectPointerType::qual_iterator
3766              I = OPT->qual_begin(), E = OPT->qual_end();
3767            I != E; ++I)
3768         LookupVisibleDecls(*I, LookupKind, Consumer);
3769     }
3770   } else if (SS && SS->isSet()) {
3771     QualifiedDC = computeDeclContext(*SS, EnteringContext);
3772     if (!QualifiedDC)
3773       return TypoCorrection();
3774 
3775     // Provide a stop gap for files that are just seriously broken.  Trying
3776     // to correct all typos can turn into a HUGE performance penalty, causing
3777     // some files to take minutes to get rejected by the parser.
3778     if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3779       return TypoCorrection();
3780     ++TyposCorrected;
3781 
3782     LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
3783   } else {
3784     IsUnqualifiedLookup = true;
3785     UnqualifiedTyposCorrectedMap::iterator Cached
3786       = UnqualifiedTyposCorrected.find(Typo);
3787     if (Cached != UnqualifiedTyposCorrected.end()) {
3788       // Add the cached value, unless it's a keyword or fails validation. In the
3789       // keyword case, we'll end up adding the keyword below.
3790       if (Cached->second) {
3791         if (!Cached->second.isKeyword() &&
3792             isCandidateViable(CCC, Cached->second))
3793           Consumer.addCorrection(Cached->second);
3794       } else {
3795         // Only honor no-correction cache hits when a callback that will validate
3796         // correction candidates is not being used.
3797         if (!ValidatingCallback)
3798           return TypoCorrection();
3799       }
3800     }
3801     if (Cached == UnqualifiedTyposCorrected.end()) {
3802       // Provide a stop gap for files that are just seriously broken.  Trying
3803       // to correct all typos can turn into a HUGE performance penalty, causing
3804       // some files to take minutes to get rejected by the parser.
3805       if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3806         return TypoCorrection();
3807     }
3808   }
3809 
3810   // Determine whether we are going to search in the various namespaces for
3811   // corrections.
3812   bool SearchNamespaces
3813     = getLangOpts().CPlusPlus &&
3814       (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace()));
3815   // In a few cases we *only* want to search for corrections bases on just
3816   // adding or changing the nested name specifier.
3817   bool AllowOnlyNNSChanges = Typo->getName().size() < 3;
3818 
3819   if (IsUnqualifiedLookup || SearchNamespaces) {
3820     // For unqualified lookup, look through all of the names that we have
3821     // seen in this translation unit.
3822     // FIXME: Re-add the ability to skip very unlikely potential corrections.
3823     for (IdentifierTable::iterator I = Context.Idents.begin(),
3824                                 IEnd = Context.Idents.end();
3825          I != IEnd; ++I)
3826       Consumer.FoundName(I->getKey());
3827 
3828     // Walk through identifiers in external identifier sources.
3829     // FIXME: Re-add the ability to skip very unlikely potential corrections.
3830     if (IdentifierInfoLookup *External
3831                             = Context.Idents.getExternalIdentifierLookup()) {
3832       OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3833       do {
3834         StringRef Name = Iter->Next();
3835         if (Name.empty())
3836           break;
3837 
3838         Consumer.FoundName(Name);
3839       } while (true);
3840     }
3841   }
3842 
3843   AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
3844 
3845   // If we haven't found anything, we're done.
3846   if (Consumer.empty()) {
3847     // If this was an unqualified lookup, note that no correction was found.
3848     if (IsUnqualifiedLookup)
3849       (void)UnqualifiedTyposCorrected[Typo];
3850 
3851     return TypoCorrection();
3852   }
3853 
3854   // Make sure the best edit distance (prior to adding any namespace qualifiers)
3855   // is not more that about a third of the length of the typo's identifier.
3856   unsigned ED = Consumer.getBestEditDistance(true);
3857   if (ED > 0 && Typo->getName().size() / ED < 3) {
3858     // If this was an unqualified lookup, note that no correction was found.
3859     if (IsUnqualifiedLookup)
3860       (void)UnqualifiedTyposCorrected[Typo];
3861 
3862     return TypoCorrection();
3863   }
3864 
3865   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
3866   // to search those namespaces.
3867   if (SearchNamespaces) {
3868     // Load any externally-known namespaces.
3869     if (ExternalSource && !LoadedExternalKnownNamespaces) {
3870       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
3871       LoadedExternalKnownNamespaces = true;
3872       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
3873       for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
3874         KnownNamespaces[ExternalKnownNamespaces[I]] = true;
3875     }
3876 
3877     for (llvm::MapVector<NamespaceDecl*, bool>::iterator
3878            KNI = KnownNamespaces.begin(),
3879            KNIEnd = KnownNamespaces.end();
3880          KNI != KNIEnd; ++KNI)
3881       Namespaces.AddNamespace(KNI->first);
3882   }
3883 
3884   // Weed out any names that could not be found by name lookup or, if a
3885   // CorrectionCandidateCallback object was provided, failed validation.
3886   SmallVector<TypoCorrection, 16> QualifiedResults;
3887   LookupResult TmpRes(*this, TypoName, LookupKind);
3888   TmpRes.suppressDiagnostics();
3889   while (!Consumer.empty()) {
3890     TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
3891     unsigned ED = DI->first;
3892     for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(),
3893                                               IEnd = DI->second.end();
3894          I != IEnd; /* Increment in loop. */) {
3895       // If we only want nested name specifier corrections, ignore potential
3896       // corrections that have a different base identifier from the typo.
3897       if (AllowOnlyNNSChanges &&
3898           I->second.front().getCorrectionAsIdentifierInfo() != Typo) {
3899         TypoCorrectionConsumer::result_iterator Prev = I;
3900         ++I;
3901         DI->second.erase(Prev);
3902         continue;
3903       }
3904 
3905       // If the item already has been looked up or is a keyword, keep it.
3906       // If a validator callback object was given, drop the correction
3907       // unless it passes validation.
3908       bool Viable = false;
3909       for (TypoResultList::iterator RI = I->second.begin();
3910            RI != I->second.end(); /* Increment in loop. */) {
3911         TypoResultList::iterator Prev = RI;
3912         ++RI;
3913         if (Prev->isResolved()) {
3914           if (!isCandidateViable(CCC, *Prev))
3915             RI = I->second.erase(Prev);
3916           else
3917             Viable = true;
3918         }
3919       }
3920       if (Viable || I->second.empty()) {
3921         TypoCorrectionConsumer::result_iterator Prev = I;
3922         ++I;
3923         if (!Viable)
3924           DI->second.erase(Prev);
3925         continue;
3926       }
3927       assert(I->second.size() == 1 && "Expected a single unresolved candidate");
3928 
3929       // Perform name lookup on this name.
3930       TypoCorrection &Candidate = I->second.front();
3931       IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3932       LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
3933                                 EnteringContext, CCC.IsObjCIvarLookup);
3934 
3935       switch (TmpRes.getResultKind()) {
3936       case LookupResult::NotFound:
3937       case LookupResult::NotFoundInCurrentInstantiation:
3938       case LookupResult::FoundUnresolvedValue:
3939         QualifiedResults.push_back(Candidate);
3940         // We didn't find this name in our scope, or didn't like what we found;
3941         // ignore it.
3942         {
3943           TypoCorrectionConsumer::result_iterator Next = I;
3944           ++Next;
3945           DI->second.erase(I);
3946           I = Next;
3947         }
3948         break;
3949 
3950       case LookupResult::Ambiguous:
3951         // We don't deal with ambiguities.
3952         return TypoCorrection();
3953 
3954       case LookupResult::FoundOverloaded: {
3955         TypoCorrectionConsumer::result_iterator Prev = I;
3956         // Store all of the Decls for overloaded symbols
3957         for (LookupResult::iterator TRD = TmpRes.begin(),
3958                                  TRDEnd = TmpRes.end();
3959              TRD != TRDEnd; ++TRD)
3960           Candidate.addCorrectionDecl(*TRD);
3961         ++I;
3962         if (!isCandidateViable(CCC, Candidate))
3963           DI->second.erase(Prev);
3964         break;
3965       }
3966 
3967       case LookupResult::Found: {
3968         TypoCorrectionConsumer::result_iterator Prev = I;
3969         Candidate.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3970         ++I;
3971         if (!isCandidateViable(CCC, Candidate))
3972           DI->second.erase(Prev);
3973         break;
3974       }
3975 
3976       }
3977     }
3978 
3979     if (DI->second.empty())
3980       Consumer.erase(DI);
3981     else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED)
3982       // If there are results in the closest possible bucket, stop
3983       break;
3984 
3985     // Only perform the qualified lookups for C++
3986     if (SearchNamespaces) {
3987       TmpRes.suppressDiagnostics();
3988       for (SmallVector<TypoCorrection,
3989                        16>::iterator QRI = QualifiedResults.begin(),
3990                                   QRIEnd = QualifiedResults.end();
3991            QRI != QRIEnd; ++QRI) {
3992         for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
3993                                           NIEnd = Namespaces.end();
3994              NI != NIEnd; ++NI) {
3995           DeclContext *Ctx = NI->DeclCtx;
3996 
3997           // FIXME: Stop searching once the namespaces are too far away to create
3998           // acceptable corrections for this identifier (since the namespaces
3999           // are sorted in ascending order by edit distance).
4000 
4001           TmpRes.clear();
4002           TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo());
4003           if (!LookupQualifiedName(TmpRes, Ctx)) continue;
4004 
4005           // Any corrections added below will be validated in subsequent
4006           // iterations of the main while() loop over the Consumer's contents.
4007           switch (TmpRes.getResultKind()) {
4008           case LookupResult::Found: {
4009             TypoCorrection TC(*QRI);
4010             TC.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
4011             TC.setCorrectionSpecifier(NI->NameSpecifier);
4012             TC.setQualifierDistance(NI->EditDistance);
4013             Consumer.addCorrection(TC);
4014             break;
4015           }
4016           case LookupResult::FoundOverloaded: {
4017             TypoCorrection TC(*QRI);
4018             TC.setCorrectionSpecifier(NI->NameSpecifier);
4019             TC.setQualifierDistance(NI->EditDistance);
4020             for (LookupResult::iterator TRD = TmpRes.begin(),
4021                                      TRDEnd = TmpRes.end();
4022                  TRD != TRDEnd; ++TRD)
4023               TC.addCorrectionDecl(*TRD);
4024             Consumer.addCorrection(TC);
4025             break;
4026           }
4027           case LookupResult::NotFound:
4028           case LookupResult::NotFoundInCurrentInstantiation:
4029           case LookupResult::Ambiguous:
4030           case LookupResult::FoundUnresolvedValue:
4031             break;
4032           }
4033         }
4034       }
4035     }
4036 
4037     QualifiedResults.clear();
4038   }
4039 
4040   // No corrections remain...
4041   if (Consumer.empty()) return TypoCorrection();
4042 
4043   TypoResultsMap &BestResults = Consumer.getBestResults();
4044   ED = Consumer.getBestEditDistance(true);
4045 
4046   if (!AllowOnlyNNSChanges && ED > 0 && Typo->getName().size() / ED < 3) {
4047     // If this was an unqualified lookup and we believe the callback
4048     // object wouldn't have filtered out possible corrections, note
4049     // that no correction was found.
4050     if (IsUnqualifiedLookup && !ValidatingCallback)
4051       (void)UnqualifiedTyposCorrected[Typo];
4052 
4053     return TypoCorrection();
4054   }
4055 
4056   // If only a single name remains, return that result.
4057   if (BestResults.size() == 1) {
4058     const TypoResultList &CorrectionList = BestResults.begin()->second;
4059     const TypoCorrection &Result = CorrectionList.front();
4060     if (CorrectionList.size() != 1) return TypoCorrection();
4061 
4062     // Don't correct to a keyword that's the same as the typo; the keyword
4063     // wasn't actually in scope.
4064     if (ED == 0 && Result.isKeyword()) return TypoCorrection();
4065 
4066     // Record the correction for unqualified lookup.
4067     if (IsUnqualifiedLookup)
4068       UnqualifiedTyposCorrected[Typo] = Result;
4069 
4070     TypoCorrection TC = Result;
4071     TC.setCorrectionRange(SS, TypoName);
4072     return TC;
4073   }
4074   else if (BestResults.size() > 1
4075            // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4076            // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4077            // some instances of CTC_Unknown, while WantRemainingKeywords is true
4078            // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4079            && CCC.WantObjCSuper && !CCC.WantRemainingKeywords
4080            && BestResults["super"].front().isKeyword()) {
4081     // Prefer 'super' when we're completing in a message-receiver
4082     // context.
4083 
4084     // Don't correct to a keyword that's the same as the typo; the keyword
4085     // wasn't actually in scope.
4086     if (ED == 0) return TypoCorrection();
4087 
4088     // Record the correction for unqualified lookup.
4089     if (IsUnqualifiedLookup)
4090       UnqualifiedTyposCorrected[Typo] = BestResults["super"].front();
4091 
4092     TypoCorrection TC = BestResults["super"].front();
4093     TC.setCorrectionRange(SS, TypoName);
4094     return TC;
4095   }
4096 
4097   // If this was an unqualified lookup and we believe the callback object did
4098   // not filter out possible corrections, note that no correction was found.
4099   if (IsUnqualifiedLookup && !ValidatingCallback)
4100     (void)UnqualifiedTyposCorrected[Typo];
4101 
4102   return TypoCorrection();
4103 }
4104 
addCorrectionDecl(NamedDecl * CDecl)4105 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4106   if (!CDecl) return;
4107 
4108   if (isKeyword())
4109     CorrectionDecls.clear();
4110 
4111   CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
4112 
4113   if (!CorrectionName)
4114     CorrectionName = CDecl->getDeclName();
4115 }
4116 
getAsString(const LangOptions & LO) const4117 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4118   if (CorrectionNameSpec) {
4119     std::string tmpBuffer;
4120     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4121     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4122     CorrectionName.printName(PrefixOStream);
4123     return PrefixOStream.str();
4124   }
4125 
4126   return CorrectionName.getAsString();
4127 }
4128